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Abstract 
 

The management of security policies is an important issue for networks of any size. The policy 

must be designed to protect the internal resources from external users and also from internal 

users. In networks with one or only a few firewalls, defining the configuration of each device is 

easier. However, in larger networks, the administrator must consider the configuration of each 

firewall isolated and the effects of this configuration in the whole network. This thesis proposes 

a framework for representing and managing global network security policies for distributed 

firewall administration. The proposed framework defines a high-level policy language, which 

allows the specification of policies in mandatory, discretionary and security property models. 

This framework is able to handle simultaneously the three dimensions and coherently describes 

the resulting permissions in an abstract representation that is independent of how they will be 

enforced, without violating the global security goal. The framework also includes a mechanism 

responsible for translating the abstract representation of permissions into low-level configuration 

scripts/rules for firewalls of different models and vendors, allowing its use for configuration of 

heterogeneous networks. Each dimension can be defined by people of different roles, allowing 

the cooperation in definition of global policy. The framework is formalized in Z to demonstrate 

its completeness and correctness, and a scalability study is presented to demonstrate the behavior 

of the framework in larger networks. 
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Chapter 1  

Introduction 

1.1 Motivation 

omputer networks are present everywhere around the world. Small networks normally 

have just one security device that connects the internal network to the Internet. But it is 

very common the existence of several security devices in larger networks, in order to split the 

network in several sub networks, simplifying the management and increasing the whole security.  

The most vulnerable security device normally is the responsible for the connection of the 

internal network to the Internet, since the attacks can be originated from virtually anywhere in 

the world. However, many threats are originated from inside the network. Therefore, it is 

necessary to control the access from external users and external resources as well to control the 

access from internal users to internal resources, reducing the risks of attacks originated from the 

inside of the network [26]. 

The main equipment used to enforce the network security is the firewall. However, many 

difficulties arise when configuring network with large number of firewalls, since it is a complex 

and error-prone task [48]. A generally accepted way to reduce security configuration efforts 

consists in employing policy based tools. High level policies are specified in terms of which 

resources the users can access, and should be converted into firewall specific language 

configuration scripts, in terms of source hosts where the users are located and destinations hosts 

where the resources are available. Moreover, the security policy must represent the security plan, 

which contains the organization’s security goals and declare responsibilities and other security-

relevant organizational issues [46]. 

C 
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In larger networks, it is possible that more than one firewall to be present between the 

source and the destination. Each firewall must be configured according to its position and the 

security policy that it must enforce. The conversion mechanism must take the policy and the 

topology as input to determine the rules that must be applied to each firewall, in a way that the 

overall security policy is satisfied [2]. When more than one firewall is present between a user 

and a resource, the rule set can be combined in order to better explore the distinct functionalities 

offered by the firewalls. This process of configuring several firewalls must be carried carefully, 

because although each firewall individually can be configured correctly, the connections 

between them can cause a security violation [25]. In addition, a typical large-scale enterprise 

network might involve hundreds of rules that might be written by different administrators in 

different times. This significantly increases the potential of anomaly occurrence in the firewall 

policy, increasing the risk of security violations in the protected network [35]. Due to complexity 

of firewall configuration, several works proposes approaches for analyzing the firewall 

configuration, such as [35][36][37][38][39][40]. 

Also, as firewalls of diverse models and vendors can be present, it is necessary to consider 

the specific language used for configuration and the set of rules that can be interpreted and 

enforced by each firewall in the network before applying the configuration. Ideally, the process 

of defining security policies should be decoupled from the mechanisms that will actually enforce 

them over the network. In most organizations, security policies are related to business goals, and 

are not anymore a purely technical issue [47]. Leaving the responsibility of configuring the 

entire network policy to one network administrator can be risky, since any mistake can lead to a 

security hole. 

1.2 Objectives and Contribution 

In order to address the aforementioned issues, this thesis proposes a Framework for Distributed 

Firewall Administration in a Multi-Constraint Security Policies Context that introduces a new 

approach related to the security policy definition and the generation of firewall configuration in a 

distributed environment. 

The main objectives of this framework are: 

 

• Specification of multi-constraint policies, using mandatory, discretionary and security 

property models; 
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• Definition of the a centralized global security policy, yet allowing the definition of each 

policy model by different groups of people; 

• Independence of topology; 

• Independence of firewall models and vendors; 

• Mechanism for translating high-level security policy to low-level script/rule 

configuration files for each firewall in the network. 

 

The framework adopts a policy model with three dimensions of security policies: 

mandatory, discretionary and security property. Mandatory policies are coarse grained and 

reflect the inviolable security restrictions in the organization. The security property policies are 

restrictions imposed to the sources where the users are located and the paths connecting users to 

resources. In our framework a path must satisfy some security requirements in order to be 

allowed. This permits to create policies which are independent on the user or resource location. 

Finally, the discretionary policies are fine grained, and are subjected to the mandatory and 

security property policies. The motivation for this division is to support the cooperation of 

multiple security staff in the security policy definition. For example, the right to define 

mandatory and security property policies could be assigned to an organizational-level risk 

management staff while the discretionary policies could be delegated to the local network 

administrators in several departments in the organization. 

After determining the resulting set of permissions allowed by the three policy models, the 

algorithm performs the distribution of permissions among the firewalls within the network, 

according to their locations and functionalities. The firewalls are configured with the minimum 

set of rules that correctly and completely implements the high level security policy. The rules 

generated by our framework consider the functionalities and syntax of each firewall model 

through the named service concept, an abstract representation for firewall protected services. A 

named service encapsulates some firewall capabilities by pointing to a library that contains a 

vendor dependent implementation for the service. 

The process of translating the three-dimensional high level security policy into firewall 

configuration is highly complex. To assure that the firewall configuration respects the high level 

definition, we have formalized both the policy model and the translating algorithm using the Z-

language notation. The proof of some important theorems permits to demonstrate the coherence 

1.2 Objectives and Contribution 
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of our approach with respect to the proposed multi-policy model. We also present a complexity 

analysis, which demonstrates the time necessary to process the rules according to the policy size. 

The main contributions of this thesis are: 

 

• Specification of three-dimensional framework for network security policy definition, 

which allows different security staff to be responsible for the description of each 

dimension; 

• Specification of a high-level security policy language, able to handle mandatory, 

discretionary and security property policies, independently of topology and firewall 

models/vendors; 

• Definition of an information model that comprises the network topology; 

• Definition of the Named Service concept, that is a high-level representation of the 

firewall protected services; 

• Description of the algorithm that process the three policies specifications, responsible 

for translating the high-level security policy to low-level scripts/rules for firewall 

configuration; 

• Demonstration of the formal validation of the algorithm using a mathematical language; 

• Scalability Study of the proposed framework. 

 

The following characteristics of the framework are also innovative and can be viewed as 

contributions of this work. Because the topology is represented in the information model, the 

proposed refinement algorithm is able to determine the permissions that must be configured in 

each firewall along an access path. Moreover, by considering the named services available in 

each firewall and a mechanism to convert the permissions into firewall rules/scripts at the 

topmost level, the policy model is both topology and vendor independent. 

1.3 Organization of the thesis 

This thesis is organized as follows: Chapter 2 presents the traditional access control models and 

the works that are focused in representation and manipulation of security policies. Chapter 3 

presents a description of the common types of firewalls available and their characteristics. 
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Chapter 4 describes our proposed framework, presenting both the security policy language 

and the translation algorithm. Chapter 5 presents the Z-language representation of the framework 

and the theorems proofs. The theorems are intended to demonstrate that the algorithm is 

complete and consistent, i.e., it correctly creates low-level permissions that are defined in high-

level policy without creating any security violation. Chapter 6 presents a scalability study, which 

demonstrates the time complexity of the algorithm theoretically and the simulations performed 

with the prototype in real scenarios. 

Chapter 7 presents a complete case study, illustrating the specification of the three policies 

models, the steps of the processing and the resulting scripts created for firewall configuration. 

Finally, Chapter 8 concludes the thesis and points to future developments. 

1.3 Organization of the thesis 





 

 

Chapter 2  

Basic Concepts and Related Work 

2.1 Introduction 

nformation systems security refers to protection of information systems against 

unauthorized access to or modification of information, whether in storage, processing or 

transit, and against denial of service to authorized users, including measures necessary to detect, 

document, and counter such threats. 

In network scenarios, the security is enforced mainly by firewalls, which have been widely 

deployed to secure private networks in businesses and institutions. The firewalls are very 

common in the connection between the private network and the Internet, but are also employed 

inside the private network, protecting and separating the internal subnets and resources. 

The firewalls enforce the protection by analyzing the packets that transverse them. By 

examining their contents, the firewalls decide if each packet must be accepted or discarded. This 

decision is normally made based on a sequence of rules, which are the configuration or policy of 

the firewall. 

The major problem in defining the network policy is the correct definition of the rules that 

must be configured in each firewall in the network. It is relatively easy have conflicting rules in 

one firewall, and more easy when multiple firewalls need to be configured in order to implement 

the policy. Due to this, several works proposes mechanisms for management and configuration 

of firewall policies. 

This chapter presents the traditional access control models that are used for policy definition 

and the frameworks and languages used for policy representation. 

I 
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2.2 Access Control Models 

Access control is the ability to permit or deny the use of a particular resource by a particular 

entity. Access control is the problem of determining the operations (e.g., read and write) that 

subjects (e.g., users and services) can perform on objects (e.g., files and network connections). A 

particular access control specification instance (or policy) is called a configuration [22]. 

Several models have been proposed to address the access control requirements of distributed 

applications. Traditional access control models are broadly categorized as discretionary access 

control (DAC) and mandatory access control (MAC) models. New models such as role-based 

access control (RBAC) or task based access control (TBAC) models have been proposed to 

address the security requirements of a wider range of applications. 

The focus of the framework proposed in this framework is to allow the administrator to 

define the security policy using the discretionary and mandatory access control models. This 

section presents a description of these control models. For the most common access control 

models, please read [29] and [30]. 

2.2.1 Mandatory Access Control 

The Trusted Computer System Evaluation Criteria [13], the seminal work on the subject which is 

often referred to as the "Orange Book", defines MAC as "a means of restricting access to objects 

based on the sensitivity (as represented by a label) of the information contained in the objects 

and the formal authorization (i.e., clearance) of subjects to access information of such 

sensitivity". 

Mandatory Access Control (MAC) is the strictest of all levels of control. The design of 

MAC was defined, and is primarily used by the government. MAC takes a hierarchical approach 

to controlling access to resources. Under a MAC enforced environment, access to all resource 

objects (such as data files) is controlled by settings defined by the system administrator. As such, 

all access to resource objects is strictly controlled by the operating system based on system 

administrator configured settings. It is not possible under MAC enforcement for users to change 

the access control of a resource. Mandatory Access Control begins with security labels assigned 

to all resource objects on the system. These security labels contain two pieces of information - a 

classification (top secret, confidential etc) and a category (which is essentially an indication of 

the management level, department or project to which the object is available). Similarly, each 

user account on the system also has classification and category properties from the same set of 
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properties applied to the resource objects. When a user attempts to access a resource under 

Mandatory Access Control the operating system checks the user's classification and categories 

and compares them to the properties of the object's security label. If the user's credentials match 

the MAC security label properties of the object access is allowed. It is important to note that 

both the classification and categories must match. A user with top secret classification, for 

example, cannot access a resource if they are not also a member of one of the required categories 

for that object. Historically and traditionally, MAC has been closely associated with multi-level 

secure (MLS) systems. 

The Bell-LaPadula (BLP) model describes a generic multilevel confidentiality policy [31]. 

The subjects of the model have security clearances, whereas the objects have classifications. 

Labels may indicate the different security levels, corresponding to military classifications. The 

system is secure if the set of state transitions preserves the following two rules:  

(1) The simple security condition (also know as read-down), which states that a subject can 

read an object iff confidentiality levelsubject ≥ confidentiality levelobject, and the subject has a 

discretionary read access to the object. 

(2) The *-property (also known as write-up), which states that a subject can write an object 

iff confidentiality levelsubject ≤ confidentiality levelobject, and the subject has a discretionary write 

access to the object. 

Therefore, the BLP policy allows information flow from low-confidentiality level to higher 

levels and disallows flow in the opposite direction. The BLP model may be extended with 

compartments (also named categories or need-to-know), which are specified areas of interest. 

Examples are the set of departments of an organization or the subset of information two nations 

agree to exchange (see Figure 2.1 for an example). Thus, compartments reflect a need-to-know-

policy and restrict the subjects’ access to information at levels for which they are cleared. The 

set {UNCLASSIFIED, CONFIDENTIAL, SECRET, TOP SECRET} forms a linear ordering, 

whereas compartments lead to a lattice including the set of all subsets of the set of 

compartments, also called the power set of the set of compartments. The combination of the 

security levels and the compartments forms a partially ordered set (a partially ordered set differs 

from a total order in that some pairs of elements may not be related to each other). Solaris TE is 

an example of current implementation of the extended BLP model [56]. 

 

2.2 Access Control Models 
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Figure 2.1: Example of Lattice 

 
Denning [32] and Biba [33] also used lattices for information flow and integrity policies, 

respectively. The paper [34] gives detailed information about lattices and their applications. 

2.2.2 Discretionary Access Control 

In computer security, discretionary access control (DAC) is a kind of access control defined by 

the Trusted Computer System Evaluation Criteria [13] as "a means of restricting access to 

objects based on the identity of subjects and/or groups to which they belong. The controls are 

discretionary in the sense that a subject with certain access permission is capable of passing that 

permission (perhaps indirectly) on to any other subject (unless restrained by mandatory access 

control)". 

Discretionary access control policies control the access of users to the objects on the basis of 

the user’s identity and authorizations (or rules) that specify, for each user (or group of users) and 

for each object in the system, the access models (e.g., read, write or execute) the user is allowed 

on the object. Each request of a user to access an object is checked against the specified 

authorizations. If there is an authorization stating that the user can access the object in the 

specific mode, the access is granted, otherwise, it is denied. 

The flexibility of discretionary policies makes them appropriate for a variety of systems and 

applications. For these reasons, they have been widely used in a variety of implementations, 

especially in the commercial and industrial environments [29]. 

Top Secret 
{Financial,Engineering} 

 

Secret 
{Financial} 

 

Secret 
{Financial,Engineering} 

 

Top Secret 
{Financial} 

 

Secret 
{} 
 

Top Secret 
{} 
 

Secret 
{Engineering} 

 

Top Secret 
{Engineering} 

 



 
 
 

 

11 

Discretionary Access Control is most common access control mechanism for desktop 

operating systems. Instead of a security label in the case of MAC, each resource object on a 

DAC based system has an Access Control List (ACL) associated with it. An ACL contains a list 

of users and groups to which the user has permitted access together with the level of access for 

each user or group. For example, User A may provide read-only access on one of her files to 

User B, read and write access on the same file to User C and full control to any user belonging to 

Group 1. In operational systems and several other applications, each user can control the access 

to their own data. It is important to note that under DAC a user can only set access permissions 

for resources which they already own. A hypothetical User A cannot, therefore, change the 

access control for a file that is owned by User B. User A can, however, set access permissions on 

a file that she owns. Under some operating systems it is also possible for the system or network 

administrator to dictate which permissions users are allowed to set in the ACLs of their 

resources.  

Discretionary access control provides a much more flexible environment than mandatory 

access control but also increases the risk that data will be made accessible to users that should 

not necessarily be given access. 

Discretionary access controls policies based on explicitly specified authorizations are said to 

be closed, in that the default action is denial [29]. Similar policies, called open policies, could 

also be applied by specifying denials instead of permissions. In this case, for each user and each 

object of the system, the access modes the user is forbidden on the object are specified. Each 

access request by a user is checked against the specified (negative) authorizations and granted 

only if no authorizations denying the access exist. The use of positive and negative 

authorizations can be combined, allowing the specification of both the access to be authorized as 

well the access to be denied to the users. However, the interaction of positive and negative 

authorizations can become extremely complicated [57]. 

2.2.3 Role Based Access Control (RBAC) 

The central notion of RBAC is that permissions are associated with roles, and users are assigned 

to appropriate roles. Roles permit the grouping of a set of permissions related to a position in an 

organization such as finance director or network operator. This allows permissions to be defined 

in terms of the position rather than the person assigned to the permission, so policies do not have 

to be changed when people are reassigned to different positions within the organization. Users 

2.2 Access Control Models 
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can be easily reassigned from one role to another and roles can be granted new permissions as 

new applications and systems are incorporated, and permissions can be revoked from roles as 

needed. Another motivation for RBAC has been to reuse role specification by a form of 

inheritance whereby one role (often a superior in the organization) can inherit the rights of 

another role and thus avoid the need to repeat the specification of permissions. One example of 

application of RBAC to firewall configuration is presented in [68]. 

Four conceptual models have been specified in an effort to standardize RBAC [41]. RBAC0 

contains users, roles, permissions and sessions. Permissions are attached to roles and users can 

be assigned to roles to assume those permissions. A user can establish a session to activate a 

subset of the roles to which the user is assigned. RBAC1 includes RBAC0 and introduces role 

hierarchies [42]. Hierarchies are a means of structuring roles to reflect an organization’s lines of 

authority and responsibility, and are specified using inheritance between roles. Role inheritance 

enables reuse of permissions by allowing a senior role to inherit permissions from a junior role. 

For example the finance director of a company inherits the permissions of the accounts manager, 

as the latter plays the junior role. However, defining role hierarchies can be complicated and not 

represent correctly organizational hierarchy [67] (For example a managing director would not 

usually be able to perform the functions of a systems administrator much lower down in the 

organizational hierarchy). RBAC2 includes RBAC0 and introduces constraints to restrict the 

assignment of users or permissions to roles, or the activation of roles in sessions. Constraints are 

used to specify application-dependent conditions, and satisfy well-defined control principles 

such as the principles of least-privilege and separation of duties. 

Finally, RBAC3 combines both RBAC1 and RBAC2, and provides both role hierarchies and 

constraints. In the work [43] (adopted as an ANSI/INCITS standard in 2004), they propose an 

updated set of RBAC models in an effort to formalize RBAC. The models are called: flat RBAC, 

hierarchical RBAC, constrained RBAC and symmetrical RBAC, and correspond to the RBAC0 – 

RBAC3 models. Although the updated models define more precisely the basic features that must 

be implemented by an RBAC system, their description remains informal. A number of variations 

of RBAC models have been developed, and several proposals have been presented to extend the 

model with the notion of relationships between the roles [44], as well as with the idea of a team, 

to allow for team-based access control where a set of related roles belonging to a team are 

activated simultaneously [45]. 
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The RBAC can be configured in order to enforce mandatory and/or discretionary access 

control policies. The works presented in [53], [54] and [55] demonstrates some approaches for 

this configuration. 

2.3 Frameworks and Languages for Policy Representation 

Several works discuss the representation, manipulation and enforcement of security policies. 

Some of them are very generic and can be applied to any domain of study, while others are 

specifically designed for network security. 

The main objective of network security languages is to generate a set of rules that must be 

configured in a single firewall or a set of firewalls. Firewall rules normally contain a set of 

conditions and an action. The conditions are based on the a set of filtering fields such as protocol 

type, source and destination IP addresses and ports, and sometimes other packet information. 

The common actions are accept, which permits the forwarding of the packet, or deny, which 

drops the packet. The paper [49] provides a description of firewall rules. 

This section presents the generic approaches for policy representation, and classifies the 

approaches that are specific for representation of network security policies. 

2.3.1 Generic Approaches 

Several works propose frameworks and languages designed to represent security policies 

generically. Although they aren’t specifically designed for network security policies, they have 

important characteristics that must be considered. 

XACML (eXtensible Access Control Mark-up Language) [28] is the OASIS standard 

language for the specification of access control policies. It is a general purpose access control 

policy language which defines a request/response language and framework to enforce 

authorization decisions. It is based on the XML language and was designed to express a large 

variety of policies, taking into account properties of subjects and protected objects as well as 

context information. The complete policy applicable to a particular decision request may be 

composed of a number of individual rules or policies. In general, a subject can request an action 

to be executed on a resource and the policy decides whether to deny or allow the execution of 

that action. 

2.3 Frameworks and Languages for Policy Representation 
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In a typical XACML framework, there is a policy enforcement point (PEP) and a policy 

decision point (PDP). The PEP is responsible for issuing requests and enforcing the access 

control decisions. The PDP receives requests from the PEP and evaluates policies applicable to 

the requests and sends a decision back to the PEP. 

XACML policies include three main components: a Target, a Rule set and a Rule combining 

algorithm. The Target identifies the set of subjects, resources, actions and environments to which 

the policy is applicable. Each Rule in turn consists of another optional Target, a Condition and 

an Effect element. The Condition specifies restrictions on the attribute values in a request that 

must hold in order for the request to be permitted or denied as specified by the Effect. The Effect 

specifies whether the requested actions should be allowed (Permit) or denied (Deny). The Rule 

combining algorithm is used to resolve conflicts among applicable rules with different effects. 

An XACML policy may also contain one or more obligations, which represent functions to be 

executed in conjunction with the enforcement of an authorization decision. An XACML request 

consists of a list of attributes characterizing a subject and its environment along with the 

attributes of the action and resource. 

The policy-based access control model described in [1] allows the decomposition of the 

policies for collaborative access control. It extends the XACML reference architecture by 

including the notion of collaborative access control, which means that several parties participate 

to make access control decisions.  

The basic idea is that the global policy is obtained from the combination of policies defined 

by several participating parties, in a way that each party does not need to have any sensitive 

information belonging to other parties to make an access control decision. To make this possible, 

this system is compounded by one central policy enforcement point (PEP) and multiply policy 

decision points (PDP). 

Although this access control model focus on the possibility of definition of security policy 

by more than one person or department, it is not designed for configuration of scenarios where 

several PEPs are present, considering that each firewall in a network is an enforcement point. 

A multilevel security (MLS) is proposed in [8] to simplify traditional Lattices. It defines a 

structure with more security dimensions where each dimension is a simple linear ordered lattice. 

MLS describes an information system which is trusted to contain information classified into 

different security levels and to maintain separation between the levels. Concurrent users may 

have different permissions with respect to the security levels. The dimensions (named security 

requirements) used in this work are confidentiality, integrity and availability, which are handled 
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independently. This work doesn’t provide the richness and granularity of traditional MLS-

systems, since it is designed to adapt better to practical lightweight applications. 

The proposal in [22] introduces the concept of access control spaces for the management of 

access control policies. An access control space represents the permission assignment state of a 

particular subject or role. The permissions are categorized into subspaces that have meaningful 

semantics. For example, the set of permissions explicitly assigned to a subject defines its 

specified subspace, and constraints define the prohibited subspace. An unknown subspace 

consists of all elements that are neither in the permissible nor in the prohibited spaces. This 

approach enables the administrator to find and resolve conflicts, since any overlapping subspace 

represents a conflict. 

2.3.2 Network Specific Approaches 

2.3.2.1 Vendor Dependency 

The network specific approaches can be split in two main groups: vendor specific or vendor 

independent. The vendor specific languages are normally defined by firewall vendors, such as 

Cisco PIX [3] and Cisco IOS [4]. Although the INSPECT language is patented by CheckPoint 

[5], it is possible that different firewalls support it, since any vendor can create a firewall 

supporting the INSPECT standard by implementing a compiler that translates the INSPECT 

language into the firewall’s native configuration instructions. However, it cannot be considered 

vendor independent. 

These languages are designed to explore the complete range of functionalities of the 

firewalls. However, in large networks, probably there will be firewalls of different vendors and 

even of same vendor but different models. For these scenarios, it is more interesting to represent 

the security policies in a vendor independent language and compile these specifications for each 

model present in the network. The languages presented in the following are vendor independent, 

if not explicitly stated the opposite. 

2.3.2.2 Topology Dependency 

The vendor independent approach can be classified as topology dependent or independent. 

Topology dependence means that the location of users, resources and firewalls affects the policy, 

i.e., any change in the topology implies in changing the policy. 

2.3 Frameworks and Languages for Policy Representation 
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One example of topology dependence is presented in [6]. The language used in [6] 

represents firewall configuration as high-level policies based on the Ponder specification [7]. It 

employs a two-level optimization approach that allows software and hardware optimizations to 

proceed independently. This work includes a mechanism for conversion of high-level firewall 

description to low-level firewall rule representation using standard compilation techniques, and 

allows the implementation of the policy on reconfigurable hardware. Even though the high-level 

language provides the use of symbols for masquerading host and network addresses, it is still 

topology dependent, because there is no automated strategy for selecting a sub-set of rules that 

applies for a specific firewall. Another drawback is that, although the representation syntax for 

policies is the powerful Ponder language, which supports the generic definition of policies, the 

special policy types defined for this particular application are filtering rules-like. The proposal in 

[23] is another example of a topology dependent approach, since it bases the security in the 

location of the firewalls and servers and in the correct configuration of a DMZ network. 

Topology independent approaches are more interesting for the administrators, since it is 

easy to describe the policy, and topology changes doesn’t result in policy changes. In this case, a 

mechanism or algorithm is responsible for evaluating the network topology (i.e., the location of 

users and resources with respect to the firewalls) and translating the security policies into 

localized firewall configuration. The framework described in [21] and [25] are examples of 

topology independent firewall configuration. In [21], it is presented a policy-based framework 

for the automatic management of firewall rules in large networks. The access control policies are 

defined in three levels of abstraction: organizational, global and local. Policies at the 

organizational level are described in natural language, and define security goals such as blocking 

offensive content and scanning actions. Organizational policies are transformed into global 

filtering rules at the global level. The subset of the global rules that concerns each firewall is 

separated and distributed at the local level. The rule syntax used in all the three layers is a 3-

tuple (source, destination, action), where source and destination are IP addresses (or ranges) and 

action is accept/deny. Consequently, the three levels correspond only to different topology 

levels, in which one is more general than the others but they do not have really different 

abstraction levels. 

The project presented in [25] aims to automate the management of security policy in 

dynamic networks. The project focuses in simplifying the administrators’ task by separating the 

policy from the topology description. One of the specific goals of this work is management of 

security configurations in networks that span multiple administrative domains. A paradigmatic 
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example is the situation of two connected firewalls, each of which has a local security policy 

(administered by a human perhaps). Even if each firewall correctly implements the local policy, 

the interconnection of the two firewalls may violate a global security policy that no firewall can 

detect by itself. The security policy, network topology, mechanism configuration and behavior 

are specified the proposed language named SPL (Security Policy Language), which is prolog-

based. The central component is a policy engine with templates of the network elements and 

services that validates the policy and generates the new security configurations for the network 

elements when the security is violated. The important aspect of this project is the validation of 

the policies applied to the firewalls when multiple administrative domains are connected. 

2.3.2.3 Abstraction Level 

Policy languages can be classified according to their abstraction level. Low-level languages 

represent the policy as conditions-actions tuples (if conditions are satisfied, then enforce 

actions). Several languages are low-level, such as the language employed by the Firmato toolkit 

[12] and the language described in [24].  

Firmato is a firewall management toolkit, based on entity-relation model. This model can be 

viewed as the application of a role-based model to the firewall policy area. Firmato support the 

separation of policy definition from network topology to increase the language modularity and 

reusability. It includes: (1) an entity relationship model containing, in a unified form, global 

knowledge of the security policy and topology, (2) a model definition language, which is used as 

an interface to define an instance of the entity-relationship model, (3) a model compiler, 

translating global knowledge of the model into firewall-specific configuration files, and (4) a 

graphical firewall rules illustrator. In Firmato, the user can only define allow rules; deny rules 

are supported only by the default rule: all traffic not explicit allowed will be denied. 

The security policy modeling is executed in two phases. In the first phase, the modeler 

should define roles and describe which services the roles are permitted to use, regardless of its 

location on the network (i.e. a topology independent phase). In the second phase, the 

administrator specifies the assignments of roles to actual hosts. Named entities directly 

correspond to IP address ranges and hence physical and logical topologies are mutually 

intertwined.  

In Firmato, the policy is defined as a list of rules, which are basically a set of condition-

action’s, and the concept of role is limited to a service or set of services that are initiated or 

accepted by the hosts (for instance, mail_client, mail_server, dns_server, etc.). However, 

2.3 Frameworks and Languages for Policy Representation 
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Firmato presents two aspects that must be pointed out: it considers the differences between 

distinct firewall models, through the representation of the features of each model; and the model 

compiler, which translates a model instance into firewall specific configuration files.  

The language presented in [24] represents network policies based on paths. A path-based 

policy is defined as a policy were all attributes associated with the policy (traffic service type, 

conditions used to trigger the policy and the actions executed when the policy is triggered) are 

bound to a predefined path. The representation of a path, which includes every node from source 

to destination, is used to create virtual channels where resources are reserved to support real-time 

applications. This paper, however, doesn’t describe how the policies are translated to firewall 

configuration files. 

High-level languages uses more abstract concepts, wherein the security policies says “what 

must be done” instead of saying “how must be done”. Some examples of policy based languages 

can be found in [9], [10] and [11]. The framework presented in [9] permits to represent high-

level policies in the form of a list of data access rules (DACL), which declares permissions for 

executing simple operations (read or write) on objects. The framework translates the high-level 

policies into low-level policies suitable to be configured into the firewall devices. There is a 

subtle difference between the semantics of DACL and that of a low-level access-control policy. 

A DACL rule cannot simply be translated into some enforcement mechanism that controls 

access to the data. The security property specified by DACL is enforced collectively by the 

configurations of all those hosts. Thus, to verify that the high-level DACL policy is upheld, all 

configuration parameters in the network must be taken into account. The algorithm for checking 

the fidelity of the low-level policies with respect to the high-level policies is also presented. The 

FLIP language [10] aims automate the management of security policy in dynamic networks. The 

policies are represented as high-level service-oriented goals, which can be translated 

automatically into access control rules to be distributed to the firewalls. It generates rules that are 

conflict-free, both on individual firewalls and between firewalls, by restricting some conflicts at 

the high-level and handling the remaining conflicts during the processing.  

The work presented in [11] introduces a Lisp-based language for representing global access 

control policies for configuring multiple distributed firewalls. The language abstracts hosts and 

area addresses by using names, which permits to easily determine which firewalls are traversed 

by the communication flows. It defines an algorithm that, given a specific topology, creates the 

filter set for each firewall or router. It also defines a second algorithm that verifies if the 

resulting configuration violates any of access policies. The authors use the expression “filtering 
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posture” to represent an assignment of filter functional behavior to each router interface in a 

network. It does not specify the router configuration files that will implement this functional 

behavior; it stipulates only the logical effects that those configuration files should achieve. An 

interesting aspect addressed in this work is defining how individual packet filters cooperate in 

order to achieve the global security policy. The authors called this problem “localization”. 

2.4 Security Properties 

Most of the works presented earlier in this chapter are focused in the representation of 

permissions of users to access resources, explicitly specifying source and destination locations, 

but without any reference to the path used to perform the access. Some of these works allow the 

administrator to specify if some access is permitted or denied based on the protocol being used, 

but there isn’t a classification of the security level provided by each protocol.  

The concept of security properties are directly connected to the path that packet traverse 

from the source to destination and the security provided by the protocol used to perform the 

access. 

The purpose of defining a policy based on security properties is to ensure that the packets 

cannot traverse some paths, or that just specific protocols be used when traversing some paths. 

The reason for blocking these packets traversing these paths can be because the packets have 

been originated from untrusted hosts (the framework consider that the source is the first node of 

the path) or the path contains untrusted networks or devices. Thus, the security property policy 

will guarantee that only acceptable paths will be used to perform an access. 

The protocol used to perform the access affects the security. For example, consider the http 

and the https protocols. The http represents the content in plain text, and anyone in the path is 

able to intercept and read its content. On the other hand, https provides confidentiality, since the 

content is encrypted. Therefore, the protocol must be considered when evaluating the security of 

the accesses. 

The work described in [14] adopts a graphic representation of security rules. It also defines 

the concept of security goals (e.g., top secret, mission critic, etc), which impose additional 

security properties that are required in order to access an object or perform a given access mode. 

At a lower level, a security goal is expressed in terms of a security requirement vector, which 

defines the minimum levels of properties such as confidentiality, integrity, availability and 

accountability. A security assumption vector defines the same properties assigned for the 
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principal and elements along the path between the principal and the resource. In order of an 

access to be granted, it is necessary that all properties of the security assumption vector satisfy 

the corresponding properties in the security requirement vector. 

The works in [11] and [20] adopts a similar concept for security goals and security 

requirements, deciding if an access is permitted or denied analyzing the packets and the path that 

the packets traversed. These works focus on distributed packet filtering and IPsec gateways. 

We have borrowed some concepts related to the security property model from [14]. 

2.5 Conclusion 

There are several works that focus on management of firewall security policies. However, these 

works normally focus in specific issues concerning the policies, therefore they aren’t generically. 

In order to situate the framework that is being proposed, this chapter presented the 

traditional access control models and presented some related works classified by vendor 

dependency, topology dependency and abstraction level. It also presented some works that are 

related to the security property model used for policy definition in our framework. 

The framework presented in this thesis can be classified as vendor and topology 

independent. The vendor independence is attained with the named service concept (please, see 

section 4.2 for details). All the computation is performed using an abstract representation, which 

is independent of devices. The framework includes a refinement algorithm responsible for 

generating the rules or scripts used for firewall configuration. There is a specific library for each 

different firewall, which receives abstract permissions and uses the corresponding named 

services as input to generate the rules/scripts. The topology independence is achieved isolating 

the security policies from the network topology description. The refinement algorithm is capable 

to generate and distribute firewall configuration, from the registered topology information. If 

there is any change in the topology, it is just necessary to reprocess the policies with the new 

topology description. 

The policy language introduced can be classified as a high-level one. Although the 

discretionary policy is structured as conditions-actions tuples, the conditions are specified 

independently of the firewalls models and locations, and also independently of  how they must 

be configured. Also, the mandatory policy and the security property policy allow the 

administrator to specify the security policy based on the declaration of security levels. The 
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policies represented by the language proposed in this work can be classified as closed, since they 

adopt the “anything not explicitly allowed is forbidden” strategy. 

2.5 Conclusion 





 

 

Chapter 3  

Firewall Technology 

3.1 Introduction 

firewall is a system or group of systems that enforces an access control policy between 

two networks. The actual means by which this is accomplished varies widely, but in 

principle, the firewall can be thought of as a pair of mechanisms: one which exists to block 

traffic, and the other which exists to permit traffic. 

The purpose of a firewall is to protect the inside network and keep "bad" things outside a 

protected environment. To accomplish that, firewalls implement a security policy that is 

specifically designed to address what bad things might happen. For example, the policy might be 

to prevent any access from outside (while still allowing traffic to pass from the inside to the 

outside). Alternatively, the policy might permit accesses only from certain places, from certain 

users, or for certain activities. Part of the challenge of protecting a network with a firewall is 

determining which security policy meets the needs of the installation. 

This section presents the main types of firewalls and describes how it works and the 

protection the can provide.  

3.2 Packet Filter 

A packet filter (also known as screening router or stateless inspection firewall) is the most basic 

type of firewall. Firewalls with packet filters normally operate at the network layer (see Figure 

3.1), filtering the source and destination addresses and protocol type (such as TCP, UDP and 

ICMP), sometimes consulting fields of the transport layer, such as session source and destination 

A 
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ports (e.g., TCP 80 for the destination port belonging to a Web server, TCP 1320 for the source 

port belonging to a personal computer accessing the server). 

Before forwarding a packet, the firewall compares the IP header and TCP header against a 

user-defined table – rule base – which contains the rules that dictate whether the firewall should 

deny or permit packets to pass. The rules are scanned in sequential order until the packet filter 

finds a specific rule that matches the criteria specified in the packet-filtering rule. If the packet 

filter does not find a rule that matches the packet, then the default rule is executed. The default 

action can be accept or drop the packet, depending on what is the default behavior defined in 

security policy. 

 

Figure 3.1: OSI and TCP/IP Models 

 

Packet filters are not able to analyze the content of the packet (doesn’t inspect higher 

layers). Thus, any detail in the packet's data field (for example, allowing certain Telnet 

commands while blocking other services) is beyond the capability of a packet filter. 

The advantages of packet filter are speed and flexibility. Since packets seldom examine data 

above the network layer (with the possible exception of limited transport layer information), they 

are very fast. Likewise, since most modern network protocols can be accommodated using layer 

3 or below, the packet filter can be used to secure nearly any type of network communication or 

protocol. On the other side, it has built-in limitations. Since packet filters don’t examine upper 

layers, they are unable to prevent attacks that employ application-specific vulnerabilities or 

functions. They are also unable to detect spoofing attacks. 
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3.3 Stateful Inspection Filter 

The stateful inspection (also known as dynamic packet filter) is the next step in the evolution of 

the static packet filter. It has the main characteristics and limitations of the static packet filter, 

but has an important difference: the state awareness, i.e., it keeps track of all packets associated 

with a specific communication session. Similar to packet filtering, stateful inspection intercepts 

packets at the network layer and inspects them to see if they are permitted by an existing firewall 

rule, but unlike packet filtering, stateful inspection keeps track of each connection in a state 

table. For this operation, the stateful inspection operates in OSI layer 4 (transport layer). 

In simplest terms, a typical dynamic packet filter is able to differentiate packets of new 

connections from packets of established connections. Once a connection is established, the 

information about this connection is stored into a table that typically resides in RAM. 

Subsequent packets are compared to this table. When the packet is found to belong to an existing 

connection, it is allowed to pass without any further inspection. This also provides for the ability 

to create virtual sessions in order to track connectionless protocols such as UDP-based 

applications as well as RPC-based applications. 

The evolution of stateful inspection is the deep packet inspection, which describes the 

capabilities of a firewall or an Intrusion Detection System (IDS) [58][59] to look within the 

application payload of a packet or traffic stream and make decisions on the significance of that 

data based on the content of that data. The engine that drives deep packet inspection typically 

includes a combination of signature-matching technology along with heuristic analysis of the 

data in order to determine the impact of that communication stream. This enables the 

identification of unexpected sequences of commands, such as issuing the same command 

repeatedly or issuing a command that was not preceded by another command on which it is 

dependent. 

Deep Packet Inspection capable firewalls must not only maintain the state of the underlying 

network connection but also the state of the application utilizing that communication channel. 

For example, suppose the SMTP protocol [60]. The client establishes the SMTP connection by 

following the RFC defined protocol steps of issuing a HELO, waiting for the response by the 

mail server. The client may then issue a variety of commands include sending e-mail by 

specifying the SMTP command MAIL FROM:. The firewall monitoring the communication 

between the client and the mail server may raise an alarm or respond to the VRFY command by 
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disallowing it. The client may also try to exploit the sendmail [66] address token overflow 

(discussed in the CERT bulletin CA-2003-12 [74]) in order to gain shell access to the server. The 

firewall, because it is capable of Deep Packet Inspection, is able to identify the exploit attempt 

and deny the connection. Additionally, it may deny the connection from the client altogether. 

3.4 Circuit Level Gateway 

The circuit level gateway operates at OSI layer 5 (the session layer). In most situations, a circuit 

level gateway, also named relay host, is an extension of a packet filter in that it typically 

performs basic packet filter operations and then monitors TCP handshaking [62] between 

packets to determine whether a requested session is legitimate, analyzing the sequence numbers 

used in establishing the connection. 

In this scheme, when a client wishes to connect to a server, it connects to a relay host 

(possibly supplying an authentication and/or other connection information). The connection to 

the server is done by the relay. Each successful connection attempt results in the creation of two 

separate connections – one between the client and the relay host, and another between the proxy 

server and the true destination. The name and IP address of the client normally is hidden from 

the server. 

The circuit level gateway can also compare the IP and TCP headers against a rule table (as 

the packet filter does), to determine if the packet is accepted or denied. If none of the rule is 

applicable, the default action is executed (normally to drop the packet). If the packet is accepted 

by the rule table, then it checks if the session is legitimate verifying the SYN flags, ACK flags 

and sequence numbers involved in the TCP handshaking. The circuit level gateway can also 

perform logging and/or caching of the content. 

3.5 Application-Proxy Gateway 

An application proxy gateway (also know as Proxy Firewall) intercepts incoming and outgoing 

packets, working similarly to a circuit level gateway, preventing any direct connection between 

the client and the server. The main differences are: the application level gateways are application 

specific (i.e., they are only able to handle the services for which they were designed) and they 

examine the entire packet and can filter packets at the application layer of the OSI model (also 

examining the content of the packets). 
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For example, the HTTP traffic needs an HTTP proxy in order to work. If the application 

level gateway is the only connection device, incoming and outgoing packets cannot access 

services for which there is no proxy. For example, if an application level gateway ran FTP and 

HTTP proxies, only packets generated by these services could pass through the firewall. All 

other services would be blocked. 

The application level gateway runs proxies that examine and filter individual packets, rather 

than simply copying and forwarding them across the gateway. Application proxies inspect each 

packet that passes through the gateway, verifying the contents of the packet up through the 

application layer (layer 7) of the OSI model. These proxies can filter on particular information or 

specific individual commands in the application protocols the proxies are designed to copy, 

forward and filter. As an example, an FTP application level gateway can filter on dozens of 

commands to allow a high degree of granularity on the permissions of specific users of the 

protected FTP service [63]. Other example is filtering electronic mail; it is possible to check for 

dirty words or blocking certain type of attachment (such as an executable file). 

The advantages of application proxy gateways are many. As they prevent direct connections 

between two hosts and inspect the content of the communication, they offer a higher level of 

security. They usually have better logging capabilities, since they examine the entire packet. 

Another advantage is that the some application proxy gateways have the ability to decrypt 

packets (such as SSL – Secure Sockets Layer), inspect them and re-encrypt them before sending 

them to the destination. On the other side, the have disadvantages too. Performance is a critical 

issue, since the firewall spends more time reading and interpreting each packet. And, since it is 

necessary an application specific proxy for each type of network traffic, the application proxy 

gateways tend to be limited in terms of support for new networks applications and protocols. 

3.6 Additional Functions  

Besides the types of firewalls discussed in this chapter, the firewalls can also implements other 

functions, such as user authentication, logging and auditing, VPN, and NAT, among others. 

Authentication services attempt to prove identity, to ensure that you know what person you 

are dealing with. Authentication services can be relatively simple when they're used on internal, 

trusted networks but are quite complex when they can't assume a basic level of trust. The 

firewall that implements user authentication enables the control of which users are allowed to 

have access. 
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Packets that are matched can be audited in a log or used to generate alerts. Normally, the log 

contains source and destination addresses, the protocol used, the service attempted, time and 

date, and the action carried out. Alerts can be used to run user-defined scripts to perform actions, 

such as triggering alarms and pager alerts, opening windows, and sending e-mail. Alerts can also 

be sent using SNMP to a SNMP Manager. 

A virtual private network (VPN) [50] is a way of employing encryption and integrity 

protection (for example, using IPsec protocol [61]) in a way a public network can be used (for 

instance, the Internet) as if it were a private network (a piece of cabling that you control). 

Making a private, high-speed, long-distance connection between two sites is much more 

expensive than connecting the same two sites to a public high-speed network, but it's also much 

more secure. A virtual private network is an attempt to combine the advantages of a public 

network (it's cheap and widely available) with some of the advantages of a private network (it's 

secure). Fundamentally, all virtual private networks that run over the Internet employ the same 

principle: traffic is encrypted, integrity protected, and encapsulated into new packets, which are 

sent across the Internet to something that undoes the encapsulation, checks the integrity, and 

decrypts the traffic. 

Network address translation (NAT) [51] allows a network to use one set of network 

addresses internally and a different set when dealing with external networks. It provides a 

mapping between internal IP addresses and officially assigned external addresses. NAT takes the 

IP address of an outgoing packet and translates it to an officially assigned global address. For 

incoming packets it translates the assigned address to an internal address. Network address 

translation does not, by itself, provide any security, but it helps to conceal the internal network 

layout and to force connections to go through a choke point (because connections to untranslated 

addresses will not work, and the choke point does the translation). 

3.7 What Firewalls Cannot Do 

It is important to understand that a firewall is a tool designed for enforcing security policy. If any 

access between the networks is not mediated by the firewall or the policy is ineffective, the 

firewall is not going to provide the adequate protection for the network. However, even a 

properly designed network with a properly configured firewall cannot protect the network from 

the following dangers. 
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A firewall, for instance, cannot decide if the communication is legitimate or not. Someone 

can use an authenticated Telnet session to perform an attack or create a tunnel to use an 

unauthorized protocol through another authorized protocol. Also, firewalls cannot protect 

connections that don’t go through it. To perform the restrictions, it is necessary the existence of 

at least one firewall between the source and destination hosts. 

Another problem is the social engineering. If someone obtains passwords they are not 

authorized to have or otherwise compromise authentication mechanisms trough social 

engineering mechanisms, the firewall won’t stop them. Besides, a firewall is only as secure as 

the operating system on which it is installed. If the operational system has any bug, the 

protection enforce by the firewall can be compromised. This is why it is important to properly 

secure the operating system where the firewall are installed and keep it updated with the security 

patches. 

3.8 Conclusion 

This chapter presented the most common firewall types – packet filters, stateful inspection 

filters, circuit level gateways and application-proxy gateways – and their main characteristics.  

Just installing a firewall in the network is not enough to protect the network. It is important 

to define the security policy and then correctly configure the firewall to reflect the security 

policy. 

The framework proposed in this thesis allows the use of any model of firewall in the 

network that can be configured through the use of scripts or sequence of rules, since the named 

service can represent these scripts or rules independently of the firewall model/vendor. At this 

moment, there are library prototypes for INSPECT, IPTables and IPTables with L7-Filter [18]. 

For a more detailed description of firewalls technologies, please refer to [49] and [52]. 

3.8 Conclusion 





 

 

Chapter 4  

The Proposed Framework 

4.1 Introduction 

his chapter presents the proposal of a new policy based security framework for 

specification of network security policies, capable to handle simultaneously and 

coherently mandatory, discretionary and security property policies. The framework supports the 

definition of network security configuration for systems formed by a set of users willing to 

access a set of protected resources. 

The framework has three main components: an information model, a high-level policy 

language, and a refinement algorithm. The information model and the language support the 

representation of the security information, whereas the refinement algorithm allows security 

policy formulated by high-level statements to be consistently translated to firewall security rules. 

The main objectives of this framework are: 

 

• Specification of policies using mandatory, discretionary and security property model; 

• Definition of the a centralized global security policy, yet allowing the definition of each 

policy model by different groups of people; 

• Independence of topology; 

• Independence of firewall models and vendors; 

• Specification of a mechanism for translating high-level security policy to low-level 

script/rule configuration files for each firewall in the network. 

 

T 



The Proposed Framework 
 
 

 

32 Chapter 4 

In order to achieve the independence of firewall model/vendor, it is used an abstract 

representation of the firewall protected services, denominated Named Service, which is 

explained in details in the following. The named service can also be relaxed, if the firewall 

doesn’t implement it. This process is done without violation of the security, and will be 

explained in the description of the refinement algorithm. 

4.2 Named Services 

An important characteristic of the proposed model is that it isolates the low level security 

configuration from the high level policy model. The security of network services is actually 

implemented as a set of vendor dependent firewall rules (or scripts) configured along the 

firewalls in the network. On networks with different firewall models and vendors, it is necessary 

to use different languages for configuring each firewall. In order to isolate the firewall policy 

from the network elements, this vendor dependent configuration is encapsulated to the Named 

Service class. 

A named service models a “high-level” secured network service that is supposed to be 

configured in the firewalls along the network, i.e., it is an abstract representation for the firewall 

protection services. It encapsulates the service configuration details that would impact the 

security permissions, modeling the firewall ability to perform some processing over the network 

packets. A named service can represent a broad range of secured services, from simple services 

like e-mail and web, to more complex services like file sharing and voice communications. The 

named service implicitly includes the protocols, client and server ports and any other necessary 

information to provide the secured service. In one network, each firewall can have its own set of 

named services, according to its characteristics or features. This concept is similar to the concept 

of feature introduced in Firmato [12], but allows the representation of any characteristic of 

underlying firewalls. 

The use of named services is an important characteristic of this model, because it isolates 

the low level security configuration from the high level policy model. The inventory includes a 

set of configuration Libraries that are responsible for converting the high-level named service to 

the specific scripts/rules that must be used to configure the firewall. The corresponding 

configuration library implementing the named services in the corresponding vendor language is 

pointed by the Library attribute in the Firewall class. Observe that each firewall model will have 

its own library, allowing the configuration of any firewall model. The security of network 
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services is actually implemented as a set of vendor dependent firewall rules (or scripts) 

configured along the firewalls in the network. In this way, it is possible to configure any 

imagined named service, given that it can be supported by the corresponding firewall, and given 

that the configuration library exists. This allows splitting the high-level vendor independent 

policy configuration from the technical vendor dependent firewall configuration. Policy security 

administrators can define the high-level security policy, independently of vendors and specific 

firewalls models, leaving to network security administrators the task to configure the named 

services scripts in the appropriate libraries. Based on the information registered in the Named 

Service class, the refinement algorithm is able to configure firewall of different models and 

characteristics. 

It is important to observe that not all firewalls have the same ability to protect the network 

resources. To address this issue, we introduce the concept of relaxation. For each firewall, we 

assume that it can implement at least the Generic Named Service, which is a rule or script that 

configures the firewall just to enforce the source and destination addresses of the packets (i.e. the 

firewall is at least a packet filter). A firewall that doesn’t implement the named service related to 

some required access must be configured with this Generic named service. Note that this process 

doesn’t cause violation of global security policy. The relaxation procedure is possible because 

the packets of a particular service access will cross all the firewalls along the corresponding 

path. If at least one of the firewalls blocks the offending packets, the access is protected. As the 

refinement algorithm will select only the feasible service accesses (i.e. at least one firewall in the 

path is enforcing the named service), it is assured that only connections permitted by the high-

level policy will transverse the path. Therefore, the firewalls that don’t implement any of the 

named service must permit the packet flow, validating only the source and destination.   

4.3 The Information Model 

The Information Model contains the objects and relationships that are used to represent the 

network and the security policy. It is organized in four main blocks: the Inventory, the 

Mandatory Model, the Discretionary Model, and the Security Property Model. 

Although users interact with services, permissions are granted to resources. A Resource 

consists of one or more services (represented by named service class) delivered from one or 

more locations. For example, the E-mail resource could be defined to represent the SMTP, POP3 

and IMAP named services, while the File Transfer resource could be defined as FTP named 
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service. A Location is the place from where users access resources and also the place where a 

resource is located. Physically it corresponds to a host or subnet, and is represented by an IP 

address and a mask. When assigned to users, a location plays the source role, and the destination 

role when assigned to resources. The User Located At and Resource Located At classes indicate, 

respectively, the locations from where a user can initiate an access or from where a resource can 

deliver a service. Users, locations and resources can be organized in groups, what is modeled by 

a corresponding abstract class. For example, an Abstract User can be a User or a User Group, 

which in its turn can contains many abstract users, that is, many users or user groups. 

4.3.1 The Inventory Information Model 

The Inventory information model contains the information necessary to define the policies that 

must be applied to the network. Figure 4.1 presents the class diagram of the inventory. It 

contains the users and resources that are present in the network, the locations where users and 

resources are located and the connections between them, the named services assigned to the 

corresponding resources and the firewalls present in the network. Users, resources, locations and 

named services can be grouped, in order to simplify the policy definition. The class User 

Located At connects a user or group of users (through the base class Abstract User) to a location 

or group of locations (through the Abstract Location class). The resources are compounded by 

one or more named services. Similarly to users, the resources are connected to the locations 

thought the Resource Located At class. This model allows the high granularity in specifying the 

location of users and resources, without preventing the use of groups to facilitate de 

configuration. 

The Inventory also includes the representation of the named services implemented by the 

firewalls and the connections between locations and firewalls or between two firewalls. All 

named services available in the network are registered in the Named Service class, and each 

firewall is associated to the Named Services it implements. Even when there are firewalls that 

doesn’t implement one or more required named services, it is possible to safely configure the set 

of firewalls involved in a secured access through the relaxation procedure. Such procedure is 

responsible to select the firewall rules (or scripts) for each firewall along a service access 

according to its capabilities, without violating the high-level security policy. The Connection, 

Location and Firewall classes model the network graph: the locations (subnets) and firewalls are 

the vertices and the connections are the edges. The topology is fundamental for computing the 
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permissions granted in the Security Property model. It is used to compute the paths from source 

to destination locations. Path computing is important because it affects the security property, as 

will be described in the following. 
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UserUser Group

Abstract Resource

Resource Group Resource

Abstract Location Location

- IP/Mask:  

Location Group

User Located At

Connection
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1

1..*

1..*
1..*

1..*

1..*

1..*

1..*
0..1

0..1

1..*

1..*
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Figure 4.1: The Inventory Information Model 

4.3.2 The Mandatory Information Model 

The Mandatory Model (presented in Figure 4.2) establishes the mandatory access control policy 

by determining resource access according to a clearance versus classification and need-to-know 

schema. Clearance levels are assigned to users while classification levels are assigned to 

resources and compartments (need-to-know) are assigned to both users and resources.  

The security levels UNCLASSIFIED, CONFIDENTIAL, SECRET, TOP SECRET are 

represented as integer numbers from 1 to 4, 1 corresponding to UNCLASSIFIED (the lowest 

level) and 4 corresponding to TOP SECRET (the highest level). The compartments can specify, 

for example, areas of interest, such as departments of an organization or projects which users are 
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on. For example, a resource can be associated to Financial compartment, meaning that only users 

associated to this compartment are allowed to access this resource. 

A user is allowed to access a resource only if its clearance is greater than or equal to the 

corresponding resource classification and if the set of users’ compartments is a superset of 

resources’ compartments. 

Abstract User

User User Group

Clearance

Abstract Resource

Resource Group Resource

Classification

Compartment
0..*0..*

1

1..*
1..*

1

 

Figure 4.2: Mandatory Information Model 

Figure 4.3 illustrates the concept of the mandatory model. Suppose three different users, 

User 1, User 2 and User 3 and a resource. User 1 has clearance 3 and is associated to Financial 

and Engineering compartments, User 2 has clearance 1 and is associated to Financial and 

Engineering compartments, and User 3 has clearance 4 and is associated to Engineering 

compartment. The resource has classification 2 and is associated to Financial compartment. In 

this scenario, only User 1 is allowed to access the resource, since it has the clearance greater than 

the resource’s classification and has the necessary compartment (Financial). User 2 isn’t allowed 

to access the resource, since its clearance is lower than resource’s classification. User 3 isn’t 

allowed to access the resource, since it isn’t associated to the Financial compartment, which is 

necessary to access the resource. 
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Figure 4.3: Example of Mandatory Levels and Compartments 

4.3.3 The Discretionary Information Model 

The Discretionary Model (Figure 4.4) is constructed by a set of discretionary rules that state the 

security actions to be enforced for specific service accesses. Each rule specify a set of users and 

a set of locations from where they can initiate an access; a set or resources and a set of 

destinations where they can be located; and an action. Conceptually, a (user, source) pair is 

considered the client and a (resource, destination) pair is considered the server for client-server 

services, and both sides are considered client and server for P2P services. Therefore, one 

discretionary rule represents the communication flow in both directions, and firewalls will be 

configured to permit packet flow from client to server and from server to client or between two 

peers. Examples of security actions are: accept, deny, log, and forward. In this thesis we just 

consider the accept action, and adopt the “anything not explicitly allowed is forbidden” strategy.  

The discretionary rule allows the user of any keyword, allowing the representation of 

rules like “Users included in Engineering group from any location are allowed to access the E-

mail resource at DMZ location”, which means that the users can be located at any host. Another 
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example is: “Users included in the Internal User group are allowed to access any resource at the 

Internet from the Internal Network”. 
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Figure 4.4: Discretionary Information Model 

4.3.4 The Security Property Information Model 

The Security Property Model provides fine-grained security information by including 

configuration and location dependent constraints. Security property rules enforce access control 

based on two properties, the security requirement (SR), which is defined for resources, and 

security assumption (SA), which is defined for the named services and the elements along the 

path including source location, intermediate locations and firewalls.  

The security property concept is directly related to the path that packet traverse from source 

to destination. The purpose of defining a policy based on security properties is to ensure that the 

packets cannot traverse some paths, which are not safe enough. The reason for blocking the 

packets traversing these paths can be because the packets have been originated from untrusted 

hosts (the framework consider that the source is the first node of the path) or the path contains 

untrusted networks or devices. Thus, the security property policy will guarantee that only 

trustable paths will be used to perform an access. 
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As an example, suppose the network presented at Figure 4.5. In this diagram, DMZ, Finance 

and Engineering represent internal networks and External represents the Internet. The two 

firewalls, FW1 and FW2 connect the internal networks and external network. For this example, 

suppose that the Engineering and Finance networks must have access to Internet and to DMZ, 

and the External network is only allowed to access DMZ. In order to implement this policy using 

Security Properties, both External and DMZ networks should be associated to low security 

assumptions – since External is an untrusted and unsafe network and DMZ is unsafe, because it 

can be attacked from Internet. Finance and Engineering networks can have higher security 

assumptions – since they are inside the company and their users are known. It is also necessary 

associate high security requirements to resources located at Finance and Engineering and low 

security requirements to resources located at DMZ and Internet. With this configuration, FW1 

will be configured to permit access to DMZ from External, Finance and Engineering networks, 

permit access to Internet from Finance, Engineering and DMZ and block any access to Finance 

and Engineering from External and DMZ networks. FW2 will be configured to permit access to 

Engineering from Finance and vice-versa, but will block any connections to Engineering from 

External and DMZ. 

 

Figure 4.5: Example Network 

Figure 4.6 presents the class diagram for Security Property Information Model. Security 

requirements and security assumptions are specified by security levels within a security class. 

The security level is a natural number ranging from one to four, expressing the “strength” of one 

of the following security properties: confidentiality, integrity, availability and accountability. 

The security level establishes a total order over the security property set: the greater is the 

corresponding number (1, 2, 3 or 4) the stronger is security level. A security class is defined by 

an array of size four. If sc is a security class, sc[1], sc[2], sc[3] and sc[4] correspond, 

respectively, to its confidentiality, integrity, availability and accountability security levels. These 

categories comprise a representative subset of the most common functional security 

Engineering Finance External 

DMZ 

FW1 FW2 
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requirements as stated in standards like [64] and [65], but are not intended to be exhaustive. Any 

entity that can be involved in accessing a resource (i.e., locations, firewalls, and named services) 

has a security class. 
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Figure 4.6: Security Property Information Model 

Security requirements and security assumptions can change when the related objects are 

combined. For example, John Doe trying to access a resource from the Engineering subnet 

would probably have a different SA than when he is trying to access the same resource from JD-

Home host. Assuming that the corporation has much more control over the Engineering subnet, 

the first combination should result in a stronger SA. The involved named service also changes 

the SA. For example, John Doe at Engineering subnet accessing a resource through a named 

service that implements HTTPS protocol introduces a lower risk than when he is trying to access 

the same resource from the same subnet through a named service that implements HTTP. 

Consequently a stronger SA should be assigned to the first. The modified security assumption is 

referred as effective security assumption (ESA). The upper effective class operation (∪) over the 

security class set is defined to compute it. Let sc1, sc2, …, scn, to be security classes such that sci 

= [x1i, x2i, x3i, x4i ]. 
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Security assumptions along an end-to-end path are combined together to form the overall 

security assumption (OSA). The permission to a user (from a source location) willing access a 
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resource (at a destination location) is granted only if the service access OSA is at least as 

“strong” as the resource SR. This involves the comparison of security classes. Because there is a 

partial order over the security class set, we are able to define its “strength”. When sc1 and sc2 are 

security classes such that sc1 = [x1, x2, x3, x4] and sc2 = [y1, y2, y3, y4], the security class sc2 is 

stronger than sc1 if yi ≥ xi, for i = 1..4. 

The OSA is calculated as follows: First, compute the ESA for the (source location, named 

service) pair and for each (firewall, named service) and (location, named service) pairs along the 

path. Note that the destination is not included in this computation, since it is where the resource 

is located. Then, the resulting ESAs are combined along the end-to-end path. In this case the 

calculation should retain the set of weakest security levels. For this, the lower effective class 

operation (∩) is defined over the security class set as follows. Let sc1, sc2, …, scn, to be security 

classes such that sci = [x1i, x2i, x3i, x4i ]. 
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When the OSA is at least as “strong” as the resource SR, the access is permitted.  

Figure 4.7 illustrates the concept of security properties for two named services: http and 

https. For sake of simplicity, consider the security class as a vector of two elements: 

confidentiality and accountability. For the http named service, the ESA for the pair (H1, http) 

results in [1,3], and for the pair (FW, http) results in [4,1]. The computation of OSA for this 

situation results in [1,3], and, since it is not greater or equal to SR [3,3], the access is denied. For 

the https named service, the access is permitted: ESA(H1, https) results in [4,3] and ESA(FW, 

https) results in [4,4]; so the OSA for this situation is [4,3], which is greater than the SR of the 

resource. 

4.3 The Information Model 



The Proposed Framework 
 
 

 

42 Chapter 4 

 

Figure 4.7: Example of ESA and OSA for http and https named services 

4.4 The Proposed Language for Policy Representation 

We propose a language for the representation of the three security policy models. The language 

is represented in text style, and is based on the syntax of Prolog Language. 

Figure 4.8 presents the syntax for the elements of the inventory. The text that is emphasized 

in bold corresponds to the language primitives. The user john doe will be represented as 

user(JohnDoe). A resource will be represented as resource(email, [smtp, pop3, imap]), where 

email is the resource name and [smtp, pop3, imap] are the associated named services. Please, see 

Chapter 7 for a complete example of the language use. 
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Figure 4.8: Inventory Syntax 

Figure 4.9 presents the syntax for mandatory model. For example, the user John Doe has 

clearance level 3 is represented as clearance(John Doe, 3), the Engineering Group has clearance 

level 4 is represented as clearance(Engineering, 4); on the other side, the resource Curitiba 

Server has the classification level 2 is represented as classification(Curitiba Server, 2). 
 

 

Figure 4.9: Mandatory Syntax 

Figure 4.10 presents the syntax for the discretionary model. Note that it is possible to 

include in each rule set of users, resources, sources and destinations, or a set of groups of them. 

For example, the rule “Users included in Engineering group from any location are allowed to 

access the E-mail resource at DMZ location” is represented by rule([Engineering], [any], 

[Email], [DMZ], permit). Another example is: “Users included in the Internal User group from 

the Internal Network are allowed to access anything at the Internet”, which is represented by 

rule([Internal User], [Internal Network], [any], [Internet], permit). 

<inventory-item>: user(<user >). ||  
user_located_at(<user>, [<location>+]). || 
user_group(<user-group>, [<user>+]). || 
resource(<resource >, [<named-service>+]). || 
resource_located_at(<resource>, [<location>+]). || 
resource_group(<resource-group >, [<resource>+]). || 
location(<location >, <IP address/mask>). || 
location_group(<location-group>, <IP address/mask>, <location>+). || 
firewall(<firewall >, [<interface>+]). || 
connected(<location>, <location>, cost). || 
connected(<location>, <firewall>, <interface>, cost). || 
named_service(<named-service>). || 
named_service_group(<named-service-group >, [<named-service>+]) || 
firewall_library(<firewall>, <library>). || 
named_service_library(<firewall>, [<named-service>+]). 

 

<mandatory-rule>: clearance(<user> || <user-group>, <clearance-level>, [<compartment>+]). ||  
  classification(<resource> || <resource-group>, <classification-level>,  

[<compartment>+]). 
<clearance-level>: <security-level> 
<classification-level>: <security-level> 
<security-level>: “1” || “2” || “3” || “4” 
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Figure 4.10: Discretionary Syntax 

Figure 4.11 presents the syntax for security property model. Both security assumption and 

security requirement use the Security Class definition, which is a vector of security levels where 

each security level represents the confidentiality, integrity, availability and accountability levels. 

For example, security_requirement(Email, [4,2,3,1]) represents that the requirements are 4 for 

confidentiality, 2 for integrity, 3 for availability and 1 for accountability, and 

security_assumption(host1, [1,2,3,4]) represents that host 1 provides 1 for confidentiality, 2 for 

integrity, 3 for availability and 4 to accountability. 

 

Figure 4.11: Security Property Syntax 

4.5 The Refinement Algorithm 

The translation process is decomposed in five refinement layers: location dependent, path 

dependent, device dependent and firewall dependent layer, as depicted in Figure 4.12. The box at 

the left represents the Inventory, and shows the information that is used by refinement at each 

layer. The topmost layer represents the security policies. Each layer below represents a 

transformation performed over the rules and each translation correspond to one or more steps in 

the algorithm. 
 

<discretionary-rule>:  rule([ <user>+ || <user-group>+ || any ], 
   [ <source-location>+ || <source-group>+ || any ], 
   [ <resource>+ || <resource-group>+ || any ], 
   [ <destination-location>+ || <destination-group>+ || any ], 
              <action>). 
<action>: permit 
 

<security-requirement>: security_requirement(<resource>, <security-class>). 
<security-assumption>: security_assumption(<access-related-object>, <security-class>). 
<access-related-object>: <location> || <firewall> || <named-service>  
<security-class>: [ <confidentiality-security-level>, 
                <integrity-security-level>, 
                < availability-security-level>, 
                 <accountability-security-level> ] 
<confidentiality-security-level>: <security-level> 
<integrity-security-level>: <security-level> 
<availability-security-level>: <security-level> 
<accountability security-level>: <security-level> 
<security-level>: “1” || “2” || “3” || “4” 
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Figure 4.12: Layer Representation 

For each rule, the algorithm performs the following steps: 

 

1. Identify the set of users and sources: this step is the first part of the computing of the 

discretionary model. The result of this step is a set of users, and locations where 

these users can be located, in accordance to both the rule and the locations of the 

users specified in the inventory. The sub-steps are: 

 

i. Expand user groups and source groups to individual users and sources.  

ii. Select the users specified by the rule that can be located at the sources specified 

by the rule.  

iii. Select the sources that are locations where the users specified by the rule can be 

located. 

 

2. Identify the sets of resources and destinations: this step is the second part of the 

computing of the discretionary model. The result of this step is a set of resources, 

and locations where these resources can be located, in accordance to both the rule 

and the locations of the resources specified in the inventory. The sub-steps are: 
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i. Expand resource groups and destination groups to individual resources and 

destinations. 

ii. Select the resources that can be located at the destinations specified by the rule. 

iii. Select the destinations that are locations where the resources specified by the 

rule can be located. 

 

3. Considering the users and resources obtained in steps 1 and 2, select the pairs (user, 

resource), for which the user clearance is greater than or equal to the resource 

classification and compartments of the resource are a subset of the compartments of 

the user.  

 

This step is responsible to enforce the Mandatory Model. The pairs (user, resource) 

resulting from this step holds the mandatory model, and, due to steps 1 and 2, also 

holds the discretionary model. At this point, if there is no pair (user, resource) 

resulting from this step, the computation of the actual rule is stopped, and the next 

rule will be processed. 

The steps 1, 2 and 3 correspond to the Location Dependent Layer. 

 

4. Compute the set of (source, destination, path) triples referred by this rule: this step is 

a preparation for the computation of the Security Property Model, which needs the 

source, the destination and all the network elements between them (path). Note that 

this step uses only the sources and destinations that were obtained in steps 1 and 2, 

therefore, the discretionary model is already enforced in the resulting tuples. The 

sub-step performed are: 

 

i. Compute the Cartesian product between the set of sources and the set of 

destinations selected in steps 1 and 2. 

ii. For each obtained (source, destination) pair, compute the lowest cost path 

between source and destination using the Dijkstra’s shortest path algorithm [17]. 

 

5. Compute the set of possible service access. This set of possible service access 

includes the service access that holds the three policy models. From each (user, 
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resource) pair obtained in step 3 and from each (source, destination, path) triple 

obtained in step 4, perform the following sub-steps:  

 

i. Identify the set of possible named services for the path, that is, the set of named 

services delivered at the corresponding destination. 

ii. For each possible named service, use the path from the triple to compute the 

corresponding OSA. If it is at least as stronger as the resource SR, include the 

service access in the set of possible service access.  

 

If the set of possible service access is empty, the processing of the actual rule is 

stopped, and the next rule will be processed. The steps 4 and 5 correspond to Path 

Dependent Layer. 

 

6. Compute the set of feasible service access from the set of possible service access 

computed in step 5. This step verifies if there is one or more firewalls present in the 

attached path capable to implement the required named services. This verification 

uses the information stored in Named Service class. It is necessary that at least one 

firewall in the path implements the named service. 

The collection of possible service accesses that respect this condition will form the 

feasible service access set. Note that the feasible service accesses still refer to paths 

and not to individual firewalls. 

The following sub-step is performed: 

 

i. For each possible service access, verify if at least one firewall in the attached 

path implements the named service being referred. If yes, include the possible 

service access in the set of feasible service access. 

ii. Verify if the firewalls that don’t implement the named service implement the 

Generic named service. If at least one firewall implements neither the required 

named service nor the Generic named service, then this path can’t be used and 

will not be present in the resulting set of this step. 

 

If the set of feasible service access is empty, terminate the processing of this rule. 

This step corresponds to the Device Dependent Layer. 
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7. Determine the collection of firewall permissions for each firewall included in the 

feasible service accesses obtained in step 7. A firewall permission is an abstract 

representation of one rule or script that must be configured in the firewall, and has 

the format (firewall, source, destination, named service). The sub-steps performed at 

this step are: 

 

i. For each feasible service access, take the path associated to it.  

ii. For each firewall in this path, include or update optimized firewall permission. 

An optimized firewall permission is a firewall permission that references one or 

more sources, one or more destinations and one or more named services and has 

the following format (firewall, source+, destination+, named service+). If the 

firewall implements the named service, then the optimized firewall permission 

will reference this named service; otherwise, the Generic named service will be 

referenced. 

 

At this step, the relaxation procedure is applied if necessary. A firewall that doesn’t 

implement any of the named services related to the feasible access must configure a 

special service for the source destination pair, the Generic named service. The 

firewall script implemented in the Generic named service just enforces the source 

and destination of the packets. The relaxation procedure is possible because the 

packets of a particular service access will cross all the firewalls along the 

corresponding path. If at least one of the firewalls blocks the offending packets, the 

access is protected. As the refinement algorithm will select only the feasible service 

accesses, it is assured that the required named service will be present in path. 

Therefore, the firewalls that don’t implement any of the named service must permit 

the packet flow, validating only the source and destination.  This step also includes 

an optimization to prevent duplicate permissions. It checks if the refinement 

procedure has already produced equivalent firewall permission, for example, the 

same named service and destination with a different source, or the same named 

service and source with a different destination, or the same source and destination 

with a different named service.  
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8. For each firewall, execute its library passing as argument the set of optimized 

firewall permissions. 

 

The last step of the refinement algorithm is the execution of the specific script library 

for each firewall. Each one has its own script library, allowing the configuration of 

firewalls from different vendors. The Library attribute in the Firewall class points to 

the appropriate script. The optimized firewall permissions are passed as argument to 

the library.  

In order to configure a named service in a firewall, it is necessary to provide to the 

firewall library the parameters necessary for the configuration. The required 

parameters are the named service; the source; and the destination (please see an 

example in section 6.2). The parameters are organized in a set of tuples (firewall, 

source, destination, named service) named firewall permissions. For each firewall, 

from the set of feasible service access, we should build a collection of firewall 

permissions, that is, each library will receive as the configuration parameter, a list of 

named services and the corresponding source/destination. 

The steps 7 and 8 correspond to the Firewall Dependent Layer. 
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 Discretionary Rule: ((U)ser, (R)esource, (S)ource, (D)estination) 
Mandatory Rule: (User, Clearance (UC), Resources Classification (RC)) 

Security Properties (SP): access related objects SA and resource SR 
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Figure 4.13: A Refinement Example 

Figure 4.13 presents a generic refinement example. At the top, the network and the policies 

are graphically represented. U represents a user that initiates an access from source host Hs to the 

resource R located at host Hd. UC and RC are, respectively, the user’s clearance and resource 

classification. SA represents the security assumptions of locations, firewalls and services, and 

SR represents the security requirement of the resource. In the solid arrows represent the resulting 

permissions of the corresponding layer, and dashed lines represent the permissions that have 

been removed at the layer. 

The Location Dependent Layer corresponds to the steps 1, 2 and 3 and is illustrated in 

Figure 6a. Here, the algorithm expands user, source (step 1.i), resource and destination groups 

(step 2.i), but eliminates users, sources (step 1.ii), resources and destinations (step 2.ii) according 

to their locations. This is done because the rule is only relevant for users and resources in 

locations specified by the rule, and also because the rule is only relevant for locations (sources 

and destinations) where the users specified by the rule can be located. Step 3 eliminates users 

and resources according to the mandatory policy. For example, in Figure 6a, H1 and H4 are 

removed because they aren’t valid locations for user U and H5 is removed because it isn’t a valid 
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location for resource R (according to the located at classes of inventory). The final result of the 

Location Dependent Layer is the set of (user, resource) pairs that hold both mandatory and 

discretionary models. 

The Path Dependent Layer corresponds to steps 4 and 5 and is illustrated in Figure 6b. The 

lowest cost path connecting all (source, destination) pair is computed in step 4 using the 

Dijkstra’s shortest path algorithm [17]. The link costs necessary for the shortest path 

determination are registered in the Connection inventory class. Only the service accesses whose 

paths hold the security property policy are maintained. For example, the service access from H3 

to H6 is removed because, in the example, its OSA is lower than the SR of the resource. 

The Device Dependent Layer corresponds to step 6 and is illustrated in Figure 6c. Here, 

only the service accesses whose corresponding paths have firewalls implementing the required 

named services are maintained. This step is necessary to ensure that the service access can be 

safely enforced, i.e., at least one firewall must implement the required named services. 

The Firewall Dependent Layer corresponds to steps 7 and 8 and is illustrated in Figure 6d. 

This step computes the optimized firewall permission for each firewall and executes the library. 

It uses the feasible service access computed in step 6 and Library attribute from Firewall 

inventory class. 

4.6 Named Services Libraries 

The Named Service Library is responsible for translating optimized firewall permission to rules 

or scripts used to configure the physical firewalls. Each firewall has its own library, thus it is 

possible to have firewalls from different vendors. Every library must have at least the Generic 

Named Service, which is responsible for enforcing the source and the destination of the packets.  

The idea behind using a library to perform the low level translation comes from the 

tremendous variability found in firewall technology with respect to the available functionality 

and the syntax and semantics of the configuration languages. The concept is simple: network 

administrators design a named service and carefully implement it using the available firewall 

configuration resources. The advantage of this approach is that a named service library will be 

implemented by experts that can fully use the corresponding firewall technology.  

The design and implementation of a library named service may vary depending on the 

syntax of the configuration rules/script and the functionalities of the firewall. For example, some 

firewalls may need that each rule specifies one source and one destination, while others may 
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support rules with multiple sources and destinations. The configuration rules/script can include 

instructions for the firewall that aren’t directly dependent of the service accesses, for example, 

for IPTables [27], it is necessary to include in the script the default policy, in this case, the 

default is to DROP the packets that doesn’t match any rule. 

Often, scripts that implements different named services are very similar. For example, 

considering the scripts for implementing the http, https and ipp (Internet Print Protocol) named 

services for iptables, the difference between them (for packet filters) are the server port number 

parameter, which are 80, 443 and 631, respectively. Due to this fact, it is possible to create a 

template for the similar named services, and fill the templates according to the parameters. For 

example, the template script line "iptables -A FORWARD -s {0} -d {1} -p tcp --dport {2} -m state 

--state NEW,ESTABLISHED -j ACCEPT" corresponds to a template for tcp packets from client 

to server. Parameters {0} and {1} corresponds to client and server IP addresses, and parameter 

{2} correspond to the server port number. Naturally, there are exceptions. Some named services 

will have different implementations, such as ftp, which needs an additional connection for data 

transfers. For these services, there are templates specific for each case. Other exceptions are the 

situations where the named service is implemented in better firewalls, such as a stateful firewall 

with deep packet inspection. In this case, the named services can have completely different 

implementations. 

Figure 4.14 presents the example of named service library templates for IPTables, IPTables 

with L7-filter and CheckPoint INSPECT, corresponding to the HTTP named service. Note that a 

single optimized firewall permission can generate more than one instruction: for IPTables, the 

first instruction accepts packets of new and established connections from the client to the server, 

whereas the second accepts packets of established connections from server to client. For 

INSPECT, the same two instructions are generated. Due to the characteristics of L7-filter, its 

library needs to generate four instructions. This is necessary because the L7-filter needs to 

permit the transit of some packets until it is able to determine the type of the traffic. For more 

details about L7-filter, please see section 7.3 and the documentation available at [18]. 
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Figure 4.14: Example of Named Service Library Templates 

As an example, consider the following optimized firewall permission obtained as result of 

the processing of the step 7 of the algorithm: permission(fw3, [HostE3], [Srv3], [http]). The 

corresponding script generated for IPTables is presented in Figure 4.15. For http named service, 

consider the template presented in Figure 4.14. The Inventory contains the information of 

IP/Mask for the locations HostE3 and Srv3, which are 10.1.4.3/32 and 10.1.3.254/32, 

respectively.  

 

Figure 4.15: IPTables rules example 

Note that the optimized firewall permission has generated 2 instructions: the first one 

accepts packets of new and established connections from the client (10.1.4.3/32) to the server 

 

iptables -A FORWARD -s <source> -d <destination> -p tcp 
 --dport 80 -m state --state NEW, ESTABLISHED -j accept 
iptables -A FORWARD -s <destination> -d <source> -p tcp 
 --sport 80 -m state --state ESTABLISHED -j  accept  
 

IPTables 

 

iptables -A FORWARD -s <source> -d <destination> -p tcp --dport 80 
-m layer7 --l7proto http -m state --state NEW,ESTABLISHED -j ACCEPT 

iptables -A FORWARD -s <destination> -d <source> -p tcp --sport 80 
-m layer7 --l7proto http -m state --state ESTABLISHED -j ACCEPT 

iptables -A FORWARD -s <source> -d <destination> -p tcp --dport 80 
-m layer7 --l7proto unset -m state --state NEW,ESTABLISHED -j ACCEPT 

iptables -A FORWARD -s <destination> -d <source> -p tcp --sport 80 
-m layer7 --l7proto unset -m state --state ESTABLISHED -j ACCEPT 

IPTables with L7-filter 

 

accept (tcp, http) 
(ip_src = <source>) 
(ip_dst = <destination>) 

accept (tcp, http) 
(ip_src = <destination>) 
(ip_dst = <source>) 

INSPECT 

iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m state 
              --state NEW, ESTABLISHED -j accept 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 80 -m state 
              --state ESTABLISHED -j  accept 
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(10.1.3.254/32), whereas the second accepts packets of established connections from server to 

client. 

At this moment, there are library prototypes for IPTables, IPTables with L7-filter and 

CheckPoint Firewall-1 (INSPECT language). For these three models, it was observed that the 

library implementation is very similar. The main differences are in the templates used for script 

generation, which must be represented using the specific syntax of each firewall language 

configuration. 

4.7 Conclusion 

In this chapter, the proposed framework for multi-constraint network security policy was 

presented. The language for security policy representation allows the representation of 

mandatory, discretionary and security property policies. The framework includes an algorithm 

that is responsible for computing the three policy models and generating the low-level 

configuration scripts/rules. 

The proposed framework uses the concept of named service, a high-level representation of a 

firewall protected service in order to achieve the independency of firewall vendors/models. A 

specific library for each firewall model/vendor is used to translate the low level permission into 

configuration scripts/rules. 

Note that the resulting policy in low level is the most restrictive, i.e., there will be a low 

level permission only if this permission is defined in the three high-level policies. The language 

is also topology independent. When there are changes in the network topology, there is no need 

to change the policies; the only necessary procedure is to recompile the policy using the new 

topology specification, and then reconfigure the firewalls with the resulting scripts/rules. 

The main contributions of the proposed framework are: 

 

• Specification of three-dimensional framework for network security policy definition, 

which allows different security staff to be responsible for the description of each 

dimension; 

• Specification of a high-level security policy language, able to handle mandatory, 

discretionary and security property policies, independently of topology and firewall 

models/vendors; 

• Specification of an information model that comprises the network topology; 
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• Definition of the Named Service concept, that is a high-level representation of the 

firewall protection services; 

• Specification of the algorithm that process the three policies specifications, responsible 

for translating the high-level security policy to low-level scrips/rules for firewall 

configuration; 

4.7 Conclusion 





 

 

Chapter 5  

Formal Specification and Validation 

5.1 Introduction 

ormal specifications use mathematical notation to describe in a precise way the properties 

that an information system must have, without unduly constraining the way in which these 

properties are achieved. They describe what the system must do without saying how it is to be 

done. 

The refinement algorithm must guarantee that the translation process doesn’t cause the 

violation of the policies. High-level and low-level policies must represent the same set of 

permissions; otherwise, the whole system can be compromised. Two main theorems must be 

demonstrated to validate the algorithm: 

 

• Theorem I: Every access allowed by the high level policy should be supported by the 

low level policy (if they can be correctly enforced), and 

• Theorem II: No action allowed by the low level policy should be forbidden by the high 

level policy. 

 

These two theorems correspond to the Completeness and Consistency properties. 

Completeness means that the desired behavior specified in the high level (policy) is completely 

implemented at low level (firewall scripts). Consistency means that all actions enabled at the low 

level do not contradict the high level with undesired behavior specification. 

The formalism used in this work for formal validation and analysis is based on Z notation 

[15][70][71]. The Z notation is a mathematical language used for describing and modeling 

F 
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computing systems. The mathematical roots of Z are first-order logic and set theory. The 

notation uses standard logical connectives (∧, ∨, ⇒, etc.) and set-theoretic operations (∈, →, ↓, 

etc.) with their standard semantics. Using the Z language it is possible to provide a model of a 

mathematical object. Theses objects bear a resemblance to computational objects reflect the 

intention that Z to be used as a specification language for software engineering. 

A Z specification consists of sections of mathematical text interspersed with prose. The 

mathematical text is a collection of types together with some predicates that must hold for the 

values of each type. Types in Z are sets of values. Z provides some fundamental types in its 

basic toolkit that are primitive, such as  for natural numbers and  for integers. In addition, we 

can introduce further primitive types, called given types, by writing them in square brackets.  

Note that the Z specification represents how the algorithm must behave mathematically. The 

real algorithm can include optimizations and other improvements that don’t change the 

mathematical relations. Thus, its specification doesn’t necessarily reflect the algorithm directly. 

The Z/EVES tool [16] is used to support the specification and manipulation of Z notation. It 

is an interactive system for composing, checking, and analyzing Z specifications. The validation 

approach used in this work consists of representing the algorithm in Z notation; specifying 

Z/Eves theorems that represents the properties the system must hold; and using the Z/Eves 

engine to prove the theorems. Z/Eves proofs work on a predicate called the goal; each step 

transforms the goal into a new equivalent goal. Transforming a goal to true thus completes a 

proof. For more details about Z/Eves usage, please see [69]. 

5.2 Definitions 

In order to represent the algorithm mathematically, some sets were defined. The sets 

corresponding to the inventory are the following: 

 

• Users:  USER: network registered users; 

• Resources:  RESOURCE: network registered resources; 

• NamedServices:  NAMEDSERVICE: network registered named services; 

• Locations:  LOCATION: network registered locations; 

• Actions:  ACTION: the actions included in a discretionary rule. For this work, Actions 

= { accept }; 
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• Firewalls:  FIREWALL: network registered firewalls; 

• ResourceNamedServices: RESOURCE   NAMEDSERVICE: relation between the 

resource and the named services associated to the resource; 

• UserLocatedAt: USER  LOCATION: represents the locations of the users in the 

network; 

• ResourceLocatedAt: RESOURCE  LOCATION: represents the locations where the 

resources are available in the network; 

• FirewallNamedServices: FIREWALL  NAMEDSERVICE: relation between the 

firewalls and the named services that they implement; 

• NetworkPaths:  seq NODE: set of all network paths. In this Z specification, we 

consider that the are already calculated and stored in this relation; 

 

The following sets corresponds to the three policies models: 

 

• Rule:  USER   RESOURCE   LOCATION   LOCATION  ACTION: represents 

a rule of the discretionary policy. The rule contains a set of users, resources, sources 

and destinations, and one action; 

• Clearance: USER  : maps the users to their clearances (mandatory policy); 

• Classification: RESOURCE  : maps the resources to theirs classifications 

(mandatory policy); 

• UserCompartments: USER   COMPARTMENT: maps the users to a set of 

compartments (mandatory policy); 

• ResourceCompartments: RESOURCE   COMPARTMENT: maps the resources to a 

set of compartments (mandatory policy); 

• SR: RESOURCE  SC: maps the resources to their security requirements (security 

property policy); 

• SANamedService: NAMEDSERVICE  SC : maps the named services to their security 

assumptions (security property policy); 

• SANode: NODE  SC: maps nodes to their security assumptions (security property 

policy); 

5.2 Definitions 
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Finally, the following sets are produced: 

 

• RulePermissions:  USER  RESOURCE  LOCATION  LOCATION: set of 

tupes user resource source destinationthat hold the discretionary policy and that 

the locations of the user and the resource are in conformance with Inventory, i.e., the 

user belongs to the set of users specified by the rule, the resource belongs to the set of 

resources specified by the rule, the source belongs to the set of sources specified by the 

rule, the destination belongs to the set of destinations specified by the rule, the (user, 

source) pair belongs to the UserLocatedAt set (meaning that the user can initiate an 

access from the source) and that the (resource, destination) pair belongs to the 

ResourceLocatedAt (meaning the resource is delivered at destination). 

• Accesses:  USER  RESOURCE: contains pair of (user, resource), where the user is 

permitted to access the resource by the mandatory policy; 

• SUP: SC  SC  SC: function that returns a security class with the greater values of 

security levels of the two security classes; 

• INF:  SC  SC: function that returns a security class with the lower values of each 

security level from a set of security classes; 

• ESA: NAMEDSERVICE  NODE  SC: function that returns the effective security 

assumption for a named service and a node; 

• OSA: NAMEDSERVICE  seq NODE  SC: function that returns the overall security 

assumption for a named service and a sequence of nodes (path) ; 

• GOSA: SC  SC: relation between two security classes, where the first element of the 

tuple is greater than or equal to the second element (for a tuple (SC1, SC2), SC1 is 

greater than or equal to SC2). 

• ResourcesPaths:  RESOURCE  seq NODE: contains pairs (resource, path) such 

that the resource is located at the last node of the path (destination) and the path is a 

registered network path; 

• PossibleVias:  RESOURCE  NAMEDSERVICE  seq NODE: contains tuples 

(resource, namedservice, path) that holds the security property policy, i.e., the named 

service associated to the resource is delivered at the last node of the path, and the OSA 
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of the named service and path is equal to or greater than the resource security 

requirement. 

• ServiceAccesses:  USER  RESOURCE  LOCATION  LOCATION  

NAMEDSERVICE  seq NODE: corresponds to the tuple ((user, resource), (source, 

destination), (named service, path)), which means that the user from the source location 

is allowed to access the resource at the destination location through the path using the 

named service. 

• PossibleServiceAccesses:  USER  RESOURCE  LOCATION  LOCATION  

NAMEDSERVICE  seq NODE: contains the service accesses that holds the three 

policy models; 

• FeasibleServiceAccesses:  USER  RESOURCE  LOCATION  LOCATION  

NAMEDSERVICE  seq NODE: contains the service accesses that hold the three 

policy models and that includes in their paths at least one firewall capable to implement 

the corresponding named service. 

• FirewallPermissions: Firewall   USER  RESOURCE  LOCATION  

LOCATION NAMEDSERVICE: contains the permissions that must be configured in 

each firewall of the network. 

5.3 Demonstration Rationale 

The theorem I states that “Every access allowed by the high level policy should be supported by 

the low level policy (if they can be correctly enforced)”. In the proposed framework, an access in 

high level policy corresponds to an access permitted by mandatory, discretionary and security 

property policies where at least one of the firewalls in the path from the source and destination is 

able to correctly implement the corresponding Named Service. 

In order to make the demonstration clearer it is split in the following lemmas: 

 

Lemma 1: If the discretionary, mandatory and security property policies specify a 

permission, then this permission must have a corresponding service access belonging to the 

PossibleServiceAccesses set. This lemma is split into four lemmas: 

5.2 Definitions 
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Lemma 1.1: A user from the source is permitted to access a resource at the destination if 

discretionary policy specifies this permission (i.e., the user from the source location is permitted 

to access the resource at destination location if the discretionary policy explicitly specify the 

user, source, resource and destination and that the user can be located at the source and the 

resource is located at destination). 

Lemma 1.2: A user is permitted to access a resource if mandatory policy specifies this 

permission (i.e., the user clearance is greater than or equal to the resource classification and if 

the user is associated to the compartments necessary to access the resource). 

Lemma 1.3: A path and a named service can be used to access a resource if the security 

property policy specifies this permission (i.e., the overall security assumption of the path 

(including the source location) and the named service are greater than or equal to the security 

requirement of the resource). 

Lemma 1.4: If a permission is defined in discretionary, mandatory and security property 

policies, then there must be a corresponding service access belonging to the possible service 

accesses set. 

Lemma 2: If a service access belonging to the PossibleServiceAccesses set has its named 

service implemented by at least one firewall in the associated path, then this service access 

belongs to the FeasibleServiceAccesses set. 

Lemma 3: If a service access is a member of FeasibleServiceAccesses, then there must be a 

corresponding firewall permission in the FirewallPermissions set for each firewall present in the 

associated path. 

 

Lemma 1 assures that, if there exist such a permission in the high level, the corresponding 

user, resource, source, destination, named service and path will be present in a service access in 

the PossibleServiceAccesses set. This is a sufficient condition for any granted high level 

permission to be included in the PossibleServiceAccesses set. Lemma 1 is split into 4 lemmas, 

which corresponds to the three policy models and the intersection between them. A permission 

can only exist at low level if it is specified in the three policy models. These lemmas are 

presented in Figure 5.12 to 5.17. 

Lemma 2 assures for any high level permission, if it exists at the high level and if the 

corresponding shortest path includes at least one firewall implementing the necessary named 

service, the permission is included in the FeasibleServiceAccesses set. This is a sufficient 
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condition for any granted high level permission, which is protected by a firewall in the 

corresponding shortest path, to be included in the FeasibleServiceAccesses set. 

Finally, Lemma 3 assures for any high level permission, if it exists at high level and the 

corresponding named service can be implemented by at least one firewall in the path, this 

permission is included in the set of permissions that must be configured in the firewalls present 

in the corresponding path. 

Lemma 2 and Lemma 3 are directly demonstrated by a corresponding Z specification, 

presented in Figure 5.16 and Figure 5.17.  

 

On the other hand, theorem II states that “No action allowed by the low level policy should 

be forbidden by the high level policy”. In the proposed framework, this means that if the firewall 

is configured with some service access, then there must be an access permitted by mandatory, 

discretionary and security property policies and at least one firewall in the path corresponding to 

this service access implements the necessary named services. 

Similarly to Theorem I, this theorem is split in the following lemmas: 

 

Lemma 4: For each firewall permission belonging to FirewallPermissions, there is a 

corresponding service access belonging to the FeasibleServiceAccesses set. 

Lemma 5: For each service access belonging to FeasibleServiceAccesses set, there is a 

corresponding service access belonging to PossibleServiceAccesses set. 

Lemma 6: The service accesses belonging to PossibleServicesAccesses set must hold the 

mandatory, discretionary and security property policies. This lemma was split into 3 lemmas: 

Lemma 6.1: The service access belonging to PossibleServicesAccesses set must hold the 

discretionary policy, i.e., the rule must specify the user and the source, which are related by 

UserLocatedAt, and must specify the resource and the destination, which are related by 

ResourceLocatedAt. 

Lemma 6.2: The service access belonging to PossibleServicesAccesses set must hold the 

mandatory policy, i.e., the user clearance is greater than or equal to than resource classification 

and the user is associated to the compartments necessary to access the resource. 

Lemma 6.3: The service access belonging to PossibleServicesAccesses set must hold 

security property policy, i.e., the overall security assumption of the path and named service are 

greater than or equal to the resource security requirement. 
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These lemmas correspond to the inverse analysis of the refinement. In other words, they 

validates that if there is some permission in the result of the processing, then this permission 

must be defined in high level. In this way, the goal of the lemmas is to demonstrate the results of 

each step correspond to the desired behavior of the step, i.e., that the output doesn’t include any 

permission that is not defined in the input of the step. Lemma 4 demonstrates the relation 

between the firewall permissions and feasible service accesses, i.e., the existence of a 

corresponding feasible service access is a necessary condition for the existence of the firewall 

permission. Lemma 5 demonstrates the relation between feasible service accesses and possible 

service accesses.  This is the necessary condition for a high level permission to be present in the 

feasible service accesses, which means that at least one firewall in the corresponding path is able 

to implement the named service and that the three policy models specifies the permission. 

Lemma 6 demonstrates the relation between possible service access and the three policies, 

meaning that the necessary condition to a service access be a member of possible service access 

is that the three policy models specify the permission. Therefore, if these lemmas are proved, 

then the theorem is proved. 

Lemmas 4 and 5 are directly demonstrated in Figure 5.18 and Figure 5.19. Lemma 6 is split 

into 3 lemmas, corresponding to the three policy models, which are presented in Figure 5.20 to 

5.23.  

Note that the application of the named service libraries for the generation of the firewall 

rules/scripts is not in scope of this specification, since they are dependent of firewall 

model/vendor and are designed by network administrators. This specification corresponds to the 

processing performed during the high-level to low-level conversion, and thus demonstrates the 

overall transformations performed by the algorithm. 

5.4 Z Specification 

In Z, it is necessary to define the set types (also named given sets), which defines all possible 

values for a set of a restricted kind. The construction of elements in a given types is not provided 

in a specification, usually because that level of detail is not necessary for the purposes of the 

specification. By convention, given types are written in all capital letters. For example, the type 

USER refers to all users. The following types were defined: 

 

[USER, RESOURCE, NAMEDSERVICE, ACTION, NODE, SC, COMPARTMENT] 
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An element of a type is declared using a colon (:). So it is possible to write user: USER and 

read this as "user is of type USER”, meaning that user is an element in the set of values defined 

by USER. The name user is called a variable, that is to say it is not know the denotation of the 

name user, only that it denotes some undetermined value of type USER. Since USER is a also a 

set, we could also write user ∈USER, using the set membership function ∈. Z uses the : 

notation when a variable is declared and ∈ to express predicates over variables. Note that the 

meaning of a variable in mathematics is not the same as the meaning of variable in 

programming. In programming, a variable is a store in which different values can appear from 

time to time. In mathematics a variable does not change its value, but its value might not be 

determined. 

New types can also be defined by constructing them from primitive types, using the 

following type constructors: 

 

• X is the set of all subsets with elements from type X, also called the powerset of X. 

• X  Y is the type consisting of all ordered pairs (x, y) whose first element is of type X 

and whose second element is of type Y, also called the cross-product of X and Y. 

• seq X is the set of all sequences, or lists, of elements from X, including empty and 

infinite sequences. The representation a1, …, an is a shorthand for the set {1a1, …, 

nan}, so the function ran returns the range of a sequence, that is a set of the elements 

of the path. Note that a sequence is ordered, while a set isn’t ordered. The functions 

head and last represent the first and the last elements of a sequence. The empty 

sequence is an alternative notation for the empty function from  to X. 

• Relations and functions between types identify special subsets of the cross-product type. 

In this thesis, the following are used: 

o X  Y is the set of all relations between domain type X and range type Y. A 

relation is simply a subset of X  Y, i.e., X  Y == (X  Y)). 

o X  Y is the set of all total functions. Total functions are defined on all 

elements of the domain type: X  Y == {f: X  Y | x: X  1 y : Y  (x,y)  f }. 
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After defining the types, it is possible to specify the basic sets. For example, the FIREWALL 

set of elements of type NODE represents the collection of registered firewalls. With the types 

defined, it is possible to define derived sets, optionally including a constraint on their contents. 

Both FIREWALL and LOCATION are sets of nodes, and are defined as: 
 

 
The left bar is used to represent an axiomatic description. An axiomatic description 

introduces one or more global variables, and optionally specifies a constraint on their values. 

This means that the set FIREWALL and LOCATION are global sets. 

After defining the basic types and axioms, the next step it to define the schemas that 

represent the behavior of the algorithm. A schema is a piece of mathematical text that specifies 

some aspect of the software system that is being discussed. The name of a schema will be used 

elsewhere in the document to refer to the mathematical text. A schema contains two parts: the 

signature (or declaration part), which is a collection of variables, and the predicates, which 

define the properties of the algorithm. When there are more than one line in the predicate, it is 

understood the conjunction between the predicates. 

Figure 5.1 shows the Inventory schema. Lines 1 to 12 are the signature, and lines 13 to 20 

are the predicates. Lines 1 to 5 define the network registered users, resources, named services, 

locations and firewalls sets. As explained earlier, the notation USER is a set of all subsets with 

elements from type USER, in other words, the notation Users: USER means that Users is a set 

of elements of type USER. Lines 6 to 10 represent the sets of named services associated to 

resources, the locations of the users, the locations of the resources, the named services associated 

to the firewalls and the paths of the network. Since we use Dijkstra’s algorithm to compute the 

paths, the mathematical relations between locations, connections and paths won’t be represented 

here. Line 12 defines the generic named service, as an element of type NAMEDSERVICE. 

Lines 13 to 20 define the relations between the defined sets. For example, line 13 states that 

the domain of UserLocatedAt set is the User set, which means that the users that are related to 

locations registered in UserLocatedAt set must be valid network users. Line 20 states that the 

range of FirewallNamedServices is the NamedServices set, which means that the firewalls only 

can be associated to valid network named services. 

FIREWALL:  NODE 
LOCATION:  NODE 

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Figure 5.1: Inventory Schema 

Figure 5.2 presents the Policy schema. Line 1 includes the Inventory, which means that the 

declarations of schema Inventory are included in declaration part of Policy schema. Line 2 

defines the structure of a single discretionary rule. Since we are considering only accept action, 

it is not necessary to consider the relation between two or more rules. A permission would exist 

at low-level only if one or more high-level rules specifies this permission. 

A discretionary rule is a tuple (users, resources, sources, destinations, action). Users, 

resources, sources and destinations are sets of elements; for example, users can specify a single 

user or several users. The exception is the action, which allows only a single action for each 

discretionary rule. Lines 3 to 6 define the clearance, classification and compartments of 

mandatory model. Clearance and classification are functions from user and resource to a natural 

number. UserCompartments and ResourceCompartments are functions that maps users and 

resources to a set of compartments. This means that each user and each resource can be 

associated to none, one or many compartments. Lines 7 to 9 represent the security property 

model. SR is a function that maps resources to security requirements (security classes), and 

 Inventory
1 Users:  USER 
2 Resources:  RESOURCE 
3 NamedServices:  NAMEDSERVICE 
4 Locations:  LOCATION 
5 Firewalls:  FIREWALL 
6 ResourceNamedServices: RESOURCE   NAMEDSERVICE 
7 UserLocatedAt: USER  LOCATION 
8 ResourceLocatedAt: RESOURCE  LOCATION 
9 FirewallNamedServices: FIREWALL  NAMEDSERVICE 
10 NetworkPaths:  seq NODE
11 Actions:  ACTION 
12 Generic: NAMEDSERVICE 
 
13 Users = dom UserLocatedAt 
14 Locations = ran UserLocatedAt 
15 Resources = dom ResourceLocatedAt 
16 Locations = ran ResourceLocatedAt 
17 Resources = dom ResourceNamedServices 
18  NamedServices = ran ResourceNamedServices 
19 Firewalls = dom FirewallNamedServices 
20 NamedServices = ran FirewallNamedServices 
 
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SANamedService and SANode are functions that maps named services and nodes to security 

assumptions (security classes). Similarly to Inventory, lines 10 to 16 state relations between the 

sets defined by the policy. 



Figure 5.2:  Policies Schema 

Figure 5.3 shows the discretionary model schema. This schema is responsible for 

representing the mathematical relations corresponding to the processing of discretionary policy. 

Line 1 includes the Policies schema (which implicitly includes Inventory) while lines 2 to 6 

define elements and sets used in the discretionary model specification. Line 2 defines the type of 

the RulePermissions set, which contains the tuples ((user resource source destination)) that 

hold the discretionary policy. Lines 3 to 6 defines the elements that are used in the mapping of 

the rule (line 7). 

Line 7 presents the mapping of Rule to users, resources, sources, destinations and action. 

Lines 8 to 16 presents the definition of RulePermissions set, which contains tuples ((user 

resource source destination)) such that the user belongs to the set of users specified by the 

rule, the resource belongs to the set of resources specified by the rule, the source belongs to the 

set of sources specified by the rule, the destination belongs to the set of destinations specified by 

the rule, the (user, source) pair belongs to the UserLocatedAt set (meaning that the user can 

 Policy 
1 Inventory 
2 Rule:  USER   RESOURCE   LOCATION   LOCATION  ACTION 
3 Clearance: USER  
4 Classification: RESOURCE  
5 UserCompartments: USER   COMPARTMENT 
6 ResourceCompartments: RESOURCE   COMPARTMENT 
7 SR: RESOURCE  SC 
8 SANamedService: NAMEDSERVICE  SC 
9 SANode: NODE  SC 
 
10 Users = dom Clearance 
11 Resources = dom Classification 
12 Users = dom UserCompartments 
13 Resources = dom ResourceCompartments 
14 Resources = dom SR 
15 NamedServices = dom SANamedService 
16  Locations  Firewalls = dom SANode 
 
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initiate an access from the source) and that the (resource, destination) pair belongs to the 

ResourceLocatedAt, meaning the resource is delivered at destination. 

 

Figure 5.3: Discretionary Schema 

Figure 5.4 presents the schema with the mathematical specification of mandatory model. 

Line 1 includes the DiscretionarySchema, i.e., the definitions of the discretionary schema are 

included in this schema. Line 2 defines the Accesses set, which contains (user, resource) pairs 

that hold mandatory model. Lines 3 to 7 shows the mathematical relation that defines the content 

of Accesses: given a user belonging to Users and a resource belonging to Resources, such that 

the user clearance is greater than or equal to the resource classification and resources’ 

compartments are a subset of the users’ compartments, then the pair (user, resource) will belong 

to set Accesses. 

 DiscretionarySchema
1  Policy 
2 RulePermissions:  USER  RESOURCE  LOCATION  LOCATION
3 users:  USER 
4 resources:  RESOURCE 
5 sources, destinations:  LOCATION 
6 action: ACTION 
 
7 Rule = users resources sources destinations action
8 RulePermissions 
9   = user: Users; resource: Resources; source, destination: Locations 
10         user  users 
11            resource  resources 
12            source  sources 
13            destination  destinations 
14            user source  UserLocatedAt 
15            resource destination  ResourceLocatedAt 
16         user resource source destination
 
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Figure 5.4:  Mandatory Schema 

Figure 5.5 presents the schema for ResourcesPaths. This set is an intermediate step in 

computation of security property model. This set contains pairs (resource, path), meaning that an 

access can be performed through this path to reach the resource. A pair (resource, path) will 

belong to ResourcesPaths if the path is not null and is a network path, if the resource is a 

network registered resource; if the resource is associated to a destination in set 

ResourceLocatedAt; and if the destination is the last node in the path. 

 

Figure 5.5:  ResourcesPaths Schema 

Figure 5.6 presents the definitions for the functions ESA, OSA, SUP and INF, and the 

relation GOSA. The SUP is a function that returns a security class with the greater values of 

security levels of the two security classes, and the INF function returns a security class with the 

lower values from a set of security classes (see section 4.3.4). GOSA is a relation between two 

security classes, where the first element of the tuple is greater than or equal to the second 

element (for a tuple (SC1, SC2), SC1 is greater than or equal to SC2). Since the security class is 

 ResourcesPathsSchema 
1 MandatorySchema 
2 ResourcesPaths:  RESOURCE  seq NODE
3  
 
4 ResourcesPaths 
5   =  resource: RESOURCE;  destination: Locations; path: seq NODE 
6         path  
7            path  NetworkPaths 
8            resource  Resources 
9            resource destination  ResourceLocatedAt 
10            destination = last path resource path
 

 MandatorySchema
1 DiscretionarySchema 
2  Accesses:  USER  RESOURCE
 
3  Accesses 
4   = user: Users; resource: Resources 
5         Clearance user  Classification resource 
6            ResourceCompartments resource  UserCompartments user 
7         user resource
 
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defined as a type in Z, SUP, INF and GOSA are not explicitly specified in Z. The ESA function 

returns the effective security assumption for a named service and a node, and OSA function 

returns the overall security assumption for a named service and a sequence of nodes (path). 

 

Figure 5.6:  SecurityPropertyFunctions Schema 

Figure 5.7 presents the schema for security property model. The set PossibleVias contains 

all tuples (resource, namedservice, path) such that there is a (resource, path) that belongs to 

ResourcesPaths, the named service is associated to the resource and that the overall security 

assumption of the namedservice and path is greater than or equal to the security requirement of 

the resource. In other words, all the tuples in PossibleVias hold security property policy. 

 SecurityPropertyFunctionsSchema
1 ResourcesPathsSchema 
2 ESA: NAMEDSERVICE  NODE  SC 
3 OSA: NAMEDSERVICE  seq NODE  SC 
4 SUP: SC  SC  SC 
5 INF:  SC  SC 
6 GOSA: SC  SC 
 
7 ESA 
8   = namedservice: NAMEDSERVICE; node: NODE; sc: SC 
9         sc = SUP SANamedService namedservice SANode node
10         namedservice node sc
11 OSA 
12   = namedservice: NAMEDSERVICE; path: seq NODE; scseq:  SC; scres: SC 
13         scseq 
14             = sc: SC; node: ran path sc = ESA namedservice node
15                   sc
16            scres = INF scseq namedservice path scres
  
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Figure 5.7 :  SecurityProperties Schema 

Figure 5.8 presents the schema for PossibleServiceAccesses set. This set contains the service 

accesses that hold the discretionary, the mandatory and the security property models, i.e., the 

permissions that are allowed by the three policies. This set contains the tuples ((user, resource), 

(source, destination),(namedservice, path)), where ((user, resource), (source, destination)) tuple 

belongs to RulePermissions, (user, resource) tuple belongs to Accesses set, (resource, 

namedservice, path) tuple belongs to PossibleVias and that source and destination are the first 

and the last nodes of the path. 

 

Figure 5.8 :  PossibleServiceAccesses Schema 

Figure 5.9 presents the schema for FeasibleServiceAccesses set. This set contains the service 

accesses that hold the discretionary, the mandatory and the security property models (which are 

the service accesses that belong to PossibleServiceAccesses set) and that the associated path has 

 PossibleServiceAccessesSchema
1 SecurityPropertySchema 
2 PossibleServiceAccesses:  USER  RESOURCE  LOCATION  LOCATION 
3                             NAMEDSERVICE  seq NODE
 
4 PossibleServiceAccesses 
5   = user: USER; resource: RESOURCE; namedservice: NAMEDSERVICE; source, 
6       destination: LOCATION; path: NetworkPaths 
7          user resource source destination  RulePermissions 
8            user resource  Accesses 
9            resource namedservice path  PossibleVias 
10            source = head path 
11            destination = last path 
12         user resource source destination namedservice path
 

 SecurityPropertySchema 
1 SecurityPropertyFunctionsSchema 
2 PossibleVias:  RESOURCE  NAMEDSERVICE  seq NODE
 
3 PossibleVias 
4   = resource: RESOURCE; namedservice: NAMEDSERVICE; path: seq NODE 
5         resource path  ResourcesPaths 
6            namedservice  ResourceNamedServices resource 
7            OSA namedservice path SR resource  GOSA 
8         resource namedservice path
 
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at least one firewall capable of implementing the named service (i.e., exists a firewall 

auxFirewall in the path such that the (auxFirewall, namedservice) belongs to 

FirewallNamedServices). 

 

Figure 5.9 :  FeasibleServiceAccess Schema 

Figure 5.10 presents the schema definition for FirewallPermissions set. This set contains the 

tuples with the firewalls and the corresponding service accesses. The firewall permissions are 

determined in the following way: the permission that must be configured in a firewall must 

correspond to a service access belonging to FeasibleServiceAccess, the firewall must be a node 

of the path corresponding to the feasible service access and the firewall must implement the 

named service or the generic named service. 

 FeasibleServiceAccessesSchema
1 PossibleServiceAccessesSchema 
2 FeasibleServiceAccesses:  USER  RESOURCE  LOCATION  LOCATION 
3                             NAMEDSERVICE  seq NODE
 
4 FeasibleServiceAccesses 
5   = user: USER; resource: RESOURCE; namedservice: NAMEDSERVICE; source, 
6       destination: LOCATION; path: seq NODE 
7         user resource source destination namedservice path
8              PossibleServiceAccesses 
9            auxFirewall: ran path 
10                 auxFirewall namedservice  FirewallNamedServices
11         user resource source destination namedservice path
 
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Figure 5.10:  FirewallPermissions Schema 

5.5 Demonstration of Theorem I 

As mentioned earlier in this chapter, Z/Eves proofs work on a predicate called the goal. Named 

proof goals in Z/Eves are established by theorem declarations or by domain checking conditions 

for paragraphs. Due to this characteristic of Z/Eves, the lemmas are represented by Z theorem 

declarations. 

One important concept used in this specification is the Skolemization [72][73]. 

Skolemization is a procedure frequently used in automated theorem proving. It is a process of 

eliminating existentially quantified variables from a formula by replacing them with Skolem 

constants and Skolem functions. A formula of first-order logic is in Skolem normal form if it is 

in conjunctive prenex normal form with only universal first-order quantifiers. Every first-order 

formula can be converted into Skolem normal form while not changing its satisfiability via a 

process called Skolemization. The resulting formula is not necessarily equivalent to the original 

one, but is equisatisfiable with it: it is satisfiable if and only if the original one is. 

 FirewallPermissionsSchema
1 FeasibleServiceAccessesSchema 
2 FirewallPermissions: FIREWALL 
3                            USER  RESOURCE  LOCATION  LOCATION 
4                               NAMEDSERVICE
 
5 FirewallPermissions 
6   = firewall: Firewalls; 
7       servs:  USER  RESOURCE  LOCATION  LOCATION  NAMEDSERVICE
8         servs 
9             = user: USER; resource: RESOURCE; source, destination: LOCATION; 
10                 namedservice: NAMEDSERVICE; path: seq NODE; 
11                 fw_service: NAMEDSERVICE 
12                   user resource source destination
13                       namedservice path  FeasibleServiceAccesses 
14                      firewall  ran path 
15                      firewall namedservice  FirewallNamedServices 
16                         fw_service = namedservice 
17                          firewall namedservice  FirewallNamedServices 
18                           firewall generic  FirewallNamedServices 
19                           fw_service = generic
20                   user resource source destination fw_service
21         firewall servs
 
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The simplest form of Skolemization is for existentially quantified variables which are not 

inside the scope of universal quantifiers. These can simply be replaced by creating new 

constants. For example, xP(x) can be changed to P(c), where c is a new constant. More 

generally, Skolemization is performed by replacing every existentially quantified variable y with 

a term f(x1, …, xn) whose function symbol f is new (does not occur anywhere else in the 

formula),  where x1, …, xn are the variables that are universally quantified and whose quantifiers 

precede that of y. 

The Skolemization process is used to simplify the predicates and thus allow the use of tools 

for automated theorem proving. This process is used in some schemas of this formal 

specification, in order to allow the complete prove using Z/Eves. 

Figure 5.11 presents the Skolemized FeasibleServiceAccesses Schema. Lines 9 and 10 of 

Figure 5.9 contain the existencial quantifier auxFirewall, which is substituted by a constant 

with same name in lines 4, 10 and 11 of Figure 5.11. 

 

Figure 5.11: Skolemized FeasibleServiceAccess Schema 

The specification of theorems in Z/Eves can be done in two ways: if the right side of 

implication contains only one predicate, the structure is that presented in Figure 5.12; otherwise, 

in the situations where more than one predicate is present in the right side, it is necessary to 

define a schema with the predicates and then use the named of the schema as the right side of 

implication, as presented in Figure 5.18. The use of first or second structure depends only on the 

 FeasibleServiceAccessesSchema
1 PossibleServiceAccessesSchema 
2 FeasibleServiceAccesses:  USER  RESOURCE  LOCATION  LOCATION 
3                             NAMEDSERVICE  seq NODE
4 auxFirewall: FIREWALL 
 
5 FeasibleServiceAccesses 
6   = user: USER; resource: RESOURCE; namedservice: NAMEDSERVICE; source, 
7       destination: LOCATION; path: seq NODE 
8         user resource source destination namedservice path
9              PossibleServiceAccesses 
10            auxFirewall  ran path 
11            auxFirewall namedservice  FirewallNamedServices 
12         user resource source destination namedservice path
 
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number of predicates, and both are used for the validation of the theorems presented in this 

thesis. 

Figure 5.12 presents the Z specification for Lemma 1.1. It is responsible for the validation of 

the discretionary policy. If a user belongs to the set of users specified by the rule, a resource 

belongs to the set of resources specified by the rule, a source belongs to the set of sources 

specified by the rule and a destination belongs to the set of destinations specified by the rule, and 

the (user, source) pair belongs to the UserLocatedAt set (meaning that the user can initiate an 

access from the source) and that the (resource, destination) pair belongs to the 

ResourceLocatedAt, meaning the resource is delivered at destination, then the tuple ((user 

resource source destination)) must be a member of RulePermissions set. 

 

Figure 5.12: Z specification of Lemma 1.1 

Figure 5.13 presents the Z specification for Lemma 1.2. It validates the permission of a user 

to access a resource in the mandatory policy. The resulting set Accesses contains (user, resource) 

pairs that are permitted by mandatory policies. Its Z specification is: if a user is member of Users 

set, a resource is member of Resources set, and if the user’s clearance is greater than or equal to 

the resource’s classification and resources’ compartments are a subset of the users’ 

compartments, then the pair (user, resource) must be member of the Accesses set, meaning that 

this user is allowed to have access to the resource. 

theorem rule Lemma11 
  DiscretionarySchema 
   user  users 
   resource  resources 
   source  Locations 
   destination  Locations 
   source  sources 
   destination  destinations 
   user source  UserLocatedAt 
   resource destination  ResourceLocatedAt 
   user resource source destination  RulePermissions 
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Figure 5.13: Z specification of Lemma 1.2 

Figure 5.14 presents the Z specification for Lemma 1.3. It validates the permission in 

security property policy. The resulting set PossibleVias contains (resource, namedservice, path) 

tuples that are permitted by security property policy. Its Z specification is: given a network path 

and a named service, if the resource is located at the destination node, the destination is the last 

node of the path, the named service is a named service associated to the resource, and the OSA 

of the pair (namedservice, path) are greater than or equal to the security requirement of the 

resource, then the pair (resource, namedservice, path) must be a member of PossibleVias. 

 

Figure 5.14: Z specification of Lemma 1.3 

Figure 5.15 presents the specification for Lemma 1.4. If the tuple ((user, resource), (source, 

destination)) belongs to RuleRulePermissions, the (user, resource) pair belongs to Accesses set, 

and the (service, path) pair belongs to PossibleVias set, then the tuple user resource source 

destination namedservice path must belong to PossibleServiceAccesses. 

theorem rule Lemma13 
  SecurityPropertySchema 
   destination  Locations 
   resource  Resources 
   path  
   path  NetworkPaths 
   resource destination  ResourceLocatedAt 
   destination = last path 
   namedservice  NAMEDSERVICE 
   namedservice  ResourceNamedServices resource 
   OSA namedservice path SR resource  GOSA 
   resource, namedservice path  PossibleVias 

theorem rule Lemma12 
  MandatorySchema 
   user  Users 
   resource  Resources 
   Clearance user  Classification resource 
   ResourceCompartments resource  UserCompartments user 
   user resource  Accesses 
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Figure 5.15: Z specification of Lemma 1.4 

Figure 5.16 presents the specification for Lemma 2. It validates the computation of the 

FeasibleServiceAccesses set. This set contains the tuples that represent the service accesses 

permitted by discretionary, mandatory and security property policies, and that can be 

implemented by at least one firewall of the selected path. In Z, if the service access user 

resource source destination namedservice path) is member of PossibleServiceAccess and 

there is a firewall in the associated path that implements the named service, then this service 

access must be a member of FeasibleServiceAccesses. 

 

Figure 5.16: Z specification of Lemma 2 

Figure 5.17 presents the specification for Lemma 3. This lemma validates the attribution of 

the permissions to the firewalls. Each feasible service access requires the configuration of a 

number of firewalls (obtained from the associated path) in order to implement the access. This 

theorem rule Lemma2 
  FeasibleServiceAccessesSchema 
   user  USER 
   resource  RESOURCE 
   namedservice  NAMEDSERVICE 
   destination  LOCATION 
   source  LOCATION 
   path  seq NODE 
   user resource source destination namedservice path
       PossibleServiceAccesses 
   auxFirewall  ran path 
   auxFirewall namedservice  FirewallNamedServices 
   user resource source destination namedservice path
       FeasibleServiceAccesses 

theorem rule Lemma14 
  PossibleServiceAccessesSchema 
   user resource source destination  RulePermissions 
   user resource  Accesses 
   resource, namedservice path  PossibleVias 
   source = head path 
   destination = last path 
   user resource source destination namedservice path
       PossibleServiceAccesses 
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validation includes the relaxation for the firewalls that doesn’t recognize a given named service, 

where the specific named service is substituted by the generic named service. 

 

Figure 5.17: Z specification of Lemma 3 

5.6 Demonstration of Theorem II 

Figure 5.18 presents the specification for Lemma 4. This lemma validates that if a firewall 

permission exists, then there must be a corresponding feasible service access that has this 

firewall in the corresponding path.  

theorem rule Lemma3 
  FirewallPermissionsSchema 
   firewall  Firewalls 
   servs   USER  RESOURCE  LOCATION  LOCATION  NAMEDSERVICE
   servs 
      = user: USER; resource: RESOURCE; source, destination: LOCATION; 
          namedservice: NAMEDSERVICE; path: seq NODE; fw_service: FIREWALL 
            user resource source destination namedservice path
                 FeasibleServiceAccesses 
               firewall  ran path 
               firewall namedservice  FirewallNamedServices 
                  fw_service = namedservice 
                   firewall namedservice  FirewallNamedServices 
                    firewall Generic  FirewallNamedServices 
                    fw_service = Generic
            user resource source destination fw_service
   firewall servs  FirewallPermissions 
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Figure 5.18: Z specification of Lemma 4 

Figure 5.19 presents the specification for Lemma 5. It validates that the feasible service 

accesses corresponds to a permission that is allowed by discretionary, mandatory and security 

property models and that there is at least one firewall in the associated path that implements the 

named service. In Z, if a service access is a member of FeasibleServiceAccesses, then this 

service access must be a member of PossibleServiceAccesses and there must be a firewall in the 

associated path that implements the named service. 

 auxLemma4
FirewallPermissionsSchema 
firewall: FIREWALL 
servs:  USER  RESOURCE  LOCATION  LOCATION  NAMEDSERVICE

servs 
  = user: USER; resource: RESOURCE; source, destination: LOCATION; 
 namedservice: NAMEDSERVICE; path: seq NODE; 
 fw_service: NAMEDSERVICE 
        user resource source destination namedservice path
             FeasibleServiceAccesses 
           firewall  ran path 
           firewall namedservice  FirewallNamedServices 
              fw_service = namedservice 
               firewall namedservice  FirewallNamedServices 
                firewall Generic  FirewallNamedServices 
                fw_service = Generic
        user resource source destination fw_service


theorem rule Lemma4 
  FirewallPermissionsSchema 
    firewall FIREWALL
firewall servs  FirewallPermissions 
   auxLemma4 
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Figure 5.19: Z specification of Lemma 5 

Lemma 6 validates that the possible service accesses corresponds to a permission that is 

allowed by discretionary, mandatory and security property models. This lemma was split into 3 

lemmas. Figure 5.20 presents the specification for Lemma 6.1, which validates that the possible 

service access must be permitted by the discretionary policy. If the service access belong to 

possible service access set, then the user, resource, source and destination must be specified by 

the rule (i.e., the tuple ((user, resource), (source, destination)) must belong to RulePermissions) 

and the user and source must be related in UserLocatedAt set and resource and destination must 

be related in ResourceLocatedAt set. 

 auxLemma5
FeasibleServiceAccessesSchema 
user: USER 
resource: RESOURCE 
namedservice: NAMEDSERVICE 
path: seq NODE 
source, destination: LOCATION 

user resource source destination namedservice path
   PossibleServiceAccesses 
 auxFirewall  ran path 
 auxFirewall namedservice  FirewallNamedServices

 
theorem rule Lemma5 
  FeasibleServiceAccessesSchema 
   user resource source destination namedservice path
       FeasibleServiceAccesses 
   auxLemma5 
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Figure 5.20: Z specification of Lemma 6.1 

Figure 5.21 presents the specification for Lemma 6.2, which validates that the possible 

service access must be permitted by the mandatory policy. If the service access belong to 

possible service access set, then the user clearance must be greater than or equal to the resource 

classification and the resource’s compartments must be a subset of the user’s compartments (i.e., 

the user must have the necessary compartments to access the resource). 

Figure 5.22 presents the specification for Lemma 6.3, which validates that the possible 

service access must be permitted by the security property policy. If the service access belong to 

PossibleServiceAccesses set, then the resource must located at the destination, the named service 

must be associated to the resource and the overall security assumption of the service path must 

be greater than or equal to resource security requirement. 

 

 auxLemma61 
DiscretionarySchema 
user: USER 
resource: RESOURCE 
source, destination: LOCATION 

user  users 
 resource  resources 
 source  Locations 
 destination  Locations 
 source  sources 
 destination  destinations 
 user source  UserLocatedAt 
 resource destination  ResourceLocatedAt 

 
theorem rule Lemma61 
  PossibleServiceAccessesSchema 
   user resource source destination namedservice path
       PossibleServiceAccesses 
   auxLemma61 
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Figure 5.21: Z specification of Lemma 6.2 

 

Figure 5.22: Z specification of Lemma 6.3 

5.7 Conclusion 

This chapter presented a formal approach to the validation of the high-level to low-level 

translation process. In order to perform the validation, the algorithm was represented 

mathematically using the Z notation, and the two properties were selected to ensure the 

 auxLemma63 
PossibleServiceAccessesSchema 
resource: RESOURCE 
namedservice: NAMEDSERVICE 
path: seq NODE 
destination: LOCATION 

path  NetworkPaths
 resource destination  ResourceLocatedAt 
 namedservice  ResourceNamedServices resource 
 OSA namedservice path SR resource  OSA 
 
 
theorem rule Lemma63 
  PossibleServiceAccessesSchema 
   user resource source destination namedservice path
       PossibleServiceAccesses 
   auxLemma63 

auxLemma62 
PossibleServiceAccessesSchema 
user: USER 
resource: RESOURCE 

Clearance user  Classification resource 
 ResourceCompartments resource  UserCompartments user 

 
theorem rule Lemma62 
  PossibleServiceAccessesSchema 
   user resource source destination namedservice path
       PossibleServiceAccesses 
   auxLemma62 

5.7 Conclusion 
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correctness of the refinement: completeness and consistency. Completeness means that the 

desired behavior specified in an abstract level is completely implemented at lower level. 

Consistency means that all actions enabled at the lower level do not contradict the high level 

undesired behavior specification. 

Two theorems that corresponds to these properties were defined, which was split in number 

of lemmas in order to make the proof process less complex. The theorems were represented in Z 

notation, using the Z/Eves tool. 

The validation of the proofs was performed using the Z/Eves tool, which is a tool that 

allows the automated validation of goals. Z/Eves proofs work on a predicate called the goal (the 

defined theorem to be proved is the first goal); each step transforms the goal into a new goal that 

is equivalent. Transforming a goal to true thus completes a proof. The defined theorems were 

proved correctly. 



 

 

Chapter 6  

Performance Analysis and Evaluation 

6.1 Introduction 

he goal of this chapter is to perform the complexity analysis of the refinement algorithm, 

to determine its scalability by identifying the necessary resources in terms of fundamental 

operations and the size of input data. Commonly, the resources analyzed are time – the number 

of steps taken to solve an instance of the problem – and space – the amount of memory required 

by the algorithm. In this work we will follow the asymptotic notation, also called Big-Oh 

notation, to represent the time complexity. The refinement algorithm performs the following 

operations: computation of the paths between sources and destinations, computation of the 

permissions declared in each model (discretionary, mandatory and security property) and the 

computation of the resulting permissions. 

The performance analysis demonstrates the behavior of the algorithm for the worst case and 

for the variation of the input variables, but doesn’t give a real idea of the time spent for 

computation of real scenarios. This chapter also includes an evaluation of the implementation of 

the algorithm, in order to give real measures of processing time, considering scenarios that are 

more common in real situations. 

6.2 Complexity Analysis 

Considering a graph with E edges and V vertices, the complexity of the shortest path 

determination (by using Dijkstra’s algorithm) from one vertex (source) to all other vertices 

(destinations) is [17]: 

T 
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)log( kVVVEO ++  (3) 

In our network model, the vertices are locations that represent subnets and the edges are the 

connections (firewalls) between them. Considering the complexity of Dijkstra’s algorithm, and 

considering SN subnets, C connections, and that any subnet can be the source of a path, the 

complexity for determining all paths from any source to all destinations is: 

( )   kSNSNSNCSNO =++ )log(   

=++× )log( 22 SNSNSNCSNO   

)log( 2 SNSNCSNO +×  (4) 

A discretionary rule specifies a set of users that has access permission to a set of resources 

located at a set of destinations from a set of sources. Letting U, R, S, D to be the number of 

users, resources, sources and destinations referred in the currently evaluated rule, the complexity 

to evaluate the rule is: 

)( DSRUO ×××  (5) 

Although this could seem to be somewhat complex, note that equation (5) just considers the 

elements addressed by a single rule. Therefore, even if the system has many registered users, 

resources and locations, each rule makes reference to just a few elements. For example, 

commonly a user has access to one or few resources, and resources are located at a few servers. 

Letting Ru to be the number of rules defined in the discretionary model, the complexity to 

compute the set of permissions defined by this model is: 

( )RuDSRUO ×××× )(  (6) 

The mandatory model represents user clearances and resource classifications. Again, 

considering U users and R resources, the complexity to evaluate the set of permissions defined 

by mandatory model is: 

( )RUO ×  (7) 

The security property model represents the security requirements assigned to resources and 

the security assumptions assigned to locations and services. Letting Lp to be the number of 

locations and firewalls within a path, Sv to be the number of services per resource and R to be 

the number of resources, the complexity to compute the set of permissions defined by security 

property model is: 

( )RSvLpO ××  (8) 
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Equation 6 represents the complexity of analyzing the discretionary policy. This processing 

result in a number of permissions, that depends on the policy and the inventory information. 

Equations 7 and 8 represent the complexity of analyzing the mandatory and security property 

policies. The algorithm needs to evaluate the permissions obtained from the three models to 

compute the resulting set of permissions. The resulting complexity is: 

=××××××××× )RSvLpRURuDSRUO( )()())((   

Sv)LpRuDSRO(U ×××××× 32  (9) 

The overall complexity of the refinement algorithm is: 

=××××××+××

+×+××××++×

Sv)LpRuDSRO(UR)SvO(Lp
R)O(URu)DSRO(USN)SNCO(SN

32

2 log  

)(log 322 SvLpRuDSRUOSN)SNCO(SN ××××××++×  (10) 

As before, Equation (10) represents the complexity for the worst case. For real situations, 

the following considerations apply: 

(i) The time complexity in equation (10) considers all (user, resource) pair in the mandatory 

model, and all (resource, service, location) triple in the security property model. However, in the 

algorithm implementation, when processing the mandatory model only the users and resources 

allowed by discretionary model are taken into account. Also, when processing the security 

property model only the sources and destinations allowed by discretionary model and resources 

allowed by mandatory model are considered. 

(ii) When computing the paths in the network, SN represents the number of subnets, 

independently of the number of hosts located in each subnet. This is because the path between a 

source and a destination network is the same for every host in the source network and every host 

in the destination network. In this way, although the complexity is high, isn’t a major issue 

because the number of elements isn’t high. 

(iii) Each rule contains information about permissions given to users located at sources to 

access resources located at destinations. Considering that each user can be located at X different 

hosts, and that resources are located at Y different hosts, the complexity can be evaluated by: 

))(())(( RuRUXYO      RuRYUXO ×××=××××  (11) 

(iv) Another point is that not all rules include generic references, i.e., in most cases they 

reference only few users and resources. Considering that each rule references W users and Z 

resources, we have:  

6.2 Complexity Analysis 
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))(( RuZWYXO ××××  (12) 

Then, the complexity for processing the discretionary rules can be more generally evaluated 

by the number of discretionary permissions per rule (NDP) multiplied by the number of rules: 

)( RuNDPO ×  (13) 

(v) When processing the security property model, the algorithm must consider the resources 

and the services that they represent. Normally, there is a limited number of services per resource. 

Resources also include the information about its location (through the relationship Resource 

Located At). Letting Srv to be the number of services per resource, as the path includes the 

information of the destination (the last node of the path), the equation (6) can be evaluated as: 

( )SvrLpO ×  (14) 

(vi) Each policy model represents a set of permissions. The number of permissions is very 

important for the refinement algorithm scalability, because their combination is an expensive 

operation, since permission only becomes a firewall rule if it is defined in the three models. 

Considering equations 7, 13 and 14, the Equation (9) can be alternatively represented by: 

)( SvrLpRURuNDPO ×××××  (15) 

Equation 10 represents the complexity in terms of the basic objects. Taking in account the 

considerations presented above, the overall complexity can be represented as:  

)(log2 SvrLpRURuNDPOSN)SNCO(SN ×××××++×  (16) 

 Note that the equation 16 represents the same complexity as represented by equation 10. 

They differ in the input variables and some facts about the policies in real scenarios. The 

objective of equation 16 is to demonstrate the influence of each input element in the complexity 

of the algorithm for real situations: in equation 10, the number of resources seems to be very 

problematic (since it is R3), but equation 16 demonstrates that its influence is R multiplied by the 

number of discretionary permissions per rule (the number of discretionary permissions will 

probably be lower the number of resources, since the rule restricts the allowed locations for 

resources). The same idea applies to the number of resources and services: equation 10 considers 

that the number of resources is directly multiplied by the number of services, which means that 

each resource includes all services (see equation 8). Equation 16 considers that the resources 

normally include only one or few services, using a average number of services per resources. 
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6.3 Evaluation of the Algorithm Implementation 

The complexity analysis presents the behavior of the algorithm considering how the computation 

time changes with respect to the input data in the worst case. However, as it doesn’t consider a 

real input data, it can not provide information about the real time necessary to process a 

particular input. The algorithm has been implemented in C# in order to perform its performance 

evaluation. We first performed a sensibility analysis experiment, followed by a load stress 

analysis on the critical component. The experiments have been done in a computer with Intel 

Core 2 Duo 2.53 GHz CPU and 2 GB RAM. 

The sensibility analysis scenario starts with 10 users, 10 resources, 10 locations, 10 firewalls 

and 1 rule. The users and resources are equally distributed among the locations, that is, the users 

are located at one half and resources are located at the other half. In order to emulate the worst 

case condition, the scenario includes the rule “any user from any location is allowed to access 

any resource at any location”. Note that, in this situation, increasing the number of users, 

resources or locations impacts directly in computation time, since the rules include every new 

element. The sensibility analysis variables are the number of each component type. The effect on 

the time to refine all rules has been observed separately by increasing each one individually. 
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Figure 6.1: Sensibility analysis 

6.3 Evaluation of the Algorithm Implementation 
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Figure 6.1 shows the sensibility analysis results. It can be observed that the number of 

resources is the critical component, followed by of the number of firewalls. This result can be 

explained because the resource is the only element that is referenced in the three policy models. 

From the observed values, we have used the least squares method to fit the corresponding 

equations, as presented in Table 1: 

 

Table 6.1: Time consuming and complexity equations for scenario 1 

Variable Equation (milliseconds) Complexity 
Resources 0.1457R2+1.8243R+65.1442 O(0.1457×R2) 
Firewalls 0.0464F2-3.8038F+331.1513 O(0.0464×F2) 
Locations 0.0115L2+0.2779L+50.6049 O(0.0115×L2) 
Users 0.0008U2+0.3904U+51.9187 O(0.0008×U2) 
Rules 5.0986Ru-8.7489 O(5.0986×Ru) 

 
As expected, it can be observed that the complexity analysis provides an upper bound for 

the processing time. In other words, in more realistic situations, the impact of the input size is 

smaller than that stated in the complexity equations. This can be verified by looking at each 

component equation individually. For example, in equation (10), the complexity equation 

corresponding to the number of resources is )( 3RO , but the implementation evaluation shows a 

)( 2RO complexity.  

The second scenario is intended to simulate a realistic situation. It starts with 500 users, 200 

resources, 100 locations, 100 firewalls and 10 rules. Because the scenario is supposed to emulate 

a realistic situation, the rules are different from the rules used in the first analysis. In this case, 

the rules consider only 5 users and 1 resource, instead of any user from any location in the 

sensitivity analysis. For example, “users U1, U2, U3, U4 and U5 from any location are allowed 

to access resource R1 at any location”. As both users and resources have its locations 

constrained by User Located At and Resource Located At, it is not necessary to specify these 

restrictions in the rule. 
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Figure 6.2: Performance evaluation 

Figure 6.2 shows the results for the load stress scenario. It can be observed that increasing 

the number of users doesn’t cause any impact to the computation time. Increasing resources 

causes a minimum impact, mainly because the time necessary to search the classification and 

security requirement of the resources and the security assumptions of the named services. This is 

because in the simulated scenario the number of services is dependent on the number of 

resources. It is important to note that the small impact observed for users and resources is 

because the inclusion of a new user or new resource doesn’t imply in a new service access. 

Another reason for the lower impact for users and resources is because the rule is very specific, 

unlike to the first scenario, specifying only 5 users and 1 resource. The equations obtained for 

scenario 2 are presented in Table 2. 

 

Table 6.2: Time consuming and complexity equations for scenario 2 

Variable Equation (milliseconds) Complexity 
Resources 3.2476R+258.5567 O(3.2476×R) 
Firewalls 0.0122F2+5.9329F-106.6788 O(0.0122×F2) 
Locations 0.0029L2+0.8776L+769.585 O(0.0029×L2) 
Users 0.0232U+890.542 O(0.0232×U) 
Rules 94.4009Ru-168.6364 O(94.4009×Ru) 

 

6.3 Evaluation of the Algorithm Implementation 
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The elements that cause more impact in this scenario are firewalls, followed by locations 

and rules. As the number of firewalls and locations isn’t very large in real networks, the element 

that is more important to be analyzed is the number of rules. With this in mind, we evaluated the 

time necessary to process 500 users, 200 resources, 100 locations, 100 firewalls and 10,000 

rules. The processing time for this scenario was approximately 16 minutes. 

6.4 Conclusion 

This chapter demonstrated the complexity analysis and presented a performance evaluation of 

the algorithm implementation. 

The theoretical analysis demonstrated that the complexity formula is: 

)(log 322 SvLpRuDSRUOSN)SNCO(SN ××××××++×  
 

This formula has two parts: the first part demonstrated the complexity of the path 

computing, that is the complexity of Dijkstra’s algorithm. The second part corresponds to the 

processing of the three policy models. 

This formula represents the worst case for the algorithm: every rule referencing all users, 

resources, sources and destinations. Since in real scenarios the rules references few users, 

resources, sources and destinations, the formula can be represented as: 

)(log2 SvrLpRURuNDPOSN)SNCO(SN ×××××++×  
 

The latter formula represents better real situations. It can be noticed that the complexity 

concerning the discretionary rule is represented by )( RuNDPO × , which corresponds to the 

average number of permissions per rule multiplied by the number of rules. 

In order to measure the real time necessary to process the policies, some scenarios were 

evaluated using the implementation of the algorithm in C#. The values obtained within these 

scenarios were used to construct separate formulas for each input variable. 

The obtained formulas showed that the processing time increases linearly for the increasing 

of number of users, resources and rules, and increases quadraticly for locations and firewalls. 



 

 

Chapter 7  

Example 

7.1 Introduction 

ccording to our approach, only the framework has the credentials necessary to create and 

modify rules or scripts in the firewalls. The policy administrators need to use the 

framework in order to manage the security policy. To illustrate the use of the framework we 

consider the scenario depicted in Figure 7.1. This sample scenario represents a fictitious 

corporate network, which is representative of a real corporate network. The network is 

subdivided into 5 subnets, and includes a connection to the Internet. There are 4 firewalls 

connecting the Internet and subnets: firewall 1 connects Internet, DMZ and Commercial subnets; 

firewall 2 connects Commercial and Administration subnets; firewall 3 connects Commercial 

and Engineering subnets; and firewall 4 connects Engineering and Production subnets. Firewall 

1 is a VPN server, i.e., the users at the Internet must connect to the VPN server and the IP 

addresses it assigns correspond to external users. Guest is the only external user that doesn’t 

connect to the VPN server. The example illustrates the information registered in the inventory, 

the mandatory, discretionary and security property policies and how they are processed. It also 

illustrates the operation performed at each step of the algorithm. For sake of simplicity, the 

security assumption and requirement vectors have been reduced to two dimensions: 

[confidentiality, accountability].  

A 
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Figure 7.1: Example network 

All subnets have one server, except the production subnet. There are four user groups (sales, 

engineering, production and guest) and six individual users (CIO, commercial supervisor, 

commercial director, engineering supervisor, engineering director, and network administrator). 

The users are identified by their locations. In real situations they are translated to the 

corresponding IP address when the firewall rules are created, but in this example we will keep 

the host names for better legibility. There are 4 servers inside the network and a group of servers 

at the Internet, where the resources are available for user access. For this example network, 

Figure 7.2, 7.3 and 7.4 presents the information represented in the inventory, Figure 7.5 and 

Figure 7.6 represent the mandatory policy and Figure 7.7, 7.7 and 7.8 represent the security 

property policy. The discretionary policy is presented in the table 7.1. Appendix A presents the 

complete file with the Inventory and the three policy models. 

7.2 High Level 

Figure 7.2, 7.3 and 7.4 presents the information in the Inventory. Figure 7.2 represents the list of 

users (or user groups) and their locations. The locations may represent hosts or subnets, which 

are translated to the corresponding IP address/mask. The names of the subnets in parenthesis are 

only present to help the understanding. Guest represents a group of users, any user that is located 

at the Internet (not connected through the VPN). 
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Figure 7.2: Users and its locations (Inventory) 

Figure 7.3 represents the list of named services. Note that in this example we use the name 

of protocols for some named services, but this is not mandatory. The Named Service Library 

must implement all named services supported by a firewall as registered in the Inventory. In this 

example all the firewalls implement the named services represented in Figure 7.3. 

 

named_service(http). 
named_service(https). 
named_service(smtp). 
named_service(pop3). 
named_service(imap). 

named_service(ftp). 
named_service(ipp). 
named_service(msnMessenger). 
named_service(msnFileTransfer). 
named_service(vnc). 
 

Figure 7.3: Available named services (Inventory) 

Figure 7.4 represents the resources available in the network, its locations and the named 

services associated with them. In this example, the named services have names similar to the 

names of the protocols they represent, but this is not mandatory. 

user_located_at(CIO, [VPN1,HostA4]). 
user_located_at(Salesman, [VPN2,VPN3,VPN4,HostH1]). 
user_located_at(CommercialSupervisor, [HostC2]). 
user_located_at(CommercialDirector, [HostC3,HostA2]). 
user_located_at(Engineer, [HostE1,HostP2]). 
user_located_at(EngineeringSupervisor, [HostE2,HostP3]). 
user_located_at(EngineeringDirector, [HostA1,HostE3]). 
user_located_at(ProductionUser, [HostP1]). 
user_located_at(NetworkAdministrator, [HostA3]). 
user_located_at(Guest, [Internet]). 

7.2 High Level 
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Figure 7.4: Available resources and corresponding locations (Inventory) 

Figure 7.5 and Figure 7.6 present the Mandatory Policy information. Figure 7.5 shows the 

clearance and the compartments of each user/user group. Note that guest users have the lowest 

clearance, while network administrator and CIO have the greatest clearances. Note also that 

although CIO and Network Administrator have the same clearance, they have different 

compartments, corresponding to their need-to-know information. 

 

Figure 7.5: Users’ clearance (Mandatory Policy) 

 

Figure 7.6 shows the resources’ classification. The Internet servers and the Srv1 (DMZ) 

have the mandatory classification 1, as they can be accessed by any user. On the other hand, 

Remote Administration has a high classification, since this is a sensitive resource and must be 

used only by few users. Note that, although the CIO has clearance level sufficient to have access 

resource(WebInternet, [http, https]). 
resource(Chat, [msnMessenger,msnFileTransfer]). 
resource(WebDMZ, [http, https]). 
resource(EmailDMZ, [smtp, pop3, imap]). 
resource(FileTransferDMZ, [ftp]). 
resource(WebCommercial, [http, https]). 
resource(FileTransferCommercial, [ftp]). 
 
resource(PrinterCommercial, [ipp]). 
resource(WebAdmin, [http, https]). 
resource(FileTransferAdmin, [ftp]). 
resource(PrinterAdmin, [ipp]). 
resource(WebEngineering, [http, https]). 
resource(FileTransferEngineering, [ftp]). 
 
resource(RemoteAdmin, [vnc]). 

resource_located_at(WebInternet, [Internet]). 
resource_located_at(Chat, [Internet]). 
resource_located_at(WebDMZ, [Srv1]). 
resource_located_at(EmailDMZ, [Srv1]). 
resource_located_at(FileTransferDMZ, [Srv1]). 
resource_located_at(WebCommercial, [Srv2]). 
resource_located_at(FileTransferCommercial,  
                                [Srv2]). 
resource_located_at(PrinterCommercial, [Srv2]). 
resource_located_at(WebAdmin, [Srv3]). 
resource_located_at(FileTransferAdmin, [Srv3]). 
resource_located_at(PrinterAdmin, [Srv3]). 
resource_located_at(WebEngineering, [Srv4]). 
resource_located_at(FileTransferEngineering,  
                                [Srv4]). 
resource_located_at(RemoteAdmin, 
                                [Srv1, Srv2, Srv3, Srv4]). 
 

 

clearance(CIO, 4, [Commercial, Administration, Engineering, Production]). 
clearance(Salesman, 2, [Commercial]). 
clearance(CommercialSupervisor, 3, [Commercial]). 
clearance(CommercialDirector, 3, [Commercial, Administration]). 
clearance(Engineer, 2, [Administration, Engineering]). 
clearance(EngineeringSupervisor, 3, [Engineering]). 
clearance(EngineeringDirector, 4, [Administration, Engineering]). 
clearance(ProductionUser, 1, []). 
clearance(NetworkAdministrator, 4, [NetworkAdministration]). 
clearance(Guest, 1, []). 
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to RemoteAdmin resource, this access will not be permitted since CIO isn’t associated to 

NetworkAdministration compartment. 

 

Figure 7.6: Resources classification (Mandatory Policy) 

Figure 7.7, 7.7 and 7.8 present the Security Property Policy information. Figure 7.7 shows 

the resources’ Security Requirements. Resources at DMZ and Internet have low security classes, 

while resources at internal servers have high. 

 

Figure 7.7: Resources Security Requirements (Security Property Policy) 

Figure 7.8 represents Security Assumptions of named services. Note that https have a 

stronger confidentiality level when compared to http. 

 

security_requirement(WebInternet, [1,2]). 
security_requirement(Chat, [1,1]). 
security_requirement(WebDMZ, [1,1]). 
security_requirement(FileTransferDMZ, [2,1]). 
security_requirement(EmailDMZ, [1,1]). 
security_requirement(RemoteAdmin, [1,3]). 
security_requirement(WebCommercial, [1,2]). 
security_requirement(FileTransferCommercial, [1,2]). 
security_requirement(PrinterCommercial, [2,3]). 
security_requirement(WebAdmin, [1,3]). 
security_requirement(FileTransferAdmin, [2,2]). 
security_requirement(PrinterAdmin, [2,3]). 
security_requirement(WebEngineering, [1,2]). 
security_requirement(FileTransferEngineering, [1,2]). 

classification(WebInternet, 1, []). 
classification(Chat, 3, []). 
classification(WebDMZ, 1, []). 
classification(EmailDMZ, 2, []). 
classification(FileTransferDMZ, 2, []). 
classification(RemoteAdmin, 4, [NetworkAdministration]). 
classification(WebCommercial, 2, []). 
classification(FileTransferCommercial, 2, [Commercial]). 
classification(PrinterCommercial, 2, []). 
classification(WebAdmin, 2, []). 
classification(FileTransferAdmin, 3, [Administration]). 
classification(PrinterAdmin, 3, [Administration]). 
classification(WebEngineering, 2, []). 
classification(FileTransferEngineering, 2, [Engineering]). 

7.2 High Level 
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Figure 7.8: Services Security Assumption (Security Property Policy) 

Figure 7.9 represents the Security Assumptions assigned to locations and firewalls. Internet 

and DMZ have the lowest security class, since they are very insecure. The firewalls have the 

highest security classes, because we are considering that they are safe. Note that, although the 

accesses coming from VPNs are initiated from the Internet, the corresponding SA is high since 

the users are authenticated and the connection is ciphered. 

 

Figure 7.9: Locations and Firewalls Security Assumption (Security Property Policy) 

Table 7.1 presents the list of discretionary rules created for this example. The table presents 

the rule in the format used by the algorithm and the description of the rule. 

 

security_assumption(Internet, [1,1]). 
security_assumption(DMZ, [1,1]). 
security_assumption(Commercial, [1,3]). 
security_assumption(Administration, [1,4]). 
security_assumption(Engineering, [1,3]). 
security_assumption(Production, [1,3]). 
security_assumption(VPN1, [3,3]). 
security_assumption(VPN2, [3,3]). 
security_assumption(VPN3, [3,3]). 
security_assumption(VPN4, [3,3]). 
 
security_assumption(fw1, [4,4]). 
security_assumption(fw2, [4,4]). 
security_assumption(fw3, [4,4]). 
security_assumption(fw4, [4,4]). 

security_assumption(http, [1,1]). 
security_assumption(https, [4,1]). 
security_assumption(smtp, [2,1]). 
security_assumption(pop3, [2,1]). 
security_assumption(imap, [2,1]). 
security_assumption(ftp, [2,1]). 
security_assumption(ipp, [2,1]). 
security_assumption(msnMessenger, [2,1]). 
security_assumption(msnFileTransfer, [1,1]). 
security_assumption(vnc, [1,1]). 
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Table 7.1: Discretionary Policy 

Num Rule Description 
1 rule([any], [WebDMZ], [any], [Srv1], permit). Any user is allowed to access 

Web at Srv1 (DMZ) from any 
location. 

2 rule([insiderUsers], [EmailDMZ], [any], [Srv1], permit). Company users are allowed to 
access Email at Srv1 (DMZ) 
from any location. 

3 rule([NetworkAdministrator], [FileTransferDMZ], [any], 
[Srv1], permit). 

Network Administrator is 
allowed to access File Transfer 
at Srv1 (DMZ) from any 
location. 

4 rule([NetworkAdministrator], [RemoteAdmin], [any], 
[any], permit). 

Network Administrator is 
allowed to access Remote 
Admin at any location from any 
location. 

5 rule([NetworkAdministrator], 
[FileTransferAdmin,FileTransferCommercial], [any], 
[any], permit). 

Network Administrator is 
allowed to access File Transfer 
at Srv3 (Administration) and 
Srv2 (Commercial) from any 
location. 

6 rule([Salesman,CommercialSupervisor], 
[WebCommercial,PrinterCommercial], [any], [Srv2], 
permit). 

Salesman and Commercial 
Supervisor are allowed to access 
Web and Printer at Srv2 
(Commercial) from any location. 

7 rule([Engineer,EngineeringSupervisor, 
EngineeringDirector], [WebEngineering, 
FileTransferEngineering], [any], [Srv4], permit). 

Engineer, Engineering 
Supervisor and Engineering 
Director are allowed to access 
Web and File Transfer at Srv4 
(Engineering) from any location. 

8 rule([CIO,EngineeringDirector,CommercialDirector], 
[WebAdmin,PrinterAdmin], [any], [Srv3], permit). 

CIO and Directors are allowed 
to access Web and Printer at 
Srv3 (Administration) from any 
location. 

9 rule([NetworkAdministrator], [PrinterAdmin], 
[Administration], [Srv3], permit). 

Network Administrator is 
allowed to access the Printer at 
Administration subnet from 
Administration subnet. 

10 rule([CIO,EngineeringDirector,CommercialDirector], 
[Chat], [any], [Internet], permit). 

CIO and Directors are allowed 
to access Chat at Internet 
Servers from any location. 

11 rule([any], [any], [any], [Internet], permit). Any user is allowed to access 
Internet Servers from any 
location. 

12 rule([Salesman], [PrinterAdmin], [any], [Srv3], permit). Salesman is allowed to access 
Printer at Srv3 (Administration) 
from any location. 
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Table 7.1: Discretionary Policy (Cont.) 

13 rule([ProductionUser], [WebEngineering], [any], [Srv4], 
permit). 

Production Users are allowed to 
access Web at Srv4 
(Engineering) from any location. 

14 rule([CIO], [WebAdmin], [Internet], [Administration], 
permit). 

CIO is allowed to access 
resource Web at Srv3 
(Administration) from the 
Internet. 

 

The above describe scenario was used as input for an implementation of the refinement 

algorithm, producing the corresponding firewall rules. For example, considering the mandatory, 

security properties models and rule 1, the following firewall rules for firewall FW3 are created: 

 

• Permit engineering director, engineering supervisor and engineers to access the Web 

resource (services http and https) at Srv1 from their hosts at engineering subnet; 

• Permit engineering supervisor, engineers and production users to access the Web 

resource (services http and https) at Srv1 from their hosts at production subnet. 

 

Note that, although rule 1 specifies any user, the firewall rules generated by the algorithm 

are very specific in terms of the hosts/users that are allowed to access the Srv1. In this case, the 

algorithm has obtained the information about which users are allowed to use the Engineering and 

Production subnets from the UserLocatedAt inventory class. 

It is possible that one discretionary rule doesn’t generate a firewall rule. This situation can 

occur in the following cases: 

 

• There is no firewall between source and destination: for example, rule 9 specify that the 

network administrator can only access the resource Printer at Srv3 from Administration 

subnet. Since there isn’t a firewall to be configured, the rules aren’t generated. This can 

be solved by including a firewall between source and destination, of by using a personal 

firewalls in the hosts [75][76]. 

• Mandatory policy denies the access: for example, rule 12 specify that salesman are 

allowed to access printer at Srv3, but the salesman clearance is not sufficient to grant 

this access; 

• Security property policy denies the access: for example, rule 14 specifies that the CIO is 

allowed to access resource Web at Srv3 from the Internet, but the OSA of the path 
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Internet-FW1-Commercial-FW2-Administration combined with any named service is 

weaker than the SR of the Web resource at Srv3. 

 

In order to demonstrate the steps performed by the algorithm, table 7.2 presents the results 

produced at each step. For sake of simplicity, we present only the results for discretionary rule 8.  

 

Table 7.2: Results of each step performed by the algorithm for rule 8 

Step Results 
1 Users: [CIO,EngineeringDirector,CommercialDirector] 

Sources: [HostA4,VPN1, HostE3, HostA1, HostA2, HostC3] 
2 Resources: [WebAdmin, PrinterAdmin] 

Destinations: [Srv3] 
3 (CIO, WebAdmin) 

(CIO, PrinterAdmin) 
(EngineeringDirector, WebAdmin) 
(EngineeringDirector, PrinterAdmin) 
(CommercialDirector, WebAdmin) 
(CommercialDirector,  PrinterAdmin) 

4 [VPN1, fw1,Commercial, fw2, Srv3] 
[HostE3, fw3, Commercial, fw2, Srv3] 
[HostC3, fw2, Srv3]  

5 (http, [HostE3, fw3,Commercial,fw2, Srv3]) SR: [1,3] OSA: [1,3] 
(https, [HostE3, fw3,Commercial,fw2,Srv3]) SR: [1,3] OSA: [4,3] 
(ipp, [HostE3, fw3,Commercial,fw2,Srv3]) SR: [2,3] OSA: [2,3] 
(http, [HostC3, fw2,Srv3]) SR: [1,3] OSA: [1,3] 
(https, [HostC3, fw2,Srv3]) SR: [1,3] OSA: [4,3] 
(ipp, [HostC3, fw2,Srv3]) SR: [2,3] OSA: [2,3] 

6 (http, [HostE3, fw3,Commercial,fw2,Srv3]) SR: [1,3] OSA: [1,3] 
(https, [HostE3, fw3,Commercial,fw2,Srv3]) SR: [1,3] OSA: [4,3] 
(ipp, [HostE3, fw3,Commercial,fw2,Srv3]) SR: [2,3] OSA: [2,3] 
(http, [HostC3, fw2,Srv3]) SR: [1,3] OSA: [1,3] 
(https, [HostC3, fw2,Srv3]) SR: [1,3] OSA: [4,3] 
(ipp, [HostC3, fw2,Srv3]) SR: [2,3] OSA: [2,3] 

7 permission(fw2,[8],[EngineeringDirector,CommercialDirector], 
    [WebAdmin,PrinterAdmin],[HostE3,HostC3],[Srv3],[http,https,ipp]). 
permission(fw3,[8],[EngineeringDirector], 
    [WebAdmin,PrinterAdmin],[HostE3],[Srv3],[http,https,ipp]). 
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Steps 1 and 2 select the set of users, sources, resources and destinations that are permitted 

by the discretionary rule. Step 3 selects the (user, resource) pairs that are permitted by mandatory 

policy. Step 4 computes the paths between the sources and destinations obtained in steps 1 and 2 

using the Dijkstra algorithm. Step 5 computes the possible service accesses, calculating the OSA 

and selecting the named services and paths which OSA is greater than or equal to the resource’s 

security requirement. Step 6 computes the feasible service accesses, where at least one firewall 

in the associated path implements the named service. Finally, step 7 computes the firewall 

permissions, resulting in the permissions that must be configured in each firewall of the network. 

Table 7.3 presents the resulting optimized firewall permissions obtained from the processing 

of the algorithm on the network example. 

 

Table 7.3: Optimized Firewall Permissions for Example Network 

FW Optimized Firewall Permissions  

FW1 

permission(fw1,[HostA3],[Srv1],[http,https,smtp,pop3,imap,ftp,vnc]). 
permission(fw1,[HostE3,HostA1,HostP2,HostE1,HostA2,HostC3,HostA4,VPN1, 
   HostP3,HostE2,VPN2,VPN3,VPN4,HostC2],[Srv1],[http,https,smtp,pop3,imap]). 
permission(fw1,[Internet,HostP1],[Srv1],[http,https]). 

(a) 
(b) 

 
(c) 

FW2 

permission(fw2,[HostA3],[Srv1],[http,https,smtp,pop3,imap,FTP,vnc]). 
permission(fw2,[HostA1,HostA2,HostA4],[Srv1],[http,https,smtp,pop3,imap]). 
permission(fw2,[HostA3],[Srv4,Srv2],[vnc]). 
permission(fw2,[HostA1],[Srv4],[http,https,ftp]). 
permission(fw2,[HostE3,HostC3],[Srv3],[http,https,ipp]). 

(d) 
(e) 
(f) 
(g) 
(h) 

FW3 

permission(fw3,[HostE3,HostP2,HostE1,HostP3,HostE2],[Srv1],[http,https,smtp, 
         pop3,imap]). 
permission(fw3,[HostP1],[Srv1],[http,https]). 
permission(fw3,[HostA3],[Srv4],[vnc]). 
permission(fw3,[HostA1],[Srv4],[http,https,ftp]). 
permission(fw3,[HostE3],[Srv3],[http,https,ipp]). 

(i) 
 

(j) 
(k) 
(l) 
(m) 

FW4 
permission(fw4,[HostP2,HostP3],[Srv1],[http,https,smtp,pop3,imap]). 
permission(fw4,[HostP1],[Srv1],[http,https]). 
permission(fw4,[HostP2,HostP3],[Srv4],[http,https,ftp]). 

(n) 
(o) 
(p) 

 

The firewalls are configured so that the users can access the resources correctly. For 

example, FW1 is configured to permit the access from the internal hosts and from Internet to 

Srv1 server (a)(b)(c). Note that the firewalls FW2, FW3 and FW4 also must be configured to 

permit this access from internal subnets. FW2 is configured with scripts (d) and (e) that together 

with (b) allows the access from the hosts of Administration subnet. FW3 is configured with 

scripts (i) and (j) to allow the access to Srv1 from Engineering and Production subnets, and FW4 
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is configured with scripts (n) and (o) to allow the access to Srv1 from Production subnet. Note 

that the scripts (b), (i) and (n) allows that HostP2 and HostP3 have access to Srv1 using http, 

https, smtp, pop3 and imap, while scripts (c), (j) and (o) allows that HostP1 have access to Srv1 

using only http and https. 

Other example is the access of the Network Administrator from HostA3 to servers Srv1, 

Srv2, Srv3 and Srv4 using the named service VNC. Note that the scripts (a) and (d) allows the 

access to Srv1 from HostA3, script (f) allows the access to Srv2 from HostA3 and scripts (f) and 

(k) allows the access to Srv4. As mentioned before, no script is generated for the access to Srv3 

from HostA3, since there is no firewall between HostA3 and Srv3. 

The complete example processing time was 33.17ms, resulting in 164 permissions that were 

grouped into 16 optimized permissions and approximately 700 script rules. 

7.3 Low Level  

The last step of the algorithm is the generation of the scripts or rules for firewall configuration. 

The example presented in this chapter supposes that the firewalls are based on Linux IPTables. 

To demonstrate how firewalls with different characteristics can be configured, we also consider 

that the firewalls includes the L7-filter [18], a software package that provides a classifier for 

Linux's Netfilter subsystem. L7-filter allows categorizing Internet Protocol packets based on 

their application layer data. For instance, the Telnet service could be defined as TCP with 

destination port 23 and any source port, or, when using the L7-filter, it could be defined as a 

search pattern [19] independently of port numbers. As second example, considers the http 

protocol. It can be identified by the destination port 80 or by inspecting the http headers. Simply 

allowing connections to server port 80 allows the http connections to work properly, but also 

allows other protocols to be used at this port. For instance, it would be possible to use this port 

for P2P connections, but if the implementation checks the http headers, only valid http 

connections would be allowed. 

Figure 7.10 presents an example of configuration script for IPTables with L7-filter for the 

http protocol. The L7-filter inspects the first 10 packets or 2k bytes by default, before deciding if 

the connection matches or not. It marks the connections it is still trying to match as "unset". The 

first few packets of all TCP connections will be marked as unset. After the first 10 packets or 2k 

bytes of a connection have been inspected, if the connection is still marked as unset, then it 

marks the connection as "unknown". 

7.3 Low Level 
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The L7-filter documentation of the HTTP pattern specifies that it matches the HTTP 

response. In order to allow the L7-filter to inspect a HTTP response, it is necessary to create 

rules that permit the TCP handshake packets and HTTP requests. To implement this, we use the 

“unset” mark (lines 3 and 4 of the script). Due to fact that the first packets of any connection 

match “unset”, it is important to specify the server port 80. 

 

Figure 7.10: IPTables with L7-filter Configuration Rules 

Considering the resulting optimized firewall permissions for the rule 8 in the Table 7.2, 

table 7.4 presents the generated scripts from the template. 

 

Table 7.4: IPTables with L7-Filter scripts generated for rule 8 

Firewall Script 

FW2 

iptables -F FORWARD 
iptables -F INPUT 
iptables -F OUTPUT 
iptables -P FORWARD DROP 
 
#User: [EngineeringDirector,CommercialDirector] Source: [HostE3,HostC3] Resource: 

[WebAdmin,PrinterAdmin] Dest: [Srv3] Service: [http,https,ipp] 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto http  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 80 -m layer7 --l7proto http  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto unset  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 80 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.2.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto http  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.2.3/32 -p tcp --sport 80 -m layer7 --l7proto http  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.2.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto unset  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.2.3/32 -p tcp --sport 80 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 
 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 443 -m layer7 --l7proto ssl  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 443 -m layer7 --l7proto ssl  

iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto http  
           -m state --state NEW,ESTABLISHED -j ACCEPT 

iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32-p tcp --sport 80 -m layer7 --l7proto http 
           -m state --state ESTABLISHED -j ACCEPT 

iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto unset  
           -m state --state NEW,ESTABLISHED -j ACCEPT 

iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 80 -m layer7 --l7proto unset  
           -m state --state ESTABLISHED -j ACCEPT 
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                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 443 -m layer7 --l7proto unset 

-m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 443 -m layer7 --l7proto unset 
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.2.3/32 -d 10.1.3.254/32 -p tcp --dport 443 -m layer7 --l7proto ssl  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.2.3/32 -p tcp --sport 443 -m layer7 --l7proto ssl  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.2.3/32 -d 10.1.3.254/32 -p tcp --dport 443 -m layer7 --l7proto unset 

-m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.2.3/32 -p tcp --sport 443 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 
 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 631 -m layer7 --l7proto ipp  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 631 -m layer7 --l7proto ipp  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 631 -m layer7 --l7proto unset 

-m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 631 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.2.3/32 -d 10.1.3.254/32 -p tcp --dport 631 -m layer7 --l7proto ipp  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.2.3/32 -p tcp --sport 631 -m layer7 --l7proto ipp  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.2.3/32 -d 10.1.3.254/32 -p tcp --dport 631 -m layer7 --l7proto unset 

-m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.2.3/32 -p tcp --sport 631 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 

FW3 

iptables -F FORWARD 
iptables -F INPUT 
iptables -F OUTPUT 
iptables -P FORWARD DROP 
 
#User: [EngineeringDirector] Source: [HostE3] Resource: [WebAdmin,PrinterAdmin] Dest: [Srv3] 

Service: [http,https,ipp] 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto http 
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 80 -m layer7 --l7proto http  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 80 -m layer7 --l7proto unset  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 80 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 
 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 443 -m layer7 --l7proto ssl  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 443 -m layer7 --l7proto ssl  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 443 -m layer7 --l7proto unset 

-m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 443 -m layer7 --l7proto unset  
                -m state --state ESTABLISHED -j ACCEPT 
 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 631 -m layer7 --l7proto ipp  
                -m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 631 -m layer7 --l7proto ipp  
                -m state --state ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.4.3/32 -d 10.1.3.254/32 -p tcp --dport 631 -m layer7 --l7proto unset 
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-m state --state NEW,ESTABLISHED -j ACCEPT 
iptables -A FORWARD -s 10.1.3.254/32 -d 10.1.4.3/32 -p tcp --sport 631 -m layer7 --l7proto unset 
                -m state --state ESTABLISHED -j ACCEPT 

 
As can be observed, the resulting scripts were generated for configuration of IPtables 

firewalls with the L7-filter module. As the proposed architecture supports the translation of multi 

vendor firewalls, the same policy can be used for configuration of IPTables without the use of 

L7-filter and CheckPoint Firewall-1. The inventory contains the information about the firewall 

models and points to the library that should be used accordingly. For CheckPoint Firewall-1, the 

scripts generated are presented in Table 7.5. 

 

Table 7.5: INSPECT scripts generated for rule 8 

Firewall Script 

FW2 

prolog_services = { <99999,99999>, <21,21>, <111,111> }; 
tcp_services = { <79, 80>, <443, 443>, <636, 636>,}; 
tcp_fastmode_services = { <0, 0> }; 
udp_services = {  }; 
 
#include "tcpip.def" 
#include "fwui_head.def" 
#include "base.def" 
 
// User: [EngineeringDirector,CommercialDirector] Source: [HostE3,HostC3] Resource: 

[WebAdmin,PrinterAdmin] Dest: [Srv3] Service: [http,https,ipp] 
accept tcp, http, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32; 
accept tcp, http, ip_src = 10.1.2.3/32, ip_dst = 10.1.3.254/32; 
accept tcp, https, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32; 
accept tcp, https, ip_src = 10.1.2.3/32, ip_dst = 10.1.3.254/32; 
accept tcp, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32, dport = 631; 
accept tcp, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32, sport = 631; 
accept tcp, ip_src = 10.1.2.3/32, ip_dst = 10.1.3.254/32, dport = 631; 
accept tcp, ip_src = 10.1.2.3/32, ip_dst = 10.1.3.254/32, sport = 631; 
 
#include "fwui_trail.def" 

FW3 

prolog_services = { <99999,99999>, <21,21>, <111,111> }; 
tcp_services = { <79, 80>, <443, 443>, <636, 636>,}; 
tcp_fastmode_services = { <0, 0> }; 
udp_services = {  }; 
 
#include "tcpip.def" 
#include "fwui_head.def" 
#include "base.def" 
 
// User: [EngineeringDirector] Source: [HostE3] Resource: [WebAdmin,PrinterAdmin] Dest: [Srv3] 

Service: [http,https,ipp] 
accept tcp, http, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32; 
accept tcp, https, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32; 
accept tcp, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32, dport = 631; 
accept tcp, ip_src = 10.1.4.3/32, ip_dst = 10.1.3.254/32, sport = 631; 
 
#include "fwui_trail.def" 
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7.4 Conclusion 

This chapter presented an example of the application of the proposed framework for the 

definition of a network security policy. The example network contains 5 private subnets and a 

connection to the internet. The subnets and internet are connected by 4 firewalls, which must be 

configured in order to enforce the global security policy. 

The example presented the inventory description and the three policy models, in order to 

demonstrate how the three models restrict the users’ accesses. The firewalls were defined as 

IPTables with L7-Filter, and the resulting scripts were presented for rule 8. The actual 

implementation has named service libraries for IPTables, IPTables with L7-Filter and 

CheckPoint Firewall-1 (INSPECT language), thus it is possible to configure the network with 

any of these firewalls. 

7.4 Low Level 
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Conclusion and Future Work 

his thesis proposes a new approach for network policy definition, capable of handling a 

multi-constraint security policy model. The policy can be simultaneously defined in 

mandatory, discretionary and security property models. This approach enables the cooperation of 

multiple security staff for the policy definition. 

Mandatory model allows the representation of coarse grained policies, in terms of which 

resources the users are permitted to access. Users must have a clearance greater than or equal to 

the classification of the resource and must have the need-to-know compartments necessary to 

access the resource. 

Security property model allows the representation of location and path dependent policies, 

where an access is permitted or denied based on the location of the user and the path that 

connects the user to the resource. The concept of security properties are directly connected to the 

path that packet traverse from the source to destination. Then, the location from where the access 

is initiated (source) and the path between the source and the destination are decisive to determine 

if the access is permitted or not. 

Finally, the discretionary model allows the representation of fine grained permissions. With 

this model, it is possible to specify from very specific rules, such as “Engineering group is 

allowed to access the Projects Resource at Main Server from the technology lab” to very generic 

rules, such as “Any user from Internal Users Group is allowed to access any resource at Main 

Server”. 

The proposed framework includes an algorithm that is capable to process the three policy 

models, and compute the set of resulting permissions. Note that the resulting permissions are 

T 
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always the “most restrictive” from the three policy models, i.e., a permission will only exist if it 

is defined by the three policy models.  

The framework has an inventory, which contains the information necessary to define the 

three policy models and to represent the topology of the network. Having the topology 

represented separately from the policies turns the framework in topology independent, i.e., it is 

possible to change the topology, without demanding changes in the global security policy. 

The inventory also contains the information about the named services implemented by the 

firewalls of the network. A named service is a high-level secured network service; in other 

words, it represents an abstract firewall protection service. The translation of a named service to 

the specific firewall configuration script/rules is done using a Named Service Library. The 

Named Service Library contains the mapping between the named services and the firewall 

scripts/rules. Each firewall model/vendor will have its own library. The advantage of having a 

library is that the library can be implemented by experts, in order to fully use the corresponding 

firewall technology. 

The combination of the Named Service and Named Service Library enables the framework 

to be device independent, since the topology and policies can be defined independently of the 

specific firewall models/vendors that are present in the network. 

One important aspect of this approach is that even simple firewalls can be present in the 

network, since the algorithm determines the permissions that can be securely applied, without 

violating the high level security policy. The algorithm includes a step named Relaxation. When a 

specific service access must be configured from the source to the destination, it is possible that 

more than one firewall is present in the path. If at least one firewall implements the necessary 

named service, the algorithm is capable to create the firewall scripts/rules for all the firewall in 

the path in order to enforce that service access. The relaxation procedure is possible because the 

packets of a particular service access will cross all the firewalls along the corresponding path. If 

at least one of the firewalls blocks the offending packets, the access is protected. 

In chapter 5, it is presented a formal approach for analysis and validation of the proposed 

framework. The framework has been formalized using the Z-notation, which is a mathematical 

notation that allows the representation and validation of the algorithm. The Z/Eves tool was used 

for the representation and validation, in order to demonstrate that the transformations performed 

by the algorithm don’t cause violation of the policies. 

A performance analysis and evaluation are presented, in order to demonstrate the behavior 

of the proposed algorithm for large scenarios. The complexity analysis demonstrated the 
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variation of the computation time in terms of the size of the input variables (number of rules, 

users, resources, services, locations and firewalls). It is also presented a performance evaluation, 

to demonstrate how the algorithm behaves in real scenarios. 

Finally, an example is presented. The example represents a small, but yet realist, network. 

The network contains 5 subnets and the internet, and 4 firewalls connecting them. The 

mandatory, discretionary and security properties were defined, and the implementation 

processed the policies and inventory. The resulting scripts for configuration of IPTables with L7-

filter are presented. 

In summary, the main contributions of this thesis are: 

 

• Specification of three-dimensional framework for network security policy definition, 

which allows different security staff to be responsible for the description of each 

dimension (Chapter 4); 

• Specification of a high-level security policy language, able to handle mandatory, 

discretionary and security property policies, independently of topology and firewall 

models/vendors (Chapter 4, section 4.4); 

• Definition of an information model that comprises the network topology (Chapter 4, 

section 4.3.1); 

• Definition of the Named Service concept, which is a high-level representation of the 

firewall protection services (Chapter 4, section 4.2); 

• Description of the algorithm that process the three policies specifications, responsible 

for translating the high-level security policy to low-level scrips/rules for firewall 

configuration; (Chapter 4, section 4.5); 

• Demonstration of the formal validation of the algorithm using a mathematical language 

(Chapter 5) 

• Scalability Study of the proposed framework (Chapter 6).  

 

This work can be extended and enhanced in a number of ways. The actual framework 

includes named service libraries for IPTables, IPTables with L7-Filter and CheckPoint Firewall 

1 (INSPECT language). New named service libraries can be constructed for other firewall 

models, in order to increase the applicability of the proposed framework. 

Conclusion and Future Work 
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The representation of IP address and mask can be improved, in order to allow easier 

representation of groups of locations that not necessarily includes the entire subnet (for example, 

declaring groups that doesn’t some hosts of the subnet). 

The strategy “anything not explicitly allowed is forbidden” is somewhat restrictive, since in 

some situations may be necessary to represent negative policies. The framework can be extended 

to include the possibility of defining negative policies. However, it is necessary to consider the 

situations where conflicts exist, since the interaction of positive and negative authorizations can 

become extremely complicated [57]. 

The current framework considers a security assumption for each named service. This could 

be improved, in order that the named service would have more than one security assumption, one 

for each firewall model depending on how the firewall enforce the named service. For example, 

the implementation of the HTTP protocol would receive a low security assumption when enforce 

by a packet filter, and a greater security assumption when it is enforce by a stateful firewall (and 

even greater if the stateful firewall has deep packet inspection). This would turn the security 

property policy more powerful. 

Finally, the framework could be improved in order to allow incremental processing. In this 

way, the framework would only generate the firewall rules or scripts necessary to reflect the high 

level change, instead of reprocessing the entire policy and inventory and generating the full set 

of configuration rules or scripts. 



 

 

Appendix A 

Example Inventory and Policy 

A.1 Inventory 

 
firewall_library(fw1, iptableswithl7filterlib). 
firewall_library(fw2, iptableswithl7filterlib). 
firewall_library(fw3, iptableswithl7filterlib). 
firewall_library(fw4, iptableswithl7filterlib). 
 
named_service_library(fw1, [http, https, smtp, pop3, imap, ftp, ipp, 
msnMessenger, msnFileTransfer, vnc]). 
named_service_library(fw2, [http, https, smtp, pop3, imap, ftp, ipp, 
msnMessenger, msnFileTransfer, vnc]). 
named_service_library(fw3, [http, https, smtp, pop3, imap, ftp, ipp, 
msnMessenger, msnFileTransfer, vnc]). 
named_service_library(fw4, [http, https, smtp, pop3, imap, ftp, ipp, 
msnMessenger, msnFileTransfer, vnc]). 
 
user(CIO). 
user(Salesman). 
user(CommercialSupervisor). 
user(CommercialDirector). 
user(Engineer). 
user(EngineeringSupervisor). 
user(EngineeringDirector). 
user(ProductionUser). 
user(NetworkAdministrator). 
user(Guest). 
 
user_group(insiderUsers, [CIO, Salesman, CommercialSupervisor, 
CommercialDirector, Engineer, EngineeringSupervisor, 
EngineeringDirector, ProductionUser, NetworkAdministrator]). 
 
user_located_at(CIO, [VPN1,HostA4]). 
user_located_at(Salesman, [VPN2,VPN3,VPN4,HostH1]). 
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user_located_at(CommercialSupervisor, [HostC2]). 
user_located_at(CommercialDirector, [HostC3,HostA2]). 
user_located_at(Engineer, [HostE1,HostP2]). 
user_located_at(EngineeringSupervisor, [HostE2,HostP3]). 
user_located_at(EngineeringDirector, [HostA1,HostE3]). 
user_located_at(ProductionUser, [HostP1]). 
user_located_at(NetworkAdministrator, [HostA3]). 
user_located_at(Guest, [Internet]). 
 
location(VPN1,'10.1.2.201/32'). 
location(VPN2,'10.1.2.202/32'). 
location(VPN3,'10.1.2.203/32'). 
location(VPN4,'10.1.2.204/32'). 
location(HostC1,'10.1.2.1/32'). 
location(HostC2,'10.1.2.2/32'). 
location(HostC3,'10.1.2.3/32'). 
location(HostA1,'10.1.3.1/32'). 
location(HostA2,'10.1.3.2/32'). 
location(HostA3,'10.1.3.3/32'). 
location(HostA4,'10.1.3.4/32'). 
location(HostE1,'10.1.4.1/32'). 
location(HostE2,'10.1.4.2/32'). 
location(HostE3,'10.1.4.3/32'). 
location(HostP1,'10.1.5.1/32'). 
location(HostP2,'10.1.5.2/32'). 
location(HostP3,'10.1.5.3/32'). 
location(Srv1, '10.1.1.254/32'). 
location(Srv2, '10.1.2.254/32'). 
location(Srv3, '10.1.3.254/32'). 
location(Srv4, '10.1.4.254/32'). 
 
location(DMZ, '10.1.1.0/24'). 
location(Commercial, '10.1.2.0/24'). 
location(Administration, '10.1.3.0/24'). 
location(Engineering, '10.1.4.0/24'). 
location(Production, '10.1.5.0/24'). 
location(Internet, '200.0.0.0/8'). 
 
location_group(Internet,'200.0.0.0/8',[VPN1,VPN2,VPN3,VPN4]). 
location_group(DMZ,'10.1.1.0/24',[Srv1]). 
location_group(Commercial,'10.1.2.0/24',[HostC1,HostC2,HostC3,Srv2]). 
location_group(Administration,'10.1.3.0/24',[HostA1,HostA2,HostA3,HostA
4,Srv3]). 
location_group(Engineering,'10.1.4.0/24',[HostE1,HostE2,HostE3,Srv4]). 
location_group(Production,'10.1.5.0/24',[HostP1,HostP2,HostP3]). 
 
firewall(fw1, [ifa, ifb, ifc]). 
firewall(fw2, [ifa, ifb]). 
firewall(fw3, [ifa, ifb]). 
firewall(fw4, [ifa, ifb]). 
 
connected(Internet, fw1, ifa, 1). 
connected(DMZ, fw1, ifb, 1). 
connected(Commercial, fw1, ifc, 1). 
connected(Commercial, fw2, ifa, 1). 
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connected(Administration, fw2, ifb, 1). 
connected(Commercial, fw3, ifa, 1). 
connected(Engineering, fw3, ifb, 1). 
connected(Engineering, fw4, ifa, 1). 
connected(Production, fw4, ifb, 1). 
 
named_service(http). 
named_service(https). 
named_service(smtp). 
named_service(pop3). 
named_service(imap). 
named_service(ftp). 
named_service(ipp). 
named_service(msnMessenger). 
named_service(msnFileTransfer). 
named_service(vnc). 
 
resource(WebInternet, [http, https]). 
resource(Chat, [msnMessenger,msnFileTransfer]). 
resource(WebDMZ, [http, https]). 
resource(EmailDMZ, [smtp, pop3, imap]). 
resource(FileTransferDMZ, [ftp]). 
resource(RemoteAdmin, [vnc]). 
resource(WebCommercial, [http, https]). 
resource(FileTransferCommercial, [ftp]). 
resource(PrinterCommercial, [ipp]). 
resource(WebAdmin, [http, https]). 
resource(FileTransferAdmin, [ftp]). 
resource(PrinterAdmin, [ipp]). 
resource(WebEngineering, [http, https]). 
resource(FileTransferEngineering, [ftp]). 
 
resource_located_at(WebInternet, [Internet]). 
resource_located_at(Chat, [Internet]). 
resource_located_at(WebDMZ, [Srv1]). 
resource_located_at(EmailDMZ, [Srv1]). 
resource_located_at(FileTransferDMZ, [Srv1]). 
resource_located_at(RemoteAdmin, [Srv1, Srv2, Srv3, Srv4]). 
resource_located_at(WebCommercial, [Srv2]). 
resource_located_at(FileTransferCommercial, [Srv2]). 
resource_located_at(PrinterCommercial, [Srv2]). 
resource_located_at(WebAdmin, [Srv3]). 
resource_located_at(FileTransferAdmin, [Srv3]). 
resource_located_at(PrinterAdmin, [Srv3]). 
resource_located_at(WebEngineering, [Srv4]). 
resource_located_at(FileTransferEngineering, [Srv4]). 

A.2 Mandatory Policy 

clearance(CIO, 4, [Commercial, Administration, Engineering, 
Production]). 
clearance(Salesman, 2, [Commercial]). 
clearance(CommercialSupervisor, 3, [Commercial]). 

A.2 Mandatory Policy 
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clearance(CommercialDirector, 3, [Commercial, Administration]). 
clearance(Engineer, 2, [Administration, Engineering]). 
clearance(EngineeringSupervisor, 3, [Engineering]). 
clearance(EngineeringDirector, 4, [Administration, Engineering]). 
clearance(ProductionUser, 1, []). 
clearance(NetworkAdministrator, 4, [NetworkAdministration]). 
clearance(Guest, 1, []). 
 
classification(WebInternet, 1, []). 
classification(Chat, 3, []). 
classification(WebDMZ, 1, []). 
classification(EmailDMZ, 2, []). 
classification(FileTransferDMZ, 2, []). 
classification(RemoteAdmin, 4, [NetworkAdministration]). 
classification(WebCommercial, 2, []). 
classification(FileTransferCommercial, 2, [Commercial]). 
classification(PrinterCommercial, 2, []). 
classification(WebAdmin, 2, []). 
classification(FileTransferAdmin, 3, [Administration]). 
classification(PrinterAdmin, 3, [Administration]). 
classification(WebEngineering, 2, []). 
classification(FileTransferEngineering, 2, [Engineering]). 

A.3 Security Property Policy 

security_assumption(fw1, [2,3]). 
security_assumption(fw2, [4,4]). 
security_assumption(fw3, [4,4]). 
security_assumption(fw4, [4,4]). 
 
security_assumption(Internet, [1,1]). 
security_assumption(DMZ, [1,1]). 
security_assumption(Commercial, [1,3]). 
security_assumption(Administration, [1,4]). 
security_assumption(Engineering, [1,3]). 
security_assumption(Production, [1,3]). 
security_assumption(VPN1, [3,3]). 
security_assumption(VPN2, [3,3]). 
security_assumption(VPN3, [3,3]). 
security_assumption(VPN4, [3,3]). 
 
security_assumption(http, [1,1]). 
security_assumption(https, [4,1]). 
security_assumption(smtp, [2,1]). 
security_assumption(pop3, [2,1]). 
security_assumption(imap, [2,1]). 
security_assumption(ftp, [2,1]). 
security_assumption(ipp, [2,1]). 
security_assumption(msnMessenger, [2,1]). 
security_assumption(msnFileTransfer, [1,1]). 
security_assumption(vnc, [1,1]). 
 
security_requirement(WebInternet, [1,2]). 
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security_requirement(Chat, [1,1]). 
security_requirement(WebDMZ, [1,1]). 
security_requirement(FileTransferDMZ, [2,1]). 
security_requirement(EmailDMZ, [1,1]). 
security_requirement(RemoteAdmin, [1,3]). 
security_requirement(WebCommercial, [1,2]). 
security_requirement(FileTransferCommercial, [1,2]). 
security_requirement(PrinterCommercial, [2,3]). 
security_requirement(WebAdmin, [1,3]). 
security_requirement(FileTransferAdmin, [2,2]). 
security_requirement(PrinterAdmin, [2,3]). 
security_requirement(WebEngineering, [1,2]). 
security_requirement(FileTransferEngineering, [1,2]). 

A.4 Discretionary Policy 

rule(1, [any], [WebDMZ], [any], [DMZ], permit). 
rule(2, [insiderUsers], [EmailDMZ], [any], [DMZ], permit). 
rule(3, [NetworkAdministrator], [FileTransferDMZ], [any], [DMZ], 
permit). 
rule(4, [NetworkAdministrator], [RemoteAdmin], [any], [any], permit). 
rule(5, [NetworkAdministrator], 
[FileTransferAdmin,FileTransferCommercial], [any], [any], permit). 
rule(6, [Salesman,CommercialSupervisor], 
[WebCommercial,PrinterCommercial], [any], [Commercial], permit). 
rule(7, [Engineer,EngineeringSupervisor,EngineeringDirector], 
[WebEngineering,FileTransferEngineering], [any], [Engineering], 
permit). 
rule(8, [CIO,EngineeringDirector,CommercialDirector], 
[WebAdmin,PrinterAdmin], [any], [Administration], permit). 
rule(9, [NetworkAdministrator], [PrinterAdmin], [Administration], 
[Administration], permit). 
rule(10, [CIO,EngineeringDirector,CommercialDirector], [Chat], [any], 
[Internet], permit). 
rule(11, [any], [any], [any], [Internet], permit). 
rule(12, [Salesman], [PrinterAdmin], [any], [Administration], permit). 
rule(13, [ProductionUser], [WebEngineering], [any], [Engineering], 
permit). 
rule(14, [CIO], [WebAdmin], [Internet], [Administration], permit). 
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Accesses Contains (user, resource) pairs, where the user is permitted to 

access the resource by the mandatory policy; 

Compartment Also known as need-to-know, describes the restriction of data 

which is considered very sensitive. Under need-to-know 

restrictions, even if one has all the necessary official approvals 

(such as a security clearance) to access certain information, one 

would not be given access to such information unless one has a 

specific need to know; that is, access to the information must be 

necessary for the conduct of one's official duties. 

Classification Security level that are claimed from the individual that wants to 

access the classified information. 

Clearance Security level granted to individuals allowing them access to 

classified information. 

Dijkstra algorithm Graph search algorithm that solves the single-source shortest path 

problem for a graph with nonnegative edge path costs, producing 

a shortest path tree. 

Feasible Service Access 

 

Contains all the service accesses that hold the three policy models 

and that includes in their paths at least one firewall capable to 

implement the corresponding named service. 

Firewall Permission  Contains the permissions that must be configured in each firewall 

of the network. 

Named Service Models a “high-level” secured network service that is supposed to 

be configured in the firewalls along the network, i.e., it is an 

abstract representation for the firewall protection services 

Named Service Library Contains the information necessary to translate optimized firewall 
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permission to rules or scripts used to configure the physical 

firewalls. 

Possible Service Access 

 

Contains all the service accesses that holds the three policy 

models; 

PossibleVias Contains tuples (resource, namedservice, path) that holds the 

security property policy 

Security Assumption Security class associated to a node or a named service,  

 

Security Class Vector of security levels, representing the properties 

confidentiality, integrity, availability and accountability. 

Security Level A natural number ranging from one to four, expressing the 

“strength” of one of the following security properties: 

confidentiality, integrity, availability and accountability. 

Security Requirement Security class necessary to access the resource 

Service Access Corresponds to the tuple ((user, resource), (source, destination), 

(named service, path)), which means that the user from the source 

location is allowed to access the resource at the destination 

location through the path using the named service. 
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