
Thèse de Doctorat de l'université Paris VI
Pierre et Marie CURIE

Spécialité

SYSTÈMES INFORMATIQUES

présentée par

M. Ricardo Cassiano Nabhen

pour obtenir le grade de

DOCTEUR de l'université Pierre et Marie CURIE

Fuzzy logic based method for modeling

queue behavior of network nodes

Soutenance prévue le 10 juillet 2009 devant le jury composé de

Rapporteur M. Samir TOHMÉ Professeur à l'UVSQ

Rapporteur M. James ROBERTS Directeur unité R&D, France Telecom

Examinateur M. Michel MINOUX Professeur à l'Université PMC

Examinateur M. Harry PERROS Professeur à NCSU

Examinateur M. Manoel Camillo PENNA Professeur à PUCPR

Examinateur M. Mauro FONSECA Professeur à PUCPR

Examinateur Mme. Anelise MUNARETTO Professeur à l'UTFPR

Directeur de thèse M. Guy PUJOLLE Professeur à l'Université PMC

Numéro bibliothèque : ___________

Thèse de Doctorat de l'université Paris VI
Pierre et Marie CURIE

Spécialité

SYSTÈMES INFORMATIQUES

présentée par

M. Ricardo Cassiano Nabhen

pour obtenir le grade de

DOCTEUR de l'université Pierre et Marie CURIE

Fuzzy logic based method for modeling

queue behavior of network nodes

Soutenance prévue le 10 juillet 2009 devant le jury composé de

Rapporteur M. Samir TOHMÉ Professeur à l'UVSQ

Rapporteur M. James ROBERTS Directeur unité R&D, France Telecom

Examinateur M. Michel MINOUX Professeur à l'Université PMC

Examinateur M. Harry PERROS Professeur à NCSU

Examinateur M. Manoel Camillo PENNA Professeur à PUCPR

Examinateur M. Mauro FONSECA Professeur à PUCPR

Examinateur Mme. Anelise MUNARETTO Professeur à l'UTFPR

Directeur de thèse M. Guy PUJOLLE Professeur à l'Université PMC

10/07/2009

To my wife, Márcia, and my children,
Jacqueline and Eduardo.

Acknowledgements

I am very grateful to Edgard Jamhour, Manoel Camillo de Oliveira Penna Neto and Guy
Pujolle. They have not only provided a very valuable guidance, but also a lot of inspiration,
motivation, experience sharing and tolerance. Thanks to Mauro Sérgio Pereira Fonseca for
the cooperation with this research work. Also, I would like to thank Carlos Alberto Maziero
for his contribution related to the simulation environment.

Finally, I want to dedicate this work to my wife, Márcia Nabhen, my daughter, Jacque-
line Nabhen, and my son, Eduardo Nabhen, for their support, encouragement and tolerance.

v

Abstract

Capacity planning of IP-based networks is a di�cult task. Ideally, in order to estimate
the maximum amount of tra�c that can be carried by the network, without violating QoS
requirements such as end-to-end delay and packet loss, it is necessary to determine the
queue length distribution of the network nodes under di�erent tra�c conditions. This re-
lationship is strongly dependent on the incoming tra�c pro�le and the queuing discipline
adopted by the network node. Analytical models for queue length distribution are available
only for relatively simple tra�c patterns. The characterization of a model for the queue
length distribution is a vastly studied subject, but the associated mathematical apparatus
becomes more and more complicated when we have to deal with multiple priority queues,
non-exponential service times and long term correlated tra�c. Also, when per-�ow guar-
antees are required, it is necessary to determine the impact of the queue behavior on the
performance of individual �ows. This thesis addresses the design of performance models
of network nodes. We propose a generic method for modeling queue behavior aiming to
provide a methodology for building the corresponding performance models. We take into
account scenarios in which it is very hard to develop an analytical model. The proposed
method combines non-linear programming and simulation to build a fuzzy model capable
of determining the performance of a network node. Using such strategy, which is based on
a general o�-line method to produce the equations capable of representing outputs for the
whole space of the speci�ed input tra�c parameters, it is possible to �nd out the optimal
values that can be used for the con�guration of network nodes, with important applications
on tra�c engineering and capacity planning. This approach does not require the derivation
of an analytical model and can be applied to any type of tra�c. Also, this methodology
includes a training method that permits the application of any type of performance metric.

Key Words:

Fuzzy system models, non-linear programming, simulation, network capacity planning.

vii

Table of contents

1 Introduction 3

1.1 Motivation . 3

1.2 Objectives and Contributions . 6

1.3 Organization of the thesis . 8

2 Fuzzy Systems 11

2.1 Introduction . 11

2.2 Basic Concepts . 12

2.2.1 Crisp Sets and Fuzzy Sets . 12

2.2.2 Membership Functions . 14

2.2.3 Basic Properties . 16

2.3 Fuzzy Logic System . 16

2.3.1 Fuzzi�cation . 18

2.3.2 Fuzzy rules . 18

2.3.2.1 Mamdani FR . 19

2.3.2.2 Takagi-Sugeno FR . 19

2.3.3 Fuzzy inference . 20

2.3.4 Defuzzi�cation . 22

2.3.4.1 Maxima methods and derivatives 23

2.3.4.2 Distribution methods and derivatives 24

2.3.4.3 Area method . 25

2.4 Example: Building a FLS for the perceived quality of speech 25

2.5 Conclusion . 28

3 Tra�c Models and Simulation Environment 31

3.1 Introduction . 31

3.2 Self-Similar Tra�c Modeling . 32

3.3 VoIP Tra�c Model . 38

3.4 Simulation Environment . 41

3.5 Conclusion . 45

ix

4 Optimization Method 47
4.1 Introduction . 47

4.2 Formulation of an Optimization Problem . 48

4.2.1 Obtaining Optimal Values . 49

4.2.2 Classi�cation of Optimization Problems 49

4.2.3 Non-Linear Programming (NLP) . 50

4.3 The Flexible Polyhedron (FP) Optimization Method 52

4.3.1 Method Description . 52

4.3.1.1 Algorithm . 57

4.3.1.2 Final remarks . 59

4.4 Example: Di�Serv PBAC Design with Optimization Method 59

4.4.1 Introduction . 59

4.4.2 Related works . 60

4.4.3 Scenario and Proposal . 62

4.4.4 Optimization Problem . 64

4.4.5 Simulation and Results . 66

4.5 Conclusion . 68

5 A New Method for Modeling Queue Behavior 71
5.1 Introduction . 71

5.2 Related works . 72

5.3 Building a Fuzzy Predictor . 75

5.3.1 Problem Statement . 75

5.3.1.1 Di�Serv and Service Classes 75

5.3.1.2 Training Method . 77

5.3.2 Fuzzy Predictor . 81

5.3.3 Formulation of the Optimization Problem 85

5.3.4 Fuzzy Design Procedure . 87

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. . 89

5.4.1 Problem Statement . 89

5.4.2 Training Method . 92

5.4.3 The Fuzzy Coe�cient F̂ . 93

5.4.4 Formulation of the Optimization Problem 99

5.4.5 Fuzzy Design Procedure . 101

5.5 Conclusion . 101

6 Evaluation 103
6.1 Introduction . 103

6.2 Validation of the Fuzzy Predictor . 103

6.2.1 AF Drop Subsystem . 104

6.2.2 EF Delay Subsystem . 106

6.2.3 Comparison with Theoretical Models 110

6.2.4 Algorithm Performance . 114

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability117

1

6.3.1 Algorithm Performance . 126
6.4 Conclusion . 128

7 Conclusion and Future Work 133

A Simulation Environment: Pseudo Code 137
A.1 VoIP Flow Tra�c Generator . 137
A.2 Self-Similar Tra�c Generator . 138
A.3 Leaky Bucket Module . 141
A.4 Token Bucket Module . 142
A.5 Network Node . 143

Publications 146

References 148

List of acronyms 157

List of �gures 158

List of tables 161

1

2 Chapter 0

2

Chapter 1

Introduction

1.1 Motivation

T
he end-to-end data transfer in network applications may be viewed as a packet level

transport activity using network services that o�er Quality of Service(QoS)-enabled

connectivity between endpoints. For addressing QoS needs, the Di�Serv approach [1] de-

�nes that network tra�c can be classi�ed into distinct aggregated classes, according to its

performance requirements. For example, VoIP tra�c can be assigned to a class designed

to provide low delay while data tra�c can be assigned to a class designed to provide low

packet loss. A Di�Serv node can deal with those distinct performance requirements by

employing multiple queues. In order to determine the maximum amount of tra�c that can

be admitted into a Di�Serv domain, it is necessary to determine the relationship between

the tra�c load and the queue length distribution of the Di�Serv nodes. This relationship

is strongly dependent on the incoming tra�c pro�le and the queuing discipline adopted by

the Di�Serv node. The characterization of a model for the queue length distribution is a

vastly studied subject, but the associated mathematical apparatus becomes more and more

complicated when we have to deal with multiple priority queues, non-exponential service

times and long term correlated tra�c.

QoS methodologies that support resource reservation, such as IntServ [2] and MPLS [3],

permit to establish paths by selecting links with available resources, thus ensuring that the

bandwidth is always available for a particular �ow or �ow aggregate. However, for both

methodologies, it is necessary to determine the amount of resources required by a certain

tra�c pro�le in order to meet QoS requirements. Additionally, the IETF has de�ned strate-

3

4 Introduction Chapter 1

gies for combining MPLS and Di�Serv methodologies [4]. In these scenarios, a LSP (Label

Switched Path) can be shared by distinct tra�c classes or two or more LSPs with distinct

QoS requirements can follow identical paths. For example, consider the illustration depicted

in Figure 1.1. A MPLS domain is supposed to provide a Virtual Private Network(VPN)

between LAN 1 and LAN 2 with a speci�c QoS requirement. Based on the support given

by RSVP-TE [5] messages, a LSP can be established through a initial PATH message sent

by the ingress router towards the egress router which informs the tra�c description through

included SENDER_TSPEC objects [6]. The LSP tunnel is completed upon the arrival of a

positive RESV message which is sent backwards to the ingress router by the egress router

with FLOWSPEC objects [6].

LAN 1 LAN 2Ingress LER

Egress LER

 LSR

Ingress LER
 LSR

 LSR

 LSR

 LSR

MPLS Domain
RSVP-TE

PATH msg

RESV msg

LER: Label Edge Router
LSR: Label Switching Router Physical Link

LSP

queue 1

queue n

queue 2

input link output link

Network Node

classifier queuing scheduler

Figure 1.1: A MPLS/DIFFSERV scenario

As can be noted in this example, it is important to know in advance the performance

(e.g., in terms of packet delay and loss rate) that will be experienced by incoming tra�c

pro�les in order to obtain the optimal values for the con�guration of LSP tunnels aiming to

meet QoS needs. In this case, this could help to de�ne QoS requirements of the tra�c which

is speci�ed in SENDER_TSPEC objects. At the node level, these distinct requirements

are satis�ed by employing distinct queues, as illustrated in the bottom part of Figure 1.1.

Internally, the tra�c is classi�ed and assigned to a corresponding queue by a classi�er. The

QoS performance of a queue can be represented in terms of the amount of loss, delay and

4

1.1 Motivation 5

jitter imposed by the queue on the tra�c injected to the output link. For the pure Di�Serv

approach or the combined Di�Serv/MPLS methodology, it is necessary to determine the

maximum amount of tra�c that can be assigned to each queue without violating the QoS

requirements. The performance model of network nodes (i.e., a multi-queue node in this

example), where it is possible to establish the relationship between the tra�c load at each

queue and the resulting QoS performances, can help to address this issue.

Analytical models for queue length distribution are available only for relatively simple

tra�c pro�les. An e�ective model needs to capture all relevant stochastic components that

impact its target QoS metrics which can lead to extremely complex models [7], maybe

infeasible for practical purposes. On the other hand, simpler models may not represent ac-

curately real scenarios tending to overestimate or underestimate the actual performance [8].

Moreover, in most cases, these models apply only to the performance of the aggregated traf-

�c. It is however pointed by some authors that under certain conditions, the delay, jitter

and packet loss level experienced by individual �ows can signi�cantly diverge with respect

to the performance of the aggregated tra�c [9, 10]. Consequently, even when the aggre-

gated tra�c is properly dimensioned, the individual �ows may not satisfy QoS requirements

such as delay and packet loss. Providing per-�ow guarantees poses additional di�culties

because it is also necessary to take into account the �uctuations of the �ows lifecycles in

order to determine the impact of the queue behavior on the performance of the individual

�ows. For instance, consider the case of VoIP applications. Referring again to Figure 1.1,

suppose that one needs to provide per-�ow guarantees in terms of a maximum delay for

the 99th percentile of packets of each VoIP �ow through a LSP tunnel that is dimensioned

for a VoIP tra�c aggregate. Also, another concurrent LSP tunnel is established along the

same physical path in order to transport data tra�c which has a speci�c packet loss rate

as a requirement. In this case, each LSP will be assigned to distinct queues where they

will compete for the same output link. This scenario poses some questions: How much

tra�c must be admitted in each queue in order to meet both QoS needs? Considering the

Di�Serv approach, is the dimensioning of the VoIP aggregated tra�c enough to achieve per-

�ow guarantees? What is the impact of VoIP �ows on the performance of the data tra�c

and vice-versa since they compete for the same output link? Thus, building a performance

model that could take into account these issues can help service providers to implement

tra�c engineering policies.

5

6 Introduction Chapter 1

1.2 Objectives and Contributions

The objective of this thesis is to develop a generic method for modeling the queue behavior of

network nodes aiming to provide a methodology for building the corresponding performance

models. The proposed method takes into account many of the complicating modeling issues

stated before, leading to a scenario in which it is very hard to develop an analytical model.

The proposed method combines non-linear programming (NLP) and simulation to build

a model capable of determining the performance of a network node. Using such strategy,

which is based on a general o�-line method to produce the equations capable of representing

outputs for the whole space of the speci�ed input tra�c parameters, it is possible to �nd out

the optimal values that can be used for the con�guration of network nodes, with important

applications on tra�c engineering and capacity planning. This approach does not require

the derivation of an analytical model and can be applied to any type of tra�c. Also,

this methodology includes a training method that permits the application of any type of

performance metric.

Capturing uncertainties related with such performance modeling is a key issue in devis-

ing a model that can actually represent the behavior of a system. Due to the complexity of

such modeling process, our method uses fuzzy techniques in order to represent queue mod-

els. As stated in [11], "as the complexity of a system increases, our ability to make precise

and yet signi�cant statements about its behavior diminishes until a threshold is reached

beyond which precision and signi�cance (or relevance) become almost mutually exclusive

characteristics". Fuzzy logic may be seen as a tool for dealing with uncertainty. It provides

a method to deal with imprecision. Fuzzy modeling is achieving successful results on rep-

resenting non-linear uncertain systems and has been used in many di�erent investigations

of network problems. Thus, our proposed method employs NLP and simulation to build a

fuzzy logic based performance model of a network node.

As a direct consequence of this approach, our method can also be employed for designing

Di�Serv admission controllers and predictors. For example, consider the case of building

a Parameter Based Admission Control(PBAC) controller for a VoIP tra�c aggregate. The

idea is not to permit the admission of a new �ow that could violate QoS requirements of

admitted tra�c. Based on the results obtained from the performance model built with our

method, it is possible to predict both aggregate and per-�ow QoS performances and the

admission control decision could easily be performed.

During the development of this research work we presented some preliminary results and

6

1.2 Objectives and Contributions 7

conclusions that have contributed for this study. In the �rst publication [12] we investigated

the variation of individual �ows performance with respect to the aggregate performance.

In the three next [13, 14, 15], our concern was to study optimization algorithms, training

methods, tra�c models and simulation approaches in order to provide guarantees for indi-

vidual �ows and aggregate tra�c. The studies showed in these four papers formed the basis

for the main publication [16], which formalizes our method presentation. It introduces our

fuzzy logic approach and training method to create performance models, which is detailed

in Chapter 5 and validated in Chapter 6. In the following, we present a brief summary of

each one of these publications.

In [12], we presented a study based on simulations that makes an analysis of the end-to-

end delay observed by individual �ows and how much it can diverge from that experienced

by the aggregated tra�c. The motivation of this evaluation is derived from the fact that SLA

management approaches typically adopt provisioning strategies based on aggregated tra�c

in order to support end-to-end delay requirements of applications. They do not take into

account individual �ow needs. Several scenarios were used to evaluate this performance and

some metrics were proposed to investigate empirical relations that show the end-to-end delay

behavior when individual �ows, the aggregated tra�c and the network load are analyzed.

The results show that the delay can be much higher than the one observed by the aggregated

tra�c, causing an important impact in the performance of network applications. Based on

the previous study, in [13], we presented a study that intends to investigate the QoS

deployment in Di�Serv networks for delay sensitive applications considering performance

guarantees established in a per-�ow basis. For this purpose, we presented an evaluation

methodology based on optimization methods that implements several measurement based

admission control algorithms. We showed that it is possible to use the system resources

e�ciently and to meet the QoS requirements in a per-�ow basis taking into account distinct

bandwidth provisioning and performance metrics.

The work presented in [14] shows a study about the design of admission control al-

gorithms and its impact in the performance of individual �ows. Most Di�Serv admission

control algorithms rely on tuning parameters to help in the decision making. Tuning these

parameters is a di�cult task, especially when one considers the problem of assuring QoS

guarantees to individual �ows. In this study, we propose a method for helping the design

of Di�Serv AC algorithms based on non-linear programming optimization. It enables the

�nding of the values for the AC parameters that permits to satisfy the QoS guarantees for

individual VoIP �ows, while minimizing a cost function that represents the performance

7

8 Introduction Chapter 1

goals of the service provider. This approach is used for comparing the performance of some

commonly used Di�Serv AC techniques and also to design a novel AC algorithm based on

queue estimates. In [15], we address the issue of determining the maximum amount of

tra�c that can be admitted in a Di�Serv network. The relationship between the tra�c

load and the queue length distribution of a Di�Serv node is very di�cult to model. In

this study, we demonstrate how a non-linear programming algorithm can be employed to

determine the maximum load that can be accepted by a Di�Serv node without deriving an

analytical model. The NLP algorithm is used to train a parameter based admission control

controller using a speci�cally designed tra�c pro�le. After training the PBAC for a speci�c

network and speci�c statistical QoS guarantees, it can be used to provide these guaran-

tees to distinct o�ered tra�c loads. In this work, we evaluated such approach in a sample

scenario where (aggregated on-o�) VoIP tra�c and (self-similar) data tra�c compete for

network resources.

Fuzzy logic was introduced in our work in order to carry out the modeling process

of queue behavior using the studies previously developed. In [16], we propose a generic

method for building a fuzzy predictor for modeling the behavior of a Di�Serv node with

multiple queues. The method combines non-linear programming and simulation to build

a fuzzy predictor capable of determining the performance of a Di�Serv node subjected to

both: per-�ow and aggregated performance guarantees without utilization of analytical

models. In this work, we employ the fuzzy logic approach to model the behavior of a multi-

queue node where (aggregated on-o�) VoIP tra�c and (self-similar) data tra�c compete

for network resources.

1.3 Organization of the thesis

The thesis is structured as follows. Chapter 2 introduces the fuzzy logic and presents

key issues related to modeling based on fuzzy techniques. Also, we show an example in

order to illustrate the main concepts and procedures presented. Chapter 3 presents the

tra�c models and related issues with respect to synthetic tra�c generation and performance

measurement, which are the basis for the optimization problem formulation of this research

work. Our simulation approach for self-similar tra�c and per-�ow modeling (VoIP tra�c)

is also discussed. Then, we describe the simulation environment developed for the method

evaluation. In Chapter 4, we �rst review important concepts and de�nitions related to

optimization theory. Then, we present the optimization method employed in this research

8

1.3 Organization of the thesis 9

work which is followed by an example that shows the design of a parameter based admission

control mechanism using a training strategy based on simulations and the optimization

method discussed.

Chapter 5 describes the proposed method. First, we show how the method can be em-

ployed for building a fuzzy predictor considering a scenario with a multi-queue node where

VoIP tra�c and constrained self-similar tra�c compete for system resources. After that,

the method is employed for building a time based fuzzy model for the MVA approximation

for loss probability analytical model. We show a strategy based on normalized probability

distributions in order to produce output fuzzy sets for representing the performance model

of a network node in terms of loss probability. Chapter 6 provides the validation of our

contributions. We consider three di�erent scenarios, two for the fuzzy predictor evaluation

and one for the MVA approximation for loss probability analytical model. Finally, Chapter

7 concludes this thesis and discusses future directions of research.

9

10 Introduction Chapter 1

10

Chapter 2

Fuzzy Systems

2.1 Introduction

F
uzzy modeling is achieving successful results on representing non-linear uncertain sys-

tems and has been used in many di�erent investigations of network problems. This is

because controlling the behavior of some systems requires complex mathematical models,

which is often very di�cult and sometimes even impossible, making the modeling based on

fuzzy techniques an appealing approach. Fuzzy logic may be seen as a tool for dealing with

uncertainty, making available a method to deal with imprecision.

After the main ideas of fuzzy sets and their basic relations introduced in Zadeh′s seminal

work [17], Zadeh introduces the concept of linguistic variables and fuzzy algorithms [11], that

represent a key feature of the fuzzy modeling: "It has three main distinguishing features: 1)

The use of so-called linguistic variables instead of or in addition to numerical variables; 2)

characterization of simple relations between variables by conditional fuzzy statements; and

3) characterization of complex relations by fuzzy algorithms". Furthermore, it de�nes its

objective: "By relying on the use of linguistic variables and fuzzy algorithms, the approach

provides an approximate and yet e�ective means of describing the behavior of systems

which are too complex or too ill-de�ned to admit of precise mathematical analysis. Its

main applications lie in economics, management science, arti�cial intelligence, psychology,

linguistics, information retrieval, medicine, biology, and other �elds in which the dominant

role is played by the animate rather than inanimate of system constituents". Since then,

several modeling works based on such approach have been proposed, taking advantage of

the computation with words, which has made it appropriate for the modeling of complex

11

12 Fuzzy Systems Chapter 2

systems, mainly when it is necessary to consider a problem with several variables. The

method proposed in this thesis is directly related with this statement. In order to build

a complex network model, we consider several parameters that describe the network node

and those in which the target performance model is dependent, leading typically to a model

with tens of variables. This chapter presents the main concepts related to fuzzy modeling

and summarizes the mathematical background employed by the fuzzy logic. In the �nal of

this chapter, we show an example in order to illustrate the main concepts and procedures

presented.

2.2 Basic Concepts

2.2.1 Crisp Sets and Fuzzy Sets

The fuzzy approach is based on the idea of fuzzy sets [17]. In order to understand this con-

cept, it is also important to de�ne crisp sets. The fuzzy logic provides an inference structure

that enables appropriate human reasoning capabilities. On the contrary, the traditional bi-

nary set theory describes crisp events, which either do or do not occur. It uses a probability

theory to explain if an event will occur, measuring the chance with which a given event

is expected to occur. The theory of fuzzy logic is based on the notion of relative graded

membership and so are the functions of mental and cognitive processes [18]. Consider the

example shown in Figure 2.1. Suppose that it is necessary, hypothetically, to represent

the end-to-end one-way delay related to the perceived quality of voice due to transmissions

in communication networks. According to the ITU-T recommendation G.114 [19], delays

of less than 150ms, most applications will experience essentially transparent interactiv-

ity, whereas delays above 400ms are unacceptable for general network planning purposes.

Between both values, we can consider that there is an average range.

One can see in this example that we de�ne three linguistic terms in order to classify the

end-to-end one-way delay: low, average and high. Also, we are not interested in representing

delays above 500ms. So, we say that the universe of discourse of the delay variable is

0≤ delay≤ 500. A universe of discourse of a variable can be discrete or continuous spaces.

In the �rst graph, any delay value belongs only to one group or crisp set. For example, a

212ms delay is always classi�ed as average. It has a zero degree of membership in low and

high crisp sets. However, considering the fuzzy approach, a 212ms delay belongs to two

groups or fuzzy sets: low and average, with both having the same degree of membership:

12

2.2 Basic Concepts 13

delay (ms) delay (ms)

degree of membershipdegree of membership

Crisp sets Fuzzy sets

0 150 400 500 0 150 212 275 400 500

 low average high
1 1

0.5

 low average high

Figure 2.1: Example: Representing the end-to-end one-way delay of recommendation G.114

with Crisp and Fuzzy sets

0.5. Formally, we can now de�ne crisp and fuzzy sets. Given an universe of discourse X,

where x εX, a fuzzy set V in X is de�ned by a membership function µV (x) which gives,

for any value of x, the degree of membership of x in V . This de�nition can be expressed as

follows:

V = {x, µV (x)} for x∈X, where 0≤µV (x)≤ 1 (2.1)

in the case of the crisp set, we have:

V = {x, µV (x)} for x∈X, where µV (x) =

(
1, x ∈ V

0, x /∈ V

)
(2.2)

A universe of discourse can be mapped to one or more partially overlapped fuzzy

sets. Usually, fuzzy sets are named by linguistic values that permit to intuitively de-

scribe their meaning. For example, the fuzzy sets low (low = {d, µlow(d)}), average

(average = {d, µaverage(d)}) and high (high = {d, µhigh(d)}) could be used to describe

the universe of discourse of a variable D, representing the end-to-end one-way delay. The

names low, average and high correspond to the linguistic values that the linguistic variable

D can assume.

The overlapping feature of fuzzy sets permits a smoother transition between groups,

providing more �exibility for modeling. For example, referring again to the second graph

of Figure 2.1, starting at 150ms, one can easily see that higher delay values gradually lose

their degree of membership in the low fuzzy set, while they have also an increasing degree of

membership in the average fuzzy set. This can be seen as a more realistic approach since a

delay value close to 150ms, say 155ms, can be neither classi�ed entirely as average nor has

13

14 Fuzzy Systems Chapter 2

a zero grade as low. In this example, the shape and width of each fuzzy set were arbitrarily

chosen. One can see that below 150ms and above 400ms degrees of membership are the

same as in the case of crisp sets, indicating that delay values within these ranges strictly

belong to their respective groups, low and high. However, in the intermediate range average,

it is preferable to design a smoother transition because one can not accurately determine at

what level a delay value moves completely to another group. Hence, there is an overlapping

region between the fuzzy sets in this range which was modeled as a triangle. Indeed, this

�exibility is achieved by the de�nition of the shape of membership functions, allowing to

capture information in which the limits are not strictly de�ned.

2.2.2 Membership Functions

As could be seen in the right part of Figure 2.1, three di�erent membership functions

were employed to de�ne each linguistic value: One triangular and two trapezoidal shapes.

One issue to be faced during the fuzzy set modeling is to determine the shape of the sets.

According to fuzzy set theory, the choice of the shape and width is subjective [20]. Clearly,

many other choices for the shape of membership functions are possible and these will each

provide a di�erent meaning for the linguistic values that they quantify [21]. Figure 2.2

presents some common shapes of membership functions. In the literature, there exist other

several types of membership as, for instance, Gaussian, Generalized Bell, Sigmoidal and Z

shaped membership functions [20], but here we will consider only those employed in this

research work.

degree of membership

 α
variable

(a) (b) (c) (d) (e) (f) (g)

 x y x y z w x y x y z x y x y x

 1

Figure 2.2: Most common shapes of membership functions: (a,b,c)-Trapezoidal shapes,

(d,e,f)-Triangular shapes,(g)-Singleton shape

14

2.2 Basic Concepts 15

All fuzzy sets represented by these membership functions are classi�ed as normal fuzzy

sets. Normal fuzzy sets are implemented by membership functions in which there is at least

one element in the universe of discourse whose value is equal to 1. However, a fuzzy set

is known as a subnormal fuzzy set if its membership functions contains membership values

less than 1 [18]. Table 2.1 shows the mathematical implementation of the membership

functions presented in Figure 2.2 considering a fuzzy set V and a variable named α. The

singleton shape represents one single point in the universe of discourse of the variable.

Table 2.1: Implementation of the membership functions shown in Figure 2.2

Membership Function Mathematical representation

Trapezoidal Shape (a) µV (α) =


1, α < x
y−α
y−x , x ≤ α ≤ y

0, y < α

 .

Trapezoidal Shape (b) µV (α) =



0, x > α
α−x
y−x , x ≤ α ≤ y

1, y ≤ α ≤ z
w−α
w−z , z ≤ α ≤ w

0, w < α


.

Trapezoidal Shape (c) µV (α) =


0, α < x

α−x
y−x , x ≤ α ≤ y

1, α > y

 .

Triangular Shape (d) µV (α) =


0, x > α

α−x
y−x , x ≤ α ≤ y
z−α
z−y , y ≤ α ≤ z

0, z < α

 .

Triangular Shape (e) µV (α) =


0, x > α

α−x
y−x , x ≤ α ≤ y

0, y < α

 .

Triangular Shape (f) µV (α) =


0, x > α
y−α
y−x , x ≤ α ≤ y

0, y < α

 .

Singleton Shape (g) µV (α) =


0, x > α

1, α = x

0, x < α

 .

15

16 Fuzzy Systems Chapter 2

2.2.3 Basic Properties

Figure 2.3(a) and 2.3(b) show the basic properties of membership functions for, respec-

tively, a normal and a subnormal fuzzy set. They can be de�ned as follows [22]:

support(V) = {x |x ∈ X andµV (x) > 0}
core(V) = {x |x ∈ X andµV (y) ≤ µV (x), ∀ y ∈ X}

height(V) = supµV (x), ∀x ∈ X
(2.3)

degree of membership

Universe of discourse

1

(a) (b)

core

core

support support

he
ig
ht

he
ig
ht

X

Figure 2.3: Basic properties of membership functions

Fuzzy set theory is strongly based on operations on sets. Figure 2.4 shows two im-

portant basic operations which serve as a foundation for fuzzy set operations: Union (a)

and Intersection (b). These operations are also known as disjunction and conjunction,

respectively. We can de�ne the following relations according to the operations shown in

Figure 2.4.

(a)Union : W (x) = V (x) ∪ Z(x) = max(µV (x), µZ(x))

(b) Intersection : W (x) = V (x) ∩ Z(x) = min(µV (x), µZ(x))
(2.4)

where V (x) = µV (x), Z(x) = µZ(x) and W (x) = µW (x).

2.3 Fuzzy Logic System

In the proposed method of this thesis, it is necessary to build a performance model of a

network node. As stated before, our problem is to create a system that could take into

account several input parameters related to the input tra�c pro�le, performance metrics

16

2.3 Fuzzy Logic System 17

(a)

W = V Z

∩

W

W(x)

V
Z

degree of membership

W

W = V Z∩

(b)
W(x)

x

x

x

Figure 2.4: Basic operations: (a) Union (b) Intersection

and the network node in order to generate such performance model. In the context of this

research work, we need to build a model considering the utilization of a Fuzzy Logic System

(FLS). A FLS is a non-linear system capable of inferring complex non-linear relationships

between input and output variables. The non-linearity property is particularly important

when the underlying physical mechanism to be modeled is inherently non-linear. The system

can learn the non-linear mapping by being presented a sequence of input information and

desired response pairs, which are used in conjunction with an optimization algorithm to

determine the values of the system parameters [23]. One interesting characteristic of a FLS

is that it is independent of internal elements of the system, i.e., a FLS makes its computation

collecting data from the target system and produce results based on a reasoning process

without the necessity of any particular information related to the implementation of the

system, e.g., simulation processes, statistical properties, etc..

Figure 2.5 presents the structure of a fuzzy logic system. Spaces I and O contain all

fuzzy sets of the input and output spaces respectively. The fuzzy logic system is composed

by a set of if-then rules that maps the input to the output fuzzy sets. The fuzzy approach

can be used to design a logic procedure that interferes (e.g., a fuzzy controller) or not (e.g.,

a fuzzy predictor) on the system behavior. As illustrated in the �gure, the FLS receives

crisp input values and outputs crisp values. Thus, a FLS can be viewed as a non-linear

17

18 Fuzzy Systems Chapter 2

mapping between an input variable x and an output variable y, which can be expressed as

y = f(x). To output a result, the FLS performs three main steps: fuzzi�cation, inference

and defuzzi�cation.

Fuzzy Inference

Fuzzy Rules

Fuzzifier

Fuzzy Logic System

Output
Fuzzy sets
(space O)

Crisp Input
(space I)

Crisp Output
(space O)

Input Fuzzy
membership

values (space I)
Defuzzifier

Figure 2.5: Structure of a Fuzzy Logic System

2.3.1 Fuzzi�cation

The fuzzi�cation is the process of computing the membership values from crisp inputs. It

is a transformation process: Crisp value ⇒ Fuzzy value, where all information related to

uncertainty and imprecision must be taken into account. It corresponds to the conversion

of each input crisp data into its corresponding linguistic variables according to computed

degrees of membership. For example, in the previous Figure 2.1, the fuzzi�cation of the

delay value 212ms is µlow(212) = 0.5 and µaverage(212) = 0.5. Hence, the fuzziness is

clear: a 212ms is 0.5 low and 0.5 average, i.e., we are not sure about what a 212ms

delay value is precisely. In this example, we have a singleton fuzzi�cation, however, it is

possible to have non-singleton fuzzi�cation [24], but this process adds more complexity to

the FLS and requires higher computational resources. Thus, the singleton fuzzi�cation

is more widely used than non-singleton fuzzi�cation. Throughout this thesis we will only

employ the singleton fuzzi�cation in the proposed method, as well as in further discussions

about FLS.

2.3.2 Fuzzy rules

The reasoning process performed by the inference engine of a FLS is based on fuzzy rules.

They are linguistic if-then statements involving fuzzy sets. Fuzzy rules express the knowl-

edge of a system and assign the input variables to output variables. The rule-based form

uses linguistic variables as its antecedents and consequents. The antecedents express an

inference or the inequality, which should be satis�ed. The consequents are those which we

18

2.3 Fuzzy Logic System 19

can infer, and is the output if the antecedent inequality is satis�ed [18]. The general form

of a fuzzy rule is represented as follows:

IF antecedent THEN consequent (2.5)

The antecedent is expressed in terms of input fuzzy sets, whereas the consequent is expressed

in terms of output fuzzy sets, respectively, spaces I and O in Figure 2.5. For example,

suppose we consider again the example of the end-to-end one-way delay presented in Figure

2.1 in which we are interested in mapping the end-to-end one-way delay to the perceived

quality of speech. For delay values belonging to the low fuzzy set we know, according to the

cited recommendation, that the perceived quality of speech is good. In this case, denoting

the variable d as the end-to-end one way delay, the variable q as the perceived quality of

speech, low as the input fuzzy set 1 and good as an output fuzzy set in order to classify the

quality of speech, we can express this rule as follows:

IF d is low THEN q is good, where d ∈ I and q ∈ O

In the literature, we have the two most important types of fuzzy rules: Mamdani fuzzy rules

and Takagi-Sugeno(TS) fuzzy rules. Both types are very similar, but the main di�erence is

related to the speci�cation of consequents.

2.3.2.1 Mamdani FR

The Mamdani approach [25] is the most common type of fuzzy rules system. Broadly

speaking, it can be seen as a rule set that describes a system by using linguistic statements.

A Mamdani fuzzy rule set can be expressed as follows (adapted from [26]):

Rl : IF u1 is F
l
1 and u2 is F

l
2 and up is F

l
p THEN v1 is G

l
1 ,, vq is G

l
q (2.6)

where l = 1, 2, ..., t for t denoting the number of rules, F li and G
l
j are fuzzy sets in Ui ⊂

<, i = 1, 2, .., p and Vj ⊂ <, j = 1, 2, .., q, respectively, in the input and output spaces.

Also, ui ∈ U and vj ∈ V . i is an index for denoting the set of input variables, whereas j

is the same for output variables.

2.3.2.2 Takagi-Sugeno FR

Takagi-Sugeno(TS) fuzzy rules [27] can be seen as a representation of the behavior of a

system through a linear model expressed by each rule. TS fuzzy rules change the consequent

1as shown in Figure 2.1

19

20 Fuzzy Systems Chapter 2

part formed by fuzzy sets with a function made of the input variables. Hence, we can see

each rule as a speci�c linear model whose output result is aggregated with others to generate

the �nal result. A TS fuzzy rule set can be expressed as follows:

Rl : IF u1 is F
l
1 and u2 is F

l
2 and up is F

l
p THEN vl is f l(u1, u2, ..., up) (2.7)

where l = 1, 2, ..., t for t denoting the number of rules, F li are input fuzzy sets in Ui ⊂ <, i =

1, 2, .., p, in the input spaces given by the universe of discourse U = {U1, U2, ..., Up} with
ui ∈ U . The consequent part, vl is f l(u1, u2, ..., up), represents a function of input variables

ui. It is possible to expand the linear combination to a non-linear combination of input

variables; for example, fuzzy rules which have neural networks in their consequents [28].

Typically, �rst order linear functions of inputs have been used for consequents. However,

there exists a very typical case when we have vl is k, i.e., the value assigned as a result of

each rule is a constant. In this case, we have a zero order TS rule, which is quite similar to

the Mamdani FR singleton output fuzzy set.

2.3.3 Fuzzy inference

Fuzzy inference is the reasoning process employed to determine the system fuzzy output. It

is based on the processing of fuzzy rules taking into account the fuzzi�ed input parameters.

In order to perform this task, it is necessary to obtain the activation level for each rule,

which is followed by an aggregation process of outputs of fuzzy rules. This process can be

summarized as follows (inspired in [21]):

• Consider the following notation:

F j1 = {(u1, µF j1
(u1)) : u1 ∈ U1 }

F k2 = {(u2, µFk2
(u2)) : u2 ∈ U2 }

.......

F ln = {(un, µF ln(un)) : un ∈ Un }
Gp1 = {(v1, µGp1(v1)) : v1 ∈ V1 }
Gp2 = {(v2, µGp2(v1)) : v2 ∈ V2 }

.......

Gpq = {(vq, µGpq (vq)) : vq ∈ Vq }

where F j,k,li , i = 1, .., n represents input fuzzy variables and j, k, l are indexes related

to the number of linguistic values (i.e., fuzzy sets) corresponding to each linguistic

20

2.3 Fuzzy Logic System 21

variable. Gph, h = 1, .., q represents output fuzzy variables and p is an index related

to the overall number of rules.

According to this notation, we can represent the fuzzy rule system as follows:

Rule1 : IF u1 is F
1
1 and u2 is F

1
2 and un is F

1
n THEN v1 is G

1
1, v2 is G

1
2, ..., vq is G

1
q

Rule2 : IF u1 is F
2
1 and u2 is F

1
2 and un is F

1
n THEN v1 is G

2
1, v2 is G

2
2, ..., vq is G

2
q

........

........

As can be observed from above notation, the overall number of fuzzy rules depends

on the number of linguistic variables n and their corresponding number of linguistic

values.

• Combine input values with rule antecedents. Recall that we will only consider single-

ton fuzzi�cation in this thesis. Hence, this step is simpli�ed by only performing the

evaluation of each degree of membership, which can be expressed as follows:

µ
F j=1

1
(u1), µ

F j=2
1

(u1), µ
F j=3

1
(u1),

µFk=1
2

(u2), µFk=2
2

(u2), µFk=3
2

(u2),

......

......

µF l=1
n

(un), µF l=2
n

(un), µF l=3
n

(un),

• Compute the activation level of each rule. In this case, it is necessary to evaluate the

expression of each rule. The class of fuzzy operators used for this purpose is called

t-norm operator 2. In this thesis, we will only consider conjunction connectives with

the AND operator. The two most frequently used t-norm operators are:

Rulei : µi(uj) = Πk
j=1 µF ij (uj)

Rulei : µi(uj) = min(µF ij (uj)), for j = 1...k
(2.8)

the former expression is an algebraic product, whereas the latter shows the min op-

erator that Mamdani used in his �rst fuzzy control [28]. k indicates the number of

terms of each rule antecedent. In this thesis, we will employ the �rst expression in

2Triangular norm (t-norm) and triangular conorm (t-conorm) are used to model the logical connec-

tives: conjunction (AND) and disjunction (OR). In the case of the OR operator, we have two common

implementation methods: max operator and the algebraic sum method (see [23])

21

22 Fuzzy Systems Chapter 2

2.8 in order to obtain the activation level of each rule, because it is pointed out by

some authors that it can represent more precisely the results of a conjunctive associa-

tion due to the product operation of all membership values instead of not taking into

consideration intermediate values as it occurs with the min operator.

• Perform the implication procedure. In this case, we need to combine the strength

of each rule and the corresponding consequent. The consequent is adjusted by using

the same t-norm operation described above whose result is an implied fuzzy set Ĝih

expressed by a membership function as follows:

Rulei : Ĝih(vh) = µ
Ĝih

(vh) = µi(uj) ∗ µGih(vh) (2.9)

where uj , j = 1, 2, ..., represents the set of input variables in the antecedent part;

vh, h = 1, 2, ..., represents the set of output variables in the consequent part; Gih

represents the output fuzzy set related to the h output variable in rule number i; and

µi(uj) is the activation level of rule i obtained in the previous step.

• Aggregate all output implied fuzzy sets. All of the implied fuzzy sets obtained in the

previous step (one for each rule) are combined together to form a single fuzzy set for

each output variable. This aggregation process is performed typically using t-conorm

operations [23]. In this thesis, we will employ the max operation for this t-conorm

operation. Thus, we can summarize this process as follows:

Ĝh(vh) =
t⊎
i=1

Ĝih(vh) (2.10)

where t is the total number of rules. Using the max composition, the
⊎

operator

means that the aggregated output fuzzy set is obtained by taking the maximum value

on a point basis over all Ĝih(vh), for i = 1, .., t.

2.3.4 Defuzzi�cation

Defuzzi�cation is the last step in a FLS. Actually, it is an optional procedure, being applied

when it is necessary to obtain a crisp value from the aggregated implied output fuzzy set

of the previous step. Indeed, when linguistic results expressed by the aggregated output

fuzzy sets are enough, there is no reason for any defuzzi�cation. Several applications in

the real world need this conversion in order to use a crisp value as an input for a system

because they can not deal with imprecision. For example, this is the classical case of

22

2.3 Fuzzy Logic System 23

fuzzy controllers [20, 21, 29, 30]. In such systems, a crisp value that represents one control

information (e.g., potential di�erence and electrical current values, movement angle values,

etc..) is employed to control some device or system.

Many defuzzi�ers have been proposed in the literature, but there are no scienti�c bases

for any of them. Consequently, defuzzi�cation is an art rather than a science [26]. We can

specify this procedure as follows:

vcrisph = DefuzzificationMethod(Ĝh(vh)) (2.11)

where vcrisph is the crisp value obtained from the defuzzi�cation of the aggregated implied

output fuzzy set Ĝh(vh) according to a selected method. In engineering applications, one

criterion for the choice of a defuzzi�er is computational simplicity. This criterion has led to

the following candidates for defuzzi�ers [26]:

1. Maximum Defuzzi�er

2. Mean of Maxima Defuzzi�er

3. Centroid Defuzzi�er

4. Center of Area

In [22], there is a study about defuzzi�cation methods (also including those above). The

authors propose criteria and classi�cation in order to provide a basis for an evaluation of

defuzzi�cation methods. The methods are classi�ed into three categories: Maxima methods

and derivatives, Distribution methods and derivatives and Area methods. In the following,

we present a summary of the main defuzzi�cation methods 3 based on this work (Refer

to [22] for a detailed discussion about this study).

2.3.4.1 Maxima methods and derivatives

• Random choice of maxima (RCOM): A random experiment with probabilities is per-

formed in order to select one element x ∈ core(Ĝh(vh)). It is assumed that there is a

�nite number of core elements and all of them have the same probability of occurring.

• First of maxima and last of maxima (FOM, LOM):

vcrisph = FOM(Ĝh(vh)) = max(core(Ĝh(vh)))

vcrisph = LOM(Ĝh(vh)) = min(core(Ĝh(vh)))
(2.12)

3Also, it is been considered only the solution for discrete form. For the continuous case, the integral

operator should be employed

23

24 Fuzzy Systems Chapter 2

• Middle of maxima (MOM): Assuming that N represents the total number of elements

of core(Ĝh(vh)), and Ci, i = 1, ..., N , is an array of these elements, we can de�ne:

vcrisph = MOM(Ĝh(vh)) = Ci=N+1
2
, for an oddN

vcrisph = MOM(Ĝh(vh)) = Ci=N
2
or Ci=N

2
+1, for an evenN

(2.13)

in the case of an even N , the choice of one of the cited forms is an implementation

option.

2.3.4.2 Distribution methods and derivatives

• Center of gravity (COG): This is the most common defuzzi�cation method. In general,

it computes the center of gravity of the area under the membership function:

vcrisph = COG(Ĝh(vh)) =

vmaxh∑
x=vminh

Ĝh(x) . x

vmaxh∑
x=vminh

Ĝh(x)

(2.14)

• Mean of maxima (MeOM): It is the mean of all elements of the core. Assuming that

N represents the total number of elements of the core:

vcrisph = MeOM(Ĝh(vh)) =

∑
x∈ core(Ĝh(vh))

x

N
(2.15)

• Basic defuzzi�cation distributions (BADD): In [31], the authors describe a general

defuzzi�cation process in which there is a transformation process based on probabil-

ity distributions for the determination of the defuzzi�ed output value. In fact, this

method provides a conversion of fuzzy sets into probability distributions for obtaining

the output crisp value. They show that the commonly used methods Center of Area

(COA) and Mean of Maxima (MeOM) are only special cases of this more general

method. It is expressed as follows:

vcrisph = BADD(Ĝh(vh)) =

vmaxh∑
x=vminh

x . (Ĝh(x))α

vmaxh∑
x=vminh

(Ĝh(x))α
(2.16)

24

2.4 Example: Building a FLS for the perceived quality of speech 25

where α is a con�dence parameter. For α = 1, we have the COA method; for α = ∞, we

have the MeOM method; and for α = 0, we have a simple mean of the support(Ĝh(vh)).

2.3.4.3 Area method

• Center of area (COA): In the COA approach, the center of gravity of the overall

implied output fuzzy set, Ĝh(vh), is obtained by an approximation, taking into account

the center of gravity, ci, of the implied output fuzzy set of each rule i, Ĝih(vh), for i =

1, ..., t, where t is the total number of fuzzy rules (see expressions 2.9 and 2.10),

with mass equivalent to the degree of membership at that point. h, as noted before,

represents one output variable:

vcrisph = COA(Ĝh(vh)) =

t∑
i=1

ci . Ĝ
i
h(ci)

t∑
i=1

Ĝih(ci)

(2.17)

2.4 Example: Building a FLS for the perceived quality of

speech

In order to illustrate the use of Fuzzy Logic Systems and the main concepts discussed so

far, we present an example in this section. For clarity, we show a simple scenario only

considering two input variables and one output variable. Figure 2.6 depicts a FLS for a

model of the perceived quality of speech with two input linguistic variables: end-to-end one-

way delay, d, and interactivity level, α. The former was proposed according to information

available in the ITU-T recommendation G.114 4, while the latter we are hypothetically

de�ning, as well as the output variable q.

According to our proposed scenario, the FLS has to output a crisp value of the perceived

quality of speech, qcrisp, based on two input crisp values, dcrisp and αcrisp. In this context,

besides the delay value, we are supposing that it is necessary to take into account the inter-

activity level of an application in order to classify the quality of speech in communication

networks. Thus, both crisp values will be combined through fuzzy inference in order to

output a supposed grade for quality of speech on a scale from 0 to 8. All variables have

continuous spaces. All point values, grade scales and shapes of membership functions were

4as presented in section 2.2.1

25

26 Fuzzy Systems Chapter 2

1

delay (ms)

μ(d)

 0 150 275 400 500

 low average high

1
 low average high

d

μ(α)

interactivity level 0 1 2 2.5 3 4 5
α

1

Input variable 1

 B1 B2 B3 T1 T2 T3 G1 G2 G3

0 1 2 3 4 5 6 7 8
q

μ(q)

Output variable

Input variable 2

FLS

perceived quality
of speech

q
crisp

d
crisp

α
crisp

Figure 2.6: Example of a FLS for the perceived quality of speech

arbitrarily chosen except, as mentioned before, for the case of the variable d. It is interesting

to note the shapes of the output membership functions; they were modeled using singletons.

There are three groups of linguistic values for the linguistic variable q: Bad, Tolerable and

Good, in which internally they are divided into three grades. For example, for Bad we have

three linguistic values: {B1, B2, B3}. For q, B1 denotes the worst value, whereas G3 is

the best in terms of quality of speech. For α, 0 denotes the lowest value, whereas 5 is the

highest in terms of interactivity. Table 2.2 presents a summary of the FLS in Figure 2.6.

For the inference system, the fuzzy rule set will have nine rules due to the number

of linguistic terms and variables. The fuzzy rules are of Mamdani type considering the

consequent part as singletons. However, we can also have a Zero Order Takagi-Sugeno type

since they have constant values in the consequent part.

Table 2.3 summarizes the 9 rules. The singleton values were assigned to each rule in

a subjective way by inferring a probable behavior of the system. For instance, lower delay

values provide the best results (i.e., good group) but the perceived quality may be worse

26

2.4 Example: Building a FLS for the perceived quality of speech 27

Table 2.2: Summary of the FLS in Figure 2.6

Variable Type Linguistic Terms Universe of Discourse Description

d input linguistic variable {low, average, high} [0, 500] end-to-end one-way delay,

according to the ITU-T

recommendation G.114

α input linguistic variable {low, average, high} [0, 5] grade of a network appli-

cation in terms of interac-

tivity level

q output linguistic variable {B1, B2, B3, T1, T2, T3, G1, G2, G3} [0, 8] grade given by a user in

terms of perceived quality

of speech

Table 2.3: Fuzzy Rules of the FLS in Figure 2.6

Linguistic Terms low d average d high d

low α G3 T3 B3

average α G2 T2 B2

high α G1 T1 B1

for higher interactivity levels. For this reason, a (low d, low α) pair has a better grade (i.e.,

G3) than a (low d, high α) pair (i.e, G1).

A rule in the table is read according to expression 2.6, which was already de�ned. For

example, the �rst three rules are written as follows:

Rule1 : IF d is low and α is low THEN q is G3

Rule2 : IF d is average and α is low THEN q is T3

Rule3 : IF d is high and α is low THEN q is B3

Considering the COA defuzzi�cation method de�ned in expression 2.17, Figure 2.7

illustrates the behavior of the perceived quality of speech according to the variation of the

end-to-end one-way delay and the interactivity level, i.e., qcrisp = FLS(dcrisp, αcrisp). As

expected, higher interactivity levels and delay values have lower quality levels. On the

contrary, for lower interactivity levels and delay values we have higher quality grades. Also,

according to the proposed modeling of the input membership functions, one can observe that

the end-to-end one-way delay has a higher in�uence on the perceived quality of speech than

the interactivity level. It is important to mention that the design of membership functions

27

28 Fuzzy Systems Chapter 2

is a crucial issue for a FLS. They must represent the actual behavior of the system as

accurate as possible, capturing any non-linearity. As we will see in chapters 4 and 5, we

will employ optimization techniques and simulation in order to build such models for the

proposed method of this thesis.

Perceived Quality of Speech HqcrispL

0

200

400

delay HdcrispL HmsL

0

2

4

interactivity level HΑcrispL
0

2

4

6

8

Figure 2.7: Behavior of the perceived quality of speech: qcrisp = FLS(dcrisp, αcrisp)

2.5 Conclusion

In this chapter, we presented the main concepts related to fuzzy systems. We showed they

are based on operations that involve linguistic variables, linguistic values and sets. Fuzzy

sets can be viewed as functions (i.e., membership functions) that express a "conforming

level" of one object into a speci�c pre-de�ned group. This "conforming level" permits the

speci�cation of intermediate values within interval [0, 1] instead of single values of member-

ship (0 or 1) as in the case of the conventional set theory (i.e., crisp values). We showed that

Fuzzy Logic Systems perform three main steps based on these fundamental elements in or-

der to output a result: Fuzzi�cation, Inference and Defuzzi�cation. Fuzzi�cation converts

one crisp value into one fuzzy value. The inference process combines input fuzzy values

through fuzzy rules sets in order to output a fuzzy value as a result. As could be seen,

28

2.5 Conclusion 29

Mamdani and Takagi-Sugeno types are the most usual fuzzy rules types, which di�er with

respect to the consequent part of rules. Depending on the system that is being considered,

it can be necessary to convert this fuzzy value into a crisp one. This is accomplished with

the defuzzi�cation process. Several defuzzi�cation methods were presented, however the

two most common are the COG (Center of Gravity) and COA (Center of Area) methods.

We also showed that de�ning membership functions is a challenging task which involves

the speci�cation of their shapes, range values and number of fuzzy sets. An inaccurate de�-

nition may lead to wrong output results. In this case, such fuzzy model could not represent

the real behavior of a system. In Chapter 5, we will employ optimization techniques along

with simulations in order to perform this task. Finally, we presented an example of a model

based on Fuzzy Logic Systems with two input variables and one output variable to illustrate

an application scenario where we could see that it is a good approximation for non-linear

mapping between variables.

29

30 Fuzzy Systems Chapter 2

30

Chapter 3

Tra�c Models and Simulation

Environment

3.1 Introduction

A
smentioned previously, the proposed method in this research work combines non-linear

programming and simulation to build a fuzzy logic based model of a network node.

Simulations are used to provide input data for the optimization problem. Simulation plays

a key role in this method, because it is assumed that it provides a good estimation of the

actual network node behavior under the modeled tra�c conditions. The simulation model

includes a few network node mechanisms (e.g., leaky bucket metering and queue scheduling,

and the model of the tra�c o�ered to the network node). As these mechanisms have well

known deterministic algorithms, tra�c modeling becomes a critical issue [32]. As we will

see in Chapter 5, the considered network node handles individual �ows (e.g., VoIP tra�c)

and general data tra�c handled by priority scheduling mechanisms with several queues.

Mathematical models and the related optimization theory is a fundamental part of

several experimental techniques. Depending on the system under investigation, it is a

hard task to propose an analytical model that represents correctly such system. Using

simulations, researchers look for knowing the behavior of a speci�c system and try to validate

those models. The unknown parameter values of such system can be identi�ed by solving

an optimization problem in order to �nd the optimal values for use in this context. In this

thesis, we employ optimization techniques along with simulations in order to obtain the

optimal parameters of a fuzzy logic system for modeling queue behavior.

31

32 Tra�c Models and Simulation Environment Chapter 3

In the traditional network tra�c modeling, packet and connection arrivals were of-

ten assumed to be Poisson processes because such processes are mathematically tractable.

Moreover, due to scalability reasons, most of the developed simulation modeling is target

to aggregate tra�c. However, in the current business networking scenario, where service

providers intend to provide a larger share of resources, there is an increase in dependency

on understanding whether network behavior is meeting end-user Quality of Service (QoS)

goals, driving the need to detect, monitor and control individual application �ows as they

traverse the network. The major challenge is that the provision of services that complies

with the QoS constraints while maximizing network resources. Though we can view QoS

at the application or packet level, we focus on the network node performance, and QoS is

de�ned in terms of queuing delay and packet loss probability.

In the case of VoIP tra�c, it is commonly accepted that it can be adequately modeled

as a two state Markov source [33], but the simulation of individual application �ows poses

speci�c issues. Also, several studies have shown that for local area (LAN) and wide area

network data tra�c (WAN), the distribution of packet inter-arrivals clearly di�ers from

exponential [34, 35]. These studies convincingly argue that LAN and WAN data tra�c is

much better modeled using statistically self-similar processes [36].

In this Chapter, we present the tra�c models and related issues with respect to syn-

thetic tra�c generation and performance measurement, which are the basis for the problem

formulation in Chapter 5. Our simulation approach for self-similar tra�c and per-�ow

modeling (VoIP tra�c) is also discussed. Then, we describe the simulation environment

developed for the method evaluation.

3.2 Self-Similar Tra�c Modeling

Presently, the self-similar approach is widely used to characterize many di�erent types of

aggregated tra�c. Self-similar tra�c is modeled as a long range dependent process (LRD),

as it can present longer idle and burst periods than traditional tra�c models, such as those

based upon Poisson arrivals. For example, sources of tra�c modeled as Poisson arrivals

presents a short range dependency (SRD) property, and tend to be smoothed when observed

over large time scales. If we calculate the average of the occupation rate of a link subjected

to a Poisson tra�c using time steps, the result tends to be more homogeneous as the size

of the time steps increases. As pointed by [36], this smoothing property is not so intense in

real tra�c. Assuming a SRD behavior for a tra�c that presents self-similar properties can

32

3.2 Self-Similar Tra�c Modeling 33

considerably reduce the accuracy of the queue models as the longer burst periods can lead

to increased delay and drop levels.

A LRD process happens when samples of an event observed in distinct time instants are

strongly correlated. In this case, its autocovariance function, say r(k), decays very slowly

along the time in terms of a lag k which makes impossible to calculate its sum. Hence,

according to [37], self-similar processes have LRD which can be de�ned as follows:

∞∑
k=0

r(k) = ∞ (3.1)

also, a process has LRD if there is a constant Cr > 0 such as its autocovariance function

can be expressed as the following equation:

r(k) ∼ Cr . k
−α, α ∈ (0, 1) (3.2)

where, α is related to the Hurst parameter H, α = 2−2H. LRD processes have 1
2 < H < 1,

whereas processes have the SRD property for 0 < H < 1
2 .

In this research, the data tra�c follows the self-similar model presented by Norros [38],

the fractional Brownian motion (fBm). It is important to note that the proposed method

presented in Chapter 5 is generic and is not dependent on the assumed tra�c model. In

fact, we can �nd other models for self-similar tra�c for validating our method, but we have

used such model because of previous works developed so far. It is possible to include, in a

future work, other self-similar tra�c models.

According to this model, the accumulated aggregate arrival process is represented as

follows:

At = m. t +
√
am .Zt (3.3)

where Zt is a normalized fractional Brownian motion (fBm), m is the mean input rate, a is

a variance coe�cient and H is the Hurst parameter of Zt. The parameters a and H control

the level of burstiness of the tra�c. The higher these parameters, the worst-behaved the

tra�c is. The a parameter controls the magnitude of �uctuations around the mean rate.

The H de�nes how sustained the bursts and idle periods can be. Usually the a and H are

estimated based upon the observation of real tra�c. In this thesis we have used synthetic

tra�c, for which the variable Zt was implemented by using the Hosking method [39].

FBM has an incremental process known as fractional Gaussian noise (FGN), which ex-

hibits LRD with Hurst parameter H. In order to validate our implementation for generating

33

34 Tra�c Models and Simulation Environment Chapter 3

FGN series to compute Zt, consider the two FGN samples for a 10 second simulation and

H = 0.85 depicted in Figure 3.1, where each point t corresponds to a 10ms interval.

Figure 3.1: FGN process samples

The �rst property to be investigated is the slow decay of the autocovariance function.

In this case, we can compute the autocorrelation function [40] of the FGN series. Thus, let

X = {Xt, t = 1, 2, ..., N} be the FGN process with mean X, the autocorrelation function

can be expressed as follows:

rk =

N−k∑
i=1

(Xi −X).(Xi+k −X)

N∑
i=1

(Xi −X)2
(3.4)

34

3.2 Self-Similar Tra�c Modeling 35

where, k is the lag, for k = 0, 1, 2, .., N − 1. Figure 3.2 shows the plot of rk for �ve samples

including those illustrated in Figure 3.1. As can be observed in this Figure, we clearly see

the slow decay of the statistic rk for all samples which indicates that the FGN series present

the LRD property.

Figure 3.2: Autocorrelation function

Another common method employed to identify self-similarity is the R/S statistic [41]. It

is a well-known technique for estimating the Hurst parameter. In this case, considering that

our synthetic tra�c was generated withH = 0.85, it is expected that we can estimate suchH

value by applying the R/S method on the FGN series. Again, let X = {Xt, t = 1, 2, ..., N}
be the FGN process. Given a time span n, the average Xn over n is expressed as follows:

Xn =

n∑
t=1

Xt

n
(3.5)

The accumulated process, called Ant , of Xt over time span n is de�ned as:

Ant =
n∑
t=1

(Xt −Xn) (3.6)

The range of the accumulated process, denoted by Rn, is de�ned as follows:

Rn = max(Ant)−min(Ant) (3.7)

35

36 Tra�c Models and Simulation Environment Chapter 3

where 0 ≤ t ≤ n. The Sn statistic represents the standard deviation:

Sn =

√√√√√√
n∑
t=1

(Xt −Xn)2

n
(3.8)

According to this method, the paramater H can be estimated by plotting log10(n) and

log10(R/S) for several values of n. Using data �tting methods, for example, the least

squares, we can obtain the estimation of H which is the slope of the resulting straight line.

Figure 3.3 shows the R/S statistic for all �ve samples. Each point in the Figure represents

one R/S value for one of the �ve samples. Considering all points, we apply the least squares

method using a equation with format a.log10(n) + b, which gives us a straight line whose

slope is a = 0.84486, as indicated in the Figure. This value con�rms the H = 0.85 used in

the FGN series generation.

slope=0.84486

Figure 3.3: R/S statistic

The Aggregated Variance Method [42] can also be employed to estimate the parameter

H. According to this method, the FGN series must be divided into blocks of length n.

Then, we calculate the variance of this sample. For distinct values of n we repeat this

process and plot the variance of each aggregated series versus the value of n. Using again

a data �tting method, the slope of the straight line can be used to obtain H. Thus, let

X = {Xt, t = 1, 2, ..., N} be the FGN process. The average ofX over each block is expressed

36

3.2 Self-Similar Tra�c Modeling 37

as follows:

X
n
k =

k.n∑
t=(k−1).n+1

Xt

n
(3.9)

where, k = 1, 2, ..., Nn . The sample variance is obtained as follows:

σ2
n =

N/n∑
k=1

(Xn
k −X)2

N/n
(3.10)

Figure 3.4 depicts the variance time plot for all �ve samples. Again, the paramater

H can be estimated by plotting log10(n) and log10(σ2
n) for several values of n. Using the

least squares �tting we can obtain the estimation of H which is given by the expression

slope = (2H − 2). Thus, considering that the slope of the straight line of the Figure is

−0.329181 as indicated, we have H = 0.8354095 which is approximately the original value

employed in the synthetic tra�c generation.

slope=-0.329181

Figure 3.4: Variance Time Plot

In practice, the tra�c speci�cation is not supplied in terms of the fBm parameters.

Instead, a common approach is to describe the tra�c in terms of token-bucket �lter pa-

rameters, which are employed as tra�c conditioners at the edge of a Di�Serv domain. A

token-bucket mechanism is usually described in terms of a bucket rate (that determines the

37

38 Tra�c Models and Simulation Environment Chapter 3

sustained average of the transmission rate), a bucket size (that determines the maximum

burst size in bytes) and, in some cases, a peak rate (that determines the maximum rate

at which a burst can be sent). As the peak rate is usually the bandwidth of the link, it

is commonly omitted. The token-bucket model allows for representation of a large variety

of source types. Larger bucket sizes correspond to bad-behaved tra�c, such as compressed

video or data. Small bucket sizes de�ne a tra�c that approaches a CBR (constant bit rate)

behavior.

3.3 VoIP Tra�c Model

Tra�c models typically apply only to the performance of the aggregated tra�c. However,

some authors have pointed out that under certain conditions the performance experienced by

individual �ows can signi�cantly diverge with respect to the performance of the aggregated

tra�c [9, 10]. Consequently, even when the aggregated tra�c is properly dimensioned, the

individual �ows may not satisfy QoS requirements such as delay and packet loss. In fact,

it has been shown that the e�ect of considering �ows with distinct life cycles introduces

signi�cant deviations between the individual �ows percentile performance.

An individual VoIP �ow corresponds to a well-behaved tra�c, which could be character-

ized by packets of �xed size transmitted at a constant rate. The transmission rate depends

on the codec used. If VAD (Voice Activity Detection or voice suppression) is used, VoIP

packets are generated only when voice is detected. VoIP with VAD is usually modeled as an

ON-OFF source. Many VoIP tra�c modeling works assume that both ON-OFF intervals

are exponentially distributed [33].

While modeling VoIP as an aggregate of ON-OFF sources is widely studied subject, the

per-�ow problem is not extensively addressed in the literature. Most attempts of deriving

a mathematical model for the per-�ow behavior assume that the life-cycle of all VoIP �ows

is identical, i.e., all �ows start in the beginning of the evaluation and terminates simulta-

neously. In real world, however, the life cycle of VoIP �ows is variable. This variability can

be modeled by assuming two additional parameters: TBF (time between �ows) and AFD

(average �ow duration) [43, 33]. The AFD parameter allows us to capture the impact of

the load variation with respect to the performance level of a percentile of packets within

each VoIP �ow on a long-term basis, providing a better representation of the real scenario.

Again, both intervals, AFD and TBF, are usually assumed to be exponentially distributed.

Figure 3.5 illustrates the VoIP modeling.

38

3.3 VoIP Tra�c Model 39

exp(AFD)

t

exp(T): random variable
exponentially ditributed with
average Texp(ton) exp(toff) exp(ton)

Flow 1

exp(AFD)

exp(ton) exp(toff) exp(ton)

Flow 2 exp(TBF)

Figure 3.5: VoIP Tra�c Modeling

Because the exponentially distributed parameters de�ne variable tra�c load conditions,

we have assumed some default values for the average of these parameters. As suggested

in [43], the AFD value is typically assumed to be between [180 s , 210 s] in most business

environments. We have assumed the value of 210 s for the AFD parameter. The exponential

averages were de�ned as 0.4 s for the ton period and 0.6 s for the toff period. Again, it is

iimportant to mention that the proposed method in this research work is not dependent

on the assumed tra�c modeling approach for its validation. Our proposal is, given any

tra�c model which can be simulated, our method allows us to build a (fuzzy) mathematical

model in terms of performance metrics. The assumed VoIP individual �ow model employs

a strategy based on two exponential distributed variables that regulates life cycle of �ows,

which permits a representation of more realistic scenarios. Also, it is possible to include, in

a future work, other tra�c models.

Figure 3.6 shows the results of a simulation that illustrates the e�ects of the combination

of VoIP and self-similar tra�c. In this scenario, the network node has two queues, one for

the aggregated VoIP tra�c (EF queue) and the other for self-similar tra�c (AF queue) using

a priority queuing scheduler. It puts in evidence how the individual �ows performance can

diverge with respect to the aggregate performance. In this simulation, we have a variable

o�ered load of VoIP calls which is limited by an AC mechanism in order to keep a maximum

of 60 simultaneously active VoIP �ows. This number of �ows was chosen intentionally high

in order to illustrate how di�cult it is to predict the behavior of individual �ows by taken

into account only the aggregated tra�c behavior. We have limited the VoIP (EF) queue

size to 50ms, i.e., packets that exceed the 50ms delay are dropped. The AF queue size

was limited to 250ms. The simulation presented in this Figure has considered a link

capacity of only 2 Mbps in order to avoid an excessive number of VoIP �ows in Figure.

39

40 Tra�c Models and Simulation Environment Chapter 3

The m parameter in equation 3.3 was adjusted to represent 50% of the link capacity,

a = 275 kbit.s and H = 0.76 as suggested in [38].

Figure 3.6: Per-�ow variability illustration

The straight line in the superior part of �gure indicates that, approximately, 99% of

the aggregated VoIP packets have satis�ed the delay bounds (i.e., they were not dropped).

However, the per-�ow quantile of packets that satis�ed the delay bounds has signi�cantly

diverged with respect to the aggregate performance (each cross in the �gure represents the

performance of an individual �ow plotted at the instant when the �ow terminates). The

inferior part of the �gure shows the di�erence between the VoIP and self-similar tra�c

pro�les. Initially, the number of active VoIP �ows is less than 60 permitting a higher

occupation rate of the AF tra�c. However, due to the strictly priority queuing, when the

number of active VoIP �ows reaches 60 the occupation rate of the AF tra�c diminishes. As

can be noted, when the o�ered load in terms of VoIP �ows is lower than 60 (e.g., observe

the region between 500s and 600s) there is higher occupation rate of the AF tra�c. Also, it

is possible to see a better performance experienced by VoIP �ows which were active during

this period (see the corresponding superior part of the Figure). It is important to note

that VoIP is not CBR even when the number of active �ows is constant, due to the silence

40

3.4 Simulation Environment 41

suppression e�ect. In this case, providing per-�ow guarantees poses additional di�culties

because it is also necessary to take into account the �uctuations of the �ows' lifecycles in

order to determine the impact of the queue behavior on the performance of the individual

�ows. The proposed method in this thesis permits to create performance models taking

into account QoS metrics established on a per-�ow basis.

3.4 Simulation Environment

In order to carry out the simulations required for the evaluation of the proposed method,

we developed a new simulation environment. Initially, simulations were performed using

the NS-2 [44]. However, the NS-2 was not scalable enough for supporting the most complex

simulation scenarios (usually, hundreds of simulations are required before the FP conver-

gence). The reason is that NS-2 implements the whole IP protocol stack and includes several

events and objects related to each layer of the stack, causing the utilization of many non

necessary resources. In fact, NS-2 o�ers several resource consuming features which are not

required for determining the queue behavior. For example, the use of the NS-2 is advanta-

geous when the tra�c is modeled as a bunch of TCP connections, as it o�ers an accurate

modeling of the TCP state machine. In our approach, however, TCP connections are not

individually modeled, as the self-similar model already captures the e�ect of aggregating

TCP connections under variable congestion situations.

NS-2 and other network simulators use a discrete-event processor as their engine. Re-

searchers have adopted several complementary approaches to improve accuracy, perfor-

mance, or scaling. Some simulators augment event processing with analytic models of

tra�c �ow or queuing behavior for better performance or accuracy [45, 46]. In our method,

high simulation performance is one of the critical requirements, besides modeling �exibility

and adequate programming support. Therefore, a simulation environment was developed

using the Simpatica library [47] and the C language. Simpatica is a discrete-event oriented

library based on the actor-message paradigm [48].

An actor is a self-contained active object that has its own control thread and commu-

nicates with other actors through asynchronous message passing [49]. In addition, an actor

can create other actors, just as an object can create other objects. Every entity of our

simulation implementation, such as the mechanisms of the network node, each VoIP �ow

tra�c source, and the self-similar tra�c source; is implemented as an actor. The network

packets, by the other hand, are implemented as messages exchanged between actors. It

41

42 Tra�c Models and Simulation Environment Chapter 3

is important to mention that we have extensively tested the Simpatica library in order to

assess its accuracy level, by performing many scenarios that have been compared against

the NS-2 simulator, leading to identical results.

The Simpatica library maintains a list of simulation events sorted by schedule time. The

environment also provides a simulation clock and an event scheduler. At a speci�c time t,

the scheduler gets the corresponding events from the list and executes them. The simulation

clock advances only when an actor performs a pause, in one of the following alternatives: (i)

the actor explicitly requests a pause for a speci�c interval; or (ii) the actor implicitly waits

for a speci�c message to come. This is an event-driven approach in the sense it increments

the simulation clock to the next earliest scheduled event.

The event list data structure is critical with respect to simulation performance. During a

simulation, it is the most frequently handled data structure and poor performance here may

cause infeasible simulation times. The event list is implemented by a heap data structure,

as depicted in Figure 3.7. It is a special case of a binary tree, where each event is stored

in one node. Each node can have up to two children, and its event time is smaller than

the event time of its children [50]. The heap can be stored in an array, allowing a faster

way to obtain one node′s parent and children, when compared with the other approaches,

e.g., linked-list data structures. Also, some studies [51, 52] have concluded that for larger

sets, the heap data structure provides better results in respect of performance and storage

economy.

Figure 3.7: Sample heap data structure of the event list

The Simpatica library provides a set of programming primitives, the most signi�cant are

presented in Table 3.1. Considering the primitives presented in this Table, we can summa-

rize the following states for each actor thread: RUNNING, SLEEPING, PASSIVATE_SLEEPING

and MSG_WAIT. Figure 3.8 presents the state diagram for an actor thread. The transi-

tions are represented by arrows and are caused by a primitive invocation, as indicated by

42

3.4 Simulation Environment 43

the corresponding call. Solid arrows with solid lines correspond to primitives invoked by

the current actor, whereas solid arrows with dashed lines to primitives invoked by another

actor. An open arrow represents a state transition due to a time-out event.

Table 3.1: Simpatica Library API

Primitive Description

int task_create(void ∗ taskbody, int stackpages, void ∗ args) Creates a new actor thread. The parameter ∗taskbody points to the program

code of the actor thread. stackpages indicates the number of memory pages

to be allocated to the thread stack and ∗args is an optional parameter used

to pass arguments to the actor thread.

void task_exit() Halts the current actor thread and releases its allocated resources.

void task_sleep(double time) Pauses the current actor thread during time seconds.

void task_passivate() Pauses the current actor thread until it is woken up by another actor thread.

void task_activate(int actor_id, double time) Activates the actor thread identi�ed by actor_id at the speci�ed simulation

time.

void ∗msg_create(short size) Creates a message of size size.

void msg_destroyvoid ∗msg) Destroys the message pointed by ∗msg.

void ∗msg_recv(double time) Causes the current actor thread to wait for a message to come during time

seconds.

void msg_send(void ∗msg, int actor_id) Sends the message pointed by ∗msg to actor thread identi�ed by actor_id.

An actor execution begins in the RUNNING state, after the invocation of task_create()

by another actor. When running, the actor can invoke task_create(), task_activate(),

msg_create(), msg_destroy() and msg_send() without a state change. On the other

hand, the invocation of task_exit(), task_sleep(), task_passivate() and msg_receive()

causes a state change, and the actor thread can loose execution control. The SLEEPING

state is used to model the time spent by an actor in performing some activity. When an actor

thread enters SLEEPING state it is paused and is rescheduled to the current simulation

time plus the value in the primitive argument. The message passing primitives msg_send()

andmsg_recv(), support actors communication. They implement a semi-synchronous com-

munication paradigm, where send is unblocking; and the receiving actor remains blocked in

MSG_WAIT state until the arrival of a message sent by another actor, or the expiration

of the time interval speci�ed in the msg_recv() argument. The task_passivate() prim-

itive allows a not busy actor to release execution control by making a transition to the

PASSIVATE_SLEEPING state. Whenever in this state, the actor shall be woken up by

another actor through the task_activate() primitive. Finally, the task_exit() primitive

43

44 Tra�c Models and Simulation Environment Chapter 3

RUNNING
task_sleep()

SLEEPING

task_create()

PASSIVAT E_SLEEPING

task_passivate()

sleep t ime ends

task_act ivate()

MSG_WAIT

msg_send()msg_recv() recv t ime ends

task_exit()

Figure 3.8: State Diagram for an Actor Thread

halts the current actor and releases the allocated resources.

The simulation environment is responsible for simulation clock and thread scheduling.

Simulation events are created according to primitive invocations. The scheduler gains ex-

ecution control whenever a sate change occurs. It then creates the corresponding event,

advances the simulation clock, and identi�es the thread that is eligible for execution given

it the execution control. Figure 3.9 shows the main modules of the simulator: Traf-

�c generators, the network node, and output link. Tra�c generation includes the VoIP

Flow Controller that instantiates a VoIP Tra�c Generator for each individual �ow and the

Self-Similar Tra�c Generator. As seen, the self-similar tra�c is typically submitted to a

conditioning mechanism, which is implemented by the leaky and token bucket modules.

Each VoIP �ow is simulated by one VoIP Tra�c Generator. The function of the VoIP Flow

Controller is to keep constant (i.e., as speci�ed by the optimization problem) the number

of VoIP Tra�c Generators simultaneously active during the simulation. A unique identi�-

cation number is assigned to each VoIP Tra�c Generator that tags all generated packets,

allowing the analysis of the results on a per-�ow basis. The data tra�c is speci�ed in terms

of an average load which is used to compute the accumulated arrival process, as discussed

in Section 3.2. It is generated by the Self-Similar Tra�c Generator and submitted to a

Leaky/Token Bucket that tags the packets conforming to a committed rate as AF and the

non-conforming packets as DF. Within the network node, VoIP packets are then inserted

44

3.5 Conclusion 45

to the EF queue and self-similar packets to AF or DF queues, according to their tags. The

PRIO Scheduler implements a priority queuing mechanism with three non-preemptive �nite

size queues: EF, AF and DF. In this scheme, a queue is served only when the higher priority

queues have no packets waiting to be served.

The network node elements, the VoIP entities and the self-similar tra�c source are

implemented as actors by using threads, and the packets are implemented as messages ex-

changed between the actors. For example, consider the case of VoIP �ow tra�c generation.

According to the API shown in Table 3.1, during the initialization phase of the simulator,

a task_create() call is edited to start the VoIP Flow Controller. Then, it issues several

task_create() calls in order to instantiate as many VoIP Flow(i) Tra�c Generator as re-

quired by the considered scenario. Each instantiated VoIP Flow(i) sends VoIP packets to

the node entry by using msg_send() according to the codec speci�cation and the VoIP

Tra�c Model discussed in Section 3.3. Appendix A will provide more implementation

details of the aforementioned entities.

PRIO
Scheduler

EF Queue

AF Queue

DF Queue

Network Node

Output
Link

Token Bucket
Module

Leaky Bucket
Module

VoIP Flow(i)
Traffic Generator

Self-Similar Traffic
Generator

VoIP Flow Controller
Voip pkt

Figure 3.9: Main modules of the Simulator

3.5 Conclusion

In this Chapter, we showed the tra�c models that will be employed for synthetic tra�c

generation in simulations for the proposed method validation. Following the classical ap-

proach, a VoIP �ow is modeled as an ON-OFF source, but we considered two additional

parameters, AFD and TBF , which are based on two exponential variables that regulate the

life-cycle of �ows, the �ow duration and the inter-arrival time of �ows, respectively, in order

45

46 Tra�c Models and Simulation Environment Chapter 3

to have more realistic simulation scenarios. On the other hand, for data tra�c simulation

we use the self-similar tra�c model based on the accumulated aggregated process given by

the fractional brownian motion as de�ned by Norros in his seminal paper. For validating

the synthetic self-similar tra�c of the simulator we employed several well known tests to

verify the fundamental properties of such tra�c type. The Autocorrelation function, the

R/S statistic and the Variance Time plot con�rmed the LRD property for the generated

FGN series samples. Also, we presented the simulation environment developed in this re-

search work which is based on the actor messages paradigm and was implemented in C

language using the Simpatica API. The main primitives and the state diagram of a thread

entity were discussed. Finally, the main modules of the network model for simulation were

shown.

46

Chapter 4

Optimization Method

4.1 Introduction

C
hapter 2 presented Fuzzy Logic Systems and showed that they can be used to create

complex models due to the possibility of capturing the behavior of non-linear uncertain

systems. In this case, a FLS is a good choice to perform the modeling proposed by our

method, since the uncertainties and unknown parameters are evident, such as the impact

in performance metrics when one considers, for example, scenarios with multiple priority

queues, non-exponential service times and long term correlated tra�c. A FLS is very

dependent on the quality of its membership functions. Their de�nition (i.e., shapes, range

values, etc..) must precisely represent the system behavior which sometimes is a di�cult

task to perform. In this context, several authors [23, 18, 21, 20] have employed optimization

techniques in order to adjust FLS parameters according to the actual system behavior. For

instance, input and output membership functions could have their coordinates de�ned to

better represent the system.

In this Chapter, we �rst review important concepts and de�nitions related to optimiza-

tion theory. Then, we present the optimization method employed in this research work.

Finally, we provide an example which shows the design of a parameter based admission

control mechanism using a training strategy based on simulations and the optimization

method discussed.

47

48 Optimization Method Chapter 4

4.2 Formulation of an Optimization Problem

Several practical problems involving decision making (or system design, analysis, and opera-

tion) can be cast in the form of a mathematical optimization problem, or some variation such

as a multicriterion optimization problem [53]. Optimization is used for problems arising in

network design and operation, scheduling, and many other areas. This use is motivated by

the fact that analytical models sometimes can not formulate the wide range of procedures

that optimization techniques can. In this case, Shortest Paths [54], Maximum Flow [55]

and Assignment Problem [56] are examples of problems where optimization techniques have

been widely adopted.

Optimization problems can be widely viewed as a cost function that maps the elements

of a constraint set X. For each element of X, named x, there is a cost function f(x) that

speci�es a value which indicates the undesirability level of choosing such a decision x. The

optimal decision, x∗ is such that [57]:

f(x∗) ≤ f(x),∀ x ∈ X (4.1)

Based on this strategy, optimization techniques can be useful if there is an objective test

involving two di�erent results. As mentioned before, these results are obtained by de�ning

previously a cost function. Depending on the optimizing problem, one can de�ne the cri-

terion for obtaining the optimal values which can be based on minimizing or maximizing

the cost function. The former is the most common approach and will be used in this work.

Thus, a mathematical optimization problem, or just optimization problem, has the form:

minimize f(x) subject to gi(x) ≤ bi, i = 1, ...,m (4.2)

As cited in [53], x is a vector x = (x1, ..., xn) that represents an optimization variable

of a problem. The function f : <n → < is the objective function, the functions gi : <n →
<, i = 1, ...,m, are the (inequality) constraint functions, and the constants b1, ..., bm are

the limits, or bounds, for the constraints. A vector x∗ is called optimal, or a solution of

the problem 4.2, if it has the smallest objective value among all vectors that satisfy the

constraints: For any z with g1(z) ≤ b1, ..., gm(z) ≤ bm, we have f(z) ≥ f(x∗).

The problem stated in expression 4.2 is of the class known as constrained optimization,

i.e., the optimal solution x∗ is valid only if the constraint functions are matched. Conversely,

there are optimization problems which there are no constraints, named unconstrained

optimization. In this case, the problem 4.2 can be rewritten as [57]:

48

4.2 Formulation of an Optimization Problem 49

minimize f(x) subject to x ∈ <n (4.3)

4.2.1 Obtaining Optimal Values

For the optimization problems presented in expressions 4.2 and 4.3 one issue must be

investigated: How can one guarantee that the optimal solution x∗ is really the unique as

stated in condition 4.1?. This issue can be viewed as present, or not, of local minima, as

seen in Figure 4.1. In this Figure, the points where x = L are examples of local minima

while the point x = G is one example of a global minimum. Using condition 4.1, we can

say that a point x∗ is a local minimum of the function f(x) if there exists some ∈ > 0 such

that f(x∗) ≤ f(x) ∀ x with |x− x∗| < ε. On the other side, a global minimum is a point

x∗ for which f(x∗) ≤ f(x) ∀ x. Also, any global minimum is a local minimum, but a

local minimum is not necessarily a global minimum. In some optimization problems, there

is no local minima, i.e., every local minimum is also global. In this case, a cost function

that matches this condition has the property of convexity [58].

f(x)

L
L

L

x

G

Figure 4.1: Example: Local and Global minima

4.2.2 Classi�cation of Optimization Problems

Strategies employed in the solution of optimization problems are very dependent on the

type of functions in expressions 4.2 and 4.3 for constrained and unconstrained optimization

problems, respectively. In this case, optimization problems are classi�ed in two classes:

• Linear Programming

49

50 Optimization Method Chapter 4

• Non-Linear Programming

where, for the �rst class, all functions (objective and constraints) are linear functions,

whereas they belong to the second class in other cases. As we will see in Chapter 5, the

optimization problem considered in this thesis is suitable for the Non-Linear Programming

class because of the complex modeling proposed and the non-linear behavior of performance

metrics when one considers as input several distinct non-correlated parameters.

4.2.3 Non-Linear Programming (NLP)

In the literature, we can �nd several methods for the solution of Non-Linear optimization

problems. Basically, these methods are based on three main concepts [59, 60]:

1. Linearization Methods

This solution is based on an adaptation of a NLP by using linear techniques. In fact,

a starting point is selected, and the non-linear model and constraints are linearized

about this point to obtain a linear problem which can be solved by linear optimization

methods (e.g., with the Simplex Method [61]). The point from the linear programming

solution can be used as a new point to linearize the non-linear problem, and this can

be continued until a criterion is met [62]. Such linearization methods present some

problems, mainly errors generated by �rst order approximators when the objective

and constraint functions are strongly non-linear, which may compromise convergence

properties.

2. Penalization Methods

In this case, the idea is to convert a NLP problem with constraints into a set of NLP

problems without constraints by changing the objective function with the add of penal-

ization terms. In order to illustrate such method, consider the d'Uzawa method [61].

According to it, the original optimization problem P is replaced by a set of dual

problems {P 0
d , P

1
d ,, P

p
d } with no constraints. Each P pd is formulated with the sub-

stitution of the original objective function f by a dual objective function fd. fd is

composed by the original function f along with terms of the constraints gi (see ex-

pression 4.2) and Lagrange multipliers λi. Thus, the pth dual problem P pd can be

written as follows, considering we want to �nd the optimal solution xpd:

xpd ∈ <, fd(x
p
d) = infx∈<n {fd(x)} (4.4)

50

4.2 Formulation of an Optimization Problem 51

for,

fd(x
p
d) = f(xpd) +

nc−1∑
k=0

λpk . gk(x
p
d) (4.5)

where nc is the number of constraints of the NLP problem. In this expression, La-

grange multipliers are iteratively computed with the gradient method [61] being ob-

tained according to:

λpk = max{λp−1
k + α.g(x(p−1)

d)}, k = 0, ..., nc− 1 (4.6)

where α is a constant value that is arbitrary chosen. The d'Uzawa method consists of

computing iteratively equations 4.6 and 4.4. One di�culty observed in this method

is that it requires the solution of a high number of NLP problems without constraints

which normally tends to lead to slower procedures, mainly when there exists a high

dimension vector as input of the optimization problem.

3. Projection Methods

These methods are of the gradient class. They convert infeasible solutions generated

during the optimization process to a feasible one. Based on the projection concept,

given one vector b ∈ < it is necessary to �nd the vector xp close to b that belongs to

the space of admissible solutions of X. xp is known as the projection of b, and can be

expressed as follows [61]:

xp ∈ X and ‖xp − b‖ = infx∈X‖x− b‖ (4.7)

In this case, we can de�ne a projection operator P : <n ⇒ X that determines xp

using b, xp = P{b}. Finally, we can express the utilization of the operator as follows:

xk+1 = P{xk − α .∇ f(xk)}, k ≥ 0 (4.8)

where x0 is an arbitrary chosen value; ∇ f(xk) is the gradient of function f at point

xk; and α is a parameter indicating the searching step gain.

In Chapter 5, the formulation of the NLP optimization problem will be stated as an

unconstrained problem. However, our method employs the penalization concept discussed

above in order to penalize intermediate infeasible solutions, allowing the optimization pro-

cess to search optimal solutions in the correct search direction.

51

52 Optimization Method Chapter 4

4.3 The Flexible Polyhedron (FP) Optimization Method

Optimization methods can be broadly classi�ed into Zero-Order, First-Order and Second-

Order categories. One advantage of Zero-Order methods is that they do not require any

derivatives of the objective function. Because of that, they also named non − derivative
methods. On the contrary, the last two are based on derivatives and are also classi�ed

as derivative methods. There are several methods proposed in these categories. The

Complex method presented in [63] and the Genetic algorithms in [64] are examples of

non−derivativemethods. The Newton's Method [57] and the Gauss-Newton algorithm [65]

are examples of derivative methods. In this thesis, the optimization processes are based

on non-derivative methods. Indeed, the chosen method is based on the principle of �exible

polyhedron search [66]. It is a direct search method for solving non-linear programming

problems without constraints. The motivation for using this method is twofold: First, it does

not need a derivative of the objective functions. Second, it can handle several parameters

in a very �exible manner. As will be shown in next Chapter, using such non− derivative
method, objective functions can be easily used as results of complex computer simulations.

One drawback of using non − derivative methods is that they typically require too much

computations due to the necessity of evaluation of the objective function. However, their

simplicity and �exibility for reaching the proposed solution of this thesis are far more

signi�cant than this problem.

4.3.1 Method Description

As mentioned before, FP is a direct search method of the non-linear programming class,

i.e., consecutive evaluations of the objective function are performed in order to obtain the

optimal solution. Its main idea is to calculate the search direction using a set formed by

the best points obtained until previous iterations. A geometric �gure named polyhedron

is formed by a set of vertexes, where each vertex corresponds to a solution v ∈ <n, and
n is the number of variables of the optimization problem. The number of vertexes of the

polyhedron is n+ 1. For each iteration a new solution is computed, and the worst vertex is

replaced. Considering successive iterations, the polyhedron tends to adjust itself around the

optimal solution and reduce its dimension (distance among vertexes) until a convergence

criterion is achieved. The FP method can generate infeasible solutions during the search

process, raising di�culty for treating constrained optimization problems. This drawback

can be solved by making the cost function to strongly penalize infeasible solutions.

52

4.3 The Flexible Polyhedron (FP) Optimization Method 53

Figure 4.2 presents an example of a two variable optimization problem. There is a

three dimension polyhedron. The variables are x and y and the vertexes f1, f2 and f3

are the results of the cost function evaluation, f(x, y), for, respectively, f(x1, y1), f(x2, y2)

and f(x3, y3). During each algorithm iteration one new solution is generated, when the

worst value is discarded. Thus, only the best f(x1, y1), f(x2, y2) and f(x3, y3) are kept

in the polyhedron. Considering these successive iterations until matching the convergence

criterion, the polyhedron will be in the solution domain of the speci�c optimization problem

given by the objective function f(x, y).

x

f(x,y)

y

x1
x2

x3

y1

y2

y3

f3

f2

f1

Figure 4.2: Example: A two variable three dimension Polyhedron

There are some variations of the FP algorithm according to the problem being addressed,

especially in order to reduce the risk of convergence towards a local minimum. For this

reason, we have employed a modi�ed version of the FP method that rebuilds the polyhedron

around the optimal solution found in the previous convergence, which will be discussed later.

In order to present the FP algorithm, consider a optimization problem Pv with n vari-

ables. The parameter v is a vector v = {x1, x2,, xn} which contains n values. The

solution of this optimization problem is to �nd the optimal vector v∗ where Pv∗ ≤ Pv ∀ v.
The algorithm uses n+ 1 vectors vi for 1 ≤ i ≤ n+ 1 to determine the search direction. It

is important to note that each vector vi corresponds to one polyhedron vertex. Below, we

summarize the FP algorithm.

1. The �rst step is to obtain the initial polyhedron. If the interval of applicable values

53

54 Optimization Method Chapter 4

of each variable is known, a straightforward manner to implement this procedure is

to initialize the vectors vi using the combination of the maximum and minimal values

of these intervals. Of course, the number of possible combinations is higher than

the number of required vertexes. In fact, if there is an optimization problem with n

variables it is required n + 1 vertexes but the number of combinations of maximum

and minimal values is 2n, forcing to discard 2n − (n+ 1) combinations.

Another strategy for initialization is presented in [59]. In this case, for optimization

problems where it is di�cult to identify such initialization intervals, [59] suggests the

use of coe�cients in order to calculate the distance of initial vertexes based on only

one estimated vertex. Thus, a parameter that characterizes the initial dimension of

the polyhedron is used to calculate the values the others. Inspired by these strategies,

we will employ the following approach:

Given the initial solution v1, initialize the polyhedron vertexes as linearly independent

vectors as indicated in 4.9. The coe�cients d+
i and d−i represent, respectively, a large

and a small distance with respect to the elements of the initial vector v1. The choice

of these parameters relates to the initial search space. In this work we have employed

d+
i = v1,i and d

−
i = −v1,i

2 .

v2 = v1 + [d+
1 d
−
2 d
−
3 d

−
n]

v3 = v1 + [d−1 d
+
2 d
−
3 d

−
n]

.....

vn+1 = v1 + [d−1 d
−
2 d
−
3 d

+
n]

(4.9)

2. Compute the cost function fc(v) for each vertex, ordering and labeling the vertexes

according to their cost function as follows:

fc(v1) ≤ fc(v2) ≤ fc(v3) ≤ ≤ fc(vn+1) (4.10)

3. Compute the centroid excluding the worst vertex as follows:

v =
1
n

[
n∑
i=1

vi

]
(4.11)

According to the principle of the FP search, it is necessary to �nd a new and better

vector vnew (i.e., a vector which has a lower fc value) in the direction of the line

that connects v and vn+1 for each algorithm iteration. vnew is used together with the

54

4.3 The Flexible Polyhedron (FP) Optimization Method 55

worst vertex vn+1 in order to determine the search direction. Hence, the polyhedron is

rebuilt in each iteration until the �nal convergence. Having the v point as a starting

reference, we de�ne two search directions: primary search direction and secondary

search direction, as illustrated in Figure 4.3 [60].

Secondary search
direction

Primary search
direction

υ
n+1ῡ

υ
1υ

2

υ
3

υ
4

υ
5

υ
n-1

υ
n

Figure 4.3: Search directions according to the FP principle

4. Determine new vertex vnew. Initially, the primary search direction is chosen. If

vnew is worse than vn+1, i.e., fc(vnew) > fc(vn+1), then the search direction changes

to the secondary direction. Actually, the primary search direction corresponds to

the opposite direction in which a worse value was found. In this context, the �rst

operation to be performed is the re�ection. Denoting vr as the new vertex obtained

in the re�ection operation, it can be de�ned as follows:

vr = v − α (vn+1 − v) (4.12)

where α represents the re�ection search step.

If fc(v1) ≤ fc(vr) < fc(vn), replace vn+1 by vr, i.e., vnew = vr, and go to step

9. If fc(vr) < fc(v1), go to step 5. If fc(vn) ≤ fc(vr) < fc(vn+1), go to step 6.

Otherwise, if fc(vr) ≥ fc(vn+1), go to step 7.

5. Compute ve using the expansion operation:

ve = v − β (v − vr) (4.13)

where β represents the expansion search step. if fc(ve) < fc(vr), replace vn+1 by ve,

i.e., vnew = ve, and go to step 9. Otherwise, replace vn+1 by vr, i.e., vnew = vr and

go to step 9.

55

56 Optimization Method Chapter 4

6. Compute vc using the outside contraction operation:

vc = v − γ (v − vr) (4.14)

where γ represents the contraction search step. if fc(vc) ≤ fc(vr), replace vn+1 by

vc, i.e., vnew = vc, and go to step 9. Otherwise, go to step 8.

7. Compute vc using the inside contraction operation:

vc = v − γ (v − vn+1) (4.15)

where γ represents the contraction search step. if fc(vc) < fc(vn+1), replace vn+1 by

vc, i.e., vnew = vc, and go to step 9. Otherwise, go to step 8.

8. Perform a shrink operation by recalculating all vertexes excluding the best vertex [57].

This operation is performed when previous operations have not generated a better

vertex, as follows:

vi = v1 − σ (v1 − vi), for i = 2, 3, ..., n+ 1 (4.16)

where σ represents the shrink factor.

9. Test the below condition for rebuilding the polyhedron. If the condition is not satis�ed,

return to step 2. Otherwise, go to step 10. In this case, for every optimization

problem, it is necessary to establish a tolerance parameter, say ε, in order to verify if

the size of the polyhedron is su�cient small for the convergence around the optimal

zone. This veri�cation can be done using the distance from each vertex to the best

vertex:

n+1∑
i=1

‖vi − v1‖ ≤ ε1 (4.17)

10. If vold1 (i.e., the vector of the previous convergence) has not been initialized yet, set

vold1 = v1 and return to step 1. Otherwise, test the following convergence crite-

rion. If the condition is satis�ed, terminate the algorithm and output v1 as a result.

Otherwise, set vold1 = v1 and return to step 1.

‖vold1 − v1‖ ≤ ε2 (4.18)

56

4.3 The Flexible Polyhedron (FP) Optimization Method 57

In our optimization problems, we have selected the following typical values: α = 1,

β = 2, γ = 0.5 and σ = 0.5 [59], which are recommended as "default" values in all

references considered in this study. The ε1 and ε2 were both selected as 0.01. Observed

results were su�cient for the solution of the optimization problems. In terms of convergence

properties, [67] gave a family of strictly convex functions and a class of initial simplices in

two dimensions for which all vertices of the working simplex converge to a nonminimizing

point. [68] contains several convergence results in one and two dimensions for strictly convex

functions with bounded level sets. Rigorous analysis of the Nelder-Mead method seems to

be a very hard mathematical problem. By design, the shape of the working polyhedron

can almost degenerate while "adapting itself to the local landscape", and the method uses

only simple decrease of function values at the vertices to transform the polyhedron. Hence,

very little is known about the convergence properties. Almost nothing is known about the

behavior of the method for less smooth or discontinuous functions [69]. The proof of its

convergence is not available because it is based on heuristics in which convergence theorems

are not applicable [60]. In order to face the problem of convergence to local minima, we

have adopted a modi�ed version of the FP method that rebuilds the polyhedron around the

solution found in the previous convergence, as seen in step 10 and in test 4.18.

Figure 4.4 depicts one illustration with respect to the polyhedron operations. The

�rst operation is the reflection. As seen in Figure 4.4(b), the re�ection vertex moves

the polyhedron to the opposite direction of the worst vertex (i.e., primary search direction),

rebuilding the polyhedron around the optimal space. Despite that this procedure is enough,

an additional operation towards the same direction (expansion) is veri�ed before the choice

of the new vertex. The goal of this operation is to go further through the optimal space,

as shown in Figure 4.4(c). When the reflection operation gives a worse value for the cost

function, a new operation, named contraction, is performed aiming to bring the polyhedron

back to the optimal region. Figure 4.4(d) shows an example of an outside contraction

(above) and an inside contraction (below).

4.3.1.1 Algorithm

Below, Algorithm 1 summarizes the main steps of the FP method. The optimization prob-

lem has n variables. All vectors vnew, v1, vn+1, ε, v
old
1 , vr, ve and vc have a n dimension.

Each element of these vectors corresponds to one value assigned to each variable.

57

58 Optimization Method Chapter 4

 (a) (b) (c) (d)

 Centroid Worst Vertex Reflection Expansion Contraction

Figure 4.4: FP Operations: (a) Initial Polyhedron (b) Re�ection (c) Expansion (d) Con-

tractions

n← number of variables of the optimization problem;1.1

initialize the new vector vnew = {0, 0, .., 0} and convergence test vectors ε1 and ε2;1.2

repeat1.3

initialize vi for i = 1, ..., n+ 1 according to expression 4.9 ;1.4

repeat1.5

sort the vi vertexes according to expression 4.10;1.6

calculate the centroid vertex v according to expression 4.11;1.7

calculate vr according to expression 4.12;1.8

if fc(v1) > fc(vr) then1.9

calculate ve according to expression 4.13;1.10

if fc(ve) < fc(vr) then1.11

vnew ← ve;1.12

else1.13

vnew ← vr;1.14

end1.15

else1.16

if fc(v1) ≤ fc(vr) < fc(vn) then1.17

vnew ← vr;1.18

else1.19

if fc(vr) ≥ fc(vn+1) then1.20

calculate vc according to expression 4.15;1.21

if fc(vc) < fc(vn+1) then1.22

vnew ← vc;1.23

end1.24

else1.25

calculate vc according to expression 4.14;1.26

if fc(vc) ≤ fc(vr) then1.27

vnew ← vc;1.28

end1.29

end1.30

end1.31

end1.32

if !updated (vnew) then1.33

rebuild the polyhedron according to expression 4.16;1.34

else1.35

vn+1 ← vnew;1.36

end1.37

until exp. 4.17 == TRUE ;1.38

if empty (vold1) then1.39

vold1 ← v1;1.40

continue;1.41

end1.42

until exp. 4.18 == TRUE ;1.43

accept the vector v1 as the solution of the optimization problem;1.44

Algorithm 1: The FP Method

58

4.4 Example: Di�Serv PBAC Design with Optimization Method 59

4.3.1.2 Final remarks

Parameters α and β in expressions 4.12 and 4.13, respectively, can lead to infeasible values

in vectors vr and ve. In this case, one must consider the following expressions in order to

obtain these values:

α =

 1, if (2 . vi − vin+1) > 0 for i = 1, ..., n

δ .min (vi

vin+1−vi
), if ∃ i for (2 . vi − vin+1) ≤ 0

 (4.19)

β =

 2, if (2 . vinew − vi) > 0 for i = 1, ..., n

δ .min (vi

vi− vinew
), if ∃ i for (2 . vin+1 − vi) ≤ 0

 (4.20)

where i is the ith element in arrays vinew, v
i and vin+1. The parameter 0 < δ < 1 is a

constant that is chosen in order to avoid negative values in arrays vr and ve. In this thesis,

we selected δ = 0.95 as the default value.

4.4 Example: Di�Serv PBAC Design with Optimization Method

4.4.1 Introduction

This section shows the design of a parameter based admission control mechanism using a

training strategy based on simulations, the FP optimization method and tra�c models [15]

presented in previous sections.

In a Di�Serv network, the tra�c can be classi�ed into distinct aggregated classes, ac-

cording to its performance requirements. For example, VoIP tra�c can be assigned to a class

designed to provide low delay and data tra�c can be assigned to a class designed to provide

low packet loss. Because of the incertitude on the tra�c nature, characterizing a model

for the queue length distribution is a di�cult task. In the literature, it is possible to �nd

several proposals for designing admission control (AC) algorithms for Di�Serv networks.

These AC algorithms can be divided into two large categories: PBAC (parameter-based

access control) and MBAC (measured-based access control). The PBAC approach de�nes

the AC parameters based only on the theoretical tra�c behavior, the queuing disciplines

and the network capacity. Usually, the PBAC proposals assume simpli�cations on the traf-

�c behavior in order to provide an asymptotic bound for the queue tail probability. The

MBAC approach, by the other hand, measures the real network tra�c in order to dynam-

ically adjust the AC parameters. In fact, MBAC approaches enable to design controllers

59

60 Optimization Method Chapter 4

that are more robust with respect to the accuracy of the tra�c model. However, MBAC

controllers are also dependent on some sort of parameter tuning, and a setting that gives

excellent performance under one scenario, may give a very pessimistic or too optimistic

performance in another scenario [10, 70].

As we mentioned previously, the proposed method of this thesis also permits to build

performance models taking into account QoS requirements on a per-�ow basis. Even though

several techniques have been proposed for designing AC algorithms for providing QoS guar-

antees to the aggregated tra�c, designing AC algorithms for providing QoS guarantees to

individual �ows is an issue far less addressed. Providing individual �ow guarantees poses

additional di�culties on the Di�Serv AC design.

Here, we address this problem using an alternative approach. We employ the FP algo-

rithm to determine the maximum load that can be accepted by a Di�Serv node without

deriving an analytical model. The FP algorithm is used to "train" a parameter based ad-

mission controller (PBAC) by using a speci�cally designed tra�c pro�le. It is important

to note that it is an o�-line training process. After training the PBAC for a speci�c net-

work and speci�c statistical QoS guarantees, it can be used to provide these guarantees to

distinct o�ered tra�c loads. Because the NLP is a multi-dimensional optimization process,

this approach can be applied to, virtually, any AC technique (PBAC or MBAC) with one

or more tuning parameters. This hybrid simulation-optimization approach is also justi�ed

because even AC algorithms whose design is based on analytical models require parameter

optimization. To illustrate the proposed approach, a sample scenario where (aggregated

on-o�) VoIP tra�c and (self-similar) data tra�c compete for the network resources was

simulated and evaluated, whose models were also presented in Chapter 3.

4.4.2 Related works

A common approach for designing a Di�Serv AC algorithm is to determine the maximum

amount of tra�c that can be aggregated without leading to an excessive bu�er over�ow.

A single-link analysis of several statistical PBAC algorithms that follows this approach is

provided by Knightly and Shro� in [9]. Also, surveys comparing the performance of both,

PBAC and MBAC algorithms have been presented in [10, 70]. The works discussed on these

surveys assume that satisfying the QoS requirements for the aggregated tra�c is su�cient

to satisfy the QoS requirements for the individual �ows. Some works have shown, however,

that the end-to-end delay and the packet loss level of individual �ows can substantially

60

4.4 Example: Di�Serv PBAC Design with Optimization Method 61

�uctuate around the average aggregate performance.

A study presented by Siripongwutikorn and Banerjee [71] evaluated the per �ow delay

performance with respect to the tra�c aggregates. The authors consider a scenario with a

single node, where heterogeneous �ows are aggregated into a single class. Distinct queuing

disciplines have been considered, such as FIFO, static priority, waiting time priority and

weighed fair queuing. The authors observed, by simulation, that the tra�c heterogeneity,

the load condition and the scheduling discipline a�ect the per-�ow delay performance. No-

tably, the simulation results indicate that it may not be able to achieve delay guarantees

for some individual �ows based solely on the class delay guarantees when the �ows are

heterogeneous in a high load condition.

The work presented by Xu and Guerin [72] explored the di�erences that can exist be-

tween individual and aggregate loss guarantees in an environment that enforces guarantees

only at the aggregate level. The work develops analytical models that enable to estimate

the individual loss probabilities in such conditions. A bu�erless single hop scenario with

distinct tra�c sources have been considered: ON-OFF, constant bit rate periodic and real

tra�c video sources. The authors points that in order to avoid signi�cant deviations across

individual and aggregate loss probabilities, one should avoid multiplexing �ows with signif-

icantly di�erent rates into aggregates with a small number of sources. They also observed

that the per-�ow deviation decreases with the number of aggregated sources. The number

of sources required to reduce the deviation across �ows is signi�cantly higher when the

ON-OFF sources have rather di�erent peak and mean rate.

Spliter and Lee [73] have presented an optimization method for con�guring a node level-

CAC controller for a bu�erless statistical multiplexer. The problem assumes a single class of

tra�c, which must provide QoS expressed in terms of packet-loss constraints. The arriving

call-requests are assumed to follow a Poisson distribution and the call durations are assumed

to be general. The �ow corresponding to each call is modeled as an ON-OFF process. The

tra�c during the ON period is assumed to be constant. The idea of the CAC controller was

to minimize the call blocking probability subject to the packet loss constraints. Because

the authors assume a bu�erless approach, the optimization process could be modeled in

terms of a linear programming problem. The packet loss ratio constraint was imposed to

the aggregated tra�c instead of individual �ows. The authors then present a CAC policy

where the decision about the admission of a call is based only on the number of calls in

progress. In spite of using an optimization approach, this work di�ers from our proposal in

several points. First, we assume a multi-class scheduler with bu�er capabilities. Second, our

61

62 Optimization Method Chapter 4

AC algorithm is designed to provide per-�ow guarantees. Finally, our method is based on

non-linear programming approach and does not require a mathematical model to describe

the constraints imposed to the problem, which enables to employ the method to complex

tra�c pro�les.

4.4.3 Scenario and Proposal

We consider a sample scenario where (aggregated on-o�) VoIP tra�c and (self-similar) data

tra�c compete for the network resources. The VoIP tra�c is controlled by an AC algorithm

which limits the number of simultaneous active VoIP �ows. Also, homogeneous VoIP �ows

aggregated into a single EF class. The self-similar data tra�c is not controlled by the AC

algorithm. Instead, it is submitted to a leaky bucket classi�er, which determines which

packets will receive an assured forwarded (AF) treatment (i.e., packets within the limits of

an accorded service rate) and which packets will be treated as best e�ort (BE). The AC

strategy must provide statistical guarantees that each VoIP �ow will respect a percentile

limit imposed on the end-to-end delay and packet loss performance. This scheme must also

provide delay and packet loss performance guarantees for the AF data tra�c.

The PBAC algorithm must be capable of answering the following question: what is

the maximum number of simultaneous VoIP �ows that can be served without violating

the performance guarantees? As discussed in section 4.4.2, the per-�ow problem is not

extensively addressed in the literature. Also, most attempts of deriving a mathematical

model for the per-�ow behavior assume that the life-cycle of all VoIP �ows is identical,

i.e., all �ows start in the beginning of the evaluation and terminate simultaneously. In this

work, the VoIP tra�c model follows the model presented in section 3.3. Our work shows

that the e�ect of considering �ows with distinct life cycles introduces signi�cant deviations

among the individual �ows percentile performance, requiring a "per-�ow" tuning of the AC

method in order to respect the QoS requirements.

In order to train our PBAC controller we have selected a variable VoIP o�ered load

template which follows a "peaked call arrival pattern" [43], as de�ned in Figure 4.5. This

approach is necessary in order to design a PBAC controller which is robust with respect to

the �uctuations of the o�ered load. According to the �gure, the evaluation time is divided

into ten identical periods. Each period corresponds to a distinct o�ered load, which is

determined by adjusting the TBF parameter. The AFD parameter depends on the average

user behavior, and it is kept constant among all periods. The o�ered load is computed in

62

4.4 Example: Di�Serv PBAC Design with Optimization Method 63

terms of an estimation of the blocking probability, by using the Erlang-B functions [50]. In

this case, the equivalent number of VoIP lines for a given link capacity is "virtually" de�ned

by the AC method, which imposes a limit to the number of simultaneously active VoIP

connections. There is a discrete universe of discourse for the o�ered load pro�le. Despite

the training including regions with high blockage levels (e.g., 0.9), an operator should use

regions with appropriate blocking probabilities according to the ISP policy. Distinct o�ered

load templates could be de�ned in order to have lower blockages values, also, according to

the ISP policy.

Figure 4.5: Variable o�ered load template

The data tra�c used to train the PBAC algorithm follows the self-similar model, which

was presented in section 3.2. In this work, we have adopted a = 275 kbit.s and H = 0.76,

as used by Norros in the sample simulation presented in his seminal paper. For each 4t
window we compute the arrival process and generate a packet series A4t assuming a MTU

size (1500 bytes) and a minimum packet size of 46 bytes. The packet series is then submitted

to a leaky bucket metering scheme, controlled by two parameters: the bucket size and the

transmit rate. The A4t packets within the bucket limits are tagged as AF PHB, and the

non-conforming A4t packets (i.e., packets that could not be inserted into the bucket) are

tagged as BE. In this work, we have adopted 4t = 10ms. The scheduling discipline of the

Di�Serv node is a priority queuing mechanism with three non-preemptive �nite size queues:

EF, AF and BE. In this scheme, a queue is served only when the higher priority queues

have no packets waiting to be served. The AF and BE queue sizes were limited to 250ms.

For VoIP tra�c, each �ow was modeled with a 200 byte packet size, already included

63

64 Optimization Method Chapter 4

the payload and the protocol headers. During the ON period, the arrival interval between

packets is 20ms, which represents a peak rate of 80 kbps and an average rate of 32 kbps for

each individual �ow. We have limited the VoIP (EF) queue size to 50ms, i.e., packets that

exceed the 50ms delay are dropped.

We assume that the PBAC algorithm is capable of determining the exact instant when

each VoIP �ow starts and terminates. Therefore, the only tuning parameter of this controller

is the maximum number of simultaneously active �ows.

4.4.4 Optimization Problem

In order to determine the cost function (i.e., the objective function of optimization problem)

to be applied in the FP method, it is necessary to de�ne the per-�ow VoIP and the AF

tra�c requirements. Because this work considers a single node AC, these requirements

are expressed in terms of the delay and the packet loss caused by the node. The per-�ow

VoIP requirement is expressed as the percentile of packets that can exceed a delay bound

or be dropped in a single �ow. For example, a QoS requirement (97th,50ms) de�nes that a

maximum delay of 50ms must be observed by 97% of the packets of each individual �ow,

i.e., only 3% of the packets can violate the QoS requirements by exceeding the 50ms limit

or being dropped. The AF tra�c requirement is imposed in terms of the overall packet-loss

ratio. We have limited the AF queue to a size corresponding to the maximum admissible

delay assigned to the AF packets (i.e, the single node delay contribution), so all packets

that exceed this delay bound are dropped.

The main idea of the cost function is to induce the optimization process to �nd a solution

for the admission controller that maximizes the number of �ows served without violating

the QoS requirements of both, VoIP and the AF data tra�c. Considering an evaluation

period, let Fa, F a, F̂a and Fv be, respectively, the absolute number of accepted �ows, the

average number of active �ows, the estimated maximum number of active �ows and the

absolute number of admitted �ows that violate the QoS requirements. We also de�ne AFd

as the percentage AF packets dropped with respect to the total number of packets marked

as AF. The cost function can, then, be represented as:

fc(x) =
[

1 − Fa
F̂a

]
+
[
ϕ F v
Fa

]
+
[
φAFd

]
(4.21)

The x vector represents the AC variables that must be optimized. Because we have

assumed a simple PBAC controller, in this case, the variable is the maximum number of

64

4.4 Example: Di�Serv PBAC Design with Optimization Method 65

simultaneously active �ows. The F a term is not required to be precise, as it works only as

a normalization factor. It can be computed using the techniques suggested by [74]. The

second component introduces a penalization for violating the QoS requirements. The ϕ

(undimensional) factor de�nes the "penalty" for admitting a violated �ow. The third term

de�nes a penalization for dropping the AF tra�c. The penalization weight is controlled

by the φ (undimensional) factor. Both ϕ and φ are inputs to the optimization process

and depend on the service provider business policy. Extremely high occupation rates that

induce too many VoIP or AF violations will be penalized by the cost function. Therefore,

no special treatment is required for avoiding infeasible solutions.

Figure 4.6: Optimization Flow for the Proposed PBAC controller

Figure 4.6 illustrates the complete optimization �ow, where a simulator and the FP

method are combined. The simulator is activated for computing the cost function of each

new vertex of the polyhedron. In order to reduce the seed in�uence, N simulations with

distinct seeds are computed for each new vertex generated by the FP method. During

a simulation, the AC parameters are tested against a variable load scenario that follows a

"peaked call arrival pattern" shared with the self-similar data tra�c, as described in section

4.4.3. We have employed N=10. The cost function (fc) is computed for each seed, and a

99% con�dence interval for the (fc) average is determined by assuming a t-distribution [50].

The cost assigned to a PBAC solution corresponds to the worst bound in this interval (i.e.,

the highest cost function). The AC parameters obtained using the optimization approach

are valid for a speci�c scenario de�ned by the link capacity, the per-�ow delay/packet-loss

bound, the leaky bucket parameters, the per-�ow VoIP percentile performance and the φ

and ϕ parameters.

65

66 Optimization Method Chapter 4

4.4.5 Simulation and Results

In this section, we have evaluated our approach by optimizing the PBAC method for distinct

link capacities and distinct leaky bucket parameters. In all scenarios, the VoIP o�ered load

followed the template de�ned in Figure 4.5, but the conditions of the data tra�c were

modi�ed by adjusting the leaky bucket parameters: service rate and bucket size. Figures

4.7, 4.8 and 4.9 have considered a scenario that imposed a per-�ow delay bound of 50ms

for the 97th percentile of the VoIP packets and a delay bound of 250ms for the aggregate of

AF packets. The performance parameters were adjusted respectively to φ = ϕ = 10. This

represents a strong penalization for violating VoIP or AF guarantees. As a consequence, in

all scenarios, there was no violation of VoIP �ows or AF tra�c. Therefore, this information

was omitted in the �gures.

Both, the self-similar and the VoIP tra�c can signi�cantly vary according to the seed

values. To avoid misinterpretation, the results presented in this section correspond to the

average of 30 simulations with distinct seeds, presented with a 99% con�dence interval, i.e.,

after obtaining the optimal values for the PBAC controller, we perform such evaluation

considering 30 simulations with distinct seeds. Evaluating the approach with so many

distinct seeds assures that the simulated results achieved by the controller will be robust

enough to be reproduced in the real world.

The left side of Figure 4.7 illustrates the e�ect of the link capacity on the share of

bandwidth occupied by the AF and the VoIP tra�c. The right side of the �gure illustrates

the e�ect of the link capacity on the BE tra�c drop rate and the average number of active

�ows per Mbps. One can observe in the �gure that the number of VoIP �ows per Mbps

increases with the link capacity. As a result, the share of the link bandwidth occupied by

the VoIP tra�c also increases with the link capacity. This e�ect is justi�ed because a longer

VoIP queue can be tolerated in terms of packets when a �xed maximum delay is imposed

to a node with higher service rate. This e�ect is also observed for the AF tra�c. Also, note

the smoothing e�ect obtained by aggregating more VoIP �ows, as observed by the reduced

dispersion around the active VoIP �ows average.

Figure 4.8 illustrates the e�ect of modifying the leaky bucket rate (expressed as a

% of the link capacity). In this scenario, the link capacity was �xed in 8 Mbps. Note

that increasing the leaky bucket rate increases the o�ered load of AF packets. One can

observe that the higher priority VoIP tra�c is limited by the PBAC controller in order to

accommodate the additional AF tra�c. In all evaluations, the average bandwidth of the

66

4.4 Example: Di�Serv PBAC Design with Optimization Method 67

Figure 4.7: Proposed PBAC controller: E�ect of the Link Capacity

self-similar tra�c (i.e., o�ered load before marking) was �xed in 50% of the link capacity

(m parameter). However, increasing the bucket rate above 50% still a�ects the tra�c, due

the fBm variation.

Figure 4.9 illustrates the e�ect of modifying the leaky bucket size. Again, in this

scenario, the link capacity was �xed in 8 Mbps. Note, in Figure 4.7, that the share of

bandwidth occupied by the AF tra�c was always less than 50% (the leaky bucket rate).

This is the e�ect of the small bucket size adopted in this scenario (only 2 MTU). Increasing

the bucket size enables the accommodation of the self-similar tra�c variation, increasing

the AF tra�c rate. Consequently, the AF tra�c shaped by the leaky bucket is not as

well-behaved as the tra�c in Figure 4.7. In this case, the PBAC had to reduce the number

of VoIP �ows per Mbps accordingly.

67

68 Optimization Method Chapter 4

Figure 4.8: Proposed PBAC controller: E�ect of Leaky Bucket Rate

4.5 Conclusion

In this Chapter, we reviewed the main concepts of optimization theory in order to introduce

the method that will be employed for solving optimization problems in this thesis. As we

saw, our problem belongs to the non-linear programming category. Several techniques are

available for solving NLP problems. In this case, we presented the Flexible Polyhedron

method which is a zero-order direct search method that does not require derivatives of the

cost function. This feature allows us to create optimization problems that handle several

parameters in a very �exible manner, where objective functions can be easily used as results

of complex computer simulations. During each iteration, a new solution is computed by

applying arithmetic operations on the Polyhedron vertexes, and the worst vertex is replaced.

Successive iterations are performed leading to a reduction of the Polyhedron dimension

until a convergence criterion is achieved. In order to face the problem of local minima, we

will employ a modi�ed version of the FP algorithm. According to this modi�cation, the

polyhedron is rebuilt around the convergence vertex. The �nal convergence criterion will

68

4.5 Conclusion 69

Figure 4.9: Proposed PBAC controller: E�ect of Leaky Bucket Size

be achieved only if the current convergence minimally di�ers (according to a speci�c error)

from the previous convergence.

In order to illustrate the use of the FP method, we also showed an optimization approach

that helps the design of Di�Serv AC algorithms capable of providing per-�ow delay packet-

loss guarantees. The approach was illustrated considering a scenario where a node link was

shared by distinct types of tra�c: VoIP and self-similar tra�c marked by a leaky bucket

algorithm. A typical Di�Serv node capable of scheduling only large classes of tra�c (i.e.,

�ow-unaware) was studied. Because most results obtained in the literature target only the

performance of aggregated tra�c, there is no accurate analytical model capable of treating

a per-�ow scenario with this type of scheduler.

The strategy described here was capable of achieving the required performance results

in all scenarios, including distinct link capacities and variations on the level of self-similar

packets marked as assured forwarding. Also, the controller is robust with respect to the

o�ered load variation.

69

70 Optimization Method Chapter 4

70

Chapter 5

A New Method for Modeling Queue

Behavior

5.1 Introduction

T
his Chapter presents the proposal of a new generic method for modeling queue behavior

of network nodes aiming to provide a methodology for building the corresponding

performance models. These models (e.g., expressed in terms of packet delay and loss rate)

represent the performance experienced by incoming tra�c pro�les where it is possible to

establish the relationship between the tra�c load in queues of network nodes and the

resulting QoS performances. The proposed method takes into account many complex issues

faced in typical deployment scenarios: Multiple priority queues, non-exponential service

times and long term correlated tra�c. Also, we address the problem of providing per-

�ow guarantees, which poses additional di�culties because it is also necessary to take into

account the �uctuations of the �ows lifecycles in order to determine the impact of the queue

behavior on the performance of the individual �ows. Such statements leads to a scenario in

which it is very hard to develop an analytical model.

The proposed method combines non-linear programming (NLP) and simulation to build

a fuzzy logic based model capable of determining the performance of a network node. Using

such strategy, which is based on a general o�-line method to produce the equations capable

of representing outputs for the whole space of the speci�ed input tra�c parameters, it is

possible to �nd out the optimal values that can be used for the con�guration of network

nodes, with important applications on tra�c engineering and capacity planning. This ap-

71

72 A New Method for Modeling Queue Behavior Chapter 5

proach does not require the derivation of an analytical model and can be applied to any type

of tra�c. Also, this methodology includes a training method that permits the application

of any type of performance metric.

In order to clarify the contributions of this generic method and its distinct approaches

employed for fuzzy modeling, we divided its presentation into two sections according to the

strategy used for modeling the consequents of fuzzy rules and the corresponding applications

of results. After reviewing the state of art in section 5.2, section 5.3 presents our method

considering an application scenario involving a fuzzy predictor. As we will see, the conse-

quents of fuzzy rules are modeled using singletons and the results are expressed in terms

of crisp values considering the corresponding performance metrics. Section 5.4 presents a

more generic approach. In this case, our method is employed to provide an output fuzzy

set as a result instead of crisp values. We use a strategy based on normalized probability

distributions in order to build a performance model of a network node in which a queue

is fed by a self-similar tra�c source. We propose a time based fuzzy model for the MVA

approximation for loss probability analytical model.

5.2 Related works

There are two main research domains on fuzzy logic related with our work. The �rst domain

focuses on extending existing queue models to provide performance measures expressed by

membership functions. The second domain employs fuzzy models to build active network

tra�c controllers.

The application of fuzzy techniques to model queuing systems has been initially reported

by Li and Lee [75]. Based on the Zadeh′s extension principle, on the concept of possibility

and on fuzzy Markov chains, they proposed a general approach for fuzzy queue analysis.

According to their approach, the (precise) original queue model parameters are consid-

ered imprecise and their possibility distribution is derived by applying Zadeh′s extension

principle. The result is a fuzzy queue model with uncertain parameters de�ned according

to their membership functions. Considering the complexity of deriving these membership

functions, some techniques based on parametric non-linear programming have been inves-

tigated, which obtain the fuzzy parameters from their alpha-cuts. This approach has been

applied by Chen [76] to model queues with bulk service and by Ke and Lin [77] to analyze

queue systems with unreliable servers. More recently, Pardo and de la Fuente [78] derived

two fuzzy models for priority queues with exponential arrivals characterized by fuzzy pa-

72

5.2 Related works 73

rameters. The �rst model assumed a fuzzy exponential service time and the second model

assumed a fuzzy deterministic service time.

The method proposed in this thesis can be compared to the fuzzy queue modeling ap-

proach, but di�erently from the previously discussed works, its goal is not to determine

membership functions for the uncertain parameters of existing queuing models, but to de-

rive a fuzzy system to model the relationship between the crisp input and output variables

using training techniques. Also, we use these training techniques to build a fuzzy system

that outputs a fuzzy set as a result considering crisp input variables. Although the afore-

mentioned models have all been derived from relatively complex queue models, in realistic

networking scenarios, as the multi-queue Di�Serv node considered in our study, the com-

plexity goes far beyond. For example, the use of Poisson process to model the input tra�c

can be viewed as a major simpli�cation for the elastic data tra�c. In fact, since long range

dependency and self-similar characteristics have been identi�ed in LAN [36], WAN [34],

and in the WWW [35] tra�c, the self-similar model is presently considered a more accurate

model. Another example of tra�c model complexity is to consider the input tra�c to be

constrained by a token-bucket mechanism. This is indeed a broadly employed technique in

IP networks that surely complicates the analytical model. A last example of tra�c mod-

eling complexity is to include in the model the ability to handle per �ow parameters. As

discussed previously, most of queue models are suitable for the aggregate tra�c and are

unable to take into account per �ow parameters.

The application of fuzzy techniques to build network tra�c controllers addresses a dif-

ferent context. The goal is to �nd control laws that depend on the predicted behavior of

the controlled system. The output predictions are computed according to a process model.

In order to achieve the controlling goals, the system input is sampled, and a model that

captures the dependence of the system's output on the current measured variables and the

current and future inputs is derived. The model should be able to predict the future behav-

ior which, in general, includes non-linear relations between the involved variables. Fuzzy

modeling techniques have also been successfully applied in the construction of such models,

speci�cally in the control the network tra�c with non-linear characteristics. Chen at al.

[79] have used a fuzzy adaptive prediction technique in order to overcome the di�culties in

congestion control design due to non-linear time varying characteristics of network tra�c.

In their study, the tra�c �ow from controlled sources in ATM networks is described by a

fuzzy ARMAX (Autoregressive Moving Average eXogenous) model, which is translated to

a fuzzy predictive tra�c model. The parameters of the predictive model are estimated by

73

74 A New Method for Modeling Queue Behavior Chapter 5

a normalized least mean squares (NLMS) algorithm in real time, allowing the controller to

be constructed based on this recursive parameter estimate.

A self-adapted wavelet-based fuzzy tra�c predictor has been proposed by Gou and

Hu [80]. They use the Mallat wavelet transform to decompose the input tra�c into compo-

nents at multiple time scales. After rebuilding the time-series, tra�c components at each

time scales are predicted independently and then combined to form the predicted tra�c. A

fuzzy logic is then constructed, with the corresponding membership functions parameters

being derived from a clustering algorithm. In order to address the construction of the logic

for fuzzy controllers, Hsiao and Su [81] have proposed a general approach to generate the

fuzzy rules for an ARMA (Autoregressive Moving Average) predictor model by a two phase

process: the �rst phase generates the fuzzy rules from on-line data, whereas the second

updates the fuzzy systems parameters by means of an on-line learning phase. The algo-

rithm for generating the fuzzy rules �rst de�nes the domain intervals for input and output

variables, divide the input and output spaces into fuzzy regions and select the parameters

for Gaussian membership functions. A new rule is generated if the di�erence between the

actual output and the predicted output is greater than a desired error. Then, con�icts

between rules are eliminated and redundant rules are discarded. In the learning phase, the

premise part of the rules is updated according to an adaptation equation, looking for the

reduction of the prediction error. Again, if the error overcomes a pre-de�ned bound, a new

rule is generated.

Finally, the study of Din and Fisal [82] investigates fuzzy tra�c control in a scenario very

close to the one we use to demonstrate our method in Section 5.3. They propose a fuzzy

logic token bucket bandwidth predictor for assured forwarding tra�c aggregates at Di�Serv

nodes. The Di�Serv tra�c is accommodated in three queues that are constrained by a token

bucket mechanism: EF for real time, AF assured forwarding, and BE for best e�ort, in an

arrangement that is quite similar to ours. However, their tra�c model is quite di�erent:

they model the EF tra�c as constant bit rate, the AF tra�c by a Pareto distribution, and

the BE by an exponential distribution. They discuss the fuzzy predictor only for the AF

queue, where two input variables are considered, the average rate to peak rate ratio and the

available bandwidth ratio, both computed from a rate estimation mechanism. The fuzzy

predictor outputs a prediction factor, which is added to the ratio between the average and

the peak rate and multiplied to the current token bucket rate, providing a new token bucket

rate prediction, used to feed back the token bucket mechanism and the admission control

mechanism.

74

5.3 Building a Fuzzy Predictor 75

Similarities between our work and the previously discussed model based on predictive

control can be identi�ed. We have used a similar method to calibrate our fuzzy logic as the

one used by Hsiao and Su [81], that is, both studies try to minimize the prediction error.

Also, the scenario considered in Din and Fisal [82] paper is almost the same of the one

considered in our study. However, our approach is quite dissimilar in both cases. Although

we can envisage the use of our predictor in on-line tra�c control, our work proposes a

general o�-line method to produce the equations capable to predict outputs for the whole

input space, with important applications on tra�c engineering and capacity planning.

5.3 Building a Fuzzy Predictor

5.3.1 Problem Statement

5.3.1.1 Di�Serv and Service Classes

Di�erentiated Services is a general architecture that may be used to implement a variety

of services. Even though the Di�Serv methodology is supposed to be generic, the IETF

has supplied some guidelines suggesting how to con�gure Di�Serv nodes according to the

service classes supported by the network [83]. Service class de�nitions are based on the

distinct tra�c characteristics and required performance of application/services. Applica-

tion/services with similar tra�c characteristics and performance requirements are mapped

into the same service class. Table 5.1 presents the main service classes proposed by the

RFC 4594 [83] and their respective performance requirements.

Table 5.1: IETF Service Class Guidelines

Tolerance to

Service Class DSCP Conditioning at Edge Loss Delay Jitter Queuing

Telephony EF none for trusted tra�c very low very low very low priority

Multimedia Conferencing AF4(1-3) two-rate low/med very low yes rate

three color marker

Multimedia Streaming, AF3(1-3) low/med medium yes rate

Low Latency Data, AF2(1-3) low low/med yes

High-Throughput Data AF1(1-3) low med/high yes

Standard (Best E�ort) DF rate

In the network core, the service classes are identi�ed by the DSCP (Di�erentiated Ser-

75

76 A New Method for Modeling Queue Behavior Chapter 5

vices Code Point) �eld, present in the header of the IP packets. The IETF has de�ned a set

of standard DSCP values and proposed a mapping between the DSCP values and the service

classes, as shown in Table 5.1. The DSCP values are also mapped to a forwarding behavior

that must be implemented by the Di�Serv node in order to meet the respective QoS perfor-

mance. Three basic forwarding behaviors have been de�ned: Expedited Forwarding (EF),

Assured Forwarding (AF) and Default Forwarding (DF). The EF behavior is recommended

for real-time (inelastic) tra�c. The AF behavior is recommended for rate adaptative tra�c,

i.e., when the receiver provides feedback to the sender about loss or delay variation, and the

sender adjusts its transmission rate in order to approximate the estimated network capacity

(e.g., TCP data tra�c). The AF tra�c should be more elastic by nature. However, the

RFC 4594 has assigned as AF the Multimedia Conferencing service class, which has an

inelastic delay requirement. The DF behavior is only recommended for elastic tra�c with

almost no guarantees, and corresponds to the basic best e�ort service.

As shown in Table 5.1, presently, the IETF has chosen one EF class, four AF classes

and one DF class. The AF classes are supposed to be conditioned at the edge by a token-

bucked policing mechanism called two-rate three color marker. The mechanism meters an IP

packet stream and marks its packets based on two rates, Peak Information Rate (PIR) and

Committed Information Rate (CIR), and their associated burst sizes. For the AF4 class, for

example, packets are marked AF41 (green) if they are below the CIR, AF42 (yellow) if they

are between CIR and PIR and AF43 (red) if they are above PIR. A Di�Serv node uses the

color information in order to decide which packets should be discarded during congestion

conditions. By choice of the operator, a Di�Serv node could not be able to di�erentiate

all three colors in a service class. In this case, the unsupported colors should be forwarded

using the standard service class.

In order to provide the required behavior for the distinct service classes, a Di�Serv

node employs multiple queues, as illustrated in Figure 5.1. The incoming tra�c can arrive

to a Di�Serv node from one or more links. Internally, it is classi�ed and assigned to a

corresponding queue by a classi�er based on the DSCP value. There are many possible

approaches for mapping the service classes into the queues. One possible approach would

be to create a distinct queue for each service class indicated in Table 5.1. It is also

possible, however, to assign multiple service classes into the same queue, but the individual

performance requirements of each service class must still be respected (i.e., the queue must

satisfy the service class with the strictest performance requirements). The QoS performance

of a queue can be represented in terms of the amount of loss, delay and jitter imposed by the

76

5.3 Building a Fuzzy Predictor 77

queue on the tra�c injected to the output link. The QoS performance is strongly dependent

on the amount and pro�le of the incoming tra�c. It is also dependent on the scheduler

algorithm adopted by the node. For example, in a priority queuing system, packets awaiting

transmission in a queue are served only if the highest priority queues are empty. In a rate

queuing system, a speci�ed rate is assigned to each queue, avoiding the starvation of the

lowest priority queues. Note in table that only the EF service class is recommended as

priority queuing.

DiffServ Node

Classifier

queue1

queue2

queueN
Q

ue
ui

ng
 A

lg
or

ith
m

...

Input Traffic Output Link

tspecQ1

tspecQ2

tspecQN

Figure 5.1: Multi-Queue Node Representation

5.3.1.2 Training Method

In this section, our method is employed for building a fuzzy system capable of predicting

the QoS performance of each queue in a Di�Serv node. By using the fuzzy predictor, it

is possible to determine how much tra�c could be accepted without compromising the

performance objective of the service classes assigned to the queue. The fuzzy predictor

takes the tra�c speci�cation assigned to each queue as input (noted in Figures 5.1 and 5.2

as tspec) and outputs the predicted performance of each queue in terms of loss, delay and

jitter. An important step in designing a fuzzy predictor is to properly de�ne its membership

functions in order to capture any non-linearity in the queues behavior under distinct tra�c

load conditions. In order to accomplish that, our method proposes a training approach based

on multiple simulations under distinct tra�c load conditions. The input of the training

problem is the universe of discourse of the tspec parameters. For example, the tra�c

assigned to the AF queues can be characterized as a certain source of tra�c constrained by

77

78 A New Method for Modeling Queue Behavior Chapter 5

a token bucket mechanism de�ned by parameters such as bucket size and bucket rate. In

this case, the universe of discourse of the input parameters would be the range of acceptable

source types, bucket sizes and rates that the fuzzy predictor should be able to interpret.

Similarly, telephony tra�c could be characterized as the number of simultaneous calls using

a certain type of codec. In this case, the universe of discourse could be the range of

acceptable values for the number of calls and codec types.

The training method is formulated as two-simultaneous optimization problems, with

opposite objectives, as illustrated in Figure 5.2. The �rst optimization problem, called

Membership Optimization consists of adjusting the membership functions for the fuzzy pre-

dictor in order to minimize the prediction error (i.e., the di�erence between the performance

predicted by the fuzzy system and the one determined by simulation). The second opti-

mization problem, called Simulation Optimization consists of �nding the set of load tra�c

conditions that maximizes the prediction error. Note that, without the Simulation Op-

timization algorithm, we should have to exhaustedly explore the multi-dimensional space

de�ned by tspec parameters in order to assure that the non-linearities in the queue behavior

have been properly modeled by the fuzzy system.

Fuzzy
Predictor

Traffic
Generator

Multi-Queue
Node

Simulator

Simulated
performance

Predicted
performance

Difference

Prediction
Error

Membership
Optimization

Membership
Adjustment

Simulation
Optimization

Tspec for all
queues

traffic for each
qeue

Universe of
discourse of the
tspec parameters

Prediction
Error

 queue

Figure 5.2: O�-Line Dual-Optimization Fuzzy Predictor Training Method

Although the method illustrated in Figure 5.2 can be considered generic, it is imprac-

tical to generate a single model capable of representing any possible implementation of a

Di�Serv node, as the number of membership functions necessary to model the fuzzy pre-

dictor increases with the number of tspec parameters. The model is also dependent on the

number of queues, the queuing algorithms (including active queue management algorithms,

78

5.3 Building a Fuzzy Predictor 79

such as preventive drop algorithms) and the bandwidth available at the output node link.

By using our approach, it is only practical to generate a prediction model for a speci�c

combination of number of queues, tra�c pro�les, queuing algorithms and link capacities.

Gladly, the Di�Serv methodology recommends adopting a static con�guration for the core

routers, by de�ning a standard set of service classes and corresponding per-hop behaviors.

This is fairly suitable to our approach. Di�Serv core routers with similar queuing con�g-

uration and link bandwidths could be represented by the same fuzzy predictor. Dissimilar

nodes, however, should be represented by distinct fuzzy systems.

As it will be presented in Chapter 6, in order to illustrate and evaluate our proposal, we

have considered a sample scenario described in Table 5.2. As recommended by IETF, we

have assigned only VoIP tra�c to the EF queue. It corresponds to most scenarios employed

in practice. However, we have gone beyond to most studies in this �eld by imposing that

the EF queue must satisfy per-�ow performance requirements instead of just aggregated

performance. We have assigned all assured forwarding service classes to a unique queue,

designated as AF. To aggregate multiple service classes in a single queue is also a common

practice. In this case, we are interested in predicting the aggregated performance of the

queue. Finally, all tra�c exceeding the single rate conditioning at the edge is treated as

best e�ort. All queues are treated by a strict priority scheduler using reasonable queue size

limits. It is important to note that the fuzzy predictor will be used in order to de�ne the

actual behavior of the queue. For example, if most of the AF tra�c is real-time in nature,

then the tra�c engineer must use the fuzzy predictor in order to de�ne how much tra�c

can be assigned to the node without leading to an excessive delay. If the tra�c is elastic

than the tra�c engineer must avoid excessive drops.

It is also important to note that the result obtained by the fuzzy predictor does not

represent an end-to-end performance prediction. In fact, the performance prediction of

all nodes along a path must be taken into account in order to determine the end-to-end

performance. As each node along a path will possibly receive distinct amounts of tra�c, it

will operate with distinct levels of QoS performance. As the fuzzy predictor can predict the

performance for any value of the tspec parameters within the universe of discourse, once

the maximum load assigned to each Di�Serv node in the network is known, it is possible

to predict the end-to-end performance for any path in the network. The main application

of the fuzzy predictor is tra�c engineering of MPLS-Di�Serv networks as described in [4].

Although the predictor is not an AC algorithm, its output can be employed to build an

on-line AC strategy, being embedded into the network nodes in order to help in the decision

79

80 A New Method for Modeling Queue Behavior Chapter 5

making of signalization protocols such as RSVP-TE. With this application in mind, we have

de�ned the fuzzy predictor to be as simple as possible, to minimize real-time calculations.

Table 5.2: Di�Serv Node Con�guration

Type of Tra�c Queue Conditioning at Edge Predicted QoS Maximum Queuing

Performance Metric Queue

Size

VoIP EF none = trusted tra�c per-�ow delay 50 ms priority

per-�ow drop

Token-bucket AF single-rate aggregated delay 250 ms priority

conditioned self-similar two-color marker aggregated drop

tra�c

Standard (Best E�ort) DF exceeding AF tra�c aggregated drop

Generically, the EF queue can receive several aggregates of homogenous VoIP �ows as

indicated in equation 5.1:

tspecEF = (
∑
i

NT1,i ,
∑
i

NT2,i ,
∑
i

NT3,i ,) (5.1)

where: NTj,i is the number of the VoIP �ows of the ith aggregate using codec type Tj .

In the general case, the EF class can receive several aggregates of VoIP tra�c using

distinct codecs. The input for the fuzzy system is a merged tspec described in terms of

the maximum number of simultaneously active VoIP �ows using each type of codec. Note

that because we are interested in a per-�ow prediction of the EF performance, we could

not supply the tra�c speci�cation in terms of total required bandwidth. Fortunately, there

are not many distinct VoIP codec types employed in practice, as shown in [84]. The

VoIP aggregate tra�c is not conditioned via any mechanism. In fact, as stated by the

IETF document [83], the policing is optional for packet �ows from trusted sources whose

behavior is ensured via other means (e.g., administrative controls on those systems). In our

case, the training method keeps the control of the number of simultaneous VoIP �ows.

It is important to mention the application scenario we are envisioning for these ag-

gregates of homogenous VoIP �ows in terms of per-�ow requirements: Considering such

aggregate tra�c, it is necessary to be more conservative with respect to resource reserva-

tions if one needs to guarantee performance levels for all individual �ows that form this

80

5.3 Building a Fuzzy Predictor 81

aggregate. In this case, how conservative should it be necessary? Instead of a simple over-

provisioning approach, our approach is to permit estimating such value by allowing us to

establish performance metrics in terms of individual �ows. This strategy will allow a more

conservative provisioning for aggregate tra�c which is intended to better achieve per-�ow

requirements.

For the AF tra�c, the AF queue can receive several aggregates of homogenous token

bucket conditioned self-similar tra�c as indicated in equation 5.2:

tspecAF =
∑
i

(tbsizei, tbratei) = (
∑
i

tbsizei ,
∑
i

tbratei) (5.2)

where, tbsizei is the bucket size for the ith aggregate and tbratei is the rate for the ith

aggregate.

Here, the token bucket mechanism is according to the description given in Annex A.4,

where we are interested in taking into account the e�ect of the bucket size, as it can be

noted in equation 5.2. It is important to note that in Chapter 4 we presented in section

"Example" a preliminary work, which employs a more speci�c scenario using a simple leaky

bucket mechanism, as described in Annex A.3.

Equation 5.2 denotes a "merged" tspec used as input to the fuzzy system, which is

represented by only two parameters. A total bucket rate and a total bucket size. This

additive property of token buckets is an approach suggested by IETF in the RFC 2211 [85].

Following this IETF recommendation, our proposal considers token bucket parameters for

the aggregate tra�c, which is calculated as a merged value formed by a sum of individual

users token bucket parameters.

5.3.2 Fuzzy Predictor

The Fuzzy Logic System of the proposed predictor for modeling the performance of multi-

queue network nodes is shown in Figure 5.3. As illustrated, the predictor receives the

tra�c speci�cation assigned to each queue in the node as input variables and outputs the

QoS performance prediction (usually expected delay or drop) for only one of the queues in

the node, i.e., we generate an independent fuzzy model for each queue in the node. By the

same reason, we also generate a distinct fuzzy logic for each metric evaluated in the queue.

To output a result, the predictor performs three main steps: fuzzi�cation, inference

and defuzzi�cation, as presented in Chapter 2. Each fuzzy logic subsystem illustrated in

Figure 5.3 requires the design of the membership functions for all parameters of the EF

81

82 A New Method for Modeling Queue Behavior Chapter 5

Fuzzy Inference

Fuzzy Rules

Fuzzifier

Output
Fuzzy sets

Input Fuzzy
membership

values
Defuzzifier

Fuzzy Predictor Logic System for Queue

Crisp Inputs

tspec
EF

tspec
AF

Crisp Output
Queue
Performance
Metric

Figure 5.3: Fuzzy Predictor Logic System

and AF tra�c speci�cation. As shown in expression 5.1, the merged tra�c speci�cation for

the EF queue corresponds to the number of active VoIP �ows (Ni) of each codec type(Ti)

aggregated in the EF class. The term Ni means the number of simultaneous VoIP �ows

which is kept constant along the simulation run. In this case, following the VoIP model

presented in Chapter 3 Section 3.3, each VoIP �ow has di�erent duration. Thus, when one

�ow ends another one is activated in order to keep the Ni amount. The training method

controls the number of �ows according to the amount required by the optimization phase.

There is no admission control. Also, because of the same reason, there is no variable o�ered

load as used in the example in Chapter 4. The merged tra�c speci�cation for the AF

queue is represented by a merged token-bucket rate (tbrate) and a merged token-bucket

size (tbsize). Therefore, the number of parameters that de�ne the EF load corresponds to

the number of distinct codec types aggregated in the EF class. In contrast, the number of

parameters that de�nes the AF load is always two.

Each tra�c speci�cation parameter must be modeled by an input membership function

in the fuzzy system. Several choices are required in order to de�ne these membership

functions. Despite the fact that some related issues are subjective, there are some common

recommendations that can be considered as a starting point [86, 20]:

• Symmetrically distribute the fuzzy set across the de�ned universe of discourse;

• Overlap adjacent fuzzy sets to ensure that no crisp value fails to correspond to any

set and to help in ensuring that more than one rule is involved in determining the

output;

• Use triangular or trapezoidal membership functions, as these require less computation

time than other types;

82

5.3 Building a Fuzzy Predictor 83

• Start with triangular sets. All membership functions for a particular input or output

should be symmetrical triangles of the same width. The leftmost and the rightmost

should be shouldered ramps;

• Overlap at least 50%. The widths should initially be chosen so that each value of the

universe is a member of at least two sets, except possibly for elements at the extreme

ends.

Despite the strategy employed for the basic de�nitions, the FP optimization method will

provide the �nal con�guration for the membership functions. In the following section, we

present the proposed design for one of the two subsystems that will be presented in Chapter

6. The short description of the scenario provided here is intentional; it is only intended for

a better understanding of method procedures that will be presented in next sections. We

consider the design of the fuzzy predictor for the AF Drop subsystem. In this case, we have

three input variables: tspecEF = NG711, tspecAF = (tbrate, tbsize); and one output crisp

variable related to the AF Drop performance metric. VoIP tra�c aggregate of codec type

G711 and self-similar tra�c constrained by a token bucket mechanism compete for the node

output link.

Figure 5.4 illustrates a possible de�nition for the input membership functions of the

fuzzy prediction AF aggregate drop subsystem considering a single codec type (e.g., G711).

In �gure, the variable x corresponds to the number of VoIP �ows (NG711), the variable y

corresponds to merged token bucket rate (tbrate) and z corresponds to the merged token

bucket size (tbsize).

As shown in Figure, the EF load is mapped to four fuzzy sets: Low, Average, High and

Very High. The letters x1 and x10 correspond to �xed points and de�ne the universe of

discourse for the x variable. The AF tra�c speci�cation (tbrate and tbsize) is mapped

to three fuzzy sets: Low, Average and High. Similarly, the �xed points y1 and y7, and z1

and z7, de�ne the universe of discourse for y and z variables, respectively. The choice of

the number of fuzzy sets associated to each input variable is important. If too many fuzzy

sets are employed, there would be too many variables to be de�ned by the optimization

process, raising the risk of converging to a local minimum. If the number of fuzzy sets is

too small, it may not be possible to model important non-linearities in the queue behavior.

The importance of these choices will be illustrated in the examples discussed in Chapter 6.

Table 5.3 summarizes the 36 rules corresponding to the AF aggregate drop subsys-

tem. Each rule in the table reads as follows: IF NG711 (x) is Low AND tbrate (y) is Low

83

84 A New Method for Modeling Queue Behavior Chapter 5

µ v(x)

x

Low Very HighAverage

x3x1

Low HighAverage

y1

tspecEF

(NG711)

High

1

1

µ v1(x) µ v2(x) µ v3(x) µ v4(x)

µ r(y)
µ r1(y) µ r2(y) µ r3(y)

x2 x4 x6

x5 x7 x9

x8

y3

y2 y4 y6

y5 y7

Low HighAverage

z1

1

µ s(z)
µ s1(z) µ s2(z) µ s3(z)

z3

z2 z4 z6

z5 z7y z

x10

tspecAF
(tbrate)

tspecAF
(tbsize)

Figure 5.4: Con�guration for the AF aggregate drop subsystem

AND tbsize (z) is Low THEN fuzzyoutput is o111. The symbols oxyz correspond to the

fuzzy output variables. Because the membership functions of the input variables are �exible

enough to map the queue behavior of the network node, we have de�ned that the member-

ship functions for all output variables are singletons, which are also input variables for the

optimization problem.

As seen in Chapter 2, there are many defuzzi�cation methods discussed in the fuzzy

literature. Here, we have selected the COG method(section 2.3.4.2) whose operation is

simpli�ed due to the use of singletons as consequents. Thus, given the input variables

(x, y, z), representing the EF load and the AF load, the performance prediction is computed

by using the centroid method as follows:

dropcrispAF =

4∑
i=1

3∑
j=1

3∑
k=1

µvi(x) . µrj(y) . µsk(z) . oijk

4∑
i=1

3∑
j=1

3∑
k=1

µvi(x) . µrj(y) . µsk(z)

(5.3)

84

5.3 Building a Fuzzy Predictor 85

Table 5.3: Output membership functions for the AF aggregate drop subsystem

y −→ Low Average High

z −→ Low Avg High Low Avg High Low Avg High

x

Low o111 o112 o113 o121 o122 o123 o131 o132 o133

Avg o211 o212 o213 o221 o222 o223 o231 o232 o233

High o311 o312 o313 o321 o322 o323 o331 o332 o333

Very High o411 o412 o413 o421 o422 o423 o431 o432 o433

5.3.3 Formulation of the Optimization Problem

In order to employ the FP algorithm (see Chapter 4) to tune the fuzzy predictor parameters,

the following elements must be de�ned: the cost function, the variables being optimized and

the constraints de�ning "admissible solutions", i.e., the admissible limits for the variables

being optimized. The objective of the optimization problem is to minimize the fuzzy logic

prediction error, which can be expressed as follows:

e(s, v) = d̂crispAF (s, v) − d(s) (5.4)

where, v: a vector formed by the membership function parameters; s: a vector formed by

the input variables describing the tra�c conditions; d̂crispAF (s, v): the performance estimated

by the fuzzy predictor; d(s): the actual performance determined by simulation.

The vector s depends on the input variables considered for the fuzzy predictor. Con-

sidering the example of the membership functions for the AF aggregated drop performance

subsystem in Figure 5.4, the vector s is composed by the variables x, y and z, representing,

respectively, the number of VoIP �ows (NG711), the merged token bucket rate (tbrate) and

the merged token bucket size (tbsize).

The me metric de�ned in 5.5 expresses the quality of a fuzzy prediction. It is de�ned

by two components: the absolute estimation error and a penalization for under-estimating

the drop(i.e., the negative part of the error). The penalization weight is controlled by the η

parameter. The penalization is necessary because under-provisioning it would have a very

negative impact on the QoS guarantees, making the predictor useless. In our study we have

adopted η = 10.

85

86 A New Method for Modeling Queue Behavior Chapter 5

me(s, v) = |e(s, v)| + (e(s, v) < 0 ? (η . |e(s, v)|) : 0) (5.5)

The v vector is formed by the variables to be optimized. It corresponds to the parameters

that de�ne the input membership functions and the output singletons. Considering Figure

5.4 and Table 5.3, the v vector is de�ned as follows:

v = [x2 ... x9 y2 ... y6 z2 ... z6 o111 ... o433] (5.6)

In order to employ 5.5 to formulate an optimization problem, it is necessary to eliminate

its dependency on the tra�c conditions s. Our strategy to eliminate such dependency is to

de�ne two metrics for the overall prediction error: memax(v) and meavg(v), the �rst corre-

sponds to the maximum error performed by the fuzzy system and the second corresponds

to the average error.

The memax(v) is the most important metric, as it de�nes the maximum error performed

by the fuzzy predictor at a speci�c tra�c condition s∗. Because it corresponds to a single

point, it can be determined as an optimization process, avoiding an exhaustive search of the

load space. Themeavg(v) metric, on the other hand, o�ers no contribution to the fuzzy logic

prediction accuracy, but it permits to di�erentiate solutions with similar maximum errors.

The meavg(v) metric is very hard to compute, as it requires scanning the multi-dimensional

tra�c space. Because its impact is less important to the �nal result, we replace this metric

by an estimate easier to be computed. The estimation mêavg(v) computes the average error

using just some selected points of the load space.

We de�ne the cost function for the fuzzy system as a combination of memax(v) and

mêavg(v) metrics as follows:

fc(v) = memax(v) + ϕ .mêavg(v) (5.7)

The ϕ < 1 parameter controls the weight of the mêavg(v) metric. Considering the cost

function expressed in 5.7, the problem of de�ning an optimal fuzzy predictor consists of

�nding the optimal v∗ vector such as:

v∗ ∈ V and fc(v∗) = infv ∈V fc(v) (5.8)

When we deal with optimization problems, we have typically infeasible values that

should be discarded in order to avoid wrong convergence results. Normally, optimization

86

5.3 Building a Fuzzy Predictor 87

methods allow the speci�cation of constraints to face such issue. However, as discussed

in Chapter 4, the FP method does not allow constraints. In this case, we introduce a

penalization term, which is added to the �nal value of the cost function, to generate a worse

cost for such points with infeasible values, making them to be discarded by the optimization

algorithm. So, the optimization problem under constraints 5.8 must be replaced by another

one without constraints by introducing a penalization term g(v) to avoid infeasible solutions,

expressed as follows:

v∗ ∈ V and fc(v∗) = infv ∈V (fc(v) + δ . g(v)) (5.9)

An infeasible solution corresponds to a malformed membership function (e.g., a mem-

bership function with one or more discontinuity regions) or negative output singletons. The

parameter δ is used to weight the penalization term with respect to fc(v). It must be large

in order to avoid the convergence to an infeasible solution. In our work we have employed

δ = 10.

5.3.4 Fuzzy Design Procedure

The fuzzy design procedure consists of determining the v vector by solving the optimization

problem de�ned in 5.9. To solve this problem, the FP method requires computing the

cost function fc(v)(5.7) for every new candidate vertex v generated by the algorithm. As

said before, the main component of fc(v) is memax(v), i.e., the maximum prediction error

performed by the fuzzy logic de�ned by v. To determine memax(v), it is necessary to de�ne

the maximum prediction error at a speci�c tra�c condition by solving another optimization

problem, which can also be solved by the same PF method. In this case, the variables to be

optimized correspond to the tra�c conditions and the resulting performance, i.e., s → d(s).

To simplify the explanation that follows, we introduce the following notation:

• MFP (Membership FP): denotes the polyhedron used to determine the v∗ vector

corresponding to the optimal fuzzy predictor parameters;

• SFP (Simulation FP): denotes the polyhedron used to determine the tra�c conditions

s∗ → d(s∗) that correspond to the maximum prediction error for a given candidate

solution v generated by the MFP.

Note that the SFP is executed till the convergence for every new candidate solution

v generated by the MFP. Every SFP candidate solution s requires to run a simulation in

87

88 A New Method for Modeling Queue Behavior Chapter 5

order to determine the actual performance d(s). Without simpli�cations, the number of

simulations can be estimated as follows:

ns = avgCSMFP . avgCSSFP . S (5.10)

Where, avgCSMFP is the average number of candidate solutions generated by the MFP,

avgCSSFP is the average number of candidate solutions generated by the SFP, and S is the

number of simulations performed to reduce the seed in�uence. These numbers depend on the

parameters ε1 and ε2 (see expressions 4.17 and 4.18 in Chapter 4) used in the convergence

criteria expressions. The MFP needs to optimize the v vector, with tens of elements, and

the SFP needs to optimize the s vector with only a few elements, which depends on the

tra�c speci�cation. Therefore, the number of candidate solutions generated by the MFP is

higher (hundreds) than the SFP (tens).

Running a simulation is the most expensive procedure of our method. Therefore, some

simpli�cations have been introduced in order to reduce the overall number of simulations

performed during the optimization process. The simpli�cation consists of using a set of

load conditions to evaluate all candidate solutions generated by MFP, instead of running

the SFP for every new candidate. The load conditions test set is denoted as SLC .

By using this method, the solution v∗ obtained by the MFP is a local minimum, as it

only minimizes the error corresponding to some points of the load condition space. After the

MFP convergence, the SFP is executed in order to determine the true worst load condition

corresponding to v∗. If the load condition obtained by the SFP is not included in the SLC

set, it is included in the set and the MFP is repeated. The MFP optimizations are repeated

until no worst point could be found by the SFP.

The number of simulations required using this simpli�cation can be estimated by 5.11.

The variable avgCRMFP is the average number of MFP convergence repetitions until

the overall convergence criteria is achieved. Typically, avgCSMFP ≥ 100 . avgCRMFP .

Therefore, the reduction in the number of simulations ns is signi�cant.

ns = avgCRMFP . avgCSSFP . S (5.11)

Algorithm 2 presents the dual optimization approach including the simpli�cations.

88

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. 89

initialize the MFP repetition index i = 0;2.1

initialize the vector v1 considering arbitrary admissible values;2.2

initialize SLC with one or more arbitrarily chosen test points (s0):2.3

SLC = {s0 → d(s0)};
Initializes the MFP polyhedron around v1 as de�ned in equation 4.9 (Chapter 4);2.4

Determine the v∗ vector corresponding to the ith iteration (v∗i) by performing the2.5

MFP until the convergence;

Perform the SFP and determine the worst point si → d(si) for the current2.6

solution v∗i ;

if si ∈ SLC
a then2.7

Terminate;2.8

else2.9

Include the new point si → d(si) into the SLC set ;2.10

Set v1 = v∗i ;2.11

Increment the repetition index: i = i+ 1 ;2.12

Go to step 2.3 ;2.13

end2.14

Algorithm 2: Dual Optimization approach: MFP and SFP

aA point is considered included if its norm distance with respect to any other vector is less than 1%.

The following modi�cation in step 2.7 reduces the total number of simulations: the norm

distance in step 2.7 is initially set to 10%, when no point is included the norm distance is

reduced to 5%, and �nally, when no point is included the norm distance is reduced to 1%.

5.4 Building a Time Based Fuzzy Model for MVA approxi-

mation for Loss Pr.

5.4.1 Problem Statement

The self-similar tra�c model employed in this thesis follows the fractional Brownian Motion

(fBm) model proposed by Norros [38](see Section 3.2 in Chapter 3). Besides presenting

the tra�c model, Norros also develops an equation for estimating the probability of bu�er

over�ow θ of a queue subjected to the fBm tra�c. The equation 5.12 is de�ned in terms

of the capacity of the output link "C", the bu�er limit "x" and the fBm parameters "H",

"a" and "m", already de�ned in Section 3.2 in Chapter 3.

θ = exp
(
− (C−m)2H . x2−2H

2k(H)2 a .m

)
(5.12)

where k(H) = HH (1−H)1−H .

89

90 A New Method for Modeling Queue Behavior Chapter 5

This equation de�nes the fraction of time in which an in�nite queue spends above level

"x". It can not be used to predict the loss probability. Instead, it de�nes the probability

of a queue within an in�nite bu�er system to exceed a given bu�er size "x". However, Kim

and Shro� [87] have proposed the equation 5.13, which is an adaptation of the equation

5.12 in order to address �nite queuing systems.

ε = α . exp
(
− (C−m)2H . x2−2H

2k(H)2 a .m

)
(5.13)

where ε is the loss probability and α is the MVA 1 approximation for loss probability

that adapts equation 5.12 for �nite bu�er queuing systems, which is given by the following

equation:

α =
1

m
√

2π
.

[
exp (C−m)2

2 .m . a .

∫ ∞
C

(r − C) . exp (−(r −m)2

2 .m . a
) . dr

]
(5.14)

The study shown by Kim and Shro� is motivated by the fact that, asymptotically, the

loss probability for �nite bu�er systems and the tail probability curves for in�nite bu�ers are

quite similar. Figures 5.5 and 5.6 depict an example of the behavior of the loss probability

considering the use of equations 5.13 and 5.14. For each graph we consider the variation

of one parameter (x axis) while the others are �xed (indicated on the top). The parameters

a and H control the level of burstiness of the tra�c. The higher these parameters are, the

worst-behaved the tra�c is, what is denoted by corresponding higher loss probability values

in these Figures. As expected, we can see in Figure 5.6(a) that when the m parameter is

close to C, the loss probability increases exponentially towards an instability region. Also,

one can see in Figure 5.5(b) that the e�ect of the Hurst parameter in the loss probability

is more signi�cant for higher bu�er sizes, obviously because for lower bu�er sizes we have

higher loss rates regardless the value of H.

Inspite of being a good approximation for the actual behavior of a �nite queue fed by

a fBm source, by using equation 5.13, we have asymptotic values for loss probability, i.e.,

this equation provides a loss probability value for the long-term. However, suppose that

one service provider needs to obtain such value for the short-term. In this context, it is

expected that in the short-term 2 there exists a variability for loss probability values. This

1Maximum Variance Asymptotic
2The concept of long-term and short-term is vague. Here, we consider the short-term a time period in

which the system presents a variation of loss probability (among di�erent simulations) higher than a speci�c

limit.

90

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. 91

Figure 5.5: Example: Loss probability according to the MVA approximation analytical

model. (a) Variance coe�cient a (b) Bu�er Size x

scenario is illustrated in Figure 5.7, which is based on the analysis of simulation data

considering several points with distinct seeds. The straight line represents the crisp value

ε obtained from the analytical model. As it can be seen, the accumulated loss probability

variability is higher during the "short-term", which is denoted by the large widths of ranges

(dmin, dmax). During this time period, one can not assume the value ε as a precise result

for loss probability. On the contrary, when the system is close to the "asymptotic" region,

around the time tN , the variability is lower and the accumulated loss probability values

converge to ε.

Taking this statement into consideration, this thesis proposes a time based fuzzy model

for the MVA approximation for loss probability, i.e., we want to build a fuzzy model that

can be viewed as a "fuzzy adjusting coe�cient" for equation 5.13 for the short-term. As

it will be shown later, using a similar training strategy presented for the fuzzy predictor,

we employ simulations for building this time based fuzzy model, but, on the contrary, the

result is a fuzzy output that represents this adjusting coe�cient instead of an equation for

crisp values. Thus, we can de�ne our problem as follows:

ε̂ = F̂ (T,H) . ε (5.15)

The ε is the crisp MVA approximation for loss probability de�ned in equation 5.13.

F̂ (T,H) represents the proposed fuzzy model (whose result is a fuzzy set) for the adjusting

coe�cient. As seen, it depends on the time T and the Hurst parameter H. As a result, one

can obtain a "fuzzy version" of ε, denoted by ε̂. For the de�nition of F̂ we could have taken

91

92 A New Method for Modeling Queue Behavior Chapter 5

Figure 5.6: Example: Loss probability according to the MVA approximation analytical

model. (a) Mean input rate m (b) Hurst parameter H

into consideration the other parameters of 5.13, but we intentionally selected the Hurst

parameter, H, which is expected to have a considerable impact on the loss probability,

leaving the investigation of which other parameters should be included or not for a future

work.

5.4.2 Training Method

As de�ned in the previous section, here our method is employed for building a fuzzy system

capable of capturing the variability of loss probability values observed during the "short-

term" period in a queue fed by a fBm tra�c source. So, taking the fuzzy coe�cient F̂ (T,H),

it is possible to infer about the loss probability behavior by obtaining ε̂. In this �rst proposal,

considering the tra�c speci�cation described in terms of fBm parameters, the fuzzy system

takes as input the values of the Hurst parameter H and the time instant t ∈ T and outputs

the expected loss probability expressed in terms of a normalized probability distribution,

i.e., given a speci�c pair (T,H), the proposed fuzzy system outputs a normalized probability

distribution which represents the loss probability behavior for such pair.

As in the case of the fuzzy predictor, a training approach based on multiple simulations

will be employed again for obtaining the optimal F̂ (T,H). The input of the training problem

is the universe of discourse of T and H. The training method is now formulated as one

optimization problem, as de�ned before, the Membership Optimization (MFP), as shown in

Figure 5.8. Initially, all simulation points are generated considering the universe of discourse

92

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. 93

Loss
probability

t
1

T
t

2
t

3
t

4
................. t

N

ε

d
max1

d
min1

d
maxN

d
minN

Figure 5.7: Example: Accumulated loss probability variability illustration

of T and H. Then, the normalized probability distribution from fuzzy inference is obtained

for each point (T ,H) which is compared with the corresponding histogram computed from

simulations in order to calculate the overall error.

F T , H 
Universe of discourse
T , H

Traffic
Generator

 Histogram of
 simulation points

Queue Node
Simulator

Difference

Normalized probability
 distribution

Membership
Optimization

(MFP)

Error

Membership adjustment

initialization only

Figure 5.8: Optimization Training Method for the optimal F̂

5.4.3 The Fuzzy Coe�cient F̂

The Fuzzy Coe�cient F̂ represents an output fuzzy set that is generated by the fuzzy logic

system for the MVA approximation for Loss Probability. As it will be seen later, this output

93

94 A New Method for Modeling Queue Behavior Chapter 5

fuzzy set is used to obtain a normalized probability distribution expressed in terms of loss

probability values, which represents the output of the fuzzy system. The proposed FLS is

illustrated in Figure 5.9. As shown, the FLS receives as input variables a speci�c time

instant t ∈ T and the value of the Hurst parameter H. It outputs a normalized fuzzy

set for the Loss Probability for this pair (t,H). In this case, normalized means that loss

probability values, d1, d2, d3,, are expressed as a ratio of ε, as denoted in equation 5.15.

It is important to note the advantage of having an output fuzzy set as a result. Considering

a future utilization of such results, the choice of the defuzzi�cation method in order to have

a crisp value for loss probability is an option of the speci�c application scenario. As shown

in Chapter 2 section 2.3.4, there are several defuzzi�cation methods, which di�er in terms

of complexity and accuracy.

Fuzzy Inference

Fuzzy Rules

Fuzzifier

Input Fuzzy
membership

values

Fuzzy Logic System for MVA approximation for Loss Probability

Crisp Inputs

T

H
 Loss
 d

1
 d

2
d

3
 d

4
........

Implied Output Fuzzy Set

 μ

Figure 5.9: FLS for the MVA approximation for Loss Probability

Our strategy for obtaining F̂ is based on the speci�cation of a normalized probability

distribution as employed by the BADD method (see section 2.3.4.2). In [31, 88], Filev and

Yager show that the di�erence between two common defuzzi�cation methods, COA and

MOM (see Section 2.3.4 of Chapter 2), lies in the procedure used to obtain the probability

distributions from the fuzzy sets. They also show that with the help of the BADD trans-

formation it is possible to obtain these more speci�c methods. In order to understand this

concept, consider the following example: Suppose a fuzzy set Ω and a discrete variable x

whose universe of discourse is {1, 2, 3, 4, 5}, where Ω(x) denotes the degree of membership

of x in Ω. Also, consider the following de�nition of Ω(x):

Ω(x) = {0.2
1 ,

0.4
2 ,

0
3 ,

0
4 ,

1
5}

we have, for instance, Ω(1) = 0.2.

94

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. 95

The normalized probability distribution of Ω(x) can be expressed as follows [88]:

P (xi) =
Ω(xi)∑
i

Ω(xi)
(5.16)

which result is:

P (1) = 0.125 , P (2) = 0.25 , P (3) = P (4) = 0 , P (5) = 0.625

Based on such concept for generating normalized probability distributions using fuzzy

sets, our proposed FLS employs ranges expressed in terms of loss probability values for

modeling the output variable. We obtain a speci�c normalized probability distribution for

each pair (t,H), where the weight of each range is determined by fuzzy inference for this

pair. Thus, for a given time t ∈ T and a Hurst parameter H it is possible to obtain a

normalized probability distribution, which allows one to infer about the loss probability

behavior for the pair (t,H). In order to illustrate our approach, consider the example 3

shown in Figure 5.10. The input variable T (5.10(a)) has three membership functions:

range1, range2 and range3, where each one corresponds to a range within the universe

of discourse of the output variable loss probability d (5.10(c)). These input membership

functions are used to determine the weight of the corresponding loss probability ranges

for each point t. The input variable H has only one membership function, the singleton

H1(5.10(b)). It is important to note that the loss probability ranges are de�ned speci�cally

for such singleton, as it is illustrated in the indexes of the values di,H1 .

The resulting output fuzzy set for the pair (t1, H1) is depicted in Figure 5.10(d). As

can be seen in Figure 5.10(a), t1 has the following degrees of membership for the considered

membership functions: range1(t1) = 1, range2(t1) = 0.3 and range3(t1) = 0. According to

the presented approach, the resulting normalized output fuzzy set has the following values

for each range: p1 = 0.77, p2 = 0.23 and p3 = 0, which means that at time instant t1 there

is a 0.77 probability for a loss probability value to be within (d1, d2), whereas a 0.23 value

to be within (d2, d3). Also, there is a zero probability assigned to range3.

Figure 5.11 illustrates a possible de�nition for the input and output membership

functions for the F̂ fuzzy logic system. The input variable H is modeled using single-

tons(5.11(b)). As shown in Figure 5.11(a), the input variable T is mapped to �ve fuzzy

3This example is a simpli�ed version of the proposed modeling in order to illustrate the fuzzy inference

process and the corresponding resulting output fuzzy set.

95

96 A New Method for Modeling Queue Behavior Chapter 5

range1

range2

 t
1
 T

μ(T)

 1

 H1

μ(H)

 1

 H

0.3

range3

 (a) (b) (b)

d

Loss
Probability

μ(d)

 d
1,H1

d
2,H1

 d
3,H1

 d
4,H1

 p
1
 p

2
p

3

321

 (c)

d

Loss
Probability

μ(d)

 d1,H
1
 d2,H

1
 d3,H

1
 d4,H

1

 p1

2

1

 (d)

0.77

0.23
 p2

Figure 5.10: Example: Illustration of the fuzzy inference process for generating the nor-

malized probability distribution for loss probability. Input Membership Functions: (a) T

(b) H. Output Membership Functions: (c) Loss Probability Ranges (d) Resulting Implied

Output Fuzzy Set.

sets: range1, range2, range3, range4 and range5. The position, width and height of each

one are merely illustrative, since the values will be optimized. The membership function

range3 is modeled with the half-trapezoidal shape, whereas the others have the trapezoidal

shape. This is because the ranges are de�ned based on the dispersion of loss probability

values along the time T . We de�ne range3 as the asymptotic range, i.e., it is expected that

all loss probability values will be within this range when the system achieves the stability re-

gion, which includes, obviously, the crisp value ε provided by the analytical model MVA for

loss probability. Around this range, range2 and range4 represent two intermediate ranges

for regions that have an average degree of dispersion and, �nally, the last two, range1 and

96

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. 97

range5, for the cases of high degree of dispersion. The membership function range3 has

a di�erent shape because we naturally consider that this range is the most expected to

appear, i.e., this range is always active most of the time, while the other ranges gradually

lose their importance in terms of the number of expected values.

The output variable d (loss probability) is speci�ed in terms of loss probability ranges

(5.11(c)), as discussed previously. For this �rst study, we have �ve ranges: {[d1,i, d2,i),

[d2,i, d3,i), [d3,i, d4,i), [d4,i, d5,i), [d5,i, d6,i]}. The variable i represents an index for the number
of H values. Here, we assume four di�erent H values, so we have i = {1, 2, 3, 4}. For each
loss probability range we have the terms {p1,i, p2,i, p3,i, p4,i, p5,i}, which represent the output
values generated by fuzzy inference. After having such values, we apply equation 5.16 in

order to obtain a normalized probability distribution to calculate the correct weight of each

range. Table 5.4 presents the 20 rules corresponding to the F̂ fuzzy logic system.

range3

range4range2 range5range1

 T

μ(T)

 H1 H2 H3 H4

 1

μ(d)

H

μ(H)

 1

d

Loss
Probability

 d1,i d2,i d3,i d4,i d5,i d6,i

λ5i λ2i λ4i λ1i

v1 v2 w1 w2 w3 w4 x
1

 x
2

 x
3

 x
4

 y
1

 y
2

 y
3

 y
4 z

1
 z

2
 z

3
 z

4

 H

tmax

p1,i p2,i p3,i p4,i p5,i

3 4 521

(a)

 (b) (c)

Figure 5.11: Input and Output Membership Functions for the F̂ coe�cient

97

98 A New Method for Modeling Queue Behavior Chapter 5

Table 5.4: Rule Set for the F̂ fuzzy logic system

Range −→ Range1 Range2 Range3 Range4 Range5

H

H1 (d1,1, d2,1) (d2,1, d3,1) (d3,1, d4,1) (d4,1, d5,1) (d5,1, d6,1)

H2 (d1,2, d2,2) (d2,2, d3,2) (d3,2, d4,2) (d4,2, d5,2) (d5,2, d6,2)

H3 (d1,3, d2,3) (d2,3, d3,3) (d3,3, d4,3) (d4,3, d5,3) (d5,3, d6,3)

H4 (d1,4, d2,4) (d2,4, d3,4) (d3,4, d4,4) (d4,4, d5,4) (d5,4, d6,4)

A key issue of this proposal is the �exibility given for the optimization algorithm to

de�ne the membership functions. In this case, ∀ t ∈ T , the optimization algorithm must

�nd an optimal con�guration for membership functions in order to provide the best results

in terms of normalized probability distributions of loss probability d, according to expression

5.15. Initially, we can not infer about the degree of membership values of t in the respective

ranges, i.e., given a t ∈ T we want to know the corresponding distribution of d within the

ranges. Each t point can have loss probability values distributed in di�erent ranges. This is

the main issue of the optimization problem. Hence, the membership function points of the

input variable T , {v1, v2, w1, w2, w3, w4, x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4} can assume

any value within the universe of discourse of T 4. Figure 5.12 shows an example of one

possible result of membership functions of T after optimization phase. As shown, we have

a high degree of overlapping, and di�erent time points for each one. For example, range1

starts at t2 and �nishes at t5. As shown in this Figure, after t8 all points have a 100% degree

of membership in range3, i.e., ∀ t > t8 we have range3(t) = 1 and 0 for the other ranges.

This is the case of tb. This means that, according to the fuzzy model, it is expected that

∀ t > t8, all loss probability values are within the range3. For ta, we have range3(ta) = 1,

range4(ta) = 0.65 and range5(ta) = 0.18, and 0 for the other ranges. Applying equation

5.16 in order to obtain the corresponding normalized probability distribution, it is expected

the following distribution of loss probability among ranges for ta according to the fuzzy

model: range3 = 54.64%, range4 = 35.52% and range5 = 9.84%. Thus, one can infer

about the queue behavior in terms of loss probability.

Another important issue related with our strategy is the adjusting of the height of

4Obviously, we also consider the restrictions involving the membership shapes. For example, for range1

we have w1 < w2 < w3 < w4.

98

5.4 Building a Time Based Fuzzy Model for MVA approximation for Loss Pr. 99

range
3

 T

μ(T)

 1

range
1

range
2

range
4

range
5

 t
1
 t

2
 t

3
 t

4
 t

5
 t

6
 t

a
 t

7
t
8

t
b

0.65

0.18

Figure 5.12: Example: Illustration of membership functions of T after optimization phase

the membership functions range1, range2, range4, and range5. Despite the possibility

of optimizing the points in the T axis, allowing the FP algorithm to change the height of

membership functions permits a �ne-grain adjustment, which contributes to the convergence

process. In this case, only the membership function range3 is modeled as a normal fuzzy

set, while the others can be seen as subnormal fuzzy sets, because they may have their

maximum degree of membership lower than 1. Each one has multiplier coe�cients, which

we de�ne as {λ1i, λ2i, λ4i, λ5i}. The coe�cient λRi, 0 ≤ λRi ≤ 1, represents a multiplier

for the corresponding membership functions. R denotes the number of the range and i is

the index that represents the corresponding H value. For example, for range1 and H1, we

have (λ11.range1(t)) to express the degree of membership of any t in the fuzzy set range1

for 0 ≤ t ≤ tmax, where the latter is the universe of discourse of t ∈ T . As it can be

noted, there is no λ3i for range3, because of the strategy employed for de�ning the ranges,

as discussed above.

5.4.4 Formulation of the Optimization Problem

The objective function of the optimization problem is to minimize the error between the his-

togram of loss probability values obtained from simulations and the corresponding normal-

ized probability distribution obtained from the fuzzy inference for ∀ t ∈ T , both considering

the same T ranges rangek. In order to formalize our proposal consider the following de�ni-

tions: Let 4t to be the time step for tj within the universe of discourse of T , 0 ≤ t ≤ tmax.

99

100 A New Method for Modeling Queue Behavior Chapter 5

In this case, we have {tj , tj+1, ..., tN} where, t0 = 0, tN = tmax and tj = tj−1 + 4t for
1 ≤ j ≤ N . Also, let M and R denote the number of Hurst parameter values and the

number of ranges, respectively. So, the objective of the optimization problem is to minimize

the following expression, which also represents the cost function:

fc(v) =
M∑
p=1

R∑
k=1

N∑
j=1

|Ωp
k(tj , v) − Ψp

k(tj) | (5.17)

where: v is a vector formed by the membership function parameters; Ψp
k(tj) corresponds

to a normalized value obtained from the histogram given by simulation point tj for range

k and H value p. Ωp
k(tj , v) corresponds to the output value obtained from the normalized

probability distribution given by fuzzy inference using F̂ for the same point tj , range k andH

value p, and membership function parameters v. The v vector is formed by the variables to

be optimized. It corresponds to the parameters that de�ne the input membership functions

of T . Considering Figure 5.11, the v vector is de�ned as follows:

v = [v1 v2 w1 ... w4 x1 ... x4 y1 ... y4 z1 ... z4 λ1p λ2p λ4p λ5p] (5.18)

where p was de�ned in equation 5.17.

Note that the output membership parameters in Figure 5.11, i.e., loss probability range

values, as well as H membership functions parameters are not optimized; they are only

employed as inputs to optimize v. Also, observe that the number of λ multipliers depends

on the number of H values of the optimization problem.

The problem of de�ning an optimal F̂ consists of �nding the optimal v∗ vector such as:

v∗ ∈ V and fc(v∗) = infv ∈V fc(v) (5.19)

Due to the FP algorithm, as in the case of the fuzzy predictor, 5.19 must be replaced by

another one without constraints by introducing a penalization term g(v) to avoid infeasible

solutions, expressed as follows:

v∗ ∈ V and fc(v∗) = infv ∈V (fc(v) + δ . g(v)) (5.20)

Again, the parameter δ is used to weigh the penalization term with respect to fc(v). It

must be large in order to avoid the convergence to an infeasible solution. In this work we

have employed δ = 10.

100

5.5 Conclusion 101

5.4.5 Fuzzy Design Procedure

The fuzzy design procedure consists of determining the v vector by solving the optimization

problem de�ned in 5.20. To solve this problem, the FP method requires computing the

cost function fc(v)(5.17) for every new candidate vertex v generated by the algorithm.

Di�erent from the case of the fuzzy predictor, we have now only one optimization problem,

which will be performed by the MFP (Membership FP), which denotes, as before, the

polyhedron used to determine the v∗ vector corresponding to the optimal F̂ . The number

of simulations can be expressed as follows:

ns = S .M (5.21)

where, S is the number of simulations with distinct seeds 5 and M is the number of H

values. Fortunately, the simulations cited in equation 5.21 are not repeated according to

the number of candidate solutions generated by the MFP, as it occurs in the case of the

fuzzy predictor, because here we don't have the SFP procedure. Thus, before starting the

MFP procedure, we obtain these data points, denoted as Dj,p,g
6, where g = 1..S represents

the index for the number of simulations performed with distinct seeds. For each pair (p, g),

we compute the accumulated loss rate at each time tj along an unique simulation run whose

duration is the universe of discourse of T .

Algorithm 3 summarizes the optimization procedure for obtaining the optimal F̂ .

initialize the vector v1 considering arbitrary admissible values;3.1

initialize the vector Dj,p,g with simulation data points for 1 ≤ j ≤ N ,3.2

1 ≤ p ≤M and 1 ≤ g ≤ S where N , M and S are de�ned as the number of t

points, the number of H values and the number of simulations performed,

respectively ;

Initializes the MFP polyhedron around v1 as de�ned in equation 4.9 (Chapter 4);3.3

Determine the v∗ vector by performing the MFP until the convergence;3.4

Algorithm 3: Optimization approach for obtaining the optimal F̂

5.5 Conclusion

In this Chapter, we presented the proposal of a new method for modeling queue behavior of

network nodes aiming to provide a methodology for building the corresponding performance

5In this case, the proposed fuzzy model will capture the loss probability variability using S distinct seeds
6j and p were de�ned in equation 5.17

101

102 A New Method for Modeling Queue Behavior Chapter 5

models. As we saw, one of the contributions of this method is to take into account many

complex issues faced in typical network deployment scenarios, where it is typically di�cult

to develop an analytical model. Based on a general o�-line procedure, the proposed method

combines non-linear programming (NLP) and simulation to build a fuzzy logic based model

capable of determining the performance of a network node. Also, it introduces a training

methodology that allows the utilization of any type of performance metric. In the literature,

we can �nd two main research domains on fuzzy logic related with our work. In the �rst

domain, the focus is typically on extending existing queue models to provide performance

measures expressed by membership functions, whereas the other fuzzy models are used to

building active network tra�c controllers.

Taking into account the approach employed for modeling the consequents of fuzzy rules

and the corresponding application scenarios, we divided the presentation of our method

into two di�erent parts. In the �rst, we proposed a fuzzy predictor which is based on a

dual o�-line optimization training method. Such training approach is performed by solving

two simultaneous �exible polyhedron optimization problems. We showed that the proposed

fuzzy predictor can be employed to determine optimal values that could be used for the con-

�guration of network nodes, with important applications on tra�c engineering and capacity

planning. For example, we showed an application scenario considering a multi-queue node

where it is necessary to determine how much tra�c could be accepted without compromising

the performance objective of the service classes assigned to the queue. In the second part,

we presented the proposal of a time based fuzzy model for the MVA approximation for loss

probability analytical model. As we saw, such analytical model is a good approximation

for �nite bu�ers by providing an asymptotic value for loss probability. In this case, we pre-

sented a fuzzy logic model that could be viewed as a fuzzy adjustment coe�cient in order

to capture the loss probability variability observed before the system achieves the stability

region. We proposed a training strategy based on normalized probability distributions ob-

tained from fuzzy inference and histograms calculated from self-similar tra�c simulations

in order to solve a �exible polyhedron optimization problem for the proposed time based

fuzzy model.

102

Chapter 6

Evaluation

6.1 Introduction

A
s shown in Chapter 5, the method proposed in this study combines non-linear

programming and simulation to build a fuzzy based model of a network node. In this

Chapter, we present the validation of the proposed method considering the implementation

of application scenarios according to both strategies presented in Chapter 5. Section 6.2

illustrates how the method described can be employed to de�ne a fuzzy-based performance

model for a multi-queue node considering two subsystems, AF Drop Subsystem and EF

Delay Subsystem. Section 6.3 shows the implementation of the proposed fuzzy model for

the MVA approximation for loss probability analytical model.

6.2 Validation of the Fuzzy Predictor

Figure 6.1 illustrates the sample scenario for the Fuzzy Predictor evaluation. This scenario

is employed for the evaluation of two di�erent subsystems. We consider the performance

modeling of a Di�Serv node composed by three queues, named EF, AF and DF. The EF

queue receives only VoIP tra�c, and the AF and DF queues receive self-similar tra�c. The

AF queue receives a portion of these self-similar tra�c which conforms to a token-bucket

�lter conditioner. The DF queue receives the tra�c that exceeds the token-bucket limits. In

this scenario we are interested in evaluating the EF queue performance expressed in terms

of the maximum per-�ow delay and the AF queue performance expressed in terms of the

aggregated drop. Training the fuzzy predictor for each of the metrics corresponds to an

103

104 Evaluation Chapter 6

independent problem, and distinct membership functions are employed.

DiffServ Node

EF queue

AF queue

Pr
io

rit
y

Q
ue

ui
ng

DF queue

Output Link

self-
similar
source

VoIP
source

m=0.9× tbrate

conditioner

NG711

AFD, ton, toff

tbsize

H,a

conform

excess

Aggregated
Drop

Per-flow
Delay

quantile

OLR

input variable

fixed parameters

NG726

AQL

EQL

NG711
NG726

m=0.9 tbrate

Figure 6.1: Evaluation scenario for the Fuzzy Predictor

6.2.1 AF Drop Subsystem

In this �rst example, we are interested in evaluating how much tra�c can be accepted

by a node without leading to an excessive drop level in the AF queue. In this scenario,

we consider only one type of codec (G711) assigned to the EF queue and a token bucket

conditioned tra�c assigned to the AF queue. As the EF queue is a high priority queue, the

drop level experienced by the AF queue is strongly in�uenced by both, the VoIP tra�c level

and the AF tra�c level. The drop is represented in terms of the ratio between the packets

accepted in the AF queue and the packets dropped by exceeding the 250 ms limit. Because

the training method is based on simulation, the drop level is computed considering several

simulations with distinct seeds (in this example, �ve simulations). It is in fact calculated

by considering the maximum drop with a con�dence interval of 97.5%.

Because the token bucket �lter permits the conditioning of tra�c with di�erent levels of

burstiness, this fuzzy predictor would be quite generic, being capable of representing a wide

range of applications. As explained in the Chapter 3, the self-similar source is de�ned by

three parameters: m, a and H. The a and H parameters are usually de�ned by observing

the tra�c behavior in a real network. In this work, we have adopted a = 275 kbit.sec

and H = 0.76, as used by Norros in the sample simulation [38]. In order to eliminate the

dependence of the m parameter during the training process of the fuzzy predictor, we have

(arbitrarily) �xed the following relation: m = 0.9 tbrate. Note that assuming m is much

104

6.2 Validation of the Fuzzy Predictor 105

greater than the rate can lead to a CBR tra�c without burst periods. Choosing m when it

is much smaller than the rate will not properly represent the amount of tra�c de�ned by the

token-bucket. Indeed, this parameter is uncontrollable. It depends on the user behavior.

The fuzzy predictor will be trained with the following input variables:

• Number of G711 VoIP �ows (voip): universe of discourse (0 to 3000);

• Token bucket rate (tbrate): universe of discourse (0 to 1) (Normalized by the output

link rate);

• Token bucket size (tbsize): universe of discourse (0 to 500).

Additionally, this scenario considers the following �xed parameters:

• Output link rate (OLR): 100 Mbps

• Maximum AF queue-length (AQL): 250 ms

• Maximum EF queue-length (EQL): 50 ms

• Average Flow Duration (AFD): 210 s

• VAD e�ect: ton = 0.4s and to� = 0.6 s

• G711 VoIP �ow [43]: PDU Length=200 bytes, Packet rate=50 packets/s.

Each G711 VoIP �ow is implemented according to [43].

Figure 6.2 shows the convergence results obtained for the membership functions repre-

senting the input variables.

The graph representing the relationship between input variables, and the corresponding

output is a four dimensional graph, i.e., {tbsize X tbrate X voip} → drop. In order to

illustrate the fuzzy prediction results, we have selected some three-dimensional cuts of the

prediction space, as illustrated in Figures 6.3 and 6.4. Figure 6.3 illustrates the e�ect of

the token bucket rate and number of VoIP �ows for two distinct token bucket sizes: 500

MTU and 0 MTU. As expected, a larger token bucket size leads to an increased drop level,

i.e., it is possible to accept more tra�c when the token bucket size is smaller.

Figure 6.4 illustrates the e�ect of the token bucket parameters for two distinct levels

of VoIP load: 1000 and 2000 �ows. Again, in both �gures, the e�ect of the token bucket

size is very clear (please note the distinct ranges in the drop axis). It can also be observed

that the number of fuzzy sets for the input variable token bucket size should be increased,

as the e�ect of this input variable is represented by rough steps, instead of being smooth.

During the training process, 149 test points were generated. These test points cor-

respond to the maximum prediction errors determined by the SFP algorithm during the

105

106 Evaluation Chapter 6

Figure 6.2: AF drop subsystem input membership functions

training process. The Figure 6.5 (left side) illustrates the histogram representing the error

prediction distribution for the test points. One thing to note here is that the maximum

prediction error was about 20%, and most of the test points presented a error inferior to

2%. It is important to observe that the fuzzy predictor was trained to never present an

under-estimate, i.e., the tra�c engineer can expect that the drop level be inferior to the

prediction with a con�dence level of 97.5%. Considering the tra�c variability among suc-

cessive simulations (captured by using distinct seeds in the tra�c modeling), to achieve a

zero error is virtually impossible. However, it is possible to improve the results, by choosing

a more �exible set of membership functions. The right side of Figure 6.5 illustrates the

distribution of the test points in the solution space.

6.2.2 EF Delay Subsystem

In this second example, we are interested in evaluating how much tra�c can be accepted

by a node without leading to an excessive delay in the EF queue. We consider two types of

106

6.2 Validation of the Fuzzy Predictor 107

Figure 6.3: In�uence of the token bucket rate and number of VoIP �ows on the AF drop

codecs (G711 and G726) assigned to the EF queue. Because the EF queue is served with

strict priority, there is no signi�cant in�uence of the AF tra�c on the EF delay. In fact,

if the AF in�uence is ignored during the training process, the maximum prediction error

introduced is only 0.12 ms (for an output link with a rate of 100 Mbps and AF packets

limited by a MTU of 1500 bytes). Therefore, the AF tra�c is not considered in this example.

As discussed in Chapter 3, the delay experienced by individual VoIP �ows can diverge with

respect to the delay experienced by the aggregated tra�c. In order to permit the tra�c

engineer to de�ne how much tra�c can be accepted by a node, the fuzzy predictor will

output the maximum per-�ow delay experienced by any VoIP �ow in the EF aggregate.

In most network agreements, the per-�ow delay is computed for a quantile of packets in

a �ow. The higher the quantile, the closer the maximum per-�ow delay will approach the

maximum aggregated delay.

Considering this scenario, the fuzzy predictor will be trained with the following input

variables:

• Average EF load: universe of discourse (0.9 to 1);

• Proportion of VoIP �ows using G711 codec: universe of discourse (0 to 1);

• Per-�ow delay quantile: (0.97 to 1).

The Average EF load range was selected in order to make evident the region in which

the resulting performance is useful. As it will be shown later, for EF load lower than 0.9,

the EF delay in terms of per-�ow requirements is negligible, making no sense to optimize

membership functions for representing a region where the values could be easily estimated.

107

108 Evaluation Chapter 6

Figure 6.4: In�uence of the token bucket rate and token bucket size on the AF drop

Because we have a VoIP aggregate formed by �ows of two codec types, the EF load

represents the aggregate load considering VoIP �ows from both codecs. The number of

�ows of each codec is captured by the performance model using the metric G711 proportion,

which is equal to "1" when this aggregate is formed only by G711 �ows, "0" is formed only

by G726 �ows and proportional values for the other cases.

Additionally, this scenario considers the following �xed parameters:

• Output link rate (OLR): 100 Mbps;

• Maximum EF queue-length (EQL): 50 ms;

• Average Flow Duration (AFD): 210s;

• VAD e�ect: ton = 0.4s and to� = 0.6s.

• G711 VoIP �ow [43]: PDU Length=200 bytes, Packet rate=50 packets/s;

• G726 VoIP �ow [89]: PDU Length=120 bytes, Packet rate=50 packets/s.

Note that we have not employed the number of �ows (NG711 and NG726) as input

variables, because it could lead to situations where the link capacity is largely overloaded

(i.e., when the number of VoIP �ows using both codecs is simultaneously large). Instead, we

have used two arti�cial variables to represent the VoIP tra�c load. The �rst input variable,

EF load, is calculated considering the average bandwidth occupied by the aggregate VoIP

stream. The second variable, G711 proportion, represents the proportion of �ows using the

G711 codec (i.e., when the proportion is 1, all �ows are G711, and when the proportion

108

6.2 Validation of the Fuzzy Predictor 109

Figure 6.5: Error prediction histogram for the AF drop test points

is 0, all �ows are G726). The third variable, Per-�ow quantile, de�nes the quantile to be

considered when observing the per-�ow delay. Figure 6.6 shows the convergence results

obtained for the membership functions that represent the input variables.

Again, the graph representing the relationship between input variables, and the corre-

sponding output is a four dimensional graph, i.e., {EF load X G711 proportion X Per-�ow

quantile} → delay. In order to illustrate the fuzzy prediction results, we have selected some

three-dimensional cuts of the prediction space, as illustrated in Figures 6.7 and 6.8. Figure

6.7 illustrates the e�ect of the EF load and the codec type on the per-�ow delay, for two

quantile levels: 0.97 and 1.0. One can observe in the �gure that the type of codec has an

important in�uence on the number of �ows that can be accepted without leading to an

excessive delay. For the same link occupation, the G726 codec clearly presents less delay

than the G711 codec. The e�ect is more signi�cative for lower quantiles. Note that when

considering a 1.0 quantile, the per-�ow delay is actually equivalent to the aggregated delay,

as it represents the maximum delay experienced by any packet in the EF aggregated.

Figure 6.8 illustrates the e�ect of the per-�ow quantile and the proportion of codec

type for two levels of link occupation: 0.92 and 0.96. Again, one can observe that when the

per-�ow quantile is considered, it is possible to accept more tra�c without leading to an

excessive delay.

During the training process, 187 test points were generated. These test points cor-

respond to the maximum prediction errors determined by the SFP algorithm during the

training process. Figure 6.9 (left side) illustrates the histogram representing the error pre-

diction distribution for the test points. One notes that the maximum prediction error was

109

110 Evaluation Chapter 6

Figure 6.6: EF per-�ow delay input membership functions

about 8 ms. Again, it is important to observe that the fuzzy predictor was trained to never

present an under-estimate, i.e., the actual delay is expected to be inferior to the predicted

ones in 97.5% of the cases. The right side of Figure 6.9 illustrates the distribution of the

test points in the solution space.

6.2.3 Comparison with Theoretical Models

As discussed in Chapter 5, to the extent of our knowledge, there is no work in the literature

that has addressed the problem of building fuzzy models for predicting queue performance

using an o�-line training process, the closer matches being those works that develops a fuzzy

model to represent existing analytical queue models. However, the queue models addressed

in these works are not applicable in our examples. For this reason, we compare in this

section the results obtained with our approach with respect to existing analytical queue

models that are closer to our examples. We have considered two types of tra�c: self-similar

tra�c conditioned by a token-bucket �lter and ON-OFF tra�c (i.e., VoIP with VAD).

The self-similar tra�c model was presented in Chapter 3. Unfortunately, equation 5.12

110

6.2 Validation of the Fuzzy Predictor 111

Figure 6.7: In�uence of the link occupation and codec type on the EF delay

in Chapter 5 does not apply for the tra�c conditioned by a token bucket �lter. However,

according to [90], it is possible to determine how much tra�c is a�ected by the token

bucket �lter, by replacing the parameters C by the token-bucket rate (tbrate) and x by

the token bucket size (tbsize). As we have �xed the relation m = 0.9 tbrate, we obtained

the curve illustrated in Figure 6.10. According to the curve, the self-similar tra�c is

barely conditioned for high values of tbsize and tbrate. In this region, the token bucket is

expected to have a negligible e�ect, and all self-similar tra�c is injected into the network.

The example in section 6.2.1 has con�rmed this e�ect, and justi�es our choice of the

universe of discourse for the variable tbsize. By selecting points in this region, we are able

to proceed with the comparison.

Figure 6.11 illustrates a comparison of the prediction error obtained by the MVA

Approximation for loss probability theoretical model, as de�ned in equations 5.13 and

5.14 of Chapter 5, and the fuzzy model, considering the test points obtained in the scenario

of the AF Drop Subsystem. Because these equations are only applicable to a "pure" self-

similar scenario, we have subtracted the average bandwidth obtained by the VoIP tra�c

from the link capacity for the test points where VoIP tra�c was present. Also, to remain

within the validity limits of the analytical model, we have selected only the test points that

satisfy two conditions: m < C and tbsize and tbrate values such that the token bucket

e�ect is negligible (tbsize and tbrate values for which the bu�er over�ow probability under

1% in Figure 6.10). This resulted in 60 out of 149 tests points being considered in Figure

111

112 Evaluation Chapter 6

Figure 6.8: In�uence of codec distribution and per-�ow quantile on the EF delay

6.11. The �gure shows that, for this restricted zone, the prediction error for both models is

quite similar. The comparison also indicates a bit higher inaccuracy for low drop probability

predictions performed by the fuzzy model. It is important to note that this e�ect can be

reduced by increasing the number of fuzzy sets.

In the example of the EF Delay Subsystem, the EF queue is submitted to a tra�c com-

posed by the combination of ON-OFF aggregates. The commonest packet loss model for

an ON-OFF input tra�c comes from equivalent bandwidth studies, which is the charac-

terization of the minimum required bandwidth for this input tra�c, such that the packet

loss requirement is met. In the following, we compare the results of our predictor with the

equivalent bandwidth model proposed by [91]. According to this model, the equivalent

bandwidth is calculated as a minimum of two expressions, the �rst derived as an approxi-

mation of the stationary bit rate distribution and the other derived by the �uid-�ow model

approach. Considering the following parameter for the input tra�c, bu�er over�ow prob-

ability ε for a bu�er size b, mean m and standard deviation σ of the aggregate bit rate,

individual �ow peak rate R, and active (ton) and idle (toff) time of individual ON-OFF

�ows, the equivalent bandwidth is given by:

112

6.2 Validation of the Fuzzy Predictor 113

Figure 6.9: Error prediction histogram for the EF delay test points

EB = Min

(
m +

√
−2.ln(ε) − ln(2.π) . σ ,

N∑
i=1

ĉi

)
(6.1)

where:

ĉi =
α.ton.(1 − ρ).R − b +

√
[α.ton.(1 − ρ).R − b]2 + 4.b.α.ton.(1− ρ).R

2.α.ton.(1− ρ)
(6.2)

with:

α =
1
ε

, ρ =
ton

ton + toff
(6.3)

We can use equation 6.1 to estimate the delay experienced by a percentage of the

VoIP tra�c by determining the bu�er size that satis�es the inequality EB ≤ link capacity.

This equation can be solved only when the average bandwidth occupied by the VoIP tra�c

is inferior to the link capacity, which corresponds to the universe of discourse adopted

in the EF delay subsystem example. Therefore, we can consider the totality of the test

points employed in this example. Figure 6.12 illustrates the error prediction obtained

by the corresponding test points. In this case, the theoretical model overestimates and

underestimates the actual delay determined by simulation. The underestimates are not

surprising, as the metric determined by simulation was the per-�ow delay, which is, in most

cases, higher than the aggregated delay determined by equations 5.13 and 5.14 in Chapter

5. The overestimates seems to be related to the failure of the theoretical model in capturing

113

114 Evaluation Chapter 6

Figure 6.10: Probability of the token bucket �lter to constrain the self-similar tra�c when

m=0.9 C

simultaneously the e�ects of multiplexing gain and bu�ering, which is a known problem in

the literature.

6.2.4 Algorithm Performance

The training method performs a dual-optimization procedure to obtain the parameters

of the fuzzy predictor. The MFP that adjusts the fuzzy logic parameters to minimize

the prediction error and the SFP that �nds the set of load conditions that maximize the

prediction error. As pointed out, the simulation is the most expensive procedure of the

algorithm. Considering the de�nitions supplied in Chapter 5 section 5.3.4, the overall

convergence time can be estimated by the following equation:

tc = avgCRMFP . (tavgCMFP + tavgCSFP) (6.4)

Recall that the variable avgCRMFP is the average number of MFP convergence repe-

titions until the overall convergence criteria are achieved. The variable tavgCMFP is the

average time for obtaining a convergence for a given set of test points SLC . It represents

114

6.2 Validation of the Fuzzy Predictor 115

Fuzzy ModelFuzzy ModelTheoretical Model

Figure 6.11: Comparison of the error prediction histograms for AF Drop Subsystem

the time for adjusting the membership functions in order to minimize the prediction error

corresponding to previously computed test points. This variable is strongly dependent on

the number variables required to represent the fuzzy sets in the fuzzy system (v vector

dimension). The variable tavgCSFP is the average time for determining a new test point.

It is strongly dependent on the number of input variables for the fuzzy system (s vector

dimension) and how non-linear is the relationship between these input variables and the

metric being evaluated.

Both examples presented in sections 6.2.1 and 6.2.2 have the same complexity in SFP

terms, as the dimension of the vector s is three. However, the AF Drop Subsystem presented

in section 6.2.1 is less complex than the example of the EF Delay Subsystem discussed in

section 6.2.2, in terms of the number of variables necessary to represent the fuzzy sets. The

�rst requires 54 variables, 18 for the input membership functions and 36 for the singletons,

whereas the second requires 107 variables, 27 for the input membership functions and 80

for the singletons.

Table 6.1 presents the numbers related to the performance of the MFP procedure.

As already stated, the number of repetitions depends on the non-linearity of the involved

model, which is more important in the �rst scenario. On the other hand, the mean time

for one convergence is greater in the second case, due to the greater number of involved

variables. Please note that the convergence time in Table 6.1 does not consider the SFP

time.

Table 6.2 presents the numbers related to the performance of the SFP procedure. The

dimension of s vector is the same in both examples. The SFP convergence time is highly

dependent on the simulation time. It can be observed that the time spent in one simulation

115

116 Evaluation Chapter 6

Figure 6.12: Error prediction obtained for test points in the EF Delay Subsystem

Table 6.1: Performance of MFP procedure

MFP procedure AF Drop EF Delay Percent of

Subsystem Subsystem Increase

Dimension of v vector 54 107 98%

MFP convergence repetitions: avgCRMFP 113 107 -5%

Mean time for one MFP convergence (minutes): tavgCMFP 0.28 0.83 196%

Total MFP convergence time (minutes): avgCRMFP . tavgCMFP 31.64 88.81 181%

is lower in the AF Drop Subsystem than in EF Delay Subsystem. This is because of the need

for per-�ow classi�cation in order to compute the performance in terms of packet quantiles

in the second. Also, for both examples, the total convergence time is just a bit greater than

the total simulation time, which makes the weight of simulation evident in the computing

e�ort. Please note that Total SFP simulation time = (Mean time for one simulation . Total

number of simulations) ÷ S. This is because we have taken advantage of the multi processor
architecture 1 of the host environment and performed the �ve simulations required to seed

variation in parallel (S = 5).

1Con�guration of the computer used in this study: dual processor 3.16 GHz QuadCore CPU, 32 Gbytes

RAM and Linux

116

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability 117

Table 6.2: Performance of SFP procedure

SFP procedure AF Drop EF Delay Percent of

Subsystem Subsystem Increase

Dimension of s vector 3 3 0%

Mean time for one SFP convergence (minutes): tavgCSFP 16.65 23.72 42%

MFP convergence repetitions: avgCRMFP 113 107 -5%

Total number of simulations: avgCRMFP . avgCSFP . S 9785 9495 -3%

Mean time for one simulation (minutes): 0.96 1.32 38%

Total SFP simulation time (hours): 31.31 41.78 33%

Total SFP convergence time (hours): avgCRMFP . tavgCSFP 31.36 42.30 35%

As expected, the computing e�ort spent in MFP is less important than that spent in

SFP. The simpli�cations introduced in the algorithm (as explained in Chapter 5) lead to

feasible o�-line solution time: 31.9 hours for the AF Drop Subsystem and 43.8 hours for

the EF Delay Subsystem.

6.3 Validation of the Time Based Fuzzy Model for MVA App.

for Loss Probability

Figure 6.13 illustrates our sample scenario for the validation of the Time Based Fuzzy

Model for MVA Approximation for Loss Probability proposed in Chapter 5. As seen, we

consider the performance modeling of a network node composed by one queue that receives

self-similar tra�c. In this scenario, we are interested in evaluating the queue performance

expressed in terms of loss probability. Such simulation scenario is employed for obtaining

the simulation data points Dj,p,g de�ned in Algorithm 3 (Chapter 5), for 1 ≤ j ≤ N ,

1 ≤ p ≤ M and 1 ≤ g ≤ S where N , M and S are de�ned as the number of t points

within universe of discourse of input variable T , the number of H values and the number of

simulations performed with distinct seeds, respectively. In this case, before starting the FP

algorithm, we compute the accumulated loss rate for each point (j, p, g) in order to initialize

Dj,p,g.

Considering the equation 5.15, ε̂ = F̂ (T,H) . ε, the goal is to capture the fuzzy queue

behavior during "short-term" running in terms of loss probability by obtaining the optimal

fuzzy coe�cient F̂ (T,H) that gives the fuzzy model ε̂. Thus, we have to de�ne what a

117

118 Evaluation Chapter 6

H

a,m
Self-

similar
source

Network Node

Queue

Sc
he

du
le

r Output
Link

QL
Loss Probability

OLR
t

fixed parameters input variable

Figure 6.13: Evaluation scenario for the Time Based Fuzzy Model for MVA Approximation

for Loss Probability

"short-term" period is as well as the range intervals that will be employed to build F̂ (T,H)

(see Figure 5.11 in Chapter 5). The "short-term" period length is related to the real

scenario that is being considered. However, we can establish a criterion based on variance

estimation [50] in order to determine the stop time. According to this approach, because we

have independent simulations with distinct seeds (the variable S de�ned in Section 5.4.5),

we can employ the following method to compute the short-term period length:

xi =
1
n

n0+n∑
j=n0+1

xi,j , i = 1, 2, ..., S (6.5)

where, xi is the mean for each simulation; n + n0 is the length of each simulation; n0 is the

number of discarded observations for transient removal.

The overall mean for all simulations with distinct seeds is obtained as follows:

x =
1
S

S∑
i=1

xi (6.6)

Hence, we can calculate the variance of replicate means:

V ar(x) =
1

S − 1

S∑
i=1

(xi − x)2 (6.7)

We can calculate a normalized value as follows:

118

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability 119

η =
z1−α

2
.
√
V ar(x)

x
(6.8)

where, the value z1−α
2
is obtained from the standard normal distribution 2. Thus, range

intervals and the universe of discourse of T are de�ned based on distinct values of η, for

which we have the possibility of capturing the variability of loss probability values expressed

in terms of range intervals.

The loss probability is represented in terms of the ratio between the packets accepted

in the queue and the packets dropped by exceeding the queue size. Because the training

method is based on simulation, the loss rate is computed considering several simulations

with distinct seeds, in this case, we select S = 30.

Below, we present a summary containing the values employed in this evaluation:

• H = {0.7, 0.75, 0.8, 0.85};

• 4t = 10ms 3. It gives the step for computing the loss rate and, consequently, the

number of simulation points within the universe of discourse of the input variable T ;

• n0 = 1s. The �rst 100 loss rate values are discarded for transient removal [50];

• Output link rate (OLR) = 100 Mbps;

• m = 95 Mbps;

• Queue-length (QL) = 50 ms;

• a = 275 kbit.s.

Considering above values, Figure 6.14 depicts the behavior of the loss probability in

terms of the metric η de�ned in equation 6.8 for a 95% con�dence interval. As expected,

for higher H values we see higher variability levels for loss probability values. Also, we

select 1 ≤ t ≤ 3000s as the universe of discourse of the input variable T . The lower bound

is related to the transient removal and the upper bound was de�ned based on the analysis

of simulation logs, where one can observe only a smooth decrease of η for t >> 3000.

One key issue related to our approach is the de�nition of range intervals. We consider

the variability of loss probability values along the universe of discourse of T to de�ne them.

Taking a time t as a reference, say trange, the range interval de�ned at this point is speci�ed

in such a way where all loss probability values observed after trange
4 are within this range

2for S ≥ 30 or from the t-student distribution in other cases [50].
3de�ned in section 5.4.5
4Also including trange.

119

120 Evaluation Chapter 6

Figure 6.14: Loss probability dispersion η

interval. Thus, each range is expressed in terms of a pair (dmin, dmax), where dmin and dmax
are, respectively, the minimum and maximum loss rate values observed for ∀ t ≥ trange.

The loss probability dispersion metric, η, permits us to establish a criterion to de�ne

the time t to be used as a reference for these range intervals speci�cation. Recall the

assumptions discussed in Chapter 5 section 5.4.3 about range intervals. As seen, range3

is the range related to the stability region, which will include the crisp value ε provided

by the analytical model MVA for loss probability. Around this range, range2 and range4

represent two intermediate ranges for regions that have an average degree of dispersion and,

�nally, the last two, range1 and range5, for the cases of high degree of dispersion.

Let ηasymptotic to be the value of η at a time t in the stability region and ηaverage to

be the value of η where we have a time t with an average dispersion. From Figure 6.14,

we obtain tasymptotic = 3000s as a reference for de�ning range3. We assume ηaverage =

1.25.ηasymptotic for de�ning the taverage value in order to obtain range2 and range4, which

represents a point with an increase of 25% in the degree of dispersion. Remaining points

belong to range1 and range5. Thus, the upper and lower bounds of range3 are de�ned

in order to include all loss probability values observed at tasymptotic; the upper and lower

bounds of range2 and range4 are de�ned in order to include all loss probability values

observed at taverage and beyond; and the upper and lower bounds of range1 and range5 are

120

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability 121

de�ned in order to include all loss probability values.

Table 6.3 presents the normalized values for range intervals taking as reference the ε

value obtained from the analytical model. One can observe an increase of range widths

due to �uctuations of loss rate values generated by a worse behavior of tra�c for higher H

values. Also, as expected, the value 1, which represents the ε, is included in the range3.

Table 6.3: Normalized range values for the universe of discourse of T

H MVA L.Pr.(ε) range1 range2 range3 range4 range5

0.70 7.60E−3 [0.0,0.3742) [0.3742,0.5376) [0.5376,1.3354) [1.3354,1.7634) [1.7634,4.0289]

0.75 8.83E−3 [0.0,0.1785) [0.1785,0.3146) [0.3146,1.0945) [1.0945,1.3897) [1.3897,4.9875]

0.80 1.05E−2 [0.0,0.0803) [0.0803,0.1556) [0.1556,1.2096) [1.2096,1.7543) [1.7543,6.2015]

0.85 1.26E−2 [0.0,0.0102) [0.0102,0.3276) [0.3276,1.2488) [1.2488,1.9989) [1.9989,10.294]

Figure 6.15 shows the convergence results after FP optimization obtained for the

membership functions of the input variable T . For clarity, this Figure only shows the

range1, range2, range4 and range5 membership functions for the optimized multipliers λ

for H = 0.7. It is important to remember that these membership functions are unique

for H={0.7, 0.75, 0.8, 0.85}; only the optimized multipliers λ are distinct for each pair

(range,H), as denoted by the vector 5.18 in Chapter 5. As expected, we have a high level

of variability during initial phase of simulations, which is represented by the presence of

all ranges with similar degree of membership. Around 500 s, loss rate values within range1
and range5 are almost negligible. The system converges to range3 when close to 3000 s.

Using the optimal input membership function of T showed in Figure 6.15, we can obtain

the normalized output fuzzy set in order to have the corresponding normalized probability

distribution for any pair (T,H). For example, consider the time t = 500s and H = 0.7

as illustrated in Figure 6.16. Figure 6.16(a) shows the normalized values after applying

equation 5.16 (Chapter 5). Considering such values, we have the corresponding normalized

output fuzzy set for this pair, which is shown in Figure 6.16(b). The range intervals

depicted in this Figure were already shown in Table 6.3. The ε corresponds to d = 1.

Following the model presented in Figure 6.16(a), Figures 6.17, 6.18, 6.19 and 6.20

present the normalized values obtained from fuzzy inference taking the optimized member-

ship functions shown in Figure 6.15 and the optimized multipliers λ for all t ∈ T . Also, in

121

122 Evaluation Chapter 6

Figure 6.15: F̂ input membership functions for the universe of discourse of T

order to make a comparison, we plot the results obtained directly from the corresponding

simulation points, which are calculated from histograms using the same range intervals. For

each t point we have normalized values that indicate the degree of membership of t in the

corresponding range. The total sum is always 1 for each point t.

Despite the use of the same optimized membership functions of T for all H values, it

is interesting to note the e�ect of the multipliers λ, whose optimized values are shown in

Table 6.4. For example, we clearly see that the height of the membership function range2

for H = 0.7 in Figure 6.17 is greater than for H = 0.8 in Figure 6.19. This is because

range2 has a higher weight in terms of the number of simulation points for H = 0.7, forcing

the FP optimization algorithm to compensate using such factor. According to these curves,

the fuzzy model F̂ (T,H) can be seen as a good approximation for the queue behavior in

terms of loss probability. However, in order to precisely evaluate this statement, Figure

6.21 shows the Chi-Square Test [50] results for assessing the �tting level between each pair.

The Chi-Square test allows us to calculate the �tting level using the following equation:

D =
5∑
i=1

(histi − fuzzyi)2

histi
(6.9)

122

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability 123

Normalized Value

500s
0.03
0.07

0.14

0.76

...

 (a)

Normalized output fuzzy set

....

 (b)

 0 0.37 0.54 1.33 1.76 4.03
0.03
0.07

0.14

0.76

Range2

Range3

Range4

Range5

T

d

Loss
Probability

ε

Figure 6.16: Example: Normalized output fuzzy set for t = 500s and H = 0.7. (a)

Normalized value from input membership functions T and H. (b) Resulting Normalized

Output Fuzzy Set for Loss Probability for the pair (500,0.7)

Table 6.4: Optimal λ multipliers for height adjustment of membership functions of T

H range1 range2 range4 range5

0.70 0.144 0.188 0.108 0.039

0.75 0.128 0.121 0.069 0.045

0.80 0.086 0.029 0.049 0.027

0.85 0.101 0.041 0.039 0.009

where, histi denotes a normalized value obtained from the histogram of simulation points

for the range i; fuzzyi is a normalized value obtained from the inference with F̂ (T,H) for

the range i. We compute this �tting metric D for each t point. Based on this metric, we

obtain the con�dence level from the Chi-Square distribution [50], which is plotted in the

Figure. A con�dence level 1 indicates a 100% �tting level, whereas 0 indicates a zero �tting

level. Considering that we are using S = 30 distinct seeds for simulations and taking into

account these 30 values for each point in the universe of discourse of T with increments of

4t = 10ms, the results are acceptable, except for some points during the initial period of

the universe of discourse of T .

Recall that the fuzzy model F̂ (T,H) is intended to serve as an "adjusting" coe�cient

for the short-term of the MVA for Loss Probability analytical model. It allows us to observe

the queue behavior in terms of loss probability by capturing the variability observed during

123

124 Evaluation Chapter 6

Figure 6.17: Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.7

such period. In order to illustrate how the fuzzy model F̂ (T,H) can be employed for such

investigation, Figures 6.22 and 6.23 show the normalized output fuzzy sets of F̂ (T,H)

obtained through fuzzy inference for several values of t for H = 0.85. The widths of each

bar are merely illustrative.

In these Figures, the bars are expressed in terms of the ranges de�ned in Table 6.3. As

can be observed, for t = 1s all drop values are within range1. For t = {10, 50, 100}, we
can see a high loss variability level, which is indicated by the presence of several ranges.

At t = 500s, there are no more values in range1 and for the range5 they are almost

negligible. For t = 1000s, the "asymptotic" range range3 shows a high strength, which is

100% at t = 3000s. Considering such results, one can infer about the queue behavior in

terms of loss probability for a speci�c pair (T,H). Also, defuzzi�cation methods could be

applied in order to obtain a crisp value for loss probability, if required. Table 6.5 shows

the corresponding crisp values for the loss probability of the t points considered in Figures

6.22 and 6.23 according to di�erent defuzzi�cation methods discussed in Chapter 2. The

124

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability 125

Figure 6.18: Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.75

values are normalized by the loss probability value obtained from the analytical model (i.e.,

ε = 1.26E−2)

As can be noted, crisp values may diverge according to the defuzzi�cation method

chosen. Also, they are very dependent on the range limits and depending on the approach

employed by the defuzzi�cation method, they can a�ect di�erently the �nal crisp value.

For example, consider the case of the COA and COG defuzzi�cation methods for t = 10s.

As seen in Figure 6.22, only range1, range3 and range5 are active. In spite of having a

relative small weight, range5 has a large width, as can be seen in Table 6.3. For the COA

method, we take the average point within the range in the defuzzi�cation process, whereas

for the COG method we calculate the corresponding area. For this reason, the COG value

is higher than the COA value. It is also interesting to note that all methods converge to

similar values for higher t values. One can see in Figure 6.23 that we have only active

the ranges range2, range3 and range4 , which have smaller widths as can be seen in Table

6.3, diminishing the in�uence of the defuzzi�cation method in the �nal result. Finally, it is

125

126 Evaluation Chapter 6

Figure 6.19: Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.8

also important to observe the crisp values close to the "asymptotic" region. As stated by

the analytical model, the MVA approximation for loss probability is intended to serve as

an upper bound for loss probability in �nite bu�ers. In this context, we can see that the

results shown in Table 6.5 are according to this statement, since in this region all values

are less than 1 which represents the reference value from the analytical model.

6.3.1 Algorithm Performance

The training method performs one optimization procedure to obtain the parameters of the

optimal F̂ (T,H), i.e., only the MFP procedure that adjusts the fuzzy logic parameters to

minimize the overall error given by the di�erence between the normalized values obtained

from fuzzy inference and the corresponding normalized values computed from histograms

of simulation points for all t ∈ T and all H values. As discussed previously, the simulation

is the most expensive procedure of the algorithm. Considering the de�nitions supplied in

Chapter 5 section 5.4.5, the number of simulations can be expressed as follows:

126

6.3 Validation of the Time Based Fuzzy Model for MVA App. for Loss Probability 127

Figure 6.20: Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.85

ns = S .M (6.10)

where, S is the number of simulations performed with distinct seeds and M is the

number of H values. As discussed previously, simulations cited in equation 6.10 are not

repeated according to the number of candidate solutions generated by the MFP procedure,

because all simulation data are generated before starting the MFP and we don't have the

SFP procedure. Also, for each pair given by a seed value in S and H value in M , we have

only one simulation run whose duration is the universe of discourse of T . In this case, we

obtain the accumulated loss rate at each time tj along this period.

Thus, the overall convergence time can be estimated by the following equation:

tc = tns + tCRMFP (6.11)

The variable tCRMFP is the time spent for the MFP repetitions until the overall con-

vergence criteria are achieved. It is important to mention that there is only one MFP

127

128 Evaluation Chapter 6

Figure 6.21: Chi-Square Fitting Test: F̂ (T,H) and normalized values obtained from his-

tograms of simulation points

procedure that takes into into account all points within the universe of discourse of the

input variables, as seen in equation 5.17 (Chapter 5). It represents the time for adjusting

the membership functions in order to minimize the overall error. This variable is strongly

dependent on the number variables required to represent the fuzzy sets in the fuzzy system

(v vector dimension). The variable tns is the overall time for generating the simulation

data.

Table 6.6 presents the numbers related to the performance of the MFP procedure and

the generation of simulation data for the optimization problem. As in the case of the fuzzy

predictor, we have employed the same machine with a multi processor architecture, in which

we can perform �ve concurrent simulations to reduce tc.

6.4 Conclusion

In this Chapter, we showed numerical results and the evaluation of the proposed method

presented in Chapter 5. Our evaluations show that the Flexible Polyhedron (FP) algorithm

128

6.4 Conclusion 129

Figure 6.22: Output Fuzzy Sets for t = {1, 10, 50, 100}

behaves surprisingly well, even when a large number of parameters are simultaneously opti-

mized, as illustrated in the EF Subsystem of the Fuzzy Predictor, where 107 variables were

required to represent the fuzzy sets by the optimization procedure. In this case, the method

is barely limited by the complexity of the fuzzy system. The training process, however, can

be somewhat complex when a large number of input variables are considered. Therefore, it

is convenient to limit the choice of the input variables to those that could be controlled by

the tra�c engineering.

In the case of the fuzzy predictor, the results are valid for a speci�c transmission rate

and the queuing discipline. Even though it is possible, it is not worthy to consider these

parameters as input variables for the fuzzy system, as they are well known parameters, and

are not supposed to change. The fuzzy predictor can also be sensitive to other tra�c pa-

rameters such as the fBm parameters and VoIP modeling parameters. In practice, however,

both VoIP parameters and fBm parameters are not controllable by the tra�c engineering

and must be determined by observing the real tra�c. However, it is possible, by adjusting

the training process, to generate more conservative predictions in order to accommodate

bad estimations on these parameters.

For the case of the Time Based Fuzzy Model for MVA Approximation for Loss Prob-

129

130 Evaluation Chapter 6

Figure 6.23: Output Fuzzy Sets for t = {500, 1000, 2000, 3000}

ability analytical model, we showed how the model can be used for observing the queue

behavior in terms of loss probability during the short-term period. Our results con�rmed

that the analytical is a good approximation for loss probability in �nite queues, where all

crisp values obtained from several defuzzi�cation methods respected this upper bound close

to the "asymptotic" region. Also, we saw that the optimized fuzzy coe�cient F̂ (T,H) is a

good model for representing the queue behavior in terms of loss probability, which presented

a good �tting level when compared with loss rate values obtained from simulation data.

130

6.4 Conclusion 131

Table 6.5: Normalized Crisp Values for t = {1, 10, 50, 100, 500,1000, 2000, 3000} and H =

0.85

t(s) COA COG Badd Badd

(α = 2) (α = 30)

1.00 0.0051 0.0051 0.0051 0.0051

10.00 0.4055 5.1366 0.0387 0.0051

50.00 0.6929 3.1185 0.3727 0.0051

100.00 0.7127 2.5184 0.5499 0.7879

500.00 0.8337 1.1357 0.7889 0.7882

1000.00 0.7945 0.8049 0.7884 0.7882

2000.00 0.7926 0.7977 0.7883 0.7882

3000.00 0.7882 0.7882 0.7882 0.7882

Table 6.6: Performance for the Time Based Fuzzy Model for MVA aproximation for Loss

Probability

MFP procedure Time Based

Fuzzy Model

Dimension of v vector 34

S 30

M 4

tns (minutes) 37.44

tCRMFP (minutes) 1.83

tc (minutes) 39.27

131

132 Evaluation Chapter 6

132

Chapter 7

Conclusion and Future Work

T
his thesis addresses the design of performance models of network nodes. In this case,

we proposed a new method for modeling queue behavior where such models can be

expressed in terms of common performance metrics, like the amount of loss and delay

imposed by the queue on the tra�c injected to the output link, permitting to establish

the relationship between the tra�c load in queues of network nodes and the resulting QoS

performances. Based on a general o�-line method, the proposed method combines non-linear

programming and simulation to build a fuzzy logic based model capable of determining the

performance of a network node without the derivation of an analytical model. The proposed

methodology can be applied to any type of tra�c and includes a training method that

permits the application of any type of performance metric. Also, it is possible to �nd out

the optimal values that can be used for the con�guration of network nodes, with important

applications on tra�c engineering and capacity planning.

Despite the characterization of a model for the queue length distribution is a very dis-

cussed issue in the literature, our study has been motivated by the fact that devising ana-

lytical models sometimes becomes a challenging task due to the associated complexity when

it is necessary to deal with common resources employed in network deployment scenarios,

like multiple priority queues, non-exponential service times and long term correlated tra�c.

In fact, even in scenarios where there exist analytical models they may not represent accu-

rately the system tending to overestimate or underestimate the actual performance when

it is typically necessary to perform optimization procedures for an adjustment of model

parameters. Furthermore, these analytical models usually apply only to the performance

of the aggregated tra�c, but some authors have pointed out that under certain conditions

133

134 Conclusion and Future Work Chapter 7

the performance experienced by individual �ows can signi�cantly diverge with respect to

the performance of the aggregated tra�c. One of the main contributions of this method is

to take into account many of these complex issues, where it is typically di�cult to develop

an analytical model.

Aiming to carry out the modeling proposed by the method, our approach employs fuzzy

logic systems for capturing the queue behavior, which is clearly non-linear, making the

fuzzy approach a very useful tool for such modeling. So, in Chapter 2 we discussed the

main concepts related to fuzzy systems. Fuzzi�cation, Inference and Defuzzi�cation steps

were presented, which have evidenced the importance of membership function modeling in

order to have an accurate representation of system behavior. Considering the utilization of

simulations, Chapter 3 presented the tra�c models employed for synthetic tra�c generation

for the evaluation of the proposed method. VoIP �ows were modeled as ON-OFF sources

including two additional parameters based on exponential variables in order to regulate the

life-cycle of �ows for more realistic simulation scenarios. Data tra�c simulation is based on

self-similar tra�c model which was generated as a fractional brownian motion process. We

performed the validation of the synthetic self-similar tra�c using several well-known tests

which con�rmed the self-similar property. Also, the simulation environment developed in

this research work was discussed along with its main entities.

Optimization methods represent an important tool for the de�nition of membership

function. In this case, fuzzy model parameters can be �ne tuned in order to improve its

accuracy, since the modeling proposed in this thesis is based on input and output variables

whose functional relationship is not known. Thus, Chapter 4 presented the main concepts

related to optimization theory along with the Flexible Polyhedron method that was em-

ployed for solving optimization problems in this research work, which is a zero-order direct

search method that does not require derivatives of the cost function. As we saw, this feature

allows us to create optimization problems that handle several parameters in a very �exi-

ble manner, where objective functions can be easily used as results of complex computer

simulations. In order to avoid the problem of local minima, we employ a modi�ed version

of the FP algorithm based on successive rebuildings of the polyhedron after intermediate

convergences. Our results show that the FP algorithm behaves well, even when a large

number of parameters are simultaneously optimized.

In Chapter 5, we presented the new method for modeling queue behavior considering two

di�erent approaches related to the modeling of fuzzy rule consequents and the corresponding

application of results. Firstly, we showed how our method can be employed to build a fuzzy

134

Conclusion and Future Work 135

predictor. In this case, the consequents of fuzzy rules were modeled using singletons and

the results are expressed in terms of crisp values considering the corresponding performance

metrics. Taking into account input variables de�ned in terms of tespec parameters with tra�c

speci�cation and output variables described in terms of common performance metrics (e.g.,

loss rate and delay), we proposed the fuzzy predictor considering a dual o�-line optimization

training method. Such training approach is performed by solving two simultaneous �exible

polyhedron optimization problems. We showed that the proposed fuzzy predictor can be

employed to determine optimal values that could be used for the con�guration of network

nodes, with important applications on tra�c engineering and capacity planning. Secondly,

we presented a more generic approach, where our method is employed to provide an implied

output fuzzy set as a result instead of crisp values. We use a strategy based on normalized

probability distributions in order to build a performance model of a network node in which

a queue is fed by a self-similar tra�c source for building a time based fuzzy model for the

MVA approximation for loss probability analytical model. Such fuzzy logic model could

be viewed as a fuzzy adjustment coe�cient which aims to capture the loss probability

variability observed before the system achieves the stability region.

Chapter 6 showed the validation of the proposed method considering three di�erent

scenarios. The �rst two are related to the fuzzy predictor evaluation whereas the third

presented the results of the time based fuzzy model for the MVA analytical model. Firstly,

we presented the results of the fuzzy predictor for the AF Drop subsystem. In this case,

the optimized fuzzy model produces four dimension graphs because of the utilization of

three input variables, number of VoIP �ows, bucket size and bucket rate, and one output

variable, the drop rate of self-similar tra�c. Considering a multi-queue node, the results

show the impact of the EF load and token-bucket parameters on the drop rate of self-

similar tra�c. Secondly, the results of the fuzzy predictor for the EF delay subsystem were

shown. The optimized fuzzy model also produces four dimension graphs due to three input

variables, EF load, VoIP codec proportion and per-�ow quantile, and one output variable,

the delay of VoIP tra�c. In this case, our results show the e�ect on the EF delay of having

two di�erent VoIP codecs considering a per-�ow quantile basis. In both cases, some three

dimensional cuts were presented and discussed, where one could observe the behavior of

the considered QoS performance metrics in several perspectives. Also, a comparison with

theoretical models and an analysis of the method performance were shown. Finally, we

showed the resulting fuzzy model for the MVA approximation for loss probability analytical

model. Considering the time T and the Hurst parameter H as input variables, and the

135

136 Conclusion and Future Work Chapter 7

loss probability as a fuzzy output variable, the resulting normalized output fuzzy sets were

discussed, which represent the loss probability variability within the universe of discourse of

T and H. The results and �tting tests show that the optimized fuzzy model is a good model

for representing the queue behavior in terms of loss probability when it was compared with

loss rate values obtained from simulation data.

As an ongoing perspective, there are open issues and important directions of future work.

Considering the case of fuzzy predictors, there is still much work to be done with respect

to the choice of the membership functions to be trained. Simpler membership functions are

easier to compute, but tends to generate models that accommodates non-linearities as small

steps, instead of smooth curves. Also, the method can be easily adapted to generate fuzzy

models for existing queue systems, in order to create expressions that could be evaluated

in real time. In this case, instead of using simulations, the SFP algorithm would generate

inputs for a theoretical model. It seems also a possibility to use the training process by

simulation to improve or adjust existing queuing models. For example, we could generate

a fuzzy model to adjust the output of existing aggregated VoIP model in order to generate

per-�ow estimates. The introduction of some sort of feedback could also be useful in order to

provide less conservative estimates and would be an important issue to be addressed in our

future research. For the case of the time based fuzzy model for MVA approximation for loss

probability, one important study is to evaluate the necessity of including other parameters

of the analytical model in the fuzzy model in order to have more general results. Also, the

investigation of the use of other membership functions instead of singletons for modeling

the Hurst paramater H would be a natural improvement. Another issue is related to the

speci�cation of range intervals employed for modeling normalized output fuzzy sets. A

more �exible approach permitting the choice of the number of ranges and their inclusion as

variables for the optimization problems should be investigated in order to have an automated

de�nition of ranges based, for instance, on the minimization of the di�erence observed among

crisp values obtained from di�erent defuzzi�cation methods.

136

Appendix A

Simulation Environment: Pseudo

Code

In this appendix, we provide the pseudo code related to the main entities that were im-

plemented in the C simulator developed for the evaluation of the proposed method. The

primitives shown in Chapter 3 section 3.4 are cited in the following codes.

A.1 VoIP Flow Tra�c Generator

Each VoIP Tra�c Generator is implemented by a SIMPATICA actor thread and simulates

an individual VoIP �ow, modeled as an ON-OFF source, where both ON-OFF intervals are

exponentially distributed. The �ow generates packets at the speci�c codec rate during the

ON state and keeps silent during the OFF state. The life cycle variability of VoIP �ows has

been modeled by assuming one additional parameter, AFD (average �ow duration), repre-

sented by the average of an exponentially distributed random variable. The AFD parameter

allow us to capture the impact of the load variation with respect to the performance level

of a percentile of packets within each VoIP �ow on a long-term basis, providing a better

representation of the real scenario.

137

138 Simulation Environment: Pseudo Code Appendix A

tDUR = T iDUR;

j = 0;

seq = 0;

while j < tDUR do
k = 0;

tON = exponential(rng, T iON);

tOFF = exponential(rng, T iOFF);

while k < tON do
pkt = (pkt∗)msg_create(sizeof(pkt));

pkt− > birth = time_now();

pkt− > seq = seq + +;

pkt− > bytes = PKT_SIZE;

pkt− > flowId = i;

pkt− > queue = EF ;

msg_send(pkt, nodeID);

task_sleep(1
PKT_RATE);

k = k + 1
PKT_RATE ;

end

task_sleep(tOFF);

j = j + tON + tOFF ;

end

Algorithm 4: VoIP Flow Tra�c Generator

where:

T iDUR: Duration of �ow i, which is obtained from paramater AFD.

T iON : Mean value of the ON time of �ow i.

T iOFF : Mean value of the OFF time of �ow i.

rng: Random number generator.

pkt− > queue: Queue which the packet will be inserted.

exponential(): Returns a value according to the exponential distribution.

nodeID: Number that represents the network node.

time_now(): Returns the current simulation time.

PKT_RATE: Number of packets per second according to the codec of the simulation

scenario.

PKT_SIZE: Packet size according to the codec of the simulation scenario.

A.2 Self-Similar Tra�c Generator

The data tra�c is modeled as a fractional Brownian motion, as presented in Chapter 3,

where the accumulated aggregate arrival process is represented by the following equation:

138

A.2 Self-Similar Tra�c Generator 139

At = m. t +
√
am .Zt (A.1)

where Zt is a normalized fractional Brownian motion (fBm), m is the mean input rate,

a > 0 is a variance coe�cient and H is the Hurst parameter of Zt. As aforementioned, the

function Zt was implemented using the Hosking method. For each 4t window we compute

the arrival process and generate a packet series A4t assuming a MTU size (1500 bytes) and

a minimum packet size of 46 bytes. Thus, we generate A4t bytes for each time interval 4t
= [t− 1, t] according to equation:

A4t = max {m.4t +
√
am .FGN4t , 0} (A.2)

where FGN4t is the fractional Gaussian noise, the incremental variation of two con-

secutive values of Z(t), that is, FGN4t = Z(t) - Z(t − 1). The data tra�c model also

captures the packaging phenomenon by accommodating the A4t bytes in packets with size

equals the MTU (Maximum Transmit Unit), except for the last one whose size can vary

between the minimum packet size and MTU. Figure A.1 illustrates the tra�c generation

process by plotting Z(t), FGN(t) and the number of packets for an one second simulation,

for 4t = 10ms, H = 0.76, a = 275kbit.s and m = 8Mbps.

Figure A.1: Example: Self-Similar Tra�c generation for an one second simulation

139

140 Simulation Environment: Pseudo Code Appendix A

i = 1;

seq = 0;

Zold = 0;

while i < tSIM do
FGN4t = Z(i) − Zold;

A4t = m.4t +
√
m.a.FGN4t;

Zold = Z(i);

Npkts = floor(A4t
MTU);

remainder = fmod(A4t,MTU);

tpkt = 4t
Npkts+1 ;

timeac = 0;

if remainder == 0 then
tpkt− = 1;

end

while Npkts ≥ 1 do
pkt = (pkt∗)msg_create(sizeof(pkt));

pkt− > birth = time_now();

pkt− > seq = seq + +;

pkt− > bytes = MTU ;

pkt− > flowId = SELF_SIMILAR_ID;

msg_send(pkt, destID);

task_sleep(tpkt);

timeac+ = tpkt;

Npkts −−;
end

if remainder > 0 then

if remainder < MIN_PKT_SIZE then
remainder = MIN_PKT_SIZE;

end

pkt = (pkt∗)msg_create(sizeof(pkt));

pkt− > birth = time_now();

pkt− > seq = seq + +;

pkt− > bytes = remainder;

pkt− > flowId = SELF_SIMILAR_ID;

msg_send(pkt, destID);
end

task_sleep(4t− timeac);
i+ +;

end

Algorithm 5: Self Similar Tra�c Generator

where:

tSIM : Total simulation time.

Z(i): Normalized fractional brownian motion value for t = i calculated via the Hosking

method.

Npkts: Number of packets.

140

A.3 Leaky Bucket Module 141

MTU : MTU size.

tpkt: Time between packets.

timeac: Accumulated time.

destID: Number that indicates the destination entity of the packet. It can assume: nodeID,

leakyID or tokenID for, respectively, the network node, the leaky bucket or the token

bucket.

A.3 Leaky Bucket Module

The Leaky Bucket is controlled by two parameters: the bucket size b and the transmit

rate r, as illustrated in Figure A.2a. The bucket has a queue with size b to store the

packets containing the self similar tra�c, which are served according to a committed rate

r. Whenever a packet arrives and there is no room for it in the queue it is classi�ed as a

non-conforming packet and tagged as BE, whereas the packets in the queue are classi�ed as

conforming and are tagged as AF . Figure A.2b presents an example of the Leaky Bucket

metering and marking scheme. In this �gure, we considered the average load of self-similar

tra�c m = 8Mbps, the bucket rate r = 8Mbps and the bucket size b = 10MTU packets.

The �gure presents the results of the metering/marking processes in terms of the number

of packets, where each point indicates a 10ms sample of the simulation.

Figure A.2: Leaky Bucket Module

141

142 Simulation Environment: Pseudo Code Appendix A

while TRUE do
pkt = (pkt∗)msg_recv() ;

if (queueCurrentSize + pkt− > size) ≤ b then
queueCurrentSize+ = pkt− > size ;

pkt− > queue = AF ;

putLeakyQueue(pkt);

task_activate(leakyService, 0);
else

pkt− > queue = BE ;

msg_send(pkt, nodeID);
end

end

Algorithm 6: Leaky Bucket Module: Marker

where:

queueCurrentSize: Current leaky bucket queue size.

AF : AF tagging code.

BE: BE tagging code.

putLeakyQueue(): Inserts a packet into the leaky bucket queue.

leakyService: Entity responsible (i.e., Dispatcher) for serving the packets of the leaky

bucket queue.

while TRUE do

if queueCurrentSize > 0 then
pkt = (pkt∗)getLeakyQueue() ;
queueCurrentSize− = pkt− > size;

time = pkt−>bytes
r ;

task_sleep(time);

msg_send(pkt, nodeID);
else

task_passivate();

end

end

Algorithm 7: Leaky Bucket Module: Dispatcher

where:

getLeakyQueue(): Remove and obtain a packet from the leaky bucket queue.

A.4 Token Bucket Module

The Token Bucket is also controlled by two parameters: the bucket size b and the token

rate r. When a packet arrives and there exists enough tokens in the bucket it is tagged as

142

A.5 Network Node 143

AF . Conversely, whenever a packet arrives and there is no enough tokens in the bucket it

is classi�ed as a non-conforming packet and tagged as BE. We have two entities (threads)

that implement the token bucket module: The �rst, called tokenControl, is responsible for

incrementing the token counter, whereas the second, called tokenBucket, is the main entity

that is responsible for packet classi�cation and dispatching.

while TRUE do
pkt = (pkt∗)msg_recv() ;

if currentTokenNumber ≥ pkt− > size then
currentTokenNumber− = pkt− > size ;

pkt− > queue = AF ;

else
pkt− > queue = BE ;

end

msg_send(pkt, nodeID);
end

Algorithm 8: Token Bucket Module: tokenBucket marker and dispatcher

where:

currentTokenNumber: Current number of tokens in the bucket.

while TRUE do

if (currentTokenNumber + MTU) < b then
currentTokenNumber+ = MTU ;

else
currentTokenNumber = b ;

end

task_sleep(MTU
r);

end

Algorithm 9: Token Bucket Module: token control

A.5 Network Node

The Network Node is implemented considering two active entities: The �rst thread, called

classifier receives the packet and inserts it into the corresponding queue. The second,

called prio_sch, is the link scheduler that implements the strictly priority queue scheduling

policy.

143

144 Simulation Environment: Pseudo Code Appendix A

while TRUE do
pkt = (pkt∗)msg_recv() ;

if (queueCurrentSizepkt−>queue + pkt− > size) ≤ queueLengthpkt−>queue

then
queueCurrentSizepkt−>queue + = pkt− > size;

putQueuepkt−>queue(pkt);

pkt− > status = RECEIV ED;

task_activate(priosch);
else

pkt− > status = DROPPED;

end

end

Algorithm 10: Network Node: classi�er

where:

queueCurrentSize: Gives the current size of the corresponding queue pkt− > queue.

putQueue(): Inserts the packet into the correponding queue pkt− > queue.

RECEIV ED: Code for a received packet by the network node.

DROPPED : Code for a dropped packet by the network node.

queuePriority = 0;

while TRUE do

if queueCurrentSizequeuePriority > 0 then
pkt = (pkt∗)getQueuequeuePriority() ;
queueCurrentSizequeuePriority − = pkt− > size;

task_sleep(pkt−>sizeC);

msg_send(pkt, logger);
end

queuePriority + +;

if queuePriority > QUEUES then
queuePriority = 0;

task_passivate();
end

queuePriority = queueV erify();
end

Algorithm 11: Network Node: prio scheduler

where:

queuePriority: A number that indicates the queue priority: 0=EF, 1=AF and 2=BE.

queueCurrentSize: Gives the current size of the corresponding queue queuePriority.

getQueue(): Removes and obtains a packet from the corresponding queue queuePriority.

C: Capacity of the output link.

144

A.5 Network Node 145

QUEUES: Total number of queues in the network node.

logger: Thread that logs all packet information for processing.

queueV erify: Gives a number corresponding to the highest priority queue which has

queueCurrentSize > 0.

145

146 Publications

146

Publications

[Nabhen et al. 2006] Nabhen, R., Jamhour, E., Penna, M. C., and Fonseca, M. S. (2006).

Analysis of individual �ows performance for delay sensitive applications. 19TH IFIP

World Computer Congress/TC6,5th International Conference on Network Control and

Engineering NETCON, 2006, 1:143�156.

[Nabhen et al. 2007a] Nabhen, R., Jamhour, E., Penna, M. C., Fonseca, M. S., and Pu-

jolle, G. (2007a). Avaliando estratégias de controle de admissão para implementação de

garantias de qos de �uxos individuais em redes di�serv usando métodos de otimização.

SBRC - Simpósio Brasileiro de Redes de Computadores, 2007, Belém. SBRC 2007 - 25

Simpósio Brasileiro de Redes de Computadores, 2007, 1:811�824.

[Nabhen et al. 2007b] Nabhen, R., Jamhour, E., Penna, M. C., Fonseca, M. S., and Pujolle,

G. (2007b). Di�serv pbac design with optimization method. 7th IEEE International

Workshop on IP Operations and Management, IPOM, 2007, 1:73�84.

[Nabhen et al. 2007c] Nabhen, R., Jamhour, E., Penna, M. C., Fonseca, M. S., and Pu-

jolle, G. (2007c). Optimal di�serv ac design using non-linear programming. 32nd IEEE

Conference on Local Computer Networks, LCN, 2007, 1:1�8.

[Nabhen et al. 2008] Nabhen, R., Jamhour, E., Penna, M. C., and Pujolle, G. (2008). Mod-

eling a multi-queue network node with a fuzzy predictor. Journal: Fuzzy Sets and Sys-

tems. doi:10.1016/j.fss.2008.12.004.

[Nabhen et al. 2009] Nabhen, R., Jamhour, E., Penna, M. C., and Pujolle, G. (2009). A

time based fuzzy model for mva approximation for loss probability. Fuzzy Sets and

Systems. (Under Revision).

147

148 References

148

References

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, �An architecture

for di�erentiated services,� IETF RFC 2475, Dec. 1998.

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, �Resource reservation pro-

tocol (RSVP) � version 1 functional speci�cation,� IETF RFC 2205, Sept. 1997.

[3] E. Rosen, A. Viswanathan, and R. Callon, �Multiprotocol Label Switching Architec-

ture,� IETF RFC 3031, Jan. 2001.

[4] F. L. Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval,

and J. Heinanen, �Multi-Protocol Label Switching (MPLS) Support of Di�erentiated

Services,� IETF RFC 3270, May 2002.

[5] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, �RSVP-TE:

Extensions to RSVP for LSP Tunnels,� IETF RFC 3209, Dec 2001.

[6] J. Wroclawski, �The Use of RSVP with IETF Integrated Services,� IETF RFC 2210,

Sep 1997.

[7] M. Zukerman, T. D. Neame, and R. G. Addie, �Internet tra�c modeling and future

technology implications,� Proceedings of IEEE INFOCOM, Mar 2003.

[8] A. Adas, �Tra�c models in broadband networks,� IEEE Communications Magazine,

vol. 35, pp. 82�89, Jul 1997.

[9] E. W. Knightly and N. B. Shro�, �Admission control for statistical qos: theory and

practice,� Network, IEEE, vol. 13, no. 2, no. 2, pp. 20�29, 1999.

[10] L. Breslau, S. Jamin, and S. Shenker, �Comments on the performance of measurement-

based admission control algorithms,� INFOCOM (3)-19th Annual Joint Conference of

the IEEE Computer and Communications Societies, pp. 1233�1242, 2000.

149

150 References

[11] L. Zadeh, �Outline of a new approach to the analysis of complex systems and decision

processes,� IEEE Trans. on Systems, Man, and Cybernetics, vol. SMC-3, pp. 28�44,

1973.

[12] R. Nabhen, E. Jamhour, M. C. Penna, and M. S. Fonseca, �Analysis of individ-

ual �ows performance for delay sensitive applications,� 19TH IFIP World Com-

puter Congress/TC6,5th International Conference on Network Control and Engineering

NETCON, 2006, vol. 1, pp. 143�156, Aug 2006.

[13] R. Nabhen, E. Jamhour, M. C. Penna, M. S. Fonseca, and G. Pujolle, �Avaliando es-

tratégias de controle de admissão para implementação de garantias de qos de �uxos in-

dividuais em redes di�serv usando métodos de otimização,� SBRC - Simpósio Brasileiro

de Redes de Computadores, 2007, Belém. SBRC 2007 - 25 Simpósio Brasileiro de Redes

de Computadores, 2007, vol. 1, pp. 811�824, May 2007.

[14] R. Nabhen, E. Jamhour, M. C. Penna, M. S. Fonseca, and G. Pujolle, �Optimal di�serv

ac design using non-linear programming,� 32nd IEEE Conference on Local Computer

Networks, LCN, 2007, vol. 1, pp. 1�8, Oct 2007.

[15] R. Nabhen, E. Jamhour, M. C. Penna, M. S. Fonseca, and G. Pujolle, �Di�serv pbac

design with optimization method,� 7th IEEE International Workshop on IP Operations

and Management, IPOM, 2007, vol. 1, pp. 73�84, Nov 2007.

[16] R. Nabhen, E. Jamhour, M. C. Penna, and G. Pujolle, �Modeling a multi-

queue network node with a fuzzy predictor,� Journal: Fuzzy Sets and Systems.

doi:10.1016/j.fss.2008.12.004, Dec 2008.

[17] L. A. Zadeh, �Fuzzy sets,� Information Control, vol. 8, pp. 338�353, 1965.

[18] S. N. Sivanandam, S. Sumathi, and S. N. Deepa, �Introduction to fuzzy logic using

matlab,� Springer-Verlag New York, Inc., Oct 2006.

[19] I. T. Union, �ITU-T recommendation G.114,� Series G: Transmission Systems and

Media, Digital Systems and Networks, May 2003.

[20] J. Jantzen, �Design of Fuzzy Controllers,� Technical University of Denmark: Dept. of

Automation, 1998.

150

References 151

[21] K. M. Passino and S. Yurkovich, �Fuzzy control,� Addison-Wesley Longman Publishing

Co., Inc., 1997.

[22] W. V. Leekwijck and E. E. Kerre, �Defuzzi�cation: criteria and classi�cation,� Fuzzy

Sets and Systems, vol. 108, no. 2, no. 2, 1999.

[23] J. Mendel and G. Mouzouris, �Designing Fuzzy Logic Systems,� IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, pp. 885�895,

Nov 1997.

[24] G. Mouzouris and J. A. Mendel, �Non-singleton fuzzy logic systems: theory and appli-

cations,� IEEE Trans. on Fuzzy Systems, vol. 5, pp. 56�71, Feb 1997.

[25] E. H. Mamdani and S. Assilian, �An experiment in linguistic synthesis with a fuzzy

logic controller,� Int. J. Hum.-Comput. Stud., vol. 51, no. 2, no. 2, 1999.

[26] J. M. Mendel, �Fuzzy logic systems for engineering: a tutorial,� Proceedings of the

IEEE on Signal & Image Process. Inst., Univ. of Southern California, Los Angeles,

CA, vol. 83, Mar 1995.

[27] T. Takagi and M. Sugeno, �Fuzzy identi�cation of systems and its applications to

modeling and control,� IEEE Transaction on Systems, Man. and Cybernetics, vol. 15,

pp. 115�132, 1985.

[28] H. Takagi, �Introduction to fuzzy systems, neural networks, and genetic algorithms,�

In: Ruan, D. ed. Intelligent hybrid systems. Fuzzy logic, neural networks, and genetic

algorithms. 1st ed. Kluwer Academic Publishers, pp. 3�33, 1997.

[29] J. Cortajarena, J. D. Marcos, P. Alvarez, F. Vicandi, and P. Alkorta, �Indirect vector

controlled induction motor with four hybrid p+fuzzy pi controllers,� IEEE Interna-

tional Symposium on Industrial Electronics, vol. 4, no. 7, pp. 197�202, Jun 2007.

[30] A. V. Patel, �Simplest fuzzy pi controllers under various defuzzi�cation methods,�

International Journal of Computational Cognition, vol. 3, no. 1, Mar 2005.

[31] D. P. Filev and R. R. Yager, �A Generalized Defuzzi�cation Method via bad Distribu-

tions,� International Journal of Intelligent Systems, vol. 6, pp. 687�697, 1991.

[32] Z. Sahinoglu and S. Tekinay, �On multimedia networks: self-similar tra�c and network

performance,� IEEE Communications Magazine, vol. 37, pp. 48�52, Jan 1999.

151

152 References

[33] C. Boutremans, G. Iannaccone, and C. Diot, �Impact of link failures on voip perfor-

mance,� International workshop on network and operating systems support for digital

audio and video, pp. 63�71, 2002.

[34] V. Paxson and S. Floyd, �Wide-area tra�c: The failure of poisson modeling,�

IEEE/ACM Transactions on Networking, vol. 3, pp. 226�244, Jun 1995.

[35] M. Crovella and A. Bestavros, �Wide-area tra�c: The failure of poisson modeling,� Self-

Similarity in World Wide Web Tra�c: Evidence and Possible Causes, vol. 5, pp. 835�

846, Dec 1997.

[36] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, �On the self-similar nature of

ethernet tra�c (extended version),� IEEE/ACM Transactions on Networking, vol. 2,

pp. 1�15, Feb 1994.

[37] W. Willinger and K. Park, �Self-similar network tra�c and performance evaluation,�

John Wiley & Sons, 2000.

[38] I. Norros, �On the use of fractional Brownian motion in the theory of connectionless

networks, journal = IEEE Journal on Selected Areas in Communications, volume =

16 , issue = 6, pages =,�

[39] J. R. M. Hosking, �Modeling persistence in hydrological time series using fractional

brownian di�erencing,� Water Resources Research, vol. 20, 1984.

[40] G. Box, G. Jenkins, and G. G. Reinsel, �Time series analysis: Forecasting and control,�

Prentice Hall, Feb 1994.

[41] J. Feder, �Fractals,� Plenum Press, 1988.

[42] M. Taqqu, V. Teverovsky, and W. Willinger, �Estimators for long-range dependence:

An empirical study,� Fractals, vol. 3, pp. 785�798, 1995.

[43] C. Systems, �Tra�c analysis for voice over ip,� Cisco Document Server, Sep 2002.

[44] �The Network Simulator ns-2 (v2.1b8a).� http://www.isi.edu/nsnam/ns/, Oct 2001.

[45] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. Mc-

Canne, K. Varadhan, Y. Xu, and H. Yu, �Advances in network simulation,� IEEE

Computer, vol. 33, no. 5, pp. 59�67, May 2000.

152

References 153

[46] G. Kesidis and J. Walrand, �Quick simulation of atm bu�ers with on-o� multiples

markov �uid sources,� ACM Trans. Modeling and Computer Simulations, vol. 3, no. 3,

pp. 269�276, Jul 1993.

[47] C. Maziero and R. Nabhen, �Simpatica discrete event simulator,� http: // www. ppgia.

pucpr. br/ ~maziero/ doku. php/ software: simulation , 2007.

[48] G. Agha, �Actors: A model of concurrent computation in distributed systems. doctoral

dissertation,� MIT Press, Jun 1985.

[49] G. Agha, I. Mason, S. Smith, and C. Talcott, �A foundation for actor computation,�

Journal of Functional Programming, vol. 7, no. 1, pp. 1�69, Jan 1997.

[50] R. Jain, �The art of computer systems performance analysis,� John wiley and Sons,

1991.

[51] W. M. McCormack and R. G. Sargent, �Comparison of future event set algorithms

for simulations of closed queuing systems,� Current issues in Computer Simulation,

Academic Press, 1979.

[52] C. M. Reeves, �Complexity analyses of event set algorithms,� The Computer Journal,

vol. 27, 1984.

[53] S. Boyd and L. Vandenberghe, �Convex optimization,� Cambridge University Press,

2004.

[54] J. Mitchell, �Geometric shortest paths and network optimization,� Elsevier Science,

1998.

[55] A. V. Goldberg and R. E. Tarjan, �A new approach to the maximum-�ow problem,�

J. ACM, vol. 35, no. 4, no. 4, pp. 921�940, 1988.

[56] D. A. Grundel, P. Krokhmal, C. A. Oliveira, and P. M. Pardalos, �On the average case

behavior of the multidimensional assignment problem,� Paci�c Journal of Optimiza-

tion, vol. 1, no. 1, no. 1, pp. 39�57, 2005.

[57] P. D. Bertsekas, �Nonlinear programming,� Athena Scienti�c, 1999.

[58] P. D. Bertsekas, A. Nedic, and A. E. Ozdaglar, �Convex analysis and optimization,�

Athena Scienti�c, 2003.

153

154 References

[59] D. M. Himmelblau, �Applied nonlinear programming,� McGrawHill, 1972.

[60] E. Jamhour, �Commande douce de systèmes mécaniques: Optimisation de trajectories

sous diverses contraintes,� L'U. F. R. des Sciences et des Techniques de L'Université

de Franche-Comté, vol. 1, 1994.

[61] P. Ciarlet, �Introduction à l'analyse numérique matricielle et à l'optimisation,� Ed.

Masson, Paris, 1990.

[62] R. Bhowmik, �Building design optimization using sequential linear programming,�

IEEE SoutheastCon, vol. 22, no. 25, pp. "498�502", Mar 2007.

[63] J. M. Box, �A new method of constraint optimization and a comparison with other

methods,� Computer Journal, vol. 8, pp. 42�52, 1965.

[64] J. H. Holland, �Adaptation in natural and arti�cial systems, an introductory analy-

sis with application to biology, control and arti�cial intelligence,� The University of

Michigan Press, 1975.

[65] M. Avriel, �Nonlinear programming: Analysis and methods,� Dover Publishing, 2003.

[66] J. A. Nelder and R. Mead, �A simplex method for function minimization,� vol. 7,

pp. 308�313, 1965.

[67] K. I. M. McKinnon, �Convergence of the nelder�mead simplex method to a nonstation-

ary point,� SIAM J. on Optimization, vol. 9, no. 1, no. 1, pp. 148�158, 1998.

[68] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, �Convergence properties

of the Nelder-Mead Simplex method in low dimensions.,� SIAM J. Optimization, vol. 9,

no. 1, no. 1, pp. 112�147, 1998.

[69] C. Audet and J. E. D. Jr., �Analysis of generalized pattern searches,� SIAM J. Opti-

mization, vol. 13, pp. 889�903, 2003.

[70] A. W. Moore, �An implementation-based comparison of measurement-based admission

control algorithms,� Journal of High Speed Networks, vol. 13, pp. 87�102, 2004.

[71] P. Siripongwutikorn and S. Banerjee, �Per-�ow delay performance in tra�c aggregates,�

Proceedings of IEEE Globecom 2002, vol. 3, pp. 2634�2638, Nov 2002.

154

References 155

[72] Y. Xu and R. Guerin, �Individual qos versus aggregate qos: A loss performance study,�

IEEE/ACM Transactions on Networking, vol. 13, pp. 370�383, Apr 2005.

[73] S. Spitler and D. C. Lee, �Optimization of call admission control for a statistical mul-

tiplexer allocating link bandwidth,� IEEE Transactions on Automatic Control, vol. 48,

pp. 1830�1836, Oct 2003.

[74] R. Guerin, H. Ahmadi, and M. Naghshineh, �Equivalent capacity and its application

to bandwidth allocation in high-speed networks,� IEEE Journal on Selected Areas in

Communications, vol. 9, pp. 968�981, Sep 1991.

[75] R. Li and E. Lee, �Analysis of fuzzy queues,� Computer and Mathematics with Appli-

cations, vol. 17, pp. 1143�1147, 1989.

[76] S. Chen, �Parametric nonlinear programming approach to fuzzy queues with bulk ser-

vice,� European Journal of Operational Research, vol. 163, pp. 434�444, 2005.

[77] J. Ke and C. Lin, �Fuzzy analysis of queue systems with an unreliable service: a

nonlinear programming approach,� Applied Mathematics and Computation, vol. 175,

pp. 330�346, 2006.

[78] M. J. Pardo and D. la Fuente, �Optimizing a priority discipline queuing model using

fuzzy set theory,� Computer Mathematics with Applications, vol. 54, pp. 267�281, 2007.

[79] B. Chen, Y. Yang, B. Lee, and T. Lee, �Fuzzy adaptive predictive �ow control of atm

network tra�c,� IEEE Transactions on Fuzzy Systems, vol. 11, pp. 568�581, 2003.

[80] W. Guo and H. Hu, �A self-adapted wavelet-based fuzzy predictor of network tra�c,�

IEEE International Conference on Computing, pp. 367�372, Nov 2006.

[81] C. Hsiao and S. Su, �An on-line fuzzy predictor from real-time data,� IEEE Interna-

tional Fuzzy Systems Conference, pp. 1�5, Jul 2007.

[82] N. M. Din and N. Fisal, �Fuzzy logic token bucket bandwidth predictor for assured for-

warding tra�c in a di�serv-aware mpls internet,� IEEE Asia International Conference

on Modeling and Simulation, pp. 247�252, Mar 2007.

[83] J. Babiarz, K. Chan, and F. Baker, �Con�guration guidelines for di�serv service

classes,� IETF - RFC 4594, 2006.

155

156 References

[84] J. Seger, �Modeling approach for VoIP tra�c aggregations for transferring tele-tra�c

trunks in a QoS enabled IP-backbone environment,� International Workshop on Inter-

domain Performance and Simulation, Feb 2003.

[85] J. Wroclawski, �Speci�cation of the Controlled-Load Network Element,� IETF RFC

2211, Sep 1997.

[86] P. Kumar and R. Garg, �Fuzzy model of corona current signals for ehv lines,� Institution

of Engineers of India, Electrical Engineering Division, vol. 86, Mar 2006.

[87] H. Kim and N. Shro�, �Loss probability calculations and asymptotic analysis for �nite

bu�er multiplexers,� IEEE/ACM Trans. Networking, vol. 9, no. 6, no. 6, pp. 755�768,

2001.

[88] D. P. Filev and R. R. Yager, �Defuzzi�cation Under Constraints and Forbidden Zones,�

Kybernetes, vol. 23, pp. 43�57, 1994.

[89] G. Vaudreuil and G. Parsons, �Toll quality voice-32 kbit/s adpcm mime sub-type reg-

istration,� IETF-RFC 2422, Sep 1998.

[90] G. Procissi, A. Garg, M. Gerla, and M. Y. Sanadid, �Token bucket characterization of

long range dependent tra�c,� Computer Communications, vol. 25, Jan. 2002.

[91] R. Guerin and M. Naghshine, �Equivalent capacity and its application to bandwidth al-

location in high speed networks,� IEEE Journal on Selected Areas in Communications,

vol. 9, no. 7, no. 7, pp. 968�981, 1991.

156

List of acronyms

AC Admission Control

AF Assured Forwarding

AFD Average Flow Duration

API Application Programming Interface

AS Autonomous System

BE Best E�ort

CBR Constant Bit Rate

CIR Committed Information Rate

DF Default Forwarding

Di�Serv Di�erentied Services

DSCP Di�erentiated Services Code Point

EF Expedited Forwarding

FBM Fractional Brownian Motion

FBt Fractional Brownian Motion Tra�c

FLS Fuzzy Logic System

FP Flexible Polyhedron

IETF Internet Enginneering Task Force

IntServ Integrated Services

IP Internet Protocol

ISP Internet Service Provider

ITU-T International Telecommunication Union - Telecommunication Standardi-

zation Sector

LAN Local Area Network

LER Label Edge Router

LIP6 Laboratoire d'Informatique de Paris VI

157

158 List of acronyms

LP Linear Programming

LRD Long Range Dependence

LSP Label Switched Path

LSR Label Switching Router

MBAC Measurement Based Admission Control

MF Membership Function

MFP Membership Flexible Polyhedron

MPLS Multiprotocol Label Switching

MTU Maximum Transfer Unit

MVA Maximum Variance Asymptotic

NLP Non-Linear Programming

NS-2 Network Simulator 2

PBAC Parameter Based Admission Control

PIR Peak Information Rate

RFC Request For Comments

RSVP Resource Reservation Protocol

RSVP-TE Resource Reservation Protocol - Tra�c Engineering

SFP Simulation Flexible Polyhedron

SLA Service Level Agreement

SRD Short Range Dependence

TBF Time Between Flows

T-conorm Triangular conorm

TCP Transmission Control Protocol

Tspec Tra�c Speci�cation

T-norm Triangular norm

TOS Type of Service

TS Takagi-Sugeno

VAD Voice Activity Detection

VoIP Voice over IP

VPN Virtual Private Network

158

List of �gures

1.1 A MPLS/DIFFSERV scenario . 4

2.1 Example: Representing the end-to-end one-way delay of recommendation

G.114 with Crisp and Fuzzy sets . 13

2.2 Most common shapes of membership functions: (a,b,c)-Trapezoidal shapes,

(d,e,f)-Triangular shapes,(g)-Singleton shape 14

2.3 Basic properties of membership functions 16

2.4 Basic operations: (a) Union (b) Intersection 17

2.5 Structure of a Fuzzy Logic System . 18

2.6 Example of a FLS for the perceived quality of speech 26

2.7 Behavior of the perceived quality of speech: qcrisp = FLS(dcrisp, αcrisp) . . 28

3.1 FGN process samples . 34

3.2 Autocorrelation function . 35

3.3 R/S statistic . 36

3.4 Variance Time Plot . 37

3.5 VoIP Tra�c Modeling . 39

3.6 Per-�ow variability illustration . 40

3.7 Sample heap data structure of the event list 42

3.8 State Diagram for an Actor Thread . 44

3.9 Main modules of the Simulator . 45

4.1 Example: Local and Global minima . 49

4.2 Example: A two variable three dimension Polyhedron 53

4.3 Search directions according to the FP principle 55

159

160 List of acronyms

4.4 FP Operations: (a) Initial Polyhedron (b) Re�ection (c) Expansion (d)

Contractions . 58

4.5 Variable o�ered load template . 63

4.6 Optimization Flow for the Proposed PBAC controller 65

4.7 Proposed PBAC controller: E�ect of the Link Capacity 67

4.8 Proposed PBAC controller: E�ect of Leaky Bucket Rate 68

4.9 Proposed PBAC controller: E�ect of Leaky Bucket Size 69

5.1 Multi-Queue Node Representation . 77

5.2 O�-Line Dual-Optimization Fuzzy Predictor Training Method 78

5.3 Fuzzy Predictor Logic System . 82

5.4 Con�guration for the AF aggregate drop subsystem 84

5.5 Example: Loss probability according to the MVA approximation analytical

model. (a) Variance coe�cient a (b) Bu�er Size x 91

5.6 Example: Loss probability according to the MVA approximation analytical

model. (a) Mean input rate m (b) Hurst parameter H 92

5.7 Example: Accumulated loss probability variability illustration 93

5.8 Optimization Training Method for the optimal F̂ 93

5.9 FLS for the MVA approximation for Loss Probability 94

5.10 Example: Illustration of the fuzzy inference process for generating the norma-

lized probability distribution for loss probability. Input Membership Func-

tions: (a) T (b) H. Output Membership Functions: (c) Loss Probability

Ranges (d) Resulting Implied Output Fuzzy Set. 96

5.11 Input and Output Membership Functions for the F̂ coe�cient 97

5.12 Example: Illustration of membership functions of T after optimization phase 99

6.1 Evaluation scenario for the Fuzzy Predictor 104

6.2 AF drop subsystem input membership functions 106

6.3 In�uence of the token bucket rate and number of VoIP �ows on the AF drop 107

6.4 In�uence of the token bucket rate and token bucket size on the AF drop . . 108

6.5 Error prediction histogram for the AF drop test points 109

6.6 EF per-�ow delay input membership functions 110

6.7 In�uence of the link occupation and codec type on the EF delay 111

6.8 In�uence of codec distribution and per-�ow quantile on the EF delay 112

160

List of �gures 161

6.9 Error prediction histogram for the EF delay test points 113

6.10 Probability of the token bucket �lter to constrain the self-similar tra�c when

m=0.9 C . 114

6.11 Comparison of the error prediction histograms for AF Drop Subsystem . . . 115

6.12 Error prediction obtained for test points in the EF Delay Subsystem 116

6.13 Evaluation scenario for the Time Based Fuzzy Model for MVA Approximation

for Loss Probability . 118

6.14 Loss probability dispersion η . 120

6.15 F̂ input membership functions for the universe of discourse of T 122

6.16 Example: Normalized output fuzzy set for t = 500s and H = 0.7. (a)

Normalized value from input membership functions T and H. (b) Resulting

Normalized Output Fuzzy Set for Loss Probability for the pair (500,0.7) . . 123

6.17 Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.7 . 124

6.18 Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.75 . 125

6.19 Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.8 . 126

6.20 Normalized Values from Fuzzy Inference versus Normalized Values from His-

tograms of Simulation Points - H=0.85 . 127

6.21 Chi-Square Fitting Test: F̂ (T,H) and normalized values obtained from his-

tograms of simulation points . 128

6.22 Output Fuzzy Sets for t = {1, 10, 50, 100} 129

6.23 Output Fuzzy Sets for t = {500, 1000, 2000, 3000} 130

A.1 Example: Self-Similar Tra�c generation for an one second simulation 139

A.2 Leaky Bucket Module . 141

161

162 List of �gures

162

List of tables

2.1 Implementation of the membership functions shown in Figure 2.2 15

2.2 Summary of the FLS in Figure 2.6 . 27

2.3 Fuzzy Rules of the FLS in Figure 2.6 . 27

3.1 Simpatica Library API . 43

5.1 IETF Service Class Guidelines . 75

5.2 Di�Serv Node Con�guration . 80

5.3 Output membership functions for the AF aggregate drop subsystem 85

5.4 Rule Set for the F̂ fuzzy logic system . 98

6.1 Performance of MFP procedure . 116

6.2 Performance of SFP procedure . 117

6.3 Normalized range values for the universe of discourse of T 121

6.4 Optimal λ multipliers for height adjustment of membership functions of T . 123

6.5 Normalized Crisp Values for t = {1, 10, 50, 100, 500,1000, 2000, 3000} and

H = 0.85 . 131

6.6 Performance for the Time Based Fuzzy Model for MVA aproximation for

Loss Probability . 131

163

