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Resumo

Uma RSSF (Rede de Sensores Sem Fio) é formada por vários dispositivos (nós)

capazes de coletar informações do ambiente tais como temperatura, vibração, umidade,

som, luz e movimento. Além disso, a sua comunicação sem fio permite implantar rapida-

mente uma rede composta de centenas de nós. Em desastres naturais, uma RSSF pode

ajudar as equipes de resgate na busca por sobreviventes. Uma RSSF também pode ser

empregada na detecção de incêndios florestais. A capacidade de localizar nós automatica-

mente é o fator chave de muitas aplicações móveis de RSSF. Outras aplicações incluem nós

móveis como véıculos, trens, robôs, pedestres e animais. O rastreamento de nós abertos

permite uma grande variedade de aplicações em domı́nios como exploração, navegação,

agricultura, militar e de saúde.

Esta tese aborda o problema de localização de nós na perspectiva de fusão de in-

formações e reconhecimento do contexto. Em particular, esta tese aborda (i) a localização

do nó em RSSF para o interior e exterior, bem como (ii) o rastreamento do nó móvel em

áreas sombreadas. Em (i), a ASH-LN (Arquitetura Subsumption Hierárquica para Local-

ização de Nós) é proposta a qual realiza a fusão de algoritmos de localização de nós para

melhorar a estimativa por meio de sua execução sequencial. Além disso, um conjunto de

seis algoritmos de localização de nós é também proposto de modo a alimentar o ASH-NL.

Em (ii), nós propomos um Modelo Móvel Aleatório Probabiĺıstico para geração de cam-

inhos de qualquer véıculo, bem como um algoritmo para rastreamento de nós móveis em

áreas sombreadas baseado no reconhecimento do contexto e filtragem de part́ıculas.

Palavra-chaves: (Rastreamento de nós, reconhecimento do contexto, fusão da in-

formação, modelo de mobilidade, filtragem de part́ıculas.)
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Resumen

Una RSI (Red de Sensores Inalámbrica)) está formada por varios dispositivos (no-

dos) capaces de recoger información del ambiente tales como temperatura, vibraciones,

humedad, sonido, luz, y movimiento. Además, su comunicación inalámbrica nos permite

desplegar rápidamente una red compuesta por cientos de nodos. En los desastres natu-

rales, una RSI puede ayudar a los equipos de rescate a encontrar sobrevivientes. Un RSI

también puede emplearse para la detección oportuna de incendios forestales. La capaci-

dad de localizar automáticamente los nodos es un factor clave para muchas aplicaciones

basadas en una RSI. Otras aplicaciones importantes de localización incluyen nodos móviles

tales como veh́ıculos, trenes, robots, peatones, y animales. El rastreo de nodos abre una

amplia gama de aplicaciones en el dominio de la exploración, navegación, agricultura,

militar y salud.

Esta tesis aborda el problema de la localización de nodos desde la perspectiva de

la fusión de información y reconocimiento del contexto. En particular, la presente inves-

tigación doctoral está enfocada en (i) la localización de nodos en una RSI para interiores

y exteriores, aśı como (ii) el seguimiento de un nodo móvil en zonas de sombra. En (i),

se propone HSA-NL (The Hierarchical Subsumption Architecture for Node Localization),

la cual fusiona los algoritmos de localización simples con el fin de mejorar la estimación a

través de su ejecución secuencial. Además, se propone un conjunto de seis algoritmos de

localización para alimentar a la arquitectura HSA-NL. En (ii), se propone un modelo de

movilidad probabiĺıstico aleatorio para la generación de trayectorias de cualquier veh́ıculo,

aśı como un algoritmo para el rastreo de un nodo móvil en zonas de sombra basado en el

reconocimiento del contexto y filtrado de part́ıculas.

Palabras claves: (Localización, rastreo, reconocimiento del contexto, fusión de la

información, modelo de mobilidad, filtro de particulas)
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Abstract

A WSN (Wireless Sensor Network) is formed by various devices (nodes) capable

of collecting information from the environment such as temperature, vibration, humidity,

sound, light, and motion. Besides, their wireless communication allows us to quickly

deploy a network composed of hundreds of nodes. In natural disasters, a WSN can help

rescue teams to find survivors. A WSN can be also employed for an early detection of

forest fires. The capability of automatically locating nodes is a key factor in many WSN

applications. Other major localization applications include mobile nodes such as vehicles,

trains, robots, pedestrians, and animals. The node tracking opens up a wide range of

applications in exploration, navigation, agriculture, military and health domains.

This thesis deals with the node localization problem from the perspective of in-

formation fusion and context awareness. In particular, this thesis addresses (i) the node

localization in a WSN for indoors and outdoors as well as (ii) the mobile node tracking

in shaded areas. In (i), the Hierarchical Subsumption Architecture for Node Localization

(HSA-NL) is proposed which fuses node localization algorithms in order to improve the

estimation through their sequential execution. Besides, a set of six node localization al-

gorithms are also proposed in order to fuel HSA-NL. In (ii), we propose a Probabilistic

Random Mobility Model for generating paths of any vehicle as well as an algorithm for

tracking a mobile node in shaded areas based on context awareness and particle filtering.

Keywords: (Localization, tracking, context awareness, information fusion, mobility

model, particle filtering)
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Chapter 1

Introduction

1.1 Localization and tracking of nodes

A WSN (Wireless Sensor Network) consists of various devices (nodes) capable

of collecting information from their environment through sensors incorporated such as

temperature, humidity, sound, light, and motion, among others. Some of the main char-

acteristics of a WSN include rapid deployment, scalability, application oriented configu-

ration, and in most cases are low in cost. A WSN can be used in several applications

such as habitat monitoring, e-health, helping rescue teams in events of disasters, military

surveillance, etc. A WSN can be used for early detection of forest fires [1, 2]. The forest

is considered one of the most important and vital natural resource, besides it plays an

important role in the ecological balance of the earth. An early detection of a forest fire

could reduce the damaged area considerably and the wildlife could be preserved.

The monitoring of crop fields is not recent; it can be realized by the analysis of

images taken from satellites or an aircraft [3] or by using infrared and visible-light images

[4]. However, a WSN can be used for a fine monitoring, because it can detect nutrient

deficiencies, diseases, water deficiency or surplus, water flow, weed infestations, insect

damage, hail damage, wind damage, herbicide damage, and plant populations, among

others. In a specific case, if an agriculturist wants to know the air temperature and hu-

midity, the soil temperature and moisture, the CO2 concentration, and the illumination

intensity, the best solution might be a WSN application such as [5], which is based on

Greenhouse [6]. In the latter paper, an optimal environment can be achieved with a Green-

house, it involves continuous monitoring and activation of different units, such as heating,

cooling, lighting, water/soil gradient and so on, in order to maintain the most favorable

environment and protect crops from external climate. A WSN plays an important role
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from an economic perspective respect to satellites or an aircraft. Besides, captured data

can be more specific such as the CO2 concentration.

Natural disasters such as avalanches, earthquake, floods, tornadoes, tsunamis, bliz-

zard, and so forth usually destroy the communication network infrastructure. A WSN

can be used for create a rapid structure to sense environmental data and prevent hazards

[7]. WSN is not except to be damaged by natural disasters; nevertheless it can recover

itself and transmit urgent data effectively [8]. Furthermore, the WSN can work undersea

[8] for data collecting, pollution monitoring, assisted navigations, exploration of natural

underwater sea resources, and so on.

We have highlighted that WSN applications can be quite useful in diverse domains.

Undoubtedly the node position plays an important role. In the case of forest fires, we

would like to know as soon as possible where the fire is starting, specifically, the geo-

graphical position of the node that reports the incident. Where is the node? This is the

fundamental question that motivates to the community of researchers that are working in

the area of localization of nodes. Nowadays, there are numerous Node Localization Algo-

rithms (NLAs) with different accuracy and approach. Despite the high relative precision

of some algorithms, this is still an opened research area due to: (i) physical phenomena

such as the attenuation, reflection, diffraction, and scattering. These constraints are dis-

cussed in greater detail in [9]; (ii) hardware constraints such as the storage capacity, the

energy consumption, the low computational power availability, and the radiation pattern

of antennas; (iii) the kind of environment such as indoors, outdoors, or both; and (iv)

Environment’s factors such as temperature, humidity, and obstacles. The inclusion of all

previous factors into a single NLA (Node Localization Algorithm) might not possible or

feasible to achieve. Some solutions for the localization of nodes are range-based NLA in

which distances or angles among nodes are employed. Some NLAs of this kind include

the AoA (Angle of Arrival) [10, 11, 12, 13], RSSI (Received Signal Strength Indicator)

[11], ToA (Time of Arrival)[11], TDoA (Time Different of Arrival) [11], PinPtr [14], the

SpotON [15], and GPS (Global Position System). The latter is not operational indoors

because the line-of-sight is required and sometimes it is not the best solution from an

economical perspective. On the other hand, the range-free NLAs use only contents of

received messages. Example of this kind of NLAs are the APIT (Approximate Point-In-

Triangulation) [16, 11], CL (Centroid Localization) [17, 11], Bounding box [18, 11], and

DV-Hop (Distance Vector-Hop) [19, 11]. On the other hand, there are NLAs that can

be classified as range-based and range-free i.e., hybrid NLAs. For instance, the WCL

(Weighted Centroid Localization) [20], TCL (Triangular Centroid Localization) [21], and

algorithm presented in [22].
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Generally speaking the accuracy performance of NLAs is better under specific

conditions. For instance CL, the authors evaluated their simple-idealized radio model in

a real scenario. Experimental results show different error performance for the outdoor and

indoor scenario. For the former, the error never exceeds the 2 meters while for the latter

the maximum error is 22.3 meters. In [16], is presented via simulation other accuracy

performance of the CL considering the variation of: (i) the node density, (ii) beacons

heard, (iii) the beacon node range ratio, and (iv) the pattern irregularity of the signal.

Again, simulation results show that the CL has different error performance. The minimum

average error of the CL is 0.1R and the maximum average error is 3.1R such that R is

the units of node radio range.

The integration of all factors of a given complex environment into a simple NLA

might be not possible and feasible to achieve. Some factors represent an authentic chal-

lenge but itself, and the benefit in node localization may be poor. The obtaining of an

optimal equation is not an easy task, if the environment status changes the accuracy of

the NLA also changes. We want to highlight that there is no a universal NLA which

obtains the same high accuracy anywhere. Instead of, some authors have created NLAs

to be executed in specific places such as the RADAR [23] which was developed in a fully-

observable environment (second floor of a three-storey building). The authors included

a user location in four orientations: north, south, east, and west. Besides, they consid-

ered the number of walls, whereof they incorporated the wall attenuation factor into the

floor attenuation factor propagation model [24], hereof they proposed the wall attenuation

factor model.

In order to increase the application range of NLAs a composition of them might

be required. In [25, 26] a composition of NLAs is proposed in a hierarchical framework

considering two main sequential execution phases: (i) range-based NLAs and (ii) range-

free NLAs. The execution order from this approach can be explained based on the premise

that range-based NLAs are normally more accurate than range-free one. On this basis

alone, the estimated position of nodes cannot be improved through the execution phases.

1.2 Motivation

A WSN has been used in several applications as stated earlier. Undoubtedly, the

node localization is a key factor and it is directly related with the profit. A high accuracy

in node localization is demanded by some critical and non-critical applications. We are

motivated by the idea that some NLAs are able to work together in order to provide

a flexible solution since there is no a universal NLA. It means a NLAs fusion might be
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required. We believe that a NLA should be able to react to an environment as a context-

aware application in order to improve its node localization estimation. The NLA fusion

and context awareness seem to be a flexible and appropriate solution for critical and

non-critical applications in a WSN.

On the other hand, many algorithms and applications use GPS as standard for

outdoor usage. But it cannot performance correctly for shaded areas such as tunnels,

canyons, and near large buildings. Other localization algorithms and reference information

might be then required for aiding GPS. In this sense, we are also motivated by the idea

that a mobile node is able to keep tracking by itself even in shaded areas.

1.3 Problem description

The main node localization and tracking problems are well-defined in the node

localization community so that each problem opens up a vast research subarea. They are

listed below.

� The type of antenna.

� The WSN’s density.

� The node’s mobility.

� Physical phenomena (diffraction, reflection, reflation, and scattering).

� The diversity of places (either indoors or outdoors).

� Diversity of obstacles (persons, walls, and any possible object).

� High performance and low cost.

� The wave propagation irregularity.

� The distance estimation among nodes.

� Noise in sensors.

� Energy consumption and Complexity.

Some context problems have been considered slightly and suggested to be explored.

For instance, the node position on the user, either on his belt or in his shirt pocket. Maybe,

this is a very fine problem, but it was already taken into account [27]. The importance

of each of the problems described above depends entirely on the application environment
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and their importance can vary from one environment to another. This research focuses

on the problems of the diversity of places and obstacles.

1.4 General objectives

The aim of this doctoral work is not to solve the node localization and tracking

problem with a universal solution. The objective is proof that Information Fusion and

Context Awareness are useful and flexible for both localization in a WSN and tracking of

a node in shaded areas.

1.5 Specific objectives

Formulate and develop an architecture that allows the sequential fusion of node

localization algorithms and uses then context awareness for improving the estimated po-

sition of nodes. Formulate and develop an architecture that allows tracking a node even

in shaded areas. In order to accomplish these objectives the following duties are required:

� Review the state of the art of the localization and tracking of nodes, context aware-

ness, information fusion, distance estimation, and particle filtering.

� Formulate and develop several single NLAs in order to fuel the proposed architec-

tures for node localization problem in a WSN.

� Validate the two architectures through accuracy and performance comparisons.

1.6 Hypothesis

We have one only hypothesis which involves all the work performed.

� Information Fusion and Context Awareness working together are able to provide a

flexible solution for the node localization in a WSN as well as tracking of a node in

shaded areas.
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1.7 Document organization and main contributions

1.7.1 Organization

The document is organized into nine chapters as follow: The section 2 shows

the related work and background of localization and tracking of nodes bearing in mind

information fusion and context awareness. The section 3 describes the seven proposed

NLAs. The section 4 details four proposed architectures for node localization in WSN.

The section 5 shows the test scenarios and experimental results. The section 6 finalizes

the first thesis’ part with ongoing work and conclusion. In the second thesis’ part node

tracking is addressed. The section 7 details the proposed architecture. The section 8

shows the test scenarios and experimental results. Finally, the section 9 concludes the

second thesis’ part with ongoing work and conclusion.

1.7.2 Main contributions

The main contributions of Part I (LOCALIZATION) are:

� Three architecture for node localization in a Wireless Sensor network:

The Logical Position of Nodes.

Smart Node Architecture for Node Localization.

The Hierarchical Subsumption Architecture for Node Localization.

� Six node localization algorithms:

The Vectorial Localization Algorithm.

The Energized Centroid Localization.

The Subzone Localization algorithm.

The Triangular Centroid Localization.

The Smart Beacon Nodes.

The Logical Position of Nodes.

� A novel solution for node localization considering the variations of the energy con-

sumption of nodes.

� A research subarea focused on developing NLAs with an execution stamp n.

� The use of context awareness for improving the estimated position of a node.
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� We proved that for the studied NLAs the number of required beacon nodes can

be highly reduced by the use of context awareness without affecting their average

accuracy (it is believed that this is also true for similar NLAs to the studied ones).

� We successfully introduced the subsumption principle to the area of context aware

computing for a localization process.

The main contributions of Part II (TRACKING) are:

� An architecture for locating of a mobile node during shaded areas.

� We successfully introduced the suppress principle of the subsumption architecture

[28] into our proposed architecture as a priority-selective control between li and

E[xi].

� A Probabilistic Random Mobility Model for generation of paths of any vehicle [29].

� We successfully introduced the Flexible SoU upon the area of Particle Filtering and

generation of paths.

� The use of the CTR and status of a mobile node, in combination, to reduce and

adapt the space of uncertainty.
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Chapter 2

Background

2.1 Node localization

Hereafter, the term beacon nodes refers to those nodes for which their location is

known and unknown nodes for those nodes for which their location is unknown. The next

subsections describe several related NLAs according to the wide classifications: range-free,

range-based, or hybrid NLAs, where all equations presented in this chapter belong to the

state of the art.

2.2 Range-free node localization

Range-free NLAs are usually less accurate than range-based NLAs. However, they

can obtain reasonable performance such as the CL [17]. This NLA has a low complexity

and it is easy to implement. In the CL algorithm each unknown node i estimates its

physical position Pi in a two-dimensional Cartesian space (x, y) by averaging the positions

of n heard beacon nodes Bj. It is defined as shown in (2.1).

Pi(x, y) =
1

n

n∑
j=1

Bj(x, y) (2.1)

The experimental results from [17] show different error performance for outdoor

and indoor scenarios. For the former, the error never exceeded 2 meters while for the

latter varied widely from 4.6 meters to 22.3 meters. According to the authors the error

fluctuation depends on: the amount of walls, the node location, and the node orientation.

The CL algorithm was developed assuming perfect spherical radio propagation and an

identical transmission range, unlike the Approximate Point-In-Triangulation algorithm
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[16]. The APIT algorithm uses the DOI (Degree Of Irregularity) equal to 0.1 and 0.2.

The DOI is defined as an indicator of the ratio pattern irregularity, e.g. if DOI=0.3, the

radio range r in each direction takes a random value from 0.7r to 1.3r. In the APIT

process, an unknown node selects arbitrarily three heard beacon nodes in order to form a

triangle (beacon triangle); if the unknown node is inside the beacon triangle, the beacon

triangle can be considered a containing area. The process is executed for all heard beacon

nodes or until a certain accuracy is achieved. The unknown node assumes the centroid of

the intersection center of all containing areas as its position as shown in Figure 2.1. The

density of beacon nodes plays an important role for this kind of approaches. This is also

true for the DV-Hop [19] and the amorphous position algorithms [30].

Estimated position

Figure 2.1: An example of APIT performance.

In Bounding Box the coverage range of each beacon node is considered as a box.

The center of the intersection of all heard beacon nodes is the estimated position of the

non-beacon node. The boxes’ size are based on hop count radio range from beacon nodes

to the non-beacon node as shown in Figure 2.2. The box of each node can be expressed

with a lower position Bi
LOWER(x, y) and the upper position Bi

UPPER(x, y). The height is

then h = |Bi
LOWER − Bi

LOWER|/2. The equations 2.2 and 2.3 shows the lower position

PLOWER and upper position PUPPER of the parallelepiped formed by the intersection of

the boxes.

PLOWERmax[B
i
LOWER(x), B

i
LOWER(y)] (2.2)

PUPPERmax[B
i
UPPER(x), B

i
UPPER(y)] (2.3)
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The estimated position of the node is the average of coordinates lower and upper

of the parallelepiped as is shown in equation 2.4

Pi(x, y) = (
√
(PUPPER(x)− PLOWER(x))2,

√
(PUPPER(y)− PLOWER(y)2) (2.4)

Estimated position

Figure 2.2: An example of DV-Hop performance.

2.3 Range-based node localization

Range-based NLAs usually perform better than range-free, however, in some cases

additional hardware is employed. Another issue to consider is the calibration process

and time that might be required before actual location estimation can be executed. For

instance, the RADAR [23] is a radio-frequency based system for locating and tracking

persons in indoor scenarios; it uses the signal strength from three beacon nodes inside a

building. Based on empirical measurements the user location is inferred by triangulation.

The authors consider the wall attenuation based on a floor attenuation factor propagation

model. Nevertheless, RADAR requires an extensive effort and time for the generation of

the signal database based on previous survey measurements. A similar work is presented

in [31] where a wireless signal strength map is generated by using a ray-tracing approach

in order to include absorption and reflection characteristics of various obstacles (home

environment). The locations of users are computed using Bayesian Filtering on sample

sets which are derived by Monte Carlo Sampling. Authors’ results show a sub-room

precision (∼ 1m). However, the training effort requires time because they have to measure
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walls, windows, and door length of all rooms as well as identification of major obstacles.

SpotON from [15] is also a radio-frequency based NLA. It employs tagging tech-

nology and the radio signal strength for 3D location estimation. In this system beacon

nodes are connected to a server using serial ports and Ethernet interfaces. The available

interfaces are incremented if required by using a microwebserver. The SpotON algorithm

estimates the distance between nodes by using the equation 2.5, where SS is the signal

strength and d is the distance in meters. The values 0.629 and 4.71 were obtained in an

empirical form:

SS = 0.236× d2 − 0.629× d+ 4.71 (2.5)

The PinPtr algorithm [14] is a sniper-detecting system based on acoustic measure-

ments of shots. In other words, this is founded in the fact that when a projectile is fired,

it produces a spherical sound wave. The shot trajectory is taken into account and points

within it are then selected. From these points a cone-shape is formed and the system then

computes the angles among them. Based on the sound velocity, the computed angles and

the trajectory, a shooter position is then estimated. This algorithm is limited by a line-of-

sight requirement. Other algorithms limited for such factor include Time of Arrival based

NLAs such as GPS and [32, 33]. However, the former is still not an option for indoor

environments. In a different approach Angle of Arrival NLAs [19, 34, 18] detect the angle

of arrival of messages by using microphones as shown in Figure 2.3. Each node must have

one speaker and many microphones. Both cost and accuracy are the main issues of this

approach.

Figure 2.3: The experimental node Medusa.

Time Difference of Arrival techniques [35] are based on the propagation time dif-
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ference among sound and electromagnetic signals. TDoA NLAs require for each node

one speaker and microphone. The strategy for node localization is as follows: (a) the

beacon node sends a broadcast message and it expects a fixed time Ft to produce a chirp

with its speaker. (b) The unknown node receives the message at time Tm and the chirps

at time Tc, where Tc > Tm. (c) The unknown node employs these three variables and

the corresponding propagation speed of the sent message and the sound to calculate the

distance between it and the beacon node. This is expressed in the equation 2.6, where

the variable Sm is the message propagation speed and Sc is the chirp propagation speed.

distance = Sm − Sc × Tc − Tm − Ft (2.6)

The accuracy for both TDoA and AoA NLAs is limited by hardware and line-of-

sight. On the other hand, the distance estimation can be also performed based on the

Received Signal Strength Indicator [Benkic:2008, 36, 37]. In [36] the RSSI measurements

are filtered using the standard deviation and considering packet loss limits. On the other

hand, the study presented in [Benkic:2008] concludes that the RSSI is a ”bad” factor

for distance estimation. Multi-path fading, background, interference, and irregular sig-

nal propagation can explain the latter. Finally in Table 2.1 synopsis of some NLAs is

presented.

Table 2.1: NLA’s performance.

NLA Accuracy Nodes Overload Architecture Environment Range
AoA High > 10 Low Distributed Outdoors Based
RSSI Fair > 10 Fair Centralized Indoors Based
ToA High > 10 Low Distributed Outdoors Based
TDoA High > 10 Low Distributed Outdoors Based

Amorphous Good >16 Large Distributed Outdoors Free
APIT Good >16 Low Distributed Outdoors Free

Centroid Fair >10 Low Distributed Both Free
WCL Fair >10 Low Distributed Both Free

Bounding Box Fair >16 Low Distributed Both Free
Dv-Hop Good >16 Large Distributed Outdoors Free
MDS Good > 16 Large Centralized Outdoors Both

2.4 Hybrid node localization

Hybrid NLAs use both the content of the received messages and distances/angles.

Some of these algorithms includes Triangular Centroid Localization [21], the Weighted
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Centroid Localization [20], ICL (Improved Centroid Localization Algorithm) [38], and

EDIPS [39]. The TCL algorithm employs two beacon nodes and the estimated position

of the unknown node to form a triangle. Two beacon nodes form the base and the height

is given by the estimated position of the unknown node (vertex B) which is provided

by the CL algorithm. On the order hand, the distance between the unknown and both

beacon nodes is estimated by using the variations of the RSSI or the LQI (Link Quality

Indicator). The vertex B is then displaced in a defined process until the triangle cathetus

matches with the RSSI/LQI estimated distances. The distance estimation in WCL is

also performed by using the RSSI/LQI. The unknown node position is estimated by the

equations 2.7 and 2.8.

Pi(x, y) =

∑n
j=1Wij ×Bj(x, y)∑n

j=1Wij

(2.7)

Wij =
1

dgij
(2.8)

Where Pi(x, y) represents the position of the unknown node i and Bj the position

of a heard beacon node. For each Bj a weight Wij is assigned and calculated using the

equation 2.8. This weight represents the wave attenuation factor. The distance dij is

the distance between nodes i and Bj and it is estimated from the LQI variations. The

variable g takes integer values ranging from one to five in order to determine the optimal

value. In the experimental results from [20] the WCL the best performance under two

settings: (i) g = 1 and the coverage range is 10 meters; and (ii) g = 3 and the coverage

range is 30 meters. The distance estimation in the ICL algorithm [38] is also performed

by using (2.7) and (2.8), but the variable g is fixed to 1. The ICL algorithm is based on

APIT [16] and the quality of perpendicular bisector. Three perpendicular bisectors divide

the beacon triangle formed by the APIT algorithm into six small cells. A unknown node

assigns itself to a cell from by the RSSI from heard beacon nodes. Finally, the centroid

of the assigned cell is assumed as the position of the unknown node.

The EDIPS [39] algorithm matches with both hybrid NLAs and context-aware

applications because it uses the signal strength from reference points and reacts regarding

the environment status. EDIPS is explained in greater detail in the next subsection.

2.5 Context awareness

The general mechanism for computing location contextual information can be bro-

ken into three steps:
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1. Information collection. Collecting information on the user’s physical, informational

or emotional state.

2. Context extraction. This involves analyzing the information in relation to other

information such as location, time, environment, social and mental state, etc.

3. Pattern recognition. This entails predicting patterns in the consumer’s behavior,

over time.

All the aspects by themselves require expertise and thus demand individual teams

to collaborate and come up with an efficient solution. Issues that may surface in this

regard are likely to be that of privacy and spam. The node localization is employed as

an essential data on the context-aware computing. In other words, the node localization

is a priori knowledge. The important aspects of a context are: where you are, who you

are with, and what resources are nearby. In our approach, we use the context awareness

in order to improve the node localization estimation made by a fair node localization

algorithm for instance the Centroid Localization Algorithm. The context encompasses

more than just the user’s location, because other things of interest are also mobile and

changing. Context includes lighting, noise level, network connectivity, communication

costs, communication bandwidth, and even the social situation.

Applications that react regarding environment status are named context-aware

applications such as in [40], if the user is in a bookstore, s/he receives offers and suggestions

of books in his/her personal devices. Nowadays, this kind of applications have a wide area

of use such as airports [40], education [41, 42], and hospitals [43, 44], just to appoint a few.

Node localization is an essential input for context-aware applications. These applications

assume the use of GPS or employ a high amount of beacon nodes with a short-range

coverage. Therefore node localization is not considered an issue. The ABS (Active Badge

System) [27] is a suitable example. The system provides a service for locating users within

a building using badges with infra-red signal. In addition, ABS displays the likelihood of

each user to stay in a certain place. The drawback of this system is based on the fact

that the infra-red signal cannot travel through walls and badges have a coverage range of

six meters. A similar application is EDIPS [39] which locates and tracks users indoors by

using the signal strength from reference points. Once users are located, this system helps

them to arrive with others users by displaying in his/her personal device the corresponding

path. EDIPS can be divided in two parts: (i) a method for locating/tracking nodes and (ii)

a service that helps users to find other users regarding their positions and the environment

status.
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Node localization plays an important input for the previous context-aware appli-

cations. However in scenarios where beacon nodes have a high-coverage range the node

estimation can be compromised by attenuation, reflection, diffraction, and scattering is-

sues which are discussed in greater detail in [9]. As far as we know, there is not a universal

node localization algorithm that presents the same accuracy for all possible scenarios. We

believe that a NLA should be able to react to the environment as a context-aware appli-

cation in order to improve the node localization instead of including several factors from

the environment.

2.6 Mobile node tracking

According to Yaakov [45], tracking is the processing of measurements obtained

from target in order to maintain an estimate of its current state which typically consists

of:

� Kinematic components (position, velocity, acceleration, etc.)

� Other components (radiated signal strength, spectral characteristics, ”feature” in-

formation, etc.).

� Constant or slowly-varying parameters (couping coefficients, propagation velocity,

etc.)

Measurements are noise-corrupted observations related to the state of a target,

such as:

� Direct estimate of position.

� Range and/or azimuth (bearing) from a sensor.

� Time of arrival difference (obtained by cross-correlating data) between two sensors.

� Frequency of narrow-band signal emitted by target.

� Observed frequency difference (due to Doppler shift) between two sensors.

� Signal strength.

The measurements of interest in multi-target applications are usually not raw data

points, but rather the outputs of signal processing and detection subsystems, as shown in

Figure 2.4.
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Figure 2.4: Components of a typical tracking system.

The track is a state trajectory estimated from a set of measurements that have been

associated with the same target. The crucial point of the multi-target tracking problem

is to carry out this data association (or data correlation) process for measurements whose

origin is uncertain due to:

� Random false alarms in the detection process.

� Clutter due to spurious reflectors or radiators near the target of interest.

� Inferring targets.

� Decoys or other countermeasures.

The applications of tracking are numerous, ranging from undersea surveillance and

space-age weapon systems to bubble-chamber experiments and image processing.

Some of the earliest examples involved radar and sonar systems, where manual

tracking of blips on video displays by human operators evolved in to computer-controlled
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tracking algorithms. Radar and sonar applications continue to abound. Military uses

include land, air, sea, and space surveillance involving a large variety of sensors, targeting

and control of individual weapons and weapon systems, and overall battle management.

Civilian uses include air traffic control, collision avoidance, and navigation.

Sensors based on infrared, laser, and other technologies and new applications such

as machine vision require novel approaches to data association and tracking. The so-

phistication and complexity of the algorithms grow to keep pace with the ever-expanding

frontiers of computer technology.

In Particle Filtering approach external information is referred as observations and

they can be captured for example by GPS, video cameras, odometers, beacon nodes, and

so forth. Observations are the only information that helps to keep and weight particles,

obviously the hardware quality plays an important roll, but also physical phenomena that

affect the wave propagation and measurements. Information fusion [46] is commonly used

as a solution to merge observations coming from several and diverse sources in order to

improve the node localization estimation such as [47, 48, 49, 50, 51].

The objective of a particle filter is to estimate the posterior density of the state

variables given the observation variables. The particle filter is designed for a hidden

Markov Model, where the system consists of hidden and observable variables. The ob-

servable variables (observation process) is related to the hidden variables (state-process)

by some functional form that is known. Similarly the dynamical system describing the

evolution of the state variables is also known probabilistically.

The objective of the particle filter is to estimate the values of the the hidden states

X, given the values of the observation process Y . The particle filter aims to estimate the

sequence of hidden parameters, Xk for k = 0, 1, 2, 3, ..., based only on the observed data

Yk for k = 0, 1, 2, 3, .... All Bayesian estimates of Xk follow from the posterior distribution

P (Xk|Y0, Y1, ..., Yk).
A generic particle filter estimates the posterior distribution of the hidden states

using the observation measurement process. Consider a state-space shown in the diagram

Figure 2.5.

The general particle filtering approach includes three steps: (i) Initialization, (ii)

Prediction, and (iii) Filtering. In (i), Particles are dropped from the proposal distribution.

In (ii), the prior distribution is often used as importance function because it is easier drop

particles and perform subsequent importance weight calculations. In (iii), filtering based

on connection, exact range, bounded ranging and weighting is usually employed [31, 52,

53, 54, 55, 56]. SIR (Sequential Importance Resampling) is a very commonly used particle

filtering algorithm which is shown in Algorithm 1.
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Figure 2.5: An example of the State-Space.

Algorithm 1 The generic Sequential Importance Sampling algorithm.

1: {At time 1}
2: for i = 1 to N do
3: Sample X i

1 ∼ q(· )
4: W i

1 ∝
π(Xi

1)

q1(Xi
1)

5: end for
6: Resample {X i

1,W
i
1} to obtain {X̄ i

1, 1/N}
7: {At time n ≥ 1}
8: for i = 1 to N do
9: Set N i

1:n−1 =
¯X i
1:n−1

10: Sample X i
n ∼ qn(· |X i

1:n−1)

11: Set W i
n ∝

πn(Xi
1:n)

qn(Xi
n|Xi

1:n−1)πn−1(Xi
1:n−1)

12: end for
13: Resampling {X i

1:n,W
i
n} to obtain {X̄ i

1:n, 1/N}

2.7 Conclusion

Wireless sensor networks are tremendously being used in different environments

to perform various monitoring tasks such as search, rescue, disaster relief, target tracking

and a number of tasks in smart environments. In many such tasks, node localization

is inherently one of the system parameters. Node localization is required to report the

origin of events, assist group querying of sensors, routing and to answer questions on the

network coverage. One of the fundamental challenges in wireless sensor network is node

localization. In this chapter a comprehensive review of the related work was shown. The

importance localization and tracking of nodes was highlighted for indoors and outdoors.

How the node localization in a WSN plays an important roll for both critical and non-

critical applications. A common technical in target tracking in a WSN is that individual

homogeneous sensors only measure their distances to the target whereas the state of the

target composes of its position and velocity in the Cartesian coordinates. That is, the

senor measurements are nonlinear in the target state. However, for those applications
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where there is not a target or reference point an array of sensor might be required. The

array of sensors have to be capable of collecting information valid during the displacement

of the mobile node. Normally these measurements contain background noise and data

processing before use is necessary. Particle Filtering approach seems to be appropriate to

address the mobile node localization during shaded ares because it is able to handle the

location uncertainty during shaded areas and improves the node location estimation over

time.



PART I

LOCALIZATION
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Chapter 3

The proposed Node Localization Algorithms

3.1 Introduction

There are diverse approaches for estimating the distance between nodes by using

the RSSI. On this basis alone, various approaches have been developed to estimate the

distance among nodes such as [Benkic:2008, 36, 37]. In [36] the authors improve the

estimation by filtering the measured RSSI through optimized standard deviation and

packet loss limits. On the other hand, in [Benkic:2008] is presented a study of the RSSI,

where the authors conclude that the RSSI is bad distance estimator in buildings; as a

matter of fact, the indoor node localization is a hard task for NLAs based on the RSSI. In

general, these kinds of methods suffer problems of the multi-path fading, the background,

the interference, and the irregular signal propagation. We have development our own

method to estimate the distance among nodes. We used the TinyOS [57] to program the

functionality of nodes and the network simulator AvroraZ [58] to simulate the WSN along

with the obstacles.

3.2 Distance estimation process

The measurement point MesurementPointn for each scenario is defined by the

distance dis between two nodes MicaZ (see appendix B). The variable is a three-tuple

such that MesurementPointn = {dis, µ0, σ} where µ0 is the hypothesis population mean

and σ is the population standard deviation. The variable dis ranging from 1 to 18 because

the maximum coverage range of each node is about 18 meters. A total of 100 running

simulations were achieved for each different scenario, 18, by changing the obstacle level

at random. The details for each scenario are as follow:
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� A propagation model for indoors based on the Rayleigh and lognormal distribution.

� The Obstacle Level ρ ranging at random from 0.01 to 1, where ρ represents the

number of people per square meter in the coverage range of each node.

� 242 packets received per node.

� 12.312 seconds per simulation.

� 1600 m3 of volume

The Table 3.1 shows the resulting condensate of the 18 scenarios i.e., the 1800

simulations. The results are also presented in Figure 3.1 to make them clearer.

Table 3.1: The simulation results of the distance estimation process.

dis (m) RSSI SDev LQI SDev dis (m) RSSI SDev LQI SDev
1 144.18 0.8 102.28 4.69 10 214.2 0.8 79.66 5.96
2 235.41 0.82 102.54 4.67 11 212.87 0.79 75.61 6.09
3 230.07 0.79 102.73 4.67 12 211.83 0.79 71.04 5.17
4 226.1 0.78 102.89 4.6 13 210.86 0.82 64.9 5.54
5 223.3 0.79 103.77 4.61 14 209.77 0.78 62.38 7.14
6 220.87 0.79 102.85 4.61 15 209.23 0.79 59.87 5.28
7 219.01 0.79 102.77 4.71 16 208.34 9.5 57.01 5.15
8 217.14 0.81 95.76 6.45 17 197.32 41.61 56.09 11.96
9 215.65 0.83 83.35 7.3 18 105.17 102.9 45.59 29.09
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Figure 3.1: The distance estimation process: the simulation results.

In Figure 3.1,the RSSI distance has a correlation factor of -0.69809601, thus the

data tend to be strongly related and LQI-distance has a correlation factor of -0.96185265.
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That is, the data tend to be perfectly related.The values for RSSI and LQI are referred

as ”Units” since the values varies from one vendor to another.

The Table 3.2 shows the acceptance region and confidence level of the statistical

value z of the RSSI and the LQI. The values were defined empirically through the captured

data. In hypothesis testing, the test procedure partitions all the possible sample outcomes

into two subsets (on the basis of whether the observed value of the test statistic is smaller

than a threshold value or not). The subset that is considered to be consistent with the null

hypothesis is called the acceptance region; another subset is called the rejection region. If

the sample outcome falls into the acceptance region, then the null hypothesis is accepted.

If the sample outcome falls into the rejection region, then the null hypothesis is rejected

(i.e. the alternative hypothesis is accepted). Confidence level represents the portion of

the data that is considered.

Table 3.2: The acceptance region and the confidence level for distance estimation process.
RSSI LQI

Acceptance region 1.96 > z > −1.96 3.91 > z > −3.91
Confidence level 95% 99.9%

Algorithm 2 with complexity O(n) shows the technique for estimating the distance

between a beacon node and a non-beacon node by using hypothesis testing. Where, sm

is the sample mean, sn is the sample size, ra is the region of acceptance.

Algorithm 2 Distance Estimation. O(n = 18)
.

Require: sm, µ0, σ, sn, ra
Ensure: MesurementPointn{dis}
1: for MesurementPointn = 1 to MesurementPointn = 18 do
2: z ← sm−µ0

σ
√
sn

3: if MesurementPointn = 18 then
4: return MesurementPointn{dis}
5: else if ra > z > −ra then
6: return MesurementPointn{dis}
7: end if
8: end for

The complexity of Algorithm 2 could be reduced to O(log n), however space ex-

ploration is only 18 elements so that it is negligible O(log n) and we are interested in the

smallest value dis that satisfied the condition of z in the Algorithm 2.
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3.3 Vectorial Localization (VL)

The node VL (Vectorial Localization) algorithm performances better for 2D and 3D

outdoor environments such as all range-based NLAs and it has order of n2 time complexity.

The Algorithm 3 shows the pseudo-code. The VL needs at least the identifiers of two heard

beacon nodes Bi, the coordinates of their physical positions and the previous estimated

position S of the non-beacon node. As first step, the VL algorithm creates one vector

with origin in the heard beacon node Bi and destiny in the previous estimated position

(Lines 1 and 2). As second step, the magnitude M of the vector is decreased (lines 3-8)

or increased (lines 9-15) until it is close enough to the estimated distance ED (lines 4 and

10) calculated by Algorithm 2. Finally, the coordinates of the destiny of each vector are

averaged for obtaining the new estimated position NEi of non-beacon node (line 22).

Algorithm 3 The Vectorial Localization. O(n2).

Require: S, Bi, M, ED
Ensure: NE
1: Ci ←

√
Si

2 +Bi
2

2: M ←
∑√

Ci
2

3: if M > ED then
4: while M > ED do
5: if Si ̸= 0 then
6: Ci ← |Ci − 0.001|
7: end if
8: end while
9: else
10: while M > ED do
11: if Si ̸= 0 then
12: Ci ← |Ci + 0.001|
13: end if
14: end while
15: end if
16: if Bi < Si then
17: NEi ← Bi + Ci
18: else
19: NEi ← Bi − Ci
20: end if
21: {Back to 1: for the next heard beacon node}
22: {Averaging each NEi}

In Figures 3.2 and 3.3 a simple example of the VL algorithm is shown. The esti-

mated distance ED is assumed as accurate in order to show the VL principle. The black

dots represent beacon nodes Bi, the happy face denotes the real position RP of the non-

beacon node, and the star represents the estimated position S by Centroid Localization
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algorithm [17]. In the step 1, the vectors among the Bi and the S are formed. In step

2, each Ci is increased or decreased in 0.1 meters until the magnitude of the vector M is

close enough to ED. In this example, the error is reduced from 1.41 meters to 0.5 meters

i.e., 64.54%.

STEP 1

B3 = (0, 20)
ED = 14.7m
M = 15.2m
C1 = 6m
C2 = 14m

B1 = (0, 0)
ED = 9.89m
M = 8.48m
C1 = 6m
C2 = 6m

B2 = (20, 0)
ED = 14.7m
M = 15.2m
C1 = 14m
C2 = 6m

RP (7, 7)

S(6, 6)

C1

C2

Figure 3.2: VL example. The vectors are created.

STEP 2

B3 = (0, 20)
ED = 14.7m
M = 14.7m
Ci = 5.6m
C2 = 13.6m

B1 = (0, 0)
ED = 9.89m
M = 9.89m
Ci = 7m
C2 = 7m

B2 = (20, 0)
ED = 14.7m
M = 14.7m
Ci = 13.6m
C2 = 5.6m

Figure 3.3: VL example. The vectors are adjusted.

Since the VL algorithm requires a previous estimated position of the non-beacon

node as an input data; it only can be performed with an execution stamp higher than 1.

The use and meaning of the stamp will cover in Chapter 4.
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3.4 Energized Centroid Localization (ECL)

The terms pattern and feature are included in this subsection. The patterns are

physical representations of objects such as signals, images or values’ tables. The features

are measured, or primitive attributes derived from measurements of the patterns and they

can be useful for characterization.

The most commonly employed patterns in the range-based NLAs are: the receive

signal strength, the link quality, the time of arrival of signals/sounds, and the packet

traffic. As far as we know, there is not a single node localization algorithm that employs

the energy consumption information of beacon nodes. Instead of, this pattern has been

addressed to the energy saving. The ECL (Energized Centroid Localization) algorithm

is able to determine the delimited area where the non-beacon node is throughout the

energy consumption information of the heard beacon nodes. The ECL was developed as

an algorithm to be performed with the execution stamp number 1. However, it can also

be executed in isolated form by finding the centroid of the delimited area.

3.4.1 Scenario

We used the TinyOS [57] to program the functionality of nodes and the network

simulator AvroraZ [58] to simulate the WSN along with the obstacles. The ECL algorithm

was developed throughout the energy consumption analysis of the beacon nodes while

they sent and received messages. The Figure 3.4 shows the scenario where the ECL was

developed. In each intersection of the imaginary lines there is a beacon node positioned.

The topology of the beacon nodes was established according to one employed in the

Centroid Localization. The coverage range of all nodes (continuous lines) is approximately

18 meters because of the wave propagation irregularity. The crossing of the coverage

ranges make possible the formation of thirteen areas which are identified with a letter

(A-M).

In our simulations, a simple non-beacon node is located in each zone at random

100 times. A total of 1300 simulations have achieved. Each beacon node starts the trans-

mission by sending 30 packets. The non-beacon node for each packet that has received

sends an acknowledgement packet. The gathered data were: delay, jitter, inter-arrival

time, corrupted packets, beacon node’ ID (IDentification number), position of beacon

nodes, number of sent packets, number of received packets, lost packets, the RSSI, the

LQI, and the energy consumption information. The data has been treated according to

the steps of data mining [59]:Feature selection, Pre-processing, Data transformation, and
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Figure 3.4: The experimental environment for ECL.

Model generation. We used for this propose Weka [60], TinyOS, and AvroraZ. See the

appendix B to obtain greater detail.

3.4.2 Feature Selection

In this step is determined which is the most important set of features or significant

to describe patterns and the irrelevant ones are cast aside, thus improving the classification

and reduces downtime processing.

� The packets’ delay.

� The packets’ jitter.

� The packet’s interarrival time.

� The corrupt packets rate per node beacon.

� The corrupt packets rate across the network.

� The estimated position of node-beacon (random data).

� The beacon node position.

� The packets sent per node.

� The packets sent cross the network.
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Through this step the valid patterns are, as shown in Table 3.3:

� The packets sent/received per node.

� The lost packets of beacon nodes.

� The beacons’ RSSI.

� The beacons’ LQI.

� The beacon nodes energy consumption.

Table 3.3: Databases after feature selection.
Node Packets Packets RSSI LQI Energy Area
ID received lost consumption
0 30 19 243.03 73 44.58 A
1 0 24 - - 35.09 A
2 0 24 - - 34.29 A
3 1 25 - - 34.09 A
...

...
...

...
...

...
...

0 124 18 209.51 56.64 47.57 M
1 124 21 209.58 56 47.47 M
2 124 21 209.64 56.03 47.27 M
3 124 14 209.72 57.57.41 47.27 M

The energy consumption for each node was record through a energy monitory

available in AvroraZ.

3.4.3 Pre-processing

In some cases the data is amended for correcting deficiencies caused by limitations

of the sensors. Since we are working with simulator’s results might is not feasible amended

the data. In this step, we use the evaluator of feature CfsSubsetEval from Weka in order

to figure out the best valid pattern. In Table 3.4 the results of CfsSubsetEval are shown.

The Table 3.4 clearly shows that packets received per node is the best pattern.

However, this pattern has already been widely used in NLAs. On the order hand, the

energy consumption of beacon nodes is the second best pattern. One of the objectives of

this doctoral work is to proof that the energy consumption of nodes is a useful patter to

be used in the node localization.
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Table 3.4: The CfsSubsetEval’s resuts.

CfsSubsetEval
Research method The best pattern The second best pattern

Best First The packets received per node The energy consumption
FCBF N/A N/A

Genetic Search The packets received per node The energy consumption
Greedy Stepwise The packets received per node The energy consumption

Linear Forward Selection The packets received per node The energy consumption
Race search N/A N/A
andom Search The packets received per node N/A
Scatter Search The packets received per node The energy consumption

Subset Size Forward The packets received per node The energy consumption

3.4.4 Data transformation

We discovered that each heard beacon node needs received in average 30 acknowl-

edgement packets in order to determine the area where the non-beacon nodes is. The en-

ergy consumption of beacon nodes fluctuates between 43 to 58 joules when a non-beacon

node is inside its coverage range. On the other hand, the consumption of a beacon node

when there is no a non-beacon node inside its coverage range fluctuates between 27 and

40 joules. A threshold was established at 41.5 joules. Should a beacon node passes the

threshold it is set to 1, otherwise 0. Table 3.5 shows the transformation of the energy

consumption characteristics of each beacon node.

Table 3.5: The data transformation according to the threshold 41.5 joules.
The energy consumption of beacons nodes
Beacon0 Beacon1 Beacon3 Beacon4 Area

0 0 0 1 D
0 0 1 0 C
0 0 1 1 G
0 1 0 0 B
0 1 0 1 H
0 1 1 1 K
1 0 0 0 A
1 0 1 0 F
1 0 1 1 L
1 1 0 0 E
1 1 0 1 J
1 1 1 0 I
1 1 1 1 M
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3.4.5 ECL Model

A decision tree is characterized by their robustness respect to the data’s noise [61].

A decision tree can be used for classification of discrete values (high, medium, low) and

continuous values. The latter require to be discretized. By using the data from Table

3.5, the binary decision tree model is generated which is depicted in Figure 3.5 where δ

represents the binary energy consumption of the beacon node n. At this moment, the

decision tree model is restricted to our experimental environment. However, the same

process can be realized for other environments.

Node 6

δ ≤ 0.5

Class = D

Node 7

δ > 0.5

Class = C

Node 10

δ ≤ 0.5

Class = B

Node 11

δ > 0.5

Class = K

Node 16

δ ≤ 0.5

Class = A

Node 17

δ > 0.5

Class = F

Node 20

δ ≤ 0.5

Class = E

Node 21

δ > 0.5

Class = I

Node 4

δ ≤ 0.5

Class = C

Node 5

δ > 0.5

Class = B

Node 14

δ ≤ 0.5

Class = A

Node 15

δ > 0.5

Class = E

Node 2

δ ≤ 0.5

Class = B

Node 3

δ > 0.5

Class = A

Node 1

Class = A

Node 8

δ ≤ 0.5

Class = C

Node 9

δ > 0.5

Class = G

Node 12

δ ≤ 0.5

Class = B

Node 13

δ ≤ 0.5

Class = H

Node 18

δ ≤ 0.5

Class = F

Node 19

δ > 0.5

Class = L

Node 22

δ ≤ 0.5

Class = E

Node 23

δ > 0.5

Class = J

Node 24

δ ≤ 0.5

Class = I

Node 25

δ > 0.5

Class = M

Figure 3.5: The consumption energy model. O(log n).

The consumption energy model allow the non-beacon node identify the area (leaf)
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where it is regarding the energy consumption of each beacon node. The estimated position

of the non-beacon node is assumed as center of the delimited area when it is used in isolated

form. But, the ECL was developed as an algorithm to be performed with the execution

stamp number 1.

The only major drawback to this algorithm is that it can only locate one non-

beacon node at a time and works only for four beacon nodes. However, the major advan-

tage is that it has order of O(log n) time complexity.

3.5 Subzone Localization (SzL)

In the previous section we explained how the non-beacon nodes are associated with

one delimited area regarding the energy consumption of beacon nodes. However, delimited

areas can be still dived into subzones in order to obtain better node localization accuracy.

With the collected data in ECL (1300 simulations), the SzL (Subzone Localization) is able

to determine the subzone regarding the RSSI/LQI measurements. Since this algorithm

requires a previous estimated of the non-beacon node as an input data; it only can be

performed with an execution stamp higher than 1.

3.5.1 Scenario

We used the TinyOS [57] to program the functionality of nodes and the network

simulator AvroraZ [58] to simulate the WSN along with the obstacles. The SzL was

developed and tested in the environment shown in Figure 3.5.1 where all the areas are

dived into subzones such as is shown in the area K.

The general steps of the SzL are:

1. The SzL receives the delimited area from ECL.

2. The SzL receives the ID of the beacon nodes than cross the threshold.

3. The function θ, δ, λ, Ω is used according to the beacon nodes that crossed the

threshold. These functions will provide the estimated position of node.

3.5.2 Function θ

When a one beacon node crosses the threshold the function θ is employed which

is shown in the Algorithm 4. The variable Lrepresents the minimum Euclidean distance

among beacon nodes. Where, L =
√

(Bi −Bj)
2, Bi and Bj are beacon nodes, r represents
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Figure 3.6: The experimental environment for the SzL.

the coverage range of the nodes, and zone is the detected zone, ∀i, j s.t. i ̸= j. Function

θ has order of O(n) time complexity such that n represents all heard beacon nodes.

Algorithm 4 Localization procedure of SzL for one heard beacon node. O(n).

Require: zone, L, r
Ensure: (x, y)
1: if zone = A then
2: return ( r−L

2
, r−L

2
)

3: else if zone = B then
4: return (L− r−L

2
, r−L

2
)

5: else if zone = C then
6: return ( r−L

2
, L− r−L

2
)

7: else if zone = D then
8: return (L− r−L

2
, L− r−L

2
)

9: end if

3.5.3 Function δ

When two beacon nodes cross the threshold the function δ is employed which is

shown in the Algorithm 5. Where, Bi(x, y) is a heard beacon node or a beacon node

tat crosses the threshold, ω represents the distance between Bi and a non-beacon node,

(µ, ν) represents the previous estimated position in a two-dimensional Cartesian space.

Function δ has order of O(n) time complexity such that n represents all heard beacon

nodes.
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Algorithm 5 Localization procedure of SzL for two heard beacon node. O(n).

Require: zone
Ensure: (x, y)
1: if zone = E then
2: α1 ← 1, α2 ← ρ1 ← ρ2 ← −1
3: µ1 ← B0(x), µ2 ← B1(x), ν1 ← B0(y), ν2 ← B1(y)
4: else if zone = F then
5: α1 ← 1, α2 ← ρ1 ← ρ2 ← −1
6: µ1 ← B0(y), µ2 ← B3(y), ν1 ← B0(x), ν2 ← B3(x)
7: else if zone = G then
8: α1 ← ρ1 ← ρ2 ← 1, α2 ← −1
9: µ1 ← B3(x), µ2 ← B4(x), ν1 ← B3(y), ν2 ← B4(y)
10: else if zone = H then
11: α1 ← ρ1 ← ρ2 ← 1, α2 ← −1
12: µ1 ← B1(y), µ2 ← B4(y), ν1 ← B1(x), ν2 ← B4(x)
13: end if
14: ψi ← µ− [α|(L

2
− ω)|]

15: π ← ν + ρ{|[L
2
− ω][ L

(L
2
)
2 ]|+ [ L

(L
2
)
2 ]}

16: return 1
2

∑2
i=1(ψi, πi)

3.5.4 Function λ

The Equation 3.1 is employed when three beacon nodes cross the threshold i.e.,

the function λ used for the areas I, J , K and L.

λ(ω, µ, ν, ρ, α, ψ, π) (3.1)

The non-beacon position is estimated through Table 3.6 which uses Table 3.7 in

order to obtain the corresponding values of ψ and π. Where the variable ω is the estimated

distance between a beacon node and a non-beacon node. The variables µ and ν are the

coordinates of a plane. The variable ρ can take the positive or negative value (+1 or -1).

The variables ψ and π are the result of the variables µ and ν respectively i.e., the estimated

position of the non-beacon node. The value ψ of and π are established according to the

Table 3.7 and used in the function λ

3.5.5 Function Ω

The Equation 3.2 is employed when the four beacon nodes cross the threshold.

Ω(ω, µ, ν, ρ, α, ψ, π) (3.2)

Where the variable ω is the estimated distance between a beacon node and a non-
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Table 3.6: The estimated position by using the function λ
Area Equation λ Estimated position (NE)
I λ(B0, Kx, Ky,−ρ,−α, ψ0, π0)

λ(B1, Kx, Ky, ρ,−α, ψ1, π1)
λ(B3, Ky, Kx, ρ,−α, ψ2, π2)

J λ(B1, Jx, Jy, ρ,−α, ψ0, π0)
λ(B4, Jy, Jx, ρ,−α, ψ1, π1)
λ(B0, Jx, Jy, ρ, α, ψ2, π2)

K λ(B4, Kx, Ky, ρ, α, ψ0, π0) NE ← (ψi, πi)← 1
3

∑3
i=1(

(ψi,πI)
3

)
λ(B1, Ky, Kx, ρ, α, ψ1, π1)
λ(B3, Kx, Ky, ρ, α, ψ2, π2)

L λ(B3, Lx, Ly,−ρ, α, ψ0, π0)
λ(B4, Lx, Ly, ρ,−α, ψ1, π1)
λ(B0, Ly, Lx, ρ, α, ψ2, π2)

Table 3.7: The data transformation according to the threshold 41.5 joules.
IF THEN
ω ψ π

ω = 1, 2 or 3 ψ ← µ+ (ρ× 3) π ← ν + (α× 3)
ω = 4 ψ ← µ+ (ρ× 2) π ← ν + (α× 2)
ω = 5 or 6 ψ ← µ+ (ρ× 1) π ← ν + α
ω = 7 or 16 ψ ← µ π ← ν
ω = 8 or 9 ψ ← µ− ρ π ← ν − α
ω = 10 or 11 ψ ← µ− (ρ× 2) π ← ν − (α× 2)
ω = 12 ψ ← µ− (α× 4) π ← ν
ω = 13 ψ ← µ− (α× 3) π ← ν
ω = 14 ψ ← µ− (α× 2) π ← ν
ω = 15 ψ ← µ− α π ← ν
ω = 17 ψ ← µ+ α π ← ν
ω = 18 ψ ← µ+ (α× 2) π ← ν

beacon node. The variables µ and ν are the coordinates of a plane. The variable ρ can

take the positive or negative value (+1 or -1). The variables ψ and π are the result of

the variables µ and ν respectively i.e., the estimated position of the non-beacon node.

The value of ψ and π are established according to the Table 3.8 and 3.9 and used in the

function.

3.6 Triangular Centroid Localization (TCL)

We used the TinyOS [57] to program the functionality of nodes and the network

simulator AvroraZ [58] to simulate the WSN along with the obstacles. The Triangular
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Table 3.8: Value assignation of ψ and π based on ω
IF THEN
ω ψ π

0 < ω < 12 ψ ← µ+ (ρ× 2) π ← ν + (α× 2)
ω = 12 or 13 ψ ← µ+ ρ π ← ν + α
ω = 15 or 16 ψ ← µ− ρ π ← ν − α
0 < ω < 17 or 18 ψ ← µ− (ρ× 2) π ← ν − (α× 2)

Table 3.9: The estimated position by using the function ω
Area Equation λ Estimated position (NE)

K λ(B0,Mx,My,−ρ,−α, ψ0, π0) NE ← (ψi, πi)← 1
4

∑3
i=1(

(ψi,πI)
4

)
λ(B1,Mx,My, ρ,−α, ψ1, π1)
λ(B3,Mx,My,−ρ, α, ψ2, π2)
λ(B4,Mx,My, ρ, α, ψ3, π3)

Centroid Localization is fully distributed; it does not require any special hardware or

synchronization time. For estimating non-beacon nodes position as first step, each beacon

nodes transmits 30 packets every 2 ms in a broadcasting mode. As second step, Figure

3.7 shows how each a non-beacon node uses the received information. A non-beacon node

starts in Idle State, it awaits for receiving a packet of any beacon node in order to pass

to the Collection State. The non-beacon node should receive 30 packets of each heard

beacon node, but some packets may not be delivered because channel obstruction. When

a non-beacon node receives a packet at time 0.0 ms, it hopes for receiving the last packet

from the same beacon node at time 60 ms approximately because of transmission time.

When the wait time is over or all samples are larger than 29 packets, the non-beacon

node changes its current state to Calculation State, where the estimated position process

is realized. The non-beacon node transmits its estimated position remains in Notification

State until it receives a delivery confirmation. Finally, it returns to an Idle State. For

mobile non-beacon node, Notification State is connected to Collection State, which is now

the initial state.

The Algorithm 6 details the Calculation State showing the pseudo-code of TCL

for 2D environment. But, it can be extended to 3D environments easily. Where, Vn is

a heard beacon node, Ax,y is the triangle vertex A at the coordinate (x,y), Bx,y is the

triangle vertex B at the coordinate (x,y), Cx,y is the triangle vertex C at the coordinate

(x,y), a, b, c are the sides of the triangle (A,B,C), a2 is the estimated triangle side (C,B)

by Algorithm 2, and c2 is the estimated triangle side (A,C) by Algorithm 2.

In Step 1, the triangle vertexes are set up. In steps 2-4, sides a, b and c are
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Figure 3.7: The state diagram for non-beacon nodes.

obtained. In step 5 the triangle is verified whether it can be formed correctly. We are

going to suppose |a2 − a| > |c − c2| (Step 20). In steps 22-25, the vertex B is displaced

in straight line to vertex C until the side a is close enough with a2. Steps 27-28 get the

correct value of side c without modify the side a. These last steps, simulate the movement

of a compas with origin in the vertex A and destiny in B until a and c match with a2

and c2 respectively. The partial estimated position is given for coordinates of vertex B in

steps 17 or 28. The final estimated position is the average of all partial estimated position.

We can consider the movement of vertex B in a sequential exploration way until a and

c are close enough to a2 and c2, respectively. But it might require many time for large

and dense wireless sensor network. Instead of greedy methods, the TCL algorithm uses

simple rules bearing in mind the hot and cold game. If the vertex B is displaced in some

direction and increases |a − a2|, then B is moved in the opposite direction through the

equation of the line or the movement of the compas. Thus, the use of angles is eliminated.

For 3D localization TCL works with a prism, vertexes are A, B, C and D; for adjusting

the side a and the side c is similar in Algorithm 6; for obtaining the side d the TCL

simulates again the movement of a compas without changing the value of a and c. TCL

algorithm has order of O(n2) time complexity.

Figure 3.8 depicts a simple example for estimating the non-beacon node localization

in 2D environment. In order to show the behavior of our method we assume estimated

distances by Algorithm 2 as accurate. In step 1, three involved beacon nodes are showed

which are represented by white circles. The non-beacon node has a Real Position (RP )
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Algorithm 6 Localization procedure of the TCL for 2D. O(n2).

Require: Vn, Ax,y, Bx,y, Cx,y
Ensure: (x, y)
1: A← V1, C ← V2, B ←

∑n
j=1(Vj(x, y))

2: a←
√

(Cx −Bx)
2 + (Cy −By)

2

3: b←
√

(Ax − Cx)2 + (Ay − Cy)2

4: c←
√

(Ax −Bx)
2 + (Ay −By)

2

5: if b2 < a2 + c2 then
6: while b2 < a2 do
7: a2 ← a2 + 0.01
8: c2 ← c2 + 0.01
9: if |a2 − a| < |c2 − c| then
10: x← Bx

11: while |c2 − c| > 0 do
12: {increase or decrease x appropriately}
13: y ← By−Ay

Bx−Ax
(x− Ax) + Ay

14: end while
15: Bx,y ← (x, y)
16: while |a2 − a| > 0 do
17: {increase or decrease Bx,y without modify c}
18: end while
19: end if
20: if |a2 − a| > |c2 − c| then
21: x← Bx

22: while |a2 − a| > 0 do
23: {increase or decrease x appropriately}
24: y ← By−Cy

Bx−Cx
(x− Cx) + Ay

25: end while
26: Bx,y ← (x, y)
27: while |c2 − c| > 0 do
28: {increase or decrease Bx,y without modify a}
29: end while
30: end if
31: end while
32: end if
33: {Return to 1: and establish C as the next element Vn}

in represented by the black box and the Estimated Position (EP ) by Centroid [20] and

it is represented by the black circle. In step 2, the vertexes A, B and C are assigned

(the first triangle is formed). The sides x, b and c are calculated; a2 and c2 represent

the estimated distance from the RP to vertex A and from RP to vertex C respectively.

Since |a2 − a| < |c2 − c|, the vertex B is displaced in straight line to the vertex A until

c = c2. In step 4, the vertex B is adjusted for getting a = a2 without changing c. The



38

B1(0, 0) B2(20, 0)

B3(0, 20)

EP (6, 6)

RP (3, 4)

STEP 1

A(0, 0) C(20, 0)

B3(0, 20)

B(6, 6)

STEP 2

a = 14.94mc = 9.33m

b = 20m

a2 = 17.46 m
c2 = 5 m

A(0, 0) C(20, 0)

B3(0, 20)

B(3.54, 3.54)

STEP 3

a = 16.84m

c = 5m

b = 20m

a2 = 17.46 m
c2 = 5 m

B3(0, 20)

STEP 4

a = a2 = 17.46 m
c = c2 = 5 m

A(0, 0) C(20, 0)

B(3, 4)

a = 17.46m
c = 5m

b = 20m

Figure 3.8: TCL steps, simulating the compas movements and the hot-cold game.

vertex B has finalized in the coordinate (3, 4). Since the distances are assumed accurate,

the process is finished. However, in the process’ implementation it is repeated for next

couple of beacons nodes (B1−B3) and (B2−B3) as indicated in Algorithm 6.

3.7 Smart Beacon Nodes (SBN)

We used the TinyOS [57] to program the functionality of nodes and the network

simulator AvroraZ [58] to simulate the WSN along with the obstacles. In this section

the symbol ρ is used for representing the obstacles in order to maintain the symbol

originally assigned by author of AvroraZ. The variable ρ represents the number of people

per square meter in the coverage range of each node. For instance, if ρ = 0.05 there are

0.05 people per square meter, that is one person per every 20 square meters. Authors made

a good approximation of the wave behavior of the chip CC2420 under diverse environment
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conditions. The indoors model was developed considering the nodes on ceiling, walls or

sometimes even on desks. The model uses Rice distribution when ρ is equal to zero and

the combination of Log-normal and Rayleigh distribution for other cases.

For establishing OLI (Obstacle Level Indicator) values, first we have simulated

2 nodes micaZ at baseD meters of separation between them, where baseD takes positive

integer values from 1 to 18. For each baseD, the variable ρ has been changed incrementally

in 0.01 from 0.0 to 0.99. For each value of ρ, 10 simulations have been done; a database

was created with a total of 19,000 achieved simulations. From the generated database, a

simple UD (Unknown Distribution) has been created for each 10 increments of ρ. This

process was done for each baseD. It can be expressed by OLIcoarse = UDbaseD,ρN . For

instance, OLIcoarse = UDbase8,ρ5 , that is the UD of 8 meters with ρ = [0.5, 0.59]. We also

have created an UD of each simple ρ of each baseD. For example, OLIfine = UDbase6,ρ77 ,

that means, the UD of 6 meters with ρ = 0.77. In this form, we can identify a group of

10 incremental ρ as OLIcoarse and a simple ρ as OLIfine.

In result section, we show that by using a simple ρ, the node localization error

can be decreased up to 18% and making a cluster of simple ρ (OLIcoarse) up to 15%. We

cannot consider only the OLI in the intersection of the coverage ranges of nodes, because

the network simulator takes the major ρ between them.

The Figure 3.9 depicts the behavior of the recorded RSSI of two nodes micaZ at 5

meters and 10 meters of separation between them with ρ = [0.0, 0.99]. The value of the

RSSI at 5 meters with ρ = 0.92 is almost the same value of the RSSI at 10 meters with ρ =

0.0. Under this condition, some localization algorithm can estimate the distance between

a pair of nodes of 5 meters as 10 meters. These kinds of situations are counterattacked

by the transition of OLI.

Figure 3.9: RSSI for baseD = 5 and baseD = 10 with ρ from 0.0 to 0.99.
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The SBNs (Smart Beacon Nodes) apply the HT (Hypothesis Testing) for selecting

the better ρ for each couple of beacon nodes. The Table 3.10 shows the acceptance region

and confidence level of the statistical value z regarding the RSSI/LQI for all UD. The

values were defined empirically from the database generated by recorded RSSI/LQI. The

Algorithm 7 shows the technique for estimating OLI among SBNs by using HT and it

has order of O(n) time complexity.

Table 3.10: The SBNs. The acceptance region and the confidence level.
RSSI LQI

Acceptance region 1.96 > z > −1.96 3.91 > z > −3.91
Confidence level 95% 99.9%

Where SBNk,l is a couple of SBNs with connection, µ is the sample mean of SBNk,l,

µ0 is the hypothesized population mean of UDbaseD,ρN , σ is the population standard

deviation of UDbasedD,ρN , n is the sample size, and a is the acceptance region.

Algorithm 7 Localization procedure for OLI estimation. O(n).

Require: SBNk,l µ, µ0, σ, n, a
Ensure: UDbaseD,ρN

1: baseD ←
√
[SBNk(x, y, z)− SBNl(x, y, z)]

2

2: for all ρ of UDbaseD,ρN do
3: z ← µ−µ0

σ
√
n

4: if −a ≤ z ≤ a then
5: return UDbasedD,ρN

6: end if
7: end for
8: Return to step 2 and estimate for the next SBNk

In step 1, the separation between SBNk and SBNl is calculated by using their

physical position information. In steps 2 and 3, the statistical value z is obtaining respect

to each UDbaseD,ρN from the fixed baseD obtained in step 1. In step 4, if the value of

z is greater/equal than -1.96 and lesser/equal than 1.96, in step 5 OLI is equal to the

UDbaseD,ρN with the fixed baseD and the estimated ρ. The process continues for all SBNkl .

Once estimated OLI, each SBN transmits a five-tuple (UID,X, Y, Z,OLI), where UID

is the unique identifier of the SBN and its physical position at coordinates (X, Y, Z).

From this information, an approximation of the RSSI behavior respect to obstacles in

each part of the wireless network can be made. For instance, let be ρ = 0.5 between the

SBN3 and the SBN5, such that SBN3(8, 4, 3) and SBN5(9, 1, 8). It can be expressed as

SBN3 − SBN5 = UDbase6,ρ5 . The same way for the rest of SBNkl in the WSN.
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A non-beacon node can estimate better the distance among it and the heard SBNs

with the received OLI from them. Algorithm 8 shows the process. Where SBNk is a

heard SBN by Ni, µ is the sample mean from SBNk, µ0 is the hypothesized population

mean of UDbaseD,ρN , σ is the population standard deviation of UDbasedD,ρN , n is the sample

size, a is the acceptance region, and Ni−SBNk is the estimated distance between Niand

SBNk

Algorithm 8 Estimating the distance among a non-beacon and head SBNs. O(n).

Require: SBNk µ, µ0, σ, n, a
Ensure: Ni − SBNk

1: ρN ← 1
n

∑n
j=1 ρN ,∀ SBNk

2: for all baseD of UDbaseD,ρN do
3: z ← µ−µ0

σ
√
n

4: if −a ≤ z ≤ a then
5: return UDbasedD

6: end if
7: end for
8: Return to step 1: for the next Bk,l

In step 1, the average of ρN from all SBNk is computed using their OLI. In steps

2 and 3, the statistical value z is getting respect to UDbaseD,ρN with the fixed ρN from

step 1. If the value z is greater/equal than -1.96 and lesser/equal than 1.96 in step 4, in

step 5 the estimated distance between Ni and SBNk is equal to the value of baseD from

UDbaseD,ρN with the fixed ρ and the estimated basedD. With OLI from SBNs non-beacon

nodes can infer better the distance between each heard SBN.

3.8 Conclusion

In this section we detailed the distance estimation process based on hypotheses

testing. We also detailed our five node localization algorithms; thereby we exposed differ-

ent approaches for the node localization problem. For instance, the VL algorithm is based

in simple adjusted vector which are created from the RSSI/LQI. On the other hand, the

ECL algorithm uses the energy consumption information from the heard beacon node in

order to determine a bounded area where the non-beacon might stay. The SzL algorithm

can then determine a smaller area inside the estimated area by ECL. We also presented

the hybrid algorithm localization for Wireless Sensor Network called Triangle Centroid

localization. It is based in simple trigonometric figures for estimating the non-beacon

nodes position as well as the cold-hot game. Finally, we introduce SBNs central idea is to

report the status of the environment to each non-beacon node. In this first approach, we
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use a generalization of the obstacles (ρ) through the network simulator AvroraZ. However,

SBNs can transmit more useful information such as noise, lost packet, transmission delay

and the bit error rate, just to name a few. This opens the possibility of develop NLAs with

these kinds of requirements and extend the SBNs for specific or general environments.
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Chapter 4

Our Architectures for Node Localization

In this Chapter four architectures are presented for node localization in a wireless

sensor network. The first three architectures are only related to the context awareness and

the fourth architecture addresses the node localization fusion as well as context awareness.

4.1 Logical Position of Nodes (LPN).

To the best our knowledge, the developed algorithms for estimating the node po-

sition in fully observable environments have not used the environment layout for esti-

mating/improving the node localization, for instance [23, 20, 27, 36]. By contrast, LPN

(Logical Position of Nodes) improves estimated positions of nodes by using the environ-

ment layout (partly/fully observable environment) and the attributes of the objects that

can carry a node. The Figure 4.1 shows LPN working as a filter of a localization al-

gorithm. The database of the environment layout contains the dimensions in coordinate

terms, which is shared by LPN and context-aware application. The database Node-Object

is the one to one relation between object objectN and a node nodeN , similarly for node-

user. We say that LPN is executed in partly observable environment, when it has access

to databases environment layout and Node-Object. LPN is carry out in fully observ-

able environment, when it has access to databases environment layout, Node-Object and

Object-Place. The last one contains the information of the relations among objects and

places, for instance a desktop may belong to an office and a laboratory at a height of 0.75

meters. But this database is not always available.
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Figure 4.1: LPN working as filter of node localization algorithms.

4.1.1 Localization Algorithm

The node localization error of a NLA can be conceived as an AVU (Area/Volume of

Uncertainty) where an unknown node might be located. In a three dimensional Cartesian

space, AV U is calculated from the estimated position of the unknown node (xe, ye, ze)

and its average error e. The AV U can be then expressed as a cube with the lower

position AV ULOWER = (xe − e, ye − e, ze − e) and the upper position AV UUPPER =

(xe + e, ye + e, ze + e). We considered a square or cubic space in order to minimize the

computational cost. After AV U calculation, both the estimated position of the unknown

node and its corresponding AV U are put on the dashboard as shown in Figure 4.2.

The functionalities of nodes are determined by: (i) node Localization module which

depends on the used scheme and (ii) the architecture modules: Context Awareness, Dash-

board, and Likelihood. From subsection 4.3 to 4.6, the Context Awareness module is ex-

plained considering as example the relation: node3-desk 45-office1,2-0.75. In subsection 4.7,

the Dashboard module is described and finally in subsection 4.8 the Likelihood module is

addressed.

The sensing is only performed in the Node Localization module. The sensing

mechanism such as temperature, velocity, is not part of the architecture in (ii).

LPN is made up of five steps which are explained in the follow subsections consid-

ering as example the relation: node3-desk 45-office1,2-0.75.
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Figure 4.2: The node localization estimation and its AVU are put on the dashboard.

4.1.2 Place involved

Let a place be any space bounded by physical or non-physical limiters (segments).

For instance, a laboratory, restroom, corridor, living room, bedroom, garden, or parking

space, among others. In addition, they are referred under a unique identifier M . A place

PlaceM is then represented by a set of segments sN such that PlaceM = {s1M , s2M , ..., sNM}.
The space bounded by sNM is stored in the database environment layout. A place PlaceM

is considered as a place involved, if one of its segments intersects with an AV U . The ray-

box intersection method [62] is employed to resolve whether PlaceM is a place involved

PInvolved; i.e., PlaceM = PInvolved ↔ sNM ∩ AV U , such that sNM ∈ PlaceM . The

result for the node node3 such that node3-desk 45-office1,2-0.75 is as follows: PInvolved

= {office1, office2, restroom5}. After, this process the dashboard is updated as shown in

Figure 4.3.

x

y

Office1

Office2

Restroom5

node3 − desk45

Figure 4.3: The node localization estimation and its AVU are put on the dashboard.
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4.1.3 Places associated

A place involved PInvolved is renamed as place associated PAssociated, if the

unknown node is related with PInvolved; otherwise PInvolved is eliminated. Relations of

an object with places are obtained from the database Object-Place in order to determine

whether an unknown node belongs to a place PlaceM . The result for node3 such that

node3-desk 45-office1,2-0.75 is as follows: the place restroom5 is discarded because the

object desk45 cannot belong to a restroom, therefore PAssociated = {Office1, Office2}.
The AV U is then adjusted, AV U = AV U −Restroom5. Figure 4.4 shows the dashboard

after the actions of this process.

x

y

Office1

Office2

node3 − desk45

Figure 4.4: The places not related with the node3 − desk45are eliminated.

4.1.4 AVU compromised

The AV U is divided and adjusted to each PAssociated, there is then a one to

one relation between a divided AV UM and PAssociated such that subscripts M have the

same value i.e., AV UM -PlaceM where PlaceM ∈ PAssociated. Each AV UM has also an

upper position AV UMUPPER and a lower position AV UMLOWER. The result for the node

node3 is the elimination of empty spaces, as shown in Figure 4.5.

4.1.5 Spaces valid

A place PAssociatedM will be renamed as fully-involved place FIP laceM if an

unknown node can stay inside its corresponding AV UM . In others words, the occupancy

evaluation between an unknown node and its corresponding AV UM is realized regarding

the height (axis y) of the node (object). If the AV UM height is greater than the node

height, the AV UM height is equal to the node height. Otherwise a place PAssociatedM

is discarded. The width (axis x) and/or depth (axis z) of the unknown node can also



47

x

y

Office1

Office2

AV U1

AV U2

Figure 4.5: The AVU is divided and adjusted.

be taken into account in order to reduce even more the AV UM size. The result for

the node node3 such that node3-desk 45-office1,2-0.75 is as follows: both offices are fully-

involved places because the heights of the AV U1 and AV U2 are less than the unknown

node height, then FIP lace = {Office1,Office2}. Figure 4.6 shows the dashboard after the

actions of this process.

x

y

Office1

Office2
Desk45

height

Figure 4.6: The height of AVU1 and AVU2 are adjustedto the node3-desk45 height.

4.1.6 Estimated position with likelihood

In this module, each AV UM is normalized in the range (0, 100] in order to indicate

the object likelihood respect to each place FIP laceM , as formulated in equation 4.1,

whereN represents the total of FIP lace. The estimated position of the node regarding the

FIP laceM is given by equation 4.2 in which the centroid calculation betweenAV UMUPPER

and AV UMLOWER is carried out.

L(PlaceM) =
AV UM∑N
M=1AV UM

× 100 (4.1)
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Table 4.1: The node3 likelihood regarding each place.

Node-Object Place Likelihood Position

node3-desk 45 office1 65% (x, y)
node3-desk 45 office2 35% (x, y)

objectN(x, y) =
AV UMUPPER + AV UMLOWER

2
(4.2)

Finally, the estimated position(s) is/are determined for the node node3 as shown

in Table 4.1, where the place office1 has the highest likelihood of containing the unknown

node node3-desk 45 at the position (x, y) in a two dimensional Cartesian space.

4.2 SEA-NL: The Smart Environmental Architecture for

Node Localization.

SEA-NL (The Smart Environmental Architecture for Node Localization) is based

on the context aware computing and the architecture subsumption [28]. The Figure 4.7

depicts our architecture, which is made up of five elements: (i)The SBNs [63], (ii) the

distance estimation process, (iii) NLAs, (iv) the LPN [64], and (v) the evaluator. In (i),

the SBNs are able to provide two kinds of OLIs among them. The OLIfine has a decimal

precision more than the OLIcoarse. For instance, OLIfine = 0.58 and OLIcoarse = 0.5

obstacles per square meter between a couple of beacon nodes. The SBNs generates and

update constantly The OLI Matrix. However, most range-based NLAs are not able

to use The OLI Matrix directly by themselves. In (ii), The DistanceMatrix among

beacon nodes and non-beacon nodes is estimated such as it is done in [63] by using The

OLI Matrix. In (iii) the range-based NLAs employ The DistanceMatrix for estimating

the non-beacon node position. The range-free and/or range-based NLAs are executed in

isolated way. There are then many estimated positions for each non-beacon node as used

NLAs. This can be expressed by Pi,N(x, y, z), i.e., the estimated position P of the non-

beacon node i in a three-dimensional Cartesian space (x,y,z) by the NLA number N . In

(iv), the LPN uses the environment layout information and the one to one relation between

an object and a node for improving preliminary estimated positions of non-beacon nodes

Pi,N(x, y, z). The LPN from Pi,N(x, y, z) provides the five-tuple Pi,N,M(x, y, x, l, p), where

l is the likelihood of each known place p to contain the non-beacon node i. The subscript

M represents the different possibilities for each non-beacon node i under same NLA N .
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For example, P20,4,1(1, 2, 3, 70, 1) and P20,4,2(2, 4, 6, 30, 6), i.e., through the NLA number 4

the first estimated position of the non-beacon node 20 is (1, 2, 3) with 70% likelihood of

being in the place number 1 and the second one is (2, 4, 6) with 30% likelihood of being

in the place number 6. The element (iv) is explained in greater detail in section 4.1.

In (v), the Evaluator selects the estimated position with the highest likelihood for each

non-beacon node.

NLA2NLA1 NLAN

Smart Beacon Nodes

Distance Estimation

Logical Position of Nodes

Evaluator

Distance Estimation

Distance Matrix

OLI Matrix

Pi,1(x, y, z) Pi,2(x, y, z) Pi,3(x, y, z)

Pi,N,M (x, l, z, l, p)

Estimated position

LEVEL 1

LEVEL 2

LEVEL 4

...

Figure 4.7: The Smart Environmental Architecture for Node Localization.

In our architecture we have identified the information fusion levels according to

[46], the level 1 refines objects (nodes), which are: (i) data alignment, (ii) data/object

correlation, (iii) position/kinematic and attribute estimation, and (iv) object identity

estimation. The level 2 considers: (i) object aggregation, (ii) event/activity interpretation,

and (iii) contextual interpretation. The level 4 includes: (i) performance evaluation, (ii)

process control, (iii) source requirement determination, and (iv) mission management.
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4.3 CAA-NL: A Context-Aware Architecture for Node

Localization.

CAA-NL (The Context-Aware Architecture for Node Localization) objective is to

improve the estimation of a NLA by using both the environment layout information and

its corresponding objects’ attributes. Our architecture is based on context awareness and

architecture subsumption [28] which has been widely employed in robotics. CAA-NL is

made up of five main elements: priori knowledge, node localization, context awareness,

dashboard, and likelihood, as shown in Figure 4.8. The context awareness module is

greater detail in the section 4.1, the other four elements are explained below.

Node Localization

Environment layout P laces involved

P laces associated

AV U compromised

AV U valid

S S S S

Object− Place

Object−Node

Normalization

Node localization

Priori Knowledge Context Awareness Dashboard Likelihood

Figure 4.8: Context-Aware Architecture for Node Localization.

4.3.1 Priori Knowledge

In our architecture the priori knowledge is represented by three databases which

are not generated automatically. The databases are handled as a catalog in which the

information is entered manually. The database environment layout contains the dimen-

sions and locations of known spaces, e.g. a shopping mall is divided into known spaces

in a three dimensional Cartesian space (x, y, z ). The environment layout database is not

generated for every possible environment but rather for the application scenario where

the Node Localization Algorithm is implemented. Should the environment suffers some

changes; the corresponding information is updated as a catalog instead of repeating all
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measurements such as in RADAR [23]. The database Object-Node contains the one to

one relation between an object and a node, e.g. the node with ID number 4 is attached

to the desk with ID number 6; the relation is then node4-desk 6. Note that some common

objects are considered as node themselves because of their wireless communication, such

as some recent printers, laptops, cell phones, among others. The database Object-Place

contains the relations among objects with places, e.g. the desk node4-desk 6 belongs to an

office office7 at a height of 0.75 meters; the relation is then node4-desk 6-office7-0.75. This

priori knowledge might not be easy to obtain for all places because an object can stay at

different heights. Consequently, this database may not be completed for a given scenario.

The CAA-NL is intended for observable indoor applications. The CAA-NL is executed in

a fully-observable environment when the database Object-Place is complete. Otherwise,

the CAA-NL is carried out in a partly-observable environment.

The Context-Aware Architecture for Node Localization reacts based on sensed and

preloaded information in order to improve the previous estimated position of a node. The

reaction can involve a non-learning mechanism such as [40, 43] in which users are alerted

when information related to their location is available. Other suitable examples of this

kind of systems or applications are some mobile guides for smart phones [39]. On the

other hand, historical information can be used to predict future actions or intentions of

entities [65] i.e., a learning mechanism. As an ongoing work, the Object-Place database

will have a learning mechanism based on bootstrap weights for improving the associations

among objects with places over time. However, this is beyond the scope of this paper.

4.3.2 Dashboard

The dashboard is suitable to avoid recalculating variables when not required. Be-

sides, it can reduce the number of accesses to data storage unit(s) in the non-beacon node

and allows an information priority handling. The Context Awareness module is made up

of five process which are organized in ascending layers such that an upper-layer process

has a higher priority than a lower-layer process. According to the subsumption architec-

ture [28] the old information is suppress by the new one based on its priority and this is

represented by the symbol ”s”, as shown in Figure 4.8.
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4.4 HSA-NL: Hierarchical Subsumption Architecture for

Node Localization

In our approach the localization error of any NLA is conceived as a square/cube

which represents the uncertainty space where the non-beacon node might stay. The

proposed Hierarchical Architecture for Node Localization is made up of two main phases.

In the first phase estimates the node position by using a set of NLAs. In the second phase,

the uncertain space is reduces employing the LPN algorithm [64]. This architecture aims

to provide the estimated position of nodes as accurate as possible for any scenario making

a NLAs Fusion based on execution stamps.

Our proposed architecture the NLAs’ runtime is carried up in a sequential order

according to execution stamps. The stamp n has higher priority than the stamp n + 1

where n is Z+. A NLA with the execution stamp n + 1 depends on the NLA’s outcome

with the execution stamp n. For example the 2-tuple (CL1, LPN2), where the execution

stamp number one was assigned to the CL and the execution stamp number two was

assigned to the LPN . The LPN2 requires and improves the node estimation of the CL1.

We consider a sequential-order execution of NLAs as a NLAs fusion. The criteria to form

a NLAs fusion depends mainly on the environment condition, the application limitations,

the NLAs’ requirements, and/or human computer interactions.

The first abstraction level of our architecture is shown in the Figure 4.9 where

three different kinds of nodes are employed: (i) beacon node, (ii) non-beacon node, and

(iii) sink node. In (i), the notifier agent informs to non-beacon nodes the NLAs fusion to

be executed regarding the delimited area where the non-beacon node stay. A delimited

area can be an indoor/outdoor space with physical delimiters, non-physical delimiter, or

both. In the offline process, the NLAs fusion with the best performance is taken for

each delimited area. There is then a one to one relation between a delimited area and

a NLAs fusion. This relation is stored in the database Fusion-Area. The relation can

be expressed as Relation(AreaM) = FusionN = NLA1, NLA2, ..., NLAO. In (ii), the

manager agent receives the relation Relation(AreaM) and it selects from the database

Localization algorithms the NLAs to be executed in the localization process Localization

L1. In (iii), the process Evaluation L4 expects for the outcomes of the process Context

awareness L2 which improves the node estimation of the process Localization L1. The

expected condition is based on a time condition or a notification. However, depending on

the application the expected condition can be different. Finally, the dashed line indicates

the second abstraction level of our architecture, which is detailed in Figure 4.10.

The Figure 4.10 depicts the second abstraction level of the Hierarchical Subsump-
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Figure 4.9: The first abstraction level of the HSA-NL.

tion Architecture for Node Localization which is based on the architecture subsumption

[28]. The second abstraction level of the architecture is made up of three main elements:

(i) Localization L1, (ii) Context awareness L2, and (iii) Evaluation L4. The suffixes L1,

L2, and L4 correspond to the information fusion levels [46]. In (i), the database Estimated

factors contains estimated factors during the execution process of employed NLAs such

as the RSSI, the LQI, packages sent, the energy consumption, delays, beacon node IDs,

beacon node coordinates, and so forth. Once a factor is estimated, it won’t be estimated

again in order to reduce the processing time.

In (ii) the LPN algorithm is performed with the last execution stamp. In this

architecture part three databases are used: (a) the database Object-Node. It contains the

one to one relations between an object and a node. For instance, the desk45 has attached

the node33 , then desk45−node33. Note that some common objects are considered as node

themselves because of their wireless communication, e.g., some recent printers/cars, cell

phones, lap tops, just to name a few. (b) The database Object-Place. It contains relations

of objects with places. For instance, the desk45 belongs to an office and laboratory.

Then desk45 − office12, desk45 − office15, ..., desk45 − laboratory2. (c) The database

Environment. It contains the environment layout in Cartesian coordinates; however other

ones can be employed. The LPN is executed in a partly observable environment, when
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Figure 4.10: The second abstraction level of the HSA-NL.

it has access to the databases Environment and Object-Node. The LPN is carry out in

a fully observable environment, when it has access to the three databases. LPN usually

includes more complex process than a simple NLA; therefore it should be executed in a

sink node in order to obtain the best performance. On the order hand, LPN’s outcomes

are more representative for a human being than a simple non-beacon node. In (iii), the

symbol ”s” inside of the circle means suppress [46]. It works as a control point, which

allows to HA-LN provides an estimation of the node position after the first NLA has

finished. The same or different expected condition can be carried out in each suppress.

4.5 Conclusion

In this section wee detailed the two different abstraction levels of the Hierarchical

Subsumption Architecture for Node Localization. We also detailed the Smart Environ-

mental Architecture for Node Localization. Both architectures have different approach

but they are based on the NLAs Fusion and Context Awareness. The Smart Beacon

Nodes approach has been also introduced in this section as part of the SEA-NL, however

it is well-explained in the chapter 3.
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Chapter 5

Experimental Evaluations and Results

5.1 Description of the scenarios

In this chapter the scenarios’ specification are detailed for both the six node lo-

calization algorithms addressed in Chapter 3 and architectures presented in chapter 4.

For all experimental evaluation, we used the TinyOS [57] to program the functionality of

nodes and the network simulator AvroraZ [58] to simulate the WSN along with obstacles.

5.1.1 The VL, ECL, and SzL Algorithm

The three node localization algorithms VL, ECL, and SzL are an extension of

Centroid Localization [17]. We tested our algorithms under a similar square topology for

beacon nodes in order to make a fair benchmark as shown in Figure 5.1.

5.1.2 Triangular Centroid Localization Algorithm

Two different scenarios were defined, the first one contemplates an area of 1600m2

and the second one considers a volume of 32000m3. The beacon nodes were located in

a grid way of 20m and their coverage range is about 18 meters. Both scenarios were

tested under different obstruction degree at random from 1 to 10 people or obstacles are

established over an occupied area.

5.1.3 Smart Beacon Nodes

Due to TCL is an extension of the Centroid Localization, we set up the position of

the beacon nodes similar to the one used in [20]. The beacon nodes were located in a grid
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Figure 5.1: The experimental environment for ECL, VL, and SzL Algorithm.

way, with 10 meters separation among them with a coverage range about 18 meters. The

first scenario contemplates an area of 1600m2 and the second one considers a volume of

32000m3. The experimental simulations were organized as follows: for each ρ of OLIcoarse,

we created a testing group. For each testing group 30 simulations were done. A total of

300 simulations were achieved. For all simulations the non-beacon nodes were established

in a random way. For instance, the testing group of ρ[0.3, 0.39], such that the variable

ρ was set up at random from 0.3 to 0.39. In order to measure the node localization

improvement using and not using SBNs, a simple non-beacon node estimates its position

ignoring any OLI, using OLIcoarse and using OLIfine.

5.1.4 LPN, SEA-NL, CAA-NL, and HSA-NL

The Logical Position of Nodes, SEA-NL, and HSA-NL were tested in two adjoining

buildings with diversity of places, each one with 8 flats. Each flat has 400m2 for the 2D

environment and 1000m3 for the 3D environment. The beacon nodes were placed in a grid

way with 20 meters of separation among them with a coverage range about 18 meters.

A total of 6 beacon nodes were used in the 2D environment and 12 beacon nodes were

employed in the 3D environment. The Table 5.1 shows the respective dimension for the

2D and 3D environments as well as the number of them.

The height of places depends of each country. For example in USA most rooms

are 2,44 meters, but to the next floor is 2,6 meters allowing for the floor joists. Therefore
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Table 5.1: The characteristics of the places.
2D dimension 3D dimension

Place Number (meters) (meters)
Office 49 5x8 5x2.5x8

Corridor 12 4x20 4x2.5x20
Restroom 11 5x20 5x2.5x20
Laboratory 3 20x8 20x2.5x8
Bedroom 28 5x8 5x2.5x8

Dining room 1 20x20 20x2.5x20
Classroom 2 20x8 & 15x8 20x2.5x8 & 15x2.5x8
Warehouse 1 5x8 5x2.5x8

we consider 2,5 meter of height for each place. Widths for all places are five meters and

depths are considered from eight meter to 20 meters. Relations of objects with places are

considered as most commons, a desk/table ∈ Office, Dining room, Classroom, Laboratory

at height of 0.75 meters; a chair ∈ Office, Dining room, Classroom, Laboratory, Warehouse

at height of 0.45 meters; a printer ∈ Office, Laboratory, Warehouse at height of 0.9 meters;

and a bed ∈ bedroom at height of 0.45 meters. The node height where it is attached to

the object was determined based on the objects we have in our university. The simulated

objects in both environments (2D and 3D) were 5 desk, 5 chairs, 5 printers and 5 beds,

which were positioned at random into places valid with their respective heights according

the database Object-Place. The obstacle levels were set up haphazardly from 0 to 10

persons over an occupied area. A total of 20 simulations were achieved for each scenario.

5.1.5 SEA-NL

Our simulated indoor scenarios were two: (a) two adjoining buildings with diversity

of places (107), where each building had eight flats, and each flat had a surface of 400m2.

(b) Two adjoining buildings with diversity of places (107), where each building had eight

flats, and each flat had a volume of 1000m3. Beacon nodes for both scenarios were placed

in a grid way with a minim separation of 20 meters. The places considered were: 49 offices,

12 corridors, 11 restrooms, 3 laboratories, 28 bedrooms, 1 dining room, 2 classrooms, and

1 warehouse Table 5.1. The objects considered were: 5 desks/tables, 5 chairs, 5 printers,

and 5 beds. The relations of the objects with the places were as follows: a desk/table ∈
Office, Dining room, Classroom, Laboratory at height of 0.75 meters; a chair ∈ Office,

Dining room, Classroom, Laboratory, Warehouse at height of 0.45 meters; a printer ∈
Office, Laboratory, Warehouse at height of 0.9 meters; and a bed ∈ bedroom at height of

0.45 meters. We considered the relations and the object’s height according to the objects
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we have in our center of research. Our simulated outdoor scenario is shown in the Figure

5.2, where at every intersection of brown boxes there is beacon node. A total of 512 beacon

nodes were simulated in an area of 236,800 m2. The river and black areas represent places

where non-beacon nodes cannot stay due to some limitation of the environment.

River

320 meters 100 meters 320 meters

Figure 5.2: The 2D outdoor scenario for SEA-NL.

5.2 Analysis of results

Through the next subsection a comprehensive analysis of results is carried out for

each of the proposed node localization algorithms as well as the architectures.

5.2.1 The Vectorial Localization Algorithm

In Table 5.2 is shown the average node localization error after 220 simulations by

using the RSSI and the LQI.

Table 5.2: The accuracy performance of CL, WCL, and VL in isolation.
CL WCL VL WCL VL

(RSSI) (RSSI) (LQI)L (LQI)
Error (m) 3.39 4.29 2.06 5.94 2.83

The Table 5.2 shows that WCL (RSSI) has worse accuracy than CL. WCL increases

the node localization error of CL 26.5%. The proposed algorithm VL has better precision

VL than CL reducing the error 40%. In the case where it is considered LQI to estimate

the distance between nodes, WCL (LQI) increase the error 75% based on the CL. On

the other hand the VL error decreased the error 16.5%. On the other hand, in order
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to measure the accuracy of the CL, WCL, and VL we assumed the distance separation

among nodes as accurate as shown is Table 5.3.

Table 5.3: The accuracy performance of CL, WCL, and VL in isolation assuming the
distance separation as accurate.

CL WCL VL
Error (m) 3.39 2.09 1.6

We note that only under this unreal assumption the WCL improves 40% the CL’s

accuracy. However, the proposed VL improves the CL’s accuracy 53%.

5.2.2 The ECL, VL, and SzL algorithms

In Table 5.4 is shown the average node localization error after 220 simulations by

using the RSSI and the LQI.

Table 5.4: The accuracy performance of CL, WCL, VL, ECL, and SzL.
CL ECL WCL VL ZsL WCL VL SzL

(RSSI) (RSSI) (RSSI) (LQI) (LQI) (LQI)
Error(m) 3.61 3.61 4.33 2.1 1.83 6.1 2.86 2.48

The SzL improved the CL’s accuracy in 49.3% and the WCL’s accuracy in 57.73%

by using the RSSI. The SzL improved the CL’s accuracy in 31.3%, the WCL’s accuracy

in 59.34% and the VL’s accuracy in 13.28% by using the LQI. In order to measure the

accuracy of the CL, WCL, VL and SzL we assumed the distance separation among nodes

as accurate. The results are shown in the Table 5.5, where the SzL improves the CL’s

accuracy in 71.19%, the WCL’s accuracy in 49.01% and the VL’s accuracy 35%.

Table 5.5: The accuracy performance of CL, WCL, VL and SzL in isolation assuming the
distance separation as accurate.

CL WCL VL SzL
Error (m) 3.61 2.04 1.6 1.4

5.2.3 The Triangular Centroid Localization Algorithm

In Table 5.6 shows the simulation results. With these outcomes, we demonstrate

that the TCL is superior to CL and WCL in a 99.9% on average; and WCL gets better

performance than CL in 37.76%. However, by the irregularity of the wave propagation is
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not possible get exact distances among nodes in real scenarios. The Table 5.7 shows the

localization error of algorithms when the transmission is affected by people or obstacles.

Table 5.6: The accuracy performance of CL, WCL, and TCL in isolation.
CL WCL TCL

Error (m) 3.39 2.11 0.0001

Table 5.7: The accuracy performance of CL, WCL, and TCL in isolation assuming the
distance separation as accurate.

CL WCL WCL TCL TCL
(RSSI) (LQI) (RSSI) (LQI)

Error (m) 3.39 4.29 5.94 1.54 2.08

The WCL is presented as extension of CL, nevertheless in our simulations WCL

increases the localization error in 26.55% using RSSI and in 75.22% using LQI; it only

reduces the localization error when the distances among nodes are assumed as accurate.

In this sense, we believe that WCL should be further extended. TCL improves to CL in

54.5% using RSSI and in 38.68% using LQI. TCL improves to WCL in 64.1% using RSSI

and in 64.98% by using LQI.

5.2.4 The Smart Beacon Nodes

The Figure 5.3 shows the average result for each group of ρ of OLIcoarse. Notably

we can see that the localization error tends to increase when ρ increases, besides we can

see the error localization for all NLAs is bigger when ρ[0.9, 0.99] than everyone else. The

maximum obstacle is 0.99 that is 17.81 people over an occupied area. Nevertheless, if

the ρ increases, not necessarily increases the localization error. For instance, the node

localization error of the WCL when it uses LQI with ρ[0.3, 0.39] is lower than ρ[0.0, 0.09].

Similarly, these situations also can be found in the TCL. The random position of the

non-beacon nodes and density/positions of beacon nodes are also important factors.

The Figure 5.4 draws the node localization error by using OLIcoarse. Once again,

we can see the tendency of the node localization error to increase. The average error

decreased significantly for some groups of ρ and for others only slightly. The localization

error for all ρ of each range-based NLAs was reduced. For instance, the localization

error of TCL by using LQI was reduced in a 7.53% on average and by using the RSSI

was reduced in a 7.3% on average; the localization error of WCL by using the LQI was

reduced in a 7.03% on average and by using the RSSI was reduced in a 5.73% on average.
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Figure 5.3: The average error of node localization algorithms without SBNs.

On the other hand, Centroid is not benefited by SBNs, due to that it does not use angle

or distance for estimating the non-beacon node position, therefore it is not able to use

this class of information. With this we emphasize that by using SBNs, the localization

error of range-based localization algorithms can be reduced.
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Figure 5.4: The average error using coarse ρ.

As already mentioned at the beginning of this document, for the critical applica-

tions the precision in node localization is considered as primary, where every centimeter

gained can be very important. OLIfine can be used for these kinds of applications in

order to get more accuracy. The Figure 5.5 depicts the localization error of the used

NLAs by using OLIfine, where the localization error of WCL by using LQI was reduced

in an 11.92% on average and by using RSSI was reduced in a 12.24% on average. The

localization error of TCL by using LQI was reduced in an 11.92% on average and by using
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RSSI in a 12.24% on average. The highest improvement was found in TCL, it was 18%.

However, the error does not necessarily decline with a finer ρ (OLIfine) for all cases. For

instance, let be ρ = 1.9 for some couple of beacon nodes SBNkl, the Algorithm 7 for

estimating OLIfine stops in UDbase−D,ρ14 due to the statistical value z is within the range

of the acceptance region. On the other hand, The Algorithm 7 for estimating OLIcoarse

stops in UDbase−D,ρ2. Thus, OLIcoarse gets better accuracy than OLIfine. However in

most cases, OLIfine gets better accuracy.
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Figure 5.5: The average error using fine ρ.

Summarizing, when SNBs transmit OLIcoarse, the node localization error of used

range-based LAs is improved in a 6.9% on average and OLIfine the node localization error

is ameliorated in a 12.08% on average. In Table 5.8 is shown the localization average

error (meters) of tested localization algorithms when they do not use OLI (Err) and

when they use OLI (Err (OLIcoarse/fine)). The Table 5.8 shows the average accuracy of

the localization algorithms tested in 2D and 3D environments. Based on these results,

we proofed that the inclusion of SBNs into the range-based localization algorithms TCL

and WCL can decrease the node localization error up to in an 18%. SBNs can transmit

OLIfine for getting more accuracy; of course this indicator demands a little more off-line

work than OLIcoarse.

The SBNs are developed in the network simulator AvroraZ, therefore the con-

straints of a real implementation is not possible to analyze in our simulations, however

the potential constraints of use of SBNs into some localization algorithm may be are: (a)

time for generating the database of RSSI/LQI and (b) establish the range acceptation

region.
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Table 5.8: The accuracy performance of NLAs with/without SBNs.
Err Err(OLIcoarse) Err(OLIfine)

CL 2 2 2
WCL (RSSI) 2.41 2.27 2.11
WCL (LQI) 3.57 3.32 3.15
TCL (RSSI) 0.93 0.86 0.81
TCL (LQI) 1.66 1.53 1.46

5.2.5 Logical Position of Nodes.

The LPN improves the node localization of Centroid, WCL, and TCL in 13.27%

on average. The high improving is 18.13% on average for WCL when it uses RSSI. The

minimum improving is 9.77% on average for TCL when it uses LQI. In the Table 5.9 is

shown the localization average error in meters for each localization algorithm with/without

LPN for 2D and 3D environments. In general, the improving of the LPN is directly related

with the database environment layout and the Area/Volume of Uncertainty (localization

error).

Table 5.9: The Localization Error of NLAs with/without LPN.
2D (m) 3D (m)

Without LPN With LPN Without LPN With LPN
CL 3.11 2.76 3.67 3.1

WCL (LQI) 5.51 4.63 6.37 5.32
WCL (LQI) 4.08 3.34 4.5 3.8
TCL(LQI) 1.91 1.72 2.25 2.03
TCL(RSSI) 1.32 1.19 1.76 1.58

5.2.6 SEA-NL.

The Figure 5.6 5.7 and 5.8 shown the localization average errors of the node lo-

calization algorithms used (the CL, the TCL, and the WCL) for the three scenarios,

respective. The first column (from left to right) represents the error of the NLA in isolate

way. The second column represents the localization average error of the NLA through

the LPN; the third column shows the localization average error of the NLA by using

SBNs, and the forth column indicates the localization average error of the NLA as part

of the architecture SEA-NL. Note that SBNs are expedient only for those NLAs based

on distance estimation, therefore SBNs do not benefit to the CL, but the CL whether is

improved by the LPN and the SEA-NL



64

In Table 5.10 is shown the improvement of the node localization algorithms CL,

TCL, and WCL by using the LPN, the SNBs, and our architecture SEA-NL. In the first

scenario the highest improvement found of the SEA-NL was 24.24% on average in the

TCL (RSSI). The smallest improvement found of the SEA-NL was 11.25% on average in

the CL. In the second scenario the highest improvement found of the SEA-NL was 30.88%

on average in the WCL (RSSI). We can see in the Figure 5.7 the average localization error

was reduced from 4.5 to 3.11 meters. The smallest improvement found of the SEA-NL

was 15.53% on average in the CL. In the third scenario the highest improvement found of

the SEA-NL was 24.06% on average in the TCL (RSSI). The smallest improvement found

of the SEA-NL was 10.32% on average in CL.

The SEA-NL improves to NLAs CL, WCL, and TCL is ∼19.14% in the first sce-

nario, ∼ 21.85% in the second scenario, and ∼ 18.56% for the third scenario. Summa-

rizing, the SEA-NL improves to the NLAs used in ∼ 19.85%. The fluctuation of the

SEA-NL accuracy is provoked by the node position, density of nodes, the space layout,

valid spaces, invalid spaces, and the density of obstacles over each occupied area, among

others. The consideration of entire factors of a simple scenario into a simple NLA might

be is not possible or feasible; instead of this, some NLAs have been developed for a specific

scenario where only considered most relevant factors such as the RADAR [23].
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Figure 5.6: First scenario results. Two adjoining buildings, 2D.

5.2.7 CAA-NL

The CAA-NL is intended for those NLAs with poor to fair performance in order to

increase their accuracy based on context awareness. In our approach the node localization

error is conceived as a square/cube. The CAA-NL aims to reduce the square/cube. If
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Figure 5.8: Third scenario results. Outdoor scenario from Figure 5.2.

the shape size is too small the context might not necessarily be useful enough to produce

an improvement. Nevertheless, high localization accuracy for indoors can demand: (i)

special hardware [18] or (ii) a large number of beacon nodes with short coverage range

[40]. Our proposed architecture compensates the lack of special equipment and reduces

the number of required beacon nodes.

We implemented the Centroid Localization [17], Triangular Centroid Localization

[21], Weighted Centroid Localization [7], and Improved Centroid Localization [38] algo-

rithms to validate our architecture CAA-NL. In order to be fair, the used range-based

algorithms run the same distance estimation technique based on the hypothesis testing

employed in [21]. In addition, they were evaluated by using both the RSSI and the LQI.

Obstacles were set up at random by ρ = [0.01, 0.99], where beacon nodes have a coverage

range of about 36 meters of diameter with the aim of avoiding the use of a large number
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Table 5.10: Improvement of the NLA’s for the three scenarios.
CL TCL TCL WCL WCL

RSSI LQI RSSI LQI
Fist Scenario. Two adjoining buildings, 2D

LPN 11.25% 11.25% 9.84% 9.94% 18.13% 15.97%
SBNs (coarse) 0% 7.57% 7.85% 5.88% 7.07%
SBNs (fine) 0% 12.87% 12.04% 12.5% 11.79%
SEA-NL 11.25% 24.24% 18.84% 23.03% 18.33%

Second scenario results. Two adjoining buildings, 3D.
LPN 15.53% 10.22% 9.77% 15.55% 16.48%

SBNs (coarse) 0% 7.95% 7.55% 7.11% 5.97%
SBNs (fine) 0% 11.93% 12.88% 11.77% 12.4%
SEA-NL 15.53% 20.45% 20.88% 30.88% 21.5%

Third scenario results. Outdoor scenario from Figure 5.2
LPN 6.45% 7.52% 7.89% 16.21% 12.36%

SBNs (coarse) 0% 7.51% 6.32% 6.14% 6.55%
SBNs (fine) 0% 9.02% 11.05% 11.05% 11.63%
SEA-NL 10.32% 24.06% 19.47% 21.13% 17.82%

of them as in some context-aware applications. For indoor environments, a large number

of beacon nodes involves a bigger effort for establishing them and it could not be desirable

from an economic perspective.

5.2.7.1 Accuracy Evaluations

The goal of this set of experiments is to determine the enhancement of the used

NLAs through the CAA-NL. We considered a couple of contiguous buildings with a di-

versity of places. Each building has eight flats, where each flat has a surface of 400m2

for the 2D environment and a volume of 1000m3 for the 3D environment. The beacon

nodes were placed in a grid way with 20 meters of separation among them. A total of six

beacon nodes were used in the 2D environment and 12 beacon nodes for the 3D environ-

ment. Table 5.1 shows the dimension and quantity of places for both environments in a

two/three dimensional Cartesian space.

The height of some places might be regulated by a building Act. For example,

in the USA most rooms are 2.44 meters height, but to the upper floor is 2.6 meters

allowing for the floor joists. Therefore, we considered 2.5 meter of height for each place.

Widths for all places are 5 meters and depths were considered from 8 to 20 meters. The

relations of the objects with the places were considered as follows: a desk/table ∈ {Office,

Dining room, Classroom, Laboratory} at a height of 0.75 meters; a chair ∈ { Office,
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Dining room, Classroom, Laboratory, Warehouse } at a height of 0.45 meters; a printer

∈ {Office, Laboratory, Warehouse} at a height of 0.9 meters; and a bed ∈ {Bedroom} at
a height of 0.45 meters. A total of eighty objects were considered: 20 desktops, 20 chairs,

20 printers, and 20 beds.

5.2.7.2 Accuracy Experimental Results

A total of 100 simulations were performed for each studied NLA considering the

eighty objects placed at random every time. Fig. 5.9 and Fig. 5.10 show the simulation

compendium of the studied NLAs for the 2D and 3D environment. The left column for

each algorithm represents its average error and the right column denotes the average

error of the CAA-NL using the algorithm in question. In the 2D environment, CAA-NL

improves ∼ 13.08% the used NLAs’ accuracy. The average-largest improvement is 18.14%

for the WCL algorithm when it uses the RSSI. The average-smallest improvement is 9.94%

for TCL when it uses the LQI. In the 3D environment, CAA-NL improves 13.03% the used

NLAs’ accuracy. The average-largest improvement is 16.48% for the WCL algorithm when

it uses the LQI. The average-smallest improvement is 10.71% for TCL when it uses LQI.

The average-highest improvement for the WCL algorithm can be explained by its initial

AV U which is the biggest compared with the other used NLAs. The node localization

error reported by the authors of WCL ranges from ∼ 0.7 to ∼ 14.3 meters considering a

10 meter separation among the beacon nodes. The CAA-NL is able to reduce in average

up to 2.59 meters the WCL error. In other words, based on the fact that in the USA most

rooms are ∼ 2.5 meters height, the CAA-NL is able to reduce the location estimation as

much as the equivalent to two stories from a regular building.

The environment layout and object-place relation are key factors for reducing the

AV U size. Based on these two factors an initial AV U can be reduced and consequently

the localization estimation can be improved. For instance, consider five places where each

one has 20% of an initial AV U and only one place is a place associated, the AV U is then

reduced by 80%.

The CAA-NL is able to improve the accuracy of those NLAs with reasonable

accuracy, i.e. if the initial AV U is too small (centimeters), CAA-NL could not be able to

reduce it. However, a too small AV U for range-based NLAs requires: (i) special hardware

or (ii) many beacon nodes with a short coverage range. The ABS [27] is a suitable example

of (ii).
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Figure 5.10: The used NLAs’ accuracy in the 3D environment

5.2.8 Reducing the number of required beacon nodes.

The goal of this experiment is to determine the number of beacon nodes that can

be removed by using our proposed architecture CAA-NL i.e., the number of beacon nodes

that can be reduced while preserving the average accuracy of the NLAs.

5.2.8.1 Reducing the number of required beacon nodes experimental results

Extensive simulations were carried out in order to determine the localization av-

erage error of the CL, WCL, TCL, and ICL algorithms. The placement of beacon nodes

was randomly chosen. The number of beacon nodes was incremented progressively from

6 to 50. A total of 30 simulations were performed. This process was executed for each of
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the considered NLA giving a total of 5280 simulations. The node localization accuracy

of the four considered NLAs improves as the number of beacon nodes is increased, see

Fig. 5.11. Based on our simulation results, our proposed architecture CAA-NL reduces

the number of required beacon nodes by ∼25.93%, as shown in Table 5.11, among other

statistical valuesââ. A clear upward or downward tendency over the number of beacon

nodes is not observable because of the random distribution of nodes, environment layout,

and relation object-place. However, other important factors can be considered such as

the environment dimensions, coverage range of nodes, and used NLA. Despite all factors

involved our proposed architecture is able to reduce the number of required beacon nodes

while keeping the same accuracy of the NLA. For instance, The average error of the WCL

algorithm using 15 beacon nodes is ∼ 3.73 meters, on the other hand through CAA-NL

using 7 beacon node is ∼ 3.7 meters, i.e. the reduction of beacon nodes is 55.33% which

represented the average-largest reduction, as shown in Fig. 5.12. This reduction has a

positive impact from both an economic perspective and infrastructure effort.
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Table 5.11: Reduction of Bacon nodes (%) by CAA-NL

ICL WCL CL TCL

Minimum 7.14 13.28 25 2.22 11.91
Average 18.5 38.45 33.82 12.94 25.93
Maximum 33.3 55.33 50 33.33 43
Std Dev 4.8 7.54 5.34 7.86 6.4
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Figure 5.12: Node localization error regarding the number of beacon nodes.

5.2.9 Limitations and constraints

The Context-Aware Architecture for Node Localization objective is to improve

the estimation of a NLA by using both the environment layout information and its cor-

responding objects’ attributes. For example, a printer cannot stay on the ceiling or in

a restroom. In other words, several space and belonging restrictions can be established

from a known object considered in a given context. Accomplishing the same accuracy

for all possible applications is not the goal of our proposed CAA-NL. In fact, we believe

that same accuracy is not achievable because of the diversity and number of factors which

might be required to address.

The complexity is determined by the maximum complexity given by either (i)

the Context Awareness module or (ii) the Node Localization module. In (i) the module

has order of n time complexity. In (ii) the complexity is subjected to the implemented

Node Localization Algorithm, for instance the Weighted Centroid Localization has order

of n time complexity or even worst the Multidimensional Scaling has order of n3 time

complexity. In (i) the communication cost is negligible since it involves a unique ACK

packet per unknown node which informs the estimated position. For example in (ii) the



71

communication cost can be high if the used NLA is a hop-count based approach.

The CAA-NL scalability is subjected to the node localization module scalability.

For instance, if the implemented node localization algorithm has order of n2 time com-

plexity or higher, then neither the algorithm [66] nor the CAA-NL are scalable. In other

words, the CAA-NL scalability depends on the employed algorithm. The CAA-NL scala-

bility can also be bounded by the network properties. For example, a zigbee network can

consist of a maximum of 65535 nodes distributed in subnetworks of 255 nodes.

5.3 HSA-NL

Some NLAs are able to performance better than others in the same NLAs fusion,

but it depends on their requirements and flexibility. The results show that a NLAs fusion

can significantly reduce the localization error estimation. However, the size of the fusion

is not directly related to the amount of the error reduction.

For instance, in Figure 5.13 several NLAs fusions are shown where the NLAs Fusion

of size five CL1, VL2, VL3, VL4, VL5 reduce the node localization error from 5.07 to 3.1

meter. On the other hand, the NLAs fusion of size three CL1, TCL2, SzL3 has the same

accuracy. However, the NLAs Fusion of size five is able to performance better than a NLAs

fusion of size three under other environment conditions. With this evidence we proof that

there is not a universal NLAs fusion, but there is a NLAs fusion able to performance

better than a simple NLAs for each area.

The NLA’s accuracy under this approach is hard to estimate because there are

many factors that make the NLAs’ accuracy fluctuate widely such as:

� The number of the execution stamp assigned.

� The algorithm that is performance before.

� The NLAs fusion sizes.

� The diversity of places.

� The Obstacle Level indicator.

� Quality of the databases of the LPN.

� The beacon nodes’ density.
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Chapter 6

Ongoing Work and Conclusion

The Triangle Centroid localization algorithm is one of the most powerful algorithms

which is based in simple trigonometric figures. After extensive simulations, we prove

that our proposed algorithm has better performance than CL and WCL in 2D and 3D

environments considering different levels of obstacles. Using the RSSI, TCL improves the

accuracy of CL in 54% and WCL in 64%; using the LQI, TCL improves to CL in 38% and

WCL in 64.98%. When we assume exact distances only to measure the accuracy under a

perfect (unrealistic) environment TCL is superior to CL and WCL.

Smart Beacon Nodes are able to transmit the Obstruction Level Indicator between

each couple of them. After extensive simulations using obstacles in random way in 2D

and 3D environments, we proofed that the inclusion of SBNs into the range-based local-

ization algorithms Triangular Centroid Localization and Weighted Centroid Localization

improve their accuracy. Specifically, when SBNs transmit OLIcoarse LAs improve the node

localization in a 6.9% on average and with OLIfine they ameliorate the node localization

in a 12.08% on average. In additional, the highest improvement was found in TCL, it was

18% The central idea is to report the status of the environment to each non-beacon node.

In this first approach, we use a generalization of the obstacles (ρ) through the network

simulator AvroraZ. However, SBNs can transmit more useful information such as noise,

lost packet, transmission delay and the bit error rate, just to name a few. This opens

the possibility of develop LAs with these kinds of requirements and extend the SBN for

specific or general environments.

We presented Logical Position of Nodes which improves estimated position of nodes

by validating the environment layout and the properties of the objects that can hold a

node. LPN provides the possible positions of each node along with the likelihood of belong

to each place. Our proposal was tested in a couple of adjoining buildings considering

obstacles from 0 to 10 persons over an area occupied through the network simulator
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AvroraZ in 2D and 3D environments. LPN improved the node localization of Centroid

Localization, Weighted Centroid Localization and Triangular Centroid Localization in

a 13.27% on average. Based on our experimental results, LPN can work as a filter of

localization algorithms. However, it can be used for others ones. In this first approach,

the association of the objects with places is binary, that is an object belongs or does not

belong to some place. However, the association can be handled with a priori probability.

For instance, desktop45 belongs to a laboratory with 60% likelihood.

The Smart Environmental Architecture for Node Localization which is based on

Information Fusion and Context Awareness. Our architecture was tested under differ-

ent scenarios (indoors and outdoors) considering obstacles over an occupied area. Each

considered NLA was evaluated for those scenarios and then complemented by using the

SBN’s, the LPN and the SEA-NL. The SBN’s do not benefit to the CL because it is not

based on distances or angles, however the CL whether is improved by the LPN and the

SEA-NL. Summarizing, our architecture improved to the NLA’s used 19.14% on average.

The Context-Aware Architecture for Node localization improves the estimated

position of nodes by using both the environment layout and its corresponding objects’

attributes. Our proposed architecture CAA-NL provides the estimated positions of each

node together with the likelihood of belonging to a known place. The CAA-NL was tested

in a couple of contiguous buildings considering from 0.01 to 0.99 obstacles per square meter

at random in a 2D/3D environment. CAA-LN improves ∼13.05% the accuracy of the

Centroid Localization, Weighted Centroid Localization, Improved Centroid Localization,

and Triangular Centroid Localization algorithms. The environment layout and object-

place relation are key factors for improving the NLA accuracy. In a second scenario, the

CAA-NL was extensively tested in order to determine the reduction of beacon nodes (%)

that can be removed while keeping the same accuracy of the NLA. The average-largest

reduction found was ∼55.33% for the WCL localization. The reduction in the number of

required beacon nodes depends mainly on the random distribution of nodes, environment

layout, and relation object-place. However, others factors can be considered such as the

environment dimensions, coverage range of nodes, and used NLAs.

The main contributions of Part I (LOCALIZATION) are:

� Three architecture for node localization in a Wireless Sensor network:

The Logical Position of Nodes.

Smart Node Architecture for Node Localization.

The Hierarchical Subsumption Architecture for Node Localization.
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� Six node localization algorithms:

The Vectorial Localization Algorithm.

The Energized Centroid Localization.

The Subzone Localization algorithm.

The Triangular Centroid Localization.

The Smart Beacon Nodes.

The Logical Position of Nodes.

� A novel solution for node localization considering the variations of the energy con-

sumption of nodes.

� A research subarea focused on developing NLAs with an execution stamp n.

� The use of context awareness for improving the estimated position of a node.

� We proved that for the studied NLAs the number of required beacon nodes can

be highly reduced by the use of context awareness without affecting their average

accuracy (it is believed that this is also true for similar NLAs to the studied ones).

� We successfully introduced the subsumption principle to the area of context aware

computing for a localization process.



PART II

TRACKING
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Chapter 7

Localization of a Mobile Node in Shaded Areas

Our proposed mobile node architecture addresses the tracking of a mobile node

considering: (i) a main node tracking system/algorithm that is feasible enough for non-

shaded areas and (ii) a subsystem that supports the node tracking in shaded areas. A

vehicle with a GPS on-board is a suitable example for (i); nevertheless our approach

does not consider any particular main system/algorithm. Instead, our proposed PRMM

(Probabilistic Random Mobility Model)) generates sequential location points, trajectory,

based on the CTR (Center Turning Radius) that in turn is both an inherent vehicular

feature [29] and a vehicular displacement restriction. On this basis alone diverse mobile

nodes can be represented, for instance a utility car with CTR = 6.4 meters or smaller

values for robots. Our proposed model neither is limited to simulate vehicle trajectories

nor tries to replicate the driving style of a person.

As secondary system/algorithm, we adopt the well-known particle filtering ap-

proach because it is able to handle the location uncertainty during a shaded area and

improves the node location estimation over the time. We propose not only a solution for

locating a mobile node in shaded areas but also a Probabilistic Random Mobility Model

for generating of paths, both based on CTR.

The proposed architecture for tracking a mobile node is made up of three main

modules: (i) Probabilistic Random Mobility Model, (ii) Location Subsystem, and (iii)

Priority Suppress as shown in Fig. 7.1. In (i), several parameters can be established

in order to obtain sequential location points (li) and observations (Yi) at time i. The

four submodules Timer, Initial Parameters, Probability, and Noise are given in greater

detail in section 7.1. In (ii), Yi is used as a unique input for generating an alternative

estimated position E[xi] based on particle filtering. The Location Subsystem is given in

greater detail in section 7.2. In (iii), a selective process based on priority and availability

is performed in order to select li when available and E[xi] during shaded areas such that
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Figure 7.1: General Architecture for mobile node tracking in shaded areas.

the black dot over the line li represents the highest priority.

7.1 Probabilistic Random Mobility Model

Our Probabilistic Random Mobility Model generates sequential points, trajecto-

ries, of li and Yi in a two dimensional Cartesian space (x, y) such that units are expressed

in meters. The sequential points are generated from: (i) the bounded displacement based

on the mobile node CTR, (ii) probability of turn every amount of seconds, (iii) probability

of increase/decrease the speed every amount of seconds, and (iv) noise based on Normal

Distribution.

Algorithm 9 shows the procedure for generating of li and Yi. Let sampling rate be

the number of samples per second, i be a time slot s.t. i = 1 second/sampling rate, and

total time be the total time of simulation. All time variables are handled in the PRMM

Timer module as shown in Figure 7.1. The default initialization (i = 0) of the mobile

node variables from step 1 to 5 is contextualized as follows: A utility car (CTR = 6.4)

starts its movement at the position (0, 0) with an orientation θ0 which is randomly chosen

from 0 to 2π radians. The speed0 and threshold thr are established from the assumption

that speedi ∼ N(µs, σ
2
s) with a Normal distribution based on the central limit theorem.
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The use and definition of thr are addressed in the step 16 of the Algorithm 9.

Algorithm 9 Generating of trajectories from the vehicle CTR.

Require: i ≥ 0, total time > 0, sampling rate > 0
Ensure: li, speedi, ρi, θi, Yi
1: CTR← 6.4 or given
2: l0(x, y)← (0, 0) or given
3: θ0 ← Random[0, 2π) or given
4: speed0 ← µs
5: thr ← µs + σ2

s/2
6: for i = 1 to total time× sampling rate do
7: if i mod sampling rate mod secondS = 0 then
8: speedi ← A(speedi−1, P (speedi|·), µs, σ2

s)
9: else
10: speedi ← speedi−1

11: end if
12: displacementi ← speedi/sampling rate
13: bi(x)← li−1(x) + displacementi × cos(θi−1)
14: bi(y)← li−1(y) + displacementi × sin(θi−1)
15: if i mod sampling rate mod secondO = 0 then
16: ρi ← B(CTR, P (ρi|·), thr, displacementi)
17: end if
18: if ρi ̸= 0 then
19: li ← C(|ρi|, li−1, bi)
20: else
21: li ← bi
22: end if
23: Yi ← D(li, µY , σ

2
Y )

24: li ← E(li, µl, σ
2
l )

25: return li, Yi
26: end for

The PRMM update is based on the smallest time slot i.e., the time variable i.

Hence, the quantity of li and Yi is calculated by total time × sampling rate, (Step 6).

The mobile node speed can be changed every secondS second through the probabilistic

function A(·) such that secondS = 5 is the default value, (Steps 7-11). An increase

and decrease in the mobile node speed have the same probability of occurrence and it is

expressed in equation 7.1 such that stayS = 0.8 is the default value.

P (speedi|stayS) =

{
stayS, speedi = µs
1−stayS

2
, otherwise

(7.1)

The speed assignment by equation 7.2 is based on the three sigma rule such that

j and i are two uniform random numbers in the interval [0, 1] and g = 1− stayS.
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A(·) =



µs, i = [0, stayS)

µs + jσ2
s , i =

[
stayS, stayS + 0.341g

)
µs − jσ2

s , i =
[
stayS + 0.341g, stayS + 0.682g

)
µs + σ2

s + jσ2
s , i =

[
stayS + 0.682g, stayS + 0.818g

)
µs − σ2

s − jσ2
s , i =

[
stayS + 0.818g, stayS + 0.954g

)
µs + 2σ2

s + jσ2
s , i =

[
stayS + 0.954g, stayS + 0.976g

)
µs − 2σ2

s − jσ2
s , i =

[
stayS + 0.976g, 1

]
(7.2)

Based on the fact that if the mobile node speed is greater than zero a sudden

displacement in the opposite direction might not be possible. On this basis alone, li can

be established in a well-bounded space from CTR. Let the Fig. 7.2 takes place in order

to illustrate the bounded displacement of a mobile node based on its CTR as well as the

rest of the Algorithm 9.

The dotted arc represents all possibilities li(x, y) for a mobile node based on its

CTR. If the mobile node goes in a straight line, it would stay at bi(x, y) which is deter-

mined from li−1, displacementi, and θi−1, (Steps 12-14). If turning, the position bi(x, y)

is then displaced over the dotted arc ρ radians.

The mobile node turning can be changed every secondO seconds through the prob-

abilistic function B(·) such that secondO = 7 is the default value, (Steps 15-17). A left

and right turn have the same probability of occurrence and stayO represents the proba-

bility of non-turning. Hence, the turning probability is 1 − stayO and this is expressed

by equation 7.3, where stayO = 0.8 as the default value.

P (ρi|stayO) =

{
stayO, ρi = 0
1−stayO

2
, otherwise

(7.3)

The maximum turning of a mobile node is bounded by the angle λi which is

derived from CTR, li−1(x, y), and bi(x, y). The angular velocity wi can be simplified

as expressed in equation 7.4 since the formed triangle is right and displacementi =

speedi/sampling rate. The angle αi can be then easily estimated by equation 7.5.

wi =
displacementi

CTR
(7.4)

αi =
π − wi

2
(7.5)

The angle λi is reduced as the mobile node increases its speed in order to avoid

skidding or overturning. The safe range of turning can be calculated considering mobile

node mass, friction, sensor measurements, and forces involved, among others. However,
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Figure 7.2: Arc of possibilities for li(x, y) for a mobile node ■ based on the vector rotation
(li−1, bi) such that its magnitude is

√
2CTR2 .

this calculation is beyond the scope of this article. Instead, the angle λi is gradually re-

duced while the mobile node speed is greater than the threshold thr as shown in equations

7.6 and 7.7 such that thr = µs + σ2
s/2 as the default value, (Step 5).

λi = π/2− α′
i (7.6)

α′
i =

{
(speedi−thr)(π2−αi)thr

µs+σs2
+ αi, speedi > thr

αi, otherwise
(7.7)

The value of ρi is assigned by function B(·) as shown in equation 7.8 such that i

and j are two uniform random numbers in the interval [0, 1], (Step 16).

B(·) =


0, i = [0, stayO)

jλi, i =
[
stayO, stayO+1

2

)
−jλi, i =

[
stayO+1

2
, stayO

] (7.8)

If there is a turning i.e., ρi ̸= 0 the mobile node position li is then displaced ρi

radians over the dotted arc as shown in Figure 7.2. The turning is determined by the

function C(·) in equation 7.9 such as dx = li(x) − l1−i(x) and dy = li(y) − l1−i(y). The

angle θi is then easily determined by using li and li−1. If there is no turning li is then

equal to bi, (Step 20-22).
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C(·) =

(
cos ρi −sin ρi
sin ρi cos ρi

)(
dx

dy

)
+ li−1

(
x

y

)
(7.9)

In the Step 23, the observation Yi is determined nearby of li by the function D(·)
as shown in equation 7.10 such that ξi∼ N(µY , σ

2
Y ) with a Normal distribution based on

the central limit theorem. The observation error ξi is calculated by equation 7.11, where

Rangle = Random[0, 2π) and N(0.3, 0.1) as the default value.

D(·) = li

(
x

y

)
+

(
ξi × cos Rangle
ξi × sin Rangle

)
(7.10)

ξi =
speedi × µY
sampling rate

+Random[−σ2
Y , σ

2
Y ] (7.11)

Finally, in the step 24 the noise ψi is added to the sequential point li in a similar

process to the process performed in the step 23 such that ψi ∼ N(0.1, 0.05) as the default

value.

The Figure 7.3 shows ten paths created by our PRMM. They were created with

the same initial values except the dash one. The latter has the constant value of ρi

equal to −0.02, (Step 16). In other words, the mobile node is turning to the right 0.02

radians every secondO seconds. Similar action can be realized for the mobile speed in step

8. The distance and orientation between points li are determined from the probability

of randomly change both the mobile node speed and orientation. However, predefined

values into the Probabilistic Random Mobility Model allow the creation of deterministic

and semi-deterministic paths.
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Figure 7.3: Several paths created by PRMM starting at the coordinate (0,0).
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As bottom line, the large diversity of generated paths by PRMM allows our pro-

posed Location Subsystem module be tested with many and diverse scenarios.

7.2 Location Subsystem

We define SoU (Space of Uncertainty) as the space where a mobile node might

stay at a given time instance. We define also Flexible SoU as the SoU resizing over the

time. In Figure 7.2, suppose that |bi − li−1| is the maximum mobile node displacement.

The rising tiling pattern represents then SoU at the instance i. In other words, the

arc of possibilities for li(x, y) is forward projected regarding the maximum mobile node

displacement. Hence, the pseudo-cone shape is maintained despite variations in speed.

The Flexible Space of Uncertainty can be expressed as a 4-tuple (E[xi−1], θi, CTR,maxD)

such that E[xi−1] is the expected value in the previous instance, θi is the standard angle,

and maxD is the maximum mobile node displacement (µs + σs × 3)/sampling rate.

As far as we know, in the-state-of-the-art works the space of uncertainty of a

mobile node is represented by a circle or square. However as stated earlier, considering

the mobile node status and its inherent features the space can be significantly reduced.

For example in a noise-free environment, let a circle with radius equal to 6.4 m be the

uncertainty circle. The area where a mobile node might stay is 128.68m2 and the area

of SoU is 13.99m2. In other words, there is a reduction of 89.13% in the area, which can

be even greater as the mobile speed increases after the threshold thr.

In the Location Subsystem module, we have successfully introduced the Flexible

SoU into Particle Filtering. Our proposed algorithm in this module adopts the gen-

eral framework Sequential Importance Resampling in order to approximate the posterior

probability distribution p(xi|Y0:i) by a weighting set of N particles. The calculation of the

distribution is performed recursively using a Bayes filter and assuming that the Markov

property is holds.

Algorithm 10 shows the procedure to compute the expected mobile node position

E[xi]. Initially, the Location Subsystem has no knowledge about its position. Hence,

N particles are drawn randomly around the expected value E[x0] i.e., at any possible

location. In step 2, the probability for each particle wp0 is uniformly established because

there is no prior information. In step 3, the expected value E[x0] is determined by a

centroid estimation because all particles have the same weight. In step 6 xpi is computed

using xpi−1 and Yi because x
p
i reflects all previous observations. Hence, the Probabilistic

Random Mobility Model plus noise ϕi is used as the importance function π such that

ϕi ∼ N(0.3, 0.1) as default value. In step 7, the assigned weights wpi are normalized in
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Algorithm 10 Particle Filtering + Flexible SoU.

Require: Yi
Ensure: E[xi], x

p
i

{INITIALIZATION, i = 0}
1: Draw particles N around expected value E[x0]
2: Uniform weighting. wp0 = 1/N.
3: E[x0]←

∑N
p=1 x

p
0 × w

p
0

4: loop
5: {PREDICTION, i > 0,∀p}
6: π(xpi |E[x

p
i−1], Yi, ϕi)

7: wpi ← P (Yi|xpi ) = 1− |Yi−xpi |∑
|Yi−xpi |

8: E[xi]←
∑N

p=1 x
p
i × w

p
i

{FILTERING}
9: while xpi /∈ SoUi do
10: Resampling( xpi |E[xi], SoUi)
11: end while
12: wpi ← 1− |E[xi]−xpi |∑

|E[xi]−xpi |
13: w̃pi ← wpi × w

p
i−1

14: wpi ←
w̃p

i∑N
p=1w̃

p
i

{ ESTIMATION }
15: E[xi]←

∑N
p=1 x

p
i × w

p
i

16: return E[xi]
17: end loop
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the range [0, 1] based on the distance between Yi and x
p
i . In step 8, the expected mobile

node position E[xi] is determined by all particles and their corresponding weights such

that {(xpi , w
p
i )| p ∈ [1, N ],

∑N
p=1 = 1}.

Through steps 9-11, particles xpi with negligible weights are replaced by new par-

ticles with higher weights around E[xi] and within SoUi. In the steps 12-14, the weights

are updated to w̃pi based on previous valid possible locations and w̃pi is normalized to

wpi . In the step 15, the estimated mobile node position, E[xi], is calculated based on the

posterior distribution which is represented by the weighted set (xpi , w
p
i ). Finally, E[xi] is

provided to the Priority Suppress module.

7.3 Priority Suppress

We successfully introduced the suppress principle of the subsumption architecture

[28] into our proposed architecture. The principle has been widely employed in robotics

and software agents because complex behaviors can be divided into simple modules that

in turn are organized into layers. Information of a upper layer can subsume information of

lower layers and this is graphically represented by the symbol ”s”, as shown in Figure 7.1.

In our proposed architecture the upper layer is identified by the black dot over the line

li. In other words, during non-shaded areas the estimated position li by the main node

tracking system subsumes the expected value E[xi] calculated by the Location Subsystem.
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Chapter 8

Experimental Evaluation and Results

In this chapter, we describe the experiments we conducted to measure the effec-

tiveness of our proposed architecture for a mobile node localization in shaded areas. In

particular, we are interested in the Location Subsystem evaluation considering the space

of uncertainty as a circle and pseudo-cone shape. The former alludes to the most used

form in the node tracking based on Particle Filtering and the latter refers to our proposed

Flexible SoU . We use the term General PF to refer to the use of a circle as space of

uncertainty and PF + Flexible SoU to refer to our proposal.

Hereafter, all simulation results are based on the default values shown in Table 8.1

unless indicated otherwise.

In Figure 8.1 is shown the particle behavior of General PF and PF + Flexible SoU

such that N = 50, θ0 = 0, and i = 4. The mobile node is represented by the large circle

where arrows indicate its trajectory. The General PF particles are grouped around the

mobile node at the current position (3.33, 0). However, 20% of the particles are behind

the mobile node at the position i − 1. Based on the fact that if the mobile node speed

is greater than zero a sudden displacement in the opposite direction might not possible.

Hence, only 80% of the particles must be considered as valid. Moreover, considering the

vehicle’s CTR even more particles might be removed. On the other hand, the particles of

our proposed PF + Flexible SoU are drawn regarding the bounded-forward displacement

of the mobile node and they are grouped so that a pseudo-cone shape is formed. Besides,

there is no a particle behind the mobile node at the position i− 1.

The pseudo-cone form is observed even for a higher speed as long as it is less than

the threshold thr. For example, Figure 8.2 depicts the particle behavior when the mobile

node speed is greater than thr which changes the opening of the pseudo-cone form making

it seem as a pseudo line.

The sampling rate determines the update of E[xi], which can increase the local-
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Table 8.1: Considering default values as the base scenario.
VALUE

total time 18000 seconds
sampling rate 4 per second
CTR 6.4 meters
θ0 Random[0π, 2π)
l0 (0, 0)
speedi N(8.33, 2.77)
P (speedi|stayS) stayS = 0.8
secondS 5 seconds
P (ρi|stayO) stayO = 0.8
secondO 5 seconds
ξi N(0.3, 0.1)
ψi N(0.1, 0.05)
ϕi N(0.3, 0.1)
N 25 particles
Markov chain size 50 states
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Figure 8.1: The behavior of the set of particles as a pseudo-cone form.

ization error of Location Subsystem module. We established sampling rate = 4 as the

default value because for both General PF and PF + Flexible SoU the average estimation

error is kept below of one meter as shown in Figure 8.3. A higher value for sampling rate

involves a higher execution frequency of Location Subsystem module and therefore a

higher energy consumption. However, it is not a guarantee that the error will be less than

one meter. For example, a higher mobile node speed increases the distance separation

among measurement points so that the error for sampling rate = 4 and speed = 41.66

is similar to sampling rate = 1 and speed = 11.11 as shown in Figure 8.4 where (n)

represents the value for sampling rate.
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Figure 8.2: The behavior of the set of particles as a pseudo-line form.
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Figure 8.3: The Location Subsystem performance over different sampling rate.

During the experiments carried out in Figure 8.4 the value of σ2
s was kept to 2.77

m/s and µs was gradually increases in units of 2.77 m/s staring at 2.78 m/s. Obviously,

the probability of changing the speed also affects the accuracy, but it is a PRMM property

used in combination with other parameters to generate diversity in trajectories. Hence,

the probability is not considered as an element of the Location Subsystem module but

rather the recorded states of the mobile node using recursively a Bayes filter and assuming

that the Markov property is holds.

On the other hand, the number of particles handled is another key factor. Main-

taining a large number of particles can improve the accuracy, but requires additional

memory and increases the execution time because the particle matrix size is determined

by the Markov chain size (states) and number of particles. Figure 8.5 shows the Location

Subsystem module accuracy under different number of particles, where (n) represents the
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Figure 8.4: Scenario 3. The behavior of the set of particles under the speed changing

value for sampling rate. The error is quickly reduced as the number of particles increases,

but it is fairly stable after 25 particles. The accuracy improvement for 25 < N < 501 is

negligible.

The particle movement from the previous to the current state is carried out by

the importance function π in which the noise ϕ allows particles effervesce. But, a high

noise can make particles go far away and causes a lot of resampling. We found that

ϕ ∼ N(0.3, 0.1) has the best performance and PF + Flexible SoU dampens better high

values in µπ than General PF as show in Figure 8.6, where (n) represents the value for

sampling rate.
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Figure 8.5: Impact of Particle Set size.

Based on our experiments, sampling rate, speed, number of particles, and noise (ξ,

ψ, and ϕ) are the most relevant accuracy elements. Both General PF and PF + Flexible
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Figure 8.6: Noise over the set particle such that σ2
π = µπ/3.

SoU are fairly stable for different values in CTR, P (ρi|stayO), and P (speedi|stayS).
The change frequency in the mobile orientation, secondO, does not have an important

impact in the accuracy because there is a bounded-forward displacement based on CTR.

The change frequency in the mobile speed, secondS, can have an impact from one time

instance to another, but the average error tends to be almost the same for both a low and

high value in secondS.
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Chapter 9

Ongoing Work and Conclusion

We presented not only a solution for locating a mobile node in shaded areas but

also a Probabilistic Random Mobility Model for generating of paths, both based on CTR.

Our Mobility Model is able to generate mobile node paths including the probability of

change both the speed and orientation in a bounded-forward displacement. It is believed

that a better paths can be achieved by incorporating more kinetically elements in the

Model, but it is beyond the scope of this article. Our main goal was to evaluate the

Location Subsystem module performance under diversity of scenarios considering the

space of uncertainty as a circle and pseudo-cone shape (Flexible SoU). The latter is used

as part of our solution for mobile localization in shaded areas, which reduces the space

at least 89.13%. Nevertheless, the space reduction is not kept in the same proportion for

accuracy reduction between General Particle Filtering and our proposed PF + Flexible

SoU because there are many independence factors in the Mobility Model and Location

Subsystem modules.

The main contributions of Part II (TRACKING) are:

� An architecture for locating of a mobile node during shaded areas.

� We successfully introduced the suppress principle of the subsumption architecture

[28] into our proposed architecture as a priority-selective control between li and

E[xi].

� A Probabilistic Random Mobility Model for generation of paths of any vehicle [29].

� We successfully introduced the Flexible SoU upon the area of Particle Filtering and

generation of paths.

� The use of the CTR and status of a mobile node, in combination, to reduce and

adapt the space of uncertainty.
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Appendix A

Real vehicle Tracking

A.1 Introduction

The rapidly changing landscape, lack of navigation planning, and increasing traffic

are some of the factors that are fueling a rising need for highly efficient navigation and

allied services for the masses. An efficient navigation system can also act as the backbone

for other services to be delivered along an active route the user is traveling though -

what are known as vertical LBS (Localization Based Services). Live traffic information,

local search, permissive local advertisements, mobile contact trackers and SOS are some

examples of vertical LBS.

One of the developments in the LBS industry has been the emergence of technolo-

gies that have demonstrated a viable solution without needing a GPS device. Operators

themselves have been trying for more than half a decade to use dynamic location aware-

ness to provide customized mobile services to consumers, but there has nevertheless been

a noticeable delay in bringing efficient location-based services over mobile devices.

Today, such services are often via Web browser and hence considered as Web ser-

vices. The additional challenges to be considered are the richness, personalization and

ubiquity of services to mobile user, and the linking of services to a relevant context. There-

fore, another challenge has been the lack of understanding among application developers

about what makes a location-based service appealing to common person. Systems that

can deliver intelligent information in relation to the context of the user’s location aware-

ness simply do not exist. The entire LBS branch has been revolving around harnessing

the value out of the users’ location awareness and not the location’s context awareness.

This is a fact that is confirmed by the research team under the future computing environ-

ments at Georgia Tech, which is dedicated to the invention of novel application s using

context-aware computing technology to assist everyday activities. This team admitted
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that the majority of context aware computing is restricted to location-aware computing

for mobile applications and not the location-context-aware computing.

Nowadays there are many vehicle owners that have adopted the GPS as tool; for

instance, for getting the best path for some destination. But, the GPS still is not able to

work under all possible situations, due to the need of line-of-sight with the satellites. To

solve this issue, we present in this Predoctoral work the vehicle localization in latitude

and longitude terms when the GPS on-board does not work by using external acceleration

reading which are not influenced directly by tire skid or velocity number of the car.

A.2 General problem

The GPS needs line-of-sight with the satellites in order to estimate the node posi-

tion. The external sensor used to assistance the GPS are quite affected by the environment

noise and the vehicle movements.

A.3 Objective

� To keep the vehicle position although the GPS on-board is in shown areas by using

an external sensor.

� To express the vehicle position at latitude and Longitude terms.

A.4 Vehicle localization

The hardware used to develop this system is GPS eTrex Vista H of Garmin [see

Appendix C] and sensor OS5000 of Oceanserver [see Appendix C]. In the Figure A.1

is shown the information flow. In the box Readings the sensor OS5000 provides the

acceleration in three axes and the GPS gives the localization car in terms of latitude

and losale menorngitude. But, the output line of the GPS represents the information as

non-available all the time due to shaded areas.

The information provided by the box Readings to box Conversion cannot be used

directly. The process calculus of Conversion converts GPS outputs in acceleration terms

and vice versa for Sensor outcomes. The GPS readings from time t and time t + 1 are

represented as displacement in the plane x (The Ecuador line) and in the plane y (Meridian

of Greenwich) as is shown in Equation (A.1) and Equation (A.2) respectively.
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Figure A.1: Diagram flow.

gpsx =
(gpslong2 − gpslong1)cos(gpslat1)π

180
(A.1)

gpsy =
(gpslat2 − gpslat1)π

180
(A.2)

For expressing the variables gpsx and gpsy in distance terms, in Equation (A.3) and

Equation (A.4) are adjusted by multiplication of β (6378000) which is the circumference

of the world in meters. In Equation (A.5) is estimated the distance from t to t + 1 by

using Equation (A.3) and Equation (A.4).

gpsdx = gpsxβ (A.3)

gpsdy = gpsyβ (A.4)

gpsdxy =
√
gpsdx2 + gpsdy2 (A.5)

In Equation (A.8) is gets the velocity from t to t+1 through the use of Equation

(A.6) and Equation (A.7), which estimate the velocity in plane x and y. However, this

conversion is just an approach. The maximum estimation error in our simulation is

13.9907 meters and a minimum estimation error of 0.9642 meters when the GPS always

has line-of-sight with satellites.

gpsV fx =
gpsdx
t

(A.6)

gpsV fy =
gpsdy
t

(A.7)



95

gpsV fxy =
√
gpsV fx2 + gpsV fy2 (A.8)

At this point is possible to express the sensors reading in latitude and longitude

by supporting GPS data conversion. When GPS is available are used Equation (A.9) and

Equation (A.10) for getting velocity in the plane x and y respectively. Otherwise, the

estimated velocity by sensor readings in time t + 1 are used for getting acceleration in

time t+ 1 as indicated Equation (A.11) and Equation (A.12).

sensorV fx = Afxt+ gpsV fx (A.9)

sensorV fy = Afyt+ gpsV fy (A.10)

sensorV fx = Afxt+ sensorV fx (A.11)

sensorV fy = Afyt+ sensorV fy (A.12)

Either Equation (A.9) and Equation (A.10) or Equation (A.11) and Equation

(A.12); the Equation (A.13) is used for getting the velocity in time t+ 1.

sensorV fxy =
√
sensorV fx2 + sensorV fy

2 (A.13)

The Equation (A.14) and Equation (A.15) provide the displacement in plane x and

the plane y respectively.

sensordx = sensorV fxt (A.14)

sensordy = sensorV fyt (A.15)

When GPS readings are available are used Equation (A.16) for obtaining the lon-

gitude and Equation (A.17) for latitude, otherwise Equation (A.18) and Equation (A.19).

sensorlong2 =
180sensordx
cos(gpslat1)π

+ gpslong1 (A.16)

sensorlat2 =
180sensordy

π
+ gpslat1 (A.17)
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sensorlat2 =
180sensordx

βπcos(sensorlat1)
+ sensorlong1 (A.18)

sensorlat2 =
180sensordy

180βπ
+ sensorlat1 (A.19)

Last equations are used in sequential form without considering previous results

in state calculus. For adjusting the latitude and longitude in a flooding way with all

equations, in the box adjusted the state calculus2 from Figure A.1 adds one variable for

all couple of result of GPS and sensor. For instance, gpslat2 ≈ sensorlat2 × A; then,

a = gpslat2
sensorlat2

. Thus, the weights are distributed. A = (A + A∗)/2, where A∗ is the value

in the time t and A is the value in time t + 1. The system through calculus2 tries to

optimize the Sensor estimation with the GPS results.

A.5 Preliminary result (GPS-Accelerometer-Vehicle)

We have established two scenarios, the first one has been done in streets of the

Curitiba city and the second one was a simulation considering a bigger distance. For the

first scenarios, the GPS and sensor were incorporated into the car in the top of the in

front panel [see Appendix C]. The initial point (A) was at the latitude -25.45327 and the

longitude -49.25005 and second point (B) was at the latitude -25.471702 and the longitude

-49.261766 as shown in Figure A.2, a total of 2.6 kilometers.

The scenario considers abrupt stops. In Figure A.3 is shown the estimated accel-

eration readings of sensor and adjusted acceleration sensor (calculus2) when the GPS is

outside of shaded areas.

At first glance, the acceleration sensor appears like a constant; however it has

many variationsas is illustrates in Figure A.5.

In Figure A.5 are shown the longitude estimation of sensor (calculus) and adjusted

sensor (calculus2), where the estimations are almost exactly. However, it is not the case

for latitude as illustrated in Figure A.6.

The bigger localization errors appear in the second 123 and in the second 443, the

maximum error recorded of direct conversion (calculus) is 1587.12 meters; the minimum

error is 0.3647 meters; average error of 113.6617 meters; a median of 47.1350 meters and a

standard deviation of 240.3355 meters. For adjusted localization (calculus2) the maximum

error is 829.8699 meters; the minimum error is 0 meters; the average error of 78.3252; a

median of 40.4277 and a standard deviation of 133.74 meter as is shown in Figure A.7.

Should the GPS is inside shaded areas, we evaluate with stratification k = 5 from a set
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Figure A.2: Scenario of the first test. Image from http://maps.google.com.br/
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Figure A.3: Estimated Acceleration from the external sensor

of 78 instances, all them from the time 29 second to 617 seconds. As first test, instance

4,5,6,7 and 8 was set up at zero to represent GPS enable. A total of 15 combinations
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Figure A.4: Estimated Acceleration from the external sensor

Figure A.5: Comparison of Longitude.
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Figure A.6: Comparison of Latitude.
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were achieved. The state calculus results had the maximum error of 1741.4703 meters

and minimum error of 0.42293 meters. The error localization for adjusted calculus was

1018.48 meters and minimum error of 1.087 meters.

Figure A.7: Localization Error.
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For the experimental simulation, the initial point (A) was established at the lati-

tude -25.57471 and longitude -54.56348 and second point (B) was set up at the latitude

-23.6344 and longitude -52.41682, a total of 305.470 kilometers. In Figure A.8 is depicted

the estimation error by state calculus.

Figure A.8: Localization Error.
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With these results we proof that the direct calculus have an inherent error which

have a maximum error of 13.99 meters; a minimum error of 0.9642 meters and average error

of 11.8689 meters. For adjusted calculus the error maximum is just 1 meter; minimum of

is 0 meters and average error of 0.0006 meters. The GPS has been simulated in shaded
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area for 509.117 meters that is from time 4999 seconds to 5029 seconds when the bigger

errors appear (13.7398 meters). The maximum error of the state calculus was 425.84669

meter and the maximum error of state calculus2 was 418.9789 meters.

A.6 In front panel

Figure A.9: Testing in the vehicle. The GPS and the sensor OS5000.

A.7 Conclusion

We presented the vehicle localization when the GPS on-board fails during shaded

areas by using an external sensor. The sensor readings are expressed in acceleration

terms; they are converted at latitude and longitude terms by direct transformation in

two-dimensional Cartesian space, where axis x represents the Ecuador and the axis y the

Meridian de Greenwich.

After transformations the outcome is presented in latitude and longitude terms like

GPS results. In a real test made in Curitiba city considering abrupt stops we evaluated

our proposal by stratification analysis, where the maximum error was of 829.8699 meters

and minimum error of 0 meters. In our simulation the maximum error was 13.99 meters.

However, by introducing the adjusted function the error is decreased at 1 meter.
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Appendix B

Software and Definitions

B.1 AvroraZ

AvroraZ is an extension of the Avrora emulator - The AVR Simulation and Analysis

Framework - which allows the emulation of the Atmel AVR microcontroller based sensor

node platforms with IEEE 802.15.4 compliant radio chips thus allowing emulation of

sensor nodes such as Crossbow’s MicaZ Micaz.

Avrora is a set of simulation and analysis tools for programs written for the AVR

microcontroller produced by Atmel and the Mica2 sensor nodes. Avrora contains a flexible

framework for simulating and analyzing assembly programs, providing a clean Java API

and infrastructure for experimentation, profiling, and analysis.

AvroraZ is based on design, implementation and verification of several extensions

to Avrora: the address recognition algorithm, an indoor radio model, the clear channel

assessment (CCA) and link quality indicator (LQI) of the IEEE 802.15.4 standard. The

motivation of this implementation is to enable precise emulation of IEEE 802.15.4 based

protocols without any modifications in the code developed for the real hardware.

The tool is being tested and evaluated using the implementation of beacon-enabled

mode of the IEEE 802.15.4 protocol stack developed in nesC, under the TinyOS operating

system for the CrossBow MICAz motes called Open-zb as well as new add-ons to this

implementation that allow mesh topology.

Source: http://citavroraz.sourceforge.net/

B.2 TinyOS

TinyOS is an open source, BSD-licensed operating system designed for low-power

wireless devices, such as those used in sensor networks, ubiquitous computing, per-
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sonal area networks, smart buildings, and smart meters. A worldwide community from

academia and industry use, develop, and support the operating system as well as its

associated tools, averaging 35,000 downloads a year.

Source: http://www.tinyos.net/

B.3 C++

C++ is a programming language that is general purpose, statically typed, free-

form, multi-paradigm and compiled. It is regarded as an intermediate-level language, as

it comprises both high-level and low-level language features. Developed by Bjarne Strous-

trup starting in 1979 at Bell Labs, C++ was originally named C with Classes, adding

object oriented features, such as classes, and other enhancements to the C programming

language. The language was renamed C++ in 1983, as a pun involving the increment

operator.

C++ is one of the most popular programming languages and is implemented on

a wide variety of hardware and operating system platforms. As an efficient compiler

to native code, its application domains include systems software, application software,

device drivers, embedded software, high-performance server and client applications, and

entertainment software such as video games. Several groups provide both free and pro-

prietary C++ compiler software, including the GNU Project, LLVM, Microsoft and Intel.

C++ has greatly influenced many other popular programming languages, most notably

C# and Java. C++ is also used for hardware design, where the design is initially de-

scribed in C++, then analyzed, architecturally constrained, and scheduled to create a

register-transfer level hardware description language via high-level synthesis.

B.4 Gnuplot

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS

Windows, OSX, VMS, and many other platforms. The source code is copyrighted but

freely distributed. It was originally created to allow scientists and students to visualize

mathematical functions and data interactively, but has grown to support many non-

interactive uses such as web scripting. It is also used as a plotting engine by third-party

applications like Octave. Gnuplot has been supported and under active development since

1986.
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B.5 Java

Java is a general-purpose, concurrent, class-based, object-oriented computer pro-

gramming language that is specifically designed to have as few implementation dependen-

cies as possible. It is intended to let application developers ”write once, run anywhere”

(WORA), meaning that code that runs on one platform does not need to be recompiled

to run on another. Java applications are typically compiled to bytecode (class file) that

can run on any Java virtual machine (JVM) regardless of computer architecture. Java is,

as of 2012, one of the most popular programming languages in use, particularly for client-

server web applications, with a reported 10 million users. Java was originally developed

by James Gosling at Sun Microsystems and released in 1995 as a core component of Sun

Microsystems’ Java platform. The language derives much of its syntax from C and C++,

but it has fewer low-level facilities than either of them.

B.6 RSSI

The RSSI is the abbreviation of Receive Signal Strength Indication which means

Indicator Received Signal Strength. The RSSI values ranging from 0 to 255 expressed as

a single byte. The maximum value of the RSSI varies by vendor e.g. Cisco cards’ values

ranging from 0 to 100, however Atheros cards work in values ranging from 0 to 127. On

the other hand, a simulated MicaZ node in the simulator AvroraZ takes values between

105 and 255. Therefore, we cannot generalize the RSSI values. This is the reason why

the IEEE 802.11 standard defines no relationship between RSSI and power level in mW

or dBmM; hardware vendors must provide such data (accuracy, granularity, and ranges

power).

B.7 LQI

The LQI is short for Link Quality Indicator. The LQI reports the received packet’s

quality considering the energy detected and the single-noise estimated rate. The values

range is from 0 to 255 and a similar form to the RSSI values might vary depending on

the vendor. The values captured in the simulator AvroraZ fluctuate between 45 and 103.
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B.8 Weka

Weka is a collection of machine learning algorithms for data mining tasks. The

algorithms can either be applied directly to a dataset or called from your own Java

code. Weka contains tools for data pre-processing, classification, regression, clustering,

association rules, and visualization. It is also well-suited for developing new machine

learning schemes. Found only on the islands of New Zealand, the Weka is a flightless bird

with an inquisitive nature. The name is pronounced like this, and the bird sounds like

this. Weka is open source software issued under the GNU General Public License.

Available at: http://www.cs.waikato.ac.nz/ml/weka/
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Appendix C

Hardware

C.1 MicaZ

The MICAz is a 2.4 GHz Mote module used for enabling low-power, wireless sensor

networks, see Figure C.1.

Figure C.1: MicaZ mote.

C.1.1 Wireless measurement system

� 2.4 GHz IEEE 802.15.4, Tiny Wireless Measurement System.

� Designed Specifically for Deeply Embedded Sensor Networks.

� 250 kbps, High Data Rate Radio.

� Wireless Communications with Every Node as Router Capability
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� Expansion Connector for Light, Temperature, RH, Barometric Pressure, Accelera-

tion/Seismic, Acoustic, Magnetic and other Crossbow Sensor Boards.

C.1.2 Applications

� Indoor Building Monitoring and Security.

� Acoustic, Video, Vibration and Other High Speed Sensor Data.

� Large Scale Sensor Networks (1000+ Points).

C.1.3 Product features include

� IEEE 802.15.4 compliant RF transceiver.

� 2.4 to 2.48 GHz, a globally compatible ISM band.

� Direct sequence spread spectrum radio which is resistant to RF interference and

provides inherent data security.

� 250 kbps data rate.

� Supported by MoteWorksTM wireless sensor network platform for reliable, ad-hoc

mesh networking.

� Plug and play with Crossbow’s sensor boards, data acquisition boards, gateways,

and software.

enables the development of custom sensor applications and is specifically opti-

mized for low-power, battery-operated networks. MoteWorks is based on the open-source

TinyOS operating system and provides reliable, ad-hoc mesh networking, over-the-air-

programming capabilities, cross development tools, server middleware for enterprise net-

work integration and client user interface for analysis and a configuration.

C.1.4 Processor and Radio Platform (MPR2400CA)

The MPR2400 is based on the Atmel ATmega128L. The ATmega128L is a low-

power microcontroller which runs MoteWorks from its internal flash memory. A single

processor board (MPR2400) can be configured to run your sensor application/process-

ing and the network/radio communications stack simultaneously. The 51-pin expansion

connector supports Analog Inputs, Digital I/O, I2C, SPI and UART interfaces. These
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interfaces make it easy to connect to a wide variety of external peripherals. The MICAz

(MPR2400) IEEE 802.15.4 radio offers both high speed (250 kbps) and hardware security

(AES-128).

C.1.5 Sensor Board

Crossbow offers a variety of sensor and data acquisition boards for the MICAz

Mote. All of these boards connect to the MICAz via the standard 51-pin expansion

connector. Custom sensor and data acquisition boards are also available. Please contact

Crossbow for additional information.

C.1.6 Base Stations

A base station allows the aggregation of sensor network data onto a PC or other

computer platform. Any MICAz Mote can function as a base station when it is connected

to a standard PC interface or gateway board. The MIB510 or MIB520 provides a seri-

al/USB interface for both programming and data communications. Crossbow also offers

a stand-alone gateway solution, the MIB600 for TCP/IP-based Ethernet networks.

C.2 GPS eTrex vista H of garmin

The GPS device is shown in the Figure C.2 and its specifications are shown in the

Table C.1.

Figure C.2: MicaZ mote.
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Table C.1: The GPS Specs.
Physical and Performance

Unit dimensions, WxHxD: 2.0” x 4.4” x 1.2” (5.1 x 11.2 x 3.0 cm)
Display size, WxH: 1.1” x 2.1” (2.8 x 5.4 cm)
Display resolution, WxH: 160 x 288 pixels
Display type: 4 level gray LCD
Weight: 5.3 oz (150 g) with batteries
Battery: 2 AA batteries (not included)
Battery life: 18 hours
Waterproof: yes (IPX7)
Floats: No
High-sensitivity receiver: Yes
Interface: USB

C.3 Sensor OS5000 of oceanserver

The OS5000 families of compasses are a new class of sensor components providing

best in class performance for under $200.00 (USD) in low volume. The sensor is shown

in the Figure C.3.

Figure C.3: Sensor OS5000.

C.3.1 Features

� Compass accuracy, 0.5 degrees RMS heading while level, 1°RMS< ±30°Tilt, 1.5°RMS.

� ± 60° Tilt, undisturbed field. 1 Degree resolution.

� Roll & Pitch full rotation, typical 1°accuracy < ±30°tilt.

� Pitch Angles +/-90 degrees, Roll Angles +/- 180 degrees.
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� Tilt-compensated (electronically gimbaled).

� Tiny size, 1”x1”x0.3”, less than 2 grams weight.

� Low Power Consumption, < 30ma @ 3.3V.

� Hard and soft-iron compensation routines.

� Optional support for a high resolution Depth or Altitude sensor (24 bit AD).

� Serial Interface:

– RS232, USB or TTL.

– Baud rate programmable 4,800 to 115,000 baud.

� Rugged design:

– 10,000 G shock survival.

– -40°C to 80°C operating temperature (Accuracy specified for 0°C to 50°C).

� ASCII sentence output, in several formats, NMEA checksum.

� High Data Update Rate to 40HZ.

� Support for True or Magnetic North Output.

� Precision components:

– 3 Axis magnetic sensors from Honeywell.

– 3 Axis Accelerometers from ST Microelectronics.

– 24 bit differential Analog to Digital converters from Analog Devices.

� 50 MIPS processor supporting IEEE floating point math.
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Appendix D

Acknowledgement

The fourth best paper award was bestowed in the 2011 IEEE Radio and Wireless
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112

2009: Salvador Jauregui and Mario Siller. ”A big picture on localization algorithms

considering sensor logic location”. System, Man and Cybernetics, SMC. IEEE In-
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