

EDUARDO KUGLER VIEGAS

TOWARDS RELIABLE INTRUSION

DETECTION IN HIGH SPEED NETWORKS

CURITIBA

2018

Doctoral dissertation submitted to fulfill a partial

requirement for the degree of Doctor in Computer

Science in the Graduate Program of Computer

Science at Pontifical Catholic University of Paraná,

Brazil.

EDUARDO KUGLER VIEGAS

TOWARDS RELIABLE INTRUSION

DETECTION IN HIGH SPEED NETWORKS

CURITIBA

2018

Doctoral dissertation submitted to fulfill a

partial requirement for the degree of Doctor in

Computer Science in the Graduate Program of

Computer Science at Pontifical Catholic

University of Paraná, Brazil.

Major Concentration Field: Computer Science

Advisor: Prof. PhD Altair Olivo Santin

: Prof. PhD. Altair O. Santin

We have met the enemy and he is us

Walt Kelly, 1971

Acknowledgments

To my mother and my father, I cannot express my gratitude, this work was only possible

because you both have always supported me.

To my supervisor Altair Olivo Santin, who have always supported me since my under

graduation, this work would definitely not be possible without him.

To Nuno Neves and Alysson Bessani from University of Lisbon, who have helped me

throughout this work and advised me during my stay in Portugal.

To my friends who were always there for me: Vilmar Abreu, Cleverton Vicentini, Rafael

Ribeiro, and many more. To my friends: I will always be thankful for getting to know every

one of you, and I am sure that our friendship will last for years to come.

 To my friends from Portugal who have welcomed me as a family: Vinicius Vielmo,

Miguel Garcia, Tulio Alberton and many others. To my friends from Portugal: I am sure we

will meet again, and wish the best to all of you.

To everyone from Lasige.

To everyone from SecPLab.

To everyone from PPGIa: Jhonatan Geremias, Cheila Cristina and Nicolas de Paula.

To Pontifical Catholic University of Paraná, for providing me the research grants needed

to purse my PhD.

To Intel, for providing me the research grants needed to purse my PhD, and allowing

me to improve as a researcher and as a person.

iii

Summary

Acknowledgments .. 5

Summary .. iii

Figure List .. viii

Table List .. xii

Abstract .. xiv

Abbreviations List .. xv

Chapter 1 ... 16

Introduction .. 16

1.1 Motivation and Hypothesis .. 17

1.2 Goals .. 20

1.3 Contributions .. 21

1.4 Document Structure ... 21

Chapter 2 ... 23

The Challenges of Network-based Intrusion Detection ... 23

2.1 Big data processing .. 23

2.1.1. Batch processing .. 24

2.1.2. Stream processing .. 24

2.2 Intrusion Detection ... 25

2.2.1. Machine Learning (ML) ... 26

2.2.2. Challenges for ML-based Approaches for Production Usage 27

2.2.2.1 High network bandwidth .. 28

2.2.2.2 High variability in input data .. 29

iv

2.2.2.3 Lack of realistic training/testing data ... 30

2.2.2.4 Changes in network behavior ... 30

2.2.2.5 Unreliable classifications over time ... 31

2.2.2.6 Adversarial settings .. 31

Chapter 3 ... 32

Related Works .. 32

3.1 High detection throughput in intrusion detection .. 32

3.1.1. Discussion .. 34

3.2 On Building Realistic Training/Testing data for Intrusion Detection 35

3.2.1. Discussion .. 37

3.3 On Dealing with Adversarial Attacks .. 38

3.3.1. Discussion .. 39

3.4 Ensuring reliability in classifications ... 39

3.4.1. Discussion .. 42

3.5 Reliability in intrusion detection .. 44

3.5.1. Discussion .. 45

Chapter 4 ... 48

A Reliable Intrusion Detection Model .. 48

4.1 Proposal Overview ... 49

4.2 BigFlow .. 50

4.2.1. Feature Extraction .. 51

4.3 Batch Learning - Generalization .. 53

4.3.1. Attack Detection Rate .. 54

4.3.2. Background Detection Rate ... 56

4.3.3. Generalization Evaluation .. 57

4.3.4. Generalization Evaluation Method Summary .. 58

4.3.5. On Building Generalization Capable Batch Learning Models 58

v

4.4 Batch Learning – Reliability in Classifications ... 60

4.4.1. Changes in Feature Values Distribution ... 60

4.4.2. Scenario .. 61

4.4.3. Rejection Engine .. 61

4.5 Stream Learning – Resilience to Adversarial Attacks ... 63

4.5.1. Detection Scheme ... 64

4.5.2. Ensuring Adversarial Machine Learning - Exploratory ... 65

4.5.3. Ensuring Adversarial Machine Learning - Causative .. 65

4.6 Reliable Learning – Conformal Evaluator ... 66

4.6.1. Computing Credibility and Confidence values .. 67

4.6.2. Ensuring Reliability .. 68

4.7 Reliable Learning – Adapting to Network Behavior Changes 69

4.7.1. Reliability ... 70

4.7.2. Decrease rejection rate ... 71

4.7.3. Reliable update classification scheme .. 71

4.7.4. Decrease expert label request ... 71

4.7.5. Decrease storage ... 72

4.8 Discussion .. 72

Chapter 5 ... 74

The Building of Realistic Intrusion Datasets .. 74

5.1 Fine-grained Intrusion Dataset ... 74

5.1.1. Normal (background) traffic creation method ... 75

5.1.2. Attack traffic creation method .. 76

5.1.3. Dataset Building ... 77

5.1.3.1 Background Traffic Generation .. 77

5.1.3.2 Attack Traffic Generation ... 78

5.1.3.3 Testbed environment .. 79

vi

a. Attack detection scenarios ... 80

b. Background detection scenarios .. 81

5.1.4. Discussion .. 82

5.2 An Evolving Intrusion Dataset ... 83

Chapter 6 ... 87

Experiments .. 87

6.1 Batch Learning ... 88

6.1.1. Generalization .. 88

6.1.1.1 Model Evaluation ... 88

6.1.1.2 Traditional Model Building Process ... 89

6.1.1.3 Multi-objective Feature Selection .. 94

6.1.2. Reliability in Classifications .. 97

6.1.2.1 Evaluation of the proposed rejection method ... 98

6.1.2.2 Comparison with other rejection approaches ... 101

6.1.3. Discussion .. 101

6.2 Stream Learning ... 102

6.2.1. Stream Learning – Resilience to Adversarial Attacks ... 102

6.2.1.1 Model Obtainment Process ... 103

6.2.1.2 Traditional Evaluation .. 103

6.2.1.3 Adversarial Settings – Exploratory Attacks ... 104

a. Traditional Evasion .. 105

b. Window Interval Exploit ... 105

6.2.1.4 Adversarial Settings – Causative Attacks ... 106

6.2.2. Discussion .. 107

6.3 Reliable Learning ... 108

6.3.1. Accuracy Degradation of Machine Learning Classifiers 108

6.3.2. The Problem with Classification Confidence in Intrusion Detection 112

vii

6.3.3. Discussion .. 113

6.3.4. Conformal Evaluator .. 114

6.3.5. Adapting to Network Behavior Changes ... 117

6.3.6. Discussion .. 121

6.4 BigFlow - Dealing with High-speed Networks ... 121

6.5 Final Considerations .. 124

Chapter 7 ... 126

Conclusion .. 126

6.1 Future Works ... 127

6.2 Publications .. 127

6.2.1. Generalization Capable Models ... 128

6.2.2. Reliability in Batch Learning Classification .. 128

6.2.3. Resiliency to Adversarial Attacks .. 128

6.2.4. High-speed Networks ... 128

6.2.5. Conformal Evaluator and Reliable Intrusion Detection Model 128

6.2.6. All ... 129

References .. 130

Appendix 1 ... 136

Appendix 2 ... 142

Appendix 3 ... 144

viii

Figure List

Figure 1. Typical intrusion detection architecture. ... 25

Figure 2. Batch and Stream Learning applied to NIDS. ... 27

Figure 3. Network throughput relation to number of flows, network packets and generated

data. Rates were computed according to MAWI [16] network traffic in 02.21.2018. 28

Figure 4. Overview of the proposed reliable intrusion detection model, and how each learner

overcome the challenges of production environments. .. 49

Figure 5. BigFlow real-time feature extraction module architecture for high-speed networks.

 .. 52

Figure 6. BigFlow flow computation through the Tumbling Window approach. 53

Figure 7. Batch Learner evaluation method towards generalization capable models. 54

Figure 8. Batch Learner attack evaluation method. ... 55

Figure 9. Batch Learner service content evaluation method. ... 57

Figure 10. Batch Learner service evaluation method. .. 57

Figure 11. Changes in features distribution, considering SYNFlood Attack as reference. 61

Figure 12. Features within the range for a class (attack). ... 62

Figure 13. Feature outside the threshold range for both classes. .. 62

Figure 14.Final class assignment using majority vote as batch learner classifier combination.

 .. 63

Figure 15. Resilient to adversarial attacks anomaly-based intrusion detection through stream

learning algorithm. ... 64

Figure 16. Computation example of Credibility and Confidence values through a similarity-

based algorithm in a two-class dataset. In this example the conformity measure is given

as the distance to centroid. .. 68

Figure 17. Proposed reliable learning architecture. .. 70

Figure 18. Proposed database creation method for fine-grained evaluation of intrusion

detection systems. ... 75

Figure 19. Venn diagram of background service distribution among clients. 80

ix

Figure 20. Venn diagrams for the background service detection rate scenarios showing the

service distributions among clients. ... 81

Figure 21. MAWIFlow network traffic distribution throughout 10 years. 85

Figure 22. Multi-objective operation points for probing attacks. The operation points are

shown in terms of objective error rate; the operation points are chosen according to their

lowest error rate. ... 97

Figure 23. Accuracy-rejection tradeoff for the combination technique while detecting new

attacks. .. 98

Figure 24. Tradeoff between the accuracy improvement for new attacks and the rejection of

known and similar attacks. ... 100

Figure 25. Tradeoff between accuracy and rejection rate, for each classifier in new attacks

dataset. .. 100

Figure 26. Accuracy-rejection tradeoff, for the combination classifier in the new attacks

dataset, using the evaluated rejection techniques. .. 100

Figure 27. Traditional stream learning approach behavior under network traffic intensive

attacks, upper chart shows the network packet classes occurrence while bottom chart

shows the related error rate. Attack detection error rate increases according to the

occurrence of attacks in the sliding window. .. 105

Figure 28. Traditional Batch Learning (TML, Traditional Machine Learning) and Proposed

Approach resilience to causative attacks (training dataset poisoning attacks). The

horizontal axis shows the rate of attacks injected into the training dataset labeled as

normal activities. The vertical axis shows the accuracy and rejection rate impact while

detecting such attacks, having the infected training dataset. .. 107

Figure 29. Batch Learning (Random Forest) classifier monthly accuracy according to its used

feature view throughout 10 years of network traffic anomalies, only the first 60 days of

2007 are used for training. The system is not updated throughout time. Similar results are

found when other Batch Learning classifiers are evaluated. .. 110

Figure 30. Stream Learning (OzaBoosting) classifier monthly accuracy according to its used

feature view throughout 10 years of network traffic anomalies, only the first 60 days of

2007 are used for training. The system is not updated throughout time. Similar results are

found when other Stream Learning classifiers are evaluated. .. 111

Figure 31. Batch Learning (Random Forest) classifier class related threshold (CRT) error-

reject tradeoff for 2007, thresholds for both Normal and Attack thresholds were varied

from 0.00 to 1.00 in a 0.01 basis, all operation points are shown. Traditional

x

classification assessment approach, using CRT, fails at providing reliability when new

network traffic behavior is occurring. .. 112

Figure 32. Stream Learning (OzaBoosting) classifier class related threshold (CRT) error-reject

tradeoff for 2007, thresholds for both Normal and Attack thresholds were varied from

0.00 to 1.00 in a 0.01 basis, all operation points are shown. Traditional classification

assessment approach, using CRT, fails at providing reliability when new network traffic

behavior is occurring. ... 113

Figure 33. Conformal evaluator error-reject tradeoff, compared to class-related threshold

(CRT) as measured by OzaBoosting classifier, in the first three years of the MAWIFlow

dataset. .. 116

Figure 34. Conformal evaluator error-reject tradeoff, compared to class-related threshold

(CRT) as measured by OzaBoosting classifier, in Jan. 2007 to Jun. 2007 in MAWIFlow

dataset. .. 116

Figure 35. Reliable intrusion detection model performance throughout the 10 years of

MAWIFlow. System was updated every 6 months, and not incrementally updated

afterwards. For the sake of simplicity, a 0.7 !"#$%% for both classes was used in all cases.

 .. 118

Figure 36. Reliable intrusion detection model performance throughout the 10 years of

MAWIFlow. System was updated every 6 months, and incrementally updated with 1% of

rejected instances every day. For the sake of simplicity, a 0.4 !"#$%% for both classes was

used in all cases. ... 119

Figure 37. Yearly accuracy and rejection rates comparison as obtained by the proposed

reliable intrusion detection model with and without incremental model updates. 119

Figure 38. Monthly accuracy and rejection rates comparison as obtained by the proposed

reliable intrusion detection model with and without incremental model updates. 120

Figure 39. BigFlow prototype architecture. .. 122

Figure 40. BigFlow throughput performance according to the number of worker nodes. 123

Figure 41. BigFlow prototype architecture. .. 123

Figure 42. Conformal evaluator performance throughout 10 years of MAWIFlow dataset. .. 143

Figure 43. Performance of several classifiers using MOORE feature set throughout 10 years

of MAWIFlow dataset. .. 144

Figure 44. Performance of several classifiers using NIGEL feature set throughout 10 years of

MAWIFlow dataset. .. 145

xi

Figure 45. Performance of several classifiers using VIEGAS feature set throughout 10 years

of MAWIFlow dataset. .. 146

Figure 46. Performance of several classifiers using ORUNADA feature set throughout 10

years of MAWIFlow dataset. ... 147

xii

Table List

Table 1. Related Works comparison to BigFlow. ... 36

Table 2. Classification reliability assessment approaches comparison. 43

Table 3. Reliability in intrusion detection works comparison. ... 47

Table 4. Services used for the background traffic generation. ... 78

Table 5. Tools used for attack network traffic generation. ... 78

Table 6. Network traffic distribution for attack detection scenarios. 80

Table 7. Client behavior for service’s content detection scenarios. ... 82

Table 8. Network traffic distribution for backround detection scenarios. 82

Table 9. MAWIFlow statistics. ... 84

Table 10. Traffic distribution on DARPA1998. ... 89

Table 11. Rates obtained for attack detection scenarios. .. 90

Table 12. Rates obtained for normal detection scenarios. .. 91

Table 13. Rates obtained for generalization evaluation. .. 92

Table 14. Rates obtained for each considered objective. ... 94

Table 15. Accuracy for each Probing scenarios using the obtained classifiers. 98

Table 16. Accuracy-rejection tradeoff for each dataset using the points marked in Figure 25.

 .. 99

Table 17. Proposed stream learning resilient to adversarial attacks and traditional evasion

evaluation. .. 103

Table 18. Weekly computational and storage resources used by each approach (excluding

initial setup). ... 124

Table 19. Fine-grained intrusion dataset feature set. .. 136

Table 20. Orunada feature set. .. 137

Table 21. Nigel feature set. ... 138

Table 22. Viegas feature set. .. 138

Table 23. Moore feature set. ... 140

xiii

Table 24. Features regarding the labeling process. .. 141

xiv

Abstract

Existing machine learning solutions for network-based intrusion detection cannot maintain their

reliability over time in production environments. In such context, detection schemes must be

able to detect intrusion attempts at a high network bandwidth, besides having to deal with the

lack of realistic training/testing data, changes in network traffic behavior, unreliable

classifications over time and adversarial settings. In the light of this, this work introduces a new

intrusion detection model, namely reliable intrusion detection, whose main characteristic is the

usage of both batch and stream learning algorithms coupled together. The model exploits the

characteristics of each type of learner in a cascade pipeline to overcome the challenges of high-

speed networks. Batch learning schemes are designed in such a way, that they provide reliable

classifications over time and are able to generalize the behavior from the training dataset in the

model. On the other hand, is built stream learning schemes resilient to adversarial attacks to

hinder attacks over the designed system. Finally, batch and stream learning algorithm are

coupled together to provide classification reliability over time, while also reliably adapting to

network traffic behavior changes. Experiments over two built datasets showed the model

feasibility. In the first dataset, namely fine-grained intrusion dataset, each of the common

assumptions adopted in the literature are evaluated and overcome by the reliable intrusion

detection model. In the second, namely MAWIFlow, was built an intrusion dataset of over 30

TB of data that spans for over 10 years of real production environment networks. Experiments

in MAWIFlow also showed the model feasibility regarding its scalability, and reliability over

time, even in the absence of model updates.

Keywords: Machine Learning; Stream Learning; Intrusion Detection; Classification

Reliability; Intrusion Databases.

xv

Abbreviations List

CNN

DARPA

DNS

GB

HDFS

HIDS

IDS

KDD99

MAWI

MAWILAB

ML

NIDS

OZA

PCAP

RF

TB

US

Cable News Network

Defense Advanced Research Project Agency

Domain Name System

Gigabyte

Hadoop Filesystem

Host-based Intrusion Detection System

Intrusion Detection System

Dataset used for the third KDD competition

Packet traces from WIDE backbone

Related work that provides daily labeling of network traces from MAWI

Machine Learning

Network-based Intrusion Detection System

Ozaboosting

Packet Capture

Random Forest

Terabyte

United States

Chapter 1

Introduction

According to a CISCO network forecast report, the worldwide network traffic in 2016 was 96

EB/month, and, it is expected to reach 278 EB/month in 2021 [1]. Current network devices can

reach a bandwidth of 100 Gbps, and there are plans to support 400 Gbps in a near future [2].

Moreover, current network-based cyber-attacks are also significantly increasing their

capabilities. For instance, in October 2016, a DDoS attack with 100 thousand malicious

endpoints surpassed a bandwidth of 1.2 Tbps at a Domain Name Server (DNS) infrastructure.

This sort of attack could potentially bring down several sites in US and Europe, including

Twitter, Netflix and CNN [3]. Nonetheless, reports of attacks reaching more than 100 Gbps of

traffic are becoming surprisingly common nowadays [3, 4]. Thereby, operators need access to

solutions to enable the real-time measurement and analysis of such malicious content over those

massive network attacks.

 To this end, over the last years, several works have applied machine learning (ML)

techniques, mostly through pattern recognition schemes, for the detection of network-based

attacks. In a pattern recognition scheme, the classification of intrusion attempts is, in general,

achieved through a two-phase process: training and testing [5]. In the training phase, the

classifier learns the environment behavior, as present in the training dataset, producing a model.

Afterwards, in the testing phase, the model is evaluated regarding its accuracy using a test

dataset, which is expected to represent the production environment behavior [6].

 However, on the other side, the network traffic behavior changes in a daily-basis, either

due to the discovery of new attacks [6], or due to the offering of new services [7]. In such

context, due to the evolving behavior of such environment [8], and the high network throughput

17

[1], the identification of network attacks becomes a challenging task, in which a designed

detection mechanism can become out-of-date before they are even deployed in real-world

(production) environments [9].

1.1 Motivation and Hypothesis
Network-based intrusion detection through ML schemes have been the subject of

several studies over the last years [6]. In such context, in their majority, they have aimed at

improving the detection rate in a single dataset – more specifically KDD99 [10]. However, few

research has been made regarding the applicability of their work [7]. Thereby, despite the

promising reported results, such as high detection rates, there still a lack of adoption of such

systems in production environments [6]. Thus, it remains mostly as a research topic [6], being

the signature-based approach (event scan for well-known attack patterns) currently the most

used technique [11].

The network-based intrusion detection field presents several challenges to ML

techniques when compared to other fields [10]. Thereby, when a new ML-based approach is

under development it must undergo through a more comprehensive evaluation. However, in

general, the majority of works employs a traditional evaluation approach [7], in which the

accuracy rates measured in a single test dataset are assumed to be evidenced in production [6],

despite the challenges that networked environments present. In such a case, a ML-based scheme

must be able to detect intrusion attempts at a high network bandwidth, besides having to deal

with the lack of realistic training/testing data, not generalization capable models, changes in

network behavior, unreliable classifications over time, and adversarial attack setting.
Network throughput has significantly increased in the past years. However, current

approaches for network traffic measurement and analysis in the Big Data context often rely on

Hadoop-based clusters [12, 13]. In general, current solutions write network packets as raw data

(PCAP) to a distributed filesystem (e.g. HDFS [14]) and, process them later on. Although such

approaches offer significant improvements in scalability [12], they lack applicability in real-

world environments. Nonetheless, current methods for the discovery of new network attacks in

such context are mostly achieved through unsupervised machine learning techniques, which

typically also require the storage of the network traffic over a period for the identification of

unknown anomalies [15]. However, due to the massive amount of network data generation, its

storage for further analysis is not feasible in most scenarios [16]. In such settings, the network

traffic must be analyzed at line speed, allowing intrusion detection to be performed without

delays.

18

On the other side, when one is training a ML-based intrusion detection technique, the

lack of realistic training and testing data becomes a challenging task. To this end, several

approaches have been proposed for the obtainment of properly built intrusion datasets [10].

Typically, such proposals are either performed in a controlled environment [17] or by the means

of the production environment monitoring [15]. In the prior, the generated dataset often lacks

the production environment highly variable nature [10]. While in the former, it lacks a ground

truth (prior correct event labels), or its sharing is not possible because of privacy concerns [18].

Thus, despite several efforts, currently, one of the most used datasets was built in 1998 [19],

with several known flaws [20, 21].

Thereby, due to the lack of realistic training/testing data, the building and evaluation of

ML-based techniques regarding their generalization capacity is often not made [7]. This

because, intrusion detection schemes must be able to generalize the behavior from the training

environment to other scenarios, due to the highly variable nature of production environments,

as it is not possible to train a classifier with all possible normal or attack behaviors, thus

demanding that the detection scheme is generalizable-capable. However, current approaches in

the literature, in general, assumes that the accuracy obtained in the testing dataset, will be

observed during production usage [6]. Although, even an updated classifier, will have to deal

with changes in both normal and attacker behaviors. For instance, a normal behavior might

change due to the offering of new services or new contents. On the other hand, the attacker

behavior, might also change due to the discovery of new attacks, or by even changing how an

attack behaves [8]. Thereby, assemble a training and testing dataset that present all such

properties is not feasible [6, 7].

However, regardless of whether the used training/testing dataset was properly built, and

the detection scheme is generalizable or not, the network traffic also changes over time, either

due to new types of malicious actions or due to alterations in the transmitted content (e.g. due

to the offering of new services), rendering the obtained model outdated [9]. Consequently, the

accuracy that was achieved during training might not be observed in practice, even if the dataset

was properly obtained. In such cases, the intrusion detection engine will no longer be trusted

by the operator, as alarms are not generated as expected [22]. However, the identification of

changes in network behavior is a challenging task, which often requires human intervention to

reevaluate whether the current model error rate is still acceptable or not. Thus, to achieve

classification reliability, the model must be periodically tested and updated (e.g. every month).

This action requires human intervention not only to rebuild the model, which takes time and

storage, but also to keep the production model operational, until a new model is available, with

19

acceptable error rates.

On the other side, despite the need for model updates, intrusion detection schemes

operate in the settings of an adversary. In such context, a sophisticated attacker may attempt to

evade the intrusion detection mechanism, either by perverting the intrusion detection

mechanism properties or by injecting attacks during the training stage [23].

Provide classification reliability in the presence of new network behavior and in the

settings of an adversary is a challenging task. Current approaches often rely in the classification

confidence given by the classifier [24]. In such cases, events with low confidence are rejected

rather than being potentially misclassified. However, as such probabilities are computed

according to the behavior present in the training dataset, when an event with an unknown

behavior is classified its probabilities can be biased [24]. For instance, a new attack that does

not behave similarly to known attacks may bias the classifier confidence values, wrongly

increasing other classes confidence.

Such challenging scenario for ML-based intrusion detection is hardly noted in the

literature [6, 7]. In contrast, the majority of works aim at improving the system detection rates,

rather than actually questioning if their detection mechanism could actually be used in

production, and how reliable their generated alarms will be over time. In the light of this, this

work hypothesis is that: batch and stream learning schemes coped together are able to provide
a more reliable network-based intrusion detection in real-world production environments
over time.

This hypothesis depends on the building of a reliable generalization capable batch

learning detection scheme. In other words, it depends on a batch learning scheme, able to

generalize the production environment behavior, regarding the classification of similar and new

event’s behavior, in a period of time, due to the difficulties involved in creating representative

training intrusion datasets. Nonetheless, when new/unseen events are classified after such

period, classifications must still be reliable, in other words, potentially misclassifications must

be rejected rather than wrongly classified. On the other side, in order to reliably adapt to

network behavior changes over time, the hypothesis also depends on the building of a stream

learning detection scheme resilient to adversarial attacks. Thereby, the proposed stream

learning detection scheme must be able to adapt to the network changes over time, while also

not being susceptible to updates with mislabeled instances caused by an adversary. Finally, this

work hypothesizes that a generalizable capable batch learning scheme, able to make reliable

classifications over time, coped with a stream learning scheme, in a cascade manner, that is,

resilient to adversarial attacks, and able to adapt to changes in network behavior over time, will

20

be reliable in production use over time.

1.2 Goals
The main goal of this work is to propose, develop and evaluate both batch and stream

learning detection schemes, with the aim to provide reliable network-based intrusion detection

in real-world production environments over time.

To reach the main goal, the following specific objectives must be met:

I. To conceive a set of methods that addresses the main problems reported in the

literature when building datasets for IDS evaluation, while also enabling the fine-

grained (production environment characteristics) and overtime IDS evaluation.

II. To conceive a set of methods that evaluates batch learning and stream learning

intrusion detection mechanisms considering the network properties from production

environments;

III. To conceive a method to generate generalization capable batch learning intrusion

detection schemes;

IV. To conceive a method to generate reliable batch learning intrusion detection

schemes, in the presence of unknown behaviors;

V. To conceive a method to generate stream learning intrusion detection schemes

resilient to adversarial attacks;

VI. To conceive a method to assess the classification reliability even in the presence of

new network behaviors;

VII. To conceive a method to enable reliable ML-based intrusion detection over time in

the presence of new network behaviors;

VIII. To conceive a method to enable reliable ML-based intrusion detection in high-speed

networks;

Therefore, objectives I and II aim at providing properly built intrusion detection datasets

in order to evaluate the proposal. Objectives III and IV is related to provide a method for the

proper evaluation of ML-based intrusion detection techniques. Objectives V and VI concerns

the building of reliable and generalization capable batch learning intrusion detection schemes.

Objective VII aim at providing stream learning intrusion detection schemes resilient to

adversarial attacks. Objectives VIII and IX addresses the design of a detection scheme to

provide a reliable intrusion detection scheme over time. Finally, objective X aim at enabling

the proposed reliable intrusion detection for high-speed networks.

21

1.3 Contributions
This work provides means to enable the use of ML-based intrusion detection techniques

in production environments in a reliable manner. In summary, this work presents the following

main contributions:

I. An approach named BigFlow, which performs reliable and near real-time network

traffic measurement (feature extraction) and classification in the Big Data context;

II. A tool-based method that produces real and valid network traffic in a controlled and

reproducible environment for creating intrusion datasets. The datasets built through

such method aim at evaluating both batch and stream learning intrusion detection

schemes;

III. An intrusion dataset with real and labeled network traffic, based on MALAWI

database, built by analyzing over 10 years of real network traces, composed by more

than 30 TB of data and 30 billion network flows. The built dataset aims at evaluating

stream learning intrusion detection schemes;

IV. A new and fine-grained evaluation method specific for batch learning intrusion

detection schemes;

V. A new multi-objective feature selection method aiming to improve the

generalization capacity of batch learning schemes, by considering the network

properties in intrusion detection;

VI. A new rejection method that provides classification reliability even when facing

unknown network traffic behavior;

VII. A new approach to reliably deal with evolving network data streams to perform

anomaly-based intrusion detection, in the presence of an adversary;

VIII. A new classification reliability assessment method through a conformal evaluator

module. It aims at providing a reliability degree while facing new network traffic

behavior even in the absence of model updates. The conformal evaluator assesses

the classifier confidence according to the behavior seen in the training dataset;

IX. A new reliable intrusion detection mechanism made of both batch and stream

learning algorithms, providing classification reliability and ongoing updated

classification models with minimal human assistance.

1.4 Document Structure
The remainder of this document is organized as follows. Chapter 2 describes the

challenges that network-based intrusion detection faces towards reliable use in production

22

environments. In summary, big data processing techniques for network flow measurement and

analysis, and the challenges that ML-based intrusion detection techniques faces are presented.

Chapter 3 presents how related works addresses such challenges. Chapter 4 describes the model

proposed in this work, namely reliable intrusion detection model. Chapter 5 tackles the

challenge of building realistic intrusion datasets for the evaluation of network-based intrusion

detection schemes. Chapter 6 reports the experiments performed over the reliable intrusion

detection model using the built datasets. Finally, Chapter 7 concludes this work and presents

future works.

23

Chapter 2

The Challenges of Network-based Intrusion Detection

This chapter objective is to present an overview regarding the techniques used throughout this

document. More specifically, Section 2.1 presents big data processing techniques that are

commonly applied for network measurement and analysis in high-speed networks. In contrast,

Section 2.2 further describes intrusion detection techniques, while Section 2.3 addresses

machine learning techniques applied to such context, and the challenges it faces towards reliable

production usage.

2.1 Big data processing
The Big data concept is often referred in the literature when the amount of data cannot

be processed by the means of traditional processing techniques [25]. To this end, its

characteristics can often be summarized in four ‘V’s, being them [26]: (i) Volume: due to the

increasing quantity of data; (ii) Variety: due to the large number of data sources and their types,

which also includes non-structure data such as: text, video, audio and web, besides the

traditional structured data; (iii) Velocity: due to the speed that such data is generated and the

processing demanded by it; and (iv) Value: due to the cost involved for the collection, storage,

and processing of such data.

 For instance, consider an intrusion detection system operating in a gigabit network. In

such context, a significant data volume is generated constantly, according to how the network

entities communicate over time, moreover its velocity is strictly related to the network speed

link. On the other side, the variety of such data may include: sources (hosts), network protocols,

network attacks, services, amongst others. Finally, the value of such data is strictly related to

24

the environment it is operating, because if the intrusion detector fails at detecting network

attacks, in a short period of time, the monitored environment may suffer the attack

consequences.

In such context, to deal with these characteristics, a proper distributed processing system

must be developed. To this end, in general, Big data processing techniques often falls in two

categories: batch or stream. The next subsections briefly describe each in detail.

2.1.1. Batch processing
The main characteristic of batch processing techniques is the need to store previously

the data for its processing [26]. An example of a framework that enables this kind of data

processing is the Apache Hadoop [27]. Hadoop project have two main characteristics: its (i)

Distributed Filesystem (Hadoop Distributed Filesystem – HDFS [14]), which is responsible to

perform the data fragmentation, spreading and replication between the cluster nodes, and the

(i) MapReduce programming model [28], which enables the processing division between

several nodes, each with smaller sizes.

 Although batch processing techniques are feasible for big data processing, they are not

adequate for situations that demands real-time processing, e.g. real-time detection of network

attacks. Such factor is mainly caused due to the need of data storage. Thereby, to enable real-

time processing, stream processing techniques must be used.

2.1.2. Stream processing
In contrast to batch processing, stream processing techniques must be able to process

large volumes of data in near real-time [26]. To this end, stream processing platforms (e.g.

Apache Storm [29], and Apache Flink [30]) receive data from registered sources, and compute

over such data through a set of Processing Elements (PE). Each PE is responsible to perform a

specific operation on the arriving data and to send the result to another PE, until the computation

ends. In general, the messages transmitted through the PEs can be forwarded according to three

approaches: shuffle, keyed, or broadcast. In the shuffle approach, the PE messages are sent to

another PE in a uniformly distributed manner. On the other side, the keyed approach groups

messages according to a key (e.g., IP address) and sends them to the PE associated with it.

Finally, the broadcast approach transmits the messages to every PE of the same type. The near

real-time processing in such platforms is achieved by keeping the computation in each PE type

as small as possible, and by distributing the message load uniformly through several PE in

parallel.

25

2.2 Intrusion Detection
An intrusion detection system (IDS) is a tool that is aimed to identify and classify

malicious activities in an environment [31]. Figure 1 shows a typical IDS architecture composed

of four modules. (i) Data Acquisition: this module is responsible for the collection of events

from the monitored environment for further analysis, e.g., read network packets from a network

interface card. (ii) Preprocessing: this module performs the processing needed before the

detection engine is run on the collected events, e.g., extract a set of features. (iii) Detection: this

module, based on the preprocessed event, decides whether an event is normal or an intrusion

attempt. (iv) Alert: finally, if an event is considered as an intrusion attempt, this module

generates an alert.

Figure 1. Typical intrusion detection architecture.

Several approaches for the classification of intrusion attempts have appeared in the

literature. Currently, the most frequently used taxonomy, which is used in DARPA’s intrusion

datasets, was defined by Kendall [19]. According to Kendall, intrusions can be divided in four

classes as follows. (i) Probing attacks that gather information about a target; (ii) Denial-of-

Service (DoS) attacks, that is, any attempt to prevent legitimate users from accessing a service

or a system; (iii) remote to local (R2L) attacks that attempt to gain access to a legitimate user’s

account on a system; and (iv) user to root (U2R) attacks, which occur when the attacker already

has achieved access to a legitimate user’s account and then attempts to obtain administrator

privileges.

An IDS can be either network-based (NIDS) or host-based (HIDS), which determines

the attack classes it is able to detect. An NIDS performs the detection at network level, detecting

attacks such as probing (e.g. portscan) and a network-based DoS attacks (e.g., synflood). To

this end, to perform the event classification, an NIDS accesses the data only at network level,

e.g., network packets or network flow. In contrast, an HIDS detects application-based attacks,

such as R2L (e.g., buffer overflow) and U2R (e.g., privilege escalation). Thereby, it needs to

have access over the application data running on the protected systems, thus requiring access

to logs and other data about the system in order to perform its detection.

 In general, two approaches stand out in the literature for the detection of intrusions:

signature and anomaly. The signature-based approach consists in searching well-known attack

patterns in the received events. To this end, each event must be matched against the signature

26

database; if a known attack pattern is found, the event is classified as an intrusion attempt.

Thereby, when a new vulnerability is discovered and reported, a related signature must be

created. The main drawback of the signature-based approach is its inability to detect new

attacks.

 In contrast, the anomaly-based approach is aimed to detect new (unknown) attacks by

modeling the activities that are considered normal within a system. While the identification of

attacks is reached by identifying behaviors that deviate from the known normal modeled

behavior pattern [6]. The event behavior is defined by a set of features extracted during the

preprocessing stage. In studies in the literature, anomaly-based intrusion detection is in general

treated as a pattern-recognition problem [7], by the means of machine learning techniques.

2.2.1. Machine Learning (ML)
Machine learning aim to assign a class (e.g., normal or attack/intrusion) to an event [31].

In the process, the events are captured from the environment and stored in a database. From

each event in the database, a set of features is extracted and stored in a dataset. A machine

learning algorithm is then used to infer a pattern from the dataset and to create a model that

represents such behavior. However, events that present a behavior similar to that of other classes

may be wrongly classified, e.g., an attack that is similar to a legitimate request.

Several approaches can be used to perform the classification task by the means of ML

techniques. However, in general, an intrusion model is created using a training dataset. While

for the estimation of the classifier accuracy rates, a validation dataset is used. The validation

dataset is utilized for making possible improvements to the intrusion model. Finally, the final

version of the intrusion model is evaluated through a test dataset. For the process to be reliable,

each used dataset must contain different events. During the tests, the false-positive (FP) and

false-negative (FN) rates are estimated. An FP occurs when a legitimate activity is classified as

an intrusion, whereas an FN occurs when an intrusion is classified as a legitimate activity.

For the purpose of this dissertation, two ML approaches, vastly used in the literature

[31] and shown in Figure 2, will be considered for intrusion detection: Batch Learning, and

Stream Learning.

27

Figure 2. Batch and Stream Learning applied to NIDS.

Batch Learning (Figure 2, Batch Learning) techniques obtains a model by the means of

a training dataset, in a process called training, and evaluates it using a test dataset. Afterwards,

the model can be used in production for the classification of further events. In this sense, if the

environment behavior changes, a new model must be built. To this end, the current model is

discarded, and a new training and test dataset is assembled, only then, a new model can be

obtained.

Unfortunately, general-purpose networks rarely present a stable traffic pattern [8, 9]. In

such context, a typical approach to deal with evolving environments is to resort to stream

learning algorithms [32] (Figure 2, Stream Learning). These techniques allow the detection

mechanism update to be performed at each new event arrival, in an incremental way, without

discarding the current model. Thus, the time needed for building an updated classifier model

can be decreased [32]. However, these techniques typically rely on supervised learning, in

which the events need to be previously classified. Moreover, it is necessary to devise a method

to select the events that should be used for the incremental model update [33]. Thereby,

rendering the current approaches not easily applicable to networked environments [7].

Ideally, the model used in production environments should be as up-to-date as possible,

i.e. updated at each new arrived event. However, updates, in either Batch or Stream Learning,

are often prone to human assistance because in production environments the event`s label are

unknown. This process, in the event labeling task, is typically known as Active Learning. In

contrast to Supervised Learning, in which all event labels are known, it assumes that a subset

of event’s label can be requested to an expert over time [33]. The main goal is to improve the

model performance, by providing a subset of the true event’s label in production.

2.2.2. Challenges for ML-based Approaches for Production Usage
Despite extensive efforts made towards ML-based for intrusion detection in the last

years, which have yield promising results regarding the system’s accuracy rates, they are hardly

28

deployed in production environments [6]. The next subsections further describe the challenges

that ML-based techniques face towards reliable use in production environments.

2.2.2.1 High network bandwidth

Network bandwidth has significantly increased in the past years. Thereby, increasing

the rate of events to be classified, generated data and the number of network packets. In such

context, several ML-based techniques have been proposed, however, only few authors have

addressed the detection system throughput.

Figure 3 shows an example of how the network bandwidth affects the system received

data in a real scenario. In such a case, if a network throughput of 100 Gbps is considered, the

ML-based NIDS would need to classify up to 3.53 million flows/sec. On the other side, the

preprocessing module (Feature Extraction) would need to process up-to 17.66 million

packets/sec. Finally, if the used ML technique requires the data storage, as occurs in

unsupervised learning for instance, a 12.5 GB/sec of storage would be needed.

(a) Data Generated (b) Network Flows (c) Network Packets

Figure 3. Network throughput relation to number of flows, network packets and generated data. Rates were
computed according to MAWI [16] network traffic in 02.21.2018.

 In such settings, due to the amount of generated data, the use of unsupervised learning

techniques becomes unfeasible. Moreover, to improve or update the model over time by the

means of active learning, is also not easily feasible. For instance, if 0.1 percent of event’s true

labels were requested, an expert would need to manually process up to 35 thousand events/sec.

Thereby, in such context, one must resort to supervised learning techniques, either batch or

stream based.

 In general, supervised batch learning approaches are scalable, thereby able to cope with

such amount of data [34]. However, due to the changes in network behavior, the model will

quickly become out-of-date, i.e. unreliable classifications will occur. On the other side,

supervised stream learning techniques also are scalable [35], but, in addition, enable

incremental model updates over time. However, due to its evolving nature, they are prone to

29

adversarial attacks (attacks targeted at the model) and also requires event’s true label over time

for incremental model updates [32, 52].

 Regardless of the used ML technique, the feature extraction process is still required. To

this end, flow features are extracted by analyzing the exchanged network packets over time

according to the data exchanged between the entities over the network, e.g. number of bytes

sent/received between two hosts in a period of time. Thereby, because it requires to store

network statistics for a period of time, such task becomes a computationally-expensive process

[5]. Surprisingly, current approaches for the flow rebuilding (feature extraction) in the Big Data

context often rely on Hadoop-based clusters [12, 13]. These approaches, in general, simply

writes the raw network traffic activity log (PCAP) to the filesystem (e.g. HDFS) for further

analysis. Although such approaches offer significant improvements in throughput, they lack

applicability in real-world environments. In such settings, because the storage of network data

is not feasible, the traffic must be analyzed at line-speed.

2.2.2.2 High variability in input data
Network traffic is prone to a high variability in a short period of time. For instance,

within a day, a network link may crash, several different attacks may occur, new services may

be provided, new service’s content may be requested, amongst others.

On the other side, train and test datasets should present all the expected event’s

behaviors from production environments [10]. However, in such context, obtain all possible

events is not possible. Thus, ML-based intrusion detection techniques must be able to generalize

their known behaviors. In other words, the model, with a small subset of events, must be able

to correctly classify new ones, with a similar or new behavior. However, the design of models

capable of generalizing the environment behavior is a challenging task. Because, to this end, a

series of evaluations must be performed to measure how the model will behave in each possible

network setting.

For instance, consider a model trained only with synflood attacks. In production usage,

it may need to classify other type of DoS attacks, such as: icmpflood, udpflood, slowloris,

htmlflood, amongst others. Nonetheless, such attacks may vary their frequency and rate over

time. In such a case, to measure the generalization capacity, the evaluation process must

measure the accuracy rates according to each setting. In other words, measure the accuracy rates

for each attack, considering different attack frequency and rates. The same occurs for normal

behaviors, in which a normal event may change the requested service, content, frequency and

rates.

30

2.2.2.3 Lack of realistic training/testing data
Intrusion detection community suffers from a lack of proper designed datasets. To this

end, several techniques have been proposed in the literature [17, 22, 36]. However, the most

frequently used dataset [31] remains the well-known DARPA1998 dataset [19], which is now

almost 20 years-old. Most approaches used to create a public intrusion dataset attempted to

statistically model the user behavior [17, 19, 36]. In general, a typical and real user is monitored

during a certain period and its traffic characteristics are reproduced in a statistically similar

manner. Thus, a static user behavior is imposed during the monitored period. Nonetheless, these

approaches generate a site-specific traffic behavior that are difficult to reproduce.

The expected properties for an intrusion dataset are as follows [36]. (i) Realism: the

dataset should contain network traffic that can be observed in production environments; (ii)

validity: the dataset should contain well-formed packets, with a complete client-server

interaction; (iii) prior labeling: in the dataset, each event must be correctly labeled (as

belonging to a class, e.g., normal or attack), to allow correct classifier training; (iv) diverse/high

variability: the dataset should present a diversity of services, client behaviors, and attacks; (v)

correct implementation: in the dataset, the attacks must follow a well-known or “de facto”

standard; (vi) ease of updating: the dataset should be able to incorporate new services and

attacks that are discovered every day; (vii) reproducibility: the dataset should allow experts to

perform a comparison between datasets; and, finally, (viii) without sensitive data: the dataset

should not reveal sensitive data to allow the free dataset to be shared among researchers

Two approaches may be used for obtaining datasets for NIDS building: in the first, the

production environment is recorded and in the second a controlled environment is created [22].

The production environment monitoring allows traffic that is real and similar to the

environment to be obtained. However, because of privacy concerns it is not feasible to share

the dataset [18]. On the other side, the creation of a database in a controlled environment using

tools allows it to be shared freely, however, the approach suffers from traffic invariability

problems [36]. In this sense, although several approaches have been proposed, the anomaly-

based IDS literature lacks a ground-truth dataset.

2.2.2.4 Changes in network behavior
General-purpose network environments rarely present a stable traffic pattern. On the

contrary, the set of target concepts (e.g., network traffic classes) learned during the training

stage often evolve over time [6]. For instance, the network behavior may change because new

services are added [7] or due to modifications on how the attacks are executed.

31

 Nonetheless, the identification of such changes in high-speed production networks can

be challenging. Thereby, in order to cope with them, the behavior model needs periodic updates.

This typically involve a computationally-demanding task of model rebuilding, which can only

be performed if there is access (storage) over the recent observed traffic and the prior (manual)

classification of the events. In addition, the model rebuild cannot be postponed, as while a new

model is being constructed, the model currently in use should maintain acceptable error rates,

ideally as low as the ones observed during the training stage [7]. This makes the process

challenging for high-speed networks.

2.2.2.5 Unreliable classifications over time
Changes in network behavior, lack of realistic training/testing data, high variability in

input data and lack of model updates will inevitably render unreliable classifications over time.

In such a case, classifications made by the model will no longer be trusted by the operator.

A common approach to assess classification reliability often relies in the classification

confidence given by the classifier [37, 38]. To this end, events with low confidence are rejected

rather than being potentially misclassified. However, as such probabilities are computed

according to the behavior present in the training dataset, when an event with an unknown

behavior is classified its probabilities can be biased [24]. For instance, a new attack that does

not behave similarly as known attacks, thus increasing its normal class confidence output by a

classifier.

2.2.2.6 Adversarial settings

An emerging field of research, known as adversarial machine learning [23] considers

the use of machine learning in the settings of an adversary – called adversarial settings. In such

cases, the adversary (attacker) will attempt to evade the intrusion detection mechanism using

sophisticated types of attacks, called causative and exploratory [39]. The causative attacks refer

to attacks that occurs during the training process, e.g. the attacker inject misclassified intrusions

into the training dataset as normal events. On the other hand, the exploratory attacks aim at

exploring the machine learning algorithm properties, e.g. craft the intrusion attempt in a manner

that the detection engine classifies it as a normal activity.

32

Chapter 3

Related Works

This chapter presents the related works in five main areas according to the challenges faced by

ML-based intrusion detection techniques. Section 3.1 describes the related works towards high

detection throughput in intrusion detection. Section 3.2 addresses how the literature deals with

the lack of realistic training/testing data in intrusion detection, and whether those schemes are

generalizable capable or not. Section 3.3 describes how related works addresses adversarial

attacks to detection schemes. Section 3.4 shows the related works dealing with unreliable

classifications over time. Section 3.5 address the related works regarding reliable intrusion

detection over time.

3.1 High detection throughput in intrusion detection
This subsection further describes related works to the proposed solution for the network

measurement and analysis of massive network activities, named BigFlow.

Approaches for flow measurement and classification of massive network activities in

general relies in the prior storage of network data. For instance, Lee and Lee [12] proposed one

of the first scalable internet traffic measurement approach in the literature. To this end, the

authors developed a Hadoop-based network traffic monitoring and analysis system. In their

work, they performed the flow measurement by mapping raw network activity (PCAP) files in

HDFS. To enable such mapping, the authors have developed an API that is able to interpret

PCAP files format, break such files into blocks, while not losing network packets during such

process. Their proposed approach is scalable and achieved 14 Gbps in a 200-node (2 CPU core

each) cluster, however, they required the prior storage of the PCAP files. In their work, the

33

authors extracted several feature sets according to each protocol layer (e.g. transport,

application, amongst other). In their evaluation tests, the feature extraction throughput was

significantly degraded according to the extracted set of features. The authors performed the

classification by the means of a simple connection threshold through Hive queries, which must

be periodically updated in evolving networks.

Since then, several works have also proposed more comprehensive and scalable network

traffic classification approaches. For instance, Fortugne et al. [13] focused in integrating several

anomaly-detectors in the Hadoop architecture for network monitoring. In their work, two

approaches for network traffic measurement were proposed: packet-count and astute. In the

prior, only a packet count according to the hosts sending them was extracted, while in the former

6 features according to several network packet values were extracted. The authors adopted a

hash function approach to divide network traffic in splits. Each split had an anomaly-detection

algorithm, which identifies network activities by their anomalous score according a specific

threshold. Although their approach was implemented in Apache Hadoop, according to the

evaluation tests, it lacks scalability when astute feature extraction was considered. Nonetheless,

their approach also required the execution of computationally-expensive periodic updates (i.e.,

full retraining).

In contrast, some works have applied stream processing techniques for the measurement

of massive network activities. Baer et al [40] was one of the first authors to address network

traffic measurement and classification through stream processing techniques. In their work,

they proposed a Data Stream Warehouse (DSW) for network monitoring. To this end, the

authors relied in time windows for incremental and continuous queries execution, similarly to

BigFlow. However, to achieve such goal, the authors defined a declarative language interface

based on SQL. The declarative language interface support was enabled by building their

prototype on top of PostgreSQL, thereby requiring changes over such framework. Moreover,

they integrated their proposal with a machine learning framework for the classification of the

exported time windows, building their prototype on top of Weka API. However, their approach

relied on a supervised dataset, without considering the scalability of the machine learning

algorithms. They also did not address scalability, reliability, nor model updates.

Vernon and Victor [41] have also addressed network flow measurement by the means

of stream processing techniques. In their work, the authors developed an Apache Storm

topology that digest netflow records through an AMPQ queue. When a record is read, its field

values are interpreted, and flow statistics values are computed. Similarly to Baer et al [40], their

34

work also rely on a SQL-like language for further processing. Finally, when a flow is

computed, they rely on HBase for the flow storage and Apache Hadoop for the flow processing.

In their evaluation tests the authors have shown that their proposal is scalable, achieving up to

211 MB/sec in a 10-node cluster. Although the authors addressed scalability, and stream-based

processing, their proposal still required the storage of data for the network flow classification.

A similar approach to BigFlow is also performed by Apache Metron [42]. Metron relies

on Apache Storm [29] to perform the feature extraction in time window intervals. Similarly to

BigFlow, Apache Metron is executed as a topology within Apache Storm framework. To

perform the feature extraction, it also relies in time window intervals. In their approach, the

user defines the set of features that are going to be extracted by the means of a JSON file. For

each feature, the user can define the event field that is going to be summarized, and the related

processing, e.g. the sum of events with the same IP source address. The tool however requires

the storage of the activities in HBase for post classification. Moreover, the classification of

network attacks is only addressed by the means of unsupervised techniques, hindering its usage

in production environment.

Finally, in a prior work [43] a BigFlow prototype was implemented, using a subset of

20 features from [5]. The prototype goal was to address the resiliency to adversarial attacks in

a stream-based intrusion detection system for high-speed networks. The classification process

was achieved by the means of multi-view learning with a forest of hoeffding tree classifiers

[44]. In the evaluation tests, the preliminary BigFlow version showed the scalability and

feasibility of the proposal.

3.1.1. Discussion
A number of works addresses the flow measurement of massive network activities. In

its beginnings, several approaches have been proposed to this task by the means of batch

processing techniques [12, 13]. However, such approaches are unable to be used in production

environments, mainly due to the amount of data being generated over time. In the light of this,

several works have proposed the use of stream processing techniques to fulfill this task [40, 41,

43]. In general, those approaches divide the read network traffic into splits. Each split is then

processed according to a time-interval. Although such techniques are scalable and performs the

network traffic measurement in a stream-based manner, they either require framework

modifications [40] or extracts a non-representative subset of features [40, 41].

35

 Regarding the classification of massive network activities, such task is often not given

the proper care. In most cases, the classification is only achieved when such data is previously

stored [12, 13, 40, 41, 42]. Even so, they either rely in simple feature thresholds [12],

unsupervised machine learning [12, 13, 42] (in which the computation to fulfill such task is

discarded by the authors), or supervised ML (in which the labeling process is not addressed).

Nonetheless, there are no works that address the classification reliability over time.

 Table 1 shows a summary of related works comparison to BigFlow.

3.2 On Building Realistic Training/Testing data for Intrusion Detection
Many research studies have been conducted since the anomaly-based detection

paradigm was introduced by Denning [45]. However, despite the extensive amount of work,

few applications of any ML-based intrusion detection systems in production environments have

been reported. In recent years, some researchers have begun to question the applicability of the

results reported in the literature. Gates and Taylor [7] argued that only a few ML-based IDSs

have been widely used. They considered mainly the assumptions originating in Denning’s

work. According to them, the lack of appropriately obtained training data and testing

methodologies that consider the network properties, such as continuous changes in content,

volume, and attacks, is the main reason why the ML-based detection approach is unsuccessful.

Sommer and Paxson [6] conducted an extensive review of intrusion detection. They

argued that the field is significantly different from other fields in which machine learning

techniques have been successfully applied. They claimed that machine learning is more

effective at finding similarities rather than detecting outliers, for instance. On the other side, the

high cost of errors inhibits its use in production environments. The lack of available public and

updated data hinders an appropriate system evaluation and comparison [46, 47]. In addition,

Sommer and Paxson [6] and Paxson and Floyd [48] reported that real-world environments

present a significantly different behavior from the data the systems are normally trained.

Table 1. Related Works comparison to BigFlow.

Work Scalability Detection Reliability over time Usage in Production Environment

Lee and Lee [12]
Yes, however it degrades
drastically according to

the used feature set
Connection thresholds Not addressed Unfeasible, requires data storage

Fortugne et al. [13]
Yes, however their

approach demands a
significant processing

capacity

Unsupervised anomaly
detectors

Not addressed, however the
authors use unsupervised

anomaly detectors

Unfeasible, requires data storage, and does not
scale properly

Baer et al. [40] Yes Supervised batch learning Not addressed Partially feasible, however classification
reliability is not addressed

Vernon and Victor [41] Yes

Not addressed, however
detection can be achieved
by the means of SQL-like

query language, in a
threshold similar fashion

Not addressed Partially feasible, however classification
reliability is not addressed

Apache Metron [42] Yes Anomaly detection Not addressed, however relies
in anomaly detectors

Partially feasible, classification reliability is not
addressed, and for the detection of anomalies

network data must be stored

Prior work [43] Yes Supervised stream learning Not addressed
Feasible, however only address classification

resiliency (to adversarial attacks), reliability is not
addressed

BigFlow Yes Supervised batch and
stream learning Addressed Feasible

Thereby, the reliability of an ML-based detection system mainly relies on an
appropriately created training dataset. Normally, strong assumptions about the training data
need to be adopted. Canali et al. [46] created their dataset by collecting several Website contents

from the Internet; they labeled each datum by using state-of-the-art tools and manually
inspecting the data to ensure that the Website contents were correctly labeled. The authors
assumed that most of the frequently visited Websites worldwide are benign and that the
distribution of feature values is different for each class of Websites. The strongest assumption
is that the dataset used to train the models presents the same feature distribution as real-world
environments.

Moreover, when a dataset is obtained in a controlled environment, the authors normally
statistically reproduce the user behavior. Shiravi et al. [36] created user profiles on the basis of
the user behavior for each application during an observed time interval. Kendall [19] created a
dataset by statistically reproducing the user behavior in an air force environment. In general,
these approaches lack upgradeability, wrongly assuming that network traffic is immutable and
considering that the user behavior can be modeled [6, 7].

3.2.1. Discussion
The task of building realistic datasets for intrusion detection schemes evaluation have

been the subject of several studies in the literature over the last years [31, 47]. However, despite
extensive efforts, currently the most used dataset remains the KDD99 [21], with several known
flaws [20, 21]. Current approaches for building new intrusion datasets, which can be achieved

either by monitoring the production environment behavior [16], or by creating a controlled
environment [10, 20], fails at generating the expected network properties from production
environments. In such a case, due to the highly variable nature of networked environments, the
datasets must enable the fine-grained IDS evaluation. A fine-grained IDS evaluation aims at
enabling the intrusion detector system operation to evaluate how her system reacts to each of
the network properties.

Therefore, the approach proposed in this work aims to provide a publicly available
intrusion database through the use of well-known tools in a controlled environment, thus
providing the properties expected from an intrusion database. Moreover, the proposed method
aims at enabling the fine-grained evaluation of intrusion detection schemes, regarding the
reproduction of all the expected production environment properties. For instance, the
identification of similar/new attacks, and similar/new services.

38

3.3 On Dealing with Adversarial Attacks
The lack of usage of ML-based intrusion detection methods in production environments

was noted over the last years by a number of works [6]. Such usage gap is caused by several

aspects; however, it is a consensus that the detection method must be at least reliable and easy
to update [6]. The detection reliability is often considered in other areas [49], to this end, in
general the authors [50] rely in the classifier class probability output to reject or not the
decisions, while other approaches uses an ensemble of classifiers and establishes the
classification reliability through a majority voting approach [51].

This dissertation proposes a reliable intrusion detection model, which, in order to adapt
to network changes over time, resort to stream learning techniques [52]. However, due to its
incremental update nature, such techniques are prone to adversarial attacks. In such a case, a
sophisticated attacker may attempt to pervert the stream learning algorithm properties to evade
the detection system. For instance, an attacker may change how an attack behaves, causing
model updates with misclassified instances.

Despite being often considered in other areas; the classification reliability in stream
learning field, in the presence of an adversary, still is in its beginnings. For instance, when a
window-based stream learning detector is considered, the sliding window can be attacked to
deceive the outlier detector. Some authors, however, considered the adversarial settings in
anomaly-based intrusion detection.

Ling Huang et al. [52] defined a taxonomy used in their work to classify possible

adversarial attacks against the machine learning system. The authors also evaluated the impacts
that a poisoned training dataset incur in the classifier accuracy, in all evaluated cases the
classifier became unreliable when the training dataset had misclassified attacks injected.

In the spam detection scenario, Blaine Nelson et al. [51] evaluated the training dataset
poisoning impact on accuracy, the authors reported a 36% misclassification increase when the
attacker had control of only 1% of the training dataset. The authors also evaluated a causative
attacks resistance approach by identifying whether the new added instance results in accuracy
improvements or not, despite this approach is effective, the authors relied in a supervised dataset
(when all instances are prior classified). Such an approach cannot be employed in production
as the instances are not prior labeled and the accuracy cannot be estimated in real time. In the
malicious PDF detection scenario, Srndic and Laskov [53] evaluated a set of attacks against a
well-known learning-based classifier for malicious PDF files, the authors were able to decrease

39

the classification accuracy from almost 100% to 28%. The authors also suggested that a
multiple classifier system should be more resilient to such adversarial attacks, due to the need
to evade several complementary classifiers.

Few authors address causative attacks in the network intrusion detection field [54], for
instance, Benjamin et al. [55] developed the ANTIDOTE which relies in a robust PCA and a
robust Laplace threshold that is less sensitive to poisoning attacks. However, their approach
remains susceptible to exploratory attacks.

3.3.1. Discussion
Because of the evolving nature of networked environments, intrusion detection schemes

must be able to reliably adapt to changes over time [6]. To achieve such goal in real-time, one
must resort to stream learning techniques [32]. However, in such context, a sophisticated
attacker may attempt to pervert the detector properties, either at training or testing time [23].

Several works have focused on building resilient (to adversarial attacks) machine
learning techniques [52, 51, 55]. However, address both causative and exploratory attacks
remains an open challenge, even for batch learning techniques [23]. In addition, those kind of
adversarial attacks to stream learning techniques still in its beginnings.

In the light of this, this is the first work to address both causative and exploratory attacks
using stream learning algorithms for intrusion detection field. The proposed approach remains
reliable during both attacks, causative and exploratory, by employing a rejection mechanism
and a class-specific outlier detector.

3.4 Ensuring reliability in classifications
This dissertation, in order to enable the reliable use of ML-based intrusion detection

schemes over time in production environments proposes the reliability assessment of
classifications.

 In general, in the literature, classification reliability is assessed by the means of Chow
[37] or class-related-thresholds (CRT) [38]. In the prior, a single threshold is used the assess
the reliability of a given classification, while in the former, each class has its own related
threshold. Even so, in both approaches, the reliability measure of a given classification is
computed by the means of the confidence value output by a given classifier.

 Over the last years, these kinds of techniques have been extensively used in the literature
to assess classifications. In general, they are used in fields with a high cost of errors. For

40

instance, in the medical diagnosis field, Hanczar and Dougherty [56] aimed at providing a
desired level of acceptable error-rate. To this end, the authors have performed a wrapper-based
feature selection in which only solutions that met the error and rejection rates thresholds are

selected. The authors were able to provide the desired error rate from the system as a user
defined parameter. In their evaluation tests, using both real and synthetic data, with a CRT
approach, the authors have shown a relation between error-reject tradeoff. In such cases, the
classification accuracy is improved when a reject option is considered.

 Another use of reject option was proposed by Mesquita et al. [57] in the field of software
fault detection. In their work, the authors have proposed the use of a one-class classifier with
reject option. For the classification process, one classifier is built for each class, in which each
classifier has its own reject threshold, similarly to CRT. For the classification process, a
decision is considered reliable only if a consensus is found between the classifiers. In other
words, only decisions that were not rejected by both classifiers, or when a consensus between
the classes were found, are accepted. For the evaluation tests, the authors have used 5 datasets
They were able to improve the system accuracy when a reject option is considered.

Several other works have also reported the accuracy improvement by the means of a
reject option [58, 59]. However, surprisingly, in the intrusion detection field the reliability
assessment is often ignored. In a prior work [60], a first attempt to address it was made. To this
end, classification reliability assessment has been addressed using stream learning algorithms.
In such context, unreliable classifications, as given by the classifier confidence value, in a CRT-

based approach, were rejected and then used for incremental learning over time. The evaluation
tests have shown that assessing the classification reliability through the classifier confidence
can help at improving the overall system reliability. However, the findings during the evaluation
tests have shown that the system significantly increases the rejection rate over time, even when
it is updated.

 In recent years, some works have begun to address reliability assessment in the presence
of new environment behavior. For instance, in the malware classification context, Jordaney et
al [24] have shown that traditional approaches are unable to provide classification reliability in
the presence of new malware behavior. In their work, to provide classification reliability a
system named Transcend was designed. It assesses the classification reliability by the means of
a conformal evaluator. The purpose of the conformal evaluator is to measure the reliability of
a given classification. To this end, the authors used a statistical comparison of samples seen
during deployment with those used to train the model, thereby building metrics for classification

41

quality. Such task is achieved by computing two values credibility and confidence. Credibility
define how well the instance fits into the assigned class, while confidence measures how well
it does not fit to the opposite classes.

In their evaluation tests, the authors have used a similarity-based function for the
statistical computation (credibility and confidence values computation). For evaluation
purposes two datasets were used, the first dataset was made of malwares from 2010 to 2012,
while the second from 2010 to 2014. The authors then trained a classifier using malwares from
one dataset and evaluated it on the other. When Transcend is not considered the classifier
greatly decreases its performance. However, when their approach is used, they are able identify
unreliable classifications and reject them, maintain the system reliability.

The work of Jordaney et al. [24] was one of the first works to show, in the security field,
that aged models can become unreliable. Moreover, they showed that traditional classification
reliability assessment approaches are unable to provide classification reliability in such context.
However, some aspects regarding the applicability of their work in the network-based intrusion
detection context must be noted. First, the authors have used two different datasets to evaluate
the reliability of aged classification models. Each dataset was obtained by different authors,
works, environments, settings, amongst others. In this sense, one cannot properly conclude
whether a model perform poorly in a different dataset because of the time of their building, or
because of how the dataset was obtained - considering the aforementioned characteristics.
Second, in order to evaluate if a decision is reliable or not, the authors have computed the

credibility and confidence values. Such values were computed for each classified instance in
each dataset, and then evaluated accordingly. The authors goal was to establish whether a
concept drift have occurred or not through the analysis of both values in both datasets. However,
in the network field to achieve such task one would also need to store the values occurred in a
period of time. In contrast, the reliability assessment should be made in an instance-based
approach, rather than a period-based one.

A single dataset was used in Kantchelian et al. [61] to evaluate the behavior of ML-
based malware detection. The authors have built a dataset containing malware samples from
2007 to 2013. In their evaluation tests, the authors findings have shown that such models are
only able to properly classify older instances than new ones. In other words, ML-based
algorithms are unable to cope with changes in malware behavior changes over time. The authors
also show that, ML algorithms improve their detection rate over time when further instances

42

are used for training. Thereby, such findings corroborate the results obtained by Jordaney et al.
[24].

Finally, another approach to assess classification reliability in the security context have

been proposed by Maggi et al. [62]. In their work, the authors show that web applications
behavior changes over time. In order to identify such changes, the authors analyze the
application response content for new fields. In their evaluation tests, the authors were able to
significantly decrease the false-positive rates, by up to 100%. Although their approach
presented significant improvements in the detection accuracy, it hinders the usage for other
areas. The main difficulty is regarding the application-specific approach. Because the use of
their approach in other fields would imply in knowing how each of the monitored applications
behaves. Nonetheless, in the network-based intrusion detection context, such an approach
cannot be used since network behavior (network flows) varies greatly.

3.4.1. Discussion
Classification reliability have been extensively addressed in other fields with a high cost

of errors, such as medical diagnosis [56], optical character recognition [58, 59], amongst others
[57]. However, surprisingly, in network-based intrusion detection it still is in its beginnings
[60]. In general, classification reliability can be achieved by the means of a typical CRT-based
approach [56, 57, 58, 58, 60]. In such cases, the classifier confidence value is used as a metric
to measure the classifier reliability for a given instance. However, it has already been
demonstrated in related works that classifier confidence values can be biased in the presence of

unknown behaviors [24]. Thereby, rendering traditional CRT-based approaches not feasible for
classification reliability assessment over time. In such context, a promising approach has been
proposed in Transcend [24], in which classification reliability is assessed by the means of a
conformal evaluator.
 Table 2 shows a summary of related works comparison to the proposed classification
reliability assessment approach.

Table 2. Classification reliability assessment approaches comparison.

Work Field Approach Address unreliable classifier Usage in production environment over
time

Hanczar and
Dougherty [56] Medical diagnosis CRT-based to achieve a

desired error rate level
No, relies on confidence given by the

classifier No, classifier must be reliable

Mesquita et al. [57] Software fault
detection

CRT-based for one-class
classifiers to achieve

classification consensus
No, relies on confidence given by the

classifier No, classifier must be reliable

Prior work [60] Network-based
intrusion detection

CRT-based to maintain the
classification reliability

No, relies on confidence given by the
classifier No, classifier must be reliable

Jordaney et al. [24] Malware detection
Conformal evaluator is
used to assess decisions

made by classifier
Yes, classifier decisions are evaluated

through a conformal evaluator
Yes, however the identification of

proper thresholds for rejection was not
addressed

Maggi et al [62] Malicious website
detection

Examines application
response looking for

changes

Yes, changes in environment
behavior are identified by examining

the event content
Yes, however their approach requires

application-level knowledge

Proposed approach Network-based
intrusion detection

Conformal evaluator is
used to assess decisions

made by classifier

Yes, classifier decisions are
evaluated through a conformal

evaluator
Yes, threshold can be defined

according to administrator needs

3.5 Reliability in intrusion detection
Since the introduction of the anomaly-based intrusion detection paradigm by Denning

[45], the challenge of intrusion detection has been tackled by a number of works. In such
context, machine learning techniques, mostly by pattern recognition means, have stand out over
the last years.

Several approaches have been proposed so far in this sense. For instance, Gudadhe et
al. [63] proposes the use of supervised learning by the means of a boosting technique to classify
intrusion attempts. In their work, an ensemble is created using decision trees as base-learner. In
their boosting procedure, classifiers are built iteratively, in which each next classifier is built
on top a weighted adjusted training dataset. The instances weights are adjusted according to the
classification correctness from the previous classifiers, in which misclassified instances are
given more weight. For the evaluation tests, the authors have used the well-known KDD99 [20]
intrusion dataset, in which their method presented promising results. However, the authors did
not evaluate their approach on unseen data.
 Another approach proposed by Gaikwad and Thool [64] have performed intrusion
detection by the means of a bagging technique. Similarly to [63], they have used decision trees
as their base-learners. Their bagging approach creates each decision tree using a subset of
instances with replacement from the training dataset. In order to further reduce training time,
the authors perform a feature selection by the means of a genetic algorithm approach. In their
evaluation tests, also using the KDD99 dataset, the authors were able to reduce training time
without decreasing the accuracy rates. The detection of new attacks was not addressed.

 Another popular approach relies in ensemble of classifiers. For instance, Haq et al. [65]
proposes the use of several classifiers in a majority voting scheme. In their work, naïve bayes,
decision tree and a bayesian network were used for intrusion detection. The classifier’s output
were combined in a majority voting scheme. For the reduction of training time the authors have
relied in a wrapper-based feature selection for each classifier. In their evaluation tests, using
KDD99, the authors were able to improve the system accuracy, when compared to a single
classifier, while also decrease training time by the means of a feature selection technique. The
detection of new attacks was also not addressed.

 In contrast to the aforementioned works, some authors consider a scenario without
ground truth, i.e., environments in which the event’s label are not known previously. For
instance, Fontugne et al. [15] proposes the use of several unsupervised machine learning
algorithms for the detection of anomalies in internet-wide traffic. In their work, the authors use

45

four unsupervised state-of-the-art algorithms for the identification of anomalies in MAWI [16]
network data. MAWI is a publicly available database with daily-provided network traffic. Such
network traffic is obtained by the monitoring of a transit link between Japan-USA. For each
day, 15 minutes of traffic is recorded, between 14:00 and 14:15. Anomalies are identified in a
daily-basis by the means of a voting scheme over the unsupervised machine learning
algorithms. The authors evaluate several combination approaches to this end, in a seven-year
range. Although their work performs a comprehensive evaluation of state-of-the-art
unsupervised machine learning algorithms, their technique requires the storage of such data.
However, differently from other works, their approach relies in a representative network
database, MAWI. Moreover, because of the nature of unsupervised machine learning
algorithms, they are able to identify new attacks.

 As can be seen, several approaches are proposed for identification of intrusion attempts.
However, the reliability of such schemes for the classification of attacks over time is typically
not addressed. When a supervised machine learning approach is considered, the authors, in
general, does not address the need for model updates, and how such task could be accomplished
in production usage. On the other side, when an unsupervised machine learning approach is
evaluated, the storage of network data is necessary.

3.5.1. Discussion
Several works have proposed and evaluated highly accurate intrusion detection models

in the last years. However, despite their promising reported results, there remains a gap between
the number of works that uses ML-based approaches and their actual use in production. One of
the main issues regarding such gap is regarding the considered evaluation during the system
development. In general, the authors relies in traditional machine learning evaluation
approaches, in which a single test dataset is considered. Moreover, several works perform such
evaluation by the means of an old dataset, KDD99, with several known flaws [20, 21].

 In contrast, real network environments present several challenging aspects to ML-based
approaches. Similar to malware detection, network behavior changes over time. Thereby, ML-
based approaches must be able to cope with such changes. However, surprisingly, the majority
of works does not address such changes. Thereby, the challenge of addressing the network
changes over time remains yet to be solved.

 Table 3 shows a summary of related works comparison to the proposed reliable intrusion
detection scheme.

46

Table 3. Reliability in intrusion detection works comparison.

Work Approach Classification reliability Classification reliability over time Model updates

Gudadhe et al. [63]
Supervised batch

learning. Boosting
technique

Not addressed Not addressed Not addressed. Model rebuilding must
be performed

Gaikwad and Thool
[64]

Supervised batch
learning. Bagging

technique
Not addressed Not addressed Not addressed. Model rebuilding must

be performed

Haq et al. [65]
Supervised batch

learning. Ensemble
technique

Not addressed Not addressed Not addressed. Model rebuilding must
be performed

Fontugne et al. [15] Unsupervised batch
learning

Not addressed. However
unsupervised techniques

are used
Not addressed. However

unsupervised techniques are used
Technique is executed in a daily-basis,

network traffic must be stored

Proposed approach
Batch and Stream

learning coped
together

Conformal evaluator is
used to assess decisions

made by classifier

Conformal evaluator is used.
Models are incrementally updated

over time
Yes, stream learning algorithms are

incrementally updated over time

Chapter 4

A Reliable Intrusion Detection Model

Several approaches have been proposed in the literature for intrusion detection by the means of
machine learning techniques. However, despite extensive efforts, they, in general, fail at
providing generalization capable models, dealing with changes in network traffic content,
provide reliable classifications, deal with high network bandwidth, while also address
adversarial settings.

In the light of this, this work introduces a new intrusion detection model, namely reliable
intrusion detection. The main characteristic of the reliable intrusion detection is the usage of
both batch and stream learning algorithms coped together. In this sense, the proposed model
aims at exploiting the characteristics of each type of learner, in a cascade pipeline approach, to
overcome the challenges faced by ML-based approaches for intrusion detection in production
environments.

The proposal overview and how it addresses such challenges are introduced in Section

4.1. Section 4.2 presents BigFlow, which aim at addressing the challenges of high-speed
networks. Section 4.3 introduces a methodology toward the building and evaluation of
generalization capable batch learning models. Section 4.4 presents an approach for ensuring
reliable classifications of batch learning models over time. Section 4.5 addresses resiliency to
adversarial attacks for stream learning algorithms. Section 4.6 presents a classification
reliability assessment approach, which aims at providing a classification reliability degree in
face of new network traffic behavior. Finally, section 4.7 introduces how the reliable intrusion
detection model addresses behavior changes over time. Finally, section 4.8 presents the
proposal discussion.

49

4.1 Proposal Overview

Current ML-based approaches for intrusion detection lacks reliability to face production
environments over time. In the light of this, this work aims at providing a set of techniques, that

enables the reliable near real-time intrusion detection to be performed in high-speed networks
over time. Figure 4 shows the overview of the proposed reliable intrusion detection model.

Figure 4. Overview of the proposed reliable intrusion detection model, and how each learner overcome the

challenges of production environments.

The reliable intrusion detection model receives as input an event to be classified, which
is then passed to a batch learner algorithm, that presents the following properties:

• Generalization Capable (Section 4.3). The model must be able to generalize the

behavior from the training dataset to other environments. In such a case, the
generalization must take into account the classification of known, similar and new
attacks; known, similar and new services, and their contents. In this manner, it becomes
possible to ensure that the system can correctly classify the events, regarding the time
of its building, even from a limited training dataset;

• Reliable Classifications (Section 4.4). Despite the model being able to generalize the

behaviors that occur in the production environment, new traffic content (e.g. new
attacks, or services) will occur over time. Thus, the model must be able to identify
whether the instance can be reliably accepted, or should be rejected, considering the
behavior seen during the period of its building;
An instance that was rejected by the batch learner, is assumed to be an unseen behavior.

In such a case, a new traffic behavior might be occurring and thereby a stream learning
algorithm must classify it. The stream learning algorithm is used in order to enable the system

50

to incrementally adapt to changes in network behavior over time, without incurring in the batch
model retraining. The stream learner algorithm must present the following property:

• Resilient to Adversarial Attacks (Section 4.5). Differently from batch learning, stream

learning algorithms are able to incrementally adapt to changes in network behavior over
time. Such property significantly decreases training time, because the current model is
not discarded, a desired property for high speed networks, but, on the other hand, it is
prone to evasion attacks. Thereby, the stream learning algorithm must be able to identify
whether a new instance can reliably be incorporated in the model or not;

Finally, despite being able to reliably adapt to changes over time, in production usage,
the stream learning model may not be updated for a period of time. For instance, the system
administrator may not able to provide the event’s label. Thereby, the stream learning algorithm
identifies unreliable classifications over time by the means of a conformal evaluator.

• Reliable Classifications Over Time (Section 4.6). The identification of unreliable

classifications in the presence of unknown traffic behavior is a challenging task. This
because it is not possible to identify unreliable classifications by the means of the
classifier confidence, as it may not be up to date. Thereby, a conformal evaluator must
be used to assess the classification reliability even in the presence of new network
behaviors;

• Adapt to Network Changes Over Time (Section 4.7). Finally, the proposal coped

together, batch and stream learning, provides a model towards a reliable near real-time
intrusion detection in high-speed networks over time;
The next subsections further describe each technique in detail.

4.2 BigFlow

In order to address the evolving behavior of high-speed networks, an approach namely
BigFlow is presented. BigFlow performs the feature extraction in high-speed networks using a
traditional stream processing framework. Its purpose is to compute the flow statistics, which
are represented as a feature vector (an event or instance, in ML terminology). The flow statistics
computation is performed in near real-time, summarizing the information about the traffic
between two hosts in a time interval. Because only the statistics values need to be stored in
memory, during the specified time interval, there is no requirement for the storage of the
network packets.

 The next subsection describes in detail the feature extraction stage, including the
architecture of the modules that implement it and a description of the main components.

51

4.2.1. Feature Extraction

In order to measure and classify network activity, it is necessary to compute statistics
about the network traffic exchanged between the relevant entities over a period of time. There

are several works that focus on extracting the features values for flow classification [5, 12, 13].
However, contrary to BigFlow, none of them is capable of monitoring high-speed evolving
networks. In such context, to avoid the storage of network data, the feature extraction should
be made at near real-time. To this end, the feature set was established according to the
processing demanded for its extraction, which is, in general, responsible for the most significant
part of the overall demanded processing [5].

 BigFlow can extract up to 158 features. The feature set considers both host (host
statistics) and flow (host to host statistics) granularity. Host statistics are the features extracted
based solely in the data sent/received from a specific host, e.g., percentage of SYN packets sent
in a time period. On the other hand, flow statistics features comprise information about the
communication between two hosts, e.g., average size of the packets exchanged between the
hosts1.

The architecture of the feature extraction module of BigFlow is shown in Figure 5. A
set of monitored agents (e.g., hosts, network switches or routers) transmit the events through a
message middleware. An event corresponds to a unit of analysis, e.g., a network packet or a
netflow record. The message middleware acts as a broker of events, being responsible to
provide a single interface for the monitored agents.

The Message Consumer acts as the data producer for the feature extraction module. Its
only purpose is to receive the available events from the message middleware, regardless of their
content or source agent. Each collected event is forwarded to the Message Parser in a PE of the
stream processing, using the shuffle approach. The Message Parser in turn, establishes the
event source, fields, and type (e.g., network packet or netflow record).

1 The complete list of extracted features can be found in Appendix 1

52

Figure 5. BigFlow real-time feature extraction module architecture for high-speed networks.

As an example, consider two distinct monitored agents: a switch and a router. The switch
exports network packet headers, while the router exports expired netflow records. The Message
Consumer reads both types of events from the message queue, and distributes them through the
available Message Parsers keeping the computing load evenly distributed. The Message
Parser, in turn, processes the packet headers and netflow records according to each event’ type,
collecting the relevant fields.

The Host Aggregator and Flow Aggregator modules perform the actual network flow

statistics computation (feature extraction). To do that in near real-time and in a distributed
manner, both aggregators receive messages through a keyed stream. The key for the Host
Aggregator is calculated using the hash of the event source addresses (source IP address), whilst
the key for the Flow Aggregator relies on the XOR of both source and destination addresses
(source and destination IP addresses). To divide the load, each module is responsible for a range
of hash values. Thus, through XOR’ing, it is possible to forward messages from two specific
hosts to the same flow aggregator PE, regardless of the direction taken by a packet.

To compute feature values from the grouped events, BigFlow discretizes them in time
intervals, referred as the Tumbling Window. Each Tumbling Window stores and updates the
features values for a specific period, according to each received event. When a Tumbling
Window expires (i.e., the period is over), the flow features values are exported in a host or flow
statistics format, and the feature values computation starts over again for a new window.

Figure 6 illustrates how BigFlow computation through the Tumbling Window is done.
The figure considers two hosts exchanging messages over the network for 60 seconds, and a
Tumbling Window period of 15 seconds. To compute the flow statistics, the Message Parser
module forwards all arriving events exchanged between these two hosts to the same Host and
Flow Aggregators. Each aggregator computes the flow features values during 15 seconds

(“T.Window 1” in the figure). When the Tumbling Window expires, it exports the host and flow
statistics to the next module. As a new event arrives after the initial 15 seconds, the Host and

53

Flow Aggregators create another Tumbling Window (“T.Window 2” in the figure) and start the
flow features computation again.

Figure 6. BigFlow flow computation through the Tumbling Window approach.

The usage of Tumbling Windows for computing flow features brings two important
benefits. First, it ensures that all active flows will expire, without periodic checks, supporting a
simple garbage collection mechanism. Second, it ensures that the amount of resources required
for the computation of long-lived flow features values remains limited, thus allowing scalable
processing.

Finally, the Flow Joiner module is responsible to receive all host and flow statistics
values and join them in a single stream. The module receives the exported events through the
hash of the source address of either host or flow statistics. Thus, each Flow Joiner PE is
responsible for a range of the hash values, causing all values from a given subset of hosts to be
given to the same module. For each received flow statistic, the Flow Joiner aggregates it with
the respective host statistics and exports the result to the next module.

Notice that a single host may have several exported flow features, while having a single
host feature, e.g., a single host accessing services in several other hosts. Thereby, the Flow
Joiner must also store the host flow, to join it with several exported flow features in a single
Tumbling Window. To this end, the Flow Joiner also relies on the Tumbling Window.

4.3 Batch Learning - Generalization

The reliable intrusion detector receives as input the feature vector, and forward it to the

batch learning algorithm. The batch learner in its turn must be able to correctly classify the
event, according to the behavior seen in the training dataset. However, as it is not possible to
assemble a training dataset with all possible production environment behaviors, the first model
requisite is related to the generalization capacity.

Three steps are normally involved in a typical batch learner evaluation method. Initially,
the classifier model is created using a trained dataset. Then, a validation dataset is used to
improve the created model. Finally, the model is evaluated by means of a test dataset. Because
of the lack of publicly available data in the NIDS field, experts normally divide a single dataset

54

into three parts. Thus, a typical evaluation method assumes that the used datasets resemble the
production environment.

However, this assumption does not hold in networked environments. In such a case, the

creation of an intrusion database that presents all the possible behaviors of a production
environment is not a feasible task [7]. Even if it were possible to create a perfect database, it
would still not be effective because it would consider that network traffic is immutable [6].
Thus, an evaluation method, that enables to validate the expected properties for batch learner
algorithms, when applied to the network-based intrusion detection area is required. The purpose
is to validate the common assumptions reported in [6, 7]. The overall process is shown in Figure
7 and further described in the following sections.

Figure 7. Batch Learner evaluation method towards generalization capable models.

4.3.1. Attack Detection Rate

The most important assumption about ML-based intrusion detection systems is that it is
capable of detecting new attacks. The premise is that an attack, whether new or known, shows
behavior that is significantly different from that of a typical system’s usage and, thus, can be
identified by detecting outliers for instance [66]. However, incoming events are classified, in
general, on the basis of their similarity to the known and prior-labeled events in the training
dataset, according to a similarity metric.

Thus, only new attacks that behave similarly to already known attacks can be correctly
classified. By definition, it is not possible to train a machine learning detection technique using
unknown attacks. However, it is possible to measure an intrusion detection system’s capability
by controlling the events included in the test datasets. For instance, a system can be trained with
a limited type of attack and tested with similar or completely different attacks. The definition

55

of the similarity of events is context-dependent and must be determined according to expert
knowledge. The process is shown in Figure 8.

Figure 8. Batch Learner attack evaluation method.

Initially, the batch learner is trained with a limited set of attacks that are similar and
present an expected behavior during the system usage in production environments (Figure 8,
Known Attacks). Then, the created detection model is evaluated using databases containing
similar and new attacks (Figure 8, Similar and New Attacks). Similar attacks in this context are
attacks with a high similarity to the attacks on which the system was trained, whereas new
attacks are attacks that are significantly different from known attacks.

The similar attack detection rate is defined as the system’s capacity to detect events with
behaviors similar to those of known attacks. This property is desirable in intrusion detection
systems because of the highly variable nature of networked environments. Thus, a system must
be able to cope with similar attacks, as a single database cannot contain all possible attacker
behaviors. Similar attacks may present a different pattern and can evade signature-based
systems, where detection is performed by matching against well-known attack patterns.
However, similar attacks may present the same or a similar behavior and should be detected by
the detection scheme if the used features are adequately discriminant.

The new attack detection rate defines the system capacity to detect significantly
different types of attacks; i.e., attacks that present a behavior that is completely different from
any known behavior on which the system was trained. This type of incidence occurs in
production environments, as it is not possible to train a system with all known or new attacks.
The used detection scheme must be able to relate the new attack behavior to the known attacks
and correctly detect it, which is the premise when using any ML-based approach.

56

During the database creation for machine learning detection schemes, the background
traffic must also be generated. The incidence of an attack affects the response of a service to
legitimate requests; e.g., one attack type can make a service unavailable, whereas another can

make a service reply only to a specific set of requests. Thus, the occurrence of an attack can
affect also the background traffic detection rate.

Note that databases must use the same background traffic creation approach. Thus, this
approach uses the background traffic as the baseline, allowing it to identify the behavior of the
same set of services under each type of attack and the performance of the detection engine while
detecting such changes.

4.3.2. Background Detection Rate

The background traffic is composed of two entities: the client and the server. The client
generates requests according to the contents and services provided by the server. Thus, the
background traffic may vary in content and the service requested.

Because of the lack of publicly available data, researchers have assumed that network
traffic is immutable [67]. Anomaly-based systems are normally tested using a single database,
divided into three parts having the same background traffic behavior.

It is known that network traffic continuously changes [6, 7]. Thus, it cannot be assumed
that a behavior evidenced in a certain period during the intrusion database creation will remain
immutable over time. The detection scheme must be able to track the background traffic
behavior changes while still performing its detection at a reasonable rate when a classifier

model update is not possible. Moreover, it must be able to properly identify variations of known
normal behaviors.

When evaluating an intrusion detection method, one must consider the database
limitations. It is not possible to create every service and content that will be evidenced in
production environments. Thus, it is not feasible to create every possible background traffic
behavior. However, a detection scheme must be able to detect different background traffic
contents and different services, with their new type of content. To present such properties, the
evaluation databases must be modified to allow them to be tested in an ML-based system.

Similar to the attack detection rate method (Section 4.3.1), the background detection
rate method consists of restricting the used databases to two perspectives: the service content
(Figure 9) and the services (Figure 10).

57

Figure 9. Batch Learner service content evaluation

method.

Figure 10. Batch Learner service evaluation method.

The service content detection rate is established by limiting the client requests, which
are divided into three groups: known, similar, and new content (Figure 9). However, the service
detection rate is established by restricting the number of services in the training dataset and
evaluating the classifier with a new set of services not used during the training stage (Figure
10).

In the evaluation of the background detection rate, the attacks are used as the baseline.
The same set of attacks is generated in each scenario, allowing the attack occurrence to be
evidenced in each used service and its content.

4.3.3. Generalization Evaluation

Several methods have been proposed in the literature for creating intrusion databases;
however, despite extensive efforts, they are all exposed to the problems inherent in the method
used for their creation [68]. Thus, to evaluate the database used during the system design, as
well as the method used for event detection, an evaluation method that uses a publicly available

intrusion database is needed. Thereby, the system evaluation using a publicly available database
provides a baseline comparison reference and the generalization rate.

The generalization is a desirable property for any machine learning technique. The set
of extracted features must allow the classifier to generalize the problem appropriately by
distinguishing the classes, regardless of the current environment in which it is operating. Thus,
the classifier model built from the set of extracted features may be used in other environments
that aim to detect the same type of events.

In this way, evaluation that uses a publicly available database ensures that the conceived
detection scheme can operate independently of the environment in which it was conceived.

58

4.3.4. Generalization Evaluation Method Summary

The intrusion detection field faces challenges that are significantly different from those
of other areas where machine learning has been successfully applied [6]. The proposed

evaluation scheme is aimed to test the expected properties of a machine learning intrusion
detection scheme. The following properties can be provided by the proposed evaluation method
(Figure 7):

• Detection rate for known, similar, and new attacks (Section 4.3.1);

• Detection rate for known and new services (Section 4.3.2);

• Detection rate for known, similar, and new services’ content (Section 4.3.2);

• Detection rate while operating in a different environment (Section 4.3.3).

4.3.5. On Building Generalization Capable Batch Learning Models

To improve the detection rates mentioned above (Section 4.3.4), a multi-objective
feature selection method specific to the intrusion detection field is proposed. This method
considers that, during the system development, the system designer that takes into account the

following detection properties of the detection system: attack (!""!#$%&'(), normal

()*+,!-%&'(), and/or generalization (./)/+!-01!"0*)%&'(), is able to build generalization

capable models.

As described in Section 4.3.1, an intrusion detection system may face three distinct
attack behaviors in production environments: known, similar, and new. During the classifier
training, the detection algorithm learns only the known behavior. However, in production
environments, the probability of each attack behavior occurring is unknown. For instance, an
IDS that was trained with a network-based DoS attack behavior (known) may also face
application-level DoS attacks (similar) having an unknown occurrence probability. However,
in the production environment, the system administrator expects that an intrusion detection
engine is able to detect attacks according to the accuracy rate obtained during the classifier
testing, regardless of the current attack type the system is facing. Thus, the attack detection rate
in a production environment can be calculated according to Equation 1.

!""!#$%&'(= !3/+!./ 4
!""!#$%&'(56786,
!""!#$%&'(:;<;=&%,
!""!#$%&'(6(8

> Equation (1)

Where !""!#$%&'(56786 denotes the system detection rate for known attacks,

	!""!#$%&'(:;<;=&% denotes the detection rate for similar attacks, and !""!#$%&'(6(8 denotes the

59

detection rate for new attacks (Figure 7, Attack Detection Evaluation). Thus, the system attack

detection rate (!""!#$%&'() is represented by the average detection rate of known, similar, and

new attacks in production environments.

The same property is expected in a normal (background) traffic perspective. The
requested service, either known or new, must be correctly detected, as well as its content:

known, similar, and new. Thus, the normal detection rate is established according to Equations
2, 3 and 4.

)*+,!-%&'(:(%@;A(= !3/+!./ B
)*+,!-%&'(56786	:(%@;A(,
)*+,!-%&'(6(8	:(%@;A(C Equation (2)

)*+,!-%&'(A76'(6' = !3/+!./ 4
)*+,!-%&'(56786	A76'(6',
)*+,!-%&'(:;<;=&%	A76'(6',
)*+,!-%&'(6(8	A76'(6'

> Equation (3)

)*+,!-%&'(= !3/+!./ B
)*+,!-%&'(:(%@;A(,
)*+,!-%&'(A76'(6'C Equation (4)

Where)*+,!-%&'(56786	:(%@;A(denotes the system detection rate for known services,

)*+,!-%&'(6(8	:(%@;A(denotes the detection rate for new services, and)*+,!-%&'(56786	A76'(6',

)*+,!-%&'(:;<;=&%	A76'(6', and)*+,!-%&'(6(8	A76'(6' refer to the detection rate of known, similar, and

new services’ content, respectively. The system’s normal detection rate ()*+,!-%&'() is

represented by the average detection rate of)*+,!-%&'(:(%@;A(and)*+,!-%&'(A76'(6'.

Finally, the generalization capacity of a system is directly established by the system
detection rate in another environment (Figure 7, Generalization Evaluation). Thus, the

generalization rate (./)/+!-01!"0*)%&'() is established according to Equation 5.

./)/+!-01!"0*)%&'(= 	./)/+!-01!"0*)%&'(
DEF=;A	G&'&:(' Equation (5)

It is important to note that attack (!""!#$%&'(), normal ()*+,!-%&'(), and generalization

(./)/+!-01!"0*)%&'() are conflicting properties (objectives). For instance, an increase in

./)/+!-01!"0*)%&'(may decrease the intrusion detection rate for normal and attack events

because of the increase in the generalization capacity (commonly referred to as the receiver
operating characteristic curves for two class decision systems) [69].

Thus, the operating points must be established according to the system designer’s needs.
For example, the generalization property may be desired in systems that will be used in several

60

different environments (commercial products for instance); however, in proprietary systems,
this property may not be desired.

4.4 Batch Learning – Reliability in Classifications

Despite the building of generalization capable models, new event’s behavior might
occur over time, for instance when a new attack occurs. In such a case, the batch learner model
must be rebuilt, in order to properly incorporate the new event knowledge into the model.
However, the model rebuilding in high-speed networks is not an easily feasible task, which
might occur only after a significant period of time. In the light of this, a method must be devised
to enable the identification of reliable classifications, which enables to establish whether the
event presents a similar behavior to the training dataset, or not.

Hereafter, a rejection technique and a combination of classifiers to provide a more
reliable detection is further explained. This solution aims at providing a reliability degree over
extended periods of time, even though it does not classify all the input events.

4.4.1. Changes in Feature Values Distribution

When a classifier is operating, its accuracy depends on the feature values distribution
being similar to that of the training dataset (usually composed of real network traffic). If the
distribution changes significantly, the classifier model should be updated, or its accuracy may
decrease. This update usually requires expert knowledge to label new events and to rebuild the
model, which may not be practical in real-world environments, or may occur after some delay.
To test a classifier designed to operate in such environments, a method to assess whether it is

still reliable even when the network traffic changes is required. Here an evaluation scenario is
described, and an event rejection method is proposed, which allows the classifier to operate
reliably even when it cannot be easily updated.

To overcome the limitations of other works in the literature, a rejection method that
takes into account the frequent content changes observed in real-world network traffic is
proposed. In addition, the usage of several independent classifiers using different machine
learning algorithms is proposed. After each classification, the approach checks whether there
are enough similarities between the classifier outputs class (normal or attack) and the class
occurrence observed in the training dataset. If there is not a predominant match, the
classification is deemed unreliable and the event should be rejected because the features used
to build the model and the current event are not similar enough for a reliable classification. An

61

event rejection means that none of the classifiers can reliably assign a class to an input event;
in this case, the event is rejected rather than being potentially incorrectly classified.

4.4.2. Scenario

Figure 11 shows a real-world scenario whose feature distribution changes over time. It
considers the feature set of SYNFlood attacks [4] as baseline in the attack model. If an
HTTPFlood attack [4] occurs, it can still be detected because the feature distribution of the two
attacks are similar. However, if the network traffic changes significantly (as in an Exploit
attack), the classification output becomes unreliable due to the significant change in the feature
set. In such cases, if the model cannot be updated, another technique should be used to provide
a reliable classification.

Figure 11. Changes in features distribution, considering SYNFlood Attack as reference.

4.4.3. Rejection Engine

One way to detect changes in the network traffic profile is to monitor the distribution of
values in the extracted feature set (Figure 11, Exploit Attack). A significant change in feature

distribution may indicate that a new attack is occurring. However, it is not easy to detect profile
similarities from network events occurring in real time. In such context, two ranges for each
attribute (one for each class) are defined to determine whether a feature value is valid. When
an extracted feature lies within the appropriate range, the feature is considered valid.

For evaluation purposes, three traffic scenarios can be used: a baseline scenario, a
scenario with network traffic changes but similar to the baseline scenario, and a scenario with
new attacks (Figure 11). The baseline scenario is used to obtain the rejection range thresholds
and the attack models; the other scenarios are used to evaluate the rejection method.

62

 For each feature (HI, x=1, 2, …, N) and class (normal or attack), two rejection

thresholds ("=78(%and "EDD(%) are computed. The thresholds define the range within which a

feature value is valid. The range is class-specific because the feature distribution for each class

is different. The thresholds are defined with respect to an ∝ value (Figure 12), which establishes

a percentage of instances in the validation dataset that fall outside the defined thresholds, but

still provide the desired model reliability. To determine the value of ∝, an experimental analysis

must be performed.

Figure 12. Features within the range for a class

(attack).

Figure 13. Feature outside the threshold range for

both classes.

Thereby, for each feature HI, K+*H0-/:;<;=&%;'L_NO = 1, if the values for HI lie in the

threshold interval (";6'(%@&=): "=78(%< value (HI) < "=EDD(%; otherwise, K+*H0-/:;<;=&%;'L_NO = 0.

For example, K+*H0-/:;<;=&%;'L_NO = 1 for the attack profile (Figure 12) and

K+*H0-/:;<;=&%;'L_NO = 0 in Figure 13 for both profiles.

If N denotes the number of features in the feature set, the profile instance similarity

(K+*H0-/:;<;=&%;'L) is defined according to Equation 6.

 K+*H0-/:;<;=&%;'L = 	
∑ D%7N;=(STUTVWXTYZ_[\
]
\^_

`
 Equation (6)

Finally, the classifier output should be rejected when it presents a low K+*H0-/:;<;=&%;'L

(e.g., K+*H0-/:;<;=&%;'L< 0.7); otherwise, the event is labeled with the class informed by the

model. Using this approach, it is possible to establish the profile similarity without the need to
keep the feature values history to identify a change in feature distribution, increasing the overall
system throughput in high-speed networks.

The output of the combined classifier is assigned via a combination algorithm (Figure
14), choosing the majority of the outputs of the individual classifiers whose outputs were not
rejected. In the example of Figure 14-c, the output is rejected because no individual classifier

63

output is valid, while in Figure 14-a and Figure 14-b the output is accepted because there is at
least one classifier that can reliably classify the event.

Figure 14.Final class assignment using majority vote as batch learner classifier combination.

4.5 Stream Learning – Resilience to Adversarial Attacks

When the batch learner rejects an event, it is deemed as a new behavior and thereby an
unreliable classification. Unreliable events are forwarded to a stream learning classifier, which
in its turn, is able to incrementally adapt to changes in network behavior over time. However,
in order to incrementally update the model, such schemes, in general, rely on a supervised
dataset, in which the event’s labels must be known.

In contrast, in production environments, the obtainment of the network event’s label can
be a challenging task. Therefore, in such a case, one typically, resort to unsupervised stream
learning algorithms. In general, those set of techniques typically, relies in a window-based
approach, in which the update is performed based on time intervals (sliding window). In such a
case, recent events are given a greater importance during the detection stage, whilst older events

64

are often discarded. Thereby, the model incremental update can be achieved without the
assistance of an expert, but, on the other hand, it is prone to adversarial attacks. For instance, a
sophisticated attacker, may change the attack behavior, either to evade the detection

mechanism, or to pervert its properties, rendering model updates with misclassified instances.

In the light of this, the next subsections describe the design of an unsupervised stream
learning approach for anomaly-based intrusion detection that can automatically update the
intrusion detection engine over time, while still being resilient to adversarial attacks. Therefore,
the proposed approach relies in a class-specific stream outlier detection algorithm to be resilient
to both causative and exploratory attacks (Section 2.2.2). The proposed stream learning resilient
to adversarial attacks is shown in Figure 15 and described in the next subsections.

Figure 15. Resilient to adversarial attacks anomaly-based intrusion detection through stream

learning algorithm.

4.5.1. Detection Scheme

The proposed adversarial resilient stream learning relies in a class-specific stream
outlier detection algorithm. For example, an outlier detection for normal events and an outlier
detection for attack events. The detection is performed accordingly to Figure 15, (i) the set of
features are extracted from the considered event, e.g. a network packet; (ii) a feature vector is
supplied to each outlier detection algorithm; (iii) each outlier detection perform its detection,
assigning a class either outlier (event does not belong to outlier detection class group) or inlier
(event does belong to outlier detection class group); (iv) the detection engine receives the
decision from each outlier detection and attempts to find a consensus among the decisions; (v)
if a decision unanimity is found the class is assigned, otherwise, the event decision is rejected.

When receiving an event decision, the detection engine decides whether the event
classification is reliable or not. The class assignment reliability of an event classification (output

65

‘class X’ in Figure 15) comes from the nullity of intersection of decision from all classifiers.

The reliability computation process is shown in Equation 7, where a/#0b0*); denotes to each

Outlier Detection classifier output.

⋂ (a/#0b0*);)
6
;fg = 	∅ Equation (7)

As an example, consider two outlier detection algorithms (Eq. 7), one for normal events
and one for attacks; an event which is classified as an inlier for normal and outlier for attack is
reliable – the decision is an unanimity, because there is not an intersection between
classification classes in the different detection engine for the same event. However, an event
which is classified as inlier for more than one outlier detection should be rejected, as the
decision is not reliable. Rejected classifications indicates that a potential evasion attempt or a
false alarm might be occurring and another detection mechanism should be used, for instance,
a signature-based intrusion detection mechanism or manual inspection.

4.5.2. Ensuring Adversarial Machine Learning - Exploratory

Unlike the traditional stream learning algorithms, to provide resilience to exploratory
attacks, the immutable behavior of each outlier detection algorithm is considered. The
immutable behavior is defined by a restriction that do not allow an outlier to become an inlier
in the outlier detection algorithm over time (in a considered sliding window). In such a case, it
considers that in the anomaly-based intrusion detection field an event that is initially classified
as outlier will not become an inlier at any moment in time. For example, an attack that was
classified as an outlier (attack) by the normal outlier detection algorithm, must not be classified
as a normal event afterwards, even if its occurrence increases in the sliding window over time.

By using the immutable behavior, the attacker will not be able to exploit the sliding
window range to pervert (pollute) the classification of events being analyzed by an outlier
detector. It is important to note that events classified as inlier continue to be added into the
stream learning sliding window, thus the algorithm is still able to adapt to changes in the stream.
But, the proposal mitigates a possible evasion attack, when the number of outlier events become
predominant in a sliding window, therefore they will trigger the behavior mutation from outlier
to inlier.

4.5.3. Ensuring Adversarial Machine Learning - Causative

To provide resilience to causative attacks, the proposal relies in both immutable
behavior (Section 4.5.2) and class-specific outlier detectors. It considers that resilience to

66

causative attacks must be provided at two stages: initial training and ongoing readapting
(retraining).

The initial training is related to the initial outlier detector sliding window population –

the filling of events in a sliding window. In this stage, the outlier detectors sliding window are
still being populated, thus susceptible to causative attacks. Thereby, the proposed approach
assumes that at least there are an initial population allowing the correct classification for one
outlier detector, since the sliding window will be updated according to the initial events. A way
of assuring the reliability of the initial training is preset the sliding windows with a predominant
number of copies of the same inlier event. Thus, given the outlier detector is reliable, the
classification outputs can be trusted if decision unanimity is reached, otherwise the
classification is rejected.

To provide a secure ongoing readapting, the proposal relies in both class-specific single
class detection mechanism and immutable behavior (Section 4.5.2). The single class detection
mechanism provides resilience to event behavior manipulation. For example, the attacker must
manipulate the event behavior in a manner that it behaves as a normal event, while also being
an outlier for the attack outlier detection mechanism. Whilst, the immutable behavior difficult
the attack over the sliding window, since the attacker must have skills to manipulate the events
in a manner that pervert all outlier’s detectors.

4.6 Reliable Learning – Conformal Evaluator

The aforementioned approach provides resiliency to adversarial attacks for

unsupervised stream learning algorithms. In such a case, the model update is performed without
the assistance of an expert. However, when the supervised approach is considered, one must
request the event’s label over time, for update purposes. Thereby, a method must be designed
to provide classification reliability in the presence of new network behaviors. This because, the
stream learning model may become outdated, as it is prone to expert availability, for providing
the event’s label.

To provide reliable classifications over time, one must first evaluate the classification
reliability degree. To this end, the classification reliability is assessed by the means of a
conformal evaluator. The conformal evaluator aims at assigning a reliability degree for each
classified instance. To achieve such task, the conformal evaluator computes two values:
Credibility and Confidence. Credibility defines how well the instance fits into the assigned

67

class, while Confidence defines how well the instance does not fit into the other classes. Finally,
a classification outcome is accepted according to Equation 8 and 9.

i/-0!j0-0"kG(l%((= m+/a0j0-0"k × m*)H0a/)#/ Equation (8)

H(a/#0b0*)) = o
p)+/-0!j-/, i/-0!j0-0"kG(l%((< "A=&::
+/-0!j-/, i/-0!j0-0"kG(l%((≥ "A=&::

 Equation (9)

 In which the i/-0!j0-0"kG(l%((denotes the degree of reliability for the classified

instance, obtained by multiplying the m+/a0j0-0"k and m*)H0a/)#/ values. Finally, a decision

can be considered reliable if its i/-0!j0-0"kG(l%((is higher than a specific class threshold

("A=&::).

4.6.1. Computing Credibility and Confidence values

Reliable classifications can be defined as instances with a similar behavior to their
assigned class, i.e. instance that presents a known/similar behavior as the ones present in the
training dataset. However, in general, traditional ML confidence values does not measure the
degree of similarity, but rather the classification correctness. For instance, the decision tree
classifier confidence values are typically computed as the ratio of instances in the training
dataset that were classified as belonging to the given class, i.e. the accuracy rate in the given
tree node.

In contrast, to assess the reliability, one must first compute the Credibility and
Confidence values. However, the computation of such values cannot be achieved by the means

of a classification confidence, as it fails at providing reliable confidence values when new
instance behavior is occurring.

In this sense, to compute the Credibility and Confidence values, one must rely in the
assistance of similarity-based metrics. Similarity-based metrics enables the measurement of
distance to a specific group, thereby, measuring how well the sample fits not only to a given
class but also to the training dataset itself.

Figure 16 shows an example of how Credibility and Confidence values could be
computed for a two-class dataset. The process occurs as follows: (a) A two-class training dataset
of triangles and circles classes is considered; (b) The centroid for each class is computed; (c)
Given a new example classified as triangle by a classifier, the Credibility value is computed as
the ratio of triangles examples in the training dataset that falls outside the area between the

68

measured instance and the class centroid (triangle centroid); (b) Confidence is computed as the
inverse of Credibility to circle class.

(a) Two-class training

dataset

(b) Computation of class

centroids

(c) Credibility

computation for an
instance classified as

triangle

(d) Confidence

computation for an
instance classified as

triangle
Figure 16. Computation example of Credibility and Confidence values through a similarity-based algorithm in a

two-class dataset. In this example the conformity measure is given as the distance to centroid.

 In the figure, the distance to class centroid is used as a similarity (conformity) metric. It
is important to note, that other measures can be used as a conformity metric. For instance,
considering a random forest classifier [70], one may use the ratio of trees that classified the
instance as a given class as the conformity metric. On the other side, when one is using a support
vector machine [71], the distance to the hyperplane can be used as a conformity metric. In other
words, any metric that enables to measure similarity (conformity) for a given group can be used
to assess the classification quality, when computing the Credibility and Confidence values.

4.6.2. Ensuring Reliability

After the computation of the Credibility and Confidence values a decision can be made
regarding the reliability of a given classification (Eq. 9). To this end, a classification is

considered reliable when the i/-0!j0-0"kG(l%((surpasses a reliability threshold ("A=&::)

according to the class chosen by the classifier.

 For the proposed conformal evaluator, reliability is reached if the classified instance is
similar to the classified class (Credibility) while also not similar to other classes (Confidence).
In this sense, in production, the conformal evaluator may face the following scenarios:

• High Credibility, High Confidence (s1): instance is similar to classified class, and not

similar to other classes. High	i/-0!j0-0"kG(l%((, event should be accepted, most likely

a correct classification;

69

• High Credibility, Low Confidence (s2): instance is similar to classified class and other

classes. Low i/-0!j0-0"kG(l%((, event will be accepted or not according to "A=&::. Could

be a classification error or an instance similar to all classes;

• Low Credibility, High Confidence (s3): instance is not similar to given class or other

classes. Low i/-0!j0-0"kG(l%((, event will be accepted or not according to "A=&::, most

likely it is a new behavior;

• Low Credibility, Low Confidence (s4): instance is not similar to classified class, and

similar to other classes. Low i/-0!j0-0"kG(l%((, most likely a classification error, event

should be rejected;

In this manner, in scenario s1, events can be accepted while maintaining the classifier
reliability, as they present a similar behavior to the training dataset. However, in scenarios s2,
s3, and s4, events should be rejected or not according to the administrator needs. In such cases,

a low "A=&::, may imply in accepting more instances, which could either be a new behavior or

an instance with a similar behavior to all classes, but not necessarily an error. Thereby, a series

of evaluation tests must be performed to establish the "A=&:: values.

The proposed conformal evaluator aims at addressing the challenge of ensuring
reliability in face of new network traffic behavior. However, the occurrence of a high rejection
rate over time to provide reliability may inhibit the usage of proposed reliable intrusion
detection model in production. To this end, the detection scheme must be updated according to
the incoming network traffic. The next subsection further details how such task can be achieved,
when supervised stream learning algorithms are used.

4.7 Reliable Learning – Adapting to Network Behavior Changes

By the means of the proposed Classification Reliability Assessment method, it becomes
possible to measure how reliable the classification is. However, the classification task is still
necessary. In this sense, provide an ongoing updated classification scheme is a challenging task.
To this end, the proposed approach combines several ML techniques, as shown in Figure 17.
The proposed technique aims at providing the following properties:

70

Figure 17. Proposed reliable learning architecture.

• Reliability: classifications are coped with conformal evaluator. Only reliable decisions
are accepted;

• Decrease Rejection Rate: to provide reliability one must reject unreliable instances,

which could lead to unfeasible IDS over time in production usage. In order to further
decrease the rejection rate, despite updating or not the detection scheme, the proposal
employs batch and stream learners in a cascade pipeline classification approach;

• Reliable Update Classification Scheme: the scheme reliable and ongoing update is

enabled by employing Batch and Stream Learning algorithms coped together. The Batch
Learning is not updated over time to ensure that the system maintain its reliability. On
the other side Stream Learning is incrementally updated with expert assistance, to
address changes over time in network behavior;

• Decrease Expert Label Request: rejected instances are stored and their label periodically

requested. To significantly decrease the expert label request a label propagation
approach is employed. The assumption is that nearby instances belong to the same class
as given by an expert;

• Decrease Storage: the number of rejected instances that needs to be stored is

significantly reduced by employing stream and batch learners, and updating the
detection scheme over time;

The next subsections further describe each of the detection scheme properties, and how
they are achieved.

4.7.1. Reliability

Reliable classifications can only be assured with the assistance of a conformal evaluator.
Thereby, a conformal evaluator is coped together with stream learner. The objective is to either

accept a reliable classification, or reject unreliable ones. When an instance is rejected it is

71

assumed to be unreliable and should be stored. Stored instances can be used afterwards, for
incremental model updates.

4.7.2. Decrease rejection rate

A high number of rejected instances may lead the proposed reliable intrusion detection
model to be unfeasible for production usage, since rejected instances must be stored and
manually inspected. Thereby the proposal aims at decreasing the rejection rate by applying
incremental model updates. In addition, batch and stream learners are used to decrease the
system rejection rate in a cascade manner.

On the other hand, incremental model updates are performed ongoing. This enables the
reduction of instances with unknown behaviors (Section 4.6.2, scenario 3), thereby further
decreasing the rejection rate.

4.7.3. Reliable update classification scheme

The reliable and ongoing update of the classification scheme is achieved by the means
of incremental model updates over the stream learning algorithm. The update process is as
follows: (i) a subset of rejected instances is periodically obtained; (ii) the label of chosen
instances are requested to an expert; (iii) the labels are propagated to nearby unlabeled
instances; (iv) Stream Learning algorithms and their respective conformal evaluators are
incrementally updated with labeled instances; (v) the subset of now labeled instances are
removed from storage.

 The usage of stream learning algorithm enables the ongoing update of the detection

system. The conformal evaluator can also be incrementally updated, according to the used
similarity-based algorithm. For instance, the incremental update of the conformal evaluator
shown in Figure 16 can be achieved by updating the classes centroid, and adding the new
instances into the dataset.

4.7.4. Decrease expert label request

The scheme assumption is that instances can be automatically labeled by the means of
a label propagation technique, significantly reducing expert label requests. Thereby, to address
possible label tagging errors introduced by such an approach, the approach relies in the batch
learner. The batch learner is not updated throughout time in the proposed scheme. In this
manner, possible mislabeled instances can only be introduced to the system if they are events
previously rejected by the batch learner, i.e. the scheme maintain the detection reliability over

72

known behaviors, while also reliably adapts to new ones by the means of the stream learning
algorithm.

 However, one must note a tradeoff between expert label request and the label

propagation error. This because the radius increase in the label propagation process, may
introduce mislabeled instances to the stream learner. On the other side, a small label propagation
radius, may significantly increase the expert label request periodicity and the required storage
for rejected instances. Thereby, the tradeoff between such radius increase must be evaluated.

4.7.5. Decrease storage

Reliability is achieved by the means of rejecting unreliable classifications. However, the
proposed scheme stores rejected instances until their label is known with the assistance of an
expert. Thus, a high rejection rate can lead to an unfeasible amount of needed storage. In this
sense, to decrease the needed storage, one must both reject less instances and also remove them
from storage as soon as possible.

 Therefore, rejection of less instances is achieved by ongoing updating the detection
scheme over time. On the other side, the fast storage cleanup is achieved by the means of label
propagation technique.

4.8 Discussion

A reliable near real-time network traffic classification for high-speed networks, namely
reliable intrusion detection model was presented. Although the proposal is based on the use of
existing machine learning techniques, it aim at addressing the open challenges in network-based

intrusion detection systems (NIDS). To this end, the proposal checks whether the classifications
outcome should be accepted or not, by the means of the conformal evaluator. When an event is
rejected, this indicates with high probably that a new network traffic behavior is occurring.
Although classification rejection was used in other areas where errors have a high cost (e.g.,
optical character recognition (OCR) [59] or medical diagnosis [56]), The proposal is the first
intrusion detection system to exploit this technique in the context of assessing classification
reliability over time. Second, the proposal employs stream learning and batch learning
techniques coped together to analyze traffic in near real time. The goal is to support incremental
model updates based on the rejected instances, while also maintaining its reliability over time.
The expectation is that after a period (e.g., within one week), the rejected event can be properly
classified by an expert or a tool (signature-based NIDS) based on public information (e.g., new
indicators of compromise). At this point the proposal is able to incorporate the new knowledge

73

in the attack model. A major benefit is that the model updates are based only on correctly
classified events, decreasing the risk of inaccurate detections, which may lead to high false
positive rates while processing further packets.

Rejecting low-confidence classifications in a NIDS – the key idea of this work –lead to
two important benefits: better detection accuracy (i.e., fewer misclassifications) and the
identification of new characteristics of the evolving traffic, which is then used for updating the
classifier model. These benefits improve the proposal reliability over time, even with changing
network traffic behavior, while also greatly decreasing the amount of computational and storage
resources needed to operate the system.

74

Chapter 5

The Building of Realistic Intrusion Datasets

In order to properly evaluate the reliable intrusion detection model, one must first have properly
built intrusion datasets. However, one of the main issues regarding such task concerns to the
lack of availability of such data.

Therefore, this chapter addresses the building of proper intrusion datasets, more
specifically, two approaches for intrusion dataset building are presented and evaluated. First, a
fine-grained intrusion dataset, obtained by the means of building a controlled environment is
presented. The fine-grained intrusion dataset aims to enable the building of generalization
capable models (Section 4.3), the evaluation of the classification reliability (Section 4.4), and
the building of unsupervised stream learning algorithms resilient to adversarial attacks (Section
4.5). Second, an approach for building an evolving intrusion dataset is presented. The built
evolving dataset, namely MAWIFlow, is a breakthrough in the intrusion detection community
as the most comprehensive intrusion dataset currently available. MAWIFlow aim to enable the

evaluation of the reliability of classifications over time (Section 4.6), and the proposed reliable
intrusion detection model (Section 4.7).
 The fine-grained intrusion dataset building method and the controlled environment
setup is described in Section 5.1. MAWIFlow building task and its characteristics are presented
in Section 5.2. Finally, a discussion is made in Section 5.3.

5.1 Fine-grained Intrusion Dataset

The proposed fine-grained intrusion database creation method aims to ensure that the
database contains the properties expected from an IDS testing intrusion database. To achieve
this, the proposed method creates intrusion databases in a controlled environment and

75

reproduces a user’s behavior through well-known tools. The method considers two different
users: the legitimate client and the attacker. The traffic is generated considering the client-server
model. For generating the server-side network traffic, the honeypot technique is used, whereas

the client traffic is generated through real-world workload tools. Thus, real and valid traffic is
generated for the client-server communication. The attacks are generated using known,
standardized, and widely used tools frequently implemented for system auditing. The traffic
creation method overview is shown in Figure 18 and further described in the following sections.

Figure 18. Proposed database creation method for fine-grained evaluation of intrusion detection systems.

5.1.1. Normal (background) traffic creation method

It is recommended that the traffic included in an intrusion database used for ML-based
detection systems be real and valid. Thus, the method used for its design must ensure that the
client-server interaction occurs correctly, thereby guaranteeing that the client behavior
evidenced in the database is similar to that observed in the real world.

The normal (legitimate) traffic must be generated according to two perspectives: the
client and the server. The client is responsible for requesting the services available on the server,
whereas the server is responsible for providing the appropriate response to each request in terms
of content and service behavior. It is expected that the provided services, as well as their
requested contents, are highly variable.

Independent of the considered application, each user network traffic behavior, in
general, is random and does not follow a statistical distribution when compared to that of a
different application user [72, 73]; for instance, the behaviors of two different users browsing
a Web application are not necessarily similar. Thus, the proposed method generates the normal

76

(background) traffic by providing a set of services, where each service has a set of contents that
may be requested. Each client performs a real and valid request through a real-world workload
tool; thus, real, and valid requests are generated for the client side. Each client sends a request

for a previously defined service and a specific service content. After the client-server
communication, the client waits a variable time and transmits a new request for another service.
Thus, the client behavior is modeled according to the observed application usage, e.g., a client
browsing a Web page for a certain duration.

In turn, the server must be able to interpret the received request and generate the
appropriate reply. The use of tools specific to the service being provided makes it difficult to
update the intrusion database, whereas the use of a technique that mimics the server responses
allows the database to be updated easily. Thus, the honeypot technique was considered, which
allows the responses of a vulnerable server to be mimicked, with automated and valid responses
to be generated.

A set of predefined services are provided. Thus, every request, regardless of the
requested service, is correctly interpreted and receives a legitimate reply. Under this
assumption, the proposed fine-grained intrusion dataset creation method generates real, valid,
and easy-to-update background traffic. The complete background traffic generation process is
shown on the left side of Figure 18.

5.1.2. Attack traffic creation method

The lack of an appropriate implementation guarantee is the main problem that has been

reported to occur during attack generation. In general, researchers (see, e.g. [21]) implement a
known attack according to their discretion, which makes the attacks difficult to reproduce as
there is no guarantee that the implementation follows a well-known defined standard.

Immediately after a new attack becomes known and is reported, entities specify it.
Initiatives such as the Common Vulnerabilities and Exposures (CVE) include the details of new
vulnerabilities and the affected services. Implementations that are, for example, CVE-
compatible, guarantee that an attack will behave as expected (reported). Thus, tools that follow
well-known standards are auditable and can be assessed.

The fine-grained intrusion dataset creation approach, unlike those where the authors
implemented their own version of the attacks, is based on the use of well- known and de facto
standardized tools to generate the attacks. This approach ensures that the implementation of all
the attacks included in the database is dependable when they become public, as the approach

77

follows a well-known standard. The complete attack traffic generation process is shown on the
right side of Figure 18.

5.1.3. Dataset Building

The following sections discuss the details of the application of the described fine-
grained intrusion dataset creation method. An extensive description of the background and
attack traffic generation is provided. Then, the testbed network infrastructure is discussed in
detail.

5.1.3.1 Background Traffic Generation

The most desirable property of an intrusion database is that the background traffic is as
realistic as possible. The normal traffic must be highly variable, real, and valid. However,
background traffic generation is a complex and difficult task, mainly because of the complexity
involved in modeling user behavior [74], which is, in general, random and application-
dependent. The network traffic generated is dependent on the user demand for an application
and is specific to the environment being reproduced.

Taking these factors into account, each client is treated as an entity with a pseudo-
random behavior that does not follow any statistical distribution pattern, as reported in [48].
Each client shows a unique behavior when requesting a service. Each client might request one
or more services.

To achieve this property, a set of predetermined services on the basis of the frequently
used services discussed in [75] were established. The following services were considered to be

generated on the testbed environment: HTTP, SNMP, SMTP, NTP, and SSH. Every name
resolution (DNS) was also generated as a consequence of using the listed protocols.

To create the honeypot server (Figure 18), which executes the server-side applications,
in the proposed method the Honeyd [76] tool was used. To develop the client-side application
for use with the servers, a workload tool was used as the service request tool. It is important to
emphasize that the only purpose of using a workload tool was to generate valid and real
requests.

Each client requested the services hosted on the honeypot server; the emulated services
and their client behaviors are described in Table 4. To ensure traffic variability, each client
randomly varied the requested content, according to the description shown in Table 4, and the
time between the requests varied from 0 to 4 s. The variation in the time between each request
and in the requested content was designed to mimic the non-modellable behavior of clients. By

78

using this method, it became possible to simulate a user browsing a Webpage and also sending
an e-mail, for instance.

Table 4. Services used for the background traffic generation.

Service Description
(Client behavior varying from 0 to 4 s interval)

HTTP The 1000 most visited Websites worldwide were downloaded using www.alexa.com/topsites and hosted on the honeypot server; each HTTP
client requests a pseudo-random Website from this set of contents.

SMTP Each SMTP client sends a mail with 50-400 bytes in the subject line and 100-4000 bytes in the body.
SSH Each SSH client logs in to the honeypot host and executes a random command from a list of 100 possible commands.
SNMP Each SNMP client walks through a predefined management information base (MIB) from a predefined list of possible MIBS.
NTP The client performs time synchronization through the NTP protocol.
DNS Every name resolution was also made to the honeypot server

Every client generated a real and valid request for a service and received a real and valid

reply from the honeypot server. Thus, all the generated background traffic was real and valid.
Finally, to mitigate possible repetition in the generated traffic, each scenario was executed for

30m, a reasonable time considering the request variability shown in Table 4. To allow the
scenarios to be reproduced, the behavior for each client was logged.

5.1.3.2 Attack Traffic Generation

For the attack traffic generation, the taxonomy adopted by Kendall [19] was considered.
To validate the proposed method, two groups of attacks were used as baseline attacks: probing
and DoS. The attacks and tools used and their descriptions are listed in Table 5.

Each attacker generated a specific attack type (Table 5), and to make the attacks highly
variable, each attacker varied the frequency and duration during each testbed. A single machine
generated each attack, allowing the automatic class labeling based on the network packet source
IP address. It is important to note that this approach does generate environment-specific
features; e.g., on the basis only of the IP address, an ML-based system can identify every attack.
Thus, the system being evaluated using the fine-grained intrusion database must be aware of
this restriction and should not use any environment-specific features, such as the time-to-live
(TTL) and IP address fields2.

Table 5. Tools used for attack network traffic generation.

Category Attack Type Tool
Used

Description

DoS

SYN flood Hping3 Sends several requests to open TCP connections, varying the attack send frequency and the
duration time

UDP flood Hping3 Sends several UDP datagrams to an open DNS port, varying the attack send frequency, the
duration time, and the size of each datagram

ICMP flood Hping3 Sends several ICMP messages to the target, varying the attack send frequency, the duration
time, and the size of each datagram

TCP keepalive Slowloris Initiates several HTTP connections and keeps them open for a period, varying the number
of connections to be opened

2 The list of features extracted in the fine-grained intrusion dataset can be found in Appendix 1

79

SMTP flood Postal Sends several emails to an SMTP server, varying the duration time, body size, subject size,
and frequency

HTTP flood LOIC Sends several HTTP-get requests to a specific URL, varying the duration time and
frequency

Probing

UDP scan Nmap Searches for open UDP ports, varying the attack send frequency and the duration time
SYN scan Nmap Searches for open TCP ports by sending TCP packets with the SYN flag set while varying

the attack send frequency and the duration time
NULL scan Nmap Searches for open TCP ports by sending TCP packets without any flags set while varying

the attack send frequency and the duration time
TCP connect Nmap Searches for open TCP ports by completing the three-way handshake while varying the

attack send frequency and the duration time
FIN scan Nmap Searches for open TCP ports by sending TCP packets with the FIN flag set while varying

the attack send frequency and the duration time
XMAS scan Nmap Searches for open TCP ports by sending TCP packets with the FIN, PSH, and URG flags

set while varying the attack send frequency and the duration time
ACK scan Nmap Searches for open TCP ports by sending TCP packets with the ACK flag set while varying

the attack send frequency and the duration time
OS Fingerprint Nmap Identifies the OS from the target (https://nmap.org/book/osdetect.html) while varying the

attack send frequency and the duration time
Service Fingerprint Nmap Identifies the services and their versions from the target (https://nmap.org/book/man-

version-detection.html) while varying the attack send frequency and the duration time
All Vulnerability Scan Nessus Identifies service-level vulnerabilities while varying the attack send frequency and the

duration time

5.1.3.3 Testbed environment

The scenarios, which are described in more detail below, were composed of 100
interconnected client machines. The number of clients was established to maximize the possible
client behaviors (Table 4). Each client was an Ubuntu 16.04 machine; the network traffic was
dependent on the workload tool used according to the service being requested. A single
honeypot server was used in each scenario. The honeypot server was implemented using the
Honeyd 1.5c tool, installed on an Ubuntu 16.04 machine, mimicking a vulnerable Ubuntu 14.04
server. The attacker machines ran Kali Linux version 2.0; 16 machines were used to generate

the attacks, with each attacker machine generating a single type of attack (Table 5).

A single LAN network running at 100 Mbits/s connected the machines. The defined
LAN network speed allowed the generated traffic to be recorded on a single machine without
dropping packets or mirroring the traffic [36]. All legitimate requests and attacks were
generated against the honeypot server (Figure 18); the generated traffic was stored on the
honeypot server.

The establishment of a single LAN network allowed the creation and replication of the
proposed scenarios to be simplified. The definition of more complex scenarios [6, 36] would
hamper the replication of the proposed method. In the next sections, each of the created
scenarios is further described.

80

a. Attack detection scenarios

As stated in Section 5.1.3.2, two attack categories were defined as the baseline attacks:
probing and DoS. Thus, six scenarios were defined to generate databases to evaluate the attack

detection rate (Figure 7, Attack Detection Evaluation).
In the attack detection scenarios, each client was responsible for generating the

background traffic for each client service request, as shown in the Venn diagram in Figure 19.
The overlapping circles denote the clients that generated both services. The distribution among
clients and services was designed to simulate the traffic distribution described in [75].

Figure 19. Venn diagram of background service distribution among clients.

The background network traffic remained immutable at the content request and client
level. However, the attacker traffic varied according to each scenario, as described in Section
4.3.1. For each considered attack type, i.e., probing and DoS, three scenarios were created. Each
scenario was run for 30m. The attacks started at the 10th minute and lasted for 15 m (scenario
time: the 10th to the 25th minute), following the attacker behavior described in Table 5. Thus,
it was possible to capture the environment behavior without, with, and after the attacks. The
network traffic distribution and the attacks used for each scenario are shown in Table 6.

Three levels of attack similarity were defined in the databases: network-level
vulnerabilities, service-level vulnerabilities, and service-level exploitation. The first scenario
was named known. The purpose of the known scenario was to generate the classifier model and
to define the known detection rate while detecting only the known attacks. Thus, only attacks
at the network level, focusing on network protocol vulnerabilities, were generated. The similar
databases contain attacks with a similar behavior but focusing on service-level vulnerabilities.
Finally, the new database has a new type of attack that focuses on service exploitation.

Table 6. Network traffic distribution for attack detection scenarios.

Scenario Attacks Generated
Traffic (Network Packets) Size (MB)

Background Attack Total

81

Probing (Known) UDP scan, SYN scan, NULL scan, TCP connect,
FIN scan, XMAS scan, and ACK scan 28,618,365 36,628 28,654,993 8.476

Probing (Similar) OS fingerprint and service fingerprint 28,477,884 10,441 28,488,325 8.499
Probing (New) Vulnerability scan 28,391,914 17,753 28,409,667 8.512
DoS (Known) SYN flood, UDP flood, ICMP flood, and TCP

keepalive 26,747,521 761,269 27,508,790 7.945
DoS (Similar) SMTP flood and HTTP flood 40,278,594 26,390,723 66,669,317 12.143

DoS (New) Vulnerability scan 27,522,317 3,429 27,525,746 7.265

The created attack databases mimicked the behavior seen in production environments.

Normally, when developing an ML-based NIDS, only attacks detectable by an NIDS are
included in the training dataset. However, when used in production environments, the system
will face a wider range of attacks. The databases were created according to the method

described in Section 5.1.3 and were used to validate the evaluation method described in Section
4.3.

b. Background detection scenarios

The background detection rate scenarios were generated using the attacks as the
baseline. Thus, two sets of attacks were used, each generated separately, resulting in different
databases, allowing correct method evaluation. The sets of attacks used consisted of the probing
(known) and DoS (known) attacks, shown in Table 6.

To generate the services’ detection databases, the services were divided into two groups:
known and new services. The known services served HTTP and SNMP clients and the new
services served SMTP, NTP, and SSH clients. Each scenario was executed for 30m; the
distribution of clients followed the Venn diagram shown in Figure 20.

Figure 20. Venn diagrams for the background service detection rate scenarios showing the service distributions

among clients.

Finally, to generate the content detection databases, the behavior of each client was
modified. Three different behaviors were defined, divided into known, similar, and new content
request behavior. The client’s distribution followed the Venn diagram shown in Figure 19, and
the client’s behavior for each scenario is described in Table 7. The traffic distribution for each
background detection database is shown in Table 8.

82

Table 7. Client behavior for service’s content detection scenarios.

Service Database
Known Contents Similar Contents New Contents

HTTP Request a Webpage from 1 to 200 Request a Webpage from 1 to 500 Request a Webpage from 501 to 1000
SMTP Each SMTP client sends a mail with

50-400 bytes in the subject line and
100-720 bytes in the body

Each SMTP client sends a mail with 50-400
bytes in the subject line and 100-1800 bytes
in the body

Each SMTP client sends a mail with 50-400
bytes in the subject line and 1801-4000
bytes in the body

SSH Each SSH client logs in to the honeypot
host and executes a random command
from a list of 20 possible commands

Each SSH client logs in to the honeypot
host and executes a random command from
a list of 50 possible commands

Each SSH client logs in to the honeypot
host and executes a random command from
a list of 50 never-seen commands

SNMP Each SNMP client operates through a
predefined MIB from a predefined list
of possible MIBS

Each SNMP client operates through a
predefined MIB from a predefined list of
possible MIBS

Each SNMP client operates through a
predefined MIB from a predefined list of
possible MIBS

DNS Every name resolution is also defined in the honeypot server

Table 8. Network traffic distribution for backround detection scenarios.

Database Scenario Generated Attacks
Traffic (Packets) Size (MB)

Background Attack Total

Service
Detection

Known Probing (Baseline) 6,260,424 34,239 6,274,663 731
New 36,807,285 37,973 36,845,258 12,325

Known DoS (Baseline) 6,874,239 753,838 7,628,077 972
New 37,273,872 812,384 38,086,256 12,738

Content
Detection

Known
Probing (Baseline)

25,240,803 35,782 25,276,585 7,909
Similar 26,216,937 36,245 26,253,182 7,959

New 30,600,739 38,235 30,638,974 8,905
Known

DoS (Baseline)
27,376,278 746,287 28,122,565 8,782

Similar 28,241,742 784,972 29,026714 8,932
New 33,235,457 797,728 34,033,185 9,748

5.1.4. Discussion

The proposed fine-grained intrusion database creation method allowed real and valid

network traffic to be generated, as the honeypot generated valid replies to each of the received

requests. The event classes were automatically defined (labeled as a feature vector), to avoid
manual labeling and to provide an error-free approach because of the number of packets to be
evaluated. The automatic labeling was determined according to the source IP address for each
network packet. This was possible because the attacker’s machine generated only attack
content. Additionally, the use of manual class labeling or clustering techniques [77] was
avoided, reducing the labeling error.

Low variability or repeated traffic occurrences were mitigated, as the client content
requests, the time between each request, and the requested application were varied. The use of
well-known tools allowed the databases to be updated at each new vulnerability (attack) report,

as the used tool became responsible for the network traffic update to ensure the correct attack
implementation. To allow the deployed scenario to be reproduced, every client and attacker
behavior was logged. Finally, privacy problems did not occur, because the databases were
obtained in a controlled environment and the generated network traffic did not include any
sensitive data.

83

Using the proposed fine-grained intrusion database creation method, it was possible to
create 16 databases (Tables 6 and 8), each of which was aimed to validate the common
assumptions adopted in the literature [6, 7], as described in Section 4.3, and to present network-

specific detection rates.
The next section describes the steps involved in creating an intrusion dataset for the

evaluation of ML-based intrusion detection techniques over time.

5.2 An Evolving Intrusion Dataset

To benchmark the behavior of ML-based IDS over time, a dataset, named MAWIFlow,
with labeled (i.e., classified as either Normal or Attack) real network flows collected over 10
years is built. Similarly to the fine-grained intrusion dataset, MAWIFlow also fulfill a number
of requirements, including be realistic and highly variable, prior labeled with correctly
classified events, reproducible, and publicly available [36].

MAWIFlow is based on real and publicly available network traffic. More specifically, it
is based on the network flows extracted from the MAWI network packets traces [16], collected
daily for a 15-minute interval, from a transit link between Japan and USA. The labeling of
records is achieved through MAWILab [15], which labels the daily anomalous events (network
flows) from MAWI through a combination of several state-of-the-art unsupervised anomaly
detectors. For the purpose of this dissertation, the network traffic captured in a 10-year range,
from 2007 to 2016 was considered.

The MAWIFlow dataset is built through BigFlow feature extraction tool (see Section

4.2) [60] which extracts 158 host-based and flow-based features, some of which have been
employed in previous works, being them: 15 features from Orunada et al. [78], 21 from Nigel
et al. [79], 60 from Moore [80], and 62 from Viegas et al. [5]. Host-based features are features
extracted according to the communication between two hosts, e.g. bytes sent/received in the
last 15 seconds. On the other side, flow-based features refer to the features extracted according
to the communication from a specific host, e.g. average packet size sent from host3.

For the label assignment process, MAWIFlow assigns the label that was associated to
the flow from which the feature was extracted. Table 9 shows a summary of the MAWIFlow
dataset. Figure 21 shows the network distribution over time, and the distribution amongst the

3 The complete list of features for each view can be found in Appendix I

84

classes. As can be seen, it contains over 28 billion network flows, extracted by analyzing more
than 138 billion network packets from 10 years of real network traffic.

Table 9. MAWIFlow statistics.

Field Value
Average Daily Network Packets ~37.8 Millions
Average Daily Network Flows ~7.7 Millions
Average Daily Anomalous Flows ~1.7 Millions
Average Daily Dataset Size ~8.41 GB
Total Network Packets ~138.64 Billions
Total Network Flows ~28.34 Billions
Total Dataset Size ~30 TB

The original MAWIFlow dataset is composed of over 30 TB of data. Thereby, a

stratification process was needed to reduce its size, enabling its sharing and facilitating its use
for NIDS evaluation. Thus, the proportional random stratified sampling without replacement
method [81] was employed to generate the stratified MAWIFlow dataset. The resulting dataset
comprises just one percent of the original dataset, while maintaining the original proportion
amongst the network traffic classes (Normal and Attack), which are randomly chosen.

Besides being the first dataset of this kind publicly available, MAWIFlow overcome the

main challenges faced when building realistic datasets for benchmarking intrusion-detection
engines. More specifically, it presents all the desired properties described in [36]:

Realistic: the network traffic used for its building was obtained from real network traces.
Moreover, MAWIFlow was built from over 10 years of real network traces, enabling not only
evaluation of the detection system during a specific period of time, but also to evaluate how it
behaves over time, when facing new network traffic behavior;

Valid: the network traces used for the MAWIFlow building were gathered from real network
traces. Although MAWI (network traces used in MAWIFlow) is provided in a sanitized manner,
i.e., payload is removed and sensitive data from network packet headers are encrypted, the
network flow reconstruction is still possible. In this manner, the sanitization process used by
MAWI does not affect the features values;

85

(a) Daily number of network flows in MAWIFlow

(b) Daily distribution of network flows in MAWIFlow

Figure 21. MAWIFlow network traffic distribution throughout 10 years.

Prior labeled: event labels were identified by state-of-the-art unsupervised machine learning
techniques (assessed by MAWILab). In this manner, supervised ML techniques can be

evaluated regarding their performance using unsupervised techniques as their baseline
performance;

Highly Variable: MAWIFlow is highly variable not only due to the used network traces but
also due to its long period of recording. The used network traces are real, valid, and gathered
from a real network infrastructure, thereby it presents the expected variability from production
environments. Nonetheless, due to its long period of recording (from 2007 to 2016), the
detection system can be evaluated considering the environment variability for 10 years;

Reproducible and Publicly Available: the used network traces were gathered from publicly
available sources (MAWI). Moreover, BigFlow [60] (Section 4.2) source code is also publicly
available.

MAWIFlow, is the first of its kind to provide means of assessing the reliability of ML-
based IDSs. It presents all the expected properties from intrusion detection datasets [36], while
also span for 10 years of real network traffic, resulting from the analysis of over 30 TB of data.

86

87

Chapter 6

Experiments

The experiments are divided according to the methods presented for the reliable intrusion
detection model (Chapter 4).

More specifically, in Section 6.1 the evaluation of reliable batch learning algorithms is
performed. The first experiment, in Section 6.1.1, aims at evaluating the reliability of traditional
batch learning building methods regarding their generalization capacity, and the proposed
approach for building generalization capable models. After, the method for providing reliability
in classifications for batch learning classifiers is evaluated in Section 6.1.2.

In Section 6.2, the proposed stream learning approach resilient to adversarial attacks is
evaluated. The proposed approach is compared to both traditional batch and stream learning
techniques in the fine-grained intrusion dataset.

Finally, Section 6.3 addresses the evaluation of the reliable intrusion detection model
over time. Therefore, the first experiment evaluates traditional intrusion detection techniques

regarding their reliability over time in MAWIFlow. After, the proposed conformal evaluator is
evaluated in Section 6.3.2. Finally, the method to reliably adapt to network behavior changes
over time is evaluated in Section 6.3.3.

The proposed BigFlow is evaluated regarding its scalability and throughput in Section
6.4.

88

6.1 Batch Learning

This section presents the evaluation regarding the building of reliable batch learning
models for intrusion detection in a twofold manner. First, the proposed approach for building

generalization capable batch learning models is evaluated (Section 6.1.1). Second, in order to
address the changes in network traffic behavior over time, the proposed approach for providing
reliability in batch learning models classifications is evaluated (Section 6.1.2).

6.1.1. Generalization

The method for building generalization capable models was evaluated by the means of
the fine-grained intrusion dataset (see Section 5.1).

Because of how the classes are disposed in the created datasets, a stratification process
was used so that each class was equally represented in the training, testing and validation
datasets (Tables 6 and 8). The stratification process consisted of randomly selecting 25% of the
events from the class with fewer occurrences; then, the same number of events were randomly
selected from the other classes. The datasets were obtained using this stratification process,
with 25% of the events being used for training, 25% for validation, and the remaining events
for testing.

For the model building process, the Weka framework version 3.8.0 was used [82]. Two
batch learners were used during the evaluation tests: naïve Bayes (NB) and decision tree (DT).
For the NB classifier, all numerical attributes were discretized according to the method of Fayad
and Irani [83]. The C4.5 DT algorithm was used with a confidence factor of 0.25.

6.1.1.1 Model Evaluation

To evaluate the proposed batch learner evaluation method towards generalization
capable models (Section 4.3, Figure 7) and the multiple objective feature selection method for
building generalization capable models (Section 4.3), two classifiers were used: DT and NB.
During the evaluation, the FP denotes the number of normal instances (normal client network
packets) wrongly classified as attacks, whereas FN is related to the number of attack instances
wrongly classified as normal.

To obtain the generalization capacity (Figure 7, Generalization Evaluation), the publicly
available DARPA1998 database [20] was used. Despite its well-known problems [20, 21],
DARPA1998 is still extensively used in studies in the literature (see, e.g., [31]) and provides a
reasonable benchmark for research studies. The database consists of a nine-week air force

89

environment simulation. The data of the first seven weeks are used for training and of the last
two weeks for testing. For each day, DARPA1998 provides, among other files, a tcpdump file
containing the network packets and a description file describing the classes for each connection.

For the evaluation tests, only the DARPA1998 training data were used; the feature
extractor was modified to label the network packet classes according to the description file4.
The connection classes were divided according to Kendall’s [19] taxonomy; two attack groups
were considered: probing and DoS. Table 10 presents the network traffic distribution for the
used classes in DARPA1998.

Table 10. Traffic distribution on DARPA1998.

Category Class Number of packets (representativeness)
All Normal 28,426,093 (94.96%)
DoS Synflood — Neptune 1,507,319 (5.04%)

Probing Port scan — Nmap 2,211 (0.01%)
Total 29,935,623 (100.00%)

The rates presented for the attack and normal datasets were obtained using the test
dataset, which was built using the aforementioned stratification process. The following
subsections present and discuss the results obtained using the traditional intrusion detection
techniques and the proposed multi-objective feature selection method for building generation
capable models.

6.1.1.2 Traditional Model Building Process

The traditional model building process was divided into two groups: in one (selection)
the traditional feature selection was performed and in the second (no-selection) it was not.

The selection group relied on the traditional feature selection method, as described in
[5, 84, 85]. For this purpose, a wrapper-based GA feature selection method was used, the
objective of which was to increase the accuracy in the validation dataset. The GA was used
with 100 generations and 100 populations for each generation, a mutation probability of 3.3%,
and a 60% crossover probability. The no-selection group selected a subset from 50 features of
the extracted features during the model building process5.

To perform the traditional model building process, the approach normally used in
studies in the literature [5] was considered. The no-selection and selection groups were trained,
validated, and tested using the known datasets (Figure 7, Known Attacks, Known Services, and

4 Details regarding the fine-grained intrusion dataset feature extractor can be found in Appendix 1, and in [5]
5 It is important to note that the feature extraction process for the fine-grained intrusion dataset was not made by
BigFlow, in contrary, it used the extractor described in [5]

90

Known Services’ Content), whereas the generated models were evaluated using the remaining
datasets (Figure 7). The presented rates were obtained from the test dataset, when the dataset
was also used for training (Figure 7, Known datasets), and from the entire dataset, when the

dataset was used only for the tests (Figure 7, Similar, New, and Publicly Available datasets).
The obtained attack detection rates are presented in Table 11.

Table 11. Rates obtained for attack detection scenarios.

A
tta

ck
s

C
la

ss
if

ie
r Model

Building

Method

Dataset

!""!#$56786 !""!#$:;<;=&% !""!#$6(8

Acc.

(%)

FP

(%)

FN

(%)

Acc.

(%)

FP

(%)

FN

(%)

Acc.

(%)

FP

(%)

FN

(%)

P
ro

bi
ng

 D
ec

is
io

n
Tr

ee

no-selection 99.99 0.02 0.00 98.62 0.04 2.72 64.66 0.09 70.59

selection 99.99 0.00 0.02 93.70 0.04 12.57 53.30 0.00 91.39

multi-objective (attack) 99.82 0.23 0.12 99.41 0.11 1.07 99.76 0.09 0.38

multi-objective (normal) 99.93 0.01 0.13 99.27 0.04 1.42 74.56 0.05 50.83

multi-objective (generalization) 99.88 0.15 0.09 99.66 0.11 0.57 96.34 0.16 7.17

multi-objective (all) 99.87 0.13 0.13 99.29 0.04 1.38 96.12 0.02 7.73

N
aï

ve
 B

ay
es

no-selection 99.75 0.27 0.22 99.04 0.15 1.76 57.38 0.18 85.06

selection 99.99 0.01 0.00 99.37 0.00 1.26 65.72 0.02 68.54

multi-objective (attack) 99.61 0.72 0.07 99.35 0.46 0.84 98.61 0.38 2.39

multi-objective (normal) 99.88 0.12 0.12 98.80 0.19 2.22 62.18 0.14 75.51

multi-objective (generalization) 99.47 0.66 0.41 96.90 2.68 3.52 90.92 2.32 15.84

multi-objective (all) 99.67 0.45 0.21 97.76 1.26 3.22 92.03 1.13 14.80

D
oS

D
ec

is
io

n
Tr

ee

no-selection 99.97 0.01 0.06 99.95 0.03 0.08 75.61 0.00 48.77

selection 99.99 0.00 0.03 99.96 0.03 0.06 51.11 0.00 97.78

multi-objective (attack) 99.99 0.01 0.01 99.91 0.15 0.03 92.59 0.23 14.59

multi-objective (normal) 99.98 0.01 0.02 99.90 0.14 0.05 79.35 0.00 41.31

multi-objective (generalization) 99.98 0.01 0.03 99.94 0.03 0.09 74.27 0.00 51.46

multi-objective (all) 99.98 0.01 0.02 99.93 0.04 0.10 90.08 0.00 19.84

N
aï

ve
 B

ay
es

no-selection 99.90 0.09 0.11 97.76 0.79 3.69 57.29 0.00 85.41

selection 99.95 0.01 0.05 98.95 0.09 2.00 50.70 0.00 98.60

multi-objective (attack) 99.92 0.00 0.15 98.10 1.96 1.83 88.68 0.70 21.94

multi-objective (normal) 99.35 1.17 0.13 98.95 0.09 2.00 51.92 0.00 96.15

multi-objective (generalization) 98.94 0.10 2.06 98.03 1.39 2.55 54.78 0.00 90.43

multi-objective (all) 99.93 0.00 0.13 98.65 1.73 0.97 81.33 0.35 36.99

The DT and NB classifiers could obtain a reasonable high accuracy rate in both the

Probing and the DoS !""!#$56786 datasets. The average accuracy and FN rates for the known

attacks for both Probing and DoS were 99.87 % and 99.93% for the no-selection group and
99.99% and 99.97% for the selection group, respectively. The traditional feature selection
process (selection) improved the classification accuracy for known attacks by an average of
0.08%.

However, in the similar attack datasets, it was possible to observe an increase in the FN
rates. The worst classifier was DT with the selection method, which showed a 12.57% FN rate

91

on the Probing database, whereas NB with the no-selection method showed a 3.69% FN rate.
On average, the FN rate increased by 3.97% and 2.06% with the selection and no-selection
approach, respectively. Thereby, it can be stated that the current approaches in the literature can

detect similar attacks with a small increase in the FN rate, 3.01% on average. In most cases, the
selection approach decreased the FN rate for detecting similar attacks; the only case where the
FN rate increased was that of DT on the Probing database, which showed a 9.85% rate. The FP
rates remained almost unchanged, with an average increase of 0.09% with both model building
methods; thus, it is possible to note that the used services (Table 4) still present the same or
similar behavior under different attacks. Finally, for detecting new attacks, the FN rates
significantly increased.

The best FN rate was obtained by NB with the selection method with a 68.54% FN rate
on the Probing dataset, whereas a 48.77% FN rate was obtained by DT with the no-selection
method on the DoS dataset. The results show the inability of machine learning methods, more
specifically batch learning, to detect new attacks in the evaluated scenarios. Neither of the
classifiers could maintain the obtained rates during the model testing on known attacks. The
ML-based assumption for detecting new attacks was not evidenced during the evaluation tests,
where the traditional detection approaches were used: the FN rate as compared to that of the
testing phase, was increased by 72.46% and 89.05%, on average, for the no-selection and
selection methods, respectively.

The obtained background detection rates are presented in Table 12. Each batch learner

and model building method could detect known services and known services’ content, reaching
an average FP rate of 0.13% and 0.08%, respectively. The selection method improved the FP
rate by 0.25% on average for known services’ content and by 0.14% for known services.

For detecting new services, the FP rate greatly increased; in general, the selection
method increased the FP rate significantly: 20.82% on average against 6.03% with the no-
selection method. However, for detecting similar and new services’ content, the selection
method showed an average FP rate of 0.68% for both similar and new services’ content,
whereas the no-selection method showed an FP rate of 1.50% and 3.06% for similar and new
services’ content, respectively.

Table 12. Rates obtained for normal detection scenarios.

A
tta ck
s

C
la

s

si
fi

e

r

Model

Building

Dataset

)*+,!-56786	A76'(6')*+,!-:;<;=&%	A76'(6')*+,!-6(8	A76'(6')*+,!-56786	:(%@;A()*+,!-6(8	:(%@;A(

92

Method Acc.

(%)

FP

(%)

FN

(%)

Acc.

(%)

FP

(%)

FN

(%)

Acc.

(%)

FP

(%)

FN

(%)

Acc.

(%)

FP

(%)

FN

(%)

Acc.

(%)

FP

(%)

FN

(%)

P
ro

bi
ng

 D
ec

is
io

n
Tr

ee

no-selection 99.94 0.12 0.00 99.97 0.05 0.00 99.98 0.04 0.00 99.96 0.05 0.02 92.93 14.12 0.02

selection 100.00 0.00 0.00 98.89 2.22 0.00 98.74 2.51 0.00 99.99 0.01 0.00 99.34 1.31 0.00

multi-objective (attack) 99.90 0.20 0.00 99.81 0.37 0.00 99.73 0.54 0.00 99.91 0.14 0.03 98.50 2.98 0.03

multi-objective (normal) 99.99 0.01 0.00 99.99 0.01 0.00 99.99 0.01 0.00 99.97 0.01 0.05 99.92 0.11 0.05

multi-objective (general) 99.92 0.07 0.09 98.85 2.22 0.09 97.30 5.31 0.09 99.86 0.23 0.05 86.41 27.13 0.05

multi-objective (all) 99.95 0.08 0.02 99.93 0.11 0.02 99.96 0.07 0.02 99.94 0.05 0.02 99.84 0.27 0.05

N
ai

ve
 B

ay
es

no-selection 99.67 0.52 0.14 98.31 3.23 0.14 96.90 6.05 0.14 99.83 0.31 0.03 96.96 6.05 0.03

selection 99.99 0.02 0.00 99.81 0.37 0.00 96.96 0.08 0.00 99.99 0.01 0.00 79.43 41.15 0.00

multi-objective (attack) 99.54 0.93 0.00 98.08 3.93 0.00 96.55 6.90 0.00 99.37 1.27 0.00 96.06 7.87 0.00

multi-objective (normal) 99.94 0.04 0.08 99.92 0.09 0.08 99.91 0.11 0.08 99.97 0.02 0.03 99.46 1.05 0.03

multi-objective (general) 99.56 0.68 0.22 97.88 4.03 0.22 95.02 9.74 0.22 98.73 2.41 0.13 98.88 6.12 0.13

multi-objective (all) 99.61 0.64 0.13 98.13 3.60 0.13 96.55 6.77 0.13 98.94 2.05 0.08 96.50 6.92 0.08

D
oS

D
ec

is
io

n
Tr

ee

no-selection 99.99 0.03 0.00 99.98 0.04 0.00 99.97 0.05 0.00 98.98 0.02 0.02 99.78 0.43 0.02

selection 100.00 0.01 0.00 99.97 0.07 0.00 99.98 0.04 0.00 100.00 0.01 0.00 98.27 3.46 0.00

multi-objective (attack) 99.96 0.03 0.04 99.94 0.08 0.04 99.90 0.15 0.04 99.93 0.09 0.04 93.33 13.29 0.04

multi-objective (normal) 99.98 0.03 0.02 99.99 0.01 0.02 99.98 0.02 0.02 99.99 0.00 0.02 99.98 0.02 0.02

multi-objective (general) 99.96 0.06 0.02 99.97 0.05 0.02 99.98 0.03 0.02 99.97 0.05 0.01 99.98 0.04 0.01

multi-objective (all) 99.96 0.03 0.05 99.92 0.11 0.05 99.91 0.13 0.05 99.94 0.07 0.05 99.92 0.12 0.05

N
ai

ve
 B

ay
es

no-selection 99.50 0.36 0.65 98.33 2.69 0.65 96.63 6.08 0.65 99.64 0.20 0.51 97.99 3.50 0.51

selection 100.00 0.00 0.00 99.98 0.04 0.00 99.95 0.09 0.00 100.00 0.00 0.00 81.30 37.35 0.00

multi-objective (attack) 98.91 0.49 1.69 98.07 2.16 1.69 98.71 0.89 1.69 99.35 0.29 1.02 92.37 14.23 1.02

multi-objective (normal) 99.99 0.00 0.03 99.98 0.02 0.03 99.98 0.02 0.03 99.99 0.00 0.03 99.82 0.34 0.03

multi-objective (general) 98.93 0.04 2.11 98.32 1.26 2.11 97.20 3.48 2.11 98.93 0.02 2.12 91.91 14.06 2.12

multi-objective (all) 99.86 1.20 0.08 98.98 1.95 0.08 98.09 3.74 0.08 99.77 0.13 0.32 98.73 1.74 0.32

Finally, Table 13 shows the generalization evaluation performed on DARPA1998. A
significant increase in the FP and FN rates can be observed when the model was used in a
different scenario. Several observations can be made from Tables 11, 12, and 13 regarding the
traditional model building methods:

• Both batch learners, regardless of the model building method used, could detect known

events (attacks, services, and services’ content). The worst detection rates were 99.75%
for known attacks, 99.67% for known services’ content, and 99.98% for known services.

Table 13. Rates obtained for generalization evaluation.

Attacks Classifier
Model Building

Method

Accuracy

(%)

FP

(%)

FN

(%)

P
ro

bi
ng

D
ec

isi
on

Tr
ee
 no-selection 86.97 15.20 10.85

selection 90.38 8.86 10.36

multi-objective (attack) 81.55 31.80 5.11

93

multi-objective (normal) 86.79 15.78 10.63

multi-objective (general) 98.42 2.89 0.27

multi-objective (all) 96.25 7.24 0.27

N
aï

ve
 B

ay
es

no-selection 75.93 48.12 0.00

selection 78.56 33.29 9.59

multi-objective (attack) 83.77 32.43 0.00

multi-objective (normal) 68.75 7.91 54.59

multi-objective (general) 97.29 5.43 0.00

multi-objective (all) 96.43 7.15 0.00
D

oS

D
ec

isi
on

 T
re

e

no-selection 38.98 30.47 91.57

selection 99.41 0.00 1.18

multi-objective (attack) 94.56 10.89 0.00

multi-objective (normal) 85.23 29.54 0.00

multi-objective (general) 99.90 0.20 0.00

multi-objective (all) 99.36 1.29 0.00

N
aï

ve
 B

ay
es

no-selection 82.71 34.56 0.01

selection 84.26 31.19 0.29

multi-objective (attack) 81.82 29.28 7.09

multi-objective (normal) 93.53 12.77 0.05

multi-objective (general) 99.66 0.52 0.16

multi-objective (all) 95.23 8.57 0.97

• None of the batch learners could maintain its obtained accuracy on the model building

dataset for detecting new attacks. The ML-based assumption for detecting new attacks
was not evidenced when the machine learning technique was used.

• The traditional machine learning (through batch learning) technique was able to detect
similar attacks (Table 11; 1.97% and 3.95% FP rate increase for the no-selection and

selection methods, respectively), making it a viable approach for detecting possible
intrusion attempts, provided that the attacks present a similar behavior.

• In general, there was an FP increase for detecting new services (Table 12; 13.42%
average FP rate); however, the accuracy loss was less than that observed for detecting
new attacks (Table 11; 80.77% average FN rate).

• A small increase in the FP rate was evidenced for detecting new services’ content (Table
12; 2.80% and 0.67% FP rate increase for the no-selection and selection methods,
respectively); however, in most cases, the classifiers were able to correctly distinguish
the classes.

• When using the obtained batch learners in a different environment (Table 13), the

detection accuracy significantly decreased, even for detecting known attacks; in most
cases, the model became scenario-dependent.

94

The proposed evaluation method (see Section 4.3) allowed the common assumptions
presented in the literature to be verified. Moreover, it allowed rich intrusion detection properties
to be obtained from the intrusion detection scheme, which helps experts determine whether

their systems are reliable for open-world usage or not.

During the evaluation tests using the traditional machine learning (batch) model
building techniques it was observed that, when a classifier faced known events, it presented a
reasonable accuracy rate. The results showed a decrease in accuracy when a classifier faced
similar events; the effect on accuracy further increased when a classifier faced new attacker and
client behaviors. The next subsection evaluates the proposed multi-objective feature selection
method for building generalization capable models (Section 4.3.5)

6.1.1.3 Multi-objective Feature Selection

The well-known NSGA-II [86] algorithm was used for the multi-objective feature
selection for building generalization capable models (Section 4.3.5). As previously described,

three objectives must be considered during the model building process: the !""!#$%&'(

(Equation 1),)*+,!-%&'((Equation 4), and ./)/+!-01!"0*)%&'((Equation 5). NSGA-II

operates by minimizing the objectives; thus, for the tests purposes, the obtained error rate in the
evaluation tests was considered. The same set of parameters used by the traditional feature
selection process was used (Section 6.1.2): 100 generations and 100 populations for each
generation, a mutation probability of 3.3%, and a 60% crossover probability.

As stated in Section 4.3.5, the desired objective must be defined according to the
administrator’s needs. Thus, for test purposes, four operation points were chosen: attack,
normal, generalization, and all. Each chosen operating point presented the lowest error rate

related to its objective: attack presented the lowest !""!#$%&'((Eq. 1) error rate, normal

presented the lowest)*+,!-%&'((Eq. 4) error rate, generalization presented the

./)/+!-01!"0*)%&'((Eq. 5) error rate, and finally, all presented the lowest error rate

considering all objectives. The obtained objective rates are presented in Table 14. The proposed
multi-objective feature selection achieved the best results in all cases for detecting its
considered objective.

Table 14. Rates obtained for each considered objective.
Attacks Classifier Model Building Method !""!#$%&'()*+,!-%&'(./)/+!-01!"0*)%&'(

Probing Decision Tree

no-selection 87.76 98.56 86.97

selection 82.33 99.39 90.38

multi-objective (attack) 99.66 99.57 81.55

95

multi-objective (normal) 91.25 99.97 86.79

multi-objective (general) 98.63 96.47 98.42

multi-objective (all) 98.43 99.92 96.25

Naïve Bayes

no-selection 85.39 98.33 75.93

Selection 88.36 95.24 78.56

multi-objective (attack) 99.19 97.92 83.77

multi-objective (normal) 86.95 99.84 68.75

multi-objective (general) 95.76 98.01 97.29

multi-objective (all) 96.49 97.95 96.43

DoS

Decision Tree

no-selection 91.84 99.74 38.98

Selection 83.69 99.64 99.41

multi-objective (attack) 97.50 98.61 94.56

multi-objective (normal) 93.08 99.98 85.23

multi-objective (general) 91.40 99.97 99.90

multi-objective (all) 96.66 99.93 99.36

Naïve Bayes

no-selection 84.98 98.42 82.71

Selection 83.20 96.25 84.26

multi-objective (attack) 95.57 97.48 81.82

multi-objective (normal) 83.41 99.95 93.53

multi-objective (general) 83.92 97.06 99.66

multi-objective (all) 93.30 99.09 95.23

The multi-objective (attack) operation point improved the !""!#$%&'(in all cases. As

compared to the traditional selection method, it improved the !""!#$%&'(by 17.33% and

10.83% for the DT and NB classifiers on the Probing dataset, respectively, while improving it
by 13.81% and 12.37% for the DT and NB classifiers on the DoS dataset, respectively. On

average, the multi-objective (attack) improved the !""!#$%&'(accuracy by 10.49% and 13.59%

for the no-selection and selection methods, respectively. As compared to the other operation

points, multi-objective (attack) improved the !""!#$%&'(accuracy by 5.54% on average.

In the individual attack detection accuracy (Table 11), a significant improvement can be
observed. The multi-objective (attack) operating point significantly improved the detection of
similar and new attacks. On average, it improved by 0.77% and 0.27% for similar attacks as
compared to the traditional model building methods and the other operating points,
respectively. For the detection of new attacks, the multi-objective (attack) operating point
enabled the detection of new attacks in most cases, improving the detection rate of new attacks
by 35.44% as compared to the traditional model building methods and by 16.25%, on average,
as compared to the other operating points.

Finally, it is possible to note a tradeoff between the !""!#$%&'(objective and the other

objectives. In most cases, the multi-objective (attack) operation point reduced the accuracy of
the other objectives; as compared to the other operation points, the only case where the objective

96

was improved was for the DT classifier on the Probing dataset, showing an improvement of
0.78% on average for the normal objective. On average, the tradeoff between objectives when
the attack objective was considered was -0.62% for normal detection and -7.65% for the

generalization objective.

The multi-objective (normal) operation point slightly improved the)*+,!-%&'(

objective as compared to the other techniques in all cases. The multi-objective (normal)
operation point improved the detection of normal events on average by 1.74% and 1.44% as
compared to the traditional model building methods and the other operating points,
respectively. These small accuracy improvements occurred as a result of the models’ capacity
to detect normal events with little or no effect on accuracy (Section 6.1.1.2). It is possible to
note a significant tradeoff between the detection of normal events and attack events, and
generalization. On average, as compared to the other operating points, when the multi-objective
(normal) operation point was considered the detection of attacks was reduced by 6.87%,
whereas the model generalization capacity decreased by 10.11%.

The multi-objective (generalization) operation point significantly increased the

./)/+!-01!"0*)%&'(in all scenarios. As compared to the traditional model building techniques,

the multi-objective (generalization) operation point presented, on average, a 19.17% higher
accuracy rate, while it was increased, on average, by 10.21% as compared to the other operation
points. Regarding the multi-objective (generalization) operation point tradeoff, on average, it
was evidenced that there was a decrease in the attack detection rate of 6.48% and 8.35%,
whereas for the normal detection, there were an increase of 0.32% and a decrease of 0.99% for
the traditional model building methods and the other operating points, respectively. Thus, to
provide generalization, a significant tradeoff between attack and normal detection rates is
required. However, the most important point pertaining to generalization was that an old
benchmark database was used, because if the generalization rate results are good, it means that

the proposed database is equivalent to the old one. Therefore, it is possible to use an updated
database to test recent attacks.

Finally, the multi-objective (all) operation point was aimed to improve all the considered
objectives. When considering all the objectives, an improvement of 9.49% was shown: the
average detection rate was 97.42%, whereas the average detection rate for all the objectives
using the traditional model building methods was 87.93%; when the other operating points were
considered, the average detection rate was 93.68%.

97

Figure 22 shows the operation points through our method for the detection of probing
attacks. It can be noticed that the generalization capacity increases while the attack detection
rate decreases. However, the detection of normal events does not significantly decrease the

system generalization capacity. Similar behavior was observed for the detection of DoS attacks.

Figure 22. Multi-objective operation points for probing attacks. The operation points are shown in terms of

objective error rate; the operation points are chosen according to their lowest error rate.

6.1.2. Reliability in Classifications

Two distinct detection approaches were evaluated for the proposed method to ensuring

reliability in classifications. First, a single classifier using the decision tree (DT), naïve bayes
(NB) or linear discriminant analysis (LDA) algorithm; second, a combination of the three
classifiers using majority voting, as explained in Section 4.4.3 (Figure 14). The C4.5 decision
tree algorithm was used with a confidence factor of 0.25. The Fisher’s method [87] was used
for the LDA classifier. The same stratification procedure adopted for the building of
generalization capable models were employed (see Section 6.1.1). The classifiers were
evaluated by the means of the Probing scenarios datasets, in the fine-grained intrusion datasets.

The resulting average accuracy in each scenario is shown in Table 15, as measured by
the average of both TP and TN. All classifiers presented a reasonably good performance when
used in the known scenario testing dataset. The best accuracy rate, 99.97% was obtained with
the DT classifier. The worst classifier accuracy rate, 99.44%, was achieved by LDA, although
it was only 0.53% lower than DT. When evaluated with the similar scenario, the classifiers were
able to detect events with an average accuracy drop of 0.88% compared to the baseline scenario.
For new attacks, however, the accuracy decreased on average by 37.64%. The best accuracy
rate when detecting new attacks was obtained with the combination/voting classifier, with an

98

accuracy of 70.29% (Table 15). None of the used classifiers or methods were able to maintain
their accuracy obtained in the known scenario when detecting similar or new attacks. If such
classifiers were used in a real-world environment, their accuracy would likely drop over time

due to changes in the traffic or attack profiles.

Table 15. Accuracy for each Probing scenarios using the obtained classifiers.
Classifier

 Accuracy
Probing Scenario

!""!#$56786 !""!#$:;<;=&% !""!#$56(8
DT 99.97 % 98.62 % 64.66 %
NB 99.75 % 99.23 % 57.38 %
LDA 99.44 % 98.39 % 56.00 %
Combination 99.75 % 99.14 % 70.29 %

6.1.2.1 Evaluation of the proposed rejection method

The proposed rejection method aims at maintaining the classifier reliability over time
even in the absence of model updates. To achieve this goal, the class assignment (Figure 14)
must reject potentially wrong classifications. Therefore, the evaluation tests aim at checking
the detection accuracy, while still rejecting as few events as possible.

Due to the number of used features (see Appendix 1), evaluating all possible values of

∝ for each feature and profile similarity (Figure 12) is unfeasible. Therefore, two tests for each

final class assignment was performed (Figure 14). The first test, named Different Alpha, used

different ∝ values (Figure 12) for each feature group (header-based, service-based, and host-

based, described in Appendix 1), whereas the second test (named Same Alpha) used the same

∝ for all features. The profile similarity varied from 0% to 100% in 1% increments. The

rejection rate is measured as the ratio between the number of rejected instances and the total
number of instances in the test set. The accuracy rate vs rejection rate tradeoff using the
combined classifiers for the detection of new attacks is shown in Figure 23.

Figure 23. Accuracy-rejection tradeoff for the combination technique while detecting new attacks.

99

It is possible to note that in most cases there is a direct relation between accuracy and

rejection, regardless of the ∝ technique (Figure 23, Different Alpha and Same Alpha). One may

notice that different distributions of feature values allowed to improve the accuracy rate while
rejecting fewer instances. The classifier combination scheme was able to reach an accuracy rate
close to 100% while rejecting 59.52% of instances in the new attack dataset. All evaluated

classifiers were able to reach an !""!#$6(8 accuracy of 100% at the cost of a 60% rejection

rate. The combination classifier provided the best accuracy with a minimum rejection rate

considering all scenarios, outperforming the best single classifier (DT) by about 5% in the low
rejection rate setting, and by about 10% in the average rejection setting (Table 16).

In the real world, it is not possible to choose a different set of thresholds for each event,
because the classifier is unable to determine whether an event is a known attack, a similar attack,
or a new one. Therefore, the choice of a set of thresholds must be made taking into account the
tradeoff between accuracy and rejection rate. Figure 24 shows the accuracy-reject tradeoff
between the accuracy in detecting new attacks and the rejection rate for known and similar
attacks, using the same set of thresholds during the detection. The graph shows that it is possible
to maintain the accuracy for the detection of new attacks, but at the cost of an increased rejection
rate for known and similar attacks. For instance, it is possible to maintain the accuracy rate at
95% in a scenario with new attacks, at the cost of rejecting 31% in average of the events in the
other two scenarios (known and similar attacks).

The set of thresholds should be established according to the user goals. If certain
lenience for accuracy is acceptable, fewer events will be rejected, but the class assignment will
be more susceptible to errors. Table 16 shows the accuracy-reject relationship for each dataset,
for the rejection settings highlighted in Figure 25, using the same set of thresholds. Four
rejection rate settings (no rejection, low rejection, average rejection, and high rejection) were
selected for the new attacks dataset. The same set of thresholds were used in the other scenarios

to investigate the rejection rate impact for the known and similar attack datasets. The obtained
results are shown in Table 16.

Table 16. Accuracy-rejection tradeoff for each dataset using the points marked in Figure 25.

Rejection
Rate

Classifier
(Normal Alpha, Attack Alpha)

Probing Dataset
!""!#$56786 !""!#$:;<;=&% !""!#$6(8

Acc. (%) Rej. (%) Acc. (%) Rej. (%) Acc. (%) Rej. (%)

No

Rejection

DT (n.a., n.a.) 99.97 - 98.62 - 64.66 -
NB (n.a., n.a.) 99.75 - 99.23 - 57.38 -
LDA (n.a., n.a.) 99.44 - 98.39 - 56.00 -

100

Rejection

Rate

Classifier

(Normal Alpha, Attack Alpha)

Probing Dataset
!""!#$56786 !""!#$:;<;=&% !""!#$6(8

Acc. (%) Rej. (%) Acc. (%) Rej. (%) Acc. (%) Rej. (%)
Combination (n.a., n.a.) 99.75 - 99.14 - 70.29 -

Low
Rejection

DT (0.55, 0.18) 99.97 0.21 98.70 1.05 67.37 4.82
NB (0.62, 0.27) 99.75 0.14 99.23 0.25 59.66 4.07
LDA (0.64, 0.29) 99.44 0.14 98.48 0.31 58.15 3.98
Combination (0.53, 0.16) 99.75 0.01 99.14 0.00 72.66 3.31

Average
Rejection

DT (0.83, 0.37) 99.98 5.40 98.80 5.77 74.90 24.14
NB (0.88, 0.51) 99.75 5.41 99.21 5.88 67.94 23.50
LDA (0.88, 0.51) 99.65 5.71 99.65 6.00 66.37 24.99
Combination (0.81, 0.25) 99.76 0.25 99.14 0.15 84.27 23.16

High
Rejection

DT (0.90, 0.51) 99.99 37.27 99.87 25.79 99.92 59.57
NB (0.90, 0.51) 99.96 37.34 99.92 25.42 99.92 59.61
LDA (0.90, 0.51) 100.00 37.38 99.87 25.57 99.86 59.62
Combination (0.90, 0.51) 99.95 37.27 99.92 25.38 99.86 59.52

Figure 24. Tradeoff between the accuracy improvement for new attacks and the rejection of known and similar

attacks.

Figure 25. Tradeoff between accuracy and rejection

rate, for each classifier in new attacks dataset.

Figure 26. Accuracy-rejection tradeoff, for the

combination classifier in the new attacks dataset,
using the evaluated rejection techniques.

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Ne
w

 A
tt

ac
ks

 A
cc

ur
ac

y
Ra

te

Average Known and Similar Rejection Rate
Combination DT NB LDA

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

Ac
cu

ra
cy

Rejection Rate

Combination DT NB LDA

No Rejection

Low Rejection

Average Rejection

High Rejection

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ac
cu

ra
cy

 R
at

e

Rejection Rate
Chow Our Approach CRT

101

The Average Rejection setting presented the best accuracy-reject tradeoff. The rejection
method was able to improve the classification accuracy by 13.98% for new attacks while
rejecting only 0.25% known attacks and 0.15% similar attacks, using the combination classifier

(Average Rejection, Table 16). The combination classifier produced, in average, the best results
when compared to the single classifiers at the same rejection rate interval. In summary, the
proposed rejection method allowed the detection of new attacks while maintaining the
classifier’s overall reliability.

6.1.2.2 Comparison with other rejection approaches

Finally, two commonly used rejection approaches that rely on class probabilities, the
Chow’s rule [37] and the Class-related Reject Threshold (CRT) [38], were compared to the
proposed method. Chow’s rule defines a single rejection threshold for all classes, whereas CRT
uses a different threshold for each class. For evaluation purposes, the combination classifier
was used because it presented the best results (Table 16). The three approaches – CRT, Chow
and the proposed approach – were evaluated using the Probing New Attacks dataset. The
rejection rates from 0% to 100% were evaluated. Figure 26 shows the accuracy-reject tradeoff
comparison for the evaluated approaches.

The proposed approach outperformed both existing techniques, CRT and Chow’s rule.
The traditional rejection approaches were not able to identify behavior changes and increased
the classification confusion; the assigned class probabilities were high even for misclassified
instances. In contrast, the proposed approach was able to operate with fewer misclassifications

in the presence of traffic behavior changes, reaching 100% accuracy while rejecting 60% of the
events.

6.1.3. Discussion

A machine learning classifier works by identifying similar behaviors and must have
representative instances from all of the considered classes [6]. This section made experiments
in order to evaluate the common assumptions in the literature regarding network-based intrusion
detection. As the evaluation tests have shown, the assumption that a classifier will be able to
detect new attacks only holds when their behavior is similar to the one used during the classifier
training. Thereby, a machine learning (batch) detection system becomes unreliable when the
traffic behavior changes.

In the light of this, the first evaluation aimed at providing generalization capable batch
learning models. The goal was to build a batch learner model that is able to generalize the
behavior from the training dataset (limited set) to a wider one, represented as the similar and

102

new scenarios (i.e. production environment). The proposed approach, by the means of a multi-
objective feature selection technique, have enabled the building of generalization capable
models, when compared to their no-selection or selection counterpart. However, although the

model is able to generalize the behavior from the training dataset, the detection of new

behaviors (e.g. !""!#$6(8) was still a problem to be addressed. This because the accuracy rate

of new behaviors did not meet the accuracy rate from the known or similar ones.
Thereby, the proposal has dealt with such issue by the means of rejecting potentially

non-reliable classifier decisions. Although, in the literature, such effect is often ignored [6, 7].
In which, in general, the network traffic is considered static, and the common machine learning
evaluation schemes are adopted without taking into account its dynamic characteristics, which
demands constant classifier updates over time.

To ensure the classification reliability, the use of simple lower and upper thresholds was
proposed, obtained from the feature distributions observed during the model training phase.
Due to the large number of used features, the contribution of distinct features according to their
feature group was analyzed. The proposed rejection method was able to guarantee the system
reliability with a low accuracy-reject tradeoff, improving the accuracy in 13.98% for new
attacks while rejecting only 0.25% of known behaviors using a classifier combination scheme.

6.2 Stream Learning

In order to deal with the constant network behavior changes over time, one must update
its detection scheme periodically. However, the model update is not easily feasible in high-
speed networks. In the light of this, to provide ongoing updated classification models, the
reliable intrusion detection model relies in the usage of stream learning detection schemes. The
proposed approach considers the usage of an unsupervised stream learning approach, as it

enables to provide ongoing updated classification models, but, on the other side, it is prone to
adversarial attacks.

6.2.1. Stream Learning – Resilience to Adversarial Attacks

This section evaluates the proposed approach for providing unsupervised stream
learning schemes resilient to adversarial attacks (Section 4.5). For the tests purposes the well-
known Micro-cluster-based Continuous Outlier Detection (MCOD) [87] algorithm has been
considered in the proposed method (Section 4.5). For comparison purposes two other
approaches were considered: Traditional Batch Learning (TBL) and Traditional Stream
Learning (TSL). For evaluation purposes the fine-grained intrusion dataset DoS known scenario
was considered (see Section 5.1).

103

6.2.1.1 Model Obtainment Process

For the proposed method (Section 4.5), two classes were considered: normal and attack.
Thereby, for each test, two outlier detectors were used, one for normal and one for attack. A

sliding window of 10,000 events was considered. A total of 50 events was established as
neighbor (k) parameter. Each class outlier detection has its own radius parameter. A series of
tests were conducted to establish the radius parameters; the choosing criteria was to minimize
the fitness value in Equation 10.

H0")/bb = /++*+%&'(+ +/u/#"0*)%&'(Equation (10)

 The /++*+%&'(and +/u/#"0*)%&'(were defined through the detection of the initial

10,000 normal events followed by the detection of the 10,000 further attack events from the
training dataset (Table 6, DoS (Known) scenario). The radius values for each class outlier
detector, normal and attack, was varied in a 0.01 interval from zero to 2.00.

 The k-Nearest Neighbor (kNN) classifier was used for the TBL. To allow comparison,
a total of 5,000 events for each class, normal and attack, are used for the classifier neighbor
computation. The 5,000 events of each class are defined by the k-means clustering algorithm
[89], using the training dataset (25% of randomly chosen events from Table 6). The kNN
neighbors set are not updated during the classification process. Finally, for the TSL, the MCOD
is used. However only the normal class is considered, as commonly performed in related works

[88], whilst the radius obtainment process was established only by the /++*+%&'(minimization.

6.2.1.2 Traditional Evaluation

Initially, the traditional evaluation process was considered for the evaluated approaches.
In the traditional evaluation, the adversarial settings (Section 2.2) are not considered.

 For the kNN classifier, the dataset was divided into: training, validation and testing,
containing, 25%, 25% and 50%, respectively of the whole dataset (Table 6, DoS (Known)
scenario). Due to the adaptive nature of the considered stream learning algorithm, the whole
dataset is used for the traditional evaluation. The events are replayed in the exact same order as
they appear in the original dataset. Table 17 shows the accuracy rates regarding each of the

evaluated approaches, where the method column refers to the used approach during the
detection stage. Each approach is tested with a different set of attacks used during the training
stage, shown in brackets in the method column.

Table 17. Proposed stream learning resilient to adversarial attacks and traditional evasion evaluation.
Method Accuracy (Reject)

104

(Attack used for training) Normal

Acc. (Rej.)

SYNFlood

Acc. (Rej.)

UDPFlood

Acc. (Rej.)

ICMPFlood

Acc. (Rej.)

Proposed Approach MCOD
(SYNFlood)

100.00%
(0.04)

100.00
(0.00)

-
(100.00)

-
(100.00)

Traditional kNN
(SYNFlood)

99.83
(N.A.)

100.00
(N.A.)

100.00
(N.A.)

0.01
(N.A.)

Proposed Approach MCOD
(UDPFlood)

100.00
(0.98)

-
(100.00)

100.00
(0.10)

-
(100.00)

Traditional kNN
(UDPFlood)

99.93
(N.A.)

49.97
(N.A.)

100.00
(N.A.)

0.01
(N.A.)

Proposed Approach MCOD
(ICMPFlood)

100.00
(0.97)

-
(100.00)

-
(100.00)

100.00
(0.12)

Traditional kNN
 (ICMPFlood)

100.00
(N.A.)

3.23
(N.A.)

100.00
(N.A.)

100.00
(N.A.)

Traditional Stream Learning MCOD 99.19
(N.A.)

0.81
(N.A.)

0.69
(N.A.)

0.22
(N.A.)

 One can notice that both the proposed approach and the traditional batch learning (kNN)
can detect the same set of attacks, with a significantly high accuracy rate. Regarding the
detection of attacks, both the proposed approach and the kNN presented a FN rate of zero
percent, when detecting the same set of attacks the system has been trained with. Considering
the FP rate, the kNN classifier achieved 0.17, 0.07 and zero percent when trained with
SYNFlood, UDPFlood and ICMPFlood attacks, respectively. The proposed approach achieved
a FP rate of 0.00 percent in all tested cases. However, the proposed approach rejected potentially
wrong classifications. In such a case, 0.04, 0.98 and 0.97 percent of normal events were rejected
for SYNFlood, UDPFlood and ICMPFlood attacks, respectively. It can be observed that the
proposed approach presents a similar detection accuracy when compared to the traditional batch
learning approach. However, the proposed approach rejects potentially wrong classifications,
which can be observed by comparing the kNN FP rate and the proposed approach rejection rate.

 Considering the traditional stream learning approach, it was possible to notice that when
events are replayed in the exact same order as they appear in the original dataset (Table 6, DoS
(Known) scenario), the method can detect only the initial attacks – when the sliding window is

almost fully populated with normal events. However, as the attacks occurrence increases, the
further attack events are classified as inlier (normal). Such a property occurs due to the adaptive
nature of stream learning algorithms, which allows that an event, initially classified as outlier
(attack), to be added in the sliding window, hence, allowing that an attack to become an inlier
over time, perverting the outlier detector behavior. In this manner, the traditional stream
learning algorithms, must consider such property – in the intrusion detection field, which is
dealt in this work by considering the immutable behavior (Section 4.5).

6.2.1.3 Adversarial Settings – Exploratory Attacks

Two types of attacks were evaluated in this experiment: the traditional evasion and the
window interval exploit.

105

a. Traditional Evasion

The traditional evasion refers to the detection of attacks with a different kind of behavior
to the attack that the system was trained with, however with the same or similar outcome. For

example, attacks aiming at generating a significant amount of network traffic at the targeted
victim, regardless of the considered protocol, e.g. UDP, TCP or ICMP floods. In this way, each
of the considered approaches were also tested with a different flood attack than the system was
trained with. The obtained accuracy is shown in Table 17.

 Regarding the traditional batch learning (kNN), the attacker could evade the system,
while generating an attack that produces the same or similar outcome. When the kNN was used,
the evasion possibility was evidenced for all evaluated attacks: SYNFlood, UDPFlood and
ICMPFlood. For instance, when the system was trained with SYNFlood attacks, the attacker is
still able to evade the detection system by generating ICMPFlood attacks. Moreover, the tested
approach accepted only the classifications outputs regarding the attacks the system was trained
with. Such a high rejection rate, and in this case reliability increase, due to the possible increase
in the error rate, occurred due to the lack of decision unanimity between the outlier detectors,
and thereby rejecting the assigned class.

b. Window Interval Exploit

The second evaluated exploratory attack is called as sliding window exploit. The sliding
window exploit attack aims at evaluating the traditional stream learning accuracy according to
the attack occurrence in a sliding window. The increase in the attack frequency in the sliding

window renders the stream learning algorithm unreliable over time, this because an attacker is
able to render an outlier as an inlier, as he increases the attack occurrence over time. Figure 27
(bottom chart) shows the error rate regarding each of the evaluated attacks, during the 8 to 9
million packets in the created dataset. The error rate is evaluated in a 1,000 packets interval.

Figure 27. Traditional stream learning approach behavior under network traffic intensive attacks, upper chart
shows the network packet classes occurrence while bottom chart shows the related error rate. Attack detection

error rate increases according to the occurrence of attacks in the sliding window.

106

It is possible to observe that during the normal events detection, the traditional stream

learning algorithm error rate remains similar to the rate obtained during the traditional
evaluation (Section 6.3.2, 0.81 percent). However, as the attacks begins to occur (around the
8.2 millionth packet), the attack detection error rate increases, due to the increasing in the attack
occurrence. In this manner, the attacker can exploit the traditional stream learning algorithm

sliding window, by increasing the attack occurrence (Figure 27, upper chart), causing the
attacks to be classified as inlier (normal) due to their frequency increase in the sliding window.

The sliding window exploit does not occur in the proposed approach due to the
immutable behavior (Section 4.5.1) and the class-specific single class detection mechanism
(Section 4.5). The results are shown in Table 17. The attacker is not able to add attacks in the
normal outlier detector sliding window due to the immutable behavior. Whilst, if the detection
mechanism wrongly classifies an event, and thereby add it in its sliding window, the event will
be rejected, because it will not be possible to establish an unanimity between the others outliers’
detectors, given the outliers decision have a non-null intersection.

6.2.1.4 Adversarial Settings – Causative Attacks

Finally, to evaluate the causative attacks resilience, a training dataset poisoning
approach was adopted. The traditional batch learning (TBL) and the proposed approach were
evaluated regarding the influence that attacks, initially injected into the training dataset as
normal events, have in the resulting accuracy. Thereby, the goal was to evaluate each of the
considered methods, regarding their resilience to dataset poisoning attacks. Figure 28 shows
the relation between the attack detection rate and the attacker control percentage over the
training dataset, while successfully injecting attacks labeled as normal activity.

107

Figure 28. Traditional Batch Learning (TML, Traditional Machine Learning) and Proposed Approach resilience
to causative attacks (training dataset poisoning attacks). The horizontal axis shows the rate of attacks injected
into the training dataset labeled as normal activities. The vertical axis shows the accuracy and rejection rate

impact while detecting such attacks, having the infected training dataset.

Regarding the TBL, it is possible to note that the three evaluated attacks can evade the

detection mechanism when injected in the training dataset as normal events. The accuracy rate
for SYNFlood attacks dropped for 50% when only 3% of normal events were SYNFlood
injected attacks. Whilst, for ICMPFlood and UDPFlood the attacker could evade the detection
system when 9% of attacks were injected. On the other side, the proposed approach could detect
when attacks were injected into the training dataset and reject further classifications. Such a
characteristic occurred due to class specific outlier detector, the attacks injected into the training
dataset as normal events incurred in a lack of outliers unanimity in the classification decision
process, thereby, the events were rejected.

6.2.2. Discussion

In order to enable production usage, intrusion detection schemes must be easy to update
(see Section 6.1). One approach that stand out amongst others to this end is unsupervised stream
learning techniques. By the means of a sliding window, unsupervised stream learning

techniques enables the ongoing identification of network anomalies without the assistance of

108

an expert. The premise is that an outlier (attack) presents a behavior significantly different from
the other events in the sliding window.

However, although being easy to update, such techniques are prone to adversarial

attacks. To this end, this section has evaluated the proposed approach to provide resiliency to
adversarial attacks at both training and testing time. The proposed approach outcomes both
traditional batch and stream learning techniques to provide resiliency to adversarial attacks.
However, as a tradeoff to provide resiliency, the proposed technique further increases the
system rejection rate.

6.3 Reliable Learning

This section presents the evaluation regarding the building of the reliable intrusion
detection model. First, batch and stream learning techniques are evaluated regarding their
accuracy and reliability using the MAWIFlow dataset (Section 5.2). Second, the proposed
conformal evaluator is evaluated in order to provide reliability even in the absence of model
updates. Finally, the proposed reliable intrusion detection model is evaluated regarding its
accuracy and reliability over time.

6.3.1. Accuracy Degradation of Machine Learning Classifiers

This section evaluates if ML-based approaches can maintain their reliability over time
while processing network traffic from real networks. For evaluation purposes both batch and
stream learning classifiers that are frequently employed in intrusion detection were considered.
For the Batch Learning the Random Forest (RF) [70] was considered, on the other side, the

OzaBoosting (OZA) [90] was used as Stream Learning classifier.

For each evaluated classifier, five different views (feature sets) were tested: Viegas [5],
Nigel [79], Orunada [78], Moore [80], and All, which comprises all prior feature sets. The
evaluation employs a single training step using the data of MAWIFlow from the first two months
of 2007, and then employs the built model for the remainder of the time (March 2007 to
December 2016), without updates, as often made in the literature.

The Weka API [82] version 3.8.0 was used for the implementation and evaluation of the
Batch Learning classifier, while the MOA API [91] version 2017.06 was used for the Stream
Learning classifier. The RF is composed of 50 decision trees, while the OZA is composed of
50 Hoeffding Trees [44] as their base-learner classifiers. The accuracy rates regarding true

109

negative (TN, normal events correctly classified) and true positive (TP, attack events correctly
classified) during the 10 years of MAWIFlow are shown in Figure 29 and 306.

Both considered ML approaches, Batch and Stream Learning, have shown significant

accuracy impact over time. Several observations can be made from Figures 29 and 30, regarding
traditional model building process:

• Accuracy: regardless of the considered classification approach, either Batch or Stream
Learning, an increase in the error rates can be seen only months after training. The
increase in the error rates can be evidenced up to four years after that of training time;

• Feature Sets: despite presenting different outcomes, models become unreliable over
time regardless of their used feature sets. However, there is a difference on how each
model performs, according to their view. For instance, models with both Viegas and
Moore views significantly increases their TP rates after 2012 (despite not reaching their
accuracy obtained at training time in 2007), while models with Nigel and Orunada views

does not significantly changes after such time;

• Attack Events Detection: the detection of attacks is more challenging than the detection
of normal events over time, similar findings to that obtained in the fine-grained dataset
evaluation (see Section 6.1). Such property can be noted due to the difference of TN
and TP rates during the 10 years of MAWIFlow;

(a) RF (Viegas View)

(b) RF (Nigel View)

6 The results obtained using other classifiers can be foun in Appendix 3

110

(c) RF (Orunada View)

(d) RF (Moore View)

(e) RF (All View)

Figure 29. Batch Learning (Random Forest) classifier monthly accuracy according to its used feature view
throughout 10 years of network traffic anomalies, only the first 60 days of 2007 are used for training. The system

is not updated throughout time. Similar results are found when other Batch Learning classifiers are evaluated.

(a) OzaBoosting (Viegas View)

(b) OzaBoosting (Nigel View)

111

(c) OzaBoosting (Orunada View)

(d) OzaBoosting (Moore View)

(e) OzaBoosting (All View)

Figure 30. Stream Learning (OzaBoosting) classifier monthly accuracy according to its used feature view
throughout 10 years of network traffic anomalies, only the first 60 days of 2007 are used for training. The system
is not updated throughout time. Similar results are found when other Stream Learning classifiers are evaluated.

• Normal Events Detection: the TN rates does not significantly change over time, even

increasing after 2012. However, it is important to note that this detection rate change
between 2011 and 2012 occurs due to the increase of MAWI transmission link, from
megabit to gigabit. Thus, significantly increasing the number and rate of normal events
(Figures 21.a and 21.b). One must note that despite increasing the TN rates after such
period, it does not mean that the classifiers are more reliable, but rather that there was a

significant change in the normal and attack event's behavior;

• Batch versus Stream Learning: both batch and stream learning algorithms have
presented similar outcomes. In this sense, both approaches become unreliable over time,
in the absence of model updates;

In summary, this experiment gives evidence that in production, ML-based IDSs must

be updated periodically, otherwise its outputs become unreliable over time. However, the

112

regular update of the classifier is a challenging task, because the network activity must be stored
for further analysis and needs to be labeled accordingly, often demanding time and expert
assistance.

6.3.2. The Problem with Classification Confidence in Intrusion Detection

This section evaluates how a traditional classification assessment approach performs
when applied to MAWIFlow. More specifically, a class related threshold (CRT) [38] technique
is evaluated, which uses a class-specific threshold to reject or not a decision according to the
classifier output confidence and the assigned class.

Similarly to the experiments conducted previously, the evaluated classifiers are trained
using the first two months of 2007 (January and February). However, the error-reject tradeoff
when CRT is applied considers only the remainder of 2007. The thresholds for both Normal
and Attack classes was varied from 0.00 to 1.00 in a 0.01 basis. The error-reject tradeoff during
2007 for all of the evaluated thresholds on MAWIFlow is shown in the Figures 31 and 32 for
the Batch and Stream Learning classifiers respectively.

It can be noted that the CRT approach fails at providing the desired level of reliability
regardless of the considered classifier and view. For instance, in the best case (Nigel View with
the Random Forest classifier), when a 50% rejection rate is considered, only 8% of error
reduction is reached. In this sense, the behavior change over time, as occurs in MAWIFlow,
renders traditional classification assessment approaches, as made by CRT, unable to provide
reliability in intrusion detection, regardless of the considered rejection rate.

(a) RF (Viegas View)

(b) RF (Nigel View)

(c) RF (Orunada View)

(d) RF (Moore View)

Figure 31. Batch Learning (Random Forest) classifier class related threshold (CRT) error-reject tradeoff for
2007, thresholds for both Normal and Attack thresholds were varied from 0.00 to 1.00 in a 0.01 basis, all
operation points are shown. Traditional classification assessment approach, using CRT, fails at providing

reliability when new network traffic behavior is occurring.

113

(a) OZA (Viegas View)

(b) OZA (Nigel View)

(c) OZA (Orunada View)

(d) OZA (Moore View)

Figure 32. Stream Learning (OzaBoosting) classifier class related threshold (CRT) error-reject tradeoff for 2007,
thresholds for both Normal and Attack thresholds were varied from 0.00 to 1.00 in a 0.01 basis, all operation

points are shown. Traditional classification assessment approach, using CRT, fails at providing reliability when
new network traffic behavior is occurring.

6.3.3. Discussion

The findings in the evaluation tests performed over MAWIFlow suggests that current
ML-based approaches for intrusion detection lacks reliability to face production environments,
regardless of the employed ML algorithm or their used feature set. Nonetheless, when a
traditional reliability assessment approach is employed, such as the CRT, the error-reject
tradeoff does not meet the desired level of reliability improvement.

Surprisingly, the evaluated approaches, which were found to be unreliable, due to the
lack of model updates and a proper reliability assessment approach, are commonly used in the
literature. Thereby, this indicates the reason that there have been many studies presenting
detection schemes with low error rates, but, on the other hand, a lack of usage of such systems
on production [6, 7].

Current approaches to provide classification reliability fail to reach a desired error-reject
tradeoff. Such issue is mainly caused due to the network behavior changes seen in production
environments, and the lack of model updates. The model update in production environment is
a challenging task, which often demands expert assistance. Thereby, it demands time, not only
to identify the network behavior changes, but also to rebuild the model after such change occurs,
incurring in a delay of days or even weeks to build an updated classification model. Thus, it is
not possible to always have an up-to-date model. In such context, to achieve reliable intrusion
detection, one must first address classification reliability, regardless of the current network
behavior, even in the absence of model updates.

To this end, to provide classification reliability, one must reject unreliable instances.
However, the rejected instances must be stored, to either be manually inspected (not usually
feasible) or further processed to identify their classes (often through an unsupervised detection
scheme). To this end, the storage of such instances may become unfeasible, in a high-speed

114

network context. Nonetheless, as the number of rejected instances may be high, process them
in real-time may not be feasible.

In such context, the model rebuilding in production becomes a challenging task when

this kind of network environments is considered, such as the one present in MAWIFlow. The
main difficulty is regarding model updates because it is a computational-expensive process,
which demands time and human assistance.

6.3.4. Conformal Evaluator

In order the provide classification reliability over time, the reliable intrusion detection
model relies in the use of a conformal evaluator (Section 4.6).

For evaluation purposes, the OzaBoosting stream learning algorithm was considered,
using the same parameters used previously.

For the computation of the Credibility and Confidence values in the conformal
evaluator, a Random Forest made of 100 decision trees were used, similarly to [24]. As a
conformity measure (see Figure 16), the ratio of trees which classified the instance as belonging
to a given class was used7. Thereby, Credibility and Confidence for a given classification can
be computed according to Equation 11 and 12.

m+/a0j0-0"k(I, #) =
∑ o

v,A76N7%<;'L(O,A)wA76N7%<;'L(OT,A)
g,A76N7%<;'L(O,A)xA76N7%<;'L(OT,A)

]
T^_

`
 Equation (11)

m*)H0a/)#/(I, #) = 1 − m+/a0j0-0"k zI, H(#) = o# = {*+,!-, |""!#$
# = |""!#$, {*+,!-}			 Equation (12)

 In which, x denotes the instance, c its assigned class, conformity a function which
computes the instance conformity for the given class c, and n the number of instances with class
c in a given test set. Finally, function f returns the opposite of the assigned class by the classifier,
which can be either normal or attack.

At training time, the conformal evaluator receives as input the training set, used for the
classifier training (OzaBoosting). Afterwards, the training set is split in two parts, in a k-fold
manner. The first split, is used to train the Random Forest classifier, while the second split is
used to compute the conformity values, used during the credibility and confidence values
computation (Equations 11 and 12).

7 Note that, by default, random forest classifiers compute the classification confidence as the product of individual
tree’s confidence values

115

For evaluation purposes, a single view was used during the tests, made of all views used
in Section 6.3.1. In addition, a complete model retraining was made every 6 months, best
interval established after a series of evaluation tests. Thereby, throughout the 10 years of

MAWIFlow dataset, both conformal evaluator and OzaBoosting classifiers were retrained 20
times. For each system retraining, OzaBoosting and conformal evaluator, two months of data
was used, both classifier and conformal evaluator are not updated after such period.

The proposed conformal evaluator was evaluated regarding its error-reject tradeoff
throughout the 10 years of MAWIFlow dataset, according to the model lifetime interval (6
months). For this purpose, conformal evaluator was compared with the class-related threshold
(CRT), as measured by the OzaBoosting confidence values. Similarly to CRT, the conformal

evaluator also used different class thresholds ("A=&::) for each class. Figure 33 shows the relation

between the average error rate and the average rejection rate for the OzaBoosting for each model
lifetime, in the first three years of MAWIFlow dataset (see Appendix 2, for the complete
evaluation of the conformal evaluator). The average error rate refers to the average of the FP
and FN rates, whilst the average rejection rate refers to the average rejection of both normal
and attack events.

The proposed conformal evaluator, significantly improved the error-reject tradeoff
when compared to the CRT approach. For all evaluated model lifetimes (20 time intervals in
the complete MAWIFlow dataset), the conformal evaluator enabled to reduce the error rate, with
a significantly lower rejection rate, when compared to the CRT approach.

(a) Jan. 2007 to Jun. 2007

(b) Jul. 2007 to Dec. 2007

(c) Jan. 2008 to Jun. 2008

116

(d) Jul. 2008 to Dec. 2008

(e) Jan. 2009 to Jun. 2009

(f) Jul. 2009 to Dec. 2009

Figure 33. Conformal evaluator error-reject tradeoff, compared to class-related threshold (CRT) as measured by
OzaBoosting classifier, in the first three years of the MAWIFlow dataset.

Figure 34. Conformal evaluator error-reject tradeoff, compared to class-related threshold (CRT) as measured by

OzaBoosting classifier, in Jan. 2007 to Jun. 2007 in MAWIFlow dataset.

It becomes possible to note that the proposed conformal evaluator enables to maintain
the system reliability, even in the absence of model updates. Figure 34 shows a comparison
regarding the model lifetime in Jan. 2007 to Jun. 2007 (Figure 33-a) with the CRT approach,
according to a desired error rate and the necessary rejection rate. For instance, the proposed
conformal evaluator was able to reach 20 percent of error rate while rejecting 42 percent of
instances, as opposed to 80 percent of rejection, to reach the same error rate level for the CRT
approach.

Finally, the proposed conformal evaluator enabled to measure the classification
reliability, even in the absence of model updates (for up to four months). Such property, is

desired to enable reliable usage of ML-based schemes for network-based intrusion detection.
In such context, due to the high network throughput, and the need to ongoing update the
intrusion detection mechanism, the conformal evaluator may aid the system administrator at
establishing the reliability of his system. Moreover, conformal evaluator may assess individual
classifications regarding their reliability, i.e. whether the classification should be accepted or

0

20

40

60

80

100

35
%

34
%

33
%

32
%

31
%

30
%

29
%

28
%

27
%

26
%

25
%

24
%

23
%

22
%

21
%

20
%

19
%

18
%

17
%

16
%

15
%

14
%

Re
je

ct
io

n
Ra

te
 (%

)

Desired Error Rate Proposed Conformal Confidence

117

not, but also, to establish the detection mechanism lifespan. For instance, a high level of
rejection rate may indicate that a system retraining is needed.

6.3.5. Adapting to Network Behavior Changes

Finally, the proposed reliable intrusion detection model was evaluated regarding its
capacity to adapt to network behavior changes over time. For evaluation purposes, the same
parameters used for the evaluation of the proposed conformal evaluator was considered (Section
6.3.4).

In addition, for the periodic label request process, the uncertainty sampling [92]
algorithm was used as a ranking method. However, the uncertainty value is computed by the

means of the proposed conformal evaluator, thus, using the i/-0!j0-0"kG(l%((, rather than the

classifier confidence values. Finally, the label propagation process is made labeling nearby
instances according to their Euclidean distance.

The first evaluation aim to evaluate the proposed reliable intrusion detection model
without updates, with conformal evaluator, and with a complete retraining every 6 months. For
the sake of simplicity, the results are shown using, in all cases, a daily 1% of label request upon
the rejected instances. For the label propagation, a 0.5 radius was used, which have yield the
best results, note that the used feature set comprises all features (158). During the evaluation

tests a single rejection threshold was used ("A=&::), as the rejection rate, and reliability

improvement, must be established according to the administrator needs. Thereby, a 0.7 "A=&::

value was used as a threshold for the conformal evaluator for both classes.

Figure 35 shows the accuracy and rejection rate throughout the 10 years of MAWIFlow
without performing updates. It is possible to note that, despite the high rejection rate, the
monthly accuracy rates, during 10 years, does not significantly change over time. In the worst
case, the accuracy for attack events (TP), drops to 89%, as opposed to 96% at training time, in
October 2008. Regarding the detection of normal events (TN), the worst accuracy was observed
in April 2007, yielding 92% of TN.

Regarding the rejection rate, it is possible to note, that the conformal evaluator rejects
less events, during the period used for training time. However, in general, the rejection rate
increases after such period. Thereby, serving as an indicator that the model must be either
retrained or updated. Moreover, in specific periods of time, the rejection rate does not
significantly increase, for instance from 2014 to first semester of 2015, thus, one could also use
the conformal evaluator rejection rate as an indicator of the model lifespan.

118

(a) Accuracy Rates

(b) Rejection Rate

Figure 35. Reliable intrusion detection model performance throughout the 10 years of MAWIFlow. System was
updated every 6 months, and not incrementally updated afterwards. For the sake of simplicity, a 0.7 "A=&:: for

both classes was used in all cases.

The second evaluation aimed to measure the impact that incremental model updates
yield to accuracy and rejection rates. To this end, several tests, were performed to measure the

impact that lowering the "A=&:: value from the conformal evaluator yield to the system accuracy,

when incremental model updates are performed. Figure 35 shows the accuracy and rejection

rate when incremental model updates are performed, using a "A=&::	value of 0.4 for both classes.

(a) Accuracy Rates

119

(b) Rejection Rate

Figure 36. Reliable intrusion detection model performance throughout the 10 years of MAWIFlow. System was
updated every 6 months, and incrementally updated with 1% of rejected instances every day. For the sake of

simplicity, a 0.4 "A=&:: for both classes was used in all cases.

It is possible to note a significant decrease in the system rejection rate, while presenting

similar detection rates. Thereby, the task of performing incremental model updates, 1% of

rejected instances in this evaluation, enables to significantly reduce the "A=&:: values, and, as a

consequence, decrease the rejection rate, without significant impact on accuracy. Figure 36
shows a comparison regarding the system rejection and accuracy rates when model is
incrementally updated and when it is not.

(a) Normal Accuracy Rates (b) Attack Accuracy Rates (c) Rejection Rates

Figure 37. Yearly accuracy and rejection rates comparison as obtained by the proposed reliable intrusion
detection model with and without incremental model updates.

 When the model is incrementally updated using only 1% of rejected instances, the
proposed approach is able to decrease the rejection rate up to a ratio of 1.17. However, as a
tradeoff, in average it incurs in the reduction of TN rates by 3.91% and TP rates by 1.75%. It is
important to note, that the accuracy and rejection rates, should be established according to the
administrator needs. For instance, if a higher instance label request was used, the accuracy rates
could be further increased, while keeping the rejection rates lower.

120

(a) Reliable intrusion detection model normal accuracy (TN) versus not updated OzaBoosting

(b) Reliable intrusion detection model attack accuracy (TP) versus not updated OzaBoosting

(c) Reliable intrusion detection model normal accuracy (TN) versus OzaBoosting updated every semester

(d) Reliable intrusion detection model attack accuracy (TP) versus OzaBoosting updated every semester

Figure 38. Monthly accuracy and rejection rates comparison as obtained by the proposed reliable intrusion
detection model with and without incremental model updates.

Figure 38 shows a comparison with the reliable intrusion detection model, with 1% of
instance label request (Figure 35), and the system accuracy rates without incremental model

nor the conformal evaluator.

121

6.3.6. Discussion

Although the proposal was able to significantly decrease the average rejection rate by
the means of incremental model updates (Figure 35), the rejection of events in high-speed

networks can be challenging. The main challenge refers to the number of events that are going
to be rejected, and then, how to process them later.
 First, for evaluation purposes, the tests performed previously have operated at a high

rejection rate point (0.7 "A=&:: values). For production usage, one will most likely operate at a

lower rejection rate operation point, thereby rejecting less instances. Nonetheless, it is important
to note that the proposal was able to significantly reject less instances when the incremental
model updates are performed. This indicates that, the average rejection rate will significantly
decrease over time if an expert provides a subset of event’s label over time. Finally, in
production usage, rejected instances will most likely be stored for a period, until its label is
publicly known.
 Second, the labeling task of such rejected instances can be achieved either by the help
of a human expert, normally by collecting more information about a new behavior, e.g., by
consulting automatically a public repository of vulnerabilities/threats such as the common
vulnerabilities and exposures (CVE), or by finding that a new type of service is being used in
the network.
 In this sense, the proposal rejection rate can be even further decreased. Nonetheless, the
labeling process can be made automatically, if a labeling delay can be tolerated for instance.
This approach can be used in production as the conformal evaluator enables to maintain the
system reliability despite the model being updated or not.
 The most important benefit of the proposal, compared to literature, is to enable the

detection that an event cannot be classified accurately and immediately alert the administrator,
even if the classifier makes a classification mistake with a high confidence, since the conformal
evaluator is used. The action the administrator will perform is under her/his discretion. One can
be noticed that even a traditional approach, which demands the model rebuilding, a method for
event labeling is still required, the main difference is that the output of rejection mechanism is
a selective way to do that, facilitating the expert work.

6.4 BigFlow - Dealing with High-speed Networks

Finally, the proposal was implemented in a distributed environment for the evaluation
of its throughput. To this end, a BigFlow prototype was implemented and deployed in a
distributed environment, as shown in Figure 39. The prototype takes as input network packet

122

headers from MAWI [16], and for each network packet, its header is exported to the message
middleware. The message middleware was deployed through the well-known open-source
Apache Kafka, version 0.10.2.0.

The prototype was implemented on top of Apache Flink stream processing framework
[30], version 1.3.0. The proposed windowing mechanisms (Tumbling Windows) were also
implemented using the native windowing mechanism provided by the Flink. A default value of
15 s for each Tumbling Window was used, as it provided the best results after some preliminary
evaluation. The customized keyed messaging was implemented using the KeySelector Flink
interface. The Apache Kafka messages were read through the Apache Flink connector API,
version 0.10_2.10.

Figure 39. BigFlow prototype architecture.

For the evaluation, only the reliable stream learning classification module was
implemented using the massive online analysis (MOA) library [91], release 16.04 (further
details over such classification mechanism can be found in [60]). At the startup, the
Classification and Incremental Classifiers Update modules loaded the same classification
model. The rejected instances were stored in memory by the Rejected Instances Retrieval

(Figure 39), which retrieved the rejected instances through Kafka. The PE parallelism level was
set according to the number of worker nodes used in the experimental evaluation.

For evaluating the scalability of the prototype, a 12-node cluster in a single rack was
set-up, connected through a 10 GbE interface. Each node has a 4-core CPU with 8 GB of
memory. In all considered experiments, the BigFlow prototype (Figure 39) was set-up with the
Ensemble classifier in the following way: 1 node ran Apache Kafka, 1 node ran the Flink Job
Manager and from 1 to 10 nodes ran Flink Task Managers. For throughput evaluation purposes,

123

only the feature set from Viegas [5] view was considered. For the evaluation purposes, the
entire month of January in 2016, was used, and a weeklong delay for the incremental model
updates was considered.

Figure 40 shows the throughput and performance breakdown. The proposed approach
achieved 10.72 Gbps with 10 worker nodes. Regarding its scalability, the proposed approach
increased the throughput by 1.02 Gbps for each additional worker node. The Feature Extraction
module required the most significant part of the overall processing, representing 61% of the
processing time on average, while Classification and Update together required only 23% on
average.

Figure 40. BigFlow throughput performance according to the number of worker nodes.

Figure 41 shows the impact of the model’s update on the system’s throughput. In such
a case, the system’s throughput performance was divided into Classification Without Updates
(BigFlow without Rejected Instances Retrieval and Incremental Classifier Update modules) and
Classification With Updates (BigFlow). On average, the model’s updates incurred a throughput
loss of little more than 1%. Considering the throughput for the cluster of 10 worker nodes, the
model’s updates incurred a throughput reduction of only 0.25% (0.03 Gbps).

Figure 41. BigFlow prototype architecture.

Finally, Table 18 shows the weekly training time and required storage for several
evaluated classifiers, considering they would be updated every week. BigFlow required (on

124

average) only 4.2% of the storage required by other approaches. Regarding the weekly training
time, BigFlow required at most 4.2% out of the total time when compared with the complete
retraining of Decision Tree, Random Forest, Gradient Boosting, Ensemble, and Hoeffding tree

classifiers.

Table 18. Weekly computational and storage resources used by each approach (excluding initial setup).

Approach
Demanded Storage

(Gb)
Training Time

(hours)
 Avg. Min. Max. Avg. Min. Max.

Decision Tree

36.41 21.09 43.36

3.91 2.27 4.79

Random Forest 4.40 2.55 5.28

Gradient Boosting 182.7 104.5 213.0

Ensemble 189.0 108.3 224.0

Hoeffding Tree 2.14 1.22 2.58

BigFlow 1.53 0.28 5.03 0.09 0.03 0.25

6.5 Final Considerations

In this chapter a series of evaluations were presented concerning the methods
implemented in this work. The experiments regarding traditional model building methods
revealed that the assumptions commonly used in the literature does not hold when ML
techniques are considered. The experiments presented in Section 6.1 contemplates the methods
regarding the building of reliable batch learning models. In these experiments, the lack of
generalization and reliability in face of new network traffic behavior of current approaches in
the literature was evidenced. The results regarding the building of generalization capable
models showed that it was possible to build batch learning models able to generalize the
behavior from the training dataset. In addition, the method for ensuring reliability in face of

unknown network traffic behavior, allowed to ensure classification reliability even in the
presence of unknown network traffic. The experiments presented in Section 6.2 contemplate
the evaluation of a resilient to adversarial attacks stream learning approach. The proposed
model was able to provide resiliency to both causative and exploratory attacks. In Section 6.3,
the proposed reliable intrusion detection model was evaluated regarding its classification
reliability over time. The findings in the evaluation tests, showed that the proposed approach
was able to provide reliable classification of new network traffic, even in the absence of model
updates. In addition, when only 1% of rejected instances are used for incremental model update,
the proposed approach significantly decreases the rejection rate. Finally, Section 6.4 shows the
prototype and evaluation of BigFlow. The proposed approach for near real-time network traffic
classification was scalable. In the next chapter the final conclusions alongside with future works
are presented.

125

126

Chapter 7

Conclusion

Network-based intrusion detection have been extensively studied in the literature over the last
years. In this sense, a popular approach often consists of detecting intrusion attempts by the
means of machine learning algorithms. However, current approaches for network traffic
classifications are not able to meet the desired throughput neither deal with the evolving
behavior of network traffic in a reliable manner.

This work has addressed each of the challenges of building reliable intrusion detection
schemes by the means of machine learning techniques for production usage. To this end, the
approach proposed in this work, namely reliable intrusion detection model, relies in the use of
both batch and stream learning algorithms coped together, in which, each learner overcomes a
specific challenge.

A novel approach for building generalization capable batch learning models enabled to
build models able to generalize the behavior from the training dataset. The proposed approach

tackles the challenge of obtaining realistic intrusion datasets for model building process, by
generalizing the behavior from a limited training set to a wider one, according to each of the
production environment characteristics.

In addition, to overcome the challenge of providing reliable classifications in face of
new network traffic behavior, a new lightweight rejection approach has been proposed. The
proposed approach ensures that the classified instance presents a similar behavior to that of the
training dataset. Thereby, tackling the challenge of providing reliability of classifications in
face of unknown traffic behavior.

127

Regarding the classification of new network traffic over time. First, a new unsupervised
stream learning model was proposed to provide resiliency to adversarial attacks. The proposed
approach was able to provide resiliency to both causative and exploratory attacks targeted at

the model. Thereby, enable the system to reliably adapt to changes when unsupervised stream
learning algorithms are used for the classification of network traffic.

Afterwards, an approach for providing classification reliability even in the absence of
model updates was presented. The approach, by the means of a conformal evaluator, enable to
ensure the classification reliability for up to 4 months since the last model update. Through the
proposed conformal evaluator, the reliable intrusion detection model was able to provide
reliable classifications throughout 10 years of network traffic. In addition, the proposed
approach was able to significantly decrease the system rejection rate, when incremental model
updates are performed, with only 1% of rejected instances.

Finally, the challenge of performing network-based intrusion detection at high-speed
networks was addressed. The proposed approach named BigFlow and the experimental
evaluation showed that BigFlow is feasible: the prototype could reach up to 10.72 Gbps
throughput in a 40-core cluster.
6.1 Future Works

This work presents the following future works:

• Through the built datasets, evaluate common approaches in the literature for

network-based intrusion detection, and establish a set of guidelines towards
reliability;

• Evaluate common active learning approaches for stream learning in the MAWIFlow;

• Design a new method coped with conformal evaluator to assess the model lifespan,

in order to establish whether a model should be rebuilt or not;

• Design a method to use a multiple classifier system in order to aid at providing

reliability in the absence of model updates;

• Design a method for building models aiming to increase their lifespan in
MAWIFlow;

6.2 Publications

In this section a list of papers either published or under review are listed according to
the challenge addressed by the reliable intrusion detection model.

128

6.2.1. Generalization Capable Models

Conference: VIEGAS, E. K.; SANTIN, A. O. ; ABREU, V. ; OLIVEIRA, LUIZ S. Enabling

Anmaly-based Intrusion Detection Through Model Generalization. Accepted at: IEEE Symposium on
Computers and Communications 2018 (ISCC). (Brazilian qualis A2)
Journal: VIEGAS, E. K. ; SANTIN, A. O. ; OLIVEIRA, L. E. S. Toward a Reliable Anomaly-
Based Intrusion Detection in Real-World Environments. Elsevier Computer Networks, vol. 127, no. 1, pp.
200-216, 2017 (Brazilian qualis A1)
Journal: E. VIEGAS, A. SANTIN, A. FRANÇA, R. JASINSKI, V. PEDRONI, AND L.
OLIVEIRA, “Towards an Energy-Efficient Anomaly-Based Intrusion Detection Engine for Embedded
Systems,” IEEE Transactions on Computers, vol. 66, no. 1, pp. 1–14, 2017. (Brazilian qualis A1)

6.2.2. Reliability in Batch Learning Classification

Journal: E. VIEGAS, A. SANTIN, L. OLIVEIRA , A. FRANÇA, R. JASINSKI, and V.
PEDRONI, “A reliable and Energy-Efficient Classifier Combination Scheme for Intrusion Detection in
Embedded Systems”. Accepted at: Computers & Security (Brazilian qualis A2)

6.2.3. Resiliency to Adversarial Attacks

Conference: VIEGAS, E. K. ; SANTIN, A. O. ; ABREU, V. ; OLIVEIRA, L. E. S. Stream Learning
and Anomaly-based Intrusion Detection in the Adversarial Settings. In: IEEE Symposium on Computers and
Communications (ISCC), 2017, Creete, Greece. In Proceddings of IEEE ISCC. Los alamitos: IEEE, 2017. p.
1-6. (Brazilian qualis A2)
Conference: VIEGAS, E. K.; SANTIN, A. O. ; ABREU, V. ; OLIVEIRA, LUIZ S. . Detecção de
Intrusão Através de Aprendizagem de Fluxo no Ambiente do Adversário. In: Simpósio Brasileiro de
Segurança da Informação e de Sistemas Computacionais (SBSeg), 2017, 2017. p. 1-14. (Brazilian qualis B3)
Conference: VIEGAS, E.; SANTIN, A.; NEVES, N.; BESSANI, A.; ABREU, V.; A Resilient
Stream Learning Intrusion Detection Mechanism for Real-time Analysis of Network Traffic. In. proc. of IEEE
GLOBECOM, Singapore, Singapore. Proceeding of Globecom 2017. Los Alamitos: IEEE, 2017. (Brazilian
qualis A1)

6.2.4. High-speed Networks

Journal: VIEGAS, E.; SANTIN, A.; NEVES, N.; BESSANI, A.; “BigFlow: Real-time and
Reliable Anomaly-based Intrusion Detection for High-speed Networks.” Major Review at an Special Issue
in: Future Generation Computer Systems, Elsevier (FGCS) (Brazilian qualis A2)

6.2.5. Conformal Evaluator and Reliable Intrusion Detection Model

Journal: E. VIEGAS, A. SANTIN, BESSANI, A., N. NEVES, “Reliable Intrusion Detection:
Dealing with 10 years of Network Traffic Anomalies”. Will be submitted to: IEEE Transactions on
Information Forensics and Security. (Brazilian qualis A1)

129

6.2.6. All

Patent: E. VIEGAS, A. SANTIN, “Mecanismo de Detecção de Intrusão Confiável Baseada em
Machine Learning em Redes de Alta Velocidade”, Patente de Invenção, Patente BR 10 2018 011016 0, Data
de depósito 30/05/2018,

130

References

[1] CISCO. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016 – 2021, 2017
[2] P802.3cd – Standard for Ethernet Amendment [Online]. Available:

http://ieeexplore.ieee.org/document/8115318/
[3] DDoS attack that disrupted internet was largest of its kind in history, experts say. [Online]. Available:

https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
[4] Symantec. The continued rise of DDoS attacks. [Online]. Available:

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/the-continued-rise-
of-ddos-attacks.pdf

[5] E. Viegas, A. O. Santin, A. Franca, R. Jasinski, V. A. Pedroni, and L. S. Oliveira, “Towards an energy-efficient
anomaly-based intrusion detection engine for embedded systems,” IEEE Trans. Comput., vol. 66, no. 1, 2017.

[6] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine Learning for Network Intrusion
Detection,” 2010 IEEE Symp. Secur. Priv., vol. 0, no. May, pp. 305–316, 2010.

[7] C. Gates and C. Taylor, “Challenging the Anomaly Detection Paradigm: A Provocative Discussion,” Proc.

2006 Work. New Secur. Paradig., pp. 21–29, 2007.
[8] R. Fontugne, P. Abry, K. Fukuda, D. Veitch, K. Cho, P. Borgnat, and H. Wendt, “Scaling in Internet Traffic:

A 14 Year and 3 Day Longitudinal Study, with Multiscale Analyses and Random Projections,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2152–2165, 2017.

[9] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho, “Seven years and one day: Sketching the evolution
of internet traffic,” Proc. - IEEE INFOCOM, pp. 711–719, 2009.,

[10] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible evaluation of anomaly-based
intrusion-detection methods,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 40, no. 5, pp. 516–524,
2010.

[11] Snort. Snort Open-source Intrusion Prevention System. [Online]. Available: https://www.snort.org/
[12] Y. Y. Lee and Y. Y. Lee, “Toward scalable internet traffic measurement and analysis with Hadoop,”

SIGCOMM Comput. Commun. Rev., vol. 43, no. 1, pp. 5–13, 2012.
[13] R. Fontugne, J. Mazel, and K. Fukuda, “Hashdoop: A MapReduce framework for network anomaly

detection.,” INFOCOM Work., pp. 494–499, 2014.
[14] HDFS. HDFS, Hadoop Distributed Filesystem [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
[15] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combining Diverse Anomaly Detectors

for Automated Anomaly Labeling and Performance Benchmarking,” Proc. 6th Int. Conf. - Co-NEXT ’10, pp.
1–12, 2010.

[16] MAWI. MAWI Working Group Traffic Archive. [Online]. Available: http://mawi.wide.ad.jp/mawi/
[17] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to retire the KDD collection,” IEEE

131

Wirel. Commun. Netw. Conf. WCNC, pp. 4487–4492, 2013.
[18] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phonotactic reconstruction of encrypted

VoIP conversations: Hookt on fon-iks,” Proc. - IEEE Symp. Secur. Priv., pp. 3–18, 2011.
[19] K. Kendall, “A Database of Computer Attacks for the Evaluation of Intrusion Detection Systems”. Thesis

Submitted to the Department of Electrical Engineering and Computer Science, 1999.
[20] S. Brugger and J. Chow, “An assessment of the DARPA IDS Evaluation Dataset using Snort,” UCDAVIS

Dep. Comput. Sci., pp. 1–19, 2007.
[21] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion

detection system evaluations as performed by Lincoln Laboratory,” ACM Trans. Inf. Syst. Secur., vol. 3, no.
4, pp. 262–294, 2000.

[22] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable anomaly-based intrusion detection in
real-world environments,” Comput. Networks, vol. 127, 2017.

[23] J. D. Tygar, “Adversarial Machine Learning”, IEEE Internet Comput, vol. 15, no. 5, pp. 4-6, 2011
[24] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro, “Transcend:

Detecting Concept Drift in Malware Classification Models,” 26th USENIX Secur. Symp. (USENIX Secur. 17),
pp. 625–642, 2017.

[25] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and Big Heterogeneous Data : a
Survey,” Journal of Big Data, pp. 1-41, 2015.

[26] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mob. Networks Appl., vol. 19, no. 2, pp. 171–209,
2014.

[27] Hadoop. Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[28] MapReduce. MapReduce Programming Model. [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
[29] Storm. Apache Storm. [Online]. Available: http://storm.apache.org/
[30] Flink. Apache Flink. [Online]. Available: https://flink.apache.org/
[31] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine learning: A review,”

Expert Syst. Appl., vol. 36, no. 10, pp. 11994–12000, 2009.
[32] J. Gama, “A survey on learning from data streams: current and future trends,” Prog. Artif. Intell., vol. 1,

no. 1, pp. 45–55, 2012.
[33] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowl. Inf. Syst., vol. 35,

no. 2, pp. 249–283, 2013.
[34] Apache MLib. Apache MLib. [Online]. Available: https://spark.apache.org/mllib/
[35] StreamDM. StreamDM [Online]. Available: http://huawei-noah.github.io/streamDM/
[36] A. Shiravi, H. Shiravi, M. Tavallaee, and A. a. Ghorbani, “Toward developing a systematic approach to

generate benchmark datasets for intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374, 2012.
[37] C. K. Chow, “On Optimum Recognition Error and Reject Tradeoff,” IEEE Trans. Inf. Theory, vol. 16,

no. 1, pp. 41–46, 1970.
[38] Giorgio Fumera, Fabio Roli, and Giorgio Giacinto, “Multiple reject thresholds for improving

classification reliability”. Advances in Pattern Recognition: Joint IAPR International Workshops, SSPR 2000
and SPR 2000. Alicante, Spain, pp. 863.

132

[39] E. Viegas, A. Santin, V. Abreu, and L. S. Oliveira, “Stream learning and anomaly-based intrusion
detection in the adversarial settings,” in Proceedings - IEEE Symposium on Computers and Communications,
2017.

[40] A. Bar, A. Finamore, P. Casas, L. Golab, and M. Mellia, “Large-scale network traffic monitoring with
DBStream, a system for rolling big data analysis,” 2014 IEEE Int. Conf. Big Data (Big Data), pp. 165–170,
2014.

[41] V. K. C. Bumgardner and V. W. Marek, “Scalable hybrid stream and hadoop network analysis system,”
Proc. 5th ACM/SPEC Int. Conf. Perform. Eng. - ICPE ’14, pp. 219–224, 2014.

[42] Apache Metron. Apache Metron Real-time Big Data Security. [Online]. Available:
http://metron.apache.org/

[43] E. Viegas, A. Santin, N. Neves, A. Bessani, and V. Abreu, “A Resilient Stream Learning Intrusion
Detection Mechanism for Real-time Analysis of Network Traffic”. In. proc. of IEEE GLOBECOM,
Singapore, Singapore. Proceeding of Globecom 2017. Los Alamitos: IEEE, 2017

[44] G. Hulten, L. Spencer, and P. Domingos, “Mining Time-changing Data Streams,” in Proc. 7th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 97–106, 2001.

[45] D. E. Denning, “An intrusion-detection model,” Proc. - IEEE Symp. Secur. Priv., no. 2, pp. 118–131,
2012.

[46] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler : A Fast Filter for the Large-Scale Detection
of Malicious Web Pages Categories and Subject Descriptors,” Proc. Int. World Wide Web Conf., pp. 197–
206, 2011.

[47] A. I. Abubakar, H. Chiroma, S. A. Muaz, and L. B. Ila, “A review of the advances in cyber security
benchmark datasets for evaluating data-driven based intrusion detection systems,” Procedia Comput. Sci., vol.
62, no. Scse, pp. 221–227, 2015.

[48] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,” IEEE/ACM Trans.
Netw., vol. 3, no. 3, pp. 226–244, 1995.

[49] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Automatic recognition of handwritten
numerical strings: A Recognition and Verification strategy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 11, pp. 1438–1454, 2002.

[50] G. D. C. Cavalcanti, L. S. Oliveira, T. J. M. Moura, and G. V. Carvalho, “Combining diversity measures
for ensemble pruning,” Pattern Recognit. Lett., vol. 74, pp. 38–45, 2016.

[51] B. Nelson, M. Barreno, F.J. Chi, A.D. Joseph, B.I.P. Rubinstein, U. Saini, C. Sutton, J.D. Tygar, K. Xia,
"Exploiting Machine Learning to Subvert Your Spam Filter", Proc. First Workshop Large-Scale Exploits and
Emergent Threats, pp. 1-9, 2008.

[52] L. Huang, A.D. Joseph, B. Nelson, B. Rubinstein, and J.D. Tygar, "Adversarial Machine Learning,"
Proc. Fourth ACM Workshop Artificial Intelligence and Security, pp. 43-57, 2011.

[53] N. Srndic and P. Laskov, “Practical evasion of a learning-based classifier: A case study,” Proc. - IEEE
Symp. Secur. Priv., pp. 197–211, 2014.

[54] G. Wang, S. Barbara, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs . Machine : Practical Adversarial
Detection of Malicious Crowdsourcing Workers,” 23rd USENIX Secur. Symp., pp. 239–254, 2014.

133

[55] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S. Lau, S. Rao, N. Taft and J. D. Tygar,
“ANTIDOTE : Understanding and Defending against,” SIGCOMM, no. November, pp. 1–14, 2009.

[56] B. Hanczar and E. R. Dougherty, “Classification with reject option in gene expression data,”
Bioinformatics, vol. 24, no. 17, pp. 1889–1895, 2008.

[57] D. P. P. Mesquita, L. S. Rocha, J. P. P. Gomes, and A. R. Rocha Neto, “Classification with reject option
for software defect prediction,” Appl. Soft Comput. J., vol. 49, pp. 1085–1093, 2016.

[58] J. R. Navarro-Cerdan, J. Arlandis, R. Llobet, and J. C. Perez-Cortes, “Batch-adaptive rejection threshold
estimation with application to OCR post-processing,” Expert Syst. Appl., vol. 42, no. 21, pp. 8111–8122, 2015.

[59] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Automatic recognition of handwritten
numerical strings: A Recognition and Verification strategy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 11, pp. 1438–1454, 2002.

[60] E. Viegas, A. Santin, N. Neves, and A. Bessani. “BigFlow: Real-time and Reliable Anomaly-based
Intrusion Detection for High-speed Networks”. Under Major Review at: Future Generation Computer System

[61] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R. Greenstadt, A. D. Joseph,
and J. D. Tygar, “Approaches to adversarial drift,” Proc. 2013 ACM Work. Artif. Intell. Secur. - AISec ’13,
pp. 99–110, 2013.

[62] F. Maggi, W. Robertson, C. Kruegel, and G. Vigna, “Protecting a moving target: Addressing web
application concept drift,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 5758 LNCS, pp. 21–40, 2009.

[63] M. Gudadhe, Prakash Prasad, and Kapil Wankhade. “A new data mining based network intrusion
detection model,” Int. Conf. on Computer & Com. Technology (ICCCT), pp. 0–4, 2010.

[64] D. P. Gaikwad and R. C. Thool, “Intrusion detection system using Bagging with Partial Decision Tree
base classifier,” Procedia Comput. Sci., vol. 49, no. 1, pp. 92–98, 2015.

[65] N. F. Haq, A. R. Onik, and F. M. Shah, “An ensemble framework of anomaly detection using hybridized
feature selection approach (HFSA),” IntelliSys 2015 - Proc. 2015 SAI Intell. Syst. Conf., pp. 989–995, 2015.

[66] J. Jabez and B. Muthukumar, “Intrusion Detection System (IDS): Anomaly Detection Using Outlier
Detection Approach,” Procedia Comput. Sci., vol. 48, no. Iccc, pp. 338–346, 2015.

[67] I. Syarif, A. Prugel-Bennett, and G. Wills, “Data mining approaches for network intrusion detection: from
dimensionality reduction to misuse and anomaly detection,” J. Inf. Technol. Rev., vol. 3, no. 2, pp. 70–83,
2012.

[68] S. Y. Ji, B. K. Jeong, S. Choi, and D. H. Jeong, “A multi-level intrusion detection method for abnormal
network behaviors,” J. Netw. Comput. Appl., vol. 62, pp. 9–17, 2016.

[69] C. K. Olivo, A. O. Santin, and L. S. Oliveira, “Obtaining the threat model for e-mail phishing,” Appl.
Soft Comput. J., vol. 13, no. 12, pp. 4841–4848, 2013.

[70] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[71] D. Meyer, “Support Vector Machines: interface to libsvm in e1071,” Engineering, vol. 1, no. December,

pp. 1–8, 2009.
[72] J. Yang, Y. Qiao, X. Zhang, H. He, F. Liu, and G. Cheng, “Characterizing user behavior in mobile

internet,” IEEE Trans. Emerg. Top. Comput., vol. 3, no. 1, pp. 95–106, 2015.
[73] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne, “Evaluating Computer Intrusion

134

Detection Systems: A Survey of Common Practices,” ACM Comput. Surv., vol. 48, no. 1, pp. 1–41, 2015.
[74] D. Darmon, J. Sylvester, M. Girvan, and W. Rand, “Understanding the Predictive Power of

Computational Mechanics and Echo State Networks in Social Media,” Human, vol. 2, no. 1, pp. 13–24, 2013.
[75] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020 White Paper,

2017, Document ID:1454457600805266
[76] HoneyD. [Online] Available: http://www.honeyd.org/
[77] T. Heimann, P. Mountney, M. John, and R. Ionasec, “Learning without labeling: Domain adaptation for

ultrasound transducer localization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 8151 LNCS, no. PART 3, pp. 49–56, 2013.

[78] J. Dromard, G. Roudiere, and P. Owezarski, “Online and Scalable Unsupervised Network Anomaly
Detection Method,” IEEE Trans. Netw. Serv. Manag., vol. 14, no. 1, pp. 34–47, 2017.

[79] N. Williams, S. Zander, and G. Armitage, “A preliminary performance comparison of five machine
learning algorithms for practical IP traffic flow classification,” ACM SIGCOMM Comput. Commun. Rev., vol.
36, no. 5, p. 5, 2006.

[80] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-based classification,” Queen Mary

Westf. Coll. Dep. Comput. Sci., no. August, 2005.
[81] Weka. Weka Data Mining Software. [Online] Available: https://www.cs.waikato.ac.nz/ml/weka/
[82] U. M. Fayyad and K. B. Irani, “Multi-Interval Discretization of Continuos-Valued Attributes for

Classification Learning,” Proceedings of the International Joint Conference on Uncertainty in AI. pp. 1022–
1027, 1993.

[83] M. S. Hoque, M. A. Mukit, M. A. N. Bikas, and M. Sazzadul Hoque, “An Implementation of Intrusion
Detection System Using Genetic Algorithm,” Int. J. Netw. Secur. Its Appl., vol. 4, no. 2, pp. 109–120, 2012.

[84] D. S. Kim, H. Nguyen, and J. S. Park, “Genetic Algorithm to Improve SVM Based Network Intrusion
Detection System,” 19th Int. Conf. Adv. Inf. Netw. Appl. Vol. 1 (AINA Pap., vol. 2, pp. 155–158, 2005.

[85] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[86] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K.-R. Muller, “Fisher discriminant analysis with
kernels,” Ieee, pp. 41–48, 1999.

[87] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and Y. Manolopoulos, “Continuous
Monitoring of Distance-Based Outliers over Data Streams,” 2011

[88] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering algorithm,” Electical Eng. Comput.
Sci., 1997.

[89] R. Pelossof, M. Jones, I. Vovsha, and C. Rudin, “Online coordinate boosting,” 2009 IEEE 12th Int. Conf.
Comput. Vis. Work. ICCV Work. 2009, pp. 1354–1361, 2009.

[90] MOA. MOA Machine Learning for Streams. [Online] Available: https://moa.cms.waikato.ac.nz/
[91] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowl. Inf. Syst., vol. 35,

no. 2, pp. 249–283, 2013.

135

136

Appendix 1

This appendix provides a description regarding the feature sets used throughout this document.
Two different feature sets were extracted according to the considered intrusion dataset.

The fine-grained intrusion dataset (see Section 5.1) extracts the features from [5], which
are listed below.

 Table 19. Fine-grained intrusion dataset feature set.

Description
1 Header-based, ip type
2 Header-based, ip len
3 Header-based, ip id
4 Header-based, ip offset
5 Header-based, ip reserved flag
6 Header-based, ip don’t fragment flag
7 Header-based, ip more fragments flag
8 Header-based, ip protocol
9 Header-based, ip checksum
10 Header-based, udp source port
11 Header-based, udp destination port
12 Header-based, udp length
14 Header-based, udp checksum
15 Header-based, icmp type
16 Header-based, icmp code
17 Header-based, icmp checksum
18 Header-based, tcp source port
19 Header-based, tcp destination port
20 Header-based, tcp sequence number
21 Header-based, tcp acknowledgment number
22 Header-based, tcp fin flag
23 Header-based, tcp syn flag
24 Header-based, tcp reset flag
25 Header-based, tcp push flag
26 Header-based, tcp ack flag
27 Header-based, tcp urg flag
28 Header-based, frame length
29 Host-based, number of packets from source to destination
30 Host-based, number of packets from destination to source
31 Host-based, number of bytes sent from source to destination
32 Host-based, number of bytes sent from destination to source
33 Host-based, number of packets with push flag set sent from source to destination
34 Host-based, number of packets with push flag set sent from destination to source
35 Host-based, number of packets with syn and fin flag set sent from source to destination
36 Host-based, number of packets with syn and fin flag set sent from destination to source

137

37 Host-based, number of packets with fin flag set sent from source to destination
38 Host-based, number of packets with fin flag set sent from destination to source
39 Host-based, number of packets with ack flag set sent from source to destination
40 Host-based, number of packets with ack flag set sent from destination to source
41 Host-based, number of packets with rst flag set sent from source to destination
42 Host-based, number of packets with rst flag set sent from destination to source
43 Host-based, if is the first packet seen in flow-based communication
44 Service-based, number of packets from source to destination
45 Service-based, number of packets from destination to source
46 Service-based, number of bytes from source to destination
47 Service-based, number of bytes from destination to source
48 Service-based, it is the first packet seen in flow-based communication
49 Connection status
50 Class {normal, attack}

The extraction of the feature set for the fine-grained intrusion dataset occurred for each

network packet. For each network packet read from the Network Interface Card (NIC), a set of
predetermined features was extracted and sent to a classifier engine for classification. All
feature values were obtained by analyzing the packet header values. The header-based category
of features was extracted directly from the network packet header. The host-based and service-

based categories of features were extracted by analyzing the communication history between
two hosts or services.

A 2 seconds time window was used to compute the time-based type of features. The
feature extractor engine was implemented using the C++ language following the PCAP API
using the libpcap (www.tcpdump.org) library; the implementation details are further explained
in [5]. From each network packet in the fine-grained intrusion databases, the set of features are
extracted, and the feature vector is written in a separate dataset. Each feature vector entry was
automatically labeled as normal or attack, on the basis of the source IP address. It is important
to note that features that were scenario-specific were not considered, e.g., TTL and IP address
source or destination.
 In contrast, MAWIFlow had its features extracted by the means of BigFlow feature
extraction module, in which four different feature sets were extracted: Orunada [78], Nigel [79],
Moore [80], and Viegas [5]. Those feature sets refer to the evaluation process of the conformal
evaluator (see method in Section 4.6) and the evaluation of the adapting to network changes
over time (see method in Section 4.7).

Bellow each table provides a description of each feature for each feature set.
Table 20. Orunada feature set.

Description
1 Percentage of packets seen between host/host communication with TCP SYN flag set.

138

2 Percentage of packets seen between host/host communication with TCP ACK flag set.
3 Percentage of packets seen between host/host communication with TCP RST flag set.
4 Percentage of packets seen between host/host communication with TCP FIN flag set.
5 Percentage of packets seen between host/host communication with TCP CWR flag set.
6 Percentage of packets seen between host/host communication with TCP URG flag set.
7 Average packet size seen between host/host communication
8 Average TTL values seen between host/host communication
9 Percentage of packets seen between host/host communication with ICMP redirect flag set.
10 Percentage of packets seen between host/host communication with ICMP time exceeded flag set.
11 Percentage of packets seen between host/host communication with ICMP unreachable flag set.
12 Percentage of packets seen between host/host communication with ICMP other types flag set.
14 Number of unique hosts sending network packets to host
15 Number of unique services sending network packets to host

Table 21. Nigel feature set.

Description
1 Minimum network packet length during time interval sent
2 Mean network packet length during time interval sent
3 Maximum network packet length during time interval sent
4 Standard deviation of network packet length during time interval sent
5 Minimum network packet length during time interval received
6 Mean network packet length during time interval received
7 Maximum network packet length during time interval received
8 Standard deviation of network packet length during time interval received
9 Minimum network packet arrival sent time during time interval
11 Mean network packet arrival sent time during time interval
12 Maximum network packet arrival sent time during time interval
13 Standard deviation of network packet arrival sent time during time interval
14 Minimum network packet arrival received time during time interval
15 Mean network packet arrival received time during time interval
16 Maximum network packet arrival received time during time interval
17 Standard deviation of network packet arrival received time during time interval
18 Protocol (UDP, TCP or ICMP)
19 Number of network packets sent
20 Number of bytes received
21 Number of network packets received

Table 22. Viegas feature set.

Description
1 Number of Packets
2 Number of Bytes
3 Average Packet Size
4 Percentage of Packets (PSH Flag)
5 Percentage of Packets (SYN and FIN Flags)
6 Percentage of Packets (FIN Flag)
7 Percentage of Packets (SYN Flag)
8 Percentage of Packets (ACK Flag)
9 Percentage of Packets (RST Flag)
10 Percentage of Packets (ICMP Redirect Flag)
12 Percentage of Packets (ICMP Redirect Flag)

139

13 Percentage of Packets (ICMP Time Exceeded Flag)
14 Percentage of Packets (ICMP Unreachable Flag)
15 Percentage of Packets (ICMP Other Types Flag)
16 Average Packet Size, Throughput in Bytes
17 Protocol
18 Number of Packets – Both directions
19 Number of Bytes – Both directions
20 Average Packet Size – Both directions
21 Percentage of Packets (PSH Flag) – Both directions
22 Percentage of Packets (SYN and FIN Flags) – Both directions
23 Percentage of Packets (FIN Flag) – Both directions
24 Percentage of Packets (SYN Flag) – Both directions
25 Percentage of Packets (ACK Flag) – Both directions
26 Percentage of Packets (RST Flag) – Both directions
27 Percentage of Packets (ICMP Redirect Flag) – Both directions
28 Percentage of Packets (ICMP Redirect Flag) – Both directions
29 Percentage of Packets (ICMP Time Exceeded Flag) – Both directions
30 Percentage of Packets (ICMP Unreachable Flag) – Both directions
31 Percentage of Packets (ICMP Other Types Flag) – Both directions
32 Throughput in Bytes – Source to Destination
33 Number of Packets – Source to Destination
34 Number of Bytes – Source to Destination
35 Average Packet Size – Source to Destination
36 Percentage of Packets (PSH Flag) – Source to Destination
37 Percentage of Packets (SYN and FIN Flags) – Source to Destination
38 Percentage of Packets (FIN Flag) – Source to Destination
39 Percentage of Packets (SYN Flag) – Source to Destination
40 Percentage of Packets (ACK Flag) – Source to Destination
41 Percentage of Packets (RST Flag) – Source to Destination
42 Percentage of Packets (ICMP Redirect Flag) – Source to Destination
43 Percentage of Packets (ICMP Redirect Flag) – Source to Destination
44 Percentage of Packets (ICMP Time Exceeded Flag) – Source to Destination
45 Percentage of Packets (ICMP Unreachable Flag) – Source to Destination
46 Percentage of Packets (ICMP Other Types Flag) – Source to Destination
47 Throughput in Bytes – Destination to Source
48 Number of Packets – Destination to Source
49 Number of Bytes – Destination to Source
50 Average Packet Size – Destination to Source
51 Percentage of Packets (PSH Flag) – Destination to Source
52 Percentage of Packets (SYN and FIN Flags) – Destination to Source
53 Percentage of Packets (FIN Flag) – Destination to Source
54 Percentage of Packets (SYN Flag) – Destination to Source
55 Percentage of Packets (ACK Flag) – Destination to Source
56 Percentage of Packets (RST Flag) – Destination to Source
57 Percentage of Packets (ICMP Redirect Flag) – Destination to Source
58 Percentage of Packets (ICMP Redirect Flag) – Destination to Source
59 Percentage of Packets (ICMP Time Exceeded Flag) – Destination to Source
60 Percentage of Packets (ICMP Unreachable Flag) – Destination to Source
61 Percentage of Packets (ICMP Other Types Flag) – Destination to Source
62 Throughput in Bytes – Destination to Source

140

Table 23. Moore feature set.

Description
1 Minimum inter arrival time
2 First quartile of inter arrival time
3 Median inter arrival time
4 Average inter arrival time
5 Third quartile of inter arrival time
6 Maximum inter arrival time
7 Variance of inter arrival time
8 Minimum inter arrival time from source to destination
9 First quartile of inter arrival time from source to destination
10 Median inter arrival time from source to destination
11 Average inter arrival time from source to destination
12 Third quartile of inter arrival time from source to destination
13 Maximum inter arrival time from source to destination
14 Variance of inter arrival time from source to destination
15 Minimum inter arrival time from destination to source
16 First quartile of inter arrival time from destination to source
17 Median inter arrival time from destination to source
18 Average inter arrival time from destination to source
19 Third quartile of inter arrival time from destination to source
20 Maximum inter arrival time from destination to source
21 Variance of inter arrival time from destination to source
22 Minimum packet length
23 First quartile of packet length
24 Median packet length
25 Average packet length
26 Third quartile of packet length
27 Maximum packet length
28 Variance of packet length
29 Minimum packet length from source to destination
30 First quartile of packet length from source to destination
31 Median packet length from source to destination
32 Average packet length from source to destination
33 Third quartile of packet length from source to destination
34 Maximum packet length from source to destination
35 Variance of packet length from source to destination
36
3

Minimum packet length from destination to source
37 First quartile of packet length from destination to source
38 Median packet length from destination to source
39 Average packet length from destination to source
40 Third quartile of packet length from destination to source
41 Maximum packet length from destination to source
42 Variance of packet length from destination to source
43 Total network packets from source to destination
44 Total network packets from destination to source
45 Total network packets with TCP ACK flag set from source to destination
46 Total network packets with TCP ACK flag set from destination to source
47 Total network packets with only TCP ACK flag set from source to destination
48 Total network packets with only TCP ACK flag set from destination to source

141

49 Total network packets with TCP SYN flag set from source to destination
50 Total network packets with TCP SYN flag set from destination to source
51 Total network packets with TCP FIN flag set from source to destination
52 Total network packets with TCP FIN flag set from destination to source
53 Total network packets with TCP PSH flag set from source to destination
54 Total network packets with TCP PSH flag set from destination to source
55 Total network packets with TCP URG flag set from source to destination
56 Total network packets with TCP URG flag set from destination to source
57 Total ICMP packets from source to destination
58 Total ICMP packets from destination to source
59 Throughput from source to destination
60 Throughput from destination to source

In addition to each extracted feature set, each network flow also contains features

regarding their labeling process. Those features are shown in Table 24. It is important to note
that such features are removed before the classification process, their only purposes are either
for debugging or flow labeling.

Table 24. Features regarding the labeling process.

Description
1 MAWILAB, attack taxonomy
2 MAWILAB, anomaly distance
3 MAWILAB, number of detectors that detect the anomaly
4 MAWILAB, label {normal, anomalous, suspicious, notice}
5 Class {normal, attack}

142

Appendix 2

This appendix provides the complete conformal evaluator results compared to CRT throughout
10 years of MAWIFlow dataset.

(a) Jan. 2007 to Jun. 2007

(b) Jul. 2007 to Dec. 2007

(c) Jan. 2008 to Jun. 2008

(d) Jul. 2008 to Dec. 2008

(e) Jan. 2009 to Jun. 2009

(f) Jul. 2009 to Dec. 2009

(g) Jan. 2010 to Jun. 2010

(h) Jul. 2010 to Dec. 2010

(i) Jan. 2011 to Jun. 2011

(j) Jul. 2011 to Dec. 2011

(k) Jan. 2012 to Jun. 2012

(l) Jul. 2012 to Dec. 2012

143

(m) Jan. 2013 to Jun. 2013

(n) Jul. 2013 to Dec. 2013

(o) Jan. 2014 to Jun. 2014

(p) Jul. 2014 to Dec. 2014

(q) Jan. 2015 to Jun. 2015

(r) Jul. 2015 to Dec. 2015

(s) Jan. 2016 to Jun. 2016

(t) Jul. 2016 to Dec. 2016

Figure 42. Conformal evaluator performance throughout 10 years of MAWIFlow dataset.

144

Appendix 3

This appendix shows the performance of several classifiers in MAWIFlow dataset according to
their used feature set. Only for this appendix, classifiers were trained using the data from Jan.
2007, and not updated afterwards.

(a) Decision Tree (b) Naive Bayes

(c) AdaBoost (d) Bagging

(e) Extra Trees (f) Random Forest

(g) Hoeffding Tree (Weka API)

Figure 43. Performance of several classifiers using MOORE feature set throughout 10 years of MAWIFlow
dataset.

145

(a) Decision Tree

(b) Naive Bayes

(c) AdaBoost

(d) Bagging

(e) Extra Trees

(f) Random Forest

(g) Hoeffding Tree (Weka API)

Figure 44. Performance of several classifiers using NIGEL feature set throughout 10 years of MAWIFlow
dataset.

146

(a) Decision Tree

(b) Naive Bayes

(c) AdaBoost

(d) Bagging

(e) Extra Trees

(f) Random Forest

(g) Hoeffding Tree (Weka API)

Figure 45. Performance of several classifiers using VIEGAS feature set throughout 10 years of MAWIFlow
dataset.

147

(a) Decision Tree

(b) Naive Bayes

(c) AdaBoost

(d) Bagging

(e) Extra Trees

(f) Random Forest

(g) Hoeffding Tree (Weka API)

Figure 46. Performance of several classifiers using ORUNADA feature set throughout 10 years of MAWIFlow
dataset.

