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Abstract 

Existing machine learning solutions for network-based intrusion detection cannot maintain their 

reliability over time in production environments. In such context, detection schemes must be 

able to detect intrusion attempts at a high network bandwidth, besides having to deal with the 

lack of realistic training/testing data, changes in network traffic behavior, unreliable 

classifications over time and adversarial settings. In the light of this, this work introduces a new 

intrusion detection model, namely reliable intrusion detection, whose main characteristic is the 

usage of both batch and stream learning algorithms coupled together. The model exploits the 

characteristics of each type of learner in a cascade pipeline to overcome the challenges of high-

speed networks. Batch learning schemes are designed in such a way, that they provide reliable 

classifications over time and are able to generalize the behavior from the training dataset in the 

model. On the other hand, is built stream learning schemes resilient to adversarial attacks to 

hinder attacks over the designed system. Finally, batch and stream learning algorithm are 

coupled together to provide classification reliability over time, while also reliably adapting to 

network traffic behavior changes. Experiments over two built datasets showed the model 

feasibility. In the first dataset, namely fine-grained intrusion dataset, each of the common 

assumptions adopted in the literature are evaluated and overcome by the reliable intrusion 

detection model. In the second, namely MAWIFlow, was built an intrusion dataset of over 30 

TB of data that spans for over 10 years of real production environment networks. Experiments 

in MAWIFlow also showed the model feasibility regarding its scalability, and reliability over 

time, even in the absence of model updates.  

Keywords: Machine Learning; Stream Learning; Intrusion Detection; Classification 

Reliability; Intrusion Databases. 
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Chapter 1  

 

Introduction 

According to a CISCO network forecast report, the worldwide network traffic in 2016 was 96 

EB/month, and, it is expected to reach 278 EB/month in 2021 [1]. Current network devices can 

reach a bandwidth of 100 Gbps, and there are plans to support 400 Gbps in a near future [2]. 

Moreover, current network-based cyber-attacks are also significantly increasing their 

capabilities. For instance, in October 2016, a DDoS attack with 100 thousand malicious 

endpoints surpassed a bandwidth of 1.2 Tbps at a Domain Name Server (DNS) infrastructure. 

This sort of attack could potentially bring down several sites in US and Europe, including 

Twitter, Netflix and CNN [3]. Nonetheless, reports of attacks reaching more than 100 Gbps of 

traffic are becoming surprisingly common nowadays [3, 4]. Thereby, operators need access to 

solutions to enable the real-time measurement and analysis of such malicious content over those 

massive network attacks. 

 To this end, over the last years, several works have applied machine learning (ML) 

techniques, mostly through pattern recognition schemes, for the detection of network-based 

attacks. In a pattern recognition scheme, the classification of intrusion attempts is, in general, 

achieved through a two-phase process: training and testing [5]. In the training phase, the 

classifier learns the environment behavior, as present in the training dataset, producing a model. 

Afterwards, in the testing phase, the model is evaluated regarding its accuracy using a test 

dataset, which is expected to represent the production environment behavior [6]. 

 However, on the other side, the network traffic behavior changes in a daily-basis, either 

due to the discovery of new attacks [6], or due to the offering of new services [7]. In such 

context, due to the evolving behavior of such environment [8], and the high network throughput 
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[1], the identification of network attacks becomes a challenging task, in which a designed 

detection mechanism can become out-of-date before they are even deployed in real-world 

(production) environments [9].  

1.1 Motivation and Hypothesis 
Network-based intrusion detection through ML schemes have been the subject of 

several studies over the last years [6]. In such context, in their majority, they have aimed at 

improving the detection rate in a single dataset – more specifically KDD99 [10]. However, few 

research has been made regarding the applicability of their work [7]. Thereby, despite the 

promising reported results, such as high detection rates, there still a lack of adoption of such 

systems in production environments [6]. Thus, it remains mostly as a research topic [6], being 

the signature-based approach (event scan for well-known attack patterns) currently the most 

used technique [11]. 

The network-based intrusion detection field presents several challenges to ML 

techniques when compared to other fields [10]. Thereby, when a new ML-based approach is 

under development it must undergo through a more comprehensive evaluation. However, in 

general, the majority of works employs a traditional evaluation approach [7], in which the 

accuracy rates measured in a single test dataset are assumed to be evidenced in production [6], 

despite the challenges that networked environments present. In such a case, a ML-based scheme 

must be able to detect intrusion attempts at a high network bandwidth, besides having to deal 

with the lack of realistic training/testing data, not generalization capable models, changes in 

network behavior, unreliable classifications over time, and adversarial attack setting. 
Network throughput has significantly increased in the past years. However, current 

approaches for network traffic measurement and analysis in the Big Data context often rely on 

Hadoop-based clusters [12, 13]. In general, current solutions write network packets as raw data 

(PCAP) to a distributed filesystem (e.g. HDFS [14]) and, process them later on. Although such 

approaches offer significant improvements in scalability [12], they lack applicability in real-

world environments. Nonetheless, current methods for the discovery of new network attacks in 

such context are mostly achieved through unsupervised machine learning techniques, which 

typically also require the storage of the network traffic over a period for the identification of 

unknown anomalies [15]. However, due to the massive amount of network data generation, its 

storage for further analysis is not feasible in most scenarios [16]. In such settings, the network 

traffic must be analyzed at line speed, allowing intrusion detection to be performed without 

delays.  



18 
 

 
 

On the other side, when one is training a ML-based intrusion detection technique, the 

lack of realistic training and testing data becomes a challenging task. To this end, several 

approaches have been proposed for the obtainment of properly built intrusion datasets [10]. 

Typically, such proposals are either performed in a controlled environment [17] or by the means 

of the production environment monitoring [15]. In the prior, the generated dataset often lacks 

the production environment highly variable nature [10]. While in the former, it lacks a ground 

truth (prior correct event labels), or its sharing is not possible because of privacy concerns [18]. 

Thus, despite several efforts, currently, one of the most used datasets was built in 1998 [19], 

with several known flaws [20, 21].  

Thereby, due to the lack of realistic training/testing data, the building and evaluation of 

ML-based techniques regarding their generalization capacity is often not made [7]. This 

because, intrusion detection schemes must be able to generalize the behavior from the training 

environment to other scenarios, due to the highly variable nature of production environments, 

as it is not possible to train a classifier with all possible normal or attack behaviors, thus 

demanding that the detection scheme is generalizable-capable. However, current approaches in 

the literature, in general, assumes that the accuracy obtained in the testing dataset, will be 

observed during production usage [6]. Although, even an updated classifier, will have to deal 

with changes in both normal and attacker behaviors. For instance, a normal behavior might 

change due to the offering of new services or new contents. On the other hand, the attacker 

behavior, might also change due to the discovery of new attacks, or by even changing how an 

attack behaves [8]. Thereby, assemble a training and testing dataset that present all such 

properties is not feasible [6, 7]. 

However, regardless of whether the used training/testing dataset was properly built, and 

the detection scheme is generalizable or not, the network traffic also changes over time, either 

due to new types of malicious actions or due to alterations in the transmitted content (e.g. due 

to the offering of new services), rendering the obtained model outdated [9]. Consequently, the 

accuracy that was achieved during training might not be observed in practice, even if the dataset 

was properly obtained. In such cases, the intrusion detection engine will no longer be trusted 

by the operator, as alarms are not generated as expected [22]. However, the identification of 

changes in network behavior is a challenging task, which often requires human intervention to 

reevaluate whether the current model error rate is still acceptable or not. Thus, to achieve 

classification reliability, the model must be periodically tested and updated (e.g. every month). 

This action requires human intervention not only to rebuild the model, which takes time and 

storage, but also to keep the production model operational, until a new model is available, with 
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acceptable error rates. 

On the other side, despite the need for model updates, intrusion detection schemes 

operate in the settings of an adversary. In such context, a sophisticated attacker may attempt to 

evade the intrusion detection mechanism, either by perverting the intrusion detection 

mechanism properties or by injecting attacks during the training stage [23]. 

Provide classification reliability in the presence of new network behavior and in the 

settings of an adversary is a challenging task. Current approaches often rely in the classification 

confidence given by the classifier [24]. In such cases, events with low confidence are rejected 

rather than being potentially misclassified. However, as such probabilities are computed 

according to the behavior present in the training dataset, when an event with an unknown 

behavior is classified its probabilities can be biased [24]. For instance, a new attack that does 

not behave similarly to known attacks may bias the classifier confidence values, wrongly 

increasing other classes confidence. 

Such challenging scenario for ML-based intrusion detection is hardly noted in the 

literature [6, 7]. In contrast, the majority of works aim at improving the system detection rates, 

rather than actually questioning if their detection mechanism could actually be used in 

production, and how reliable their generated alarms will be over time. In the light of this, this 

work hypothesis is that: batch and stream learning schemes coped together are able to provide 
a more reliable network-based intrusion detection in real-world production environments 
over time.  

This hypothesis depends on the building of a reliable generalization capable batch 

learning detection scheme. In other words, it depends on a batch learning scheme, able to 

generalize the production environment behavior, regarding the classification of similar and new 

event’s behavior, in a period of time, due to the difficulties involved in creating representative 

training intrusion datasets. Nonetheless, when new/unseen events are classified after such 

period, classifications must still be reliable, in other words, potentially misclassifications must 

be rejected rather than wrongly classified. On the other side, in order to reliably adapt to 

network behavior changes over time, the hypothesis also depends on the building of a stream 

learning detection scheme resilient to adversarial attacks. Thereby, the proposed stream 

learning detection scheme must be able to adapt to the network changes over time, while also 

not being susceptible to updates with mislabeled instances caused by an adversary. Finally, this 

work hypothesizes that a generalizable capable batch learning scheme, able to make reliable 

classifications over time, coped with a stream learning scheme, in a cascade manner, that is, 

resilient to adversarial attacks, and able to adapt to changes in network behavior over time, will 
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be reliable in production use over time.  

1.2 Goals 
The main goal of this work is to propose, develop and evaluate both batch and stream 

learning detection schemes, with the aim to provide reliable network-based intrusion detection 

in real-world production environments over time.  

To reach the main goal, the following specific objectives must be met: 

I. To conceive a set of methods that addresses the main problems reported in the 

literature when building datasets for IDS evaluation, while also enabling the fine-

grained (production environment characteristics) and overtime IDS evaluation.  

II. To conceive a set of methods that evaluates batch learning and stream learning 

intrusion detection mechanisms considering the network properties from production 

environments; 

III. To conceive a method to generate generalization capable batch learning intrusion 

detection schemes; 

IV. To conceive a method to generate reliable batch learning intrusion detection 

schemes, in the presence of unknown behaviors; 

V. To conceive a method to generate stream learning intrusion detection schemes 

resilient to adversarial attacks; 

VI. To conceive a method to assess the classification reliability even in the presence of 

new network behaviors; 

VII. To conceive a method to enable reliable ML-based intrusion detection over time in 

the presence of new network behaviors; 

VIII. To conceive a method to enable reliable ML-based intrusion detection in high-speed 

networks; 

Therefore, objectives I and II aim at providing properly built intrusion detection datasets 

in order to evaluate the proposal. Objectives III and IV is related to provide a method for the 

proper evaluation of ML-based intrusion detection techniques. Objectives V and VI concerns 

the building of reliable and generalization capable batch learning intrusion detection schemes. 

Objective VII aim at providing stream learning intrusion detection schemes resilient to 

adversarial attacks. Objectives VIII and IX addresses the design of a detection scheme to 

provide a reliable intrusion detection scheme over time. Finally, objective X aim at enabling 

the proposed reliable intrusion detection for high-speed networks. 
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1.3 Contributions 
This work provides means to enable the use of ML-based intrusion detection techniques 

in production environments in a reliable manner. In summary, this work presents the following 

main contributions: 

I. An approach named BigFlow, which performs reliable and near real-time network 

traffic measurement (feature extraction) and classification in the Big Data context; 

II. A tool-based method that produces real and valid network traffic in a controlled and 

reproducible environment for creating intrusion datasets. The datasets built through 

such method aim at evaluating both batch and stream learning intrusion detection 

schemes; 

III. An intrusion dataset with real and labeled network traffic, based on MALAWI 

database, built by analyzing over 10 years of real network traces, composed by more 

than 30 TB of data and 30 billion network flows. The built dataset aims at evaluating 

stream learning intrusion detection schemes; 

IV. A new and fine-grained evaluation method specific for batch learning intrusion 

detection schemes; 

V. A new multi-objective feature selection method aiming to improve the 

generalization capacity of batch learning schemes, by considering the network 

properties in intrusion detection; 

VI. A new rejection method that provides classification reliability even when facing 

unknown network traffic behavior; 

VII. A new approach to reliably deal with evolving network data streams to perform 

anomaly-based intrusion detection, in the presence of an adversary; 

VIII. A new classification reliability assessment method through a conformal evaluator 

module. It aims at providing a reliability degree while facing new network traffic 

behavior even in the absence of model updates. The conformal evaluator assesses 

the classifier confidence according to the behavior seen in the training dataset; 

IX. A new reliable intrusion detection mechanism made of both batch and stream 

learning algorithms, providing classification reliability and ongoing updated 

classification models with minimal human assistance. 

1.4  Document Structure 
The remainder of this document is organized as follows. Chapter 2 describes the 

challenges that network-based intrusion detection faces towards reliable use in production 
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environments. In summary, big data processing techniques for network flow measurement and 

analysis, and the challenges that ML-based intrusion detection techniques faces are presented. 

Chapter 3 presents how related works addresses such challenges. Chapter 4 describes the model 

proposed in this work, namely reliable intrusion detection model. Chapter 5 tackles the 

challenge of building realistic intrusion datasets for the evaluation of network-based intrusion 

detection schemes. Chapter 6 reports the experiments performed over the reliable intrusion 

detection model using the built datasets. Finally, Chapter 7 concludes this work and presents 

future works.  
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Chapter 2  

 

The Challenges of Network-based Intrusion Detection 

 

This chapter objective is to present an overview regarding the techniques used throughout this 

document. More specifically, Section 2.1 presents big data processing techniques that are 

commonly applied for network measurement and analysis in high-speed networks. In contrast, 

Section 2.2 further describes intrusion detection techniques, while Section 2.3 addresses 

machine learning techniques applied to such context, and the challenges it faces towards reliable 

production usage. 

2.1 Big data processing 
The Big data concept is often referred in the literature when the amount of data cannot 

be processed by the means of traditional processing techniques [25]. To this end, its 

characteristics can often be summarized in four ‘V’s, being them [26]: (i) Volume: due to the 

increasing quantity of data; (ii) Variety: due to the large number of data sources and their types, 

which also includes non-structure data such as: text, video, audio and web, besides the 

traditional structured data; (iii) Velocity: due to the speed that such data is generated and the 

processing demanded by it; and (iv) Value: due to the cost involved for the collection, storage, 

and processing of such data.   

 For instance, consider an intrusion detection system operating in a gigabit network. In 

such context, a significant data volume is generated constantly, according to how the network 

entities communicate over time, moreover its velocity is strictly related to the network speed 

link. On the other side, the variety of such data may include: sources (hosts), network protocols, 

network attacks, services, amongst others. Finally, the value of such data is strictly related to 
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the environment it is operating, because if the intrusion detector fails at detecting network 

attacks, in a short period of time, the monitored environment may suffer the attack 

consequences. 

In such context, to deal with these characteristics, a proper distributed processing system 

must be developed. To this end, in general, Big data processing techniques often falls in two 

categories: batch or stream. The next subsections briefly describe each in detail. 

2.1.1. Batch processing 
The main characteristic of batch processing techniques is the need to store previously 

the data for its processing [26]. An example of a framework that enables this kind of data 

processing is the Apache Hadoop [27]. Hadoop project have two main characteristics: its (i) 

Distributed Filesystem (Hadoop Distributed Filesystem – HDFS [14]), which is responsible to 

perform the data fragmentation, spreading and replication between the cluster nodes, and the 

(i) MapReduce programming model [28], which enables the processing division between 

several nodes, each with smaller sizes.  

 Although batch processing techniques are feasible for big data processing, they are not 

adequate for situations that demands real-time processing, e.g. real-time detection of network 

attacks. Such factor is mainly caused due to the need of data storage. Thereby, to enable real-

time processing, stream processing techniques must be used.   

2.1.2. Stream processing 
In contrast to batch processing, stream processing techniques must be able to process 

large volumes of data in near real-time [26]. To this end, stream processing platforms (e.g. 

Apache Storm [29], and Apache Flink [30]) receive data from registered sources, and compute 

over such data through a set of Processing Elements (PE). Each PE is responsible to perform a 

specific operation on the arriving data and to send the result to another PE, until the computation 

ends. In general, the messages transmitted through the PEs can be forwarded according to three 

approaches: shuffle, keyed, or broadcast. In the shuffle approach, the PE messages are sent to 

another PE in a uniformly distributed manner. On the other side, the keyed approach groups 

messages according to a key (e.g., IP address) and sends them to the PE associated with it. 

Finally, the broadcast approach transmits the messages to every PE of the same type. The near 

real-time processing in such platforms is achieved by keeping the computation in each PE type 

as small as possible, and by distributing the message load uniformly through several PE in 

parallel.   
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2.2 Intrusion Detection 
An intrusion detection system (IDS) is a tool that is aimed to identify and classify 

malicious activities in an environment [31]. Figure 1 shows a typical IDS architecture composed 

of four modules. (i) Data Acquisition: this module is responsible for the collection of events 

from the monitored environment for further analysis, e.g., read network packets from a network 

interface card. (ii) Preprocessing: this module performs the processing needed before the 

detection engine is run on the collected events, e.g., extract a set of features. (iii) Detection: this 

module, based on the preprocessed event, decides whether an event is normal or an intrusion 

attempt. (iv) Alert: finally, if an event is considered as an intrusion attempt, this module 

generates an alert. 

 
Figure 1. Typical intrusion detection architecture. 

Several approaches for the classification of intrusion attempts have appeared in the 

literature. Currently, the most frequently used taxonomy, which is used in DARPA’s intrusion 

datasets, was defined by Kendall [19]. According to Kendall, intrusions can be divided in four 

classes as follows. (i) Probing attacks that gather information about a target; (ii) Denial-of-

Service (DoS) attacks, that is, any attempt to prevent legitimate users from accessing a service 

or a system; (iii) remote to local (R2L) attacks that attempt to gain access to a legitimate user’s 

account on a system; and (iv) user to root (U2R) attacks, which occur when the attacker already 

has achieved access to a legitimate user’s account and then attempts to obtain administrator 

privileges. 

An IDS can be either network-based (NIDS) or host-based (HIDS), which determines 

the attack classes it is able to detect. An NIDS performs the detection at network level, detecting 

attacks such as probing (e.g. portscan) and a network-based DoS attacks (e.g., synflood). To 

this end, to perform the event classification, an NIDS accesses the data only at network level, 

e.g., network packets or network flow. In contrast, an HIDS detects application-based attacks, 

such as R2L (e.g., buffer overflow) and U2R (e.g., privilege escalation). Thereby, it needs to 

have access over the application data running on the protected systems, thus requiring access 

to logs and other data about the system in order to perform its detection. 

 In general, two approaches stand out in the literature for the detection of intrusions: 

signature and anomaly. The signature-based approach consists in searching well-known attack 

patterns in the received events. To this end, each event must be matched against the signature 
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database; if a known attack pattern is found, the event is classified as an intrusion attempt. 

Thereby, when a new vulnerability is discovered and reported, a related signature must be 

created. The main drawback of the signature-based approach is its inability to detect new 

attacks. 

 In contrast, the anomaly-based approach is aimed to detect new (unknown) attacks by 

modeling the activities that are considered normal within a system. While the identification of 

attacks is reached by identifying behaviors that deviate from the known normal modeled 

behavior pattern [6]. The event behavior is defined by a set of features extracted during the 

preprocessing stage. In studies in the literature, anomaly-based intrusion detection is in general 

treated as a pattern-recognition problem [7], by the means of machine learning techniques. 

2.2.1. Machine Learning (ML) 
Machine learning aim to assign a class (e.g., normal or attack/intrusion) to an event [31]. 

In the process, the events are captured from the environment and stored in a database. From 

each event in the database, a set of features is extracted and stored in a dataset. A machine 

learning algorithm is then used to infer a pattern from the dataset and to create a model that 

represents such behavior. However, events that present a behavior similar to that of other classes 

may be wrongly classified, e.g., an attack that is similar to a legitimate request. 

Several approaches can be used to perform the classification task by the means of ML 

techniques. However, in general, an intrusion model is created using a training dataset. While 

for the estimation of the classifier accuracy rates, a validation dataset is used. The validation 

dataset is utilized for making possible improvements to the intrusion model. Finally, the final 

version of the intrusion model is evaluated through a test dataset. For the process to be reliable, 

each used dataset must contain different events. During the tests, the false-positive (FP) and 

false-negative (FN) rates are estimated. An FP occurs when a legitimate activity is classified as 

an intrusion, whereas an FN occurs when an intrusion is classified as a legitimate activity. 

For the purpose of this dissertation, two ML approaches, vastly used in the literature 

[31] and shown in Figure 2, will be considered for intrusion detection: Batch Learning, and 

Stream Learning.  
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Figure 2. Batch and Stream Learning applied to NIDS. 

Batch Learning (Figure 2, Batch Learning) techniques obtains a model by the means of 

a training dataset, in a process called training, and evaluates it using a test dataset. Afterwards, 

the model can be used in production for the classification of further events. In this sense, if the 

environment behavior changes, a new model must be built. To this end, the current model is 

discarded, and a new training and test dataset is assembled, only then, a new model can be 

obtained.  

Unfortunately, general-purpose networks rarely present a stable traffic pattern [8, 9]. In 

such context, a typical approach to deal with evolving environments is to resort to stream 

learning algorithms [32] (Figure 2, Stream Learning). These techniques allow the detection 

mechanism update to be performed at each new event arrival, in an incremental way, without 

discarding the current model. Thus, the time needed for building an updated classifier model 

can be decreased [32]. However, these techniques typically rely on supervised learning, in 

which the events need to be previously classified. Moreover, it is necessary to devise a method 

to select the events that should be used for the incremental model update [33]. Thereby, 

rendering the current approaches not easily applicable to networked environments [7]. 

Ideally, the model used in production environments should be as up-to-date as possible, 

i.e. updated at each new arrived event. However, updates, in either Batch or Stream Learning, 

are often prone to human assistance because in production environments the event`s label are 

unknown. This process, in the event labeling task, is typically known as Active Learning. In 

contrast to Supervised Learning, in which all event labels are known, it assumes that a subset 

of event’s label can be requested to an expert over time [33]. The main goal is to improve the 

model performance, by providing a subset of the true event’s label in production. 

2.2.2. Challenges for ML-based Approaches for Production Usage 
Despite extensive efforts made towards ML-based for intrusion detection in the last 

years, which have yield promising results regarding the system’s accuracy rates, they are hardly 
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deployed in production environments [6]. The next subsections further describe the challenges 

that ML-based techniques face towards reliable use in production environments.  

2.2.2.1 High network bandwidth 

Network bandwidth has significantly increased in the past years. Thereby, increasing 

the rate of events to be classified, generated data and the number of network packets. In such 

context, several ML-based techniques have been proposed, however, only few authors have 

addressed the detection system throughput.  

Figure 3 shows an example of how the network bandwidth affects the system received 

data in a real scenario. In such a case, if a network throughput of 100 Gbps is considered, the 

ML-based NIDS would need to classify up to 3.53 million flows/sec. On the other side, the 

preprocessing module (Feature Extraction) would need to process up-to 17.66 million 

packets/sec. Finally, if the used ML technique requires the data storage, as occurs in 

unsupervised learning for instance, a 12.5 GB/sec of storage would be needed. 

 

 

(a) Data Generated (b) Network Flows (c) Network Packets 

Figure 3. Network throughput relation to number of flows, network packets and generated data. Rates were 
computed according to MAWI [16] network traffic in 02.21.2018. 

 In such settings, due to the amount of generated data, the use of unsupervised learning 

techniques becomes unfeasible. Moreover, to improve or update the model over time by the 

means of active learning, is also not easily feasible. For instance, if 0.1 percent of event’s true 

labels were requested, an expert would need to manually process up to 35 thousand events/sec. 

Thereby, in such context, one must resort to supervised learning techniques, either batch or 

stream based.  

 In general, supervised batch learning approaches are scalable, thereby able to cope with 

such amount of data [34]. However, due to the changes in network behavior, the model will 

quickly become out-of-date, i.e. unreliable classifications will occur. On the other side, 

supervised stream learning techniques also are scalable [35], but, in addition, enable 

incremental model updates over time. However, due to its evolving nature, they are prone to 
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adversarial attacks (attacks targeted at the model) and also requires event’s true label over time 

for incremental model updates [32, 52]. 

 Regardless of the used ML technique, the feature extraction process is still required. To 

this end, flow features are extracted by analyzing the exchanged network packets over time 

according to the data exchanged between the entities over the network, e.g. number of bytes 

sent/received between two hosts in a period of time. Thereby, because it requires to store 

network statistics for a period of time, such task becomes a computationally-expensive process 

[5]. Surprisingly, current approaches for the flow rebuilding (feature extraction) in the Big Data 

context often rely on Hadoop-based clusters [12, 13]. These approaches, in general, simply 

writes the raw network traffic activity log (PCAP) to the filesystem (e.g. HDFS) for further 

analysis. Although such approaches offer significant improvements in throughput, they lack 

applicability in real-world environments. In such settings, because the storage of network data 

is not feasible, the traffic must be analyzed at line-speed. 

2.2.2.2 High variability in input data 
Network traffic is prone to a high variability in a short period of time. For instance, 

within a day, a network link may crash, several different attacks may occur, new services may 

be provided, new service’s content may be requested, amongst others.  

On the other side, train and test datasets should present all the expected event’s 

behaviors from production environments [10]. However, in such context, obtain all possible 

events is not possible. Thus, ML-based intrusion detection techniques must be able to generalize 

their known behaviors. In other words, the model, with a small subset of events, must be able 

to correctly classify new ones, with a similar or new behavior. However, the design of models 

capable of generalizing the environment behavior is a challenging task. Because, to this end, a 

series of evaluations must be performed to measure how the model will behave in each possible 

network setting.  

For instance, consider a model trained only with synflood attacks. In production usage, 

it may need to classify other type of DoS attacks, such as: icmpflood, udpflood, slowloris, 

htmlflood, amongst others. Nonetheless, such attacks may vary their frequency and rate over 

time. In such a case, to measure the generalization capacity, the evaluation process must 

measure the accuracy rates according to each setting. In other words, measure the accuracy rates 

for each attack, considering different attack frequency and rates. The same occurs for normal 

behaviors, in which a normal event may change the requested service, content, frequency and 

rates. 
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2.2.2.3 Lack of realistic training/testing data 
Intrusion detection community suffers from a lack of proper designed datasets. To this 

end, several techniques have been proposed in the literature [17, 22, 36]. However, the most 

frequently used dataset [31] remains the well-known DARPA1998 dataset [19], which is now 

almost 20 years-old. Most approaches used to create a public intrusion dataset attempted to 

statistically model the user behavior [17, 19, 36]. In general, a typical and real user is monitored 

during a certain period and its traffic characteristics are reproduced in a statistically similar 

manner. Thus, a static user behavior is imposed during the monitored period. Nonetheless, these 

approaches generate a site-specific traffic behavior that are difficult to reproduce. 

The expected properties for an intrusion dataset are as follows [36]. (i) Realism: the 

dataset should contain network traffic that can be observed in production environments; (ii) 

validity: the dataset should contain well-formed packets, with a complete client-server 

interaction; (iii) prior labeling: in the dataset, each event must be correctly labeled (as 

belonging to a class, e.g., normal or attack), to allow correct classifier training; (iv) diverse/high 

variability: the dataset should present a diversity of services, client behaviors, and attacks; (v) 

correct implementation: in the dataset, the attacks must follow a well-known or “de facto” 

standard; (vi) ease of updating: the dataset should be able to incorporate new services and 

attacks that are discovered every day; (vii) reproducibility: the dataset should allow experts to 

perform a comparison between datasets; and, finally, (viii) without sensitive data: the dataset 

should not reveal sensitive data to allow the free dataset to be shared among researchers 

Two approaches may be used for obtaining datasets for NIDS building: in the first, the 

production environment is recorded and in the second a controlled environment is created [22]. 

The production environment monitoring allows traffic that is real and similar to the 

environment to be obtained. However, because of privacy concerns it is not feasible to share 

the dataset [18]. On the other side, the creation of a database in a controlled environment using 

tools allows it to be shared freely, however, the approach suffers from traffic invariability 

problems [36]. In this sense, although several approaches have been proposed, the anomaly-

based IDS literature lacks a ground-truth dataset. 

2.2.2.4 Changes in network behavior 
General-purpose network environments rarely present a stable traffic pattern. On the 

contrary, the set of target concepts (e.g., network traffic classes) learned during the training 

stage often evolve over time [6]. For instance, the network behavior may change because new 

services are added [7] or due to modifications on how the attacks are executed.  
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 Nonetheless, the identification of such changes in high-speed production networks can 

be challenging. Thereby, in order to cope with them, the behavior model needs periodic updates. 

This typically involve a computationally-demanding task of model rebuilding, which can only 

be performed if there is access (storage) over the recent observed traffic and the prior (manual) 

classification of the events. In addition, the model rebuild cannot be postponed, as while a new 

model is being constructed, the model currently in use should maintain acceptable error rates, 

ideally as low as the ones observed during the training stage [7]. This makes the process 

challenging for high-speed networks. 

2.2.2.5 Unreliable classifications over time 
Changes in network behavior, lack of realistic training/testing data, high variability in 

input data and lack of model updates will inevitably render unreliable classifications over time. 

In such a case, classifications made by the model will no longer be trusted by the operator.  

A common approach to assess classification reliability often relies in the classification 

confidence given by the classifier [37, 38]. To this end, events with low confidence are rejected 

rather than being potentially misclassified. However, as such probabilities are computed 

according to the behavior present in the training dataset, when an event with an unknown 

behavior is classified its probabilities can be biased [24]. For instance, a new attack that does 

not behave similarly as known attacks, thus increasing its normal class confidence output by a 

classifier. 

2.2.2.6 Adversarial settings 

An emerging field of research, known as adversarial machine learning [23] considers 

the use of machine learning in the settings of an adversary – called adversarial settings. In such 

cases, the adversary (attacker) will attempt to evade the intrusion detection mechanism using 

sophisticated types of attacks, called causative and exploratory [39]. The causative attacks refer 

to attacks that occurs during the training process, e.g. the attacker inject misclassified intrusions 

into the training dataset as normal events. On the other hand, the exploratory attacks aim at 

exploring the machine learning algorithm properties, e.g. craft the intrusion attempt in a manner 

that the detection engine classifies it as a normal activity. 

 

 

  



32 
 

 
 

Chapter 3  

 

Related Works 

This chapter presents the related works in five main areas according to the challenges faced by 

ML-based intrusion detection techniques. Section 3.1 describes the related works towards high 

detection throughput in intrusion detection. Section 3.2 addresses how the literature deals with 

the lack of realistic training/testing data in intrusion detection, and whether those schemes are 

generalizable capable or not. Section 3.3 describes how related works addresses adversarial 

attacks to detection schemes. Section 3.4 shows the related works dealing with unreliable 

classifications over time. Section 3.5 address the related works regarding reliable intrusion 

detection over time. 

3.1 High detection throughput in intrusion detection 
This subsection further describes related works to the proposed solution for the network 

measurement and analysis of massive network activities, named BigFlow. 

Approaches for flow measurement and classification of massive network activities in 

general relies in the prior storage of network data. For instance, Lee and Lee [12] proposed one 

of the first scalable internet traffic measurement approach in the literature. To this end, the 

authors developed a Hadoop-based network traffic monitoring and analysis system. In their 

work, they performed the flow measurement by mapping raw network activity (PCAP) files in 

HDFS. To enable such mapping, the authors have developed an API that is able to interpret 

PCAP files format, break such files into blocks, while not losing network packets during such 

process. Their proposed approach is scalable and achieved 14 Gbps in a 200-node (2 CPU core 

each) cluster, however, they required the prior storage of the PCAP files. In their work, the 
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authors extracted several feature sets according to each protocol layer (e.g. transport, 

application, amongst other). In their evaluation tests, the feature extraction throughput was 

significantly degraded according to the extracted set of features. The authors performed the 

classification by the means of a simple connection threshold through Hive queries, which must 

be periodically updated in evolving networks.  

Since then, several works have also proposed more comprehensive and scalable network 

traffic classification approaches. For instance, Fortugne et al. [13] focused in integrating several 

anomaly-detectors in the Hadoop architecture for network monitoring. In their work, two 

approaches for network traffic measurement were proposed: packet-count and astute. In the 

prior, only a packet count according to the hosts sending them was extracted, while in the former 

6 features according to several network packet values were extracted. The authors adopted a 

hash function approach to divide network traffic in splits. Each split had an anomaly-detection 

algorithm, which identifies network activities by their anomalous score according a specific 

threshold. Although their approach was implemented in Apache Hadoop, according to the 

evaluation tests, it lacks scalability when astute feature extraction was considered. Nonetheless, 

their approach also required the execution of computationally-expensive periodic updates (i.e., 

full retraining).  

In contrast, some works have applied stream processing techniques for the measurement 

of massive network activities. Baer et al [40] was one of the first authors to address network 

traffic measurement and classification through stream processing techniques. In their work, 

they proposed a Data Stream Warehouse (DSW) for network monitoring. To this end, the 

authors relied in time windows for incremental and continuous queries execution, similarly to 

BigFlow. However, to achieve such goal, the authors defined a declarative language interface 

based on SQL. The declarative language interface support was enabled by building their 

prototype on top of PostgreSQL, thereby requiring changes over such framework. Moreover, 

they integrated their proposal with a machine learning framework for the classification of the 

exported time windows, building their prototype on top of Weka API. However, their approach 

relied on a supervised dataset, without considering the scalability of the machine learning 

algorithms. They also did not address scalability, reliability, nor model updates.  

Vernon and Victor [41] have also addressed network flow measurement by the means 

of stream processing techniques. In their work, the authors developed an Apache Storm 

topology that digest netflow records through an AMPQ queue. When a record is read, its field 

values are interpreted, and flow statistics values are computed. Similarly to Baer et al [40], their 
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work also rely on a SQL-like language for further processing.  Finally, when a flow is 

computed, they rely on HBase for the flow storage and Apache Hadoop for the flow processing. 

In their evaluation tests the authors have shown that their proposal is scalable, achieving up to 

211 MB/sec in a 10-node cluster. Although the authors addressed scalability, and stream-based 

processing, their proposal still required the storage of data for the network flow classification.  

A similar approach to BigFlow is also performed by Apache Metron [42]. Metron relies 

on Apache Storm [29] to perform the feature extraction in time window intervals. Similarly to 

BigFlow, Apache Metron is executed as a topology within Apache Storm framework. To 

perform the feature extraction, it also relies in time window intervals. In their approach, the 

user defines the set of features that are going to be extracted by the means of a JSON file. For 

each feature, the user can define the event field that is going to be summarized, and the related 

processing, e.g. the sum of events with the same IP source address. The tool however requires 

the storage of the activities in HBase for post classification. Moreover, the classification of 

network attacks is only addressed by the means of unsupervised techniques, hindering its usage 

in production environment.  

Finally, in a prior work [43] a BigFlow prototype was implemented, using a subset of 

20 features from [5]. The prototype goal was to address the resiliency to adversarial attacks in 

a stream-based intrusion detection system for high-speed networks. The classification process 

was achieved by the means of multi-view learning with a forest of hoeffding tree classifiers 

[44]. In the evaluation tests, the preliminary BigFlow version showed the scalability and 

feasibility of the proposal.  

3.1.1. Discussion 
A number of works addresses the flow measurement of massive network activities. In 

its beginnings, several approaches have been proposed to this task by the means of batch 

processing techniques [12, 13]. However, such approaches are unable to be used in production 

environments, mainly due to the amount of data being generated over time. In the light of this, 

several works have proposed the use of stream processing techniques to fulfill this task [40, 41, 

43]. In general, those approaches divide the read network traffic into splits. Each split is then 

processed according to a time-interval. Although such techniques are scalable and performs the 

network traffic measurement in a stream-based manner, they either require framework 

modifications [40] or extracts a non-representative subset of features [40, 41]. 
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 Regarding the classification of massive network activities, such task is often not given 

the proper care. In most cases, the classification is only achieved when such data is previously 

stored [12, 13, 40, 41, 42]. Even so, they either rely in simple feature thresholds [12], 

unsupervised machine learning [12, 13, 42] (in which the computation to fulfill such task is 

discarded by the authors), or supervised ML (in which the labeling process is not addressed). 

Nonetheless, there are no works that address the classification reliability over time. 

 Table 1 shows a summary of related works comparison to BigFlow. 

3.2 On Building Realistic Training/Testing data for Intrusion Detection 
Many research studies have been conducted since the anomaly-based detection 

paradigm was introduced by Denning [45]. However, despite the extensive amount of work, 

few applications of any ML-based intrusion detection systems in production environments have 

been reported. In recent years, some researchers have begun to question the applicability of the 

results reported in the literature. Gates and Taylor [7] argued that only a few ML-based IDSs 

have been widely used. They considered mainly the assumptions originating in Denning’s 

work. According to them, the lack of appropriately obtained training data and testing 

methodologies that consider the network properties, such as continuous changes in content, 

volume, and attacks, is the main reason why the ML-based detection approach is unsuccessful.  

Sommer and Paxson [6] conducted an extensive review of intrusion detection. They 

argued that the field is significantly different from other fields in which machine learning 

techniques have been successfully applied. They claimed that machine learning is more 

effective at finding similarities rather than detecting outliers, for instance. On the other side, the 

high cost of errors inhibits its use in production environments. The lack of available public and 

updated data hinders an appropriate system evaluation and comparison [46, 47]. In addition, 

Sommer and Paxson [6] and Paxson and Floyd [48] reported that real-world environments 

present a significantly different behavior from the data the systems are normally trained.  

 



 
 

Table 1. Related Works comparison to BigFlow. 

Work Scalability Detection Reliability over time Usage in Production Environment 

Lee and Lee [12] 
Yes, however it degrades 
drastically according to 

the used feature set 
Connection thresholds Not addressed Unfeasible, requires data storage 

Fortugne et al. [13] 
Yes, however their 

approach demands a 
significant processing 

capacity 

Unsupervised anomaly 
detectors 

Not addressed, however the 
authors use unsupervised 

anomaly detectors 

Unfeasible, requires data storage, and does not 
scale properly 

Baer et al. [40] Yes Supervised batch learning Not addressed Partially feasible, however classification 
reliability is not addressed 

Vernon and Victor [41] Yes 

Not addressed, however 
detection can be achieved 
by the means of SQL-like 

query language, in a 
threshold similar fashion 

Not addressed Partially feasible, however classification 
reliability is not addressed 

Apache Metron [42] Yes Anomaly detection Not addressed, however relies 
in anomaly detectors 

Partially feasible, classification reliability is not 
addressed, and for the detection of anomalies 

network data must be stored  

Prior work [43] Yes Supervised stream learning Not addressed 
Feasible, however only address classification 

resiliency (to adversarial attacks), reliability is not 
addressed 

BigFlow  Yes Supervised batch and 
stream learning Addressed Feasible 



 
 

Thereby, the reliability of an ML-based detection system mainly relies on an 
appropriately created training dataset. Normally, strong assumptions about the training data 
need to be adopted. Canali et al. [46] created their dataset by collecting several Website contents 

from the Internet; they labeled each datum by using state-of-the-art tools and manually 
inspecting the data to ensure that the Website contents were correctly labeled. The authors 
assumed that most of the frequently visited Websites worldwide are benign and that the 
distribution of feature values is different for each class of Websites. The strongest assumption 
is that the dataset used to train the models presents the same feature distribution as real-world 
environments. 

Moreover, when a dataset is obtained in a controlled environment, the authors normally 
statistically reproduce the user behavior. Shiravi et al. [36] created user profiles on the basis of 
the user behavior for each application during an observed time interval. Kendall [19] created a 
dataset by statistically reproducing the user behavior in an air force environment. In general, 
these approaches lack upgradeability, wrongly assuming that network traffic is immutable and 
considering that the user behavior can be modeled [6, 7].  

3.2.1. Discussion 
The task of building realistic datasets for intrusion detection schemes evaluation have 

been the subject of several studies in the literature over the last years [31, 47]. However, despite 
extensive efforts, currently the most used dataset remains the KDD99 [21], with several known 
flaws [20, 21]. Current approaches for building new intrusion datasets, which can be achieved 

either by monitoring the production environment behavior [16], or by creating a controlled 
environment [10, 20], fails at generating the expected network properties from production 
environments. In such a case, due to the highly variable nature of networked environments, the 
datasets must enable the fine-grained IDS evaluation. A fine-grained IDS evaluation aims at 
enabling the intrusion detector system operation to evaluate how her system reacts to each of 
the network properties. 

Therefore, the approach proposed in this work aims to provide a publicly available 
intrusion database through the use of well-known tools in a controlled environment, thus 
providing the properties expected from an intrusion database. Moreover, the proposed method 
aims at enabling the fine-grained evaluation of intrusion detection schemes, regarding the 
reproduction of all the expected production environment properties. For instance, the 
identification of similar/new attacks, and similar/new services. 
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3.3 On Dealing with Adversarial Attacks 
The lack of usage of ML-based intrusion detection methods in production environments 

was noted over the last years by a number of works [6]. Such usage gap is caused by several 

aspects; however, it is a consensus that the detection method must be at least reliable and easy 
to update [6].  The detection reliability is often considered in other areas [49], to this end, in 
general the authors [50] rely in the classifier class probability output to reject or not the 
decisions, while other approaches uses an ensemble of classifiers and establishes the 
classification reliability through a majority voting approach [51].  

This dissertation proposes a reliable intrusion detection model, which, in order to adapt 
to network changes over time, resort to stream learning techniques [52]. However, due to its 
incremental update nature, such techniques are prone to adversarial attacks. In such a case, a 
sophisticated attacker may attempt to pervert the stream learning algorithm properties to evade 
the detection system. For instance, an attacker may change how an attack behaves, causing 
model updates with misclassified instances. 

Despite being often considered in other areas; the classification reliability in stream 
learning field, in the presence of an adversary, still is in its beginnings. For instance, when a 
window-based stream learning detector is considered, the sliding window can be attacked to 
deceive the outlier detector. Some authors, however, considered the adversarial settings in 
anomaly-based intrusion detection.  

Ling Huang et al. [52] defined a taxonomy used in their work to classify possible 

adversarial attacks against the machine learning system. The authors also evaluated the impacts 
that a poisoned training dataset incur in the classifier accuracy, in all evaluated cases the 
classifier became unreliable when the training dataset had misclassified attacks injected. 

In the spam detection scenario, Blaine Nelson et al. [51] evaluated the training dataset 
poisoning impact on accuracy, the authors reported a 36% misclassification increase when the 
attacker had control of only 1% of the training dataset. The authors also evaluated a causative 
attacks resistance approach by identifying whether the new added instance results in accuracy 
improvements or not, despite this approach is effective, the authors relied in a supervised dataset 
(when all instances are prior classified). Such an approach cannot be employed in production 
as the instances are not prior labeled and the accuracy cannot be estimated in real time. In the 
malicious PDF detection scenario, Srndic and Laskov [53] evaluated a set of attacks against a 
well-known learning-based classifier for malicious PDF files, the authors were able to decrease 
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the classification accuracy from almost 100% to 28%. The authors also suggested that a 
multiple classifier system should be more resilient to such adversarial attacks, due to the need 
to evade several complementary classifiers. 

Few authors address causative attacks in the network intrusion detection field [54], for 
instance, Benjamin et al. [55] developed the ANTIDOTE which relies in a robust PCA and a 
robust Laplace threshold that is less sensitive to poisoning attacks. However, their approach 
remains susceptible to exploratory attacks.  

3.3.1. Discussion 
Because of the evolving nature of networked environments, intrusion detection schemes 

must be able to reliably adapt to changes over time [6]. To achieve such goal in real-time, one 
must resort to stream learning techniques [32]. However, in such context, a sophisticated 
attacker may attempt to pervert the detector properties, either at training or testing time [23].  

Several works have focused on building resilient (to adversarial attacks) machine 
learning techniques [52, 51, 55]. However, address both causative and exploratory attacks 
remains an open challenge, even for batch learning techniques [23]. In addition, those kind of 
adversarial attacks to stream learning techniques still in its beginnings. 

In the light of this, this is the first work to address both causative and exploratory attacks 
using stream learning algorithms for intrusion detection field. The proposed approach remains 
reliable during both attacks, causative and exploratory, by employing a rejection mechanism 
and a class-specific outlier detector. 

3.4 Ensuring reliability in classifications 
This dissertation, in order to enable the reliable use of ML-based intrusion detection 

schemes over time in production environments proposes the reliability assessment of 
classifications.  

 In general, in the literature, classification reliability is assessed by the means of Chow 
[37] or class-related-thresholds (CRT) [38].  In the prior, a single threshold is used the assess 
the reliability of a given classification, while in the former, each class has its own related 
threshold. Even so, in both approaches, the reliability measure of a given classification is 
computed by the means of the confidence value output by a given classifier.  

 Over the last years, these kinds of techniques have been extensively used in the literature 
to assess classifications. In general, they are used in fields with a high cost of errors. For 
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instance, in the medical diagnosis field, Hanczar and Dougherty [56] aimed at providing a 
desired level of acceptable error-rate. To this end, the authors have performed a wrapper-based 
feature selection in which only solutions that met the error and rejection rates thresholds are 

selected. The authors were able to provide the desired error rate from the system as a user 
defined parameter. In their evaluation tests, using both real and synthetic data, with a CRT 
approach, the authors have shown a relation between error-reject tradeoff. In such cases, the 
classification accuracy is improved when a reject option is considered. 

 Another use of reject option was proposed by Mesquita et al. [57] in the field of software 
fault detection. In their work, the authors have proposed the use of a one-class classifier with 
reject option. For the classification process, one classifier is built for each class, in which each 
classifier has its own reject threshold, similarly to CRT. For the classification process, a 
decision is considered reliable only if a consensus is found between the classifiers. In other 
words, only decisions that were not rejected by both classifiers, or when a consensus between 
the classes were found, are accepted. For the evaluation tests, the authors have used 5 datasets 
They were able to improve the system accuracy when a reject option is considered.  

Several other works have also reported the accuracy improvement by the means of a 
reject option [58, 59]. However, surprisingly, in the intrusion detection field the reliability 
assessment is often ignored. In a prior work [60], a first attempt to address it was made. To this 
end, classification reliability assessment has been addressed using stream learning algorithms. 
In such context, unreliable classifications, as given by the classifier confidence value, in a CRT-

based approach, were rejected and then used for incremental learning over time. The evaluation 
tests have shown that assessing the classification reliability through the classifier confidence 
can help at improving the overall system reliability. However, the findings during the evaluation 
tests have shown that the system significantly increases the rejection rate over time, even when 
it is updated. 

 In recent years, some works have begun to address reliability assessment in the presence 
of new environment behavior. For instance, in the malware classification context, Jordaney et 
al [24] have shown that traditional approaches are unable to provide classification reliability in 
the presence of new malware behavior. In their work, to provide classification reliability a 
system named Transcend was designed. It assesses the classification reliability by the means of 
a conformal evaluator. The purpose of the conformal evaluator is to measure the reliability of 
a given classification. To this end, the authors used a statistical comparison of samples seen 
during deployment with those used to train the model, thereby building metrics for classification 
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quality. Such task is achieved by computing two values credibility and confidence. Credibility 
define how well the instance fits into the assigned class, while confidence measures how well 
it does not fit to the opposite classes.  

In their evaluation tests, the authors have used a similarity-based function for the 
statistical computation (credibility and confidence values computation). For evaluation 
purposes two datasets were used, the first dataset was made of malwares from 2010 to 2012, 
while the second from 2010 to 2014. The authors then trained a classifier using malwares from 
one dataset and evaluated it on the other. When Transcend is not considered the classifier 
greatly decreases its performance. However, when their approach is used, they are able identify 
unreliable classifications and reject them, maintain the system reliability. 

The work of Jordaney et al. [24] was one of the first works to show, in the security field, 
that aged models can become unreliable. Moreover, they showed that traditional classification 
reliability assessment approaches are unable to provide classification reliability in such context. 
However, some aspects regarding the applicability of their work in the network-based intrusion 
detection context must be noted. First, the authors have used two different datasets to evaluate 
the reliability of aged classification models. Each dataset was obtained by different authors, 
works, environments, settings, amongst others. In this sense, one cannot properly conclude 
whether a model perform poorly in a different dataset because of the time of their building, or 
because of how the dataset was obtained - considering the aforementioned characteristics. 
Second, in order to evaluate if a decision is reliable or not, the authors have computed the 

credibility and confidence values. Such values were computed for each classified instance in 
each dataset, and then evaluated accordingly. The authors goal was to establish whether a 
concept drift have occurred or not through the analysis of both values in both datasets. However, 
in the network field to achieve such task one would also need to store the values occurred in a 
period of time. In contrast, the reliability assessment should be made in an instance-based 
approach, rather than a period-based one.  

A single dataset was used in Kantchelian et al. [61] to evaluate the behavior of ML-
based malware detection. The authors have built a dataset containing malware samples from 
2007 to 2013. In their evaluation tests, the authors findings have shown that such models are 
only able to properly classify older instances than new ones. In other words, ML-based 
algorithms are unable to cope with changes in malware behavior changes over time. The authors 
also show that, ML algorithms improve their detection rate over time when further instances 
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are used for training. Thereby, such findings corroborate the results obtained by Jordaney et al. 
[24]. 

Finally, another approach to assess classification reliability in the security context have 

been proposed by Maggi et al. [62]. In their work, the authors show that web applications 
behavior changes over time. In order to identify such changes, the authors analyze the 
application response content for new fields.  In their evaluation tests, the authors were able to 
significantly decrease the false-positive rates, by up to 100%. Although their approach 
presented significant improvements in the detection accuracy, it hinders the usage for other 
areas. The main difficulty is regarding the application-specific approach. Because the use of 
their approach in other fields would imply in knowing how each of the monitored applications 
behaves. Nonetheless, in the network-based intrusion detection context, such an approach 
cannot be used since network behavior (network flows) varies greatly. 

3.4.1. Discussion 
Classification reliability have been extensively addressed in other fields with a high cost 

of errors, such as medical diagnosis [56], optical character recognition [58, 59], amongst others 
[57]. However, surprisingly, in network-based intrusion detection it still is in its beginnings 
[60].  In general, classification reliability can be achieved by the means of a typical CRT-based 
approach [56, 57, 58, 58, 60]. In such cases, the classifier confidence value is used as a metric 
to measure the classifier reliability for a given instance. However, it has already been 
demonstrated in related works that classifier confidence values can be biased in the presence of 

unknown behaviors [24]. Thereby, rendering traditional CRT-based approaches not feasible for 
classification reliability assessment over time. In such context, a promising approach has been 
proposed in Transcend [24], in which classification reliability is assessed by the means of a 
conformal evaluator.  
 Table 2 shows a summary of related works comparison to the proposed classification 
reliability assessment approach.  



 
 

Table 2. Classification reliability assessment approaches comparison. 

Work Field Approach Address unreliable classifier Usage in production environment over 
time 

Hanczar and 
Dougherty [56] Medical diagnosis CRT-based to achieve a 

desired error rate level  
No, relies on confidence given by the 

classifier No, classifier must be reliable 

Mesquita et al. [57] Software fault 
detection 

CRT-based for one-class 
classifiers to achieve 

classification consensus 
No, relies on confidence given by the 

classifier No, classifier must be reliable 

Prior work [60] Network-based 
intrusion detection 

CRT-based to maintain the 
classification reliability 

No, relies on confidence given by the 
classifier No, classifier must be reliable 

Jordaney et al. [24] Malware detection 
Conformal evaluator is 
used to assess decisions 

made by classifier 
Yes, classifier decisions are evaluated 

through a conformal evaluator 
Yes, however the identification of 

proper thresholds for rejection was not 
addressed  

Maggi et al [62] Malicious website 
detection 

Examines application 
response looking for 

changes 

Yes, changes in environment 
behavior are identified by examining 

the event content 
Yes, however their approach requires 

application-level knowledge 

Proposed approach Network-based 
intrusion detection 

Conformal evaluator is 
used to assess decisions 

made by classifier 

Yes, classifier decisions are 
evaluated through a conformal 

evaluator 
Yes, threshold can be defined 

according to administrator needs 



 
 

3.5 Reliability in intrusion detection 
Since the introduction of the anomaly-based intrusion detection paradigm by Denning 

[45], the challenge of intrusion detection has been tackled by a number of works. In such 
context, machine learning techniques, mostly by pattern recognition means, have stand out over 
the last years. 

Several approaches have been proposed so far in this sense. For instance, Gudadhe et 
al. [63] proposes the use of supervised learning by the means of a boosting technique to classify 
intrusion attempts. In their work, an ensemble is created using decision trees as base-learner. In 
their boosting procedure, classifiers are built iteratively, in which each next classifier is built 
on top a weighted adjusted training dataset. The instances weights are adjusted according to the 
classification correctness from the previous classifiers, in which misclassified instances are 
given more weight. For the evaluation tests, the authors have used the well-known KDD99 [20] 
intrusion dataset, in which their method presented promising results. However, the authors did 
not evaluate their approach on unseen data. 
 Another approach proposed by Gaikwad and Thool [64] have performed intrusion 
detection by the means of a bagging technique. Similarly to [63], they have used decision trees 
as their base-learners. Their bagging approach creates each decision tree using a subset of 
instances with replacement from the training dataset. In order to further reduce training time, 
the authors perform a feature selection by the means of a genetic algorithm approach. In their 
evaluation tests, also using the KDD99 dataset, the authors were able to reduce training time 
without decreasing the accuracy rates. The detection of new attacks was not addressed. 

 Another popular approach relies in ensemble of classifiers. For instance, Haq et al. [65] 
proposes the use of several classifiers in a majority voting scheme. In their work, naïve bayes, 
decision tree and a bayesian network were used for intrusion detection. The classifier’s output 
were combined in a majority voting scheme. For the reduction of training time the authors have 
relied in a wrapper-based feature selection for each classifier. In their evaluation tests, using 
KDD99, the authors were able to improve the system accuracy, when compared to a single 
classifier, while also decrease training time by the means of a feature selection technique. The 
detection of new attacks was also not addressed. 

 In contrast to the aforementioned works, some authors consider a scenario without 
ground truth, i.e., environments in which the event’s label are not known previously. For 
instance, Fontugne et al. [15] proposes the use of several unsupervised machine learning 
algorithms for the detection of anomalies in internet-wide traffic. In their work, the authors use 



45 
 

 
 

four unsupervised state-of-the-art algorithms for the identification of anomalies in MAWI [16] 
network data. MAWI is a publicly available database with daily-provided network traffic. Such 
network traffic is obtained by the monitoring of a transit link between Japan-USA. For each 
day, 15 minutes of traffic is recorded, between 14:00 and 14:15. Anomalies are identified in a 
daily-basis by the means of a voting scheme over the unsupervised machine learning 
algorithms. The authors evaluate several combination approaches to this end, in a seven-year 
range. Although their work performs a comprehensive evaluation of state-of-the-art 
unsupervised machine learning algorithms, their technique requires the storage of such data. 
However, differently from other works, their approach relies in a representative network 
database, MAWI. Moreover, because of the nature of unsupervised machine learning 
algorithms, they are able to identify new attacks. 

 As can be seen, several approaches are proposed for identification of intrusion attempts. 
However, the reliability of such schemes for the classification of attacks over time is typically 
not addressed. When a supervised machine learning approach is considered, the authors, in 
general, does not address the need for model updates, and how such task could be accomplished 
in production usage. On the other side, when an unsupervised machine learning approach is 
evaluated, the storage of network data is necessary. 

3.5.1. Discussion 
Several works have proposed and evaluated highly accurate intrusion detection models 

in the last years. However, despite their promising reported results, there remains a gap between 
the number of works that uses ML-based approaches and their actual use in production. One of 
the main issues regarding such gap is regarding the considered evaluation during the system 
development. In general, the authors relies in traditional machine learning evaluation 
approaches, in which a single test dataset is considered. Moreover, several works perform such 
evaluation by the means of an old dataset, KDD99, with several known flaws [20, 21].  

 In contrast, real network environments present several challenging aspects to ML-based 
approaches. Similar to malware detection, network behavior changes over time. Thereby, ML-
based approaches must be able to cope with such changes. However, surprisingly, the majority 
of works does not address such changes. Thereby, the challenge of addressing the network 
changes over time remains yet to be solved.  

 Table 3 shows a summary of related works comparison to the proposed reliable intrusion 
detection scheme. 
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Table 3. Reliability in intrusion detection works comparison. 

Work Approach Classification reliability Classification reliability over time Model updates 

Gudadhe et al. [63] 
Supervised batch 

learning. Boosting 
technique 

Not addressed Not addressed Not addressed. Model rebuilding must 
be performed 

Gaikwad and Thool 
[64] 

Supervised batch 
learning. Bagging 

technique 
Not addressed Not addressed Not addressed. Model rebuilding must 

be performed 

Haq et al. [65] 
Supervised batch 

learning. Ensemble 
technique 

Not addressed Not addressed Not addressed. Model rebuilding must 
be performed 

Fontugne et al. [15] Unsupervised batch 
learning 

Not addressed. However 
unsupervised techniques 

are used 
Not addressed. However 

unsupervised techniques are used 
Technique is executed in a daily-basis, 

network traffic must be stored 

Proposed approach 
Batch and Stream 

learning coped 
together 

Conformal evaluator is 
used to assess decisions 

made by classifier 

Conformal evaluator is used. 
Models are incrementally updated 

over time 
Yes, stream learning algorithms are 

incrementally updated over time 

 



 
 

Chapter 4  

 

A Reliable Intrusion Detection Model 

Several approaches have been proposed in the literature for intrusion detection by the means of 
machine learning techniques. However, despite extensive efforts, they, in general, fail at 
providing generalization capable models, dealing with changes in network traffic content, 
provide reliable classifications, deal with high network bandwidth, while also address 
adversarial settings.  

In the light of this, this work introduces a new intrusion detection model, namely reliable 
intrusion detection. The main characteristic of the reliable intrusion detection is the usage of 
both batch and stream learning algorithms coped together. In this sense, the proposed model 
aims at exploiting the characteristics of each type of learner, in a cascade pipeline approach, to 
overcome the challenges faced by ML-based approaches for intrusion detection in production 
environments. 

The proposal overview and how it addresses such challenges are introduced in Section 

4.1. Section 4.2 presents BigFlow, which aim at addressing the challenges of high-speed 
networks. Section 4.3 introduces a methodology toward the building and evaluation of 
generalization capable batch learning models. Section 4.4 presents an approach for ensuring 
reliable classifications of batch learning models over time. Section 4.5 addresses resiliency to 
adversarial attacks for stream learning algorithms. Section 4.6 presents a classification 
reliability assessment approach, which aims at providing a classification reliability degree in 
face of new network traffic behavior. Finally, section 4.7 introduces how the reliable intrusion 
detection model addresses behavior changes over time. Finally, section 4.8 presents the 
proposal discussion. 
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4.1 Proposal Overview 

Current ML-based approaches for intrusion detection lacks reliability to face production 
environments over time. In the light of this, this work aims at providing a set of techniques, that 

enables the reliable near real-time intrusion detection to be performed in high-speed networks 
over time. Figure 4 shows the overview of the proposed reliable intrusion detection model.  

 
Figure 4. Overview of the proposed reliable intrusion detection model, and how each learner overcome the 

challenges of production environments. 

The reliable intrusion detection model receives as input an event to be classified, which 
is then passed to a batch learner algorithm, that presents the following properties: 

• Generalization Capable (Section 4.3). The model must be able to generalize the 

behavior from the training dataset to other environments. In such a case, the 
generalization must take into account the classification of known, similar and new 
attacks; known, similar and new services, and their contents. In this manner, it becomes 
possible to ensure that the system can correctly classify the events, regarding the time 
of its building, even from a limited training dataset; 

• Reliable Classifications (Section 4.4). Despite the model being able to generalize the 

behaviors that occur in the production environment, new traffic content (e.g. new 
attacks, or services) will occur over time. Thus, the model must be able to identify 
whether the instance can be reliably accepted, or should be rejected, considering the 
behavior seen during the period of its building; 
An instance that was rejected by the batch learner, is assumed to be an unseen behavior. 

In such a case, a new traffic behavior might be occurring and thereby a stream learning 
algorithm must classify it. The stream learning algorithm is used in order to enable the system 



50 
 

 
 

to incrementally adapt to changes in network behavior over time, without incurring in the batch 
model retraining. The stream learner algorithm must present the following property:  

• Resilient to Adversarial Attacks (Section 4.5). Differently from batch learning, stream 

learning algorithms are able to incrementally adapt to changes in network behavior over 
time. Such property significantly decreases training time, because the current model is 
not discarded, a desired property for high speed networks, but, on the other hand, it is 
prone to evasion attacks. Thereby, the stream learning algorithm must be able to identify 
whether a new instance can reliably be incorporated in the model or not; 

Finally, despite being able to reliably adapt to changes over time, in production usage, 
the stream learning model may not be updated for a period of time. For instance, the system 
administrator may not able to provide the event’s label. Thereby, the stream learning algorithm 
identifies unreliable classifications over time by the means of a conformal evaluator. 

• Reliable Classifications Over Time (Section 4.6). The identification of unreliable 

classifications in the presence of unknown traffic behavior is a challenging task. This 
because it is not possible to identify unreliable classifications by the means of the 
classifier confidence, as it may not be up to date. Thereby, a conformal evaluator must 
be used to assess the classification reliability even in the presence of new network 
behaviors; 

• Adapt to Network Changes Over Time (Section 4.7). Finally, the proposal coped 

together, batch and stream learning, provides a model towards a reliable near real-time 
intrusion detection in high-speed networks over time; 
The next subsections further describe each technique in detail. 

4.2 BigFlow 

In order to address the evolving behavior of high-speed networks, an approach namely 
BigFlow is presented. BigFlow performs the feature extraction in high-speed networks using a 
traditional stream processing framework. Its purpose is to compute the flow statistics, which 
are represented as a feature vector (an event or instance, in ML terminology). The flow statistics 
computation is performed in near real-time, summarizing the information about the traffic 
between two hosts in a time interval. Because only the statistics values need to be stored in 
memory, during the specified time interval, there is no requirement for the storage of the 
network packets.  

 The next subsection describes in detail the feature extraction stage, including the 
architecture of the modules that implement it and a description of the main components. 
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4.2.1. Feature Extraction 

In order to measure and classify network activity, it is necessary to compute statistics 
about the network traffic exchanged between the relevant entities over a period of time. There 

are several works that focus on extracting the features values for flow classification [5, 12, 13]. 
However, contrary to BigFlow, none of them is capable of monitoring high-speed evolving 
networks. In such context, to avoid the storage of network data, the feature extraction should 
be made at near real-time. To this end, the feature set was established according to the 
processing demanded for its extraction, which is, in general, responsible for the most significant 
part of the overall demanded processing [5].   

 BigFlow can extract up to 158 features. The feature set considers both host (host 
statistics) and flow (host to host statistics) granularity. Host statistics are the features extracted 
based solely in the data sent/received from a specific host, e.g., percentage of SYN packets sent 
in a time period. On the other hand, flow statistics features comprise information about the 
communication between two hosts, e.g., average size of the packets exchanged between the 
hosts1. 

The architecture of the feature extraction module of BigFlow is shown in Figure 5. A 
set of monitored agents (e.g., hosts, network switches or routers) transmit the events through a 
message middleware. An event corresponds to a unit of analysis, e.g., a network packet or a 
netflow record. The message middleware acts as a broker of events, being responsible to 
provide a single interface for the monitored agents.  

The Message Consumer acts as the data producer for the feature extraction module. Its 
only purpose is to receive the available events from the message middleware, regardless of their 
content or source agent. Each collected event is forwarded to the Message Parser in a PE of the 
stream processing, using the shuffle approach. The Message Parser in turn, establishes the 
event source, fields, and type (e.g., network packet or netflow record).   

                                                
1 The complete list of extracted features can be found in Appendix 1 
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Figure 5. BigFlow real-time feature extraction module architecture for high-speed networks. 

As an example, consider two distinct monitored agents: a switch and a router. The switch 
exports network packet headers, while the router exports expired netflow records. The Message 
Consumer reads both types of events from the message queue, and distributes them through the 
available Message Parsers keeping the computing load evenly distributed. The Message 
Parser, in turn, processes the packet headers and netflow records according to each event’ type, 
collecting the relevant fields.  

The Host Aggregator and Flow Aggregator modules perform the actual network flow 

statistics computation (feature extraction). To do that in near real-time and in a distributed 
manner, both aggregators receive messages through a keyed stream. The key for the Host 
Aggregator is calculated using the hash of the event source addresses (source IP address), whilst 
the key for the Flow Aggregator relies on the XOR of both source and destination addresses 
(source and destination IP addresses). To divide the load, each module is responsible for a range 
of hash values. Thus, through XOR’ing, it is possible to forward messages from two specific 
hosts to the same flow aggregator PE, regardless of the direction taken by a packet.  

To compute feature values from the grouped events, BigFlow discretizes them in time 
intervals, referred as the Tumbling Window. Each Tumbling Window stores and updates the 
features values for a specific period, according to each received event. When a Tumbling 
Window expires (i.e., the period is over), the flow features values are exported in a host or flow 
statistics format, and the feature values computation starts over again for a new window.  

Figure 6 illustrates how BigFlow computation through the Tumbling Window is done. 
The figure considers two hosts exchanging messages over the network for 60 seconds, and a 
Tumbling Window period of 15 seconds. To compute the flow statistics, the Message Parser 
module forwards all arriving events exchanged between these two hosts to the same Host and 
Flow Aggregators. Each aggregator computes the flow features values during 15 seconds 

(“T.Window 1” in the figure). When the Tumbling Window expires, it exports the host and flow 
statistics to the next module. As a new event arrives after the initial 15 seconds, the Host and 
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Flow Aggregators create another Tumbling Window (“T.Window 2” in the figure) and start the 
flow features computation again.  

 
Figure 6. BigFlow flow computation through the Tumbling Window approach. 

The usage of Tumbling Windows for computing flow features brings two important 
benefits. First, it ensures that all active flows will expire, without periodic checks, supporting a 
simple garbage collection mechanism. Second, it ensures that the amount of resources required 
for the computation of long-lived flow features values remains limited, thus allowing scalable 
processing.  

Finally, the Flow Joiner module is responsible to receive all host and flow statistics 
values and join them in a single stream. The module receives the exported events through the 
hash of the source address of either host or flow statistics. Thus, each Flow Joiner PE is 
responsible for a range of the hash values, causing all values from a given subset of hosts to be 
given to the same module. For each received flow statistic, the Flow Joiner aggregates it with 
the respective host statistics and exports the result to the next module.  

Notice that a single host may have several exported flow features, while having a single 
host feature, e.g., a single host accessing services in several other hosts. Thereby, the Flow 
Joiner must also store the host flow, to join it with several exported flow features in a single 
Tumbling Window. To this end, the Flow Joiner also relies on the Tumbling Window. 

4.3 Batch Learning - Generalization  

The reliable intrusion detector receives as input the feature vector, and forward it to the 

batch learning algorithm. The batch learner in its turn must be able to correctly classify the 
event, according to the behavior seen in the training dataset. However, as it is not possible to 
assemble a training dataset with all possible production environment behaviors, the first model 
requisite is related to the generalization capacity. 

Three steps are normally involved in a typical batch learner evaluation method. Initially, 
the classifier model is created using a trained dataset. Then, a validation dataset is used to 
improve the created model. Finally, the model is evaluated by means of a test dataset. Because 
of the lack of publicly available data in the NIDS field, experts normally divide a single dataset 
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into three parts. Thus, a typical evaluation method assumes that the used datasets resemble the 
production environment.  

However, this assumption does not hold in networked environments. In such a case, the 

creation of an intrusion database that presents all the possible behaviors of a production 
environment is not a feasible task [7]. Even if it were possible to create a perfect database, it 
would still not be effective because it would consider that network traffic is immutable [6]. 
Thus, an evaluation method, that enables to validate the expected properties for batch learner 
algorithms, when applied to the network-based intrusion detection area is required. The purpose 
is to validate the common assumptions reported in [6, 7]. The overall process is shown in Figure 
7 and further described in the following sections. 

 
Figure 7. Batch Learner evaluation method towards generalization capable models. 

4.3.1. Attack Detection Rate 

The most important assumption about ML-based intrusion detection systems is that it is 
capable of detecting new attacks. The premise is that an attack, whether new or known, shows 
behavior that is significantly different from that of a typical system’s usage and, thus, can be 
identified by detecting outliers for instance [66]. However, incoming events are classified, in 
general, on the basis of their similarity to the known and prior-labeled events in the training 
dataset, according to a similarity metric. 

Thus, only new attacks that behave similarly to already known attacks can be correctly 
classified. By definition, it is not possible to train a machine learning detection technique using 
unknown attacks. However, it is possible to measure an intrusion detection system’s capability 
by controlling the events included in the test datasets. For instance, a system can be trained with 
a limited type of attack and tested with similar or completely different attacks. The definition 
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of the similarity of events is context-dependent and must be determined according to expert 
knowledge. The process is shown in Figure 8.  

 
Figure 8. Batch Learner attack evaluation method. 

Initially, the batch learner is trained with a limited set of attacks that are similar and 
present an expected behavior during the system usage in production environments (Figure 8, 
Known Attacks). Then, the created detection model is evaluated using databases containing 
similar and new attacks (Figure 8, Similar and New Attacks). Similar attacks in this context are 
attacks with a high similarity to the attacks on which the system was trained, whereas new 
attacks are attacks that are significantly different from known attacks. 

The similar attack detection rate is defined as the system’s capacity to detect events with 
behaviors similar to those of known attacks. This property is desirable in intrusion detection 
systems because of the highly variable nature of networked environments. Thus, a system must 
be able to cope with similar attacks, as a single database cannot contain all possible attacker 
behaviors. Similar attacks may present a different pattern and can evade signature-based 
systems, where detection is performed by matching against well-known attack patterns. 
However, similar attacks may present the same or a similar behavior and should be detected by 
the detection scheme if the used features are adequately discriminant. 

The new attack detection rate defines the system capacity to detect significantly 
different types of attacks; i.e., attacks that present a behavior that is completely different from 
any known behavior on which the system was trained. This type of incidence occurs in 
production environments, as it is not possible to train a system with all known or new attacks. 
The used detection scheme must be able to relate the new attack behavior to the known attacks 
and correctly detect it, which is the premise when using any ML-based approach. 
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During the database creation for machine learning detection schemes, the background 
traffic must also be generated. The incidence of an attack affects the response of a service to 
legitimate requests; e.g., one attack type can make a service unavailable, whereas another can 

make a service reply only to a specific set of requests. Thus, the occurrence of an attack can 
affect also the background traffic detection rate. 

Note that databases must use the same background traffic creation approach. Thus, this 
approach uses the background traffic as the baseline, allowing it to identify the behavior of the 
same set of services under each type of attack and the performance of the detection engine while 
detecting such changes. 

4.3.2. Background Detection Rate 

The background traffic is composed of two entities: the client and the server. The client 
generates requests according to the contents and services provided by the server. Thus, the 
background traffic may vary in content and the service requested.  

Because of the lack of publicly available data, researchers have assumed that network 
traffic is immutable [67]. Anomaly-based systems are normally tested using a single database, 
divided into three parts having the same background traffic behavior. 

It is known that network traffic continuously changes [6, 7]. Thus, it cannot be assumed 
that a behavior evidenced in a certain period during the intrusion database creation will remain 
immutable over time. The detection scheme must be able to track the background traffic 
behavior changes while still performing its detection at a reasonable rate when a classifier 

model update is not possible. Moreover, it must be able to properly identify variations of known 
normal behaviors. 

When evaluating an intrusion detection method, one must consider the database 
limitations. It is not possible to create every service and content that will be evidenced in 
production environments. Thus, it is not feasible to create every possible background traffic 
behavior. However, a detection scheme must be able to detect different background traffic 
contents and different services, with their new type of content. To present such properties, the 
evaluation databases must be modified to allow them to be tested in an ML-based system. 

Similar to the attack detection rate method (Section 4.3.1), the background detection 
rate method consists of restricting the used databases to two perspectives: the service content 
(Figure 9) and the services (Figure 10).  
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Figure 9. Batch Learner service content evaluation 

method. 

 
Figure 10. Batch Learner service evaluation method. 

The service content detection rate is established by limiting the client requests, which 
are divided into three groups: known, similar, and new content (Figure 9). However, the service 
detection rate is established by restricting the number of services in the training dataset and 
evaluating the classifier with a new set of services not used during the training stage (Figure 
10). 

In the evaluation of the background detection rate, the attacks are used as the baseline. 
The same set of attacks is generated in each scenario, allowing the attack occurrence to be 
evidenced in each used service and its content. 

4.3.3. Generalization Evaluation 

Several methods have been proposed in the literature for creating intrusion databases; 
however, despite extensive efforts, they are all exposed to the problems inherent in the method 
used for their creation [68]. Thus, to evaluate the database used during the system design, as 
well as the method used for event detection, an evaluation method that uses a publicly available 

intrusion database is needed. Thereby, the system evaluation using a publicly available database 
provides a baseline comparison reference and the generalization rate. 

The generalization is a desirable property for any machine learning technique. The set 
of extracted features must allow the classifier to generalize the problem appropriately by 
distinguishing the classes, regardless of the current environment in which it is operating. Thus, 
the classifier model built from the set of extracted features may be used in other environments 
that aim to detect the same type of events. 

In this way, evaluation that uses a publicly available database ensures that the conceived 
detection scheme can operate independently of the environment in which it was conceived. 
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4.3.4. Generalization Evaluation Method Summary 

The intrusion detection field faces challenges that are significantly different from those 
of other areas where machine learning has been successfully applied [6]. The proposed 

evaluation scheme is aimed to test the expected properties of a machine learning intrusion 
detection scheme. The following properties can be provided by the proposed evaluation method 
(Figure 7): 

• Detection rate for known, similar, and new attacks (Section 4.3.1); 

• Detection rate for known and new services (Section 4.3.2); 

• Detection rate for known, similar, and new services’ content (Section 4.3.2); 

• Detection rate while operating in a different environment (Section 4.3.3). 

4.3.5. On Building Generalization Capable Batch Learning Models 

To improve the detection rates mentioned above (Section 4.3.4), a multi-objective 
feature selection method specific to the intrusion detection field is proposed. This method 
considers that, during the system development, the system designer that takes into account the 

following detection properties of the detection system: attack (!""!#$%&'(), normal 

()*+,!-%&'(), and/or generalization (./)/+!-01!"0*)%&'(), is able to build generalization 

capable models.  

As described in Section 4.3.1, an intrusion detection system may face three distinct 
attack behaviors in production environments: known, similar, and new. During the classifier 
training, the detection algorithm learns only the known behavior. However, in production 
environments, the probability of each attack behavior occurring is unknown. For instance, an 
IDS that was trained with a network-based DoS attack behavior (known) may also face 
application-level DoS attacks (similar) having an unknown occurrence probability. However, 
in the production environment, the system administrator expects that an intrusion detection 
engine is able to detect attacks according to the accuracy rate obtained during the classifier 
testing, regardless of the current attack type the system is facing. Thus, the attack detection rate 
in a production environment can be calculated according to Equation 1. 

!""!#$%&'( = !3/+!./ 4
!""!#$%&'(56786,
!""!#$%&'(:;<;=&%,
!""!#$%&'(6(8

>       Equation (1) 

Where !""!#$%&'(56786 denotes the system detection rate for known attacks, 

	!""!#$%&'(:;<;=&% denotes the detection rate for similar attacks, and !""!#$%&'(6(8  denotes the 
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detection rate for new attacks (Figure 7, Attack Detection Evaluation). Thus, the system attack 

detection rate (!""!#$%&'() is represented by the average detection rate of known, similar, and 

new attacks in production environments. 

The same property is expected in a normal (background) traffic perspective. The 
requested service, either known or new, must be correctly detected, as well as its content: 

known, similar, and new. Thus, the normal detection rate is established according to Equations 
2, 3 and 4. 

)*+,!-%&'(:(%@;A( = !3/+!./ B
)*+,!-%&'(56786	:(%@;A(,
)*+,!-%&'(6(8	:(%@;A( C     Equation (2) 

)*+,!-%&'(A76'(6' = !3/+!./ 4
)*+,!-%&'(56786	A76'(6',
)*+,!-%&'(:;<;=&%	A76'(6',
)*+,!-%&'(6(8	A76'(6'

>     Equation (3) 

)*+,!-%&'( = !3/+!./ B
)*+,!-%&'(:(%@;A(,
)*+,!-%&'(A76'(6'C       Equation (4) 

Where )*+,!-%&'(56786	:(%@;A( denotes the system detection rate for known services, 

	)*+,!-%&'(6(8	:(%@;A( denotes the detection rate for new services, and )*+,!-%&'(56786	A76'(6', 

)*+,!-%&'(:;<;=&%	A76'(6', and )*+,!-%&'(6(8	A76'(6' refer to the detection rate of known, similar, and 

new services’ content, respectively. The system’s normal detection rate ()*+,!-%&'() is 

represented by the average detection rate of )*+,!-%&'(:(%@;A( and )*+,!-%&'(A76'(6'. 

Finally, the generalization capacity of a system is directly established by the system 
detection rate in another environment (Figure 7, Generalization Evaluation). Thus, the 

generalization rate (./)/+!-01!"0*)%&'() is established according to Equation 5. 

./)/+!-01!"0*)%&'( = 	./)/+!-01!"0*)%&'(
DEF=;A	G&'&:('     Equation (5) 

It is important to note that attack (!""!#$%&'(), normal ()*+,!-%&'(), and generalization 

(./)/+!-01!"0*)%&'() are conflicting properties (objectives). For instance, an increase in 

./)/+!-01!"0*)%&'( may decrease the intrusion detection rate for normal and attack events 

because of the increase in the generalization capacity (commonly referred to as the receiver 
operating characteristic curves for two class decision systems) [69]. 

Thus, the operating points must be established according to the system designer’s needs.  
For example, the generalization property may be desired in systems that will be used in several 
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different environments (commercial products for instance); however, in proprietary systems, 
this property may not be desired.  

4.4 Batch Learning – Reliability in Classifications 

Despite the building of generalization capable models, new event’s behavior might 
occur over time, for instance when a new attack occurs. In such a case, the batch learner model 
must be rebuilt, in order to properly incorporate the new event knowledge into the model. 
However, the model rebuilding in high-speed networks is not an easily feasible task, which 
might occur only after a significant period of time. In the light of this, a method must be devised 
to enable the identification of reliable classifications, which enables to establish whether the 
event presents a similar behavior to the training dataset, or not. 

Hereafter, a rejection technique and a combination of classifiers to provide a more 
reliable detection is further explained. This solution aims at providing a reliability degree over 
extended periods of time, even though it does not classify all the input events. 

4.4.1. Changes in Feature Values Distribution 

When a classifier is operating, its accuracy depends on the feature values distribution 
being similar to that of the training dataset (usually composed of real network traffic). If the 
distribution changes significantly, the classifier model should be updated, or its accuracy may 
decrease. This update usually requires expert knowledge to label new events and to rebuild the 
model, which may not be practical in real-world environments, or may occur after some delay. 
To test a classifier designed to operate in such environments, a method to assess whether it is 

still reliable even when the network traffic changes is required. Here an evaluation scenario is 
described, and an event rejection method is proposed, which allows the classifier to operate 
reliably even when it cannot be easily updated. 

To overcome the limitations of other works in the literature, a rejection method that 
takes into account the frequent content changes observed in real-world network traffic is 
proposed. In addition, the usage of several independent classifiers using different machine 
learning algorithms is proposed. After each classification, the approach checks whether there 
are enough similarities between the classifier outputs class (normal or attack) and the class 
occurrence observed in the training dataset. If there is not a predominant match, the 
classification is deemed unreliable and the event should be rejected because the features used 
to build the model and the current event are not similar enough for a reliable classification. An 
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event rejection means that none of the classifiers can reliably assign a class to an input event; 
in this case, the event is rejected rather than being potentially incorrectly classified. 

4.4.2. Scenario 

Figure 11 shows a real-world scenario whose feature distribution changes over time. It 
considers the feature set of SYNFlood attacks [4] as baseline in the attack model. If an 
HTTPFlood attack [4] occurs, it can still be detected because the feature distribution of the two 
attacks are similar. However, if the network traffic changes significantly (as in an Exploit 
attack), the classification output becomes unreliable due to the significant change in the feature 
set. In such cases, if the model cannot be updated, another technique should be used to provide 
a reliable classification. 

 
Figure 11. Changes in features distribution, considering SYNFlood Attack as reference. 

4.4.3. Rejection Engine 

One way to detect changes in the network traffic profile is to monitor the distribution of 
values in the extracted feature set (Figure 11, Exploit Attack). A significant change in feature 

distribution may indicate that a new attack is occurring. However, it is not easy to detect profile 
similarities from network events occurring in real time. In such context, two ranges for each 
attribute (one for each class) are defined to determine whether a feature value is valid. When 
an extracted feature lies within the appropriate range, the feature is considered valid.  

For evaluation purposes, three traffic scenarios can be used: a baseline scenario, a 
scenario with network traffic changes but similar to the baseline scenario, and a scenario with 
new attacks (Figure 11). The baseline scenario is used to obtain the rejection range thresholds 
and the attack models; the other scenarios are used to evaluate the rejection method. 
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 For each feature (HI, x=1, 2, …, N) and class (normal or attack), two rejection  

thresholds ("=78(%and "EDD(%) are computed. The thresholds define the range within which a 

feature value is valid. The range is class-specific because the feature distribution for each class 

is different. The thresholds are defined with respect to an ∝ value (Figure 12), which establishes 

a percentage of instances in the validation dataset that fall outside the defined thresholds, but 

still provide the desired model reliability. To determine the value of ∝, an experimental analysis 

must be performed. 

 
Figure 12. Features within the range for a class 

(attack). 

 
Figure 13. Feature outside the threshold range for 

both classes. 

Thereby, for each feature HI, K+*H0-/:;<;=&%;'L_NO = 1, if the values for HI lie in the 

threshold interval (";6'(%@&=): "=78(%< value (HI) < "=EDD(%; otherwise, K+*H0-/:;<;=&%;'L_NO = 0. 

For example, K+*H0-/:;<;=&%;'L_NO = 1 for the attack profile (Figure 12) and 

K+*H0-/:;<;=&%;'L_NO = 0  in Figure 13 for both profiles.  

If N denotes the number of features in the feature set, the profile instance similarity 

(K+*H0-/:;<;=&%;'L) is defined according to Equation 6. 

 K+*H0-/:;<;=&%;'L = 	
∑ D%7N;=(STUTVWXTYZ_[\
]
\^_

`
       Equation (6) 

Finally, the classifier output should be rejected when it presents a low K+*H0-/:;<;=&%;'L 

(e.g., K+*H0-/:;<;=&%;'L< 0.7); otherwise, the event is labeled with the class informed by the 

model. Using this approach, it is possible to establish the profile similarity without the need to 
keep the feature values history to identify a change in feature distribution, increasing the overall 
system throughput in high-speed networks. 

The output of the combined classifier is assigned via a combination algorithm (Figure 
14), choosing the majority of the outputs of the individual classifiers whose outputs were not 
rejected. In the example of Figure 14-c, the output is rejected because no individual classifier 
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output is valid, while in Figure 14-a and Figure 14-b the output is accepted because there is at 
least one classifier that can reliably classify the event. 

 
Figure 14.Final class assignment using majority vote as batch learner classifier combination. 

4.5 Stream Learning – Resilience to Adversarial Attacks 

When the batch learner rejects an event, it is deemed as a new behavior and thereby an 
unreliable classification. Unreliable events are forwarded to a stream learning classifier, which 
in its turn, is able to incrementally adapt to changes in network behavior over time. However, 
in order to incrementally update the model, such schemes, in general, rely on a supervised 
dataset, in which the event’s labels must be known.  

In contrast, in production environments, the obtainment of the network event’s label can 
be a challenging task. Therefore, in such a case, one typically, resort to unsupervised stream 
learning algorithms. In general, those set of techniques typically, relies in a window-based 
approach, in which the update is performed based on time intervals (sliding window). In such a 
case, recent events are given a greater importance during the detection stage, whilst older events 



64 
 

 
 

are often discarded. Thereby, the model incremental update can be achieved without the 
assistance of an expert, but, on the other hand, it is prone to adversarial attacks. For instance, a 
sophisticated attacker, may change the attack behavior, either to evade the detection 

mechanism, or to pervert its properties, rendering model updates with misclassified instances. 

In the light of this, the next subsections describe the design of an unsupervised stream 
learning approach for anomaly-based intrusion detection that can automatically update the 
intrusion detection engine over time, while still being resilient to adversarial attacks. Therefore, 
the proposed approach relies in a class-specific stream outlier detection algorithm to be resilient 
to both causative and exploratory attacks (Section 2.2.2). The proposed stream learning resilient 
to adversarial attacks is shown in Figure 15 and described in the next subsections. 

 
Figure 15. Resilient to adversarial attacks anomaly-based intrusion detection through stream 

learning algorithm. 

4.5.1. Detection Scheme 

The proposed adversarial resilient stream learning relies in a class-specific stream 
outlier detection algorithm. For example, an outlier detection for normal events and an outlier 
detection for attack events. The detection is performed accordingly to Figure 15, (i) the set of 
features are extracted from the considered event, e.g. a network packet; (ii) a feature vector is 
supplied to each outlier detection algorithm; (iii) each outlier detection perform its detection, 
assigning a class either outlier (event does not belong to outlier detection class group) or inlier 
(event does belong to outlier detection class group); (iv) the detection engine receives the 
decision from each outlier detection and attempts to find a consensus among the decisions; (v) 
if a decision unanimity is found the class is assigned, otherwise, the event decision is rejected. 

When receiving an event decision, the detection engine decides whether the event 
classification is reliable or not. The class assignment reliability of an event classification (output 
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‘class X’ in Figure 15) comes from the nullity of intersection of decision from all classifiers. 

The reliability computation process is shown in Equation 7, where a/#0b0*); denotes to each 

Outlier Detection classifier output. 

⋂ (a/#0b0*);)
6
;fg = 	∅         Equation (7) 

As an example, consider two outlier detection algorithms (Eq. 7), one for normal events 
and one for attacks; an event which is classified as an inlier for normal and outlier for attack is 
reliable – the decision is an unanimity, because there is not an intersection between 
classification classes in the different detection engine for the same event. However, an event 
which is classified as inlier for more than one outlier detection should be rejected, as the 
decision is not reliable. Rejected classifications indicates that a potential evasion attempt or a 
false alarm might be occurring and another detection mechanism should be used, for instance, 
a signature-based intrusion detection mechanism or manual inspection. 

4.5.2. Ensuring Adversarial Machine Learning - Exploratory 

Unlike the traditional stream learning algorithms, to provide resilience to exploratory 
attacks, the immutable behavior of each outlier detection algorithm is considered. The 
immutable behavior is defined by a restriction that do not allow an outlier to become an inlier 
in the outlier detection algorithm over time (in a considered sliding window). In such a case, it 
considers that in the anomaly-based intrusion detection field an event that is initially classified 
as outlier will not become an inlier at any moment in time. For example, an attack that was 
classified as an outlier (attack) by the normal outlier detection algorithm, must not be classified 
as a normal event afterwards, even if its occurrence increases in the sliding window over time. 

By using the immutable behavior, the attacker will not be able to exploit the sliding 
window range to pervert (pollute) the classification of events being analyzed by an outlier 
detector. It is important to note that events classified as inlier continue to be added into the 
stream learning sliding window, thus the algorithm is still able to adapt to changes in the stream. 
But, the proposal mitigates a possible evasion attack, when the number of outlier events become 
predominant in a sliding window, therefore they will trigger the behavior mutation from outlier 
to inlier. 

4.5.3. Ensuring Adversarial Machine Learning - Causative 

To provide resilience to causative attacks, the proposal relies in both immutable 
behavior (Section 4.5.2) and class-specific outlier detectors. It considers that resilience to 
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causative attacks must be provided at two stages: initial training and ongoing readapting 
(retraining).  

The initial training is related to the initial outlier detector sliding window population – 

the filling of events in a sliding window. In this stage, the outlier detectors sliding window are 
still being populated, thus susceptible to causative attacks. Thereby, the proposed approach 
assumes that at least there are an initial population allowing the correct classification for one 
outlier detector, since the sliding window will be updated according to the initial events. A way 
of assuring the reliability of the initial training is preset the sliding windows with a predominant 
number of copies of the same inlier event. Thus, given the outlier detector is reliable, the 
classification outputs can be trusted if decision unanimity is reached, otherwise the 
classification is rejected. 

To provide a secure ongoing readapting, the proposal relies in both class-specific single 
class detection mechanism and immutable behavior (Section 4.5.2). The single class detection 
mechanism provides resilience to event behavior manipulation. For example, the attacker must 
manipulate the event behavior in a manner that it behaves as a normal event, while also being 
an outlier for the attack outlier detection mechanism. Whilst, the immutable behavior difficult 
the attack over the sliding window, since the attacker must have skills to manipulate the events 
in a manner that pervert all outlier’s detectors. 

4.6 Reliable Learning – Conformal Evaluator 

The aforementioned approach provides resiliency to adversarial attacks for 

unsupervised stream learning algorithms. In such a case, the model update is performed without 
the assistance of an expert. However, when the supervised approach is considered, one must 
request the event’s label over time, for update purposes. Thereby, a method must be designed 
to provide classification reliability in the presence of new network behaviors. This because, the 
stream learning model may become outdated, as it is prone to expert availability, for providing 
the event’s label. 

To provide reliable classifications over time, one must first evaluate the classification 
reliability degree. To this end, the classification reliability is assessed by the means of a 
conformal evaluator. The conformal evaluator aims at assigning a reliability degree for each 
classified instance. To achieve such task, the conformal evaluator computes two values: 
Credibility and Confidence. Credibility defines how well the instance fits into the assigned 
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class, while Confidence defines how well the instance does not fit into the other classes. Finally, 
a classification outcome is accepted according to Equation 8 and 9. 

i/-0!j0-0"kG(l%(( = m+/a0j0-0"k × m*)H0a/)#/      Equation (8) 

H(a/#0b0*)) = o
p)+/-0!j-/, i/-0!j0-0"kG(l%(( < "A=&::
+/-0!j-/, i/-0!j0-0"kG(l%(( ≥ "A=&::

     Equation (9) 

 In which the i/-0!j0-0"kG(l%(( denotes the degree of reliability for the classified 

instance, obtained by multiplying the m+/a0j0-0"k and m*)H0a/)#/ values. Finally, a decision 

can be considered reliable if its i/-0!j0-0"kG(l%(( is higher than a specific class threshold 

("A=&::). 

4.6.1. Computing Credibility and Confidence values 

Reliable classifications can be defined as instances with a similar behavior to their 
assigned class, i.e. instance that presents a known/similar behavior as the ones present in the 
training dataset. However, in general, traditional ML confidence values does not measure the 
degree of similarity, but rather the classification correctness. For instance, the decision tree 
classifier confidence values are typically computed as the ratio of instances in the training 
dataset that were classified as belonging to the given class, i.e. the accuracy rate in the given 
tree node. 

In contrast, to assess the reliability, one must first compute the Credibility and 
Confidence values. However, the computation of such values cannot be achieved by the means 

of a classification confidence, as it fails at providing reliable confidence values when new 
instance behavior is occurring. 

In this sense, to compute the Credibility and Confidence values, one must rely in the 
assistance of similarity-based metrics. Similarity-based metrics enables the measurement of 
distance to a specific group, thereby, measuring how well the sample fits not only to a given 
class but also to the training dataset itself.  

Figure 16 shows an example of how Credibility and Confidence values could be 
computed for a two-class dataset. The process occurs as follows: (a) A two-class training dataset 
of triangles and circles classes is considered; (b) The centroid for each class is computed; (c) 
Given a new example classified as triangle by a classifier, the Credibility value is computed as 
the ratio of triangles examples in the training dataset that falls outside the area between the 
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measured instance and the class centroid (triangle centroid); (b) Confidence is computed as the 
inverse of Credibility to circle class.  

 
(a) Two-class training 

dataset 

 
(b) Computation of class 

centroids 

 
(c) Credibility 

computation for an 
instance classified as 

triangle 

 
(d) Confidence 

computation for an 
instance classified as 

triangle 
Figure 16. Computation example of Credibility and Confidence values through a similarity-based algorithm in a 

two-class dataset. In this example the conformity measure is given as the distance to centroid.  

 In the figure, the distance to class centroid is used as a similarity (conformity) metric. It 
is important to note, that other measures can be used as a conformity metric. For instance, 
considering a random forest classifier [70], one may use the ratio of trees that classified the 
instance as a given class as the conformity metric. On the other side, when one is using a support 
vector machine [71], the distance to the hyperplane can be used as a conformity metric. In other 
words, any metric that enables to measure similarity (conformity) for a given group can be used 
to assess the classification quality, when computing the Credibility and Confidence values. 

4.6.2. Ensuring Reliability 

After the computation of the Credibility and Confidence values a decision can be made 
regarding the reliability of a given classification (Eq. 9). To this end, a classification is 

considered reliable when the i/-0!j0-0"kG(l%(( surpasses a reliability threshold ("A=&::) 

according to the class chosen by the classifier. 

 For the proposed conformal evaluator, reliability is reached if the classified instance is 
similar to the classified class (Credibility) while also not similar to other classes (Confidence). 
In this sense, in production, the conformal evaluator may face the following scenarios:   

• High Credibility, High Confidence (s1): instance is similar to classified class, and not 

similar to other classes. High	i/-0!j0-0"kG(l%((, event should be accepted, most likely 

a correct classification; 
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• High Credibility, Low Confidence (s2): instance is similar to classified class and other 

classes. Low i/-0!j0-0"kG(l%((, event will be accepted or not according to "A=&::. Could 

be a classification error or an instance similar to all classes; 

• Low Credibility, High Confidence (s3): instance is not similar to given class or other 

classes. Low i/-0!j0-0"kG(l%((, event will be accepted or not according to "A=&::, most 

likely it is a new behavior; 

• Low Credibility, Low Confidence (s4): instance is not similar to classified class, and 

similar to other classes. Low i/-0!j0-0"kG(l%((, most likely a classification error, event 

should be rejected; 

In this manner, in scenario s1, events can be accepted while maintaining the classifier 
reliability, as they present a similar behavior to the training dataset. However, in scenarios s2, 
s3, and s4, events should be rejected or not according to the administrator needs. In such cases, 

a low "A=&::, may imply in accepting more instances, which could either be a new behavior or 

an instance with a similar behavior to all classes, but not necessarily an error. Thereby, a series 

of evaluation tests must be performed to establish the "A=&:: values. 

The proposed conformal evaluator aims at addressing the challenge of ensuring 
reliability in face of new network traffic behavior. However, the occurrence of a high rejection 
rate over time to provide reliability may inhibit the usage of proposed reliable intrusion 
detection model in production. To this end, the detection scheme must be updated according to 
the incoming network traffic. The next subsection further details how such task can be achieved, 
when supervised stream learning algorithms are used. 

4.7 Reliable Learning – Adapting to Network Behavior Changes 

By the means of the proposed Classification Reliability Assessment method, it becomes 
possible to measure how reliable the classification is. However, the classification task is still 
necessary. In this sense, provide an ongoing updated classification scheme is a challenging task. 
To this end, the proposed approach combines several ML techniques, as shown in Figure 17. 
The proposed technique aims at providing the following properties:  
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Figure 17. Proposed reliable learning architecture. 

• Reliability: classifications are coped with conformal evaluator. Only reliable decisions 
are accepted; 

• Decrease Rejection Rate: to provide reliability one must reject unreliable instances, 

which could lead to unfeasible IDS over time in production usage. In order to further 
decrease the rejection rate, despite updating or not the detection scheme, the proposal 
employs batch and stream learners in a cascade pipeline classification approach; 

• Reliable Update Classification Scheme: the scheme reliable and ongoing update is 

enabled by employing Batch and Stream Learning algorithms coped together. The Batch 
Learning is not updated over time to ensure that the system maintain its reliability. On 
the other side Stream Learning is incrementally updated with expert assistance, to 
address changes over time in network behavior; 

• Decrease Expert Label Request: rejected instances are stored and their label periodically 

requested. To significantly decrease the expert label request a label propagation 
approach is employed. The assumption is that nearby instances belong to the same class 
as given by an expert;  

• Decrease Storage: the number of rejected instances that needs to be stored is 

significantly reduced by employing stream and batch learners, and updating the 
detection scheme over time; 

The next subsections further describe each of the detection scheme properties, and how 
they are achieved. 

4.7.1. Reliability 

Reliable classifications can only be assured with the assistance of a conformal evaluator. 
Thereby, a conformal evaluator is coped together with stream learner. The objective is to either 

accept a reliable classification, or reject unreliable ones. When an instance is rejected it is 
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assumed to be unreliable and should be stored. Stored instances can be used afterwards, for 
incremental model updates. 

4.7.2. Decrease rejection rate 

A high number of rejected instances may lead the proposed reliable intrusion detection 
model to be unfeasible for production usage, since rejected instances must be stored and 
manually inspected. Thereby the proposal aims at decreasing the rejection rate by applying 
incremental model updates. In addition, batch and stream learners are used to decrease the 
system rejection rate in a cascade manner.  

On the other hand, incremental model updates are performed ongoing. This enables the 
reduction of instances with unknown behaviors (Section 4.6.2, scenario 3), thereby further 
decreasing the rejection rate. 

4.7.3. Reliable update classification scheme 

The reliable and ongoing update of the classification scheme is achieved by the means 
of incremental model updates over the stream learning algorithm. The update process is as 
follows: (i) a subset of rejected instances is periodically obtained; (ii) the label of chosen 
instances are requested to an expert; (iii) the labels are propagated to nearby unlabeled 
instances; (iv) Stream Learning algorithms and their respective conformal evaluators are 
incrementally updated with labeled instances; (v) the subset of now labeled instances are 
removed from storage. 

 The usage of stream learning algorithm enables the ongoing update of the detection 

system. The conformal evaluator can also be incrementally updated, according to the used 
similarity-based algorithm. For instance, the incremental update of the conformal evaluator 
shown in Figure 16 can be achieved by updating the classes centroid, and adding the new 
instances into the dataset.  

4.7.4. Decrease expert label request 

The scheme assumption is that instances can be automatically labeled by the means of 
a label propagation technique, significantly reducing expert label requests. Thereby, to address 
possible label tagging errors introduced by such an approach, the approach relies in the batch 
learner. The batch learner is not updated throughout time in the proposed scheme. In this 
manner, possible mislabeled instances can only be introduced to the system if they are events 
previously rejected by the batch learner, i.e. the scheme maintain the detection reliability over 
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known behaviors, while also reliably adapts to new ones by the means of the stream learning 
algorithm.  

 However, one must note a tradeoff between expert label request and the label 

propagation error. This because the radius increase in the label propagation process, may 
introduce mislabeled instances to the stream learner. On the other side, a small label propagation 
radius, may significantly increase the expert label request periodicity and the required storage 
for rejected instances. Thereby, the tradeoff between such radius increase must be evaluated.  

4.7.5. Decrease storage 

Reliability is achieved by the means of rejecting unreliable classifications. However, the 
proposed scheme stores rejected instances until their label is known with the assistance of an 
expert. Thus, a high rejection rate can lead to an unfeasible amount of needed storage. In this 
sense, to decrease the needed storage, one must both reject less instances and also remove them 
from storage as soon as possible.  

 Therefore, rejection of less instances is achieved by ongoing updating the detection 
scheme over time. On the other side, the fast storage cleanup is achieved by the means of label 
propagation technique.  

4.8 Discussion 

A reliable near real-time network traffic classification for high-speed networks, namely 
reliable intrusion detection model was presented. Although the proposal is based on the use of 
existing machine learning techniques, it aim at addressing the open challenges in network-based 

intrusion detection systems (NIDS). To this end, the proposal checks whether the classifications 
outcome should be accepted or not, by the means of the conformal evaluator. When an event is 
rejected, this indicates with high probably that a new network traffic behavior is occurring. 
Although classification rejection was used in other areas where errors have a high cost (e.g., 
optical character recognition (OCR) [59] or medical diagnosis [56]), The proposal is the first 
intrusion detection system to exploit this technique in the context of assessing classification 
reliability over time. Second, the proposal employs stream learning and batch learning 
techniques coped together to analyze traffic in near real time. The goal is to support incremental 
model updates based on the rejected instances, while also maintaining its reliability over time. 
The expectation is that after a period (e.g., within one week), the rejected event can be properly 
classified by an expert or a tool (signature-based NIDS) based on public information (e.g., new 
indicators of compromise). At this point the proposal is able to incorporate the new knowledge 
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in the attack model. A major benefit is that the model updates are based only on correctly 
classified events, decreasing the risk of inaccurate detections, which may lead to high false 
positive rates while processing further packets.  

Rejecting low-confidence classifications in a NIDS – the key idea of this work –lead to 
two important benefits: better detection accuracy (i.e., fewer misclassifications) and the 
identification of new characteristics of the evolving traffic, which is then used for updating the 
classifier model. These benefits improve the proposal reliability over time, even with changing 
network traffic behavior, while also greatly decreasing the amount of computational and storage 
resources needed to operate the system. 
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Chapter 5  

 

The Building of Realistic Intrusion Datasets 

In order to properly evaluate the reliable intrusion detection model, one must first have properly 
built intrusion datasets. However, one of the main issues regarding such task concerns to the 
lack of availability of such data.  

Therefore, this chapter addresses the building of proper intrusion datasets, more 
specifically, two approaches for intrusion dataset building are presented and evaluated. First, a 
fine-grained intrusion dataset, obtained by the means of building a controlled environment is 
presented. The fine-grained intrusion dataset aims to enable the building of generalization 
capable models (Section 4.3), the evaluation of the classification reliability (Section 4.4), and 
the building of unsupervised stream learning algorithms resilient to adversarial attacks (Section 
4.5). Second, an approach for building an evolving intrusion dataset is presented. The built 
evolving dataset, namely MAWIFlow, is a breakthrough in the intrusion detection community 
as the most comprehensive intrusion dataset currently available. MAWIFlow aim to enable the 

evaluation of the reliability of classifications over time (Section 4.6), and the proposed reliable 
intrusion detection model (Section 4.7). 
 The fine-grained intrusion dataset building method and the controlled environment 
setup is described in Section 5.1. MAWIFlow building task and its characteristics are presented 
in Section 5.2. Finally, a discussion is made in Section 5.3. 

5.1 Fine-grained Intrusion Dataset 

The proposed fine-grained intrusion database creation method aims to ensure that the 
database contains the properties expected from an IDS testing intrusion database. To achieve 
this, the proposed method creates intrusion databases in a controlled environment and 
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reproduces a user’s behavior through well-known tools. The method considers two different 
users: the legitimate client and the attacker. The traffic is generated considering the client-server 
model. For generating the server-side network traffic, the honeypot technique is used, whereas 

the client traffic is generated through real-world workload tools. Thus, real and valid traffic is 
generated for the client-server communication. The attacks are generated using known, 
standardized, and widely used tools frequently implemented for system auditing. The traffic 
creation method overview is shown in Figure 18 and further described in the following sections. 

 
Figure 18. Proposed database creation method for fine-grained evaluation of intrusion detection systems. 

5.1.1. Normal (background) traffic creation method 

It is recommended that the traffic included in an intrusion database used for ML-based 
detection systems be real and valid. Thus, the method used for its design must ensure that the 
client-server interaction occurs correctly, thereby guaranteeing that the client behavior 
evidenced in the database is similar to that observed in the real world.  

The normal (legitimate) traffic must be generated according to two perspectives: the 
client and the server. The client is responsible for requesting the services available on the server, 
whereas the server is responsible for providing the appropriate response to each request in terms 
of content and service behavior. It is expected that the provided services, as well as their 
requested contents, are highly variable.  

Independent of the considered application, each user network traffic behavior, in 
general, is random and does not follow a statistical distribution when compared to that of a 
different application user [72, 73]; for instance, the behaviors of two different users browsing 
a Web application are not necessarily similar. Thus, the proposed method generates the normal 
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(background) traffic by providing a set of services, where each service has a set of contents that 
may be requested. Each client performs a real and valid request through a real-world workload 
tool; thus, real, and valid requests are generated for the client side. Each client sends a request 

for a previously defined service and a specific service content. After the client-server 
communication, the client waits a variable time and transmits a new request for another service. 
Thus, the client behavior is modeled according to the observed application usage, e.g., a client 
browsing a Web page for a certain duration.  

In turn, the server must be able to interpret the received request and generate the 
appropriate reply. The use of tools specific to the service being provided makes it difficult to 
update the intrusion database, whereas the use of a technique that mimics the server responses 
allows the database to be updated easily. Thus, the honeypot technique was considered, which 
allows the responses of a vulnerable server to be mimicked, with automated and valid responses 
to be generated.  

A set of predefined services are provided. Thus, every request, regardless of the 
requested service, is correctly interpreted and receives a legitimate reply. Under this 
assumption, the proposed fine-grained intrusion dataset creation method generates real, valid, 
and easy-to-update background traffic. The complete background traffic generation process is 
shown on the left side of Figure 18. 

5.1.2. Attack traffic creation method 

The lack of an appropriate implementation guarantee is the main problem that has been 

reported to occur during attack generation. In general, researchers (see, e.g. [21]) implement a 
known attack according to their discretion, which makes the attacks difficult to reproduce as 
there is no guarantee that the implementation follows a well-known defined standard. 

Immediately after a new attack becomes known and is reported, entities specify it. 
Initiatives such as the Common Vulnerabilities and Exposures (CVE) include the details of new 
vulnerabilities and the affected services. Implementations that are, for example, CVE-
compatible, guarantee that an attack will behave as expected (reported). Thus, tools that follow 
well-known standards are auditable and can be assessed.  

The fine-grained intrusion dataset creation approach, unlike those where the authors 
implemented their own version of the attacks, is based on the use of well- known and de facto 
standardized tools to generate the attacks. This approach ensures that the implementation of all 
the attacks included in the database is dependable when they become public, as the approach 
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follows a well-known standard. The complete attack traffic generation process is shown on the 
right side of Figure 18. 

5.1.3. Dataset Building 

The following sections discuss the details of the application of the described fine-
grained intrusion dataset creation method. An extensive description of the background and 
attack traffic generation is provided. Then, the testbed network infrastructure is discussed in 
detail. 

5.1.3.1 Background Traffic Generation 

The most desirable property of an intrusion database is that the background traffic is as 
realistic as possible. The normal traffic must be highly variable, real, and valid. However, 
background traffic generation is a complex and difficult task, mainly because of the complexity 
involved in modeling user behavior [74], which is, in general, random and application-
dependent. The network traffic generated is dependent on the user demand for an application 
and is specific to the environment being reproduced.  

Taking these factors into account, each client is treated as an entity with a pseudo-
random behavior that does not follow any statistical distribution pattern, as reported in [48]. 
Each client shows a unique behavior when requesting a service. Each client might request one 
or more services.  

To achieve this property, a set of predetermined services on the basis of the frequently 
used services discussed in [75] were established. The following services were considered to be 

generated on the testbed environment: HTTP, SNMP, SMTP, NTP, and SSH. Every name 
resolution (DNS) was also generated as a consequence of using the listed protocols.  

To create the honeypot server (Figure 18), which executes the server-side applications, 
in the proposed method the Honeyd [76] tool was used. To develop the client-side application 
for use with the servers, a workload tool was used as the service request tool. It is important to 
emphasize that the only purpose of using a workload tool was to generate valid and real 
requests.  

Each client requested the services hosted on the honeypot server; the emulated services 
and their client behaviors are described in Table 4. To ensure traffic variability, each client 
randomly varied the requested content, according to the description shown in Table 4, and the 
time between the requests varied from 0 to 4 s. The variation in the time between each request 
and in the requested content was designed to mimic the non-modellable behavior of clients. By 
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using this method, it became possible to simulate a user browsing a Webpage and also sending 
an e-mail, for instance.  

Table 4. Services used for the background traffic generation. 

Service Description 
(Client behavior varying from 0 to 4 s interval) 

HTTP The 1000 most visited Websites worldwide were downloaded using www.alexa.com/topsites and hosted on the honeypot server; each HTTP 
client requests a pseudo-random Website from this set of contents. 

SMTP Each SMTP client sends a mail with 50-400 bytes in the subject line and 100-4000 bytes in the body. 
SSH Each SSH client logs in to the honeypot host and executes a random command from a list of 100 possible commands. 
SNMP Each SNMP client walks through a predefined management information base (MIB) from a predefined list of possible MIBS. 
NTP The client performs time synchronization through the NTP protocol. 
DNS Every name resolution was also made to the honeypot server 

 
Every client generated a real and valid request for a service and received a real and valid 

reply from the honeypot server. Thus, all the generated background traffic was real and valid. 
Finally, to mitigate possible repetition in the generated traffic, each scenario was executed for 

30m, a reasonable time considering the request variability shown in Table 4. To allow the 
scenarios to be reproduced, the behavior for each client was logged. 

5.1.3.2 Attack Traffic Generation 

For the attack traffic generation, the taxonomy adopted by Kendall [19] was considered. 
To validate the proposed method, two groups of attacks were used as baseline attacks: probing 
and DoS. The attacks and tools used and their descriptions are listed in Table 5.  

Each attacker generated a specific attack type (Table 5), and to make the attacks highly 
variable, each attacker varied the frequency and duration during each testbed. A single machine 
generated each attack, allowing the automatic class labeling based on the network packet source 
IP address. It is important to note that this approach does generate environment-specific 
features; e.g., on the basis only of the IP address, an ML-based system can identify every attack. 
Thus, the system being evaluated using the fine-grained intrusion database must be aware of 
this restriction and should not use any environment-specific features, such as the time-to-live 
(TTL) and IP address fields2.  

 
Table 5. Tools used for attack network traffic generation. 

Category Attack Type Tool 
Used 

Description 

DoS 

SYN flood Hping3 Sends several requests to open TCP connections, varying the attack send frequency and the 
duration time 

UDP flood Hping3 Sends several UDP datagrams to an open DNS port, varying the attack send frequency, the 
duration time, and the size of each datagram 

ICMP flood Hping3 Sends several ICMP messages to the target, varying the attack send frequency, the duration 
time, and the size of each datagram 

TCP keepalive Slowloris Initiates several HTTP connections and keeps them open for a period, varying the number 
of connections to be opened 

                                                
2 The list of features extracted in the fine-grained intrusion dataset can be found in Appendix 1 
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SMTP flood Postal Sends several emails to an SMTP server, varying the duration time, body size, subject size, 
and frequency 

HTTP flood LOIC Sends several HTTP-get requests to a specific URL, varying the duration time and 
frequency 

Probing 

UDP scan Nmap Searches for open UDP ports, varying the attack send frequency and the duration time 
SYN scan Nmap Searches for open TCP ports by sending TCP packets with the SYN flag set while varying 

the attack send frequency and the duration time 
NULL scan Nmap Searches for open TCP ports by sending TCP packets without any flags set while varying 

the attack send frequency and the duration time 
TCP connect Nmap Searches for open TCP ports by completing the three-way handshake while varying the 

attack send frequency and the duration time 
FIN scan Nmap Searches for open TCP ports by sending TCP packets with the FIN flag set while varying 

the attack send frequency and the duration time 
XMAS scan Nmap Searches for open TCP ports by sending TCP packets with the FIN, PSH, and URG flags 

set while varying the attack send frequency and the duration time 
ACK scan Nmap Searches for open TCP ports by sending TCP packets with the ACK flag set while varying 

the attack send frequency and the duration time 
OS Fingerprint Nmap Identifies the OS from the target (https://nmap.org/book/osdetect.html) while varying the 

attack send frequency and the duration time 
Service Fingerprint Nmap Identifies the services and their versions from the target (https://nmap.org/book/man-

version-detection.html) while varying the attack send frequency and the duration time 
All Vulnerability Scan Nessus Identifies service-level vulnerabilities while varying the attack send frequency and the 

duration time 
 

5.1.3.3 Testbed environment 

The scenarios, which are described in more detail below, were composed of 100 
interconnected client machines. The number of clients was established to maximize the possible 
client behaviors (Table 4). Each client was an Ubuntu 16.04 machine; the network traffic was 
dependent on the workload tool used according to the service being requested. A single 
honeypot server was used in each scenario. The honeypot server was implemented using the 
Honeyd 1.5c tool, installed on an Ubuntu 16.04 machine, mimicking a vulnerable Ubuntu 14.04 
server. The attacker machines ran Kali Linux version 2.0; 16 machines were used to generate 

the attacks, with each attacker machine generating a single type of attack (Table 5). 

A single LAN network running at 100 Mbits/s connected the machines. The defined 
LAN network speed allowed the generated traffic to be recorded on a single machine without 
dropping packets or mirroring the traffic [36]. All legitimate requests and attacks were 
generated against the honeypot server (Figure 18); the generated traffic was stored on the 
honeypot server. 

The establishment of a single LAN network allowed the creation and replication of the 
proposed scenarios to be simplified. The definition of more complex scenarios [6, 36] would 
hamper the replication of the proposed method. In the next sections, each of the created 
scenarios is further described. 
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a. Attack detection scenarios 

As stated in Section 5.1.3.2, two attack categories were defined as the baseline attacks: 
probing and DoS. Thus, six scenarios were defined to generate databases to evaluate the attack 

detection rate (Figure 7, Attack Detection Evaluation).  
In the attack detection scenarios, each client was responsible for generating the 

background traffic for each client service request, as shown in the Venn diagram in Figure 19. 
The overlapping circles denote the clients that generated both services. The distribution among 
clients and services was designed to simulate the traffic distribution described in [75].  

 
Figure 19. Venn diagram of background service distribution among clients. 

The background network traffic remained immutable at the content request and client 
level. However, the attacker traffic varied according to each scenario, as described in Section 
4.3.1. For each considered attack type, i.e., probing and DoS, three scenarios were created. Each 
scenario was run for 30m. The attacks started at the 10th minute and lasted for 15 m (scenario 
time: the 10th to the 25th minute), following the attacker behavior described in Table 5. Thus, 
it was possible to capture the environment behavior without, with, and after the attacks. The 
network traffic distribution and the attacks used for each scenario are shown in Table 6.  

Three levels of attack similarity were defined in the databases: network-level 
vulnerabilities, service-level vulnerabilities, and service-level exploitation. The first scenario 
was named known. The purpose of the known scenario was to generate the classifier model and 
to define the known detection rate while detecting only the known attacks. Thus, only attacks 
at the network level, focusing on network protocol vulnerabilities, were generated. The similar 
databases contain attacks with a similar behavior but focusing on service-level vulnerabilities. 
Finally, the new database has a new type of attack that focuses on service exploitation.  

Table 6. Network traffic distribution for attack detection scenarios. 

Scenario Attacks Generated  
Traffic (Network Packets) Size (MB) 

Background Attack Total 
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Probing (Known) UDP scan, SYN scan, NULL scan, TCP connect, 
FIN scan, XMAS scan, and ACK scan 28,618,365 36,628 28,654,993 8.476 

Probing (Similar) OS fingerprint and service fingerprint 28,477,884 10,441 28,488,325 8.499 
Probing (New) Vulnerability scan 28,391,914 17,753 28,409,667 8.512 
DoS (Known) SYN flood, UDP flood, ICMP flood, and TCP 

keepalive 26,747,521 761,269 27,508,790 7.945 
DoS (Similar) SMTP flood and HTTP flood 40,278,594 26,390,723 66,669,317 12.143 

DoS (New) Vulnerability scan 27,522,317 3,429 27,525,746 7.265 
 
The created attack databases mimicked the behavior seen in production environments. 

Normally, when developing an ML-based NIDS, only attacks detectable by an NIDS are 
included in the training dataset. However, when used in production environments, the system 
will face a wider range of attacks. The databases were created according to the method 

described in Section 5.1.3 and were used to validate the evaluation method described in Section 
4.3. 

b. Background detection scenarios 

The background detection rate scenarios were generated using the attacks as the 
baseline. Thus, two sets of attacks were used, each generated separately, resulting in different 
databases, allowing correct method evaluation. The sets of attacks used consisted of the probing 
(known) and DoS (known) attacks, shown in Table 6.  

To generate the services’ detection databases, the services were divided into two groups: 
known and new services. The known services served HTTP and SNMP clients and the new 
services served SMTP, NTP, and SSH clients. Each scenario was executed for 30m; the 
distribution of clients followed the Venn diagram shown in Figure 20.  

 
Figure 20. Venn diagrams for the background service detection rate scenarios showing the service distributions 

among clients. 

Finally, to generate the content detection databases, the behavior of each client was 
modified. Three different behaviors were defined, divided into known, similar, and new content 
request behavior. The client’s distribution followed the Venn diagram shown in Figure 19, and 
the client’s behavior for each scenario is described in Table 7. The traffic distribution for each 
background detection database is shown in Table 8. 
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Table 7. Client behavior for service’s content detection scenarios. 

Service Database 
Known Contents Similar Contents New Contents 

HTTP Request a Webpage from 1 to 200 Request a Webpage from 1 to 500 Request a Webpage from 501 to 1000 
SMTP Each SMTP client sends a mail with 

50-400 bytes in the subject line and 
100-720 bytes in the body 

Each SMTP client sends a mail with 50-400 
bytes in the subject line and 100-1800 bytes 
in the body 

Each SMTP client sends a mail with 50-400 
bytes in the subject line and 1801-4000 
bytes in the body 

SSH Each SSH client logs in to the honeypot 
host and executes a random command 
from a list of 20 possible commands 

Each SSH client logs in to the honeypot 
host and executes a random command from 
a list of 50 possible commands 

Each SSH client logs in to the honeypot 
host and executes a random command from 
a list of 50 never-seen commands 

SNMP Each SNMP client operates through a 
predefined MIB from a predefined list 
of possible MIBS 

Each SNMP client operates through a 
predefined MIB from a predefined list of 
possible MIBS 

Each SNMP client operates through a 
predefined MIB from a predefined list of 
possible MIBS 

DNS Every name resolution is also defined in the honeypot server 

Table 8. Network traffic distribution for backround detection scenarios. 

Database Scenario Generated Attacks  
Traffic (Packets) Size (MB) 

Background Attack Total 

Service 
Detection 

Known Probing (Baseline) 6,260,424 34,239 6,274,663 731 
New 36,807,285 37,973 36,845,258 12,325 

Known DoS (Baseline) 6,874,239 753,838 7,628,077 972 
New 37,273,872 812,384 38,086,256 12,738 

Content 
Detection 

Known 
Probing (Baseline) 

25,240,803 35,782 25,276,585 7,909 
Similar 26,216,937 36,245 26,253,182 7,959 

New 30,600,739 38,235 30,638,974 8,905 
Known 

DoS (Baseline) 
27,376,278 746,287 28,122,565 8,782 

Similar 28,241,742 784,972 29,026714 8,932 
New 33,235,457 797,728 34,033,185 9,748 

 

5.1.4. Discussion 

The proposed fine-grained intrusion database creation method allowed real and valid 

network traffic to be generated, as the honeypot generated valid replies to each of the received 

requests. The event classes were automatically defined (labeled as a feature vector), to avoid 
manual labeling and to provide an error-free approach because of the number of packets to be 
evaluated. The automatic labeling was determined according to the source IP address for each 
network packet. This was possible because the attacker’s machine generated only attack 
content. Additionally, the use of manual class labeling or clustering techniques [77] was 
avoided, reducing the labeling error.  

Low variability or repeated traffic occurrences were mitigated, as the client content 
requests, the time between each request, and the requested application were varied. The use of 
well-known tools allowed the databases to be updated at each new vulnerability (attack) report, 

as the used tool became responsible for the network traffic update to ensure the correct attack 
implementation. To allow the deployed scenario to be reproduced, every client and attacker 
behavior was logged. Finally, privacy problems did not occur, because the databases were 
obtained in a controlled environment and the generated network traffic did not include any 
sensitive data.  
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Using the proposed fine-grained intrusion database creation method, it was possible to 
create 16 databases (Tables 6 and 8), each of which was aimed to validate the common 
assumptions adopted in the literature [6, 7], as described in Section 4.3, and to present network-

specific detection rates.  
The next section describes the steps involved in creating an intrusion dataset for the 

evaluation of ML-based intrusion detection techniques over time. 

5.2 An Evolving Intrusion Dataset 

To benchmark the behavior of ML-based IDS over time, a dataset, named MAWIFlow, 
with labeled (i.e., classified as either Normal or Attack) real network flows collected over 10 
years is built. Similarly to the fine-grained intrusion dataset, MAWIFlow also fulfill a number 
of requirements, including be realistic and highly variable, prior labeled with correctly 
classified events, reproducible, and publicly available [36].  

MAWIFlow is based on real and publicly available network traffic. More specifically, it 
is based on the network flows extracted from the MAWI network packets traces [16], collected 
daily for a 15-minute interval, from a transit link between Japan and USA. The labeling of 
records is achieved through MAWILab [15], which labels the daily anomalous events (network 
flows) from MAWI through a combination of several state-of-the-art unsupervised anomaly 
detectors. For the purpose of this dissertation, the network traffic captured in a 10-year range, 
from 2007 to 2016 was considered. 

The MAWIFlow dataset is built through BigFlow feature extraction tool (see Section 

4.2) [60] which extracts 158 host-based and flow-based features, some of which have been 
employed in previous works, being them: 15 features from Orunada et al. [78], 21 from Nigel 
et al. [79], 60 from Moore [80], and 62 from Viegas et al. [5]. Host-based features are features 
extracted according to the communication between two hosts, e.g. bytes sent/received in the 
last 15 seconds. On the other side, flow-based features refer to the features extracted according 
to the communication from a specific host, e.g. average packet size sent from host3.  

For the label assignment process, MAWIFlow assigns the label that was associated to 
the flow from which the feature was extracted. Table 9 shows a summary of the MAWIFlow 
dataset. Figure 21 shows the network distribution over time, and the distribution amongst the 

                                                
3 The complete list of features for each view can be found in Appendix I 
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classes. As can be seen, it contains over 28 billion network flows, extracted by analyzing more 
than 138 billion network packets from 10 years of real network traffic. 

Table 9. MAWIFlow statistics. 

Field Value 
Average Daily Network Packets ~37.8 Millions 
Average Daily Network Flows ~7.7 Millions 
Average Daily Anomalous Flows ~1.7 Millions 
Average Daily Dataset Size ~8.41 GB 
Total Network Packets  ~138.64 Billions 
Total Network Flows ~28.34 Billions 
Total Dataset Size ~30 TB 

 
The original MAWIFlow dataset is composed of over 30 TB of data. Thereby, a 

stratification process was needed to reduce its size, enabling its sharing and facilitating its use 
for NIDS evaluation. Thus, the proportional random stratified sampling without replacement 
method [81] was employed to generate the stratified MAWIFlow dataset. The resulting dataset 
comprises just one percent of the original dataset, while maintaining the original proportion 
amongst the network traffic classes (Normal and Attack), which are randomly chosen. 

Besides being the first dataset of this kind publicly available, MAWIFlow overcome the 

main challenges faced when building realistic datasets for benchmarking intrusion-detection 
engines. More specifically, it presents all the desired properties described in [36]: 

Realistic: the network traffic used for its building was obtained from real network traces. 
Moreover, MAWIFlow was built from over 10 years of real network traces, enabling not only 
evaluation of the detection system during a specific period of time, but also to evaluate how it 
behaves over time, when facing new network traffic behavior; 

Valid: the network traces used for the MAWIFlow building were gathered from real network 
traces. Although MAWI (network traces used in MAWIFlow) is provided in a sanitized manner, 
i.e., payload is removed and sensitive data from network packet headers are encrypted, the 
network flow reconstruction is still possible. In this manner, the sanitization process used by 
MAWI does not affect the features values; 
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(a) Daily number of network flows in MAWIFlow 

 
(b) Daily distribution of network flows in MAWIFlow 

Figure 21. MAWIFlow network traffic distribution throughout 10 years. 

Prior labeled: event labels were identified by state-of-the-art unsupervised machine learning 
techniques (assessed by MAWILab). In this manner, supervised ML techniques can be 

evaluated regarding their performance using unsupervised techniques as their baseline 
performance; 

Highly Variable: MAWIFlow is highly variable not only due to the used network traces but 
also due to its long period of recording. The used network traces are real, valid, and gathered 
from a real network infrastructure, thereby it presents the expected variability from production 
environments. Nonetheless, due to its long period of recording (from 2007 to 2016), the 
detection system can be evaluated considering the environment variability for 10 years;   

Reproducible and Publicly Available: the used network traces were gathered from publicly 
available sources (MAWI). Moreover, BigFlow [60] (Section 4.2) source code is also publicly 
available. 

MAWIFlow, is the first of its kind to provide means of assessing the reliability of ML-
based IDSs. It presents all the expected properties from intrusion detection datasets [36], while 
also span for 10 years of real network traffic, resulting from the analysis of over 30 TB of data.  
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Chapter 6  

 

Experiments 

The experiments are divided according to the methods presented for the reliable intrusion 
detection model (Chapter 4).  

More specifically, in Section 6.1 the evaluation of reliable batch learning algorithms is 
performed. The first experiment, in Section 6.1.1, aims at evaluating the reliability of traditional 
batch learning building methods regarding their generalization capacity, and the proposed 
approach for building generalization capable models. After, the method for providing reliability 
in classifications for batch learning classifiers is evaluated in Section 6.1.2.  

In Section 6.2, the proposed stream learning approach resilient to adversarial attacks is 
evaluated. The proposed approach is compared to both traditional batch and stream learning 
techniques in the fine-grained intrusion dataset. 

Finally, Section 6.3 addresses the evaluation of the reliable intrusion detection model 
over time. Therefore, the first experiment evaluates traditional intrusion detection techniques 

regarding their reliability over time in MAWIFlow. After, the proposed conformal evaluator is 
evaluated in Section 6.3.2. Finally, the method to reliably adapt to network behavior changes 
over time is evaluated in Section 6.3.3. 

The proposed BigFlow is evaluated regarding its scalability and throughput in Section 
6.4. 
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6.1 Batch Learning 

This section presents the evaluation regarding the building of reliable batch learning 
models for intrusion detection in a twofold manner. First, the proposed approach for building 

generalization capable batch learning models is evaluated (Section 6.1.1). Second, in order to 
address the changes in network traffic behavior over time, the proposed approach for providing 
reliability in batch learning models classifications is evaluated (Section 6.1.2). 

6.1.1. Generalization 

The method for building generalization capable models was evaluated by the means of 
the fine-grained intrusion dataset (see Section 5.1).  

Because of how the classes are disposed in the created datasets, a stratification process 
was used so that each class was equally represented in the training, testing and validation 
datasets (Tables 6 and 8). The stratification process consisted of randomly selecting 25% of the 
events from the class with fewer occurrences; then, the same number of events were randomly 
selected from the other classes. The datasets were obtained using this stratification process, 
with 25% of the events being used for training, 25% for validation, and the remaining events 
for testing. 

For the model building process, the Weka framework version 3.8.0 was used [82]. Two 
batch learners were used during the evaluation tests: naïve Bayes (NB) and decision tree (DT). 
For the NB classifier, all numerical attributes were discretized according to the method of Fayad 
and Irani [83]. The C4.5 DT algorithm was used with a confidence factor of 0.25. 

6.1.1.1 Model Evaluation 

To evaluate the proposed batch learner evaluation method towards generalization 
capable models (Section 4.3, Figure 7) and the multiple objective feature selection method for 
building generalization capable models (Section 4.3), two classifiers were used: DT and NB. 
During the evaluation, the FP denotes the number of normal instances (normal client network 
packets) wrongly classified as attacks, whereas FN is related to the number of attack instances 
wrongly classified as normal. 

To obtain the generalization capacity (Figure 7, Generalization Evaluation), the publicly 
available DARPA1998 database [20] was used. Despite its well-known problems [20, 21], 
DARPA1998 is still extensively used in studies in the literature (see, e.g., [31]) and provides a 
reasonable benchmark for research studies. The database consists of a nine-week air force 
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environment simulation. The data of the first seven weeks are used for training and of the last 
two weeks for testing. For each day, DARPA1998 provides, among other files, a tcpdump file 
containing the network packets and a description file describing the classes for each connection. 

For the evaluation tests, only the DARPA1998 training data were used; the feature 
extractor was modified to label the network packet classes according to the description file4. 
The connection classes were divided according to Kendall’s [19] taxonomy; two attack groups 
were considered: probing and DoS. Table 10 presents the network traffic distribution for the 
used classes in DARPA1998.  

Table 10. Traffic distribution on DARPA1998. 

Category Class Number of packets (representativeness) 
All Normal 28,426,093 (94.96%) 
DoS Synflood — Neptune 1,507,319 (5.04%) 

Probing Port scan — Nmap 2,211 (0.01%) 
Total 29,935,623 (100.00%) 

The rates presented for the attack and normal datasets were obtained using the test 
dataset, which was built using the aforementioned stratification process. The following 
subsections present and discuss the results obtained using the traditional intrusion detection 
techniques and the proposed multi-objective feature selection method for building generation 
capable models. 

6.1.1.2 Traditional Model Building Process 

The traditional model building process was divided into two groups: in one (selection) 
the traditional feature selection was performed and in the second (no-selection) it was not.  

The selection group relied on the traditional feature selection method, as described in 
[5, 84, 85]. For this purpose, a wrapper-based GA feature selection method was used, the 
objective of which was to increase the accuracy in the validation dataset. The GA was used 
with 100 generations and 100 populations for each generation, a mutation probability of 3.3%, 
and a 60% crossover probability. The no-selection group selected a subset from 50 features of 
the extracted features during the model building process5.  

To perform the traditional model building process, the approach normally used in 
studies in the literature [5] was considered. The no-selection and selection groups were trained, 
validated, and tested using the known datasets (Figure 7, Known Attacks, Known Services, and 

                                                
4 Details regarding the fine-grained intrusion dataset feature extractor can be found in Appendix 1, and in [5] 
5 It is important to note that the feature extraction process for the fine-grained intrusion dataset was not made by 
BigFlow, in contrary, it used the extractor described in [5] 
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Known Services’ Content), whereas the generated models were evaluated using the remaining 
datasets (Figure 7). The presented rates were obtained from the test dataset, when the dataset 
was also used for training (Figure 7, Known datasets), and from the entire dataset, when the 

dataset was used only for the tests (Figure 7, Similar, New, and Publicly Available datasets). 
The obtained attack detection rates are presented in Table 11.  

Table 11. Rates obtained for attack detection scenarios. 
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no-selection 99.99 0.02 0.00 98.62 0.04 2.72 64.66 0.09 70.59 

selection 99.99 0.00 0.02 93.70 0.04 12.57 53.30 0.00 91.39 

multi-objective (attack) 99.82 0.23 0.12 99.41 0.11 1.07 99.76 0.09 0.38 

multi-objective (normal) 99.93 0.01 0.13 99.27 0.04 1.42 74.56 0.05 50.83 

multi-objective (generalization) 99.88 0.15 0.09 99.66 0.11 0.57 96.34 0.16 7.17 

multi-objective (all) 99.87 0.13 0.13 99.29 0.04 1.38 96.12 0.02 7.73 
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no-selection 99.75 0.27 0.22 99.04 0.15 1.76 57.38 0.18 85.06 

selection 99.99 0.01 0.00 99.37 0.00 1.26 65.72 0.02 68.54 

multi-objective (attack) 99.61 0.72 0.07 99.35 0.46 0.84 98.61 0.38 2.39 

multi-objective (normal) 99.88 0.12 0.12 98.80 0.19 2.22 62.18 0.14 75.51 

multi-objective (generalization) 99.47 0.66 0.41 96.90 2.68 3.52 90.92 2.32 15.84 

multi-objective (all) 99.67 0.45 0.21 97.76 1.26 3.22 92.03 1.13 14.80 
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no-selection 99.97 0.01 0.06 99.95 0.03 0.08 75.61 0.00 48.77 

selection 99.99 0.00 0.03 99.96 0.03 0.06 51.11 0.00 97.78 

multi-objective (attack) 99.99 0.01 0.01 99.91 0.15 0.03 92.59 0.23 14.59 

multi-objective (normal) 99.98 0.01 0.02 99.90 0.14 0.05 79.35 0.00 41.31 

multi-objective (generalization) 99.98 0.01 0.03 99.94 0.03 0.09 74.27 0.00 51.46 

multi-objective (all) 99.98 0.01 0.02 99.93 0.04 0.10 90.08 0.00 19.84 
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no-selection 99.90 0.09 0.11 97.76 0.79 3.69 57.29 0.00 85.41 

selection 99.95 0.01 0.05 98.95 0.09 2.00 50.70 0.00 98.60 

multi-objective (attack) 99.92 0.00 0.15 98.10 1.96 1.83 88.68 0.70 21.94 

multi-objective (normal) 99.35 1.17 0.13 98.95 0.09 2.00 51.92 0.00 96.15 

multi-objective (generalization) 98.94 0.10 2.06 98.03 1.39 2.55 54.78 0.00 90.43 

multi-objective (all) 99.93 0.00 0.13 98.65 1.73 0.97 81.33 0.35 36.99 

The DT and NB classifiers could obtain a reasonable high accuracy rate in both the 

Probing and the DoS !""!#$56786 datasets. The average accuracy and FN rates for the known 

attacks for both Probing and DoS were 99.87 % and 99.93% for the no-selection group and 
99.99% and 99.97% for the selection group, respectively. The traditional feature selection 
process (selection) improved the classification accuracy for known attacks by an average of 
0.08%. 

However, in the similar attack datasets, it was possible to observe an increase in the FN 
rates. The worst classifier was DT with the selection method, which showed a 12.57% FN rate 
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on the Probing database, whereas NB with the no-selection method showed a 3.69% FN rate. 
On average, the FN rate increased by 3.97% and 2.06% with the selection and no-selection 
approach, respectively. Thereby, it can be stated that the current approaches in the literature can 

detect similar attacks with a small increase in the FN rate, 3.01% on average. In most cases, the 
selection approach decreased the FN rate for detecting similar attacks; the only case where the 
FN rate increased was that of DT on the Probing database, which showed a 9.85% rate. The FP 
rates remained almost unchanged, with an average increase of 0.09% with both model building 
methods; thus, it is possible to note that the used services (Table 4) still present the same or 
similar behavior under different attacks. Finally, for detecting new attacks, the FN rates 
significantly increased.  

The best FN rate was obtained by NB with the selection method with a 68.54% FN rate 
on the Probing dataset, whereas a 48.77% FN rate was obtained by DT with the no-selection 
method on the DoS dataset. The results show the inability of machine learning methods, more 
specifically batch learning, to detect new attacks in the evaluated scenarios. Neither of the 
classifiers could maintain the obtained rates during the model testing on known attacks. The 
ML-based assumption for detecting new attacks was not evidenced during the evaluation tests, 
where the traditional detection approaches were used: the FN rate as compared to that of the 
testing phase, was increased by 72.46% and 89.05%, on average, for the no-selection and 
selection methods, respectively. 

The obtained background detection rates are presented in Table 12. Each batch learner 

and model building method could detect known services and known services’ content, reaching 
an average FP rate of 0.13% and 0.08%, respectively. The selection method improved the FP 
rate by 0.25% on average for known services’ content and by 0.14% for known services. 

For detecting new services, the FP rate greatly increased; in general, the selection 
method increased the FP rate significantly: 20.82% on average against 6.03% with the no-
selection method. However, for detecting similar and new services’ content, the selection 
method showed an average FP rate of 0.68% for both similar and new services’ content, 
whereas the no-selection method showed an FP rate of 1.50% and 3.06% for similar and new 
services’ content, respectively. 

Table 12. Rates obtained for normal detection scenarios. 
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no-selection 99.94 0.12 0.00 99.97 0.05 0.00 99.98 0.04 0.00 99.96 0.05 0.02 92.93 14.12 0.02 

selection 100.00 0.00 0.00 98.89 2.22 0.00 98.74 2.51 0.00 99.99 0.01 0.00 99.34 1.31 0.00 

multi-objective (attack) 99.90 0.20 0.00 99.81 0.37 0.00 99.73 0.54 0.00 99.91 0.14 0.03 98.50 2.98 0.03 

multi-objective (normal) 99.99 0.01 0.00 99.99 0.01 0.00 99.99 0.01 0.00 99.97 0.01 0.05 99.92 0.11 0.05 

multi-objective (general) 99.92 0.07 0.09 98.85 2.22 0.09 97.30 5.31 0.09 99.86 0.23 0.05 86.41 27.13 0.05 

multi-objective (all) 99.95 0.08 0.02 99.93 0.11 0.02 99.96 0.07 0.02 99.94 0.05 0.02 99.84 0.27 0.05 
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no-selection 99.67 0.52 0.14 98.31 3.23 0.14 96.90 6.05 0.14 99.83 0.31 0.03 96.96 6.05 0.03 

selection 99.99 0.02 0.00 99.81 0.37 0.00 96.96 0.08 0.00 99.99 0.01 0.00 79.43 41.15 0.00 

multi-objective (attack) 99.54 0.93 0.00 98.08 3.93 0.00 96.55 6.90 0.00 99.37 1.27 0.00 96.06 7.87 0.00 

multi-objective (normal) 99.94 0.04 0.08 99.92 0.09 0.08 99.91 0.11 0.08 99.97 0.02 0.03 99.46 1.05 0.03 

multi-objective (general) 99.56 0.68 0.22 97.88 4.03 0.22 95.02 9.74 0.22 98.73 2.41 0.13 98.88 6.12 0.13 

multi-objective (all) 99.61 0.64 0.13 98.13 3.60 0.13 96.55 6.77 0.13 98.94 2.05 0.08 96.50 6.92 0.08 
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no-selection 99.99 0.03 0.00 99.98 0.04 0.00 99.97 0.05 0.00 98.98 0.02 0.02 99.78 0.43 0.02 

selection 100.00 0.01 0.00 99.97 0.07 0.00 99.98 0.04 0.00 100.00 0.01 0.00 98.27 3.46 0.00 

multi-objective (attack) 99.96 0.03 0.04 99.94 0.08 0.04 99.90 0.15 0.04 99.93 0.09 0.04 93.33 13.29 0.04 

multi-objective (normal) 99.98 0.03 0.02 99.99 0.01 0.02 99.98 0.02 0.02 99.99 0.00 0.02 99.98 0.02 0.02 

multi-objective (general) 99.96 0.06 0.02 99.97 0.05 0.02 99.98 0.03 0.02 99.97 0.05 0.01 99.98 0.04 0.01 

multi-objective (all) 99.96 0.03 0.05 99.92 0.11 0.05 99.91 0.13 0.05 99.94 0.07 0.05 99.92 0.12 0.05 

N
ai

ve
 B

ay
es

 

no-selection 99.50 0.36 0.65 98.33 2.69 0.65 96.63 6.08 0.65 99.64 0.20 0.51 97.99 3.50 0.51 

selection 100.00 0.00 0.00 99.98 0.04 0.00 99.95 0.09 0.00 100.00 0.00 0.00 81.30 37.35 0.00 

multi-objective (attack) 98.91 0.49 1.69 98.07 2.16 1.69 98.71 0.89 1.69 99.35 0.29 1.02 92.37 14.23 1.02 

multi-objective (normal) 99.99 0.00 0.03 99.98 0.02 0.03 99.98 0.02 0.03 99.99 0.00 0.03 99.82 0.34 0.03 

multi-objective (general) 98.93 0.04 2.11 98.32 1.26 2.11 97.20 3.48 2.11 98.93 0.02 2.12 91.91 14.06 2.12 

multi-objective (all) 99.86 1.20 0.08 98.98 1.95 0.08 98.09 3.74 0.08 99.77 0.13 0.32 98.73 1.74 0.32 

Finally, Table 13 shows the generalization evaluation performed on DARPA1998. A 
significant increase in the FP and FN rates can be observed when the model was used in a 
different scenario. Several observations can be made from Tables 11, 12, and 13 regarding the 
traditional model building methods: 

• Both batch learners, regardless of the model building method used, could detect known 

events (attacks, services, and services’ content). The worst detection rates were 99.75% 
for known attacks, 99.67% for known services’ content, and 99.98% for known services. 

 

 

Table 13. Rates obtained for generalization evaluation. 
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 no-selection 86.97 15.20 10.85 

selection 90.38 8.86 10.36 

multi-objective (attack) 81.55 31.80 5.11 
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multi-objective (normal) 86.79 15.78 10.63 

multi-objective (general) 98.42 2.89 0.27 

multi-objective (all) 96.25 7.24 0.27 
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no-selection 75.93 48.12 0.00 

selection 78.56 33.29 9.59 

multi-objective (attack) 83.77 32.43 0.00 

multi-objective (normal) 68.75 7.91 54.59 

multi-objective (general) 97.29 5.43 0.00 

multi-objective (all) 96.43 7.15 0.00 
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no-selection 38.98 30.47 91.57 

selection 99.41 0.00 1.18 

multi-objective (attack) 94.56 10.89 0.00 

multi-objective (normal) 85.23 29.54 0.00 

multi-objective (general) 99.90 0.20 0.00 

multi-objective (all) 99.36 1.29 0.00 
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no-selection 82.71 34.56 0.01 

selection 84.26 31.19 0.29 

multi-objective (attack) 81.82 29.28 7.09 

multi-objective (normal) 93.53 12.77 0.05 

multi-objective (general) 99.66 0.52 0.16 

multi-objective (all) 95.23 8.57 0.97 

• None of the batch learners could maintain its obtained accuracy on the model building 

dataset for detecting new attacks. The ML-based assumption for detecting new attacks 
was not evidenced when the machine learning technique was used. 

• The traditional machine learning (through batch learning) technique was able to detect 
similar attacks (Table 11; 1.97% and 3.95% FP rate increase for the no-selection and 

selection methods, respectively), making it a viable approach for detecting possible 
intrusion attempts, provided that the attacks present a similar behavior. 

• In general, there was an FP increase for detecting new services (Table 12; 13.42% 
average FP rate); however, the accuracy loss was less than that observed for detecting 
new attacks (Table 11; 80.77% average FN rate). 

• A small increase in the FP rate was evidenced for detecting new services’ content (Table 
12; 2.80% and 0.67% FP rate increase for the no-selection and selection methods, 
respectively); however, in most cases, the classifiers were able to correctly distinguish 
the classes. 

• When using the obtained batch learners in a different environment (Table 13), the 

detection accuracy significantly decreased, even for detecting known attacks; in most 
cases, the model became scenario-dependent.  
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The proposed evaluation method (see Section 4.3) allowed the common assumptions 
presented in the literature to be verified. Moreover, it allowed rich intrusion detection properties 
to be obtained from the intrusion detection scheme, which helps experts determine whether 

their systems are reliable for open-world usage or not.  

During the evaluation tests using the traditional machine learning (batch) model 
building techniques it was observed that, when a classifier faced known events, it presented a 
reasonable accuracy rate. The results showed a decrease in accuracy when a classifier faced 
similar events; the effect on accuracy further increased when a classifier faced new attacker and 
client behaviors. The next subsection evaluates the proposed multi-objective feature selection 
method for building generalization capable models (Section 4.3.5)  

6.1.1.3 Multi-objective Feature Selection 

The well-known NSGA-II [86] algorithm was used for the multi-objective feature 
selection for building generalization capable models (Section 4.3.5). As previously described, 

three objectives must be considered during the model building process: the !""!#$%&'( 

(Equation 1), )*+,!-%&'( (Equation 4), and ./)/+!-01!"0*)%&'( (Equation 5). NSGA-II 

operates by minimizing the objectives; thus, for the tests purposes, the obtained error rate in the 
evaluation tests was considered. The same set of parameters used by the traditional feature 
selection process was used (Section 6.1.2): 100 generations and 100 populations for each 
generation, a mutation probability of 3.3%, and a 60% crossover probability. 

As stated in Section 4.3.5, the desired objective must be defined according to the 
administrator’s needs. Thus, for test purposes, four operation points were chosen: attack, 
normal, generalization, and all. Each chosen operating point presented the lowest error rate 

related to its objective: attack presented the lowest !""!#$%&'( (Eq. 1) error rate, normal 

presented the lowest )*+,!-%&'( (Eq. 4) error rate, generalization presented the 

./)/+!-01!"0*)%&'( (Eq. 5) error rate, and finally, all presented the lowest error rate 

considering all objectives. The obtained objective rates are presented in Table 14. The proposed 
multi-objective feature selection achieved the best results in all cases for detecting its 
considered objective.  

Table 14. Rates obtained for each considered objective. 
Attacks Classifier Model Building Method !""!#$%&'( )*+,!-%&'( ./)/+!-01!"0*)%&'( 

Probing Decision Tree 

no-selection 87.76 98.56 86.97 

selection 82.33 99.39 90.38 

multi-objective (attack) 99.66 99.57 81.55 
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multi-objective (normal) 91.25 99.97 86.79 

multi-objective (general) 98.63 96.47 98.42 

multi-objective (all) 98.43 99.92 96.25 

Naïve Bayes 

no-selection 85.39 98.33 75.93 

Selection 88.36 95.24 78.56 

multi-objective (attack) 99.19 97.92 83.77 

multi-objective (normal) 86.95 99.84 68.75 

multi-objective (general) 95.76 98.01 97.29 

multi-objective (all) 96.49 97.95 96.43 

DoS 

Decision Tree 

no-selection 91.84 99.74 38.98 

Selection 83.69 99.64 99.41 

multi-objective (attack) 97.50 98.61 94.56 

multi-objective (normal) 93.08 99.98 85.23 

multi-objective (general) 91.40 99.97 99.90 

multi-objective (all) 96.66 99.93 99.36 

Naïve Bayes 

no-selection 84.98 98.42 82.71 

Selection 83.20 96.25 84.26 

multi-objective (attack) 95.57 97.48 81.82 

multi-objective (normal) 83.41 99.95 93.53 

multi-objective (general) 83.92 97.06 99.66 

multi-objective (all) 93.30 99.09 95.23 

The multi-objective (attack) operation point improved the !""!#$%&'( in all cases. As 

compared to the traditional selection method, it improved the !""!#$%&'( by 17.33% and 

10.83% for the DT and NB classifiers on the Probing dataset, respectively, while improving it 
by 13.81% and 12.37% for the DT and NB classifiers on the DoS dataset, respectively. On 

average, the multi-objective (attack) improved the !""!#$%&'( accuracy by 10.49% and 13.59% 

for the no-selection and selection methods, respectively. As compared to the other operation 

points, multi-objective (attack) improved the !""!#$%&'( accuracy by 5.54% on average.  

In the individual attack detection accuracy (Table 11), a significant improvement can be 
observed. The multi-objective (attack) operating point significantly improved the detection of 
similar and new attacks. On average, it improved by 0.77% and 0.27% for similar attacks as 
compared to the traditional model building methods and the other operating points, 
respectively. For the detection of new attacks, the multi-objective (attack) operating point 
enabled the detection of new attacks in most cases, improving the detection rate of new attacks 
by 35.44% as compared to the traditional model building methods and by 16.25%, on average, 
as compared to the other operating points.  

Finally, it is possible to note a tradeoff between the !""!#$%&'( objective and the other 

objectives. In most cases, the multi-objective (attack) operation point reduced the accuracy of 
the other objectives; as compared to the other operation points, the only case where the objective 
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was improved was for the DT classifier on the Probing dataset, showing an improvement of 
0.78% on average for the normal objective. On average, the tradeoff between objectives when 
the attack objective was considered was -0.62% for normal detection and -7.65% for the 

generalization objective.  

The multi-objective (normal) operation point slightly improved the )*+,!-%&'( 

objective as compared to the other techniques in all cases. The multi-objective (normal) 
operation point improved the detection of normal events on average by 1.74% and 1.44% as 
compared to the traditional model building methods and the other operating points, 
respectively. These small accuracy improvements occurred as a result of the models’ capacity 
to detect normal events with little or no effect on accuracy (Section 6.1.1.2). It is possible to 
note a significant tradeoff between the detection of normal events and attack events, and 
generalization. On average, as compared to the other operating points, when the multi-objective 
(normal) operation point was considered the detection of attacks was reduced by 6.87%, 
whereas the model generalization capacity decreased by 10.11%.  

The multi-objective (generalization) operation point significantly increased the 

./)/+!-01!"0*)%&'( in all scenarios. As compared to the traditional model building techniques, 

the multi-objective (generalization) operation point presented, on average, a 19.17% higher 
accuracy rate, while it was increased, on average, by 10.21% as compared to the other operation 
points. Regarding the multi-objective (generalization) operation point tradeoff, on average, it 
was evidenced that there was a decrease in the attack detection rate of 6.48% and 8.35%, 
whereas for the normal detection, there were an increase of 0.32% and a decrease of 0.99% for 
the traditional model building methods and the other operating points, respectively. Thus, to 
provide generalization, a significant tradeoff between attack and normal detection rates is 
required. However, the most important point pertaining to generalization was that an old 
benchmark database was used, because if the generalization rate results are good, it means that 

the proposed database is equivalent to the old one. Therefore, it is possible to use an updated 
database to test recent attacks. 

Finally, the multi-objective (all) operation point was aimed to improve all the considered 
objectives. When considering all the objectives, an improvement of 9.49% was shown: the 
average detection rate was 97.42%, whereas the average detection rate for all the objectives 
using the traditional model building methods was 87.93%; when the other operating points were 
considered, the average detection rate was 93.68%.  
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Figure 22 shows the operation points through our method for the detection of probing 
attacks. It can be noticed that the generalization capacity increases while the attack detection 
rate decreases. However, the detection of normal events does not significantly decrease the 

system generalization capacity. Similar behavior was observed for the detection of DoS attacks. 

 
Figure 22. Multi-objective operation points for probing attacks. The operation points are shown in terms of 

objective error rate; the operation points are chosen according to their lowest error rate. 

6.1.2. Reliability in Classifications 

Two distinct detection approaches were evaluated for the proposed method to ensuring 

reliability in classifications. First, a single classifier using the decision tree (DT), naïve bayes 
(NB) or linear discriminant analysis (LDA) algorithm; second, a combination of the three 
classifiers using majority voting, as explained in Section 4.4.3 (Figure 14). The C4.5 decision 
tree algorithm was used with a confidence factor of 0.25. The Fisher’s method [87] was used 
for the LDA classifier. The same stratification procedure adopted for the building of 
generalization capable models were employed (see Section 6.1.1). The classifiers were 
evaluated by the means of the Probing scenarios datasets, in the fine-grained intrusion datasets.  

The resulting average accuracy in each scenario is shown in Table 15, as measured by 
the average of both TP and TN. All classifiers presented a reasonably good performance when 
used in the known scenario testing dataset. The best accuracy rate, 99.97% was obtained with 
the DT classifier. The worst classifier accuracy rate, 99.44%, was achieved by LDA, although 
it was only 0.53% lower than DT. When evaluated with the similar scenario, the classifiers were 
able to detect events with an average accuracy drop of 0.88% compared to the baseline scenario. 
For new attacks, however, the accuracy decreased on average by 37.64%. The best accuracy 
rate when detecting new attacks was obtained with the combination/voting classifier, with an 
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accuracy of 70.29% (Table 15). None of the used classifiers or methods were able to maintain 
their accuracy obtained in the known scenario when detecting similar or new attacks. If such 
classifiers were used in a real-world environment, their accuracy would likely drop over time 

due to changes in the traffic or attack profiles.   

Table 15. Accuracy for each Probing scenarios using the obtained classifiers. 
Classifier         

            Accuracy 
Probing Scenario 

!""!#$56786 !""!#$:;<;=&% !""!#$56(8 
DT 99.97 % 98.62 % 64.66 % 
NB 99.75 % 99.23 % 57.38 % 
LDA 99.44 % 98.39 % 56.00 % 
Combination 99.75 % 99.14 % 70.29 % 

6.1.2.1 Evaluation of the proposed rejection method 

The proposed rejection method aims at maintaining the classifier reliability over time 
even in the absence of model updates. To achieve this goal, the class assignment (Figure 14) 
must reject potentially wrong classifications. Therefore, the evaluation tests aim at checking 
the detection accuracy, while still rejecting as few events as possible. 

Due to the number of used features (see Appendix 1), evaluating all possible values of 

∝ for each feature and profile similarity (Figure 12) is unfeasible. Therefore, two tests for each 

final class assignment was performed (Figure 14). The first test, named Different Alpha, used 

different ∝ values (Figure 12) for each feature group (header-based, service-based, and host-

based, described in Appendix 1), whereas the second test (named Same Alpha) used the same  

∝ for all features. The profile similarity varied from 0% to 100% in 1% increments. The 

rejection rate is measured as the ratio between the number of rejected instances and the total 
number of instances in the test set. The accuracy rate vs rejection rate tradeoff using the 
combined classifiers for the detection of new attacks is shown in Figure 23. 

 
Figure 23. Accuracy-rejection tradeoff for the combination technique while detecting new attacks. 
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It is possible to note that in most cases there is a direct relation between accuracy and 

rejection, regardless of the ∝ technique (Figure 23, Different Alpha and Same Alpha). One may 

notice that different distributions of feature values allowed to improve the accuracy rate while 
rejecting fewer instances. The classifier combination scheme was able to reach an accuracy rate 
close to 100% while rejecting 59.52% of instances in the new attack dataset. All evaluated 

classifiers were able to reach an !""!#$6(8 accuracy of 100% at the cost of a 60% rejection 

rate. The combination classifier provided the best accuracy with a minimum rejection rate 

considering all scenarios, outperforming the best single classifier (DT) by about 5% in the low 
rejection rate setting, and by about 10% in the average rejection setting (Table 16).  

In the real world, it is not possible to choose a different set of thresholds for each event, 
because the classifier is unable to determine whether an event is a known attack, a similar attack, 
or a new one. Therefore, the choice of a set of thresholds must be made taking into account the 
tradeoff between accuracy and rejection rate. Figure 24 shows the accuracy-reject tradeoff 
between the accuracy in detecting new attacks and the rejection rate for known and similar 
attacks, using the same set of thresholds during the detection. The graph shows that it is possible 
to maintain the accuracy for the detection of new attacks, but at the cost of an increased rejection 
rate for known and similar attacks. For instance, it is possible to maintain the accuracy rate at 
95% in a scenario with new attacks, at the cost of rejecting 31% in average of the events in the 
other two scenarios (known and similar attacks).  

The set of thresholds should be established according to the user goals. If certain 
lenience for accuracy is acceptable, fewer events will be rejected, but the class assignment will 
be more susceptible to errors. Table 16 shows the accuracy-reject relationship for each dataset, 
for the rejection settings highlighted in Figure 25, using the same set of thresholds. Four 
rejection rate settings (no rejection, low rejection, average rejection, and high rejection) were 
selected for the new attacks dataset. The same set of thresholds were used in the other scenarios 

to investigate the rejection rate impact for the known and similar attack datasets. The obtained 
results are shown in Table 16. 

 

Table 16. Accuracy-rejection tradeoff for each dataset using the points marked in Figure 25. 

Rejection 
Rate 

Classifier 
(Normal Alpha, Attack Alpha) 

Probing Dataset 
!""!#$56786 !""!#$:;<;=&% !""!#$6(8 

Acc. (%) Rej. (%) Acc. (%) Rej. (%) Acc. (%) Rej. (%) 

No  

Rejection 

DT (n.a., n.a.) 99.97 - 98.62 - 64.66 - 
NB (n.a., n.a.) 99.75 - 99.23 - 57.38 - 
LDA (n.a., n.a.) 99.44 - 98.39 - 56.00 - 
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Rejection 

Rate 

Classifier 

(Normal Alpha, Attack Alpha) 

Probing Dataset 
!""!#$56786 !""!#$:;<;=&% !""!#$6(8 

Acc. (%) Rej. (%) Acc. (%) Rej. (%) Acc. (%) Rej. (%) 
Combination (n.a., n.a.) 99.75 - 99.14 - 70.29 - 

Low 
Rejection 

DT (0.55, 0.18) 99.97 0.21 98.70 1.05 67.37 4.82 
NB (0.62, 0.27) 99.75 0.14 99.23 0.25 59.66 4.07 
LDA (0.64, 0.29) 99.44 0.14 98.48 0.31 58.15 3.98 
Combination (0.53, 0.16) 99.75 0.01 99.14 0.00 72.66 3.31 

Average  
Rejection 

DT (0.83, 0.37) 99.98 5.40 98.80 5.77 74.90 24.14 
NB (0.88, 0.51) 99.75 5.41 99.21 5.88 67.94 23.50 
LDA (0.88, 0.51) 99.65 5.71 99.65 6.00 66.37 24.99 
Combination (0.81, 0.25) 99.76 0.25 99.14 0.15 84.27 23.16 

High  
Rejection 

DT (0.90, 0.51) 99.99 37.27 99.87 25.79 99.92 59.57 
NB (0.90, 0.51) 99.96 37.34 99.92 25.42 99.92 59.61 
LDA (0.90, 0.51) 100.00 37.38 99.87 25.57 99.86 59.62 
Combination (0.90, 0.51) 99.95 37.27 99.92 25.38 99.86 59.52 

 
 
 

 
Figure 24. Tradeoff between the accuracy improvement for new attacks and the rejection of known and similar 

attacks. 

 
Figure 25. Tradeoff between accuracy and rejection 

rate, for each classifier in new attacks dataset. 

 
Figure 26. Accuracy-rejection tradeoff, for the 

combination classifier in the new attacks dataset, 
using the evaluated rejection techniques. 
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The Average Rejection setting presented the best accuracy-reject tradeoff. The rejection 
method was able to improve the classification accuracy by 13.98% for new attacks while 
rejecting only 0.25% known attacks and 0.15% similar attacks, using the combination classifier 

(Average Rejection, Table 16). The combination classifier produced, in average, the best results 
when compared to the single classifiers at the same rejection rate interval. In summary, the 
proposed rejection method allowed the detection of new attacks while maintaining the 
classifier’s overall reliability. 

6.1.2.2 Comparison with other rejection approaches 

Finally, two commonly used rejection approaches that rely on class probabilities, the 
Chow’s rule [37] and the Class-related Reject Threshold (CRT) [38], were compared to the 
proposed method. Chow’s rule defines a single rejection threshold for all classes, whereas CRT 
uses a different threshold for each class. For evaluation purposes, the combination classifier 
was used because it presented the best results (Table 16). The three approaches – CRT, Chow 
and the proposed approach – were evaluated using the Probing New Attacks dataset. The 
rejection rates from 0% to 100% were evaluated. Figure 26 shows the accuracy-reject tradeoff 
comparison for the evaluated approaches. 

The proposed approach outperformed both existing techniques, CRT and Chow’s rule. 
The traditional rejection approaches were not able to identify behavior changes and increased 
the classification confusion; the assigned class probabilities were high even for misclassified 
instances. In contrast, the proposed approach was able to operate with fewer misclassifications 

in the presence of traffic behavior changes, reaching 100% accuracy while rejecting 60% of the 
events. 

6.1.3. Discussion 

A machine learning classifier works by identifying similar behaviors and must have 
representative instances from all of the considered classes [6]. This section made experiments 
in order to evaluate the common assumptions in the literature regarding network-based intrusion 
detection. As the evaluation tests have shown, the assumption that a classifier will be able to 
detect new attacks only holds when their behavior is similar to the one used during the classifier 
training. Thereby, a machine learning (batch) detection system becomes unreliable when the 
traffic behavior changes.  

In the light of this, the first evaluation aimed at providing generalization capable batch 
learning models. The goal was to build a batch learner model that is able to generalize the 
behavior from the training dataset (limited set) to a wider one, represented as the similar and 
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new scenarios (i.e. production environment). The proposed approach, by the means of a multi-
objective feature selection technique, have enabled the building of generalization capable 
models, when compared to their no-selection or selection counterpart. However, although the 

model is able to generalize the behavior from the training dataset, the detection of new 

behaviors (e.g. !""!#$6(8) was still a problem to be addressed. This because the accuracy rate 

of new behaviors did not meet the accuracy rate from the known or similar ones. 
Thereby, the proposal has dealt with such issue by the means of rejecting potentially 

non-reliable classifier decisions. Although, in the literature, such effect is often ignored [6, 7]. 
In which, in general, the network traffic is considered static, and the common machine learning 
evaluation schemes are adopted without taking into account its dynamic characteristics, which 
demands constant classifier updates over time. 

To ensure the classification reliability, the use of simple lower and upper thresholds was 
proposed, obtained from the feature distributions observed during the model training phase. 
Due to the large number of used features, the contribution of distinct features according to their 
feature group was analyzed. The proposed rejection method was able to guarantee the system 
reliability with a low accuracy-reject tradeoff, improving the accuracy in 13.98% for new 
attacks while rejecting only 0.25% of known behaviors using a classifier combination scheme. 

6.2 Stream Learning 

In order to deal with the constant network behavior changes over time, one must update 
its detection scheme periodically. However, the model update is not easily feasible in high-
speed networks. In the light of this, to provide ongoing updated classification models, the 
reliable intrusion detection model relies in the usage of stream learning detection schemes. The 
proposed approach considers the usage of an unsupervised stream learning approach, as it 

enables to provide ongoing updated classification models, but, on the other side, it is prone to 
adversarial attacks.  

6.2.1. Stream Learning – Resilience to Adversarial Attacks 

This section evaluates the proposed approach for providing unsupervised stream 
learning schemes resilient to adversarial attacks (Section 4.5). For the tests purposes the well-
known Micro-cluster-based Continuous Outlier Detection (MCOD) [87] algorithm has been 
considered in the proposed method (Section 4.5). For comparison purposes two other 
approaches were considered: Traditional Batch Learning (TBL) and Traditional Stream 
Learning (TSL). For evaluation purposes the fine-grained intrusion dataset DoS known scenario 
was considered (see Section 5.1). 
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6.2.1.1 Model Obtainment Process 

For the proposed method (Section 4.5), two classes were considered: normal and attack. 
Thereby, for each test, two outlier detectors were used, one for normal and one for attack. A 

sliding window of 10,000 events was considered. A total of 50 events was established as 
neighbor (k) parameter. Each class outlier detection has its own radius parameter. A series of 
tests were conducted to establish the radius parameters; the choosing criteria was to minimize 
the fitness value in Equation 10. 

H0")/bb = /++*+%&'( + +/u/#"0*)%&'(                     Equation (10) 

 The /++*+%&'( and +/u/#"0*)%&'( were defined through the detection of the initial 

10,000 normal events followed by the detection of the 10,000 further attack events from the 
training dataset (Table 6, DoS (Known) scenario). The radius values for each class outlier 
detector, normal and attack, was varied in a 0.01 interval from zero to 2.00.  

 The k-Nearest Neighbor (kNN) classifier was used for the TBL. To allow comparison, 
a total of 5,000 events for each class, normal and attack, are used for the classifier neighbor 
computation. The 5,000 events of each class are defined by the k-means clustering algorithm 
[89], using the training dataset (25% of randomly chosen events from Table 6). The kNN 
neighbors set are not updated during the classification process. Finally, for the TSL, the MCOD 
is used. However only the normal class is considered, as commonly performed in related works 

[88], whilst the radius obtainment process was established only by the /++*+%&'( minimization. 

6.2.1.2 Traditional Evaluation 

Initially, the traditional evaluation process was considered for the evaluated approaches. 
In the traditional evaluation, the adversarial settings (Section 2.2) are not considered.  

 For the kNN classifier, the dataset was divided into: training, validation and testing, 
containing, 25%, 25% and 50%, respectively of the whole dataset (Table 6, DoS (Known) 
scenario). Due to the adaptive nature of the considered stream learning algorithm, the whole 
dataset is used for the traditional evaluation. The events are replayed in the exact same order as 
they appear in the original dataset. Table 17 shows the accuracy rates regarding each of the 

evaluated approaches, where the method column refers to the used approach during the 
detection stage. Each approach is tested with a different set of attacks used during the training 
stage, shown in brackets in the method column.  

Table 17. Proposed stream learning resilient to adversarial attacks and traditional evasion evaluation. 
Method Accuracy (Reject) 
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(Attack used for training) Normal 

Acc. (Rej.) 

SYNFlood 

Acc. (Rej.) 

UDPFlood 

Acc. (Rej.) 

ICMPFlood 

Acc. (Rej.) 

Proposed Approach MCOD  
(SYNFlood) 

100.00%  
(0.04) 

100.00 
(0.00) 

- 
(100.00) 

- 
(100.00) 

Traditional kNN  
(SYNFlood) 

99.83 
(N.A.) 

100.00 
(N.A.) 

100.00 
(N.A.) 

0.01 
(N.A.) 

Proposed Approach MCOD  
(UDPFlood) 

100.00 
(0.98) 

- 
(100.00) 

100.00 
(0.10) 

- 
(100.00) 

Traditional kNN  
(UDPFlood) 

99.93 
(N.A.) 

49.97 
(N.A.) 

100.00 
(N.A.) 

0.01 
(N.A.) 

Proposed Approach MCOD  
(ICMPFlood) 

100.00 
(0.97) 

- 
(100.00) 

- 
(100.00) 

100.00 
(0.12) 

Traditional kNN 
 (ICMPFlood) 

100.00 
(N.A.) 

3.23 
(N.A.) 

100.00 
(N.A.) 

100.00 
(N.A.) 

Traditional Stream Learning MCOD  99.19 
(N.A.) 

0.81 
(N.A.) 

0.69 
(N.A.) 

0.22 
(N.A.) 

 One can notice that both the proposed approach and the traditional batch learning (kNN) 
can detect the same set of attacks, with a significantly high accuracy rate. Regarding the 
detection of attacks, both the proposed approach and the kNN presented a FN rate of zero 
percent, when detecting the same set of attacks the system has been trained with. Considering 
the FP rate, the kNN classifier achieved 0.17, 0.07 and zero percent when trained with 
SYNFlood, UDPFlood and ICMPFlood attacks, respectively. The proposed approach achieved 
a FP rate of 0.00 percent in all tested cases. However, the proposed approach rejected potentially 
wrong classifications. In such a case, 0.04, 0.98 and 0.97 percent of normal events were rejected 
for SYNFlood, UDPFlood and ICMPFlood attacks, respectively. It can be observed that the 
proposed approach presents a similar detection accuracy when compared to the traditional batch 
learning approach. However, the proposed approach rejects potentially wrong classifications, 
which can be observed by comparing the kNN FP rate and the proposed approach rejection rate. 

 Considering the traditional stream learning approach, it was possible to notice that when 
events are replayed in the exact same order as they appear in the original dataset (Table 6, DoS 
(Known) scenario), the method can detect only the initial attacks – when the sliding window is 

almost fully populated with normal events. However, as the attacks occurrence increases, the 
further attack events are classified as inlier (normal). Such a property occurs due to the adaptive 
nature of stream learning algorithms, which allows that an event, initially classified as outlier 
(attack), to be added in the sliding window, hence, allowing that an attack to become an inlier 
over time, perverting the outlier detector behavior. In this manner, the traditional stream 
learning algorithms, must consider such property – in the intrusion detection field, which is 
dealt in this work by considering the immutable behavior (Section 4.5). 

6.2.1.3 Adversarial Settings – Exploratory Attacks 

Two types of attacks were evaluated in this experiment: the traditional evasion and the 
window interval exploit. 
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a. Traditional Evasion 

The traditional evasion refers to the detection of attacks with a different kind of behavior 
to the attack that the system was trained with, however with the same or similar outcome. For 

example, attacks aiming at generating a significant amount of network traffic at the targeted 
victim, regardless of the considered protocol, e.g. UDP, TCP or ICMP floods. In this way, each 
of the considered approaches were also tested with a different flood attack than the system was 
trained with. The obtained accuracy is shown in Table 17. 

 Regarding the traditional batch learning (kNN), the attacker could evade the system, 
while generating an attack that produces the same or similar outcome. When the kNN was used, 
the evasion possibility was evidenced for all evaluated attacks: SYNFlood, UDPFlood and 
ICMPFlood. For instance, when the system was trained with SYNFlood attacks, the attacker is 
still able to evade the detection system by generating ICMPFlood attacks. Moreover, the tested 
approach accepted only the classifications outputs regarding the attacks the system was trained 
with. Such a high rejection rate, and in this case reliability increase, due to the possible increase 
in the error rate, occurred due to the lack of decision unanimity between the outlier detectors, 
and thereby rejecting the assigned class. 

b. Window Interval Exploit 

The second evaluated exploratory attack is called as sliding window exploit. The sliding 
window exploit attack aims at evaluating the traditional stream learning accuracy according to 
the attack occurrence in a sliding window. The increase in the attack frequency in the sliding 

window renders the stream learning algorithm unreliable over time, this because an attacker is 
able to render an outlier as an inlier, as he increases the attack occurrence over time. Figure 27 
(bottom chart) shows the error rate regarding each of the evaluated attacks, during the 8 to 9 
million packets in the created dataset. The error rate is evaluated in a 1,000 packets interval. 

Figure 27. Traditional stream learning approach behavior under network traffic intensive attacks, upper chart 
shows the network packet classes occurrence while bottom chart shows the related error rate. Attack detection 

error rate increases according to the occurrence of attacks in the sliding window. 
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It is possible to observe that during the normal events detection, the traditional stream 

learning algorithm error rate remains similar to the rate obtained during the traditional 
evaluation (Section 6.3.2, 0.81 percent). However, as the attacks begins to occur (around the 
8.2 millionth packet), the attack detection error rate increases, due to the increasing in the attack 
occurrence. In this manner, the attacker can exploit the traditional stream learning algorithm 

sliding window, by increasing the attack occurrence (Figure 27, upper chart), causing the 
attacks to be classified as inlier (normal) due to their frequency increase in the sliding window. 

The sliding window exploit does not occur in the proposed approach due to the 
immutable behavior (Section 4.5.1) and the class-specific single class detection mechanism 
(Section 4.5). The results are shown in Table 17. The attacker is not able to add attacks in the 
normal outlier detector sliding window due to the immutable behavior. Whilst, if the detection 
mechanism wrongly classifies an event, and thereby add it in its sliding window, the event will 
be rejected, because it will not be possible to establish an unanimity between the others outliers’ 
detectors, given the outliers decision have a non-null intersection. 

6.2.1.4 Adversarial Settings – Causative Attacks 

Finally, to evaluate the causative attacks resilience, a training dataset poisoning 
approach was adopted. The traditional batch learning (TBL) and the proposed approach were 
evaluated regarding the influence that attacks, initially injected into the training dataset as 
normal events, have in the resulting accuracy. Thereby, the goal was to evaluate each of the 
considered methods, regarding their resilience to dataset poisoning attacks. Figure 28 shows 
the relation between the attack detection rate and the attacker control percentage over the 
training dataset, while successfully injecting attacks labeled as normal activity.  
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Figure 28. Traditional Batch Learning (TML, Traditional Machine Learning) and Proposed Approach resilience 
to causative attacks (training dataset poisoning attacks). The horizontal axis shows the rate of attacks injected 
into the training dataset labeled as normal activities. The vertical axis shows the accuracy and rejection rate 

impact while detecting such attacks, having the infected training dataset. 

 
Regarding the TBL, it is possible to note that the three evaluated attacks can evade the 

detection mechanism when injected in the training dataset as normal events. The accuracy rate 
for SYNFlood attacks dropped for 50% when only 3% of normal events were SYNFlood 
injected attacks. Whilst, for ICMPFlood and UDPFlood the attacker could evade the detection 
system when 9% of attacks were injected. On the other side, the proposed approach could detect 
when attacks were injected into the training dataset and reject further classifications. Such a 
characteristic occurred due to class specific outlier detector, the attacks injected into the training 
dataset as normal events incurred in a lack of outliers unanimity in the classification decision 
process, thereby, the events were rejected. 

6.2.2. Discussion 

In order to enable production usage, intrusion detection schemes must be easy to update 
(see Section 6.1). One approach that stand out amongst others to this end is unsupervised stream 
learning techniques. By the means of a sliding window, unsupervised stream learning 

techniques enables the ongoing identification of network anomalies without the assistance of 
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an expert. The premise is that an outlier (attack) presents a behavior significantly different from 
the other events in the sliding window. 

However, although being easy to update, such techniques are prone to adversarial 

attacks. To this end, this section has evaluated the proposed approach to provide resiliency to 
adversarial attacks at both training and testing time. The proposed approach outcomes both 
traditional batch and stream learning techniques to provide resiliency to adversarial attacks. 
However, as a tradeoff to provide resiliency, the proposed technique further increases the 
system rejection rate.  

6.3 Reliable Learning 

This section presents the evaluation regarding the building of the reliable intrusion 
detection model. First, batch and stream learning techniques are evaluated regarding their 
accuracy and reliability using the MAWIFlow dataset (Section 5.2). Second, the proposed 
conformal evaluator is evaluated in order to provide reliability even in the absence of model 
updates. Finally, the proposed reliable intrusion detection model is evaluated regarding its 
accuracy and reliability over time. 

6.3.1. Accuracy Degradation of Machine Learning Classifiers 

This section evaluates if ML-based approaches can maintain their reliability over time 
while processing network traffic from real networks. For evaluation purposes both batch and 
stream learning classifiers that are frequently employed in intrusion detection were considered. 
For the Batch Learning the Random Forest (RF) [70] was considered, on the other side, the 

OzaBoosting (OZA) [90] was used as Stream Learning classifier.   

For each evaluated classifier, five different views (feature sets) were tested: Viegas [5], 
Nigel [79], Orunada [78], Moore [80], and All, which comprises all prior feature sets. The 
evaluation employs a single training step using the data of MAWIFlow from the first two months 
of 2007, and then employs the built model for the remainder of the time (March 2007 to 
December 2016), without updates, as often made in the literature. 

The Weka API [82] version 3.8.0 was used for the implementation and evaluation of the 
Batch Learning classifier, while the MOA API [91] version 2017.06 was used for the Stream 
Learning classifier. The RF is composed of 50 decision trees, while the OZA is composed of 
50 Hoeffding Trees [44] as their base-learner classifiers. The accuracy rates regarding true 



109 
 

 
 

negative (TN, normal events correctly classified) and true positive (TP, attack events correctly 
classified) during the 10 years of MAWIFlow are shown in Figure 29 and 306. 

Both considered ML approaches, Batch and Stream Learning, have shown significant 

accuracy impact over time. Several observations can be made from Figures 29 and 30, regarding 
traditional model building process: 

• Accuracy: regardless of the considered classification approach, either Batch or Stream 
Learning, an increase in the error rates can be seen only months after training. The 
increase in the error rates can be evidenced up to four years after that of training time; 

• Feature Sets: despite presenting different outcomes, models become unreliable over 
time regardless of their used feature sets. However, there is a difference on how each 
model performs, according to their view. For instance, models with both Viegas and 
Moore views significantly increases their TP rates after 2012 (despite not reaching their 
accuracy obtained at training time in 2007), while models with Nigel and Orunada views 

does not significantly changes after such time; 

• Attack Events Detection: the detection of attacks is more challenging than the detection 
of normal events over time, similar findings to that obtained in the fine-grained dataset 
evaluation (see Section 6.1). Such property can be noted due to the difference of TN 
and TP rates during the 10 years of MAWIFlow; 

 
(a) RF (Viegas View) 

 
(b) RF (Nigel View) 

                                                
6 The results obtained using other classifiers can be foun in Appendix 3 
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(c) RF (Orunada View) 

 
(d) RF (Moore View) 

 
(e) RF (All View) 

Figure 29. Batch Learning (Random Forest) classifier monthly accuracy according to its used feature view 
throughout 10 years of network traffic anomalies, only the first 60 days of 2007 are used for training. The system 

is not updated throughout time. Similar results are found when other Batch Learning classifiers are evaluated. 

 
(a) OzaBoosting (Viegas View) 

 
(b) OzaBoosting (Nigel View) 
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(c) OzaBoosting (Orunada View) 

 
(d) OzaBoosting (Moore View) 

 
(e) OzaBoosting (All View) 

Figure 30. Stream Learning (OzaBoosting) classifier monthly accuracy according to its used feature view 
throughout 10 years of network traffic anomalies, only the first 60 days of 2007 are used for training. The system 
is not updated throughout time. Similar results are found when other Stream Learning classifiers are evaluated. 

• Normal Events Detection: the TN rates does not significantly change over time, even 

increasing after 2012. However, it is important to note that this detection rate change 
between 2011 and 2012 occurs due to the increase of MAWI transmission link, from 
megabit to gigabit. Thus, significantly increasing the number and rate of normal events 
(Figures 21.a and 21.b). One must note that despite increasing the TN rates after such 
period, it does not mean that the classifiers are more reliable, but rather that there was a 

significant change in the normal and attack event's behavior; 

• Batch versus Stream Learning: both batch and stream learning algorithms have 
presented similar outcomes. In this sense, both approaches become unreliable over time, 
in the absence of model updates; 

In summary, this experiment gives evidence that in production, ML-based IDSs must 

be updated periodically, otherwise its outputs become unreliable over time. However, the 
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regular update of the classifier is a challenging task, because the network activity must be stored 
for further analysis and needs to be labeled accordingly, often demanding time and expert 
assistance. 

6.3.2. The Problem with Classification Confidence in Intrusion Detection 

This section evaluates how a traditional classification assessment approach performs 
when applied to MAWIFlow. More specifically, a class related threshold (CRT) [38] technique 
is evaluated, which uses a class-specific threshold to reject or not a decision according to the 
classifier output confidence and the assigned class.  

Similarly to the experiments conducted previously, the evaluated classifiers are trained 
using the first two months of 2007 (January and February). However, the error-reject tradeoff 
when CRT is applied considers only the remainder of 2007. The thresholds for both Normal 
and Attack classes was varied from 0.00 to 1.00 in a 0.01 basis. The error-reject tradeoff during 
2007 for all of the evaluated thresholds on MAWIFlow is shown in the Figures 31 and 32 for 
the Batch and Stream Learning classifiers respectively. 

It can be noted that the CRT approach fails at providing the desired level of reliability 
regardless of the considered classifier and view. For instance, in the best case (Nigel View with 
the Random Forest classifier), when a 50% rejection rate is considered, only 8% of error 
reduction is reached. In this sense, the behavior change over time, as occurs in MAWIFlow, 
renders traditional classification assessment approaches, as made by CRT, unable to provide 
reliability in intrusion detection, regardless of the considered rejection rate. 

 
(a) RF (Viegas View) 

 
(b) RF (Nigel View) 

 
(c) RF (Orunada View) 

 
(d) RF (Moore View) 

Figure 31. Batch Learning (Random Forest) classifier class related threshold (CRT) error-reject tradeoff for 
2007, thresholds for both Normal and Attack thresholds were varied from 0.00 to 1.00 in a 0.01 basis, all 
operation points are shown. Traditional classification assessment approach, using CRT, fails at providing 

reliability when new network traffic behavior is occurring. 
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(a) OZA (Viegas View) 

 
(b) OZA (Nigel View) 

 
(c) OZA (Orunada View) 

 
(d) OZA (Moore View) 

Figure 32. Stream Learning (OzaBoosting) classifier class related threshold (CRT) error-reject tradeoff for 2007, 
thresholds for both Normal and Attack thresholds were varied from 0.00 to 1.00 in a 0.01 basis, all operation 

points are shown. Traditional classification assessment approach, using CRT, fails at providing reliability when 
new network traffic behavior is occurring. 

6.3.3. Discussion 

The findings in the evaluation tests performed over MAWIFlow suggests that current 
ML-based approaches for intrusion detection lacks reliability to face production environments, 
regardless of the employed ML algorithm or their used feature set. Nonetheless, when a 
traditional reliability assessment approach is employed, such as the CRT, the error-reject 
tradeoff does not meet the desired level of reliability improvement.  

Surprisingly, the evaluated approaches, which were found to be unreliable, due to the 
lack of model updates and a proper reliability assessment approach, are commonly used in the 
literature. Thereby, this indicates the reason that there have been many studies presenting 
detection schemes with low error rates, but, on the other hand, a lack of usage of such systems 
on production [6, 7].  

Current approaches to provide classification reliability fail to reach a desired error-reject 
tradeoff. Such issue is mainly caused due to the network behavior changes seen in production 
environments, and the lack of model updates. The model update in production environment is 
a challenging task, which often demands expert assistance. Thereby, it demands time, not only 
to identify the network behavior changes, but also to rebuild the model after such change occurs, 
incurring in a delay of days or even weeks to build an updated classification model. Thus, it is 
not possible to always have an up-to-date model. In such context, to achieve reliable intrusion 
detection, one must first address classification reliability, regardless of the current network 
behavior, even in the absence of model updates.  

To this end, to provide classification reliability, one must reject unreliable instances. 
However, the rejected instances must be stored, to either be manually inspected (not usually 
feasible) or further processed to identify their classes (often through an unsupervised detection 
scheme). To this end, the storage of such instances may become unfeasible, in a high-speed 
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network context. Nonetheless, as the number of rejected instances may be high, process them 
in real-time may not be feasible.  

In such context, the model rebuilding in production becomes a challenging task when 

this kind of network environments is considered, such as the one present in MAWIFlow. The 
main difficulty is regarding model updates because it is a computational-expensive process, 
which demands time and human assistance.  

6.3.4. Conformal Evaluator 

In order the provide classification reliability over time, the reliable intrusion detection 
model relies in the use of a conformal evaluator (Section 4.6).  

For evaluation purposes, the OzaBoosting stream learning algorithm was considered, 
using the same parameters used previously.  

For the computation of the Credibility and Confidence values in the conformal 
evaluator, a Random Forest made of 100 decision trees were used, similarly to [24]. As a 
conformity measure (see Figure 16), the ratio of trees which classified the instance as belonging 
to a given class was used7. Thereby, Credibility and Confidence for a given classification can 
be computed according to Equation 11 and 12. 

m+/a0j0-0"k(I, #) =
∑ o

v,A76N7%<;'L(O,A)wA76N7%<;'L(OT,A)
g,A76N7%<;'L(O,A)xA76N7%<;'L(OT,A)

]
T^_

`
                   Equation (11) 

m*)H0a/)#/(I, #) = 1 − m+/a0j0-0"k zI, H(#) = o# = {*+,!-, |""!#$
# = |""!#$, {*+,!-}			       Equation (12) 

 In which, x denotes the instance, c its assigned class, conformity a function which 
computes the instance conformity for the given class c, and n the number of instances with class 
c in a given test set. Finally, function f returns the opposite of the assigned class by the classifier, 
which can be either normal or attack.  

At training time, the conformal evaluator receives as input the training set, used for the 
classifier training (OzaBoosting). Afterwards, the training set is split in two parts, in a k-fold 
manner. The first split, is used to train the Random Forest classifier, while the second split is 
used to compute the conformity values, used during the credibility and confidence values 
computation (Equations 11 and 12). 

                                                
7 Note that, by default, random forest classifiers compute the classification confidence as the product of individual 
tree’s confidence values 
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For evaluation purposes, a single view was used during the tests, made of all views used 
in Section 6.3.1. In addition, a complete model retraining was made every 6 months, best 
interval established after a series of evaluation tests. Thereby, throughout the 10 years of 

MAWIFlow dataset, both conformal evaluator and OzaBoosting classifiers were retrained 20 
times. For each system retraining, OzaBoosting and conformal evaluator, two months of data 
was used, both classifier and conformal evaluator are not updated after such period. 

The proposed conformal evaluator was evaluated regarding its error-reject tradeoff 
throughout the 10 years of MAWIFlow dataset, according to the model lifetime interval (6 
months). For this purpose, conformal evaluator was compared with the class-related threshold 
(CRT), as measured by the OzaBoosting confidence values. Similarly to CRT, the conformal 

evaluator also used different class thresholds ("A=&::) for each class. Figure 33 shows the relation 

between the average error rate and the average rejection rate for the OzaBoosting for each model 
lifetime, in the first three years of MAWIFlow dataset (see Appendix 2, for the complete 
evaluation of the conformal evaluator). The average error rate refers to the average of the FP 
and FN rates, whilst the average rejection rate refers to the average rejection of both normal 
and attack events.  

The proposed conformal evaluator, significantly improved the error-reject tradeoff 
when compared to the CRT approach. For all evaluated model lifetimes (20 time intervals in 
the complete MAWIFlow dataset), the conformal evaluator enabled to reduce the error rate, with 
a significantly lower rejection rate, when compared to the CRT approach.  

 
(a) Jan. 2007 to Jun. 2007 

 
(b) Jul. 2007 to Dec. 2007 

 
(c) Jan. 2008 to Jun. 2008 
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(d) Jul. 2008 to Dec. 2008 

 
(e) Jan. 2009 to Jun. 2009 

 
(f) Jul. 2009 to Dec. 2009 

Figure 33. Conformal evaluator error-reject tradeoff, compared to class-related threshold (CRT) as measured by 
OzaBoosting classifier, in the first three years of the MAWIFlow dataset. 

 
Figure 34. Conformal evaluator error-reject tradeoff, compared to class-related threshold (CRT) as measured by 

OzaBoosting classifier, in Jan. 2007 to Jun. 2007 in MAWIFlow dataset. 

It becomes possible to note that the proposed conformal evaluator enables to maintain 
the system reliability, even in the absence of model updates. Figure 34 shows a comparison 
regarding the model lifetime in Jan. 2007 to Jun. 2007 (Figure 33-a) with the CRT approach, 
according to a desired error rate and the necessary rejection rate. For instance, the proposed 
conformal evaluator was able to reach 20 percent of error rate while rejecting 42 percent of 
instances, as opposed to 80 percent of rejection, to reach the same error rate level for the CRT 
approach. 

Finally, the proposed conformal evaluator enabled to measure the classification 
reliability, even in the absence of model updates (for up to four months). Such property, is 

desired to enable reliable usage of ML-based schemes for network-based intrusion detection. 
In such context, due to the high network throughput, and the need to ongoing update the 
intrusion detection mechanism, the conformal evaluator may aid the system administrator at 
establishing the reliability of his system. Moreover, conformal evaluator may assess individual 
classifications regarding their reliability, i.e. whether the classification should be accepted or 
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not, but also, to establish the detection mechanism lifespan. For instance, a high level of 
rejection rate may indicate that a system retraining is needed. 

6.3.5. Adapting to Network Behavior Changes 

Finally, the proposed reliable intrusion detection model was evaluated regarding its 
capacity to adapt to network behavior changes over time. For evaluation purposes, the same 
parameters used for the evaluation of the proposed conformal evaluator was considered (Section 
6.3.4).  

In addition, for the periodic label request process, the uncertainty sampling [92] 
algorithm was used as a ranking method. However, the uncertainty value is computed by the 

means of the proposed conformal evaluator, thus, using the i/-0!j0-0"kG(l%((, rather than the 

classifier confidence values. Finally, the label propagation process is made labeling nearby 
instances according to their Euclidean distance. 

The first evaluation aim to evaluate the proposed reliable intrusion detection model 
without updates, with conformal evaluator, and with a complete retraining every 6 months. For 
the sake of simplicity, the results are shown using, in all cases, a daily 1% of label request upon 
the rejected instances. For the label propagation, a 0.5 radius was used, which have yield the 
best results, note that the used feature set comprises all features (158). During the evaluation 

tests a single rejection threshold was used ("A=&::), as the rejection rate, and reliability 

improvement, must be established according to the administrator needs. Thereby, a 0.7 "A=&:: 

value was used as a threshold for the conformal evaluator for both classes.  

Figure 35 shows the accuracy and rejection rate throughout the 10 years of MAWIFlow 
without performing updates. It is possible to note that, despite the high rejection rate, the 
monthly accuracy rates, during 10 years, does not significantly change over time. In the worst 
case, the accuracy for attack events (TP), drops to 89%, as opposed to 96% at training time, in 
October 2008. Regarding the detection of normal events (TN), the worst accuracy was observed 
in April 2007, yielding 92% of TN. 

Regarding the rejection rate, it is possible to note, that the conformal evaluator rejects 
less events, during the period used for training time. However, in general, the rejection rate 
increases after such period. Thereby, serving as an indicator that the model must be either 
retrained or updated. Moreover, in specific periods of time, the rejection rate does not 
significantly increase, for instance from 2014 to first semester of 2015, thus, one could also use 
the conformal evaluator rejection rate as an indicator of the model lifespan. 
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(a) Accuracy Rates 

 
(b) Rejection Rate 

Figure 35. Reliable intrusion detection model performance throughout the 10 years of MAWIFlow. System was 
updated every 6 months, and not incrementally updated afterwards. For the sake of simplicity, a 0.7 "A=&:: for 

both classes was used in all cases. 

The second evaluation aimed to measure the impact that incremental model updates 
yield to accuracy and rejection rates. To this end, several tests, were performed to measure the 

impact that lowering the "A=&:: value from the conformal evaluator yield to the system accuracy, 

when incremental model updates are performed. Figure 35 shows the accuracy and rejection 

rate when incremental model updates are performed, using a "A=&::	value of 0.4 for both classes. 

 

 
(a) Accuracy Rates 
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(b) Rejection Rate 

Figure 36. Reliable intrusion detection model performance throughout the 10 years of MAWIFlow. System was 
updated every 6 months, and incrementally updated with 1% of rejected instances every day. For the sake of 

simplicity, a 0.4 "A=&:: for both classes was used in all cases. 

It is possible to note a significant decrease in the system rejection rate, while presenting 

similar detection rates. Thereby, the task of performing incremental model updates, 1% of 

rejected instances in this evaluation, enables to significantly reduce the "A=&:: values, and, as a 

consequence, decrease the rejection rate, without significant impact on accuracy. Figure 36 
shows a comparison regarding the system rejection and accuracy rates when model is 
incrementally updated and when it is not. 

(a) Normal Accuracy Rates (b) Attack Accuracy Rates (c) Rejection Rates 

Figure 37. Yearly accuracy and rejection rates comparison as obtained by the proposed reliable intrusion 
detection model with and without incremental model updates. 

 When the model is incrementally updated using only 1% of rejected instances, the 
proposed approach is able to decrease the rejection rate up to a ratio of 1.17. However, as a 
tradeoff, in average it incurs in the reduction of TN rates by 3.91% and TP rates by 1.75%. It is 
important to note, that the accuracy and rejection rates, should be established according to the 
administrator needs. For instance, if a higher instance label request was used, the accuracy rates 
could be further increased, while keeping the rejection rates lower.  
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(a) Reliable intrusion detection model normal accuracy (TN) versus not updated OzaBoosting 

 
(b) Reliable intrusion detection model attack accuracy (TP) versus not updated OzaBoosting 

 
(c) Reliable intrusion detection model normal accuracy (TN) versus OzaBoosting updated every semester 

 
(d) Reliable intrusion detection model attack accuracy (TP) versus OzaBoosting updated every semester 

Figure 38. Monthly accuracy and rejection rates comparison as obtained by the proposed reliable intrusion 
detection model with and without incremental model updates. 

Figure 38 shows a comparison with the reliable intrusion detection model, with 1% of 
instance label request (Figure 35), and the system accuracy rates without incremental model 

nor the conformal evaluator. 
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6.3.6. Discussion 

Although the proposal was able to significantly decrease the average rejection rate by 
the means of incremental model updates (Figure 35), the rejection of events in high-speed 

networks can be challenging. The main challenge refers to the number of events that are going 
to be rejected, and then, how to process them later.  
  First, for evaluation purposes, the tests performed previously have operated at a high 

rejection rate point (0.7 "A=&:: values). For production usage, one will most likely operate at a 

lower rejection rate operation point, thereby rejecting less instances. Nonetheless, it is important 
to note that the proposal was able to significantly reject less instances when the incremental 
model updates are performed. This indicates that, the average rejection rate will significantly 
decrease over time if an expert provides a subset of event’s label over time. Finally, in 
production usage, rejected instances will most likely be stored for a period, until its label is 
publicly known.  
 Second, the labeling task of such rejected instances can be achieved either by the help 
of a human expert, normally by collecting more information about a new behavior, e.g., by 
consulting automatically a public repository of vulnerabilities/threats such as the common 
vulnerabilities and exposures (CVE), or by finding that a new type of service is being used in 
the network.  
 In this sense, the proposal rejection rate can be even further decreased. Nonetheless, the 
labeling process can be made automatically, if a labeling delay can be tolerated for instance. 
This approach can be used in production as the conformal evaluator enables to maintain the 
system reliability despite the model being updated or not.  
 The most important benefit of the proposal, compared to literature, is to enable the 

detection that an event cannot be classified accurately and immediately alert the administrator, 
even if the classifier makes a classification mistake with a high confidence, since the conformal 
evaluator is used. The action the administrator will perform is under her/his discretion. One can 
be noticed that even a traditional approach, which demands the model rebuilding, a method for 
event labeling is still required, the main difference is that the output of rejection mechanism is 
a selective way to do that, facilitating the expert work. 

6.4 BigFlow - Dealing with High-speed Networks 

Finally, the proposal was implemented in a distributed environment for the evaluation 
of its throughput. To this end, a BigFlow prototype was implemented and deployed in a 
distributed environment, as shown in Figure 39. The prototype takes as input network packet 
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headers from MAWI [16], and for each network packet, its header is exported to the message 
middleware. The message middleware was deployed through the well-known open-source 
Apache Kafka, version 0.10.2.0.  

The prototype was implemented on top of Apache Flink stream processing framework 
[30], version 1.3.0. The proposed windowing mechanisms (Tumbling Windows) were also 
implemented using the native windowing mechanism provided by the Flink. A default value of 
15 s for each Tumbling Window was used, as it provided the best results after some preliminary 
evaluation. The customized keyed messaging was implemented using the KeySelector Flink 
interface. The Apache Kafka messages were read through the Apache Flink connector API, 
version 0.10_2.10.   

 
Figure 39. BigFlow prototype architecture. 

For the evaluation, only the reliable stream learning classification module was 
implemented using the massive online analysis (MOA) library [91], release 16.04 (further 
details over such classification mechanism can be found in [60]). At the startup, the 
Classification and Incremental Classifiers Update modules loaded the same classification 
model. The rejected instances were stored in memory by the Rejected Instances Retrieval 

(Figure 39), which retrieved the rejected instances through Kafka. The PE parallelism level was 
set according to the number of worker nodes used in the experimental evaluation. 

For evaluating the scalability of the prototype, a 12-node cluster in a single rack was 
set-up, connected through a 10 GbE interface. Each node has a 4-core CPU with 8 GB of 
memory. In all considered experiments, the BigFlow prototype (Figure 39) was set-up with the 
Ensemble classifier in the following way: 1 node ran Apache Kafka, 1 node ran the Flink Job 
Manager and from 1 to 10 nodes ran Flink Task Managers. For throughput evaluation purposes, 
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only the feature set from Viegas [5] view was considered. For the evaluation purposes, the 
entire month of January in 2016, was used, and a weeklong delay for the incremental model 
updates was considered.   

Figure 40 shows the throughput and performance breakdown. The proposed approach 
achieved 10.72 Gbps with 10 worker nodes. Regarding its scalability, the proposed approach 
increased the throughput by 1.02 Gbps for each additional worker node. The Feature Extraction 
module required the most significant part of the overall processing, representing 61% of the 
processing time on average, while Classification and Update together required only 23% on 
average.  

 
Figure 40. BigFlow throughput performance according to the number of worker nodes. 

Figure 41 shows the impact of the model’s update on the system’s throughput. In such 
a case, the system’s throughput performance was divided into Classification Without Updates 
(BigFlow without Rejected Instances Retrieval and Incremental Classifier Update modules) and 
Classification With Updates (BigFlow). On average, the model’s updates incurred a throughput 
loss of little more than 1%. Considering the throughput for the cluster of 10 worker nodes, the 
model’s updates incurred a throughput reduction of only 0.25% (0.03 Gbps).  

 
Figure 41. BigFlow prototype architecture. 

Finally, Table 18 shows the weekly training time and required storage for several 
evaluated classifiers, considering they would be updated every week. BigFlow required (on 
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average) only 4.2% of the storage required by other approaches. Regarding the weekly training 
time, BigFlow required at most 4.2% out of the total time when compared with the complete 
retraining of Decision Tree, Random Forest, Gradient Boosting, Ensemble, and Hoeffding tree 

classifiers. 

Table 18. Weekly computational and storage resources used by each approach (excluding initial setup). 

Approach 
Demanded Storage 

(Gb) 
Training Time 

(hours) 
 Avg. Min. Max. Avg. Min. Max. 

Decision Tree 

36.41 21.09 43.36 

3.91 2.27 4.79 

Random Forest 4.40 2.55 5.28 

Gradient Boosting 182.7 104.5 213.0 

Ensemble 189.0 108.3 224.0 

Hoeffding Tree 2.14 1.22 2.58 

BigFlow 1.53 0.28 5.03 0.09 0.03 0.25 

6.5 Final Considerations 

In this chapter a series of evaluations were presented concerning the methods 
implemented in this work. The experiments regarding traditional model building methods 
revealed that the assumptions commonly used in the literature does not hold when ML 
techniques are considered. The experiments presented in Section 6.1 contemplates the methods 
regarding the building of reliable batch learning models. In these experiments, the lack of 
generalization and reliability in face of new network traffic behavior of current approaches in 
the literature was evidenced. The results regarding the building of generalization capable 
models showed that it was possible to build batch learning models able to generalize the 
behavior from the training dataset. In addition, the method for ensuring reliability in face of 

unknown network traffic behavior, allowed to ensure classification reliability even in the 
presence of unknown network traffic. The experiments presented in Section 6.2 contemplate 
the evaluation of a resilient to adversarial attacks stream learning approach. The proposed 
model was able to provide resiliency to both causative and exploratory attacks. In Section 6.3, 
the proposed reliable intrusion detection model was evaluated regarding its classification 
reliability over time. The findings in the evaluation tests, showed that the proposed approach 
was able to provide reliable classification of new network traffic, even in the absence of model 
updates. In addition, when only 1% of rejected instances are used for incremental model update, 
the proposed approach significantly decreases the rejection rate. Finally, Section 6.4 shows the 
prototype and evaluation of BigFlow. The proposed approach for near real-time network traffic 
classification was scalable. In the next chapter the final conclusions alongside with future works 
are presented.  
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Chapter 7  

 

Conclusion 

Network-based intrusion detection have been extensively studied in the literature over the last 
years. In this sense, a popular approach often consists of detecting intrusion attempts by the 
means of machine learning algorithms. However, current approaches for network traffic 
classifications are not able to meet the desired throughput neither deal with the evolving 
behavior of network traffic in a reliable manner.  

This work has addressed each of the challenges of building reliable intrusion detection 
schemes by the means of machine learning techniques for production usage. To this end, the 
approach proposed in this work, namely reliable intrusion detection model, relies in the use of 
both batch and stream learning algorithms coped together, in which, each learner overcomes a 
specific challenge.  

A novel approach for building generalization capable batch learning models enabled to 
build models able to generalize the behavior from the training dataset. The proposed approach 

tackles the challenge of obtaining realistic intrusion datasets for model building process, by 
generalizing the behavior from a limited training set to a wider one, according to each of the 
production environment characteristics.  

In addition, to overcome the challenge of providing reliable classifications in face of 
new network traffic behavior, a new lightweight rejection approach has been proposed. The 
proposed approach ensures that the classified instance presents a similar behavior to that of the 
training dataset. Thereby, tackling the challenge of providing reliability of classifications in 
face of unknown traffic behavior. 
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Regarding the classification of new network traffic over time. First, a new unsupervised 
stream learning model was proposed to provide resiliency to adversarial attacks. The proposed 
approach was able to provide resiliency to both causative and exploratory attacks targeted at 

the model. Thereby, enable the system to reliably adapt to changes when unsupervised stream 
learning algorithms are used for the classification of network traffic. 

Afterwards, an approach for providing classification reliability even in the absence of 
model updates was presented. The approach, by the means of a conformal evaluator, enable to 
ensure the classification reliability for up to 4 months since the last model update. Through the 
proposed conformal evaluator, the reliable intrusion detection model was able to provide 
reliable classifications throughout 10 years of network traffic. In addition, the proposed 
approach was able to significantly decrease the system rejection rate, when incremental model 
updates are performed, with only 1% of rejected instances.  

Finally, the challenge of performing network-based intrusion detection at high-speed 
networks was addressed. The proposed approach named BigFlow and the experimental 
evaluation showed that BigFlow is feasible: the prototype could reach up to 10.72 Gbps 
throughput in a 40-core cluster.  
6.1 Future Works 

This work presents the following future works: 

• Through the built datasets, evaluate common approaches in the literature for 

network-based intrusion detection, and establish a set of guidelines towards 
reliability; 

• Evaluate common active learning approaches for stream learning in the MAWIFlow; 

• Design a new method coped with conformal evaluator to assess the model lifespan, 

in order to establish whether a model should be rebuilt or not; 

• Design a method to use a multiple classifier system in order to aid at providing 

reliability in the absence of model updates; 

• Design a method for building models aiming to increase their lifespan in 
MAWIFlow; 

6.2 Publications 

In this section a list of papers either published or under review are listed according to 
the challenge addressed by the reliable intrusion detection model.  
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6.2.1. Generalization Capable Models 

Conference:  VIEGAS, E. K.; SANTIN, A. O. ; ABREU, V. ; OLIVEIRA, LUIZ S. Enabling 

Anmaly-based Intrusion Detection Through Model Generalization. Accepted at: IEEE Symposium on 
Computers and Communications  2018 (ISCC). (Brazilian qualis A2) 
Journal:  VIEGAS, E. K. ; SANTIN, A. O. ;  OLIVEIRA, L. E. S. Toward a Reliable Anomaly-
Based Intrusion Detection in Real-World Environments. Elsevier Computer Networks, vol. 127, no. 1, pp. 
200-216, 2017 (Brazilian qualis A1) 
Journal:  E. VIEGAS, A. SANTIN, A. FRANÇA, R. JASINSKI, V. PEDRONI, AND L. 
OLIVEIRA, “Towards an Energy-Efficient Anomaly-Based Intrusion Detection Engine for Embedded 
Systems,” IEEE Transactions on Computers, vol. 66, no. 1, pp. 1–14, 2017. (Brazilian qualis A1) 

6.2.2. Reliability in Batch Learning Classification 

Journal:  E. VIEGAS, A. SANTIN, L. OLIVEIRA , A. FRANÇA, R. JASINSKI, and V. 
PEDRONI, “A reliable and Energy-Efficient Classifier Combination Scheme for Intrusion Detection in 
Embedded Systems”. Accepted at: Computers & Security (Brazilian qualis A2) 

6.2.3. Resiliency to Adversarial Attacks 

Conference:  VIEGAS, E. K. ; SANTIN, A. O. ; ABREU, V. ; OLIVEIRA, L. E. S. Stream Learning 
and Anomaly-based Intrusion Detection in the Adversarial Settings. In: IEEE Symposium on Computers and 
Communications (ISCC), 2017, Creete, Greece. In Proceddings of IEEE ISCC. Los alamitos: IEEE, 2017. p. 
1-6. (Brazilian qualis A2) 
Conference:  VIEGAS, E. K.; SANTIN, A. O. ; ABREU, V. ; OLIVEIRA, LUIZ S. . Detecção de 
Intrusão Através de Aprendizagem de Fluxo no Ambiente do Adversário. In: Simpósio Brasileiro de 
Segurança da Informação e de Sistemas Computacionais (SBSeg), 2017, 2017. p. 1-14. (Brazilian qualis B3) 
Conference:  VIEGAS, E.; SANTIN, A.; NEVES, N.; BESSANI, A.; ABREU, V.; A Resilient 
Stream Learning Intrusion Detection Mechanism for Real-time Analysis of Network Traffic. In. proc. of IEEE 
GLOBECOM, Singapore, Singapore. Proceeding of Globecom 2017. Los Alamitos: IEEE, 2017. (Brazilian 
qualis A1) 

6.2.4. High-speed Networks 

Journal:  VIEGAS, E.; SANTIN, A.; NEVES, N.; BESSANI, A.; “BigFlow: Real-time and 
Reliable Anomaly-based Intrusion Detection for High-speed Networks.” Major Review at an Special Issue  
in: Future Generation Computer Systems, Elsevier (FGCS) (Brazilian qualis A2) 

6.2.5. Conformal Evaluator and Reliable Intrusion Detection Model 

Journal:  E. VIEGAS, A. SANTIN, BESSANI, A., N. NEVES, “Reliable Intrusion Detection: 
Dealing with 10 years of Network Traffic Anomalies”. Will be submitted to: IEEE Transactions on 
Information Forensics and Security. (Brazilian qualis A1) 
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6.2.6. All 

Patent:  E. VIEGAS, A. SANTIN, “Mecanismo de Detecção de Intrusão Confiável Baseada em 
Machine Learning em Redes de Alta Velocidade”, Patente de Invenção, Patente BR 10 2018 011016 0, Data 
de depósito 30/05/2018, 
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Appendix 1 

This appendix provides a description regarding the feature sets used throughout this document. 
Two different feature sets were extracted according to the considered intrusion dataset.  

The fine-grained intrusion dataset (see Section 5.1) extracts the features from [5], which 
are listed below. 

 Table 19. Fine-grained intrusion dataset feature set. 

# Description 
1 Header-based, ip type 
2 Header-based, ip len 
3 Header-based, ip id 
4 Header-based, ip offset 
5 Header-based, ip reserved flag 
6 Header-based, ip don’t fragment flag 
7 Header-based, ip more fragments flag 
8 Header-based, ip protocol 
9 Header-based, ip checksum 
10 Header-based, udp source port 
11 Header-based, udp destination port 
12 Header-based, udp length 
14 Header-based, udp checksum 
15 Header-based, icmp type 
16 Header-based, icmp code 
17 Header-based, icmp checksum 
18 Header-based, tcp source port 
19 Header-based, tcp destination port 
20 Header-based, tcp sequence number 
21 Header-based, tcp acknowledgment number 
22 Header-based, tcp fin flag 
23 Header-based, tcp syn flag 
24 Header-based, tcp reset flag 
25 Header-based, tcp push flag 
26 Header-based, tcp ack flag 
27 Header-based, tcp urg flag 
28 Header-based, frame length 
29 Host-based, number of packets from source to destination 
30 Host-based, number of packets from destination to source 
31 Host-based, number of bytes sent from source to destination 
32 Host-based, number of bytes sent from destination to source  
33 Host-based, number of packets with push flag set sent from source to destination 
34 Host-based, number of packets with push flag set sent from destination to source 
35 Host-based, number of packets with syn and fin flag set sent from source to destination 
36 Host-based, number of packets with syn and fin flag set sent from destination to source 
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37 Host-based, number of packets with fin flag set sent from source to destination 
38 Host-based, number of packets with fin flag set sent from destination to source 
39 Host-based, number of packets with ack flag set sent from source to destination 
40 Host-based, number of packets with ack flag set sent from destination to source 
41 Host-based, number of packets with rst flag set sent from source to destination 
42 Host-based, number of packets with rst flag set sent from destination to source 
43 Host-based, if is the first packet seen in flow-based communication 
44 Service-based, number of packets from source to destination 
45 Service-based, number of packets from destination to source  
46 Service-based, number of bytes from source to destination 
47 Service-based, number of bytes from destination to source  
48 Service-based, it is the first packet seen in flow-based communication 
49 Connection status 
50 Class {normal, attack} 

 
The extraction of the feature set for the fine-grained intrusion dataset occurred for each 

network packet. For each network packet read from the Network Interface Card (NIC), a set of 
predetermined features was extracted and sent to a classifier engine for classification. All 
feature values were obtained by analyzing the packet header values. The header-based category 
of features was extracted directly from the network packet header. The host-based and service-

based categories of features were extracted by analyzing the communication history between 
two hosts or services.  

A 2 seconds time window was used to compute the time-based type of features. The 
feature extractor engine was implemented using the C++ language following the PCAP API 
using the libpcap (www.tcpdump.org) library; the implementation details are further explained 
in [5]. From each network packet in the fine-grained intrusion databases, the set of features are 
extracted, and the feature vector is written in a separate dataset. Each feature vector entry was 
automatically labeled as normal or attack, on the basis of the source IP address. It is important 
to note that features that were scenario-specific were not considered, e.g., TTL and IP address 
source or destination. 
 In contrast, MAWIFlow had its features extracted by the means of BigFlow feature 
extraction module, in which four different feature sets were extracted: Orunada [78], Nigel [79], 
Moore [80], and Viegas [5]. Those feature sets refer to the evaluation process of the conformal 
evaluator (see method in Section 4.6) and the evaluation of the adapting to network changes 
over time (see method in Section 4.7).  

Bellow each table provides a description of each feature for each feature set. 
Table 20. Orunada feature set. 

# Description 
1 Percentage of packets seen between host/host communication with TCP SYN flag set. 
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2 Percentage of packets seen between host/host communication with TCP ACK flag set. 
3 Percentage of packets seen between host/host communication with TCP RST flag set. 
4 Percentage of packets seen between host/host communication with TCP FIN flag set. 
5 Percentage of packets seen between host/host communication with TCP CWR flag set. 
6 Percentage of packets seen between host/host communication with TCP URG flag set. 
7 Average packet size seen between host/host communication  
8 Average TTL values seen between host/host communication 
9 Percentage of packets seen between host/host communication with ICMP redirect flag set. 
10 Percentage of packets seen between host/host communication with ICMP time exceeded flag set. 
11 Percentage of packets seen between host/host communication with ICMP unreachable flag set. 
12 Percentage of packets seen between host/host communication with ICMP other types flag set. 
14 Number of unique hosts sending network packets to host 
15 Number of unique services sending network packets to host 

  
Table 21. Nigel feature set. 

# Description 
1 Minimum network packet length during time interval sent 
2 Mean network packet length during time interval sent 
3 Maximum network packet length during time interval sent 
4 Standard deviation of network packet length during time interval sent 
5 Minimum network packet length during time interval received 
6 Mean network packet length during time interval received 
7 Maximum network packet length during time interval received 
8 Standard deviation of network packet length during time interval received 
9 Minimum network packet arrival sent time during time interval 
11 Mean network packet arrival sent time during time interval 
12 Maximum network packet arrival sent time during time interval 
13 Standard deviation of network packet arrival sent time during time interval 
14 Minimum network packet arrival received time during time interval 
15 Mean network packet arrival received time during time interval 
16 Maximum network packet arrival received time during time interval 
17 Standard deviation of network packet arrival received time during time interval 
18 Protocol (UDP, TCP or ICMP) 
19 Number of network packets sent 
20 Number of bytes received 
21 Number of network packets received 

 
Table 22. Viegas feature set. 

# Description 
1 Number of Packets 
2 Number of Bytes 
3 Average Packet Size 
4 Percentage of Packets (PSH Flag) 
5 Percentage of Packets (SYN and FIN Flags) 
6 Percentage of Packets (FIN Flag) 
7 Percentage of Packets (SYN Flag) 
8 Percentage of Packets (ACK Flag) 
9 Percentage of Packets (RST Flag) 
10 Percentage of Packets (ICMP Redirect Flag) 
12 Percentage of Packets (ICMP Redirect Flag) 
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13 Percentage of Packets (ICMP Time Exceeded Flag) 
14 Percentage of Packets (ICMP Unreachable Flag) 
15 Percentage of Packets (ICMP Other Types Flag) 
16 Average Packet Size, Throughput in Bytes 
17 Protocol 
18 Number of Packets –  Both directions 
19 Number of Bytes –  Both directions 
20 Average Packet Size –  Both directions 
21 Percentage of Packets (PSH Flag) –  Both directions 
22 Percentage of Packets (SYN and FIN Flags) –  Both directions 
23 Percentage of Packets (FIN Flag) –  Both directions 
24 Percentage of Packets (SYN Flag) –  Both directions 
25 Percentage of Packets (ACK Flag) –  Both directions 
26 Percentage of Packets (RST Flag) –  Both directions 
27 Percentage of Packets (ICMP Redirect Flag) –  Both directions 
28 Percentage of Packets (ICMP Redirect Flag) –  Both directions 
29 Percentage of Packets (ICMP Time Exceeded Flag) –  Both directions 
30 Percentage of Packets (ICMP Unreachable Flag) –  Both directions 
31 Percentage of Packets (ICMP Other Types Flag) –  Both directions 
32 Throughput in Bytes – Source to Destination 
33 Number of Packets  – Source to Destination 
34 Number of Bytes – Source to Destination 
35 Average Packet Size – Source to Destination 
36 Percentage of Packets (PSH Flag) – Source to Destination 
37 Percentage of Packets (SYN and FIN Flags) – Source to Destination 
38 Percentage of Packets (FIN Flag) – Source to Destination 
39 Percentage of Packets (SYN Flag) – Source to Destination 
40 Percentage of Packets (ACK Flag) – Source to Destination 
41 Percentage of Packets (RST Flag) – Source to Destination 
42 Percentage of Packets (ICMP Redirect Flag) – Source to Destination 
43 Percentage of Packets (ICMP Redirect Flag) – Source to Destination 
44 Percentage of Packets (ICMP Time Exceeded Flag) – Source to Destination 
45 Percentage of Packets (ICMP Unreachable Flag) – Source to Destination 
46 Percentage of Packets (ICMP Other Types Flag) – Source to Destination 
47 Throughput in Bytes –  Destination to Source 
48 Number of Packets  –  Destination to Source 
49 Number of Bytes –  Destination to Source 
50 Average Packet Size –  Destination to Source 
51 Percentage of Packets (PSH Flag) –  Destination to Source 
52 Percentage of Packets (SYN and FIN Flags) –  Destination to Source 
53 Percentage of Packets (FIN Flag) –  Destination to Source 
54 Percentage of Packets (SYN Flag) –  Destination to Source 
55 Percentage of Packets (ACK Flag) –  Destination to Source 
56 Percentage of Packets (RST Flag) –  Destination to Source 
57 Percentage of Packets (ICMP Redirect Flag) –  Destination to Source 
58 Percentage of Packets (ICMP Redirect Flag) –  Destination to Source 
59 Percentage of Packets (ICMP Time Exceeded Flag) –  Destination to Source 
60 Percentage of Packets (ICMP Unreachable Flag) –  Destination to Source 
61 Percentage of Packets (ICMP Other Types Flag) –  Destination to Source 
62 Throughput in Bytes –  Destination to Source 
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Table 23. Moore feature set. 

# Description 
1 Minimum inter arrival time 
2 First quartile of inter arrival time 
3 Median inter arrival time 
4 Average inter arrival time 
5 Third quartile of inter arrival time 
6 Maximum inter arrival time 
7 Variance of inter arrival time 
8 Minimum inter arrival time from source to destination 
9 First quartile of inter arrival time from source to destination 
10 Median inter arrival time from source to destination 
11 Average inter arrival time from source to destination 
12 Third quartile of inter arrival time from source to destination 
13 Maximum inter arrival time from source to destination 
14 Variance of inter arrival time from source to destination 
15 Minimum inter arrival time from destination to source 
16 First quartile of inter arrival time from destination to source 
17 Median inter arrival time from destination to source 
18 Average inter arrival time from destination to source 
19 Third quartile of inter arrival time from destination to source 
20 Maximum inter arrival time from destination to source 
21 Variance of inter arrival time from destination to source 
22 Minimum packet length 
23 First quartile of packet length 
24 Median packet length 
25 Average packet length 
26 Third quartile of packet length 
27 Maximum packet length 
28 Variance of packet length 
29 Minimum packet length from source to destination 
30 First quartile of packet length from source to destination 
31 Median packet length from source to destination 
32 Average packet length from source to destination 
33 Third quartile of packet length from source to destination 
34 Maximum packet length from source to destination 
35 Variance of packet length from source to destination 
36
3 

Minimum packet length from destination to source 
37 First quartile of packet length from destination to source 
38 Median packet length from destination to source 
39 Average packet length from destination to source 
40 Third quartile of packet length from destination to source 
41 Maximum packet length from destination to source 
42 Variance of packet length from destination to source 
43 Total network packets from source to destination 
44 Total network packets from destination to source 
45 Total network packets with TCP ACK flag set from source to destination 
46 Total network packets with TCP ACK flag set from destination to source 
47 Total network packets with only TCP ACK flag set from source to destination 
48 Total network packets with only TCP ACK flag set from destination to source 
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49 Total network packets with TCP SYN flag set from source to destination 
50 Total network packets with TCP SYN flag set from destination to source 
51 Total network packets with TCP FIN flag set from source to destination 
52 Total network packets with TCP FIN flag set from destination to source 
53 Total network packets with TCP PSH flag set from source to destination 
54 Total network packets with TCP PSH flag set from destination to source 
55 Total network packets with TCP URG flag set from source to destination 
56 Total network packets with TCP URG flag set from destination to source 
57 Total ICMP packets from source to destination 
58 Total ICMP packets from destination to source 
59 Throughput from source to destination 
60 Throughput from destination to source 

 
In addition to each extracted feature set, each network flow also contains features 

regarding their labeling process. Those features are shown in Table 24. It is important to note 
that such features are removed before the classification process, their only purposes are either 
for debugging or flow labeling. 

Table 24. Features regarding the labeling process. 

# Description 
1 MAWILAB, attack taxonomy  
2 MAWILAB, anomaly distance 
3 MAWILAB, number of detectors that detect the anomaly 
4 MAWILAB, label {normal, anomalous, suspicious, notice} 
5 Class {normal, attack} 
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Appendix 2 

This appendix provides the complete conformal evaluator results compared to CRT throughout 
10 years of MAWIFlow dataset. 

 
(a) Jan. 2007 to Jun. 2007 

 
(b) Jul. 2007 to Dec. 2007 

  
(c) Jan. 2008 to Jun. 2008 

 
(d) Jul. 2008 to Dec. 2008 

 
(e) Jan. 2009 to Jun. 2009 

 
(f) Jul. 2009 to Dec. 2009 

 
(g) Jan. 2010 to Jun. 2010 

 
(h) Jul. 2010 to Dec. 2010 

 
(i) Jan. 2011 to Jun. 2011 

 
(j) Jul. 2011 to Dec. 2011 

 
(k) Jan. 2012 to Jun. 2012 

 
(l) Jul. 2012 to Dec. 2012 
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(m) Jan. 2013 to Jun. 2013 

 
(n) Jul. 2013 to Dec. 2013 

 
(o) Jan. 2014 to Jun. 2014 

 
(p) Jul. 2014 to Dec. 2014 

 
(q) Jan. 2015 to Jun. 2015 

 
(r) Jul. 2015 to Dec. 2015 

 
(s) Jan. 2016 to Jun. 2016 

 
(t) Jul. 2016 to Dec. 2016 

 

Figure 42. Conformal evaluator performance throughout 10 years of MAWIFlow dataset. 
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Appendix 3 

This appendix shows the performance of several classifiers in MAWIFlow dataset according to 
their used feature set. Only for this appendix, classifiers were trained using the data from Jan. 
2007, and not updated afterwards. 

 
(a) Decision Tree (b) Naive Bayes 

(c) AdaBoost (d) Bagging 

(e) Extra Trees (f) Random Forest 

 
(g) Hoeffding Tree (Weka API) 

Figure 43. Performance of several classifiers using MOORE feature set throughout 10 years of MAWIFlow 
dataset. 
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(a) Decision Tree 

 
(b) Naive Bayes 

 
(c) AdaBoost 

 
(d) Bagging 

 
(e) Extra Trees 

 
(f) Random Forest 

 
(g) Hoeffding Tree (Weka API) 

Figure 44. Performance of several classifiers using NIGEL feature set throughout 10 years of MAWIFlow 
dataset. 
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(a) Decision Tree 

 
(b) Naive Bayes 

 
(c) AdaBoost 

 
(d) Bagging 

 
(e) Extra Trees 

 
(f) Random Forest 

 
(g) Hoeffding Tree (Weka API) 

Figure 45. Performance of several classifiers using VIEGAS feature set throughout 10 years of MAWIFlow 
dataset. 
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(a) Decision Tree 

 
(b) Naive Bayes 

 
(c) AdaBoost 

 
(d) Bagging 

 
(e) Extra Trees 

 
(f) Random Forest 

 
(g) Hoeffding Tree (Weka API) 

Figure 46. Performance of several classifiers using ORUNADA feature set throughout 10 years of MAWIFlow 
dataset. 

 


