
Par Marcio Fuckner

A Personal Assistant for the Enactment of Business
Processes

Thèse présentée pour l’obtention du grade de Docteur de l’UTC

Soutenue le 22 avril 2016
Spécialité : Technologies de l’Information et des Systèmes

2

Soutenue publiquement le 22 avril 2016 devant le jury composé de :

M., BARTHES, Jean-Paul
Professeur, Université de Technologie de Compiègne
Directeur

Mme., DARENE, Nathalie
Professeur, Université de Technologie de Compiègne
Membre

M. MANDIAU, René
Professeur des Universités, Université de Valenciennes
Président et Rapporteur

M., PARAISO, Emerson Cabrera
Professeur, Université Pontificale Catholique du Parana
Membre

M., RAMOS, Milton Pires
Professeur, Institut de Technologie du Parana
Rapporteur

M., SCALABRIN, Edson Emilio
Professeur, Institut de Technologie du Parana
Directeur

A Personal Assistant for the Enactment
of Business Processes

Márcio Fuckner

UMR CNRS 7253 Heudiasyc
Université de technologie de Compiègne

This dissertation is submitted for the degree of
Docteur de l’Université de technologie de Compiègne

September 2016

Acknowledgements

The present thesis is the product of more than three years of work. Many of the ideas behind
this work were first sketched during my employment at the HSBC Bank as a software
engineer and IT training leader, and then further developed upon starting a Ph.D. at the
University of Technology of Compiègne. Needless to say, this project could not have been
completed without the help and support of the many people that have accompanied me on
this project.

I would like to gratefully acknowledge the efforts of my supervisors Prof. Jean-Paul
Barthès and Edson Emilio Scalabrin. Their guidance and encouragements on my research
work have been invaluable. They also contributed with advice on several revisions of this
dissertation and played a key role in helping me improve the form and content of the final
draft. I am particularly grateful to Marie-Hèléne Abel for welcoming me to the Information,
Knowledge and Interaction group (ICI) at the Heudiasyc laboratory.

I naturally want to thank my colleagues for the great working environment and friendly
atmosphere during all these years. I especially wish to express my gratitude to all my
workmates for making me feel welcome and part of this fantastic group from day one.
Likewise, I want to thank my previous colleagues of the HSBC Bank for many inspiring
discussions on business processes and human interaction that contributed to shaping the
direction of this thesis.

Last but certainly not least, I am without words to thank my wife and life partner, Ana
Maria, for all her love and support through the years. Thank you for everything.

Abstract

Over the last few years, the advances in management science and information technology
have transformed the business process management (BPM) discipline into an important topic
for both industry and academy. BPM uses business processes as the means for improving the
operational performance of organizations, and setting processes are at the heart of BPM allows
linking together people, systems, and different organizations to deliver value to stakeholders.
The target of our work is the family of BPM systems. A BPM system is a generic software
system that is driven by explicit process designs to enact and manage operational business
processes. Despite the wide range of topics addressed by the academy on business processes,
there are still aspects not addressed by prior research. A particular problem in this regard
is the mediation between BPM systems and humans. Human interaction in those systems
follows a standard user interface based predominantly on work item lists and forms. Thus,
there is little room for creativity for users. They have not only difficulties in enacting their
processes but also for searching the most suitable one for their needs. It would be more
efficient to let humans interact in natural language. However, process modeling languages
are an insufficient means of capturing and representing the domain of discourse. The present
thesis develops an original approach to agent dialog management for the problem of business
process enactment. The overarching motivation for this work was to design a dialog model
scalable to different domains. The model relies on domain and business process ontologies,
and necessitates a minimum effort of adaptation on ontologies to improve the interaction.
Results indicate the potential of our agent-based approach to generate natural language
interfaces, without needing to rebuild the whole business process model.

Résumé

Ces dernières années, les progrès en sciences de la gestion et de l’information ont transformé
la Gestion de Processus d’Affaires (Business Process Management, BPM) en un sujet
important, tant du coté de l’industrie que de celui de la recherche. Le BPM utilise des
processus métiers pour améliorer la performance opérationnelle des organisations. Les
processus métiers établissent un lien entre les personnes, les systèmes, et les différentes
organisations, dans le but de créer de la valeur pour les parties prenantes. La cible de notre
travail est la famille des systèmes BPM. Un système BPM est un système logiciel générique
guidé par des modèles explicites de processus métier avec pour objectif d’exécuter et de
gérer des processus opérationnels. Malgré le vaste éventail de sujets traités par ce domaine
de recherche, il reste encore quelques questions qui méritent une étude plus approfondie.
Un problème particulier concerne la médiation entre les systèmes BPM et les humains.
L’interaction homme-machine dans ces systèmes repose sur des interfaces standard basées
sur des listes de tâches et des formulaires, ce qui est très contraignant pour les utilisateurs.
Ceux-ci ont non seulement des difficultés à exécuter leurs processus métier, mais aussi à
trouver le processus métier le mieux adapté à leurs besoins. Il serait beaucoup plus efficace
d’utiliser des dialogues en langage naturel. Malheureusement les langages de modélisation
de processus ne permettent pas de capturer ni de modéliser un domaine de discours. Le
travail présent propose une approche originale de gestion du dialogue basée sur des systèmes
multi-agents pour l’exécution des processus métier. La motivation globale pour ce travail fut
de concevoir un modèle de dialogue extensible à différents domaines. Ce modèle s’appuie
sur les ontologies de domaine, nécessitant un minimum d’effort d’adaptation pour améliorer
l’interaction. Les résultats montrent tout le potentiel de notre approche multi-agent pour
réaliser une médiation automatiquement, sans qu’il soit nécessaire de reconstruire les modèles
de processus métier.

Table des matières

Table des figures ix

Liste des tableaux xii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Hypothesis . 3
1.3 Motivation . 4
1.4 Contributions of our work . 4
1.5 Document Outline . 5

2 Business Process Management 7
2.1 Overview of Business Process Management 7
2.2 Business process model . 11
2.3 Classification of business processes . 13

2.3.1 Degree of human involvement . 13
2.3.2 Degree of structure . 14
2.3.3 Tradeoff between support and flexibility 16

2.4 Process flexibility . 17
2.4.1 Flexibility by definition . 18
2.4.2 Flexibility by deviation . 19
2.4.3 Flexibility by underspecification 19
2.4.4 Flexibility by change . 20
2.4.5 Choosing flexibility requirements to improve mediation 21

2.5 An approach towards flexibility . 22
2.5.1 Case handling . 22

2.6 Discussion . 26

Table des matières vi

3 Personal Assistant Agents 27
3.1 Agent definition . 28

3.1.1 Agent properties . 30
3.1.2 Strategies towards reasoning . 31

3.2 Multiagent Systems . 32
3.2.1 The OMAS platform . 33

3.3 Personal Assistants . 36
3.3.1 The evolution of the PA in the OMAS platform 37
3.3.2 Dialog management . 39

3.4 How a PA could contribute to the BPM domain ? 41
3.5 Summary . 46

4 Characterizing business processes 49
4.1 Introduction . 49

4.1.1 Problem statement . 49
4.1.2 Contributions of this chapter . 51
4.1.3 Organization . 51

4.2 Illustrative example . 51
4.3 Control flow perspective : a canonical process format 52
4.4 Function and resource perspective : The task model 56

4.4.1 Task resources . 56
4.4.2 Process space . 58
4.4.3 Task capabilities . 58
4.4.4 Deriving the capability matrix . 62

4.5 Determining the capability of business processes 64
4.5.1 Data flow perspective . 64
4.5.2 An algorithm for deriving the business process model capability . . 68

4.6 Improving the data representation perspective 73
4.6.1 Improving the description of preconditions 73
4.6.2 Improving the description of effects 74
4.6.3 Action taxonomy . 75
4.6.4 Condition format . 75

4.7 Semantic matching using the process space 77
4.7.1 Matching concepts and their actions 77
4.7.2 Matching attribute clauses . 78
4.7.3 Matching effects . 79
4.7.4 Matching preconditions . 81

Table des matières vii

4.7.5 Sending results to the requester 82
4.8 Discussion . 82

5 A conversational interface for enabling the enactment of business processes 84
5.1 Introduction . 84

5.1.1 Contributions of this chapter . 84
5.1.2 Organization . 84

5.2 Our baseline : The OMAS dialog system 85
5.2.1 Examples of conversational interfaces built with OMAS 86

5.3 Dialog approach . 89
5.3.1 Dialog mechanism . 90
5.3.2 Modeling dialogs using conversation graphs 92
5.3.3 The library of tasks . 94
5.3.4 The selection mechanism in details 94
5.3.5 Building a conversation graph from a business process model . . . 95
5.3.6 Discussion . 96

5.4 PA4Biz : A personal assistant for the enactment of business processes . . . 98
5.4.1 Overall architecture . 99
5.4.2 The top-level dialog . 101
5.4.3 Taking notes . 101
5.4.4 Syntactic annotation . 102
5.4.5 Semantic annotation . 106
5.4.6 Information extraction . 114
5.4.7 Business process selection and triggering 119
5.4.8 Business process enactment . 120

5.5 Discussion . 125

6 Realization and experiments 135
6.1 Technical Architecture . 135
6.2 Experimental validations . 147

6.2.1 The investment scenario . 147
6.2.2 Evaluation . 148

6.3 Discussion . 155

7 Conclusion 157
7.1 Future research . 158

Table des matières viii

Bibliographie 160

Table des figures

2.1 A list of some disciplines that contributed to the development of the BPM
field [106] . 8

2.2 Business process management lifecycle [33] 10
2.3 A process modeled in terms of a Petri net 11
2.4 Examples of (a) imperative and (b) declarative approaches [90] 13
2.5 Business processes according to the level of human involvement and

examples of application . 13
2.6 The correlation between the degree of human involvement and the degree

of structure of processes. (in gray, the interest of our research) 16
2.7 The tradeoff between support and flexibility 17
2.8 Taxonomy of process flexibility proposed by Schonenberg et al. [89], iden-

tifying four main flexibility types : flexibility by definition, flexibility by
deviation, flexibility by underspecification, and flexibility by change 18

2.9 Flexibility by deviation : the user has the control over the flow of execution
(Pesic [77]) . 19

2.10 Flexibility by underspecification : design and runtime perspectives (Pesic
[77]) . 20

2.11 Degree of impact and specification of time when flexibility is added 21

3.1 The OMAS generic agent model . 34
3.2 Timeline with improvements on the personal assistant in the platform . . . 37
3.3 Distribution of respondents by sector (a), and size (b) 42
3.4 Current modalities of interaction present in information systems 43
3.5 How personal assistants could improve the business process environment . 45
3.6 How humans should communicate with personal assistants in the working

environment (a), home-office (b) and in mobility situations (c) 46
3.7 How personal assistants should communicate with humans in the working

environment (a), home-office (b) and in mobility situations (c) 47

Table des figures x

4.1 Illustrative example : a business process model used to process a credit
request (P1) including several tasks and a subprocess P2 52

4.2 A three-dimensional view of a business process ([100]) 57
4.3 Graphical interpretation of the preconditions and effects of task t3 60
4.4 Graphical interpretation of the preconditions and effects of the internatio-

nal money transfer task . 61
4.5 Control flow (solid arcs) and data flow (dotted arcs) of the illustrative

example . 65
4.6 Control flow (solid arcs) and data flow (dotted arcs) of the illustrative

example P′1 . 66
4.7 Fragment of the process model illustrating the relation between data flow,

control flow, and task capabilities . 67
4.8 Illustrative example used to explain the derivation of business process

capabilities . 68
4.9 The action ontology containing a hierarchy of actions 76
4.10 Semantic matching using the process space 77
4.11 A fragment of the investment ontology used to illustrate the concept of

semantic matching . 78
4.12 Result of the overall matchmaking for the investment example 81

5.1 A brainstorming session using the interactive table of TATIN 86
5.2 Asking the personal assistant for a pie chart of active projects 89
5.3 Asking the personal assistant for active projects without specifying the

output format . 90
5.4 Dialog mechanism using information states 92
5.5 Conversation graph of the top-level dialog 93
5.6 The credit grant conversation graph . 95
5.7 Two dialog sessions : (a) with the customer, and (b) with the risk manager . 127
5.8 Overall architecture of PA4Biz . 128
5.9 Personal assistant architecture . 128
5.10 Top-level dialog for the business process selection problem 129
5.11 The sub-dialog used for taking notes . 129
5.12 The syntactic annotation process with an example of sentence been annotated 129
5.13 From the sentence to the unified format 130
5.14 The semantic annotation process with an example of sentence been annotated 130
5.15 A fragment of a domain ontology for our illustrative example of credit grant 131
5.16 The semantic annotation sub-dialog . 131

Table des figures xi

5.17 Three steps for information extraction . 131
5.18 An example of tree simplification using hand-crafted rules 132
5.19 The information extraction as a sub-dialog 132
5.20 The conversation graph of the business process selection 132
5.21 A sequence diagram showing the interaction between the MAS and the

BPM system to instantiate and start a process 133
5.22 The lifecycle of a work item that becomes a task [84] 133
5.23 Receiving a notification of a pending task, providing information and

starting the task . 134
5.24 An example of dialog used to fulfill parameters 134

6.1 Technical architecture of the PA4Biz functional prototype 136
6.2 The role of the web agent into the application 137
6.3 An example of authentication . 138
6.4 The personal assistant architecture . 139
6.5 Conversational Interface . 140
6.6 Task Information . 141
6.7 Searching the process space . 142
6.8 Distribution of respondents by sector (a), and size (b) 143
6.9 The class diagram of the BPM system agent 144
6.10 Business processes used for investment applications and their precondi-

tions and effects . 147
6.11 Average dialog length per user . 153

Liste des tableaux

3.1 Classification of an environment of a typical business process enactment
infrastructure using agents . 30

3.2 List of BPM platforms . 44
3.3 The scope of our work related to this section 48

4.1 Example 4.4.5 with inputs, outputs, and the capability matrix with precon-
ditions and effects of credit grant . 63

4.2 Example 4.4.5 with inputs, outputs, and the capability matrix with precon-
ditions and effects of international money transfer 63

4.3 Capabilities of tasks involved in the process model 68
4.4 The resulting capability of the business process 72
4.5 Simplified capabilities of the business process 73
4.6 Comparison matrix for matching relational operators of the requester and

the provider . 79
4.7 Result of the matchmaking of effects for the investment example 80
4.8 Result of the overall matchmaking for the investment example 82

5.1 Defining a task . 94
5.2 Dialog acts and some examples of sentences 105
5.3 Linguistic and knowledge management semantics 110
5.4 The domain ontology fragment written using the MOSS language (:att

specifies an attribute, :rel a relation) . 110
5.5 The domain ontology fragment written using the MOSS language (:att

specifies an attribute, :rel a relation) . 111
5.6 The credit grant example : the set of actions produced after the execution

of the business process . 113
5.7 Rules triggered for the sentence “I want to travel from Paris to London for

two days, departing tomorrow” . 116

Liste des tableaux xiii

5.8 Some test cases showing different types of sentences and the outcome . . . 118
5.9 Some test cases showing different types of sentences and the outcome

(continuation) . 119

6.1 Quantitative and qualitative measures . 149
6.2 Set of available business processes for both systems 149
6.3 Evaluation setup : Formation of profiles and their corresponding information 150
6.4 Actions executed by evaluators for each profile 151
6.5 Summary of collected measures that are comparable to the form-based

application . 151
6.6 Summary of collected measures related to the conversational interface . . . 154

Chapitre 1

Introduction

Over the last few years, the advances in management sciences and information technology
have transformed the business process management (BPM) discipline into an important
topic for both industry and academy. BPM uses business processes as the means for
improving the operational performance of organizations, and processes are at the heart of
BPM, linking together people, systems, and different organizations to deliver value to
stakeholders.
BPM has become a mature discipline, with relevance acknowledged by practitioners
(users, managers, analysts, consultants, and software developers) and academics (see Aalst
in [103]). It could be confirmed by its constant presence among top-ranked information
system conferences [86] [13] [76] [58]. Subjects range from organizational aspects (e.g.
process model analysis, process flexibility and process reuse) to more specific issues (e.g.
process modeling languages, process enactment infrastructures or process mining) [103].
We have a particular interest in a family of systems called Process-Aware Information
System (PAIS). A PAIS is a software system that manages and executes operational
processes involving people, applications, and information sources on the basis of process
models (van der Aalst in [101]). In general, a PAIS follows a rigid approach, enforcing that
the enactment of a process follow precisely what the process model specifies (e.g.
traditional workflow management systems), without much room for flexibility. Needless to
say, the process model is an essential artifact that determine the level of flexibility of
information systems.

1.1 Problem Statement

Despite the wide range of topics addressed by the academy on business processes, there
are still aspects not addressed by prior research. A particular problem in this regard is the

1.1 Problem Statement 2

mediation between BPM systems and humans. The control structure of the process has a
direct influence on the user experience, but the inverse is also true. According to Weske
[110], human interaction in those systems follows a standard user interface based
predominantly on work item lists and forms. Thus, there is little room for creativity for the
user, since he or she must wait for the arrival of a work item to interact with the system.
Weske also argues that this crude style of interface has not been considered appropriate for
human workers.
Even with a high impact on the human resource perspective, influencing how people work,
this topic does not draw much attention in research and industry (Pesic in [77], Russell and
van der Aalst in [84] and [83]). Recent industrial standards such as BPEL4People [27] and
WS-Human Tasks [26] are efforts aiming at enriching the resource perspective of workflow
technology. However, they only take into account the allocation perspective, neglecting the
assistance for humans during their activities. Also, the complexity of applications is still
augmenting with the emergence of a new generation of pervasive and ubiquitous
applications. This type of system makes use of different modalities of user interface
(natural language with spoken and written interfaces, the use of gestures and virtual reality
environments) that dramatically increase the combinations of actions during the usage of
an information system. According to our vision, we believe that BPM requires research,
leading to a new generation of tools for helping the enactment of processes. They should
help users to reduce the ever-growing load of information, events and various
commitments they need to handle. BPM enactment interfaces should hide the complexity
of difficult tasks, by asking clarifying questions about the process, by performing tasks on
behalf of the user, by training the user, by helping different users to collaborate and so on.
These users have not only difficulties in enacting their processes but also for searching the
most suitable one for their needs. Most of the reasons resides in the fact that process
modeling languages like WS-BPEL [114] and BPMN [73] are an insufficient means of
capturing and representing such a domain of discourse [44]. Several authors have worked
on the problem of querying the process space (e.g. Leymann [60], Hepp et al. [45] [46],
Kim and Suhh [52], and Ribeiro et al. [81]). Most of the approaches are dedicated to
providing enough information to bridge the gap between domain experts and IT members.
However, less attention has given on querying the process space based a story told by the
user (e.g. based on assertions, questions, and directives). We argue that both the issue of
poor interfaces and the difficulty in finding process are sufficient reasons for evaluating
alternatives of interaction between BPM enactment systems and users.
Another aspect that is more a motivation than a problem, but could be an issue for
organizations in the short term is the growing acceptance of natural language (written or

1.2 Hypothesis 3

spoken) as a common interface for applications. We have conducted a survey, detailed in
Chapter 3, applied to 50 participants of organizations. The results reinforce our
perceptions : Only 5% of enterprise applications allow natural language written or spoken
in their interfaces. But more than 80% believe that a natural language interface (written or
spoken) as an input could improve the performance of daily activities and 90% have used
personal assistants in their mobile phones (e.g. Siri from Apple, Google+ or Cortana from
Microsoft). As can be seen, at the time of writing, this type of interface didn’t reach
organization at large scale (e.g. Workflow Systems, ERP’s, CRMs and so on). However,
companies will be naturally pushed to improve their systems, especially those intended for
customer services (e.g. banking services, public services). One natural way to improve
enterprise interfaces is to endow applications with a capacity to understand, even in a
limited manner, the medium of information exchange that is most intuitive to human
beings.

1.2 Hypothesis

We hypothesize that the inclusion of a personal assistant agent bridging humans and
traditional BPM systems during the enactment of processes could improve the user
experience, resulting in more flexible and simple interfaces. More precisely, we argue that
a conversational interface could be appropriate for business processes, since, although
complexes, business processes are constrained. That is to say, most of the domain-related
keywords are known, as well as concepts and their relations.
When using a personal assistant, users could request something to the assistant almost in
the same manner that they do to a colleague, using natural language. In some situations,
users have a clear goal in mind, and it is easy for them to formulate an appropriate request
(e.g. “I want to make a deposit”). However, there are cases in which users do not have
enough information to built a proper request. In these situations, a personal assistant could
act as a colleague or a clerk that takes notes and finds a solution when the user goal gets
clearer. So, users could feel more comfortable in describing their state (“I have some
money to invest” or “I have lost my credit card”). The personal assistant might help users
to find the most suitable process to execute, and ask clarifying questions when ambiguities
are found. Personal assistants could also extract useful information during information
filling. This set of facilities is virtually impossible using traditional BPM enactment
system interfaces.
This natural interaction between users and BPM systems could allow a more self-service
oriented and configurable user interface. Note that service orientation and

1.3 Motivation 4

self-configuration is quite common in BPM systems, but mostly from the architectural and
integration point of view. Several BPM systems have modern software architectures that
use SOA principles and Cloud technologies to leverage the overall business process
environment [110]. We believe that personal assistants could put user interface at the same
level of flexibility that exists in the internal architecture of BPM systems. Moreover,
personal assistants could improve the collaboration in knowledge-intensive business
processes, leveraging the existing asset of organizations.

1.3 Motivation

The new generation of software architectures using SOA principles and the Cloud as a
common infrastructure have opened the door to self-service and configurable applications.
Most of our everyday activities are now relying on “smart” electronic devices of various
kinds, from mobile phones to personal computers and navigation systems. Mobile services
like Siri from Apple and Google Now are leveraging the natural language interface to
enable a variety of functions to be accessed and controlled by end-users without worrying
and memorizing sequences of commands to operate the software.
However, up to now these applications are mostly used for typical mobile applications like
schedule management, Internet search, and entertainment. As these technologies gain in
maturity, the design of appropriate user interfaces for enterprises becomes increasingly
important. Human-computer interfaces of business applications should provide the user
with rich and flexible communication channels while preserving the investment in existing
software assets.

1.4 Contributions of our work

The present thesis develops an original approach to dialog management for the problem of
business process enactment, called PA4Biz (Personal Assistants for Business). The
overarching motivation for this work is to design a dialog model that is scalable to
different domains. The model relies on domain and business process ontologies, yet
necessitating a minimum effort of adaptation on ontologies to improve the interaction.
The contribution of our work is twofold, and could be broken into two categories. The first
contribution is the characterization and description of business processes. The second
contribution is the creation of a conversational interface for the selection and enactment of
business processes.

1.5 Document Outline 5

A characterization of business processes

The contributions to the characterization of business processes are the following ones :
— An approach to describe and build a safe approximation of the capabilities of

business processes. The novelty here resides in the way business processes are
represented. They are defined in terms of preconditions and effects as inseparable
parts. We allow the description of both deterministic and non-deterministic effects,
the latter being quite useful for describing human tasks and services in
non-deterministic scenarios. Our approach to semantic matching differs from other
approaches since it defines business processes rather than web services.

— A method for querying the business process space. A flexible query mechanism
based on preconditions and effects is a must for organizations with a growing
business process space.

A conversational interface for business processes

The contributions to the conversational interface for business processes are the following
ones :

— A dialog manager adapted to the business process selection problem. User
sentences are interpreted and used as a source for selecting business processes.
Users have different ways of expressing what they want. Sometimes they prefer
using assertions to describe their current situation hoping that their interlocutor
proposes a solution. Others are more direct and state their objectives using
questions or directive acts. We propose an approach based on dialog acts and
sentence analysis to select and discover processes.

— A dialog manager adapted to the business process enactment problem : Business
processes have an independent lifecycle, a workflow engine performs its
orchestration. That is to say, the dialog manager does not have control over events.
Participants of the processes are allocated dynamically, following different
strategies. Participants may be notified at any time, and the dialog manager can
handle a series of asynchronous events.

1.5 Document Outline

The organization of the thesis is as follows :
— In Chapter 2, an overview of the discipline of Business Process Management is

presented, which includes an overview of its lifecycle and the most known

1.5 Document Outline 6

techniques used to represent business process models. Moreover, we present an
extensive analysis of the existing approaches towards flexibility in business process
models.

— In Chapter 3, we provide an overview of concepts, tools, and techniques available
in the literature to implement personal assistant agents. First, we discuss the
concept of agents, multi-agent systems and their properties, with a particular focus
on the business process aspect. We then present the evolution of a personal
assistant platform developed in our laboratory, and its categorization using existing
literature. We finish by showing the results of a survey, conducted to better
understand users needs and their expectations about the capacities of a personal
assistant in a corporate environment.

— In Chapter 4, we describe an approach for the characterization of business
processes. We start by presenting a canonical business process model, describing
the basic structure of business processes, the resource, and function perspective. A
formalism to describe the capabilities of business processes is presented, allowing
the definition of deterministic and non-deterministic effects. We finish by outlining
our approach for querying the business process space.

— In Chapter 5, we explain in detail the conversational interface for the enactment of
business processes. We first present our baseline for dialog management, as well as
some examples of applications developed using this platform. We use an illustrative
example to explain the dialog management mechanism and draw some conclusions
and collect requirements to improve the existing baseline. Then, we present the
overall architecture, our dialog manager, and the use of ontologies for the semantic
annotation and information extraction. Finally, the mechanism for the selection,
triggering and enactment of business processes using a conversational interface is
described.

— In Chapter 6, we report the realization and evaluation of our functional prototype.
First we present the technical architecture and its components. Next, we reviewed
existing methods for evaluating dialog systems and built an equivalent counterpart
application for comparison purposes regarding business process selection and
enactment. We then describe the evaluation setup and the evaluation process.
Results indicate the potential of our agent-based approach as an alternative
interface, without needing to rebuild the whole business process model.

— Finally, we give our conclusion and discuss the future work in Chapter 7.

Chapitre 2

Business Process Management

The steadily growing interest in business process management from practice as well as
from Academy clearly demonstrates the importance of this discipline in today’s business
environment [59]. According to van der Aalst [103], BPM can be seen as an extension of
Workflow Management (WFM) that has a particular focus on the automation of business
processes. BPM has a broader scope, providing tools and techniques to manage the whole
lifecycle of business processes without neglecting the human aspect in the lifecycle of
processes.
This chapter gives an overview of business process management and techniques to
improve flexibility and usability. Section 2.1 provides a short historical outline and
introduces the discipline of business process management by building on the business
process lifecycle. Section 2.2 provides the basis for the characterization of process models.
Section 2.3 classifies business processes according to the degree of human involvement
and process structure. Section 2.4 gives an overview of the research towards flexibility in
business processes. Section 2.5 explores in detail one approach towards process flexibility.
Finally, Section 2.6 provides a brief summary of the chapter.

2.1 Overview of Business Process Management

BPM has its roots in both management science and computer science with contribution
from several disciplines. Figure 2.1 presents an overview of some disciplines that have
contributed to its development. During the pre-industrial revolution age, Adam Smith
(1723-1790) describes the production of a pin as a process in a chapter dedicated to labor
division in his book called The Wealth of Nations [93, p. 11-14]. He analyzes how to
increase the performance of a process, through the use of labor division, dividing a
complex process into a simple set of activities performed by specialized workers,

2.1 Overview of Business Process Management 8

FIGURE 2.1 A list of some disciplines that contributed to the development of the BPM
field [106]

registering the oldest known documented business process [47]. Almost a century later,
Frederick Winslow Taylor (1856-1915) introduced the principles of scientific
management, discussing the relevance of the division of work to the theory and practice
around business processes. Henry Ford (1863-1947) had also introduced the production
line for the mass production of cars. These events have given substantial contributions to
BPM, especially the concept of process-orientation and repetitiveness.
From the fifties, the organization of work and business processes has been dramatically
influenced by computers and digital communication infrastructures. Process modeling and
software engineering techniques have become essential tools to manage the growing
complexity of information systems. Several contributions have been proposed from the
field of formal methods. Petri nets, introduced by Carl Adam Petri (1926-2010) in 1962,
are one of the most prominent examples in the process-modeling domain. Nowadays, most
of existing notations and process modeling standards use the same semantics adopted from
his work such as the visual modeling of concurrency.
Data-driven approaches dominated the seventies and eighties. During this period, the focus
of information technology systems was on data storage and retrieval [106]. Thus, data
modeling was the starting point for modeling and building systems. In general, processes
had to adapt to the existing information system and modeling was a neglected activity.
Aalst et al. [106] argue that one of the reasons was the lack of consensus in the process
modeling domain and the strong consensus on the modeling of data. Even today the

2.1 Overview of Business Process Management 9

relational model by Codd and the Entity-Relationship Model by Chen [22] are academic
and industrial references. Even with well-established formal methods such as Petri nets
and process calculi, the industry has been pushing domain specific languages in their
applications like BPMN (Business Process Modeling Notation) [73], BPEL (Business
Process Execution Language) [114] and EPC (Event-Driven Process Chains).
In the nineties, Hammer and Champy introduced the discipline of BPR (Business Process
Reengineering) [41]. They advocated the radical redesign of the business processes to
improve customer service, cut operational costs and become world-class competitors. They
claimed that information technology is the primary enabler of re-engineering programs of
a company. Building on these management concepts, companies started to implement
process orientation (see Weske [110, p 4]). Many WFM systems became available during
this period. These systems focused on automating workflows with little support for process
analysis, process flexibility, and process management. Years later, this technique has been
criticized by several authors, claiming that BPR was a way to dehumanize the workplace,
increase managerial control, and justify downsizing, i.e. major reductions of the workforce,
as a rebirth of “Taylorism” under a different label (Vallabhaneni in [99]). Since then, some
core concepts of the BPR have been used as a starting point for business analysis and
redesign. However, it is adopted in a less radical way than originally proposed in the
nineties. The concept of Business Process Management (BPM) has gained significant
attention in the corporate world and can be considered as a successor to the BPR wave.
The core concept of BPM is the business process. We use the definition of business
processes provided by Weske [110, p. 5] :

Definition 2.1.1. A business process consists of a set of activities, which are performed in
an organizational and technical environment in a coordinated fashion. In this manner, they
jointly achieve desired business goals. Although a single organization performs each
business process, it may also interact with business processes from other organizations.

This definition is aligned with the value chain model proposed by Porter [78], where an
organization produces value for its stakeholders by executing a chain of business processes.
BPM helps companies to manage their processes and can be defined as a methodology to
manage their lifecycle. In our work, we have adopted the BPM definition of van der Aalst
[106], which comprehensively summarizes the scope of BPM :

Definition 2.1.2. Business process management supports business processes using methods,
techniques, and software to design, enact, control and analyze operational processes
involving humans, organizations, applications, documents and other sources of
information.

2.1 Overview of Business Process Management 10

Note that not all business processes are appropriate to be controlled by the BPM. A
sufficient level of detail related to activities, rules and people involved is necessary. This
definition restricts the universe of BPM to operational processes. More specifically,
processes at the strategic level or processes that cannot be made explicit are not
considered.
BPM activities are typically organized in the context of a lifecycle (see van der Aalst in
[106]). Since this work is mainly concerned with the human aspect in the BPM context, we
follow the lifecycle proposed by Dumas et al. [33]. Figure 2.2 shows the lifecycle as a
continuous process consisting of four phases that are related to each other.

FIGURE 2.2 Business process management lifecycle [33]

This lifecycle starts with process design. During this phase, business processes and their
inter-relations are identified, reviewed, validated and represented by process models (see
Weske in [110]). Those models are expressed in a graphical notation to facilitate the
communication between different stakeholders, so they can communicate efficiently and
also refine their processes. Although several processes models are encoded using a
traditional top-down approach, (i.e., providing a prescriptive model, that contains what
“should” be done), they could be also discovered. The field of process discovery is a very
active theme of research that aims at encoding processes based on recorded events. These
events are used as input for specialized process mining algorithms. The paper of van der
Aalst [102] presents a comprehensive survey of process discovery techniques. Note that
the traditional modeling and process discovery are not mutually exclusive. For example,
Maruster and Jorna in [67] proposes an approach to business process modeling design
called SCT (Sensory, Coded Knowledge, and Theoretical knowledge). This approach puts
process data as a first-class citizens and use it as a source for the encoding and the
generation of theoretical knowledge. The new theoretical knowledge can be used for
analyzing, diagnosing and reorganizing the business process. As can be seen, the concept

2.2 Business process model 11

of Process Model is fundamental to this work because it can be used not only to analyze,
design and improve the process, but also to implement information systems.
The process model is used as a source to configure information systems during the
implementation phase. If the organization uses a conventional software system, it must
develop or adjust its software according to the process model. If the organization already
has a BPM system, it could benefit from the existing model, and configure its system with
few adjustments.
Once the system is adapted, processes are executed in the organization environment
(process enactment phase). During the execution of processes, event data are collected.
These data are useful to analyze running processes and detect anomalies such as
bottlenecks and exceptions.
The process diagnosis phase uses information about the actual enactment of processes to
evaluate them. The results from the diagnosis phase are used to continuously improve
business processes.
As mentioned in the introduction, we have a particular interest in Process-Aware
Information Systems (PAIS). These systems use the business process model as a source,
following exactly what the process model specifies.

2.2 Business process model

FIGURE 2.3 A process modeled in terms of a Petri net

The business process model is a core artifact in the BPM discipline. The solution adopted
to improve flexibility depends on how the process model is structured. More precisely, one
could model a process using an imperative approach, focusing on defining how tasks will
be executed, linking them by connectors specifying causal or temporal relations.

2.2 Business process model 12

Conversely, one could model a process using a declarative approach, defining constraints
at the task level.
Figure 2.3 presents an example of a process model used to report a stolen or lost credit
card expressed in terms of a Petri net. The model allows different scenarios. For instance,
in the scenario [a,b,c,e,f,g], the system retrieves the list of credit cards that belong to the
customer (activity a). Next, the user selects one credit card from a list of available ones
(activity b), the user confirms that she wants to report the stolen or lost card (activity c).
Activities e and f are executed in parallel, blocking the selected credit card and requesting
a new one. Finally, the user is notified when task g is finished with success. Note that, this
model focuses more on the control-flow, rather than the data and resource perspective. The
control-flow perspective is often the backbone of a process model (see van der Aalst in
[103]). Industry standards such as BPMN 1, WS-BPEL 2, and EPC 3 follow the same
approach and can be viewed as extensions of Petri Nets with some conceptual differences.
These differences determine the degree of expressiveness and suitability because each one
adds different semantics to model other aspects of a process model, such as activities,
events, and roles.
Another technique for structuring a process is by using a declarative approach. This type
of approach focuses more on specifying what is allowed during the enactment of the
process than defining how it works by linking activities. The “what” part is determined
using constraints that link tasks. As more constraints are defined for a process, fewer
execution paths are possible (Schonenberg et al. in [90]). One could improve flexibility by
establishing optional constraints that can be violated if needed. Figure 2.4 provides an
example of modeling tasks using an imperative and a declarative approach. The trace of
the imperative approach (a) seems to be more rigid, allowing only the execution of task A
followed by B. On the other hand, the trace of the declarative approach (b) is apparently
more flexible because of its implicitness, allowing different combinations of executions.
Both approaches allow a degree of flexibility by using different techniques. To be flexible,
an imperative approach must provide at design time a set of explicit paths. In the case of
declarative approaches, flexibility means reducing the number of constraints.
Despite conceptual differences, both paradigms can be used for implementing processes
that involve humans and applications and have the potential for improvement. Before
discussing the existing approaches for modeling processes, we first present some
classification of processes with particular focus on human interaction, to delimit the scope
of our research.

1. Business Process Model and Notation
2. Web Services Business Process Execution Language
3. Event-driven Process Chain

2.3 Classification of business processes 13

FIGURE 2.4 Examples of (a) imperative and (b) declarative approaches [90]

2.3 Classification of business processes

Business processes are at the heart of organizations and are used for a variety of situations.
Not all processes are the same, and the degree of involvement of humans determines how
processes are structured. Bring flexibility, by finding an optimal tradeoff between the
inherent complexity of humans and the need for control of organizations is a challenging
task recognized by several researchers (e.g. Schonenberg et al. [89], Heinl et al. [43], and
Soffer [94]). Thus, we first classify business processes according to the level of human
involvement and the resulting level of structure of business processes.

2.3.1 Degree of human involvement

Business processes can be classified according to the level of involvement between
humans and systems (human-centric or system-centric) (Georgakopoulos et al. [40]). More
precisely, they can be classified into Person-to-Person (P2P), Person-to-Application (P2A)
and Application-to-Application (A2A) processes (Dumas et al. [33]).

FIGURE 2.5 Business processes according to the level of human involvement and
examples of application

P2P processes are those in which participants are primarily humans. More specifically, this
type of process requires that humans collaborate to reach a business goal. For this kind of
process, software tools are used towards supporting computer-mediated interactions.

2.3 Classification of business processes 14

Indeed, processes managed by these applications usually do not involve entirely automated
tasks (Dumas et al. [33]). Examples are groupware tools, content management systems,
and social networks. For instance, a virtual team could make a peer-to-peer evaluation of
requirements of global software, using a video conference for meetings. To interact with
other members, they could use a groupware system for the exchange of ideas, diagrams
and documents. Note that they have some limited benefit to tacit knowledge transfer. Some
groupware tools like MEMORAe [7] makes use of semantic modeling and ontologies to
improve the support for the codification of knowledge, which could be useful to discover
and redesign existing processes.
A2A processes, on the opposite side, are those involving only software systems, without
needing human intervention during their execution. This type of business process is very
common in financial, insurance and supply chain systems. Some examples : a robot
purchase an action at the market system based on its user preference ; two financial
systems exchange messages during an electronic funds transfer. ESB (Enterprise Service
Bus) platforms and MOM (Message-Oriented Middleware) applications are examples of
technologies that support A2A processes.
The majority of information systems fall in the P2A category. This type of process has a
more complex nature and involves both human interactions seen in P2P processes and also
interactions involving applications that work without human intervention (A2A). In fact,
the P2A category represents the real objective of information systems, making people and
applications work in an integrated manner (Dumas et al. [33]). Examples of process-aware
information systems are traditional workflow management systems, case handling systems,
and ad hoc workflow systems.
The focus of our research is to develop an approach to the mediation between humans and
process-aware information systems. Thus, the A2A category is out-of-scope of this work.
This type of application solves a different kind of problem, much more related to the
non-functional aspect of a system, like performance, portability, scalability and so on.
Figure 2.5 shows the nature of process participants (P2P, P2A, and A2A) and a
non-exhaustive list of examples. The region in gray indicates the interest of our research.

2.3.2 Degree of structure

The degree of structure is often used as a dimension for classifying process-aware
information systems (Georgakopoulos et al. [40]). Due to its sequential nature, a
well-structured process is easier to implement if compared to an unstructured process. We
have used a classification of Dumas et al. [33] that proposes four levels of structure of
processes namely unframed, ad hoc framed, loosely framed, and tightly framed.

2.3 Classification of business processes 15

An unframed process does not have an explicit process model associated with it. Typically,
the type of system where these processes are managed does not even allow the
specification of processes. It is the case of groupware systems, where users are free to
select and trigger activities as well as control their ordering on demand.
A process is considered ad hoc framed if a process model is built or changed at runtime to
attend a particular business need. In general, an ad doc framed process is executed only
once for a small number of times. Project management systems have some examples of ad
hoc framed processes. Each project is different, and depending on its nature, budget and
objectives, activities should be conducted in a different fashion. Thus, the project
management team could create a distinct process to attend this project lifecycle (e.g.
change management, communication management, and escalation procedures).
A loosely framed process has a predefined process model and a set of constraints. The
predefined process model describes what is done in typical situations but does not enforce
a specific set of possible paths to follow. The set of constraints gives a degree of freedom
to the enactment of such processes, allowing deviation from the common path within
certain limits. Examples of this type of processes can be found in health-care and
emergency management, where workers should have some autonomy during the enactment
of processes.
Finally, a tightly framed process is one that strictly follows what is defined in the process
model. Examples can be found in production, banking, insurance and administrative
processes. Most of the traditional workflow management systems fall into this category.
The degree of structure has a positive correlation with the degree of human involvement in
several situations. The more humans are involved, the more unpredictable and unstructured
are processes. For example, a robot buying some stock options (A2A) has a high degree of
predictability because of his nature. The financial company must comply with several
regulations and policies. As a consequence, the resulting business processes have a very
well defined set of rules and limited variations during the execution flow (tightly framed
process). A surgery process (P2A or P2P) should be flexible enough to allow working in
emergency situations. Workers can deliberate in particular cases and follow a different
(unusual but allowed) flow. For example, the doctor could decide to skip the exam activity
to proceed with the surgery, saving time and augmenting the life expectation of the patient
(ad hoc framed or loosely framed process). It is easy to infer that the degree of structure is
strongly linked to the degree of predictability (Dumas et al. [33]).
Figure 2.6 presents the correlation between the degree of human involvement and the
degree of structure of processes. Highly predictable processes tend to be tightly framed
and automated (van der Aalst et al. [103]). For this type of process, the complexity to

2.3 Classification of business processes 16

FIGURE 2.6 The correlation between the degree of human involvement and the degree of
structure of processes. (in gray, the interest of our research)

mediate a conversation between humans and systems (if necessary) is rather low and does
not demand a special approach. At the other end, knowledge-intensive processes tend to be
less framed and more people-centric.
The gray area of Figure 2.6 indicates the scope of our work : ad-hoc framed and
loosely-framed processes brings an inherent complexity, requiring mediation and
assistance during their enactment. Loosely-framed processes can benefit from a mediation
approach that guides the conversation between humans and applications, respecting user
preference and context. Ad-hoc framed processes can benefit from the planning capability
of the mediation approach, for example, learning from past experiences or build an ad hoc
process based on user expectation. Because of the lack of process structure, Unframed
processes are out-of-scope. Because of its simplicity and predictability, tightly framed
processes are also out-of-scope.

2.3.3 Tradeoff between support and flexibility

According to Pesic [77], the flexibility that users have and the support that users get while
working with BPM systems have a significant influence on both satisfaction and
productivity. In this context of business processes, support refers to the degree to which a
system makes decisions during the execution of processes. Traditional workflow
management systems have a high degree of support. In this situation, decisions are
predominantly made by the system and the level of influence of users is quite low. At the
opposite side, flexibility refers to the degree to which users can make local decisions about
how to execute business processes. Groupware systems, exemplified by products
developed on top of Lotus Notes are systems with a high degree of flexibility and low

2.4 Process flexibility 17

degree of support. Users have a great level of influence and decision in this type of system.
They offer excellent possibilities for handling documentation, but is difficult to extend for
supporting dynamic features, like live interaction, the use of legacy software, and
pro-activity (Barthès et al. [12]).

FIGURE 2.7 The tradeoff between support and flexibility

As depicted in Figure 2.7 a centralized decision-making process has a high degree of
support and a low degree of flexibility, and a local decision-making process has a low
degree of support and a high degree of flexibility. Organizations must find an optimal
balance between both styles of decision. As stated in Section 2.3.2, knowledge-intensive
processes tend to be more unpredictable, so localized decision-making is necessary.
As can be seen, flexibility has a great impact on our work. Many researchers have
acknowledged the importance of this topic, and we address it in the next section.

2.4 Process flexibility

As stated in previous sections, the dynamic nature of business processes requires the
development of flexible approaches to deal with occurring variations. Effective business
processes must be able to accommodate changes in the environment in which they operate,
for example, new laws, changes in business strategy, or emerging technologies (van der
Aalst et al. [103]). Modern PAIS must balance a certain degree of flexibility and support at
the same time during the enactment of business processes. Flexibility in this context can be
seen as the ability to deal with both foreseen and unforeseen changes, by varying or
adapting those parts of the business process that are affected by them, while retaining the
core format of parts that are not impacted by the variations (Schonenberg et al. [89]).

2.4 Process flexibility 18

FIGURE 2.8 Taxonomy of process flexibility proposed by Schonenberg et al. [89], identi-
fying four main flexibility types : flexibility by definition, flexibility by deviation, flexibi-
lity by underspecification, and flexibility by change

We have adopted the taxonomy provided by Schonenberg et al. [89]. It is an extension of
the taxonomy proposed by Heinl et al. [43] and was applied in different state-of-the-art
implementations. They suggest four types of flexibility : Flexibility by definition,
flexibility by deviation, flexibility by underspecification, and flexibility by change. Figure
2.8 presents the taxonomy and the most important properties investigated for each theme.

2.4.1 Flexibility by definition

Flexibility by definition refers to the ability to specify at design time different alternatives
of execution in the process model. As a consequence, users can choose the most suitable
alternative during the enactment of a process. Schonenberg [89] enumerates the most
common options for realizing this type of flexibility :

— Parallelism : the ability to execute a list of tasks in parallel.
— Choice : the ability to choose one or more tasks from a list of tasks.
— Iteration : the ability to contiguously perform a task several times
— Interleaving : the ability to perform a list of tasks in any order.
— Multiple instances : the ability to perform multiple concurrent instances of a task.
— Cancellation : the ability to cancel a task at any point of the execution.

Flexibility by deviation is the most fundamental type of flexibility, and all BPM systems
support this kind of flexibility. However, according to van der Aalst [103], declarative
approaches make it easier to defer choices at runtime instead of at design time.

2.4 Process flexibility 19

2.4.2 Flexibility by deviation

Flexibility by deviation refers to the ability to deviate at runtime from the execution
alternatives specified in the process model, without changing the process model. Users
might ignore the execution of some parts of the prescribed process. For example, it could
be useful to invert the ordering of the send proposal to customer and register customer
when the customer wants a quick response. In general, models are more descriptive than
prescriptive, stating what is the common or normal flow of execution, allowing a certain
degree of variation.

— Undo task : Shift the control to the moment before the execution of the specified
task.

— Redo task : Repeat a preceding task.
— Skip task : Skip the current task, passing the control to a subsequent task.
— Create an additional instance of task : Allow the creation of a new instance of a

task that will run in parallel.
— Invoke task : Allow the execution of a task that is not currently enabled.

FIGURE 2.9 Flexibility by deviation : the user has the control over the flow of execution
(Pesic [77])

Figure 2.9 presents an example of flexibility by deviation by using a skip operation. In (a)
task B is enabled. After performing the skip B operation as shown in (b), it is possible to
execute the successor of the task B (task C in this case). Case handling [107] is an
imperative approach that allows such type of flexibility.

2.4.3 Flexibility by underspecification

The flexibility by underspecification allows modeling some parts of a process model as
“black boxes” or placeholders. They could be added later during the enactment of a
process.
Figure 2.10(a) shows a model specifying that activity A must be executed, followed by B,
and finished by an unspecified activity or subprocess. Figure 2.10(b) shows a possible
scenario where A and B are performed followed by the placeholder D, selected at runtime.

2.4 Process flexibility 20

FIGURE 2.10 Flexibility by underspecification : design and runtime perspectives (Pesic
[77])

Note that, each time the process executes, the user can select a different activity or even an
entire sub-process. This example puts in evidence only the control-flow perspective, but
the approach is valid also for the resource or data perspective. For example, one should
declare an activity without assigning a resource to perform the action. Only at runtime, the
resource will be identified. The same occurs for data, omitting one output generated by
some activity during design-time. The reference to the data element can be specified each
time the process is executed.
Placeholders can be invoked during runtime using two distinct methods :

— Late binding : where the realization of a placeholder is selected from a set of
existing process fragments.

— Late modeling : more sophisticated form of realization, allowing choose not only a
fragment from a set of existing processes but also model of a placeholder at
runtime.

An example of a system that allows this functionality is the YAWL language [104]. Using
the Worklet extension, some activities can be considered as unspecified parts. During the
enactment, the Worklet Service allows users to choose the exact specification that will be
executed.

2.4.4 Flexibility by change

Flexibility by change is the ability to change a process definition at run-time. Systems that
supports this type of flexibility allow the migration of all processes that have pending
instances to the new definition. The following variation points are observed in this kind of
flexibility :

— Effect of change : Could be a temporary change, affecting only a set of instances, or
an evolutionary change, migrating all active instances and the original model.

— Moment of change : Could be at entry time, meaning that only new instances of the
process will conform to the new version, and current ones will not migrate. They

2.4 Process flexibility 21

could occur on-the-fly, meaning that existing instances of the process need to
migrate to the new model.

— Migration strategies : Define what to do with running process instances that are
impacted by an evolutionary change. The most commonly implemented techniques
are : (i) Forward recovery, aborting existing instances. (ii) Backward recovery
aborting, compensating if necessary, and restarting current instances. (iii) Proceed
with change, ignoring existing process instances. (iv) Transfer, migrating the state
of existing process instances to a compatible one of the new version.

Flexibility by change is a very challenging theme and has been investigated by many
researchers. Depending on the scope of changes, several anomalies may be inserted into
the environment like missing data, conversion problems, and deadlocks (van der Aalst
[103]).

2.4.5 Choosing flexibility requirements to improve mediation

FIGURE 2.11 Degree of impact and specification of time when flexibility is added

Figure 2.11 presents the flexibility taxonomy from two perspectives : the degree of impact
and the time at which the flexibility is added. The degree of impact indicates what aspect of
the process is affected : the process model or only the process instance. The time
perspective shows if the flexibility property occurs at design time or run-time.

2.5 An approach towards flexibility 22

The flexibility by definition has an impact on the process model during design time. The
resulting model, having a high degree of predictability, determines the behavior during
run-time. However, van der Aalst [103] states that declarative languages make it easier to
defer choices to runtime, which suggests that the modeling approach could lead to an
extension of the impact to the runtime environment, due to the level of implicitness of the
model. Moreover, the deferred choice pattern described by Schonenberg et al. in [89],
leaves the resolution of a choice to the enactment infrastructure at runtime even for
imperative approaches.
The flexibility by deviation occurs at runtime and affects only process instances. In this
situation, users have a certain degree of freedom to enact processes and decisions are made
at run-time. The flexibility by underspecification has an impact on the process definition
phase during both design and run-time. The modeler should define placeholders for tasks
during design time and users benefit from those placeholders, replacing them by concrete
task or sub-processes at runtime. Finally, the flexibility by change has an impact during
runtime for both process models and instances.
As can be seen, all flexibility properties could have a direct impact on the runtime
environment, affecting humans during the enactment of business processes. Declarative
approaches such as DECLARE (Pesic [77]) and case handling (van der Aalst [107])
performed well from the control-flow perspective in the evaluation conducted by
Schonenberg et al. in [89]. Declarative approaches perform well for the flexibility by
change requirement : both process definitions and instances are automatically changed
when the execution trace does not violate the constraints of the new process model.
We continue the investigation of approaches towards flexibility, more precisely analyze the
level of implicitness and the potential for mediation, to propose a mediation model for the
enactment of business processes.

2.5 An approach towards flexibility

2.5.1 Case handling

Case handling is an alternative BPM paradigm proposed by van der Aalst et al. [107]. This
approach aims at more flexible and knowledge intensive process execution for a
wide-range of scenarios for which traditional workflow management systems fail to offer
an adequate solution. Case handling has its strengths changing the focus of business
processes from what should be done to what can be done to achieve a business goal. The

2.5 An approach towards flexibility 23

author focuses on the following problems found in traditional workflow management
systems :

— Atomic activities
Traditional workflow management systems consider that activities are atomic units
of work. This approach is used to force the distribution of work during the design
phase. However, some events are handled by users in a much more detailed and
complex way.

— Routing for distribution and authorization
Because of the routing mechanism employed by workflow management systems
only the work for which workers are authorized is revealed. Thus, a work-item is
only available when it is in the worker’s in-tray. The problem here is that both the
distribution of work and the authorization coincide. Mixing up two important
aspects of a business process in only one event considerably diminishes the level of
flexibility of applications.

— Context tunneling
It is more a consequence than a cause. By focusing on the control flow, process
data are only available when the worker receives a work-item in her in-tray. The
context of the current business process handled by the workflow system is partially
available, resulting in inefficiencies and errors.

— Focus on what should be done instead of what can be done
This push-oriented perspective results in rigid and inflexible workflows.

Key properties of case handling :
— Providing all information available

A case handling system (CHS) presents all data about a case at any time to workers,
according to their level of authorization. The context tunneling effect is avoided.

— Use data to determine which activities are allowed
A CHS use both data and flow as first-class citizens. Thus, data can also determine
which activities are enabled.

— New semantics for roles
Workflow management systems have only the execute semantic for the role. A CHS
provides additional possibilities like skip and redo (to undo a previously performed
activity), which augments the level of flexibility during the enactment of processes.

— Process data can always be modified
A CHS allow workers to change data before or after the execution of activities.
Data can be amended as soon as they are available.

2.5 An approach towards flexibility 24

Main concepts

The case handling paradigm makes the case and its data as the central elements, as
opposed to activities and routing rules being common for workflow management systems.
We refer to a case as a single process instance, meaning that a business process can handle
many cases in parallel. The case could also be interpreted as the product that is
manufactured by a group of workers that must be aware of the whole context. Examples of
cases are the peer-review of project proposals, the evaluation of a job application or
managing a call for bids for procurement.
The concept of activity is also important for case handling. Here, an activity is also
considered a logical unit of work as occurs in traditional WfMs. Activities must be
executed to enact a case. However, it carries a less rigid notion here, because an activity is
a chunk of work recognized by workers that have the potential to be executed, transferred,
re-executed or simply ignored (for example, a worker could skip an activity to add a
supplier in a bidding process).
The use of too many precedence relations is discouraged in case handling. Here, the state
and structure of a knowledge-intensive case is an important element and could be used to
guide a case enactment. In case handling, state and structure are represented as data
objects. The logistical state of the case is not determined by the control-flow status but by
the presence and properties of data objects. Thus, case handling could be considered a
hybrid process modeling technique, mixing control-flow and data-flow (van der Aalst
[107]).
Each data object is linked to a process and could be related to one or more activities. A
data process that does not have links with any activity is called a free data object. All other
data objects are linked with one or more activities as mandatory and/or restricted. A data
object is considered mandatory for an activity if it is required to complete the
corresponding activity. A data object is considered restricted for an activity if it can only
be entered in this activity or other activity that shares the same object. Both definitions
(restricted and mandatory) are orthogonal. For example, a data could be mandatory (to be
considered completed, the activity must fill this information) and restricted (the
information is only changed in this activity). These objects are presented to workers using
forms. A form is used to present different views on data objects of a particular case to
workers, assuming they have the proper authorization. In CHS forms could be associated
with one or more activities.

2.5 An approach towards flexibility 25

Roles

In the same manner, as occurs in traditional workflow management systems, case handling
allows that one actor (user) can have multiple roles, and a role may have multiple actors.
Roles can also be modeled as a graph. Using an is-a relation, one can define different
levels of authorization. For instance, the role manager is a subtype of the role employee.
The difference here is that case handling has different types of role associated with an
activity ; traditional workflow management systems have only the execute role. For each
activity, three types of roles need to be specified : the execute role, the redo role, and the
skip role.

— The execute role is used to define who can carry out the activity.
— The redo role is used to re-execute or just undo an activity. For instance, the case

returns to the previous state (before the execution of the activity). In this case, the
undo operation is only possible of all other subsequent activities are undone as
well.

— The skip role is used to pass over an activity.
It is a powerful mechanism for modeling flexible processes without needing to explicitly
specify a broad range of exceptions. The redo operation provides an implicit (and
dynamic) form of loop. Also, the skip offers an implicit form of choice. To avoid
undesirable effects, the modeler just needs to configure the level of authority for each role
type : for example, avoid assigning a role to the skip or redo role.
These roles allow a clear separation between work distribution and authorization. Workers
are not limited to the set of activities that have been assigned to them (in-tray). Case
handling allows the implementation of a flexible query mechanism that allows navigating
through activities with different filters that can be applied to simulate the in-tray for actors,
or ad hoc queries to monitor work.
As stated before, the focus of case handling is on the whole case, i.e., there is no context
tunneling by limiting the view to specific work-items. The primary driver to determine
which activities are enabled is the state of the case (i.e., the case data) and not control-flow
related information such as the activities that have been executed. The basic assumption
driving most workflow management systems is a strict separation between data and
process. The strict separation between case data and process control simplifies things but
also creates integration problems. For case handling the logistical state of a case (i.e.,
which activities are enabled) is derived from the data objects present. Therefore, data and
process cannot be separated. Unlike workflow management, case handling allows for a
separation of authorization and distribution. Moreover, it is possible to distinguish various
types of roles, i.e., the mapping of activities to workers is not limited to the execute role.

2.6 Discussion 26

2.6 Discussion

We have presented in this chapter the foundations of the Business Process Management
discipline and have surveyed a range of concepts and classifications of BPM systems. The
first section of this chapter focused on the BPM discipline and how BPM systems are
related to this lifecycle. The second section was dedicated to the process model, a
significant artifact for our approach. Next, some classification of business processes in
section 3 and 4 helped for delimiting the scope of our work, for business processes. We
finished by giving an overview of the case handling system, which is an approach that has
interesting techniques towards process flexibility. Some methods of case handling systems
that put data control at the same level of control and providing all information available,
avoiding context tunneling undoubdtedly influence the design of our approach.

Chapitre 3

Personal Assistant Agents

In the previous chapter, we have presented the BPM discipline and its lifecycle as well as
its core component : the business process model. A great deal of work related to process
flexibility has been found. However, the majority of methods and techniques falls into the
study of the flexibility for the structural aspect of processes. Few works related to the
human perspective during the enactment of existing ones. Moreover, to the extent of our
knowledge, we have not found any conversational interface dedicated to the subject of
business process enactment and the user interface seems to be a neglected topic in this
field.
Thus, we dedicate this chapter to study concepts, tools, and techniques available in the
literature to implement personal assistant agents. The interaction between agents and
humans have a substantial impact on our work, and a comprehensive study of existing
approaches will help us delimiting the scope of our research.
This chapter is organized as follows :

— Section 3.1 concept of agent and its properties
— Section 3.2 introduces the notion of multiagent system and presents the platform

developed in our laboratory.
— Section 3.3 presents the concept of personal assistant agent.
— Section 3.4 presents our vision of how personal assistants could contribute to the

business process management domain, more specifically during the enactment of
business processes.

— Section 3.5 presents a summary of essential elements identified to conduct our
research.

Readers who are familiar with multiagent systems can skip sections 3.1 and 3.2.

3.1 Agent definition 28

3.1 Agent definition

In the context of computer science, the notion of agent 1 comes from the artificial
intelligence domain (AI). Russel and Norvig [85] states that a software agent is anything
that can be seen as perceiving its environment through sensors and acting upon that
environment through actuators. Jennings and Wooldridge [48] highlight the autonomous
aspect of agents, stating that an agent is a computer system situated in some environment,
and that is capable of autonomous action in this environment to meet its design objectives.
Both definitions from Russel [85] and Jennings [48] presents three relevant aspects under
different perspectives : (i) an agent is situated in an environment, (ii) it has a
decision-making capability, giving some autonomy, and (iii) it has one or more goals. An
agent perceives its environment using its sensors and deliberately changes the environment
to reach its objective using its actuators. To better understand the environment and how it
influences the agent decisions, we use a classification proposed by Russel and Norvig
[85] :

— Fully observable vs. Partially observable : If the agent has complete access to the
state of the environment at any point in time, this environment is called fully
observable. An environment might be partially observable because of noisy and
inaccurate sensors or because parts of the state are simply missing from the sensor
data. For instance, a business process management system that has an incomplete
description of its participants might find difficulties when negotiating and
delegating tasks.

— Deterministic vs. Stochastic If we can determine the next state of an environment
based only on the actions executed by the agent, then the environment is called
deterministic. Conversely, a stochastic environment is one in which there is
uncertainty about the state resulting from performing an action in the current state.
The majority of real scenarios fall into this category. For instance, each activity
belonging to a business process have a predefined set of preconditions and effects.
If one of these activities lacks a complete definition of preconditions and effects or
if the activity produces an unforeseen result, then we have a stochastic
environment.

— Episodic vs. Sequential In an episodic environment, the agent actions are divided
into isolated episodes. More specifically, the decision made in one episode does not
affect future decisions. An example of episodic environment could be a quality
assurance agent that inspects new products and assigns a quality label of the

1. For the sake of readability and brevity we will often omit the word “software” before the word “agent

3.1 Agent definition 29

product without paying attention to past evaluations. Conversely, a sequential
environment is more complex in nature, because each short-term decision has an
impact in the medium and long term. The enactment of a business process is an
example of sequential environment because each performed activity may change
the environment, producing effects that influence the enactment of subsequent
activities or sub-processes.

— Discrete vs. Continuous An environment is discrete of it can be modeled by finite
sets. Russell and Norvig give a chess game as an example of a discrete
environment, and taxi driving as an example of a continuous one. Taking into
account the decisions made by the enactment engine, we can consider that this
environment is discrete, but the combinations of several discrete decision variables
may lead to a combinatorial explosion.

— Static vs. Dynamic If the environment can change while an agent is deliberating,
then this environment is said to be dynamic. A dynamic environment is much more
complex because each change of state is interpreted as a decision request to the
agent. Depending on the architecture of information system that is used, the
environment of business processes tends to be dynamic, because business processes
might compete for shared resources of a company (e.g. : people allocation,
database entries).

According to this classification, the hardest case is partially observable, stochastic,
sequential, continuous and dynamic. Russel and Norvig also distinguish the environment
between single-agent and multiagent. Needless to say, single-agent environments are
simpler when compared to multiagent ones. Multiagent environments require a minimum
infrastructure for communication and a well-defined interaction protocol, which increases
the complexity of the overall application.
Taking into account the autonomy of agents, they could present different behaviors when
added in a group. They could be competitive if they use one or more shared resources, or
they could be cooperative to maximize the performance. Note that the classification of
competitive or cooperative agents is not crisp. Agents may present different behaviors
during their lifecycle according to their goals. Note also that from the perspective of one
agent operating in a multiagent system, the environment can be regarded as being
dynamic.
Table 3.1 presents a classification of a typical business process enactment infrastructure if
managed by agents.
Now that a categorization of environments has been given with a special focus on business
processes, one must explore the agent and its properties.

3.1 Agent definition 30

TABLE 3.1 Classification of an environment of a typical business process enactment infra-
structure using agents

Dimension Value
Observable Partially-observable (e.g. not all departments

have enough information when they are coope-
rating)

Deterministic/Stochastic Stochastic (e.g. service-oriented architectures)
Episodic/Sequential Sequential (processes are chains of activities)
Static/Dynamic Dynamic (processes compete for resources)
Discrete/Continuous Discrete (risk of combinatorial explosion)
Agents Multiagent is preferable for task decomposi-

tion
Cooperative behavior Predominantly cooperative
Competitive behavior May compete for shared resources (e.g. people

and resources such as database entries, storage
devices, and processors)

3.1.1 Agent properties

As stated before, agents are computer systems capable of autonomous action to meet its
design objectives. Thus, agents have distinct characteristics, and not all software
components could be classified as an agent. In the nineties, Wooldridge and Jennings gave
one inspiring example of an agent application :

Example 3.1.1. You are editing a file when your personal assistant requests your attention :
an email message has arrived, that contains notification about a paper you sent to an
important conference, and the assistant correctly predicted that you would want to see it as
soon as possible. The paper has been accepted, and without prompting, the assistant begins
to look into travel arrangements, by consulting some databases and other networked
information sources. A short time later, you are presented with a summary of the cheapest
and most convenient travel options [113].

This type of application was unusual in the nineties (the article was published in 1995), but
it is quite common nowadays after the popularization of applications like Siri from Apple
and Cortana from Microsoft. This generation of applications works as a hub of services,
delegating tasks to specialized software components. This movement is aligned with the
prediction of Negroponte, that stated in [71] that the future of computing will be 100%
driven by delegating rather than manipulating. We have used some characteristics
proposed by Negroponte that give more focus on human-agent interactions. To do so,
agents must be :

3.1 Agent definition 31

— Autonomous : giving a vague and imprecise specification, an agent must determine
how the problem is best solved and then solve it, without constant guidance from
the user,

— Proactive : it should not wait to be told what to do next, rather it should make
suggestions to the user,

— Responsive : it should take account changing user needs and changes in the task
environment, and

— Adaptive : it should come to know user’s preferences and tailor interactions to
reflect them.

Of course, these characteristics could also be used in the context of agent-to-agent
interaction as well. Notice that pro-activeness is an essential property to introduce another
characteristic of agents : the reactivity concerning the environment. Pro-activeness means
that agents must execute actions according to a predefined plan to ensure the fulfillment of
its goal. However, an agent must not neglect the changes that may occur in this dynamic
environment. A plan revision is necessary if these changes have an impact on the agent
plan. Thus, a level of reactiveness is also required. Notice that a high degree of
reactiveness may influence in the whole plan, making the agent unfocused. Actually, these
two characteristics (pro-activeness and reactiveness) are difficult to balance even for
human beings : a typical example is given by project managers who follow project plans
without recognizing events that disrupt the pre-established course of actions (Sbodio [87]).

3.1.2 Strategies towards reasoning

An agent has an individual decision process made of three phases : perception, decision,
and action. The perception phase allows collecting information about its environment. In
general, an agent has a symbolic representation based on its sensors and previous
experiences. During the decision phase, the agent reasons using the information collected
from the environment and its goal, creating or changing its plan of actions to better reach
the goal. The action phase is the enactment of such actions, transforming the environment.
It is a cyclic phase, where agents are constantly perceiving, reasoning and acting.
In the literature, agents are commonly classified as cognitive or reactive. Reactive agents
do not have an explicit representation of their environment. Their behavior is based on a
perception/action function. The cognition phase is reduced or inexistent. The work of
Brooks [16] [17] illustrates how reactive agents work. According to him, the behavior of
an agent is produced by a set of behavioral rules that associate a particular stimulus with
an action. The agent behavior is the result of interactions between the agents and the

3.2 Multiagent Systems 32

environment, and agents do not explicitly communicate between them. This approach is
called principle of emergence.
Conversely, cognitive agents have an explicit representation of the environment, of other
agents and their goal. They also have a model of their social organization. The relationship
between agents is done according to their degree of collaboration to solve a particular
problem. Some researchers in the field use other social aspects such as emotions to guide
the interaction between individuals (e.g. Lhommet et al. [61] and Rivière et al. [82]).
Notice that the boundary between these types of agents is not crisp and some agent
architectures combine both techniques (also called hybrid agents according to Wooldridge
[112]).
In our work, we propose using a personal assistant agent to help users during the
enactment of business processes. This type of agent requires an explicit representation of
the environment, as well as a description of other agents that collaboratively communicate
during the enactment of the process. Personal assistants must also be capable of
identifying their master’s 2 goal based on sentences. Thus, we restrict the scope of our
study to cognitive agents. The OMAS (Open Multiagent System) platform developed in
our laboratory allows the implementation of both cognitive and reactive agents. The
platform is described in Section 3.2.1.

3.2 Multiagent Systems

The idea behind multiagent systems is that a system could get better results if agents work
cooperatively instead of in complete isolation. According to Sycara [97], a multiagent
system benefits from two powerful modeling techniques namely modularity and
abstraction. The reason for the growing success of agent technology is that the inherent
distribution (modularity) allows for a natural decomposition of the system into multiple
agents that interact with each other to achieve a desired global goal (Chen and Cheng [20]).
The abstraction characteristic is also represented by numerous approaches used for
planning and reasoning. Sycara [97] enumerate four characteristics of a multiagent
system :

1. Each agent is part of the overall solution. It does not have enough information to
solve the whole problem.

2. The control is not centralized.

3. Information used for problem-solving is decentralized.

2. A master is the user that owns the assistant

3.2 Multiagent Systems 33

4. The problem-solving mechanism is asynchronous.

In multiagent systems, agents are independent individuals that share the same environment.
They may present a competitive behavior since resources are shared among them (time,
space and physical resources). They may cooperate to achieve common goals. Even if
agents are written in different languages, they can communicate using a standard protocol,
expressing their needs, their state and reaching agreements. In short, an agent that belongs
to a multiagent system has two distinct objectives : performing tasks and cooperate with
other agents whenever possible. As a consequence, agents should coordinate their
activities and cooperate to avoid effort duplication (D’Inverno and Luck [32]).
Multiagent theories are usually complex from a computational perspective. Therefore
multiagent systems often take inspiration from theories and make some pragmatic
assumptions and tradeoffs to simplify the implementation. We present an overview of the
platform developed in our laboratory and used to implement our MAS.

3.2.1 The OMAS platform

The OMAS platform (Open Multiagent System) [8] is the result of the development of
research projects in several domains like engineering design (Shen and Barthès [92]).
OMAS is directly derived from the open architecture of cognitive agents called OSACA
developed by Scalabrin and Barthès [88].
In its latest version developed in LISP 3, the platform allows the creation of three different
types of agents :

— service agent (SA) : it is a cognitive agent that does not have an interface
dedicated to the end-user. It provides a specialized set of services according to its
competence. The services could be performed by the community of agents, which
forms a multiagent system.

— personal assistant (PA) : this agent is responsible for the interaction with humans.
Its role is to understand and to serve its master. Since a PA knows what its master
wants to do, it could use other agents (service, transfer agents or even other
personal assistants) to develop and execute its plan.

— transfer agents (XA) : this agent allows the communication between OMAS and
other platforms. It has a set of predefined services for connectivity.

Agents are organized in a multilevel architecture based on the concept of coterie. From the
organizational perspective, a coterie is a closely related group of agents. It is particularly
interesting because an agent could enter or leave a coterie at any time, avoiding registering

3. The platform and the documentation are available at http ://www.utc.fr/~barthes/OMAS/.

3.2 Multiagent Systems 34

the agent in centralized repositories like yellow pages or directory facilitators. A
consequence is that if a machine fails, no bookkeeping needs to be done on the other
machines, which makes the system more robust (Barthès in [8]). From a technical
perspective, the coterie is then defined as a set of agents present on a LAN loop, sharing
the same port address. Thus, messages are delivered using UDP broadcast to all agents,
with a single message. We could say that agents are like a group of persons located in the
same room, where each person overhears what the others say. Agents can use this feature
by updating their internal representation.
In OMAS, all agents are subsets of a generic agent model, presented in the next
paragraphs.

Generic agent model

FIGURE 3.1 The OMAS generic agent model

OMAS agents are derived from a generic agent model initially proposed by Ramos [79], as
depicted in Figure 3.1. An agent is composed of a set of modules that could be customized
by the agent modeler when needed :

— World : Each agent resides in an environment composed of other agents. To
interact with them, an agent should build an internal representation of the
environment. Ramos suggest that this internal representation should have the
competencies of other agents that belong to its group.

— Self : This module contains a self-description, a long-term and short-term memory.
The self-description is a representation of the agent’s competencies and its

3.2 Multiagent Systems 35

long-term goals. Enembreck [37] added a learning function to this module,
allowing an agent to learn the competencies of other agents iteratively by using
their interaction as a source.

— Ontology : Ontologies are an integral part of applications involving cognitive
agents. They allow a shared understanding of domains and could be used to
understand the expressions of the content language, to build a knowledge base, or
to interpret the utterances from the user (Barthès [8]). Thus, each agent could have
its own ontology. One of the possibilities for using ontologies is using MOSS [9] as
a representation language. MOSS is a framework for developing ontologies or
knowledge bases. MOSS has been made part of the OMAS platform and includes
multilingual and versioning features, as well as reasoning by means of a query
system.

— Skills : Skills represent what are the agent capabilities or what it can do. Skills are
realized as functions, and the platform distinguishes two types of agent skills :
atomic skills and complex skills. Atomic skills execute without requiring any help
from other agents, whereas complex skills require results obtained from the
cooperation with other agents. Atomic skills have a reference to a static function
whereas dynamic skills have two references : the first to trigger the function and the
second works as a call-back function when answers from other agents are received.
All skills may have preconditions (a function in charge of checking if the skill can
be fired), a time-limit option limiting its execution time and an acknowledge option
to return an acknowledge message to the sender if requested. Complex skills may
have a timeout handler to do something when answers from sub-contracts fail to
return on time, and a select-best-answer function, used to select the answer on
broadcast or Contract Net protocols. Notice that the concept of skill (what the agent
can do) is different from the concept of goal (what the agent plans to do).

— Goals : OMAS implements goals separately from skills. A goal can be one-shot or
cyclic. Goals are enabled by an enabling function that may block the triggering of
the goal (somehow analogous to the precondition function for skills). A particular
mechanism of activation energy is planned : for instance, a goal can be activated
when its energy becomes higher than a threshold level.

— Tasks : The current context of the agent is represented in the tasks part. The task
that the agent is currently executing could trigger other subtasks, controlled by
OMAS. Thus, a task representation is a fundamental building block.

— Communication : Message handling is an important feature of multiagent
systems. Agents use messages for negotiation, task decomposition, and planning.

3.3 Personal Assistants 36

OMAS have a set of built-in functions for communication (sending and handling
messages). When a message reaches an agent, it wakes up the scan process that
either processes the message in special cases, or puts it into the agenda. A special
process then selects the message and distributes it to the right thread, calling the
proper skill. Thus, selection and distribution of messages are done automatically by
the middleware, simplifying the programmer’s work. Regarding protocols, OMAS
implements several communication protocols : simple, broadcast and Contract Net.
The OMAS agent communication language is simple and not very original,
resembling KQML with the exception of a cancel-grant performative that allows
granting contracts to a set of agents while at the same time canceling the task for
the other ones. It reduces racing conditions. The choice of the protocol is done at
the message level.

This basic structure is enough to develop a broad range of applications using the MAS
metaphor. However, this generic model is not sufficient enough to implement a particular
type of agent, called personal assistant. The personal assistant, an essential element in our
work, is detailed in next section.

3.3 Personal Assistants

According to Barthès in [11], a personal assistant (PA) is an agent in charge of interfacing
a particular person, its master. The role of the PA is to simplify the interface between users
and agents in the multi-agent system. As such, a PA has very superficial technical skills
and for technical problems relies on other agents with specialized skills called staff agents.
In the context of information systems for the corporate environment, users could benefit
from the metaphor of the personal assistant. However, building this type of application
using personal assistants has an high-level of complexity. The effort of publishing legacy
services by personal assistants, using traditional software engineering techniques and
components could be unfeasible both in financial and time-to-market terms. From the
software engineering perspective, personal assistants can be seen as off-the-shelf software
components that could fill this gap and inaugurate a complementary software development
paradigm for service-oriented information systems. Personal assistants may mediate any
person-to-person interactions, resulting from business process collaborations, bringing up
some interesting possibilities for reducing the usually delays frequently encountered when
people try to manually make real-time contacts.
To better understand the personal assistant metaphor, we use the set of activities that a
personal assistant can execute for humans according to Maes [66] :

3.3 Personal Assistants 37

1. by hiding the complexity of difficult tasks ;

2. by performing tasks on behalf of the user ;

3. by training the user ;

4. by helping different users to collaborate ;

5. by monitoring events and procedures.

Thus, we build a definition of a personal assistant in the context of business processes :

Definition 3.3.1. A personal assistant is an agent that helps his master reduce the workload
during the enactment of collaborative business processes.

Next section presents the metaphor of the personal assistant implemented in the OMAS
platform and contributions received from previous research.

3.3.1 The evolution of the PA in the OMAS platform

Since we want to create mixed environments with artificial and human agents, it is
necessary to provide human-computer interfaces. Doing so from scratch is a laborious task.
To simplify the programmer’s task, OMAS provides a default interface managed by the
personal assistant, an agent in charge of letting humans be part of the environment. The PA
has received several contributions from the past years, and it has been used in different
domains. Figure 3.2 presents a timeline summarizing recent contributions. A brief
overview of contributions in given in the next paragraphs.

FIGURE 3.2 Timeline with improvements on the personal assistant in the platform

3.3 Personal Assistants 38

Ramos [79] has changed the generic agent model presented in Section 3.2.1, adding two
new modules that aim at improving the communication with humans, namely master and
user interface. The master module describes the user profile, containing his preferences
and habits. It may also include personal information such as e-mail address or social
network credentials. The user interface is the module that coordinates the interaction
between humans and the PA. In fact, the user interface does not use conventional
techniques found in classic dialog management systems. Instead, it used an intermediate
solution that exploits a library of predefined actions and triggered by the successful
combination of keywords given by the end-user. Using domain ontologies, the system tries
to find a service agent capable of answering the user question. For instance, the sentence
“Please give me the number of Kassel”, number is a synonym of telephone (a property of
the Contact concept), and Kassel is an entry point. An entry point is a kind of indexed
property with direct access to the individual in the MOSS system.
The interpretation of sentences does not use any linguistic technique to evaluate the
request. It could cause potential problems when the user types complex expressions like :
“Please pay the bill and send a copy to Mary”. Another situation is the usage of modifiers
applicable to the object of the sentence : “Please give me the number of my preferred
credit card”. The dialog management system also has some limitations. It does now allow
concurrent dialog contexts and user support is limited. The technique uses a finite-state
graph predefined in the source-code. It is difficult to add new features, since it implies
changing the graph directly into the source code, adding new tasks.
Enembreck [37] proposed a new configuration of modules initially developed by Ramos.
The main objective of this architecture is to allow an adaptive agent model, with an
embedded learning mechanism and a new dialog management system. The proposed
approach has also reduced the complexity of the agent, by distributing the competencies
among other staff agents. Ontologies, tasks, and master are now managed by the dialog
system. The self and world modules remain the same. This new approach is capable of
handling more complex expressions in natural language and brings a task-oriented dialog
management model. The control module was removed, and its competencies have been
transferred to the dialog manager. The drawback of this approach is mixing the
competences of two different components (control and dialog manager), which augments
the risks when new changes are applied in the framework.
Paraiso [74] dedicated his research to the development of a new dialog management
architecture, returning back the control model and treating ontologies, tasks, and skills as
first-class citizens. He proposed a conversational interface for personal assistants. The
proposed architecture contains a set of modular building blocks dealing with a particular

3.3 Personal Assistants 39

problem of dialog management. Chen [21] has used the same architecture and
incorporated a new memory model based on Memory Organization Packets (MOPs).
These memory packets are organized using a case-based reasoning (CBR) approach.
Several tests have shown that the learning mechanism performed well, reducing the overall
time to identify and perform tasks.
Finally, Jones [49] used the personal assistant for improving the interaction of a
collaborative platform that uses a large multi-touch, multi-user interactive table, coupled
with an interactive board display. A new vocal interface was developed as well as a
mechanism of salient features, used to quickly access recent operations.

3.3.2 Dialog management

The dialog manager is a critical component of dialog systems. Not only critical for its
function of controlling a computer-human conversation but also critical in the sense that it
should use techniques from a variety of fields (linguistics, statistics, AI, knowledge
management). Generally speaking, the dialog manager has two distinct roles : the first role
is to manage the representation of the current state by adding new information when it
becomes available (interaction with users and other systems). This representation should
contain relevant information for the system like the dialog history and the current state of
the task. Its second role is to make decisions based on its state. It should always observe its
state and select the next action to perform by the system. For instance, the dialog manager
could ask a clarifying question or ask for confirmation when it does not understand what
the user said. Action selection can take many forms, ranging from a direct mapping
between states and actions to the application of logical rules or the use of planning
techniques (Lison [63]).
A dialog system is decomposed into a layered structure, each one having components for
handling a particular aspect of the interaction. For instance, Allen [5] divides the dialog
management procedure into several agents (e.g. an agent to manage the discourse, an agent
to control the plan). The dialog manager developed by Bohus and Rudnicky (RavenClaw)
follows the same separation of concerns principle, but at the logical level. The dialog
manager isolates the domain-specific aspects of the dialog control logic from
domain-independent conversational skills and establish a boundary between decision
layers. The approach proposed by Paraiso follows the same principle [75].

3.3 Personal Assistants 40

Dialog management architectures

Various approaches have been proposed to formalize the dialog management problem. A
wide range of strategies has been proposed to represent, update and act upon this dialog
state. We describe a summary of must used approaches.

Finite-state automata : This approach is defined by a collection of states and
transitions (Larsen and Baekgaard[56]). Decision-making is made by transferring the
control from one state to another state. That is to say, each state is labeled with a condition
on the user input. When this condition is satisfied, then the control is moved from to the
target state associated with the edge. The finite-state automata is useful for modeling
simple scenarios. However, it is not practical for some complex situations, due the
increasing complexity of the resulting graph.

Frame-based : It is an alternative to overcome the limitations of the finite-state
automata (Seneff and Polifroni [91]). A frame-based approach encodes the dialog state as
a frame constituted of a set of slot-value pairs. When the dialog starts, the frame is empty
and is gradually filled with information. After each user move, a set of production rules
determines next actions. For example, the dialog manager could ask for incomplete values
based on the current frame. A frame-based approach relies heavily on using
domain-specific information in the linguistic structure of the current and previous
utterances and simple heuristics for filling the values of required variables and matching
dialog control rules. Despite the advantages from the finite-state automata, the design and
maintenance of frame-based approaches requires a significative effort. Since, there is a
high level of cohesion between frames, rules and domain-specific information, the
modularity is also affected.

chan : This approach views the interactions of a dialog as a sequence of information
state updates (Larsson and Traum [57]). During the dialog lifecycle, the information state
is continuously monitored by the dialog manager and represents the full contextual
knowledge available to the agent. Upon reception of a relevant input, the dialog manager
modifies this information state using a collection of update rules. In addition to
state-internal operations that change particular variables of the information state, the
update rules are also employed to derive the actions to execute by the agent. Given a
collection of rules and a generic strategy for applying them, the dialog manager can both
update its state and select the next action to perform by way of logical inference. This
action selection can notably be grounded on the set of open questions raised and not yet

3.4 How a PA could contribute to the BPM domain ? 41

answered during the interaction. Generally speaking, the information state approach is a
more general version of the frame-based method, which allows more complex
representations of the information state, like modeling complex mental states such as
obligations and commitments.

Plan-based : It relies on complex representations of the dialog state that encompass the
beliefs, desires and intentions (BDI) of each agent (Cohen and Perrault [28], Allen and
Perrault [6]). In a plan-based approach, the goal is a central element, and both users and
the agent are assumed to act towards a common goal. The problem of interpretation the
user’s utterance is transformed into a plan recognition problem. The agent seeks to derive
the belief, desires and intentions that best explain the observed conversational behavior of
the speaker. Similarly, the selection of system actions is derived from the (task-specific)
long-term objectives of the system. This search for the best action is an instance of a
classical planning task, which can be solved using off-the-shelf planning algorithms. These
algorithms require the declaration of a planning domain that specifies the pre-conditions
and effects of every action.

3.4 How a PA could contribute to the BPM domain ?

This section is dedicated to the identification of the most suitable interface between
humans and personal assistants to be used in the business process enactment scenario. Our
work is based on the assumption that our target user could be a subject-matter expert
(SME) of an organization or any other stakeholder involved in a process that may
collaborate with other users to reach a business goal (a customer, a supplier, a retailer and
so on). Our hypothesis is that a PA could support users during the enactment, finding the
most suitable process to execute, controlling user’s tasks. The question that arises
immediately is : Do these stakeholders share the same vision ?
We have conducted a survey to better understand users needs and their expectations about
the capacities of a personal assistant in a corporate environment. To be more precise, we
aim at discovering what could be the role of the personal assistant and, if it has such
potential, what are the most appropriate modalities of interaction with humans. We
recruited 50 employees from different organizations to answer a survey. Respondents
belong to various sectors (e.g. finance, manufacturing, and health), organization sizes
(small, medium and big organizations). All respondents are users of our target information
system, which includes Internet banking, ERPs, CRMs and typical workflow management

3.4 How a PA could contribute to the BPM domain ? 42

systems. Figure 3.3a presents a summary of the distribution of respondents by sector and
Figure 3.3b by organization’s size.

(a)

(b)

FIGURE 3.3 Distribution of respondents by sector (a), and size (b)

The first topic of the survey asks how organizations present information systems to their
employees. More specifically, we asked what are the available modalities of
communication between humans and information systems. As can be seen in Figure 3.4,
respondents confirmed our first assumption. The majority of applications provide
traditional user interfaces with buttons, menus, and other graphical controls. Only 10% of
respondents assigned at least one system that provide a natural language interface (written
or spoken). As can be seen, even present in several domains of applications, natural
interfaces have not gained much attention in organizations until now.
When the company does not provide such interfaces, we asked participants to point out the
main reasons for this phenomenon. 60 % of respondents assigned that the organization is
too conservative when talking about user interfaces of enterprise systems, and this type of
technology is relatively new. Another potential cause, indicated by 30% of respondents is

3.4 How a PA could contribute to the BPM domain ? 43

FIGURE 3.4 Current modalities of interaction present in information systems

the impression that the current technology employed for natural language recognition is
not mature enough to be used at large scale. Another group (25 %) of respondents believe
that a conversational interface may be a cause of distraction and reduction of productivity
or people may feel intimidated when talking with an assistant or even chatting with a bot.
Given this feedback, we investigated how UI is handled in business process and workflow
management systems. A set of platforms has been selected, with different types of licenses,
from open source to commercial versions (see Table 3.2). All investigated platforms accept
standardized process modeling notations such as BPMN and BPEL and advanced features
to improve portability and interoperability. They provide tools for modeling, enactment
and monitoring of business processes, as well as integration facilities with web services,
ESBs, and legacy applications. However, user interface and usability appears to be is a
neglected requirement in these type application. Developers should build interfaces using
proprietary UI design tools based on traditional forms to be rendered on the web, in a
desktop app or mobile devices. This result in applications with a low degree of flexibility
and poor user experience rates.
Back to the survey results, we asked how assistants could help improving the business
process environment. Figure 3.5 presents the distribution of selected answers. 68 % of
respondents believe that a personal assistant may simplify daily activities by providing a
more natural interface and respecting its user preferences. 44 % believe that a personal
assistant may improve the collaboration with other users. 15 % adds training and the
execution of simple activities on behalf of its user as potential tasks. However, only 9 %
assigned a personal assistant for performing monitoring activities. One of the reasons for
the rejection of such type of activity is related to the association with the monitoring
activity with the degree of autonomy of the personal assistant. According to the study of

3.4 How a PA could contribute to the BPM domain ? 44

TABLE 3.2 List of BPM platforms

Application License BPM Standard User Interface
jBPM Open Source BPMN 2.0 Traditional

(Form-based)
Enhydra Shark LGPL BPMN 2.0 and

XPDL
Traditional
(Form-based)

FLOWer Commercial Case Handling Traditional
(Form-based)

COSA Commercial BPMN 2.0 and
XPDL

Traditional
(Form-based)

SAP Workflow Commercial EPC Traditional
(Form-based)

Bonita BPM Commercial BPMN 2.0 Traditional
(Form-based)

IBM Business Pro-
cess Manager

Commercial BPMN 2.0 and
BPEL

Traditional
(Form-based)

Oracle BPM Commercial BPMN 2.0 and
BPEL

Traditional
(Form-based)

Clavel et al. [25], users prefer assistants with a small level of autonomy, and they do not
want assistants to be dominant or intrusive.
Another question made : do business users want personal assistants with personality ?
Clavel et al. [25] conducted a study related to social roles and personality of a particular
type of agent, called companion agent. They separated the artificial companion in three
social categories : (i) personal assistant, which manages its user appointments and helps in
everyday life, (ii) intimate friend, which listen to your problems and helps you find
solutions and, (iii) guardian, which ensures your safety, protects you and warns you if
necessary. Of course, the scope of our work fits well with the first category of personal
assistance and other categories seems to be out-of-scope of typical tasks in organizations.
The study revealed that the majority of users would like their virtual assistant to be
cooperative, not hostile, not distrustful and not cynical. The warmth aspect has a great
importance for intimate friends. However, this facet is not much important for personal
assistants and guardians.
Returning back to the modalities of interaction between humans and assistants, we asked
respondents to enumerate the most comfortable modalities in three different environments :
(i) the typical working environment like a office building or a manufacturing plant, (ii) in a
home office context, where employees work at home but have all the infrastructure needed
to conduct their activities, and (iii) in mobility situations like waiting for a connection in

3.4 How a PA could contribute to the BPM domain ? 45

FIGURE 3.5 How personal assistants could improve the business process environment

the airport, or in a train station. We separated the modality topic in two different questions
(input and output).
The first question is related to the input channel. Figure 3.6a presents results separated by
type of environment. As expected, the number of respondents that selected voice and
gestures for the working environment is small (respectively 16 % and 8%) if compared to
other modalities. One of the reasons is that people may feel uncomfortable when speaking
with the PA in this type of place. Not surprisingly, the traditional interface is highly
accepted in working environments. This kind of interface is predominant in organizations
and employees are used to work with tables, charts, maps and other graphical controls.
Moreover, even in mobility situations, smartphones and their multitouch interface are
rather comfortable to select visual items and write short sentences. Free text (sentences
written in natural language) have been well accepted in all situations. Again, employees
are used to talking with colleagues using groupware tools, instant messaging, and devices
used in mobility situations have comfortable interfaces to write small sentences. Point out
that we have excluded the situation where the employee is unable to handle a device (e.g.
driving a car or working with machine that requires attention) : This situation is out of the
scope of our work.
The second question is related to the output channel. Figure 3.7a presents results separated
by type of environment. In the same way, the number of respondents that selected gestures
is small in all environments. Sentences in natural language written by the personal
assistant have been well accepted in all situations. As expected, the usage of gestures and
facial expressions have been selected by few participants. It could be related to the low

3.5 Summary 46

(a) (b)

(c)

FIGURE 3.6 How humans should communicate with personal assistants in the working
environment (a), home-office (b) and in mobility situations (c)

degree of interest in the personality aspect of personal assistants in the corporate
environment. More specifically, people do not feel emotionally attached to the assistant,
and they consider it as a tool or a “smarter” software component.
In our work, we have chosen a conversational interface to be embedded in our personal
assistant. It would be valuable presenting a broad range of interfaces to users such as voice,
gesture and facial expression recognition as well as materialize agents as avatars and
evaluate their degree of acceptability in the corporate environment. However, this scope is
rather significant, and these requirements could be subject to another work, or even an
extension of this work. The capabilities of our personal assistant will be limited to the
recognition of sentences written in natural language to interpret the user goals, building ad
hoc graphical interfaces when needed. As a response, the personal assistant might generate
natural language sentences or ad hoc graphical interfaces such as tables, graphs and charts
as needed. Table 3.3 presents a summary with the scope of our work, regarding the
personal assistant subject.

3.5 Summary

We have presented in this chapter the foundations of software agents, their properties, how
they communicate and how they form a community of agents (MAS) to solve a particular
problem. The central element of our work, the personal assistant have been presented, as
well as a brief summary of projects related to PAs in our laboratory. We have also explored

3.5 Summary 47

(a) (b)

(c)

FIGURE 3.7 How personal assistants should communicate with humans in the working
environment (a), home-office (b) and in mobility situations (c)

different types of interfaces used in personal assistance (from intimate friends and
companions to personal assistants and guardians). A study was conducted to identify how
organizations present their information system’s interfaces to their end-users. As expected,
the traditional interface is predominant. However, we still hypothesize that the personal
assistance metaphor could improve the performance during the enactment of business
processes. We have identified that a conversational interface that combines the modality of
natural language expression, and graphical interfaces could be well accepted by users.
Table 3.3 presents a summary of the scope of our work, related to this section.
This scope brings several new requirements that must be investigated to be embedded in
our personal assistant. To be eligible to manage a conversational interface, a personal
assistant must have at minimum : (i) a robust syntax analysis mechanism, (ii) a robust
semantic analysis mechanism that uses one or more domain ontologies for reasoning, (iii)
a dialog management mechanism, capable of manage conversations at different levels, and
(iv) an explicit memory model used for context management and reference resolution.

3.5 Summary 48

TABLE 3.3 The scope of our work related to this section

Perspective Approach

Agent
cognitive agents
multiagent system

Knowledge representation ontologies
Personal assistant interface conversational

Personal assistant traits

cooperative
not hostile
not distrustful
not cynical

input interface
multimodal
written NL
traditional interface (when needed)

output interface
multimodal
NL generation (text or voice)
traditional interface (when needed)

Chapitre 4

Characterizing business processes

The target of our work is the family of BPM systems. A BPM system is a generic software
system that is driven by explicit process designs to enact and manage operational business
processes [106]. The process model is an artifact of knowledge for an organization. It aims
at capturing the different conditions in which a process can be handled, also working as a
blueprint. A process is described in terms of tasks, and the ordering of the tasks is modeled
by specifying causal dependencies. Also, the process model may specify temporal
properties, stipulate how data are used, and designate the way that resources interact with
the process [103]. As stated by Dumas [33], the control flow is often the backbone of a
process model for this type of system. Although other perspectives such as resource
perspective (modeling roles and authorizations), data perspective (flow of data, modeling
decisions, data creation and usage), the function perspective (describing tasks and related
applications) are also essential for comprehensive process models.
To help humans finding and enacting business processes, personal assistants must have
access to explicit descriptions of the capabilities of business processes in a
machine-readable form. Therefore, this chapter deals with the problem of characterization
of business process models, to be used by personal assistants during the enactment of
processes.

4.1 Introduction

4.1.1 Problem statement

As stated by Hepp and Roman [46], both the BPM and Web Services communities have
yielded a wealth of languages and standardization approaches that aim at describing
business processes, especially from the perspective of Web Services orchestration. The

4.1 Introduction 50

most prominent examples are WS-BPEL [114] and BPMN [73] that focus on the
choreography and the orchestration of processes. Models that comply with these standards
are used by BPM enactment systems that create process instances, control their flow and
combine multiple Web services to perform tasks. A personal assistant in this scenario can
be seen as a user representative logged into a BPM enactment system, that selects and
triggers processes and receives notifications from the system (e.g. new tasks, finished
processes and so on). Thus, the integration between personal assistants and BPM
enactment systems does not appear to be a real challenge.
As state before, to be flexible enough, personal assistants must have access to
unambiguous descriptions of the capabilities of business processes in a machine-readable
form. However, the most significant problems preventing BPM from being successfully
implemented are the difficulty in querying processes. The principal reason for these
problems is the insufficient semantic information stored in business process space,
generally described using languages like WS-BPEL and BPMN. Thus, the problem
addressed in this chapter is “the lack of semantic information in business process models”.
Apart from a wealth of contributions from the semantic web services field (e.g. Klusch et
al. [55], Li and Horrocks [62], Paolucci et al. [68], and Trastour et al. [98]), few authors
have proposed approaches for adding semantics to business process models. Hepp et al.
[45] [44] [46] create the concept of SBPM (Semantic Business Process Management).
They propose the combination of BPM and WSMO (Web Service Modeling Ontology).
WSMO is used by them to semantically describe each atomic or composite process inside
an organization as a semantic web service in a process repository. An SWS (Semantic Web
Service) execution environment is proposed for the mediation between business goals and
queries, and the actual process space. Leymann [60] introduces the usage of web services
to model business processes. Kim [52] [53] proposes the creation of a semantic business
process space using the Methontology framework. Business processes are annotated by a
set of reusable upper ontologies of business process and a set of ontologies created
specifically for the domain. A specialization of a Semantic Web Service matchmaking
algorithm is used to query business processes.
We believe that there is a risk of strictly using the semantic descriptors of web services for
deriving the capability of business processes. Even if enriched with semantic annotations,
the service layer still relies on implementation aspects, which have a different level of
granularity and purpose when compared to the business process level. Second, not all tasks
are Web services : The outcome of some tasks are exclusively produced by human
decisions (e.g. a person that assesses a risk of a grant). Third, even if a “servicification” of
all tasks is possible, there is a cardinality issue between tasks and services : A task can

4.2 Illustrative example 51

have N services linked with, and a service may be linked with N tasks. Thus, we argue that
processes must be treated as first-class citizens in terms of capability description.

4.1.2 Contributions of this chapter

The main contributions present in this chapter are the following ones :
— An approach to describe the capabilities of business processes. Business processes

are described in terms of preconditions and effects as inseparable parts. We allow
the description of both deterministic and non-deterministic effects, the latter being
quite useful for describing human tasks and services in non-deterministic scenarios.

— An approach that allows building a safe approximation to the whole process
capability by aggregating all task capabilities present in a business process model.

— A method for querying the business process space.

4.1.3 Organization

This chapter is organized as follows :
— Section 4.2 we first present an illustrative example from the banking domain that

will be used in the rest of the chapter.
— Section 4.3 presents a canonical business process model, describing the basic

structure of business process models. Readers who are familiar with the family of
process modeling languages derived from Petri Nets like BPMN and EPC can skip
this section.

— Section 4.4 presents the function perspective of business processes and tasks.
— Section 4.5 presents an approach to modeling the capability model of a business

process model, using structural elements such as events, activities, and gateways.
— Section 4.6 improves the representation of preconditions and effects using a

variation of the MOSS [9] query language.
— Section 4.7 presents an approach for querying the business process space.

4.2 Illustrative example

Throughout this chapter we use an example to illustrate our approach. This example is a
simplification of a real business process in the field of e-banking. It is used to process a
customer’s credit request (see Figure 4.1). The process starts when the customer contacts
the call center or enters into the Internet banking system and chooses this functionality.
The first task retrieves the customer profile (task t1). Having the profile, the system asks for

4.3 Control flow perspective : a canonical process format 52

FIGURE 4.1 Illustrative example : a business process model used to process a credit re-
quest (P1) including several tasks and a subprocess P2

the credit amount (task t2), followed by an assessment of the credit risk (task t3). Then
either the credit is accepted (sub-process P2) or a request to manually evaluate the request
is started (t4). The task that manually assesses the credit request is performed by a credit
manager who takes the final decision. The manager either approves the request
(sub-process P2) or rejects the request (task t5). For both cases, the customer is informed of
the decision (t6).
This example uses a simplified variant of the Business Process Modeling Notation
(BPMN) [73]. In this notation, tasks are represented by rounded rectangles, marked with
the name of the task. Directed arrows express the order of the execution of tasks. Events
are shown as circles, and gateways are represented by the diamond symbol, used to split
and join the control flow.
This business process model forms a directed graph with focus on the control perspective
of the process. The data flow perspective is equally important, but it will be covered in a
dedicated section. Despite its simplicity, this process allows three different execution paths
from the initial event (e1) to the final event (e2) : (i) The customer receives an automatic
grant. A risk manager assesses the customer’s request and (ii) approves, or (iii) rejects the
request.

4.3 Control flow perspective : a canonical process format

As stated before, business process models can be described with a variety of modeling
languages. To create a common vocabulary for the rest of the chapter, this section
describes a canonical format, adapted from the work of Leopold [59]. An unambiguous

4.3 Control flow perspective : a canonical process format 53

formalization of business processes is required, and this formalization covers the control
flow perspective and is compliant, at least, with basic control flow patterns identified by
van der Aalst et al. in [105]. For the sake of simplicity, this section is dedicated to the
definition of tasks and other flow elements, leaving data flow perspective and resource
allocation perspective to the following sections.
We start by defining the syntax of a process model as follows :

Definition 4.3.1. (Process model). A process model is a tuple P = (T,E,G,F,γ). It consists
of three finite sets T , E and G, a binary relation F ⊆ (T ∪E ∪G)× (T ∪E ∪G), and a
function γ such that :

– T is a finite non-empty list of tasks or subprocesses.
– E is a finite list of events.
– G is a finite list of gateways used to describe parallel and conditional flows.
– We write N = T ∪E ∪G for all nodes of the process model.
– F is a finite set of sequence flows of P. Each sequence flow f ∈ F represents a

directed edge between two nodes.
– γ : E→{start,end} is a surjective function that maps an event to a type.

Note that typical organizations have hundreds of business process models. A set of such
process definitions configures a process space [44]. The example below presents our
schematic example using the notation.

Example 4.3.1. The example of Figure 4.1 is formalized as P1 = (T1,E1,G1,F1,γ), such
that :

– T1 = {t1, t2, t3, t4, t5, t6,P2} where tn are atomic tasks and P2 is a sub-process,
– E1 = {e1,e2},
– G1 = {g1,g2},
– N1 = {t1, t2, t3, t4, t5, t6,P2,e1,e2,g1,g2}
– F1 = {(e1, t1),(t1, t2),(t2, t3),(t3,g1),(g1, t4),(g1,P2), ...,(P2, t6),(t5, t6),(t6,e2)}

To give a precise characterization of a process model, we define the set of predecessors and
successors of nodes.

Definition 4.3.2. (Predecessors and successors of nodes). Let N be a set of nodes and
F ⊆ N×N a binary representation over N representing the sequence flows. For each node
n ∈ N, we define the set of preceding nodes •n with {x ∈ N | (x,n) ∈ F}, and the set of
successor nodes n• accordingly with {x ∈ N | (n,x) ∈ F}.

Example 4.3.2. (Figure 4.1). To discover what task is the predecessor of the gateway g1

that decides if the credit is automatically granted, we get the content of •g4, which is t3

4.3 Control flow perspective : a canonical process format 54

(assess risk). To discover what is the successor of the gateway g2 used to check whether
the credit risk manager has approved or not the credit to the customer, we get the content
of g2•, which returns P2 (grant credit) and t5 (reject credit).

During the validation or the execution of a business process, one might want to discover
incoming and outgoing flows.

Definition 4.3.3. (Incoming and outgoing flows). Let N be a set of nodes and F ⊆ N×N a
binary relation over N representing the sequence flows. For each node n ∈ N, we define the
set of incoming flows nin = {(x,n) | x ∈ N∧ (x,n) ∈ F}, and the set of outgoing flows
nout = {(n,x) | x ∈ N∧ (n,x) ∈ F}.

Example 4.3.3. (Figure 4.1). The set of incoming nodes of the task t2in is {(t1, t2)}. The set
of outgoing nodes of the join gateway g2out is {(g2, t4),(g2,g3)}.

As a graph of tasks, the business process model must offer a simple approach to query
paths.

Definition 4.3.4. (Path). Let P = (T,E,G,F,γ) be a process model, and N a set of nodes.
There is a path between two nodes x ∈ N and y ∈ N, denoted with x⇝ y, if there is a
sequence of nodes n1, ...,nk ∈ N with x = n1 and y = nk such that for all i ∈ 1, ...k−1 holds
(ni,ni+1) ∈ F .

Example 4.3.4. (Figure 4.1). There are three paths between nodes e1 (starting event) and e2

(ending event) :
— Each node in the sequence {e1, t1, t2, t3,P2, t6,e2} has a correspondent in F :
{(e1, t1),(t1, t2),(t2, t3),(t3,P2),(P2, t6),(t6,e2)}

— Each node in the sequence {e1, t1, t2, t3, t4,P2, t6,e2} has a correspondent in F :
{(e1, t1),(t1, t2),(t2, t3),(t3, t4),(t4,P2),(P2, t6),(t6,e2)}

— Each node in the sequence {e1, t1, t2, t3, t4, t5,e2} has a correspondent in F :
{(e1, t1),(t1, t2),(t2, t3),(t3, t4),(t4, t5),(t5,e2)}

It must also offer a simple approach to identify starting and ending events.

Definition 4.3.5. (Start and end events). For a process model P = (T,E,G,F,γ) we specify
the function γ : E→{start,end}, to map an event to a type. An event is a starting event if it
does not have predecessors : {∃e∪E | •e = /0}. The same rule is valid for an ending event
that does not have successors : {∃e∪E | e•= /0}

Example 4.3.5. (Figure 4.1).
γ(e1) = start, provided that •e1 = /0.
γ(e2) = end, provided that e2•= /0.

4.3 Control flow perspective : a canonical process format 55

As mentioned before, gateways are graphically described by the diamond symbol. They
have different semantics depending on their position in the graph and their purpose. For
the perspective of position, a gateway may split the execution flow or join the execution
flow. For the perspective of purpose, a gateway could be : (i) Parallel, generally identified
by the plus (+) sign. It indicates that two or more flows should be performed independently
when the gateway is a split gateway, or indicating that one or more flows should be joined
in only one execution flow when it is a join gateway. (ii) Conditional, stating that the
execution of the specified flow must hold a condition to split. The conditional split may be
reunited using the conditional join.

Definition 4.3.6. (Gateway subsets). For a process model P = (T,E,G,F,γ) we define the
gateway subset G as a union of parallel and conditional gateways :

G = ANDsplit ∪AND join∪ORsplit ∪OR join (4.1)

Conditional gateways that split or join the control flow have a condition that must hold to
proceed. Hence, we define that each conditional gateway of the process must have a
condition that must hold for each outgoing flow.

∀or ∈ ORsplit ∪OR join : ∀orout : ∃oroutcondition (4.2)

The example below describes how to represent conditional gateways .

Example 4.3.6. (Figure 4.1)
The gateway g1 has the following output flows : {(g1,P2),(g1, t4)}. Each output flow has a
condition that must hold to continue. For example, the flow (g1,P2) that automatically
approves the request must have a customer classified as low risk or requesting an amount
lower than 5.000 e. Conversely, the flow (g1, t4) that guides the customer to the manual
assessment, must have a customer classified as high risk or requesting an amount greater
than 5.000 e.

To be syntactically correct, a process model must adhere to a set of specific requirements.
The following definition present a set of rules used to check if a model is syntactically
correct.

Definition 4.3.7. (Syntactically correct process model).

1. A process model contains, at least, one task. |Tn| ≥ 1.

2. Each node not being an event is on a path from a start to an end event.
∀n ∈ (Nn−En)) : (∃e1 ∈ En | γ(e1) = start),(∃e2 ∈ En | γ(e2) = end), such that
e1⇝ n⇝ e2.

4.4 Function and resource perspective : The task model 56

3. The latter rule implies that the sets of start and end events are never empty.
{e1 ∈ En | γ(e1) = start} ̸= /0∧{e2 ∈ En | γ(e2) = end} ̸= /0.

4. Tasks have exactly one incoming and one outgoing flow.
∀t ∈ Tn : | • t|= 1∧|t • |= 1.

5. Gateways either have one incoming and multiple outgoing flows or multiple
incoming and one outgoing flow.
∀g ∈ Gn : (| •g|= 1∧|g• |> 1)∨ (•g|> 1∧|g• |= 1).

6. There are one or more ending events for the whole process :
|{e ∈ En | γ(e) = end}| ≥ 1

7. There is only one start event for the entire process :
|{e ∈ En | γ(e) = start}|= 1

This section provided a definition with emphasis on the control flow perspective and will
be used in our work as a common vocabulary. Next section discusses the task model in
more details, adding semantics for data and roles.

4.4 Function and resource perspective : The task model

The term task has already been mentioned extensively until now. We use this section to
provide more precise definitions of task and to define the task model. A task is a logical
unit of work and not the performance of the work itself. It can be seen as a precise work to
accomplish, with a structure and a well-defined objective. A task can be a system task (e.g.
performing services) or a user interaction task (e.g. displaying information to- or
requesting information from users). Tasks are reusable building blocks that are organized
in a logical order by business processes. A process model is a blueprint, specifying which
tasks need to be executed to reach the business goal. This section presents (i) how tasks are
related to resources, (ii) the process space, and (iii) a model for describing the task and
process capabilities.

4.4.1 Task resources

Giving a process model, several process instances can be handled by following the same
definition. Thus, the same task definition is concurrently performed by different
representations of process instances in a BPM enactment system.
A task that is ready to be executed for a particular process instance is called work item
(process instance + task). For example, the approval or the rejection of the credit request is

4.4 Function and resource perspective : The task model 57

a task that is usually performed by someone that has enough rights to approve or reject the
request as soon as the form is submitted. When a task is ready to be performed for a
process instance, we have a work item. Work items are performed by resources (either a
machine or a person) with a required role (or capability). For example, the right role to
perform the assessment of a credit request is the risk manager role. When a specific
resource is allocated to perform this work item, it becomes an activity (process instance +
task + resource).

FIGURE 4.2 A three-dimensional view of a business process ([100])

Thus, the association of three elements characterizes an activity : the process, the task and
an actor with the authorized role to perform the task. Based on this taxonomy, we define a
set representing reusable roles a function that assign a role to an atomic task. During the
enactment of a process, an actor that has the required role to perform the task is allocated
and the activity is performed.

Definition 4.4.1. (Roles and Tasks).
– R is a finite non-empty set of roles.
– θ : T → R is a surjective function that specifies the assignment of a role to an atomic

task t ∈ T

Example 4.4.1. (Figure 4.1).
– R = {customer,call centre operator,relationship manager}
– The required role to perform task t1 : θ(t1) ∈ T1 = customer
– The required role to perform task t4 : θ(t4) ∈ T2 = relationship manager

4.4 Function and resource perspective : The task model 58

4.4.2 Process space

As stated before, we have defined two types of tasks : processes and atomic tasks. A
process can be seen as a graph of nodes organized by causal and conditional dependencies.
These symbols are events, gateways, and tasks, including subprocesses, which implement
a recursive relation. An atomic task has a well-defined scope, and it is linked with an
appropriate role to perform it. We strongly support the idea that tasks should be
independent and reusable units of work. Hence, a task might be present in different
process models. For instance, a task used to make a credit in a current account like t8,
could be reused in other business processes (e.g. receiving a compensation from an
insurance claim).
Although different in their internal structure, tasks and processes need an abstraction to be
equally selected, reused and aggregated. Thus, we define a process space, putting complex
(processes) and atomic tasks at the same level. The objective of the unification of atomic
tasks and processes is twofold : (i) allow reusing tasks independently of their type (atomic
or complex). (ii) Leverage the standardized description, allowing the selection of tasks and
processes during the enactment of processes to reach the user’s goal.

Definition 4.4.2. (Process space). A process space is a set PS = P∪T , such that :
– P is a finite non-empty set of processes {P1,P2, ...,Pn}.
– T is a finite set of atomic tasks {t1, t2, t3, ..., tn}.

Example 4.4.2. The example of Figure 4.1 for the hypothetical ACME company is
formalized as PSacme = Pacme∪Tacme, such that :

– Pacme = {P1,P2},
– Tacme = {t1, t2, t3, t4, t5, t6, t7, t8}

4.4.3 Task capabilities

According to OASIS [72], a capability could be defined as the potential of an action to
deliver the world effects or produced information. A semantic specification of tasks can be
useful to improve machine readability. We have adopted the same approach that is
typically used in standard semantic web service specifications such as OWL-S and
WSMO, with additional features for representing both deterministic and non-deterministic
effects. Our tasks have capabilities, described in terms of input, output, preconditions and
effects (aka. IOPE paradigm).

Definition 4.4.3. (Task capability). For each task present in the process space (t ∈ PS), we
define a corresponding capability tuple tcap = (I,O,PE), such that :

4.4 Function and resource perspective : The task model 59

– I is a finite set of input parameters, provided that each in ∈ I is a pair (name, type)
with the name and the type of the input parameter.

– O is a finite set of output parameters, provided that each on ∈ O is a pair
(name, type) with the name and the type of the output parameter.

– PE is a finite set of pairs (p,e), interpreted as p =⇒ e, where p is a logical
expression that contains the preconditions that must hold before the performance of
the task and e is a logical expression describing the expected effects after
performing the task.

Our approach allows two possible forms of specification of preconditions and effects :
— Deterministic capability (p =⇒ e) : The majority of approaches that describe

preconditions and effects fall into this category. There is a direct implication
between what is stated in the set of preconditions p, the execution of the task and
the specified effect e. A disjunction is not allowed in the effect expression. This is
because the use of expressions containing or clauses might cause an ambiguous
situation.

— Non-deterministic capability (p =⇒ ♢e) : The execution of the task under the
stated precondition may lead to different effects, expressed as logical disjunctions
(with or clauses). In certain situations, business modelers know how to specify
what are the outcomes of a task and their variations, but they don’t know why these
variations happen. Note that we make use of the diamond symbol (♢), used in
modal logic expressions to quickly recognize a non-deterministic clause in the
effect.

Example 4.4.3. (Deterministic capability). Consider an example of a service that requests
an international money transfer, and uses the account type as a criterion to determine if
fees will incur or not. A set containing two statements in the format precondition =⇒
effect) is defined accordingly :

— Standard(account) =⇒ NewIntlTrans f er(trans f er)∧ IncurringFees(account, trans f er)
— Premium(account) =⇒

NewIntlTrans f er(trans f er)∧NoIncurringFees(account, trans f er)

As can be seen, a deterministic capability is straightforward. The first expression in the
example above states : if the customer has a standard account, after performing the task,
the outcome is an international transfer with incurring fees. The second expression states :
if the customer has a premium account, after performing the task, the outcome is an
international transfer without incurring fees.
Non-deterministic capabilities have a different semantic, as can be illustrated in the
example below :

4.4 Function and resource perspective : The task model 60

Example 4.4.4. (Non-deterministic capability example). Going back to our illustrative
example presented in Section 4.2. Consider the task t3 that automatically assesses the risk
of a credit request based on the customer profile and the required amount. After the
performance of this task, the outcome is the level of risk for the application (high risk or
low risk). Let’s say that t3 is a service that uses a neural network classifier, trained with
real-world situations. Each tuple of the training set is labeled as low risk or high risk. The
specification of a precondition =⇒ effect statement that specifies in what conditions a
request could be labeled as low risk or high risk is too complex and maybe unfeasible.
That is to say, the decision depends on the classification made by the neural network
classifier. Thus, we propose a relaxed syntax of precondition =⇒ effect defined
accordingly :

Active(pro f ile)∧Valid(amount) =⇒ ♢LowRisk(pro f ile,amount)∨♢HighRisk(pro f ile,amount)
(4.3)

FIGURE 4.3 Graphical interpretation of the preconditions and effects of task t3

The expression stated in the example above could be read as “Having an active customer
profile and a valid amount, after performing the task, it is possible that this request is
classified as low risk. But it is also possible that this request is classified as high risk”.
The precondition Active(pro f ile)∧Valid(amount) is a logical formula resulting in only
one conjunction. However, the presented effect is a disjunction :
LowRisk(request)∨HighRisk(request), which is interpreted as two possible effects
(non-deterministic disjunction). Note that we use the ♢ symbol used in modal logics for
each identified conjunction on the effect expression. This symbol denotes the possibility
and can be read as “it is possible that”. Figure 4.3 presents a graphical interpretation of the
preconditions and effects of the task.
Both preconditions and effects are written in agreement with the disjunctive normal form
(DNF) [42]. A disjunctive normal form is a logical formula that is a disjunction of

4.4 Function and resource perspective : The task model 61

conjunctive clauses. A logical formula is considered to be in the disjunctive normal form if
and only if it is a disjunction of one or more conjunctions of one or more literals.

Example 4.4.5. (Using the disjunctive normal form for specifying both preconditions and
effects). Consider a modification in our international money transfer service : When
performing money transfer between two international accounts, the source account (who
sends the money) must be valid and belong to the European Union or the United States.
The destination account must also be valid, but the owner does not have to reside in EU or
US. Two possible effects were identified : A successful money transfer with incurring fees
or a successful money transfer without incurring fees. The bank in question determines if
the customer will be charged with fees depending on the amount of money transferred, the
exchange rate of the day, the frequency that the customer makes transfers and the customer
profile (standard or premium account for example). Figure 4.4 presents a graphical
interpretation of the preconditions and effects of the example below. Note that the
precondition is also written according to the DNF specification.

– Input : sourceAcc, destAcc and amount
– Output : moneyTrans f
– PE : { (EUAcc(source) ∧ Valid(source) ∧ Valid(dest)) ∨

(USAcc(source) ∧ Valid(source) ∧ Valid(dest)) =⇒ ♢
TransferWithFee(moneyTransf) ∨ ♢ TransferWithoutFee(moneyTransf) }

FIGURE 4.4 Graphical interpretation of the preconditions and effects of the international
money transfer task

A flexible syntax for specifying capabilities is a must in several business process situations.
It is because the use of sophisticated statistical approaches and machine learning tools for
decision-making is quite common nowadays in organizations, and describing capabilities
of this type of task is not trivial. Not only this kind of application requires soft approaches
for effect specification : Tasks that produces outcomes based on human decisions like
approving a request is an example of a non-deterministic outcome. Other examples are
legacy services that are too complex to be described in terms of preconditions and effects

4.4 Function and resource perspective : The task model 62

using a declarative approach. We believe that the existing standards used for the
specification of preconditions and effects are too constrained. To the extent of our
knowledge, no capability model allows the specification of a possible implication.

4.4.4 Deriving the capability matrix

The capability matrix is a derivation of the pair of preconditions and effects. In the end, a
matrix preconditions and effects without disjunctions is generated. The objective of this
data structure is twofold : (ii) allow an easy query mechanism. Query engines could easily
verify if a task can help to accomplish (even partially) a user goal ; (ii) allow determining
the capability of a business process based on the causal and conditional ordering of
attached tasks. The process that derives the capability matrix is straightforward as can be
seen in Algorithm 1. The function τ receives the capability representation of the task (tcap)
which contains the set of pairs of preconditions and effects and returns an expanded
version containing only conjunctions. As can be seen in lines 3 and 5, the function
buildConjunctions receives a logical expression compatible with DNF and splits the
expression using disjunctions (or clauses) as delimiters. We do this for both preconditions
and effects.

Algorithm 1 Deriving the capability matrix of tasks (τ)
Require: tcap : task capability

1: tcapmat ← /0
2: for each pe ∈ PE(tcap) do
3: // get all conjunctions of the precondition
4: precondset ← buildConjunctions(precondition(pe))
5: // get all conjunctions of the effect
6: effectset ← buildConjunctions(effect(pe))
7: cap← precondset × effectset
8: tcapmat ← tcapmat ∪ cap
9: end for

10: return tcapmat

Hence, each task t ∈ PS has a capability matrix associated with. The capability matrix of tn,
where the subscript n is the task identifier, can be obtained accordingly :

tncapmat = τ(tncap) (4.4)

Table 4.1 is the capability matrix t3capmat of task t3. As can be seen, having an active profile
and a valid account, risk profile could be low or high without further explanation

4.4 Function and resource perspective : The task model 63

(non-deterministic disjunction). Table 4.2 also presents the capability matrix of the task
shown in the Example 4.4.5.

TABLE 4.1 Example 4.4.5 with inputs, outputs, and the capability matrix with precondi-
tions and effects of credit grant

input output preconditions effects

profile
amount

riskProfile

Active(profile) ∧ Va-
lid(amount)

♢ LowRisk(profile,amount)

Active(profile) ∧ Va-
lid(amount)

♢ HighRisk(profile,amount)

TABLE 4.2 Example 4.4.5 with inputs, outputs, and the capability matrix with precondi-
tions and effects of international money transfer

input output preconditions effects

sourceAcc
destAcc
amount

moneyTransf

EUAcc(source) ∧
Valid(source) ∧ Va-
lid(dest)

♢ TransferWithFee
(moneyTransf)

USAcc(source) ∧
Valid(source) ∧ Va-
lid(dest)

♢ TransferWithFee
(moneyTransf)

EUAcc(source) ∧
Valid(source) ∧ Va-
lid(dest)

♢ TransferWithoutFee
(moneyTransf)

USAcc(source) ∧
Valid(source) ∧ Va-
lid(dest)

♢ TransferWithoutFee
(moneyTransf)

Business process users have different ways to express their needs and formulate their goals.
Their statements will depend on the degree of knowledge of the domain, their previous
experiences, and current context. The capability matrix could be used to help both types of
users finding useful tasks or processes that might assist them to reach their goals. The
preconditions of a capability matrix could be interpreted as the description of the user’s
current situation (e.g. “My credit card was lost” or “I have a European account”).
Conversely, effects could be interpreted as the description of the expected situation (e.g. “I
want to suspend my credit card” or “I want to make an international money transfer
without fees”). As a result, a query mechanism could find a set of processes that fulfill
(even partially) the user’s objective and also indicate to the user if there is a deterministic
implication between the precondition and the effect or a non-deterministic implication
between the precondition and the effect.

4.5 Determining the capability of business processes 64

Until now, we have detailed the flow control perspective of business process models and
how to describe the capability of atomic tasks and how to model them. Next sections cover
the data flow perspective in business processes and how the business process capability
could be derived using all the elements we have so far : control flow model, task model,
and data flow model.

4.5 Determining the capability of business processes

In this section, we address the problem of automatically determining the capability of a
business process. The resulting capability should explicitly state all preconditions that
must hold and their respective effects if the process is performed. While we have
predefined preconditions and effects for each task, there is no obvious way of deciding
which part of them will be included in the composite specification.
Before explaining how the capability of a business process model is derived, we need first
to cover the data flow perspective of a business process.

4.5.1 Data flow perspective

Business processes operate on data. Explicitly representing data, data types, and data
dependencies between tasks of a business process put a business process management
system in a position to control the transfer of relevant data as generated and processed
during process enactment. Now, we fall into the subject of data flow, with works in
synchronization with the control flow. To illustrate the dynamics of control flow and data
flow, we present in Figure 4.5 our illustrative example. Control flow is represented by solid
arcs, and data flow is represented by dotted arcs. Data flow, for instance, between tasks t1
(get customer profile) and t3 (assess risk) indicates that t3 risk requires data that has been
created or modified by t1.

Static versus dynamic data flow

Data is covered by parameters of tasks. Each task parameter has a data type. Each task has
a capability with a set of input and output parameters. Whenever the parameter of one
activity is used as an input parameter of another task, a data flow occurs. A data flow could
be specified a priori in the process model or dynamically during the enactment of the
process. Both ways of linking data have pros and cons. The definition of an a priori data
flow is a laborious process since the model must always be up-to-date. The positive aspect
is that the data flow is not ambiguous and consequently does not produce undesired effects.

4.5 Determining the capability of business processes 65

FIGURE 4.5 Control flow (solid arcs) and data flow (dotted arcs) of the illustrative example

For example, a process that transfers money from one account to another account describes
without any ambiguity what is the account that will send the amount and what is the
account that will receive the amount.
Dynamic data flow between tasks is frequently used in the domain of web service
composition. A set of heuristics for matching input and output parameters can be used to
link data. One of the advantages is the automatic discovery of data flows based on a set of
heuristics. The drawback is that there is no guarantee that the data will be correctly used. It
is an issue for critical tasks. Although we do not cover the dynamic aspect in this section,
we present how it could be used in our approach in the chapter about results and
experiments.

Data flow elements

We extend our canonical model to include the data flow perspective.

Definition 4.5.1. (Dataflow Model). We add the data flow element (D) in our process model,
which yields a tuple P = (T,E,G,F,D,γ) such that :

– We write an auxiliary set IN as a set of all input parameters of the business process
– We write an auxiliary set OUT as a set of all output parameters of the business

process
– D is a binary relation D⊆ (IN∪OUT)× IN) between two parameters

Example 4.5.1. (Data flow example).
Figure 4.6 presents a fragment of our illustrative example P′1. The process starts by
performing task t1 that expects an account number and returns the customer profile. Task t2

4.5 Determining the capability of business processes 66

FIGURE 4.6 Control flow (solid arcs) and data flow (dotted arcs) of the illustrative example
P′1

retrieves the credit amount, followed by the risk assessment in t3. Note that there is a data
flow between tasks t1 and t3 and also for t2 and t3. The risk assessment (t3) expects the
customer profile parameter that is linked to the output parameter of t1. The same is true for
the amount parameter that is connected to the input parameter of the task t2. Note that, for
the sake of clarity, we have given different names for each parameter, adding the task
number as a prefix. Of course, parameter names can be reused ; their uniqueness could be
preserved since each parameter is linked to the task capability.
The example of Figure 4.6 is formalized as P′1 = (T1,E1,G1,F1,D1,γ), such that :

– T1 = {t1, t2, t3},
– t1cap = ({t1Account},{t1Pro f ile}, /0, /0)
– t2cap = ({t2Amount}, /0, /0, /0)
– t3cap = ({t3Pro f ile, t3Amount},{t3RiskLvl}, /0, /0)
– E1 = {e1,e2},
– G1 = /0,
– N1 = {t1, t2, t3,e1,e2}
– F1 = {(e1, t1),(t1, t2),(t2, t3),(t3,e2)}
– IN1 = {t1Account, t2Amount, t3Pro f ile, t3Amount}
– OUT1 = {t1Pro f ile, t3RiskLvl}
– D1 = {(t1Pro f ile, t2Pro f ile),(t2Amount, t3Amount)}

Preconditions and effects have no influence on the explanation. So they were omitted for
the sake of simplicity.

Not only tasks but conditional gateways (or splits) also depend on data to evaluate their
flow conditions. The condition is evaluated as soon as the incoming task is finished. The
flow continues if the condition of the corresponding arc evaluates to true. Thus, each

4.5 Determining the capability of business processes 67

outgoing flow of a conditional or-split has a set of incoming parameters that can be used to
test conditions.

∀or ∈ ORsplit ∪OR join : ∀orout : ∃oroutdata ⊂ IN∪OUT (4.5)

Influences of data flow on the control flow

Until now, we have mentioned only the conditional split as a means of influencing the
control flow based on data. However, preconditions of tasks, which are dependent on data,
also have a direct influence on the control flow. Is assumed that each control flow edge has
an associated condition inherited by the task precondition. This condition is evaluated after
the task from which the control flow originates has terminated. If the condition evaluates to
true, the follow-up task can be started. However if the condition evaluates to false, the
process enactment should be canceled and a rollback signal triggered.

FIGURE 4.7 Fragment of the process model illustrating the relation between data flow,
control flow, and task capabilities

Figure 4.7 presents an example of a control flow between two tasks. Task t1 retrieves the
customer profile given the customer account. The output profile of t1 is wired with the
input profile of t2. Note that t1 specifies a deterministic effect : it is expected that the task
returns an active(profile). The task t2 has a precondition that is compatible with the
produced effect of the previous task : (active(profile) and valid(amount). Thus, the control
flow will always be valid for this sequence of tasks.
However, there may even be conflicts such that the specified execution order and the
pre-conditions do not match. However, this is something that needs to be dealt with at the
operational level (Hepp and Roman [46]). If these inconsistencies occur during runtime the
transaction must be rolled back, the user must be informed, and a comprehensive trace log
must be generated for further verification.

4.5 Determining the capability of business processes 68

4.5.2 An algorithm for deriving the business process model capability

We propose an algorithm that receives a business process model as input and returns its
capability. In general terms our approach is divided into two steps : the first step finds a set
of paths from the starting event, so each path is interpreted as a conjunction. The second
step uses the identified set of paths and iterates over its nodes to determine the path
capability. As a result, the process capability is obtained from the union of all path
capabilities.
Figure 4.8 presents a simplified version of our credit request example, used to explain the
algorithm. The process consists of three tasks : The first task (t1) assesses the credit risk. If
the risk is low, task t2 is performed granting the credit (deterministic effect). If the risk is
high, task t3 is performed, and the credit may or may not be granted (non-deterministic
effect). This illustrative example makes use of simple predicates.

FIGURE 4.8 Illustrative example used to explain the derivation of business process capabi-
lities

Table 4.3 presents the capabilities of each task, including input, output, preconditions and
effects.

TABLE 4.3 Capabilities of tasks involved in the process model

Node Input Output Precondition =⇒ Effect

t1 {a} {b} LittleMoney(a) =⇒ LowRisk(b)
LotO f Money(a) =⇒ HighRisk(b)

g1 {b} none (g1, t2,LowRisk(b)) =⇒ true
(g1, t3,HighRisk(b)) =⇒ true

t2 b {c} LowRisk(b) =⇒ CreditGrant(c)
t3 b {c,d} HighRisk(b) =⇒ ♢CreditGrant(c)∨♢CreditRe f usal(d)

4.5 Determining the capability of business processes 69

Finding paths from the initial event

We use an algorithm to find all sequences of execution from the initial event to a final
event, forming a set of conjunctions. The output of this algorithm is a set of paths, where
the first element of the path is an initial event, and the last element is a final event. The
algorithm uses a typical breadth-first search (BFS), starting from the initial node and
exploring the neighbor nodes first, before moving to the next level neighbors. The only
difference, if compared to the original BFS is that we first need to flatten multiple parallel
paths (and splits) using an arbitrary order of parallel flows.

Example 4.5.2. (Finding paths of the illustrative example (Figure 4.8)).
– <e1,t1,g1,t2,e2 >
– <e1,t1,g1,t3,e2 >

Determining the capabilities of a business process

Now we present the algorithm that determines the capabilities of a business process. At
this point, all paths of the business process have been identified. The general idea of the
approach is to iterate over each path, getting the capability of the node and propagating its
capabilities to the path capability, as defined by the following equation :

∀Ppathn
∈ Ppath : ∃Ppathcapn

=
⊎
∀ncap ∈ Ppathn

(4.6)

where Ppathn
represents each path of the set Ppath. Each path has an associated capability

Ppathcapn
. This capability is obtained by iterating over the sequence of nodes of the path

and propagating each node capability (ncap) to the path capability (Ppathcapn). The
propagation function is represented by the symbol ⊎.
In the end, the union of all path capabilities represents the whole business process
capability.

Pcap =
⋃
∀Ppathcapn

∈ Ppathcap (4.7)

where Pcap is the set of capabilities of the process P.
Algorithm 2 presents another alternative to explain how the path capability is determined :
The algorithm receives a set of paths as an input parameter. It starts by iterating over each
path (line 1). Then, for each path, it iterates over the sequence of nodes (line 3). Inside the
loop, the function ⊎ is called. As can be seen in line 6, the capability of the process is
obtained from the union of all path capabilities.

4.5 Determining the capability of business processes 70

Algorithm 2 Deriving the capability matrix of business processes
Require: Ppath : set of paths of the process P

1: for each Ppathn
∈ Ppath do

2: var Ppathcapn
← /0

3: for each n ∈ Ppathn
do

4: Ppathcapn
← Ppathcapn

⊎ncap
5: end for
6: Pcap← Pcap∪Ppathcapn
7: end for
8: return Pcap

Function ⊎ is detailed in Algorithm 3. The algorithm has two distinct behaviors : When
the capability is empty, the function simply extracts the capability of the follow-up task
and puts a label for each element, using the sequence n as a label. For example, when
processing task t1 with the expression LittleMoney(a) =⇒ LowRisk(b), the propagated
expression will be (1,LittleMoney(a)) =⇒ (1,LowRisk(b)), where 1 denotes the sequence
of actions.
When the set of capabilities of the path is not empty, the propagation function must act
accordingly :

— Collect all inputs of the task and identify data flows. If a data flow has been found,
the input parameter will not be propagated to the path (lines 5 to 9).

— Collect all outputs generated by the task and propagate each one to the path
capability (lines 10)

— Collect, test and propagate all task preconditions (lines 14 to 27)
— Collect and propagate all task effects (lines 28 to 32)

The process that test preconditions is more complex, since additional tests are necessary as
follows :

— The precondition of the task is not propagated if it is attended by previous effects
already present in the path.

— The precondition of the task is propagated if it is attended by at least one
non-deterministic effect already present in the path.

— The precondition of the task is propagated if the expression contains a reference to
at least one parameter that must be filled by the requester.

— The precondition of the task is propagated if the algorithm does not have enough
information to evaluate the expression. For example, the algorithm cannot evaluate
the expression salary > 1000 when the only information available is a predicate
valid(salary).

4.5 Determining the capability of business processes 71

Algorithm 3 ⊎ - Propagating the node capability to the path capability
Require: n :node, Ppathcapn

1: Pnewpathcapn
← /0

2: for each pc ∈ Ppathcapn
do

3: for each cap ∈ ncap do
4: var line← pc
5: for each input ∈ inputSet(cap) do
6: if input /∈ dataFlow(P) then
7: push (n,input) into inputSet(line)
8: end if
9: end for

10: for each out put ∈ out putSet(cap) do
11: push (n,output) into outputSet(line)
12: end for
13: var pathPE← /0
14: for each pe ∈ preconditionE f f ectSet(cap) do
15: for each p ∈ preconditionSet(pe) do
16: if p /∈ preconditionSet(line) then
17: if p ∈ inputSet(line) then
18: push (seq,p) into preconditionSet(pe)
19: else
20: if precondition does not hold in previous effects or preconditions then
21: mark line as invalid and break the innermost enclosing loop
22: else if precondition may hold in previous effects (non-determinism) or precon-

dition cannot be evaluated then
23: push (seq,p) into preconditionSet(pe)
24: end if
25: end if
26: end if
27: end for
28: if valid(line) then
29: for each e ∈ effectSet(pe) do
30: push (n,e) into effectSet(pe)
31: end for
32: end if
33: end for
34: push pathPE into line
35: push line into Pnewpathcapn

36: end for
37: end for
38: Ppathcapn

← Pnewpathcapn

39: return Ppathcapn

Table 4.4 presents the generated capability matrix of the business process. Each produced
line is a capability tuple. The whole set of capability tuples could be interpreted as a

4.5 Determining the capability of business processes 72

conjunction of disjunctions. More precisely, each capability tuple is a conjunction since
they do not have or clauses. As expected, each tuple will differ because each one may
contain a different precondition or a different effect. It is as if there exists an or clause
separating each capability tuple.

TABLE 4.4 The resulting capability of the business process

p Input Output Precondition =⇒ Effect
1 (1,{a}) {(1,{b}),(2,{c})} (1,LittleMoney(a)) =⇒ (1t1,LowRisk(b))∧ (2t2,CreditGrant(c)
2 (1,{a}) {(1,{b}),(2,{c,d})} (1,Lo f O f Money(a) =⇒ (1,HighRisk(b))∧ (2,♢CreditGrant(c))
3 (1,{a}) {(1,{b}),(2,{c,d})} (1,Lo f O f Money(a) =⇒ (1,HighRisk(b))∧ (2,♢CreditRe f usal(d))

The first column of the table (p) indicates the id of the path. The second column (Input)
contains the set of input parameters that are required to produce the capability. Note that in
this example, all tuples require the same set of input parameters. But this is not always the
case : depending on the path, the set of required inputs and their order is extracted from
each node in the sequence, thus they may vary. The third column (Output) presents the set
of generated outputs for each tuple. As it happens with input parameters, the set of
produced outputs and their order may vary. The Precondition =⇒ Effect column presents
the conditions that must hold before the execution of the business process and the
corresponding effects that are produced by the execution of the business process.
Note that each element in the tuple is written as a pair (sequence,element). The sequence
information is useful to reproduce the capability in a temporal order. For example, the first
tuple indicates that output parameter b is generated by task t1 in the first step and c in the
second step by task t2. The second tuple has a precondition stating that condition
LotO f Money(a) must hold. Note that the third tuple holds the same precondition as the
second tuple. Both tuples share the same effects during the first step, stating that a will
present a high risk profile HighRisk(b) at the end. But in the second step they differ : The
former states that a credit grant may be produced (♢CreditGrant(c)) Conversely, the latter
states that a credit refusal may be produced (♢CreditRe f usal(d)). The reason for this
dichotomy is the original (precondition =⇒ e f f ect) statement of t3. The expression
HighRisk(b) =⇒ CreditGrant(c)∨CreditRe f usal(d) have a non-deterministic
disjunction in the effect part. Thus, if HighRisk(b) is true, CreditGrant(c) or
CreditRe f usal(c) could be produced. The first capability tuple has a similarity with the
second tuple : both produce a credit grant. The difference resides in the quality of the
expression, because the effect of the first tuple is deterministic.
The number of tuples may vary according to the number of paths, the number of tasks and
the degree of complexity of preconditions and effects. The resulting set could be useful for
answering queries. For example, a requestor may ask : I want a credit grant. The answer

4.6 Improving the data representation perspective 73

could be : if you request little money you will certainly have a credit grant. But if you
request a lot of money you may have a credit grant.

TABLE 4.5 Simplified capabilities of the business process

Input : {a}
Output : {b,c,(d,optional)}

Precondition =⇒ Effect LittleMoney(a) =⇒ LowRisk(b)∧CreditGrant(c)
LotO f Monet(a) =⇒ ♢CreditGrant(c)∨♢CreditRe f usal(d)

Of course, the capability matrix is machine readable, it is not appropriate for humans. A
very simple step used to simplify the capability of business processes, removing temporal
labels, aggregating effects, could improve readability as can be seen in Table 4.5.
For more information about the business process capability derivation, we have prepared a
step-by-step example of the credit grant scenario, available in Appendix ??.

4.6 Improving the data representation perspective

In previous sections, we have shown how to build the capability model of a business
process model by making explicit three important aspects that could be used to query and
select processes : control flow, resource allocation, and data flow. Until now we have used
simple predicates, but real-world situations demand a richer data representation
mechanism, describing concepts, properties and relations.
We propose to specify both preconditions and effects in terms of ontology queries. It is
assumed that each domain has one or more ontologies describing concepts and properties
and how they relate. We use a simplified subset of the MOSS query language [9]. Next
sections give more details on how our query system can be used to improve the description
of data.

4.6.1 Improving the description of preconditions

A precondition is a logical expression that returns a Boolean value. Variables that have
simple types (e.g. numbers and strings) can be easily tested with common relational
operators (=,̸=,<,>,≤, ≥). Variables that have complex types, those associated with
concepts could be tested by using a predicate that checks the truth of a given query. For
instance, let us assume a task that is used to to buy stocks from the NYSE (New York
Stock Exchange). The task capability below could be used to describe that in order to buy,
the market must be opened. Note that we have omitted the output and effect part, for the
sake of simplicity :

4.6 Improving the data representation perspective 74

(deftask buy-stock

(input @we:world-exchange ...)

(output ...)

((:precondition (@we

(has-acronym = "NYSE")

(has-opening-time <= @current-time)

(has-closing-time >= @current-time)))

(:effect ...))

)

@we is a variable, more specifically an input parameter of the task buy-stock, with type
world-exchange. This constraint states that in order to be performed, the requester must
pass an individual of type world-exchange as a parameter. The precondition states that the
individual referenced by the parameter @we must have the attribute acronym equal to
“NYSE” and the current-time within the @opening-time and @closing-time ranges.

4.6.2 Improving the description of effects

The execution of a task produces one or more effects, causing a world state transition. A
description of an effect is not the real effect itself, but a pattern or a generalization
indicating what the world will look like after the service execution. Using our previous
example of stock orders, we could write the effects of the service processing the order as
follows :

(deftask buy-stock

(input @we:world-exchange @identifier:string @price:real)

(output @order:trading-order @bill:commission-bill)

((:precondition

(@we (has-acronym = "NYSE")

(has-opening-time <= @current-time)

(has-closing-time >= @current-time))

(:effect

(or (and (:action "create" @order

(has-status = "active")

(has-identifier = @identifier)

(has-quantity = @quantity)

(has-price = @price)

(has-daily-lim >= @lim-inf)

(has-daily-lim <= @lim-sup))

4.6 Improving the data representation perspective 75

(:action "create" @bill

(has-type = "house") (has-order = @order})))

(:action "create" "error-log" (has-source = "trading-order")))))))

Here, two different effects may occur : The first effect is the creation of an active trading
order, followed by a commission bill. Note that designers are not limited to use only the
equal operator. They are free to use negations and relational operators. The second effect
occurs if something wrong happens (for example, an expired credential or even a technical
error). The logical expression of the effect gives a description of different possibilities,
configuring a non-deterministic disjunction.

4.6.3 Action taxonomy

An effect always has an action verb associated with a concept of the domain ontology,
sometimes accompanied by a criterion. We have proposed an action taxonomy to improve
the expressiveness of effects, following a similar approach of Paraiso et al. [75] and
Derguech [31]. The main difference between these approaches is that our action is
fine-grained. That is to say, actions characterize what is the basic operation that is going to
perform by the business process. This is why an action must directly or indirectly inherit
from one of four basic actions namely create, modify, get and remove.
To illustrate how an action verb is inserted in this context, we present an example in Figure
4.9. It presents an action ontology containing a hierarchy of actions. Three leaves are
linked with a concept of the domain ontology. In this particular scenario, a bank customer
could apply for an investment, make an early withdrawal or check the performance of an
investment.
This action taxonomy has the following characteristics : Actions are part of an action
ontology and can be organized in a hierarchical fashion, so subsumption matching is
allowed. It is easy to infer if the action is world-altering or knowledge-providing. A
world-altering action changes the state of the world. More precisely, an action that is
subsumed by one of the following actions : create, modify or remove. A
knowledge-providing action makes some information of the concept available to the
requester.

4.6.4 Condition format

Both preconditions and effects follow the BNF format described below :

<condition> ::= ({<action>}} <concept> | <concept-var> {<clause>}*)

4.7 Semantic matching using the process space 76

FIGURE 4.9 The action ontology containing a hierarchy of actions

<action> ::= <action-keyword> <action-concept>

<action-keyword> ::= :action

<action-concept> ::= the name of the action

<concept> ::= the name of the concept

<concept-var> ::= <variable> having a concept as a type

<variable> ::= the name of the variable starting with @

<clause> ::= <attr-clause> | <sub-query>

<attr-clause> ::= (<attribute> <attr-op> <value>) |

(<attribute> <attr-op> <variable>)

<sub-query> ::= (<relation> <concept> {<clause>}*)

<attr-op> ::= < | <= | = | != | >= | >

<variable> ::= symbol starting with @

<attribute> ::= the name of the attribute

<value> ::= constant value

4.7 Semantic matching using the process space 77

FIGURE 4.10 Semantic matching using the process space

4.7 Semantic matching using the process space

This section illustrates how semantic matching can be used for querying business
processes aligning the requester perspective and the business process capability
perspective (see Figure 4.10. Semantic matching is typically used to discover exact or
similar concepts between one party and another. In the context of SOA, matchmaking has
been used to find proper semantic web services that satisfy the requirements of a requester
among a number of advertised services (e.g. Klusch et al.[55], Li and Horrocks [62],
Paolucci et al. [68], and Trastour et al. [98]). In our approach, we look for business
processes using both preconditions and effects. The matchmaking could be summarized as
follows : The agent first matches the desired state of the requester with the effects of the
advertised business process (i.e. both of them in the form of individuals). Next, the
algorithm matches the preconditions of the advertised business process with the
information provided by the requester. Finally, it computes the degree of semantic
matching between them.

4.7.1 Matching concepts and their actions

We have chosen an approach for matching concepts and actions that compute a degree of
match between parties. The concept of degree proposed by Paolucci et al. [68] has been
used. They propose four degrees of match, described below :

— Exact match : the requester’s concept matches exactly with the provider’s concept.
— Plug-in match : the provider’s concept subsumes the requester’s concept (In this

case, the former could be plugged in by the latter).

4.7 Semantic matching using the process space 78

— Subsumes match : the requester’s concept subsumes the provider’s concept.
— Fail : no subsumption exists between the two concepts.

FIGURE 4.11 A fragment of the investment ontology used to illustrate the concept of se-
mantic matching

To illustrate the concept of semantic matching degree, consider the investment ontology
depicted in Figure 4.11. Suppose a requester wants a concept of type fixed income. If a
provider’s output concept is also fixed income, this case corresponds to an exact match. If
the provider produces an investment, then investment can be plugged in by fixed income
and this case corresponds to a plug-in match. Instead, however, if the concept described in
the effect of the provider is treasury notes, that is, if fixed income subsumes treasury notes,
this corresponds to a subsumes match. The matching degree progresses in decreasing order
as follows : exact match, plug-in match, subsumes match, and fail. The matching degree
for each concept is collected to compute the total matching degree of a provider’s
preconditions and effects against the requester’s current and desired state. The same
strategy for matching is used for actions. For instance, the apply action is a concept that
has a action-of relation with investment. If the requester wants to apply for an investment
and the provider produces an apply for an investment, then we have an exact match.
Instead, however if the provider produces a create for an investment, then we have a
plug-in match.

4.7.2 Matching attribute clauses

If there is no match between concepts and actions, then the advertised process is discarded.
Instead, however, if there is a minimum match (i.e. subsumes for both action and concept

4.7 Semantic matching using the process space 79

are the worst cases), the algorithm compares each attribute clause present in the requester’s
concept with the attribute clause present in the provider’s concept. Note that our approach
allows not only equality operators but also other relational operators (i.e. >,≥,<,≤,=, and
̸=). This functionality augments the expressiveness power of the query, consequently
improving the results of the matchmaking. As a consequence, it augments the degree of
complexity, since not all relational operators are comparable. For instance, the clauses
a > 10 and a < 50 are not comparable, as well as the clauses a > 10 and a ̸= 50. When
operators are not comparable, the algorithm simply ignores them.

TABLE 4.6 Comparison matrix for matching relational operators of the requester and the
provider

HH
HHx

y
at > val at ≥ val at < val at ≤ val at = val at ̸= val

at > val valy > valx−1 valy > valx n/a n/a valy > valx n/a
at ≥ val valy +1≥ valx valy ≥ valx n/a n/a valy ≥ valx n/a
at < val n/c n/c valy−1 < valx valy < valx valy < valx n/a
at ≤ val n/a n/a valy−1≤ valx valy ≤ valx valy ≤ valx n/a
at = val n/a n/a n/a n/a valy = valx n/a
at ̸= val n/a n/a n/a n/a valy ̸= valx valy = valx

Table 4.6 presents a compatibility matrix between two parties using the expression
at op val, where at is the attribute, op is the relational operator and val is the value. The
first column of the table contains the operators of the interested party, represented by the
var x, and the first line of the table contains operators of the evaluated party, represented by
the var y. Note that the roles interested party and evaluated party may vary during the
matchmaking. More precisely, when the algorithm is evaluating the effects of a business
process, the interested party is the requester and the business process capability is the
evaluated party. The information provided by the requester is used to evaluate the
matching degree of the business process. For instance, the requester is interested in
processes that make investments with administration fees lower than 1% per year.
Conversely, during the evaluation of preconditions, the roles are inverted. The interested
party becomes the business process and the evaluated party becomes the requester. For
instance, the business process that applies to an investment checks if the amount informed
by the user is greater than 10,000 e.

4.7.3 Matching effects

We provide an example to explain how the matchmaking of effects works. Suppose that a
customer is interested in investing 10,000.00 e. He expects a return on investment greater
than 8%, an administrative fee lower than 2% a year, and he accepts a medium risk level.

4.7 Semantic matching using the process space 80

The algorithms starts by traversing the set of advertised business processes, comparing the
effects produced by each advertised process with the desired configuration of the customer.
Table 4.7 presents the result of the matchmaking of effects for the given example. Three
processes that are used to apply for an investment have been found : All of them produces
a compatible concept using a compatible action. The first business process used to apply
for a multi market fund reached a score of 92%. From the effect perspective, It is the
process that best fits with the customer requirements (e.g. level of risk, fees, and return on
investment). The remaining processes have a more modest score since some criteria are
not compatible with the customer requirements.

TABLE 4.7 Result of the matchmaking of effects for the investment example

involved party action concept average ROI 1 fee risk amount
requester apply investment >8 <2 medium = 10,000.00 e

involved party action concept average ROI fee risk amount effect score
apply for multi market apply multi market >9 <11 = 1.5 medium >= 100000.00 4.6/5 = 0.92score : 1 0.6 1 n/a 1 1

apply for treasury notes apply fixed income = 4 = 0.7 low >= 20000 1.6/5 = 0.32
score : 1 0.6 0 1 -1

apply for real state apply real state >3 <6 = 1.0 low >= 5000 0.6/5 = 0.12
score : 1 0.6 -1 n/a 1 -1 n/a

We have followed a strategy similar to the one proposed by Kim in [52] for calculating the
effect score. The degree of match is used to calculate the score for the concept and the
action (1.0 to exact match, 0.8 to plug-in match and 0.6 to subsumes match). In our
illustrative example, all concepts have received the score 0.6, since none of them matched
exactly with what the customer specified : investment subsumes multi market, fixed income
and real state.
Non-deterministic effects should have a score lower than a deterministic effect. We have
chosen an empirical method for penalizing such occurrence. In the case of a
non-deterministic effect, the score is multiplied by 0.8.
For clauses, we compute the score using the following criteria : if the clause of the
requester is compatible with the clause of the provider, then we assign the score 1.0. If the
operators of the requester and the provider are not compatible (e.g. > and <), we ignore it,
assigning a score of zero. If the clauses do not match, we assign a score equal to -1.0 to
penalize the overall score of the line. After computing all column scores, the score is
computed for the line : the sum of all column scores divided by the number of criteria of
the requester.

4.7 Semantic matching using the process space 81

4.7.4 Matching preconditions

The semantics of matchmaking for preconditions is the same of the matchmaking of
effects. However, an inversion of roles occurs. That is to say, during the evaluation of
preconditions, it is the business process that evaluates if the requester content is
compatible with the set of preconditions.
The same approach is used for computing the score of clauses, as shown in the previous
section. A score of 1.0 for compatible clauses, a score of 0 for clauses that are not
comparable and a score of -1 for incompatible clauses. After computing all scores, the
average score is computed for the line. The average score is the sum of all scores divided
by the number of criteria present in the precondition.
Table 4.8 presents the result of the matchmaking. As can be seen, each business process
contains a precondition using the amount. The difference is that each process specifies a
different criteria of acceptance. For example, the apply for real state requires an amount
greater of equal than 5.000 e. This is compatible with the amount that the customer is
expecting to invest. Thus, the score of the column is computed with 1.0. However, the
remaining business processes require an amount that is greater than the customer amount.
Thus, the calculated score is -1.0 for each business process.
In the end, the overall score is computed as an average of the score of the effect and the
score of the precondition. Note that the process that applies for a real state investment is
the most suitable for the customer. If we only use the effect criteria for ranking processes,
the multi marked fund is the most suitable one. Figure 4.12 illustrates the matchmaking
using the requester perspective.

FIGURE 4.12 Result of the overall matchmaking for the investment example

4.8 Discussion 82

TABLE 4.8 Result of the overall matchmaking for the investment example

involved party action concept amount
requester apply investment 10,000.00 e

involved party action concept amount effect score precond score overall score
apply for real state apply real state >= 5000 0.16 1 0.58score : 1 0.6 1

apply for multi market fund apply multi market >= 100000.00 0.92 -1 -0,08score : 1 0.6 -1

apply for treasury notes apply fixed income >= 20000 0.36 -1 -0,64score : 1 0.6 -1

4.7.5 Sending results to the requester

The score varies from -1 to 1. To send results to the requester, we first filter the list of
process capabilities that have a score greater than zero. Since two or more process
capabilities may appear in the list, capabilities are grouped into a single line and the score
of the process is the average of all capability lines. Finally, the summarized list of
processes with the average score greater than zero is sent to the requester.

4.8 Discussion

We started this chapter by discussing the problem of a lack of machine-readable
representation of business processes. Since they do not provide a process space with
sufficient semantics for querying business processes, it is impossible for stakeholders (e.g.
personal assistants) to search useful processes directly from the process space. At the same
time we draw a scenario where personal assistant have access to a unified view of business
process capabilities, so assistants could benefit from a more expressive query mechanism.
As a second step, we proposed an approach to describe the capabilities of business
processes. The approach allows describing processes in terms of preconditions and effects.
The novelty presented here is the ability to describe both deterministic and
non-deterministic effects, which is useful for modeling tasks whose outcomes are based on
human decisions and also for non-deterministic services. The second contribution is a
derivation or safe approximation of a business process model based on the capabilities of
tasks. We then showed how to search for appropriate business processes using a semantic
matching technique in the process space. The overall approach can be seen as an attempt
to improve the expressiveness power of business processes.
This research contributes to the field in two ways : (i) building an approach for describing
business process capabilities and derive a process capability based on its building blocks

4.8 Discussion 83

(tasks, events, and gateways). (ii) Demonstrating how semantic matching can be utilized to
find the advertised business processes the most similar to a requested business process
using a semantic matching approach that attempts to match functional properties.
Although annotating business processes with semantic information appears to be
time-consuming and complex, the resulting knowledge can substantially improve the usage
of the process space, and accelerate the development of new functionalities, even those
that require a high level of knowledge representation like dialog-based interfaces.
The mechanism is at the time of writing at an early stage of development, and a number of
issues and possible improvements have been detected during the designing and preliminary
tests of the approach, as follows :

— We have validated the approach using a small subset of examples from the banking
domain. A comprehensive evaluation using different domains is necessary.

— The algorithm that derives the business process capabilities does not allow cycles
in this version.

— Even if the final representation in the form of capability matrix is
machine-readable, the final format is not easy to read for humans.

The next chapter describes a conversational interface that uses this model as a source for
conducting a task-oriented dialog for the discovery and the enactment of business
processes.

Chapitre 5

A conversational interface for enabling
the enactment of business processes

5.1 Introduction

We have studied in Chapter 2 how BPM systems influences organizations and how
processes are enacted in organizations. As stated by van der Aalst [103], BPM systems are
strongly dependent on process models. These models are used as a source for the creation
of process instances, the generation of user interfaces, and the orchestration of process.
We present in this chapter the architecture of the conversational interface that will be used
to realize our approach for business process enactment using personal assistants and
business process models. This chapter describes all the steps and techniques used to
analyze and design the architecture, with particular attention to the interpretation of user’s
sentences to discover, select and execute business processes.

5.1.1 Contributions of this chapter

The main contribution of this chapter can be summarized as follows :

1. A process space query mechanism based on the interpretation of user sentences.

2. A dialog manager adapted to the business process enactment problem.

5.1.2 Organization

This chapter is organized as follows :

5.2 Our baseline : The OMAS dialog system 85

— Section 5.2 presents our baseline for dialog management. The OMAS dialog
system is presented, as well as some illustrative examples of applications
developed using this platform.

— Section 5.3 explains the dialog management mechanism and an example of
implementation of our illustrative example of credit grant.

— Section 5.4 presents our approach for the enactment of business processes using
personal assistants called PA4Biz, organized in the following order :
— The overall architecture
— The top-level conversation graph
— The syntactic annotation process.
— The semantic annotation process.
— The business process selection and triggering mechanism.
— The business process enactment mechanism.

5.2 Our baseline : The OMAS dialog system

OMAS [8] is a multi-agent platform that implements a number of mechanisms found in
other multi-agent platforms, including our main interest : It allows the design and
implementation of conversational interfaces using personal assistants. OMAS is a research
platform and as such undergoes a number of changes, extensions, and improvements
continuously. The dialog system has been used in several research and industrial projects
during the last few years and some practical examples are shown in the beginning of this
section. Thus, we benefit from the research effort and its outcomes, adopting the OMAS
conversational interface as a baseline for building our approach targeted to the enactment
of business processes.
As mentioned before, a personal assistant (PA) in the OMAS platform is a special type of
agent that provides a human interface to facilitate the interaction with complex systems.
The interaction takes place through a natural language dialog using written or spoken input.
Each person has a personal assistant (PA) that hosts its user profile and eventually learns
the user’s habits and interests from continuing interaction.
One important component of the PA is the dialog manager. In general terms, the dialog
manager is responsible for managing the dialog flow and maintaining a representation of
the dialog state for decision-making purposes. It is a rather complex process, and the
whole mechanism will be explained in details in a dedicated section. From now, some
practical examples of conversational interfaces built with OMAS are shown.

5.2 Our baseline : The OMAS dialog system 86

5.2.1 Examples of conversational interfaces built with OMAS

Some examples of projects that use the conversational interface have been selected, each
one having different modalities of interaction. For the sake of simplicity we selected only a
few. More examples of conversational interfaces using OMAS can be found in [8] [96],
[80] [75] [50].

The TATIN project

Here a description extracted from the TATIN project website 1 : TATIN is a collaborative
platform that uses a large multi-touch, multi-user interactive table, coupled with an
interactive board display. These vertical and horizontal surfaces allow for complementary
styles of collaboration. Users primarily interact with simple multi-touch gestures, but for
more complex commands, advanced users also have the possibility of using voice
commands. The voice interaction is facilitated by cognitive software agents, which can
give confirmations and ask questions in the case of ambiguous commands. All the devices
in the room are connected using a custom-designed multi-agent system, which manages the
multi-device user interaction. In our implementation, we blend agents from two different
toolkits JADE and OMAS that play complementary roles in the infrastructure. Figure 5.1
presents a brainstorming session using the interactive table.

FIGURE 5.1 A brainstorming session using the interactive table of TATIN

During a collaborative session using TATIN, each user has his own personal assistant. The
interaction may be multi-modal with input from a microphone and from designation on the
graphics table (Barthès [10], Jones et at. [49]). The fragment below presents an example of
a conversation taken from a brainstorming session when users share and organize ideas
using Post-it notes :

1. Available at http ://www.utc.fr/tatin/TATIN/PROJECT.html

5.2 Our baseline : The OMAS dialog system 87

Master : (1) Nouveau Post-it intitulé cahier des charges.
(1) New Post-it entitled requirement specification.

Assistant : (2) Le Post-it P-23 a été crée.
(2) The Post-it P-23 has been created.

Master : [User selects the Post-it P-23 on the interactive table.]
Master : (3) Supprimer ce Post-it.

(3) Remove this Post-it.
Table : [Post-it P-23 is highlighted.]

Assistant : (4) Celui-là ?
(4) This one ?

Master : (5) Oui.
(5) Yes.

Table : [Selected Post-it disappears from the interactive table.]
Assistant : (6) Le Post-it P-23 a été supprimé.

(6) The Post-it P-23 has been removed.

One of the highlights of this dialog manager is the usage of the concept of salient features.
This technique consists in keeping a list of important objects and events, stacking them as
they occur. Salient features could be used to undo operations and for reference resolution.
An example of reference resolution can be seen in utterance (3), where the user asks for
removing a Post-it by using the it pronoun. The assistant in turn, reads the salient feature
stack, finds the Post-it and asks for confirmation before removing it from the interactive
table.

The TerreGov Project

Another example of dialog using the OMAS platform comes from the European TerreGov
project. This project uses ontologies, semantic web technologies, and personal assistants to
provide better e-government services to citizens [14]. We have selected a conversational
interface used to request direct income support [74]. The fragment below shows an
example of a conversation between the user and the personal assistant using a vocal
interface :

5.2 Our baseline : The OMAS dialog system 88

Master : Can you list all conditions to receive a RMI ?
Assistant : Yes. The candidate must live in France, be older than 25, have income

not higher than 417,88 e per month
Master : OK, could you start an RMI application ?

Assistant : What is your age ?
Master : 26

Assistant : What is your monthly income ?
Master : 300

Assistant : Where do you live ?
Master : ...

The highlight of this application is the usage of a domain ontologies with minimum
adaptation to be used by the dialog manager. Additional information such as synonyms
and lexical information has been added to the domain ontology.

The HDSRI Project

The HDSRI project is a system developed in our laboratory to help researchers keeping
track of international projects [11]. In addition to basic functions to manage the projects,
the system has a dialog-based functionality that can be used for information extraction
based on natural language sentences.
We show some examples of conversations taken from the system. Figure 5.2 presents a
dialog session between the user Barthès and his assistant, which only understands
expressions written in French. The statement “Montrez-moi les projets en cours sous forme
d’un camembert” is equivalent to “Show me a pie chart of active projects”. The system
interprets the user’s request by communicating with its staff agents, finding the most
suitable one to attend the request. In this specific case, a project agent was chosen to
interpret the user sentence using its domain ontology and the corresponding knowledge
base to produce a proper query and gives back the result to the assistant. Then, the PA
retrieves the response of the service agent and formats the result to its master using a pie
chart.
The dialog system of HDSRI is not limited to text. It allows the presentation of results
using a variety of components (scatter diagrams, column charts, pie charts, radial graphs,
world maps and so on). For instance, Figure 5.3 presents an example of a dialog with some
sort of multi-modality. First, the user asks for all active projects of the ASER research
group. Then, the assistant informs that it found 3 active projects that can be displayed

5.3 Dialog approach 89

FIGURE 5.2 Asking the personal assistant for a pie chart of active projects

using three available components (table, chart or graph). Note that, even if the user can
simply write his or her preference in the input (e.g. "I prefer a graph"), it is also possible to
select from one of the alternatives provided by the assistant in the dialog window. After the
user’s choice, the system presents an interactive graph with active projects, where triangles
are projects, circles are persons and squares are research groups. The component provides
an interactive radial graph visualization, allowing users to navigate, search and explore the
resulting graph.

5.3 Dialog approach

As presented in Chapter 3, there are several possible approaches to design and build dialog
managers. The OMAS dialog approach can be seen as a hybrid solution combining the
following techniques :

— Information states : dialogs are modeled as a conversation graph.
— Script-based : each conversation state contains a set of rules containing patterns

influencing the whole dialog.

5.3 Dialog approach 90

FIGURE 5.3 Asking the personal assistant for active projects without specifying the output
format

— Frame-based : a task and its elements are modeled as frames.
— Task-oriented dialog : dialogs are reusable components, linked with a library of

tasks.
This approach requires an environment restricted to a professional context or a focused
context in which the number of possible actions is limited. Natural language can be used to
find and execute a task. The dialog is conducted with a minimum of recognized phrases,
and there is no need for a grammatically correct input.

5.3.1 Dialog mechanism

OMAS provides a task-oriented dialog manager. It means that the user must have a goal in
mind when requesting something to the personal assistant. During the dialog usage, users
might want to retrieve something from an information system or perform one or more
tasks. The problem is thus simplified and can be tackled by a two-step approach : (i)
recognizing what action is requested ; and (ii) extracting the necessary parameters from a

5.3 Dialog approach 91

noisy input during the dialog [11]. The first step is solved by using a very general top-level
dialog that listens to the user request and tries to find available tasks to execute, based on a
library of tasks. The second step can be solved by triggering the dialog associated with the
selected task or letting staff agents deal with the raw input. The sequence of actions
performed by the top-level dialog can be summarized as follows :

1. The user asks something to the PA using the keyboard or a vocal interface (e.g., I
want to report a stolen card). The input is then segmented into a set of words, and
the performative is identified.

2. The PA tries to infer the targeted task from some of the words used as indexes. If a
single task is found, the corresponding task sub-dialog is started. If more than a
task is found, the one with the highest valuation is assumed to be the one that is
intended. If no task is found, then a failure is declared.

3. We then go back to the beginning of the dialog.

Example 5.3.1. (An example of dialog)

1 Master : I want a credit grant.
2 Assistant : [It identifies that the performative is a request.]
3 Assistant : [It selects one task.]
4 Assistant : [It starts the corresponding sub-dialog used for loan request.]
5 Assistant : What is the amount ?
6 Master : 3000 EUR.

...
7 Assistant : Congratulations, you got your credit.
8 Assistant : [It returns to the top-level dialog.]
9 Assistant : Would you like to do something else ?

The example above shows a fragment of the communication between a bank customer and
his or her personal assistant. The user starts by asking for a credit loan in (1). Then, the
personal assistant identifies that the message type is a request in (2) (could also be an
assertion, a question or a confirmation). It finds a compatible task from the library of tasks
(3) and starts a very specific dialog to attend the request in (4). The dialog is conducted
until step (7). Note that in (8), the control is given back to the top-level dialog, so in (9) the
assistant is free to attend other types of requests. This example shows a conversation with
states that are causally linked and are hierarchically organized. Now, we analyze how they
are modeled.

5.3 Dialog approach 92

5.3.2 Modeling dialogs using conversation graphs

The dialog representation in OMAS has its roots in the approach developed by Chan Lam
[19] that models a conversation graph. A conversation graph is an oriented graph
modeling a finite-state machine. Nodes are called conversation states and arcs are called
transitions. Each conversation state contains a set of rules that apply to a fact base
containing information obtained from the master’s input or results from the analysis of
previous states. The fact base is similar to the fact base of a rule-based system. At a given
node applying the rules triggers either a transition to a new state or an action (e.g. sending
a message to other staff agents). A complete dialog is represented by a path or a succession
of conversation states.

Example 5.3.2.

FIGURE 5.4 Dialog mechanism using information states

Figure 5.4 presents a conversation graph with five states. Each state has its own set of rules
and is linked with the facts base, which is enriched as the graph is traversed. A complete
dialog is represented by the sequence {S0,S2,S3,S4}.

Note that the set of states is not physically implemented as a graph structure. Indeed, there
are no explicit arcs between two states. Transitions are computed dynamically. Thus, a set
of states represents an ensemble of virtual dialog graphs.
The state object has two important methods that are called when the state is triggered :

— =execute is performed when entering a state after a transition has occurred. It
usually produces a statement or prints a question to the user. Note that a question
blocks the state until an answer is given. In other words, the state enters in waiting
mode.

— =resume is executed when the user provides some information or when some
information is already available in the facts base. The dialog manager then analyzes

5.3 Dialog approach 93

the text content, updates the conversation object and computes a transition to
another state.

The dialog has a conversation object. It keeps track of where we are in the dialog (which
state is the current state), of the I/O channels, of the level of recursion in the sub-dialog,
and contains the facts base accumulating the information during graph traversal.

The top-level dialog

FIGURE 5.5 Conversation graph of the top-level dialog

The top-level dialog is an interesting example to explain how the conversation graph
mechanism works. During its usage, the user interacts with the assistant to find an
appropriate task to execute. Figure 5.5 presents the top-level dialog modeled as a
conversation graph. The first state, called entry state is used to collect the user input and
analyze the message type (e.g. a request or an assertion). When its =execute method is
triggered, the dialog is prepared to be used for the first time (i.e. initialization of the
conversation object, sending a welcome message, and waiting for input). The =resume
method takes place as soon as the user says something. The dialog manager then analyzes
the message type, stores both the performative and the raw input into the facts base.
Finally, the control is transferred to the find candidates task. If a task cannot be
determined, the PA transfer the control to Eliza to analyze the input and either produces an
adequate answer or tells the master that it did not have enough information to process the
input. The Eliza sub-dialog is a special simple dialog with predefined questions and
answers inspired by the work of Weizenbaum in [109]. When one or more tasks can be

5.3 Dialog approach 94

determined, the task with the highest score is launched by triggering a sub-dialog attached
to this task. The conversation state called task dialog waits for the execution of the
sub-dialog. At the end of the execution of the sub-dialog, the dialog manager tests if the
execution was either a success or a failure, showing an appropriate message to the user.

5.3.3 The library of tasks

The set of tasks (or possible actions) is modeled and gathered into a library of tasks. These
tasks are defined as individuals of the concept of task. Table 5.1 shows how a task for
obtaining a credit grant is defined, using a deftask macro that produces a task individual.
The :indexes parameter specifies a list of linguistic cues. Each phrase (cue) has a weight
between -1 and 1. A value of -1 should be used when the task may not be selected if the
input contains the corresponding phrase. A value of 1 should be used when the task
certainly applies if the input contains the corresponding phrase.

TABLE 5.1 Defining a task

(deftask “credit request”
:doc “Task for asking a bank for a loan”
:performative :request
:dialog _credit-request-conversation
:indexes (“credit” .5 “loan” .5 "grant" .3))

The :performative parameter acts as a filter specifying whether the task applies to a request
or to an assertion. The :dialog parameter points to the representation of a conversation
graph when interacting via the PA interface.

5.3.4 The selection mechanism in details

One of the states present in the top-level dialog is the find candidate tasks as can be seen in
Figure 5.5. At this state, the dialog manager does not wait for the user input and directly
analyzes the facts base to find an appropriate task. The sequence of actions is done as
follows :

1. The user requests something to the PA (e.g., “I want a credit grant of 3000
ewithout fees").

2. The phrase is segmented into a set of words, removing spaces, words separators,
and empty words.

5.3 Dialog approach 95

3. For each task in the library, the PA checks the sentence for phrases specified in the
index pattern describing the task, and computes a score by using a MYCIN-like
formula (i.e. if 2 cues a and b are present, the combined score is computed by the
formula a+b−a×b) ; for example using the user input of step one and the cues for
the task described in Table 5.1, the two words “credit” and “grant” will give a score
of (.5+ .3− .5× .3) = .65 for the task. This is a simple but efficient approach since
each match of a sub-expression reinforces the overall match score.

4. Tasks are then ordered by decreasing scores.

5. The task with the highest score is selected, and all tasks with a score under a
specific threshold are discarded.

Note that the choice of the indices and the choice of the weights is an empirical task.
Selecting the right linguistic cues and its corresponding weight should be the result of
experiments using, for example, training sets of Wizard-of-Oz interactions.

5.3.5 Building a conversation graph from a business process model

FIGURE 5.6 The credit grant conversation graph

We have built a conversation graph based on the business process model of our illustrative
example presented in Chapter 3. The corresponding dialog is used for granting credit to
banking customers, as can be seen in Figure 5.6. The first step is used to retrieve the
customer profile. When activated, a request message is sent to the bank agent, that in turn
returns an individual representing the risk profile. The individual is then stored into the
facts base for further usage. Then, the assistant asks its master for the credit amount. As
soon as the user answers with a valid amount, the assistant sends a message to the bank

5.3 Dialog approach 96

agent to request the grant. If the credit is granted, the assistant informs the user, and the
sub-dialog is finished. If the credit is not automatically granted, a message requesting the
manual evaluation is sent to the personal assistant of some risk manager. As soon as the
risk manager’s assistant answers the request, the credit is granted or refused depending on
the risk manager’s response. Figure 5.7a presents the interface of a session with the
customer, and Figure 5.7b presents the interface of a session with the risk manager.
During a typical credit evaluation session, this environment has, at least, three agents : A
personal assistant for the customer, an agent that has the skills to execute bank services,
and a personal assistant for the risk manager. The bank agent is responsible for the
execution of various services of information systems (e.g. querying and updating relational
databases). As customers do not know risk managers a priori (indeed this is not
recommended for credit evaluation), a resource allocation mechanism was developed. We
have used the contract-net protocol with a simple winning criterion : When the PA of the
customer needs a manual assessment, it sends a broadcast to the coterie, requesting a risk
manager. The first risk manager that answers the request is the one that will assess the
request. This approach is similar to the push pattern used for resource allocation in
business processes (see Russel [83]).

5.3.6 Discussion

This section presented an overview of the OMAS dialog manager. Based on the
architecture definition and the experience of developing a dialog from an existing business
process definition, we focus now our discussion on the following issues :

Task selection

The task selection is a critical element of our approach since business process users have
different ways of requesting a service. The reasons for this variation is rather complex and
out of the scope of this work. They may come from cultural aspects, from the level of
experience or personal traits. But, independently of the cause, we observe three distinct
types of requests made by users :

— Request based on the description of the current state : Inexperienced users may not
be capable of describing what they want, but rather they can easily describe their
current state. We thus can assume that the user does not know what the system is
capable of offering to solve his problem. For example, the user may write to the
assistant “I have bought a new car”. The assistant could search for tasks that are

5.3 Dialog approach 97

compatible with this description, offering, for example, a service to “request a car
insurance” and a service to “buy an extended warranty”.

— Request based on one or more intermediate outcomes that may be produced : Once
users are more comfortable with the whole process, they might formulate a request
using “how” elements instead of “what” elements. For instance, a user may ask the
assistant : “I want to make a quotation for a new computer”. In fact, the quotation is
part of the whole procurement process for buying the computer. Thus, the system
may suggest starting a procurement process, but warn him that the process does
much more than the user is requesting.

— Request based on one or more final outcomes : Users know exactly what they want.
For instance, “I want to renew my driver’s license”.

The approach used for task selection uses keywords for interpreting what the user wants to
do. There is no grammar for interpreting the user input. As a consequence, requests must
not be too complex, and neither negations nor disjunctions are allowed. More detailed
expressions like “I want a credit request without fees for next Monday” could present
some problems to the dialog manager. The task selection is capable of recognizing a task
based on the keywords but may lead the user to an inappropriate task.

Resource allocation

The role of risk manager of our illustrative example shows that the distribution and
coordination of work amongst the group of human resources associated with a process is a
critical task. Dialogs intended to help users during the enactment of business processes
must be prepared to work in conjunction with the BPM enactment system to receive
notifications of task allocations of notifications of task offers. For the sake of simplicity,
we have adopted a solution based on the contract-net protocol for the example shown
above. Of course, the chosen strategy has some potential problems, and a number of
questions arise immediately :

— What if there are no risk managers to attend the request ?
— What if risk managers are too busy to answer the request ?
— What if a manager wants to delegate the task to another risk manager ?
— What if a manager wishes to suspend a task momentarily ?

Invoking other processes during the execution of a task

The hierarchical characteristic of the conversation graph does not allow the master to
deviate from the predefined plan and execute a different sub-dialog during the

5.4 PA4Biz : A personal assistant for the enactment of business processes 98

conversation, except when manually programmed for that [63, p. 25]. To clarify, we
present a fragment of a conversation using our implemented example :

1 Master : I want a credit grant.
2 Assistant : What is the amount ?
3 Master : Show my balance.
4 Assistant : Could you please inform a numeric value ?
5 Assistant : What is the amount ?
6 Master : 4500 e.
7 Assistant : Congratulations, you got your credit.
8 Assistant : [It returns back to the top-level dialog.]
9 Assistant : Would you like to do something else ?

In (3) the customer is not sure about how much money he or she needs to borrow. Thus,
the user tried to check his or her balance without success.

Control and data flow

The credit grant example has shown a great similarity between the conversation graph and
a typical business process model based on Petri nets (BPMN [73], EPC). Both provide
specifications that are used by their engines that in turn, control the sequence of events, the
flow of data, and involve actors when needed. For the implementation perspective, we
believe that the development of dialogs for the enactment of a business process requires a
great effort of development, since all process rules must be also present in the conversation
graph. Thus, we believe that the effort to manually port a business process model to a
conversation graph is a good reason for trying to find more feasible alternatives.

5.4 PA4Biz : A personal assistant for the enactment of
business processes

In this section, we present our conversational interface called PA4Biz (Personal Assistants
for Business Processes). The resulting architecture provides a new baseline if our dialog
manager, allowing users to select and trigger, as well as manage activities allocated from a
BPM enactment system. During this section, we describe the overall architecture as well as
our personal assistant architecture in details.

5.4 PA4Biz : A personal assistant for the enactment of business processes 99

5.4.1 Overall architecture

This section is dedicated to present a big picture of the proposed architecture. Four types
of cognitive agents have been designed : a group of personal assistants and BPM
representatives, the BPM system agent and the authentication agent.
We start by explaining the architecture from the agent in the lower part of the diagram : the
personal assistant. Each user has his own personal assistant that is committed to help its
master during the enactment of business processes. More specifically, it helps finding the
most suitable process based on their conversation history. It also manages the flow of
incoming tasks that arrives asynchronously (both by allocation or by offer), as well as
managing the fulfillment of input parameters to perform tasks.
As it happens with the PA, each user has his own BPM representative. A representative
also serves the user, but behind the scenes. It is responsible for keeping an active session
with the BPM system agent and executing all process-related tasks (e.g. search for
processes, start a process, execute tasks and so on). As can be seen in the diagram, the
representative does not have direct access to the user, but only to the PA. Each time the
master wants to trigger a process, he or she asks the PA, which in turn delegates the
request to its representative. In the same way, when the BPM system agent wants to notify
an event that involves the master, it sends a notification to the representative, so the
representative forwards the message to the PA (e.g. the BPM system wants to notify that a
process has just finished).
The lifecycle for both personal assistants and representatives is relatively short, more
specifically during their master’s session. It is the authentication agent who is responsible
for the authentication of the master into the BPM system and the creation of the duo (i.e.
the PA and the representative). As the BPM system already have a persistency model for
the user session, the authentication agent recreates the representative session each time the
master logs in, allowing both agents receiving past notifications in case of a failure. For
this reason, both the PA and the representative agent operate in memory, and they do not
have a persistence model.
Finally, the BPM system agent acts on behalf of a BPM system. Of course, the scope is
very restricted, limited to some basic functionalities related to the lifecycle of process
instances (e.g. starting processes, performing tasks, creating sessions, feeding the BPM
system with data). The novelty here is the skill to provide a comprehensive representation
of business process capabilities and semantic search functionalities as well as a query
mechanism. This agent implements these two capabilities that have been detailed in
Chapter 4.

5.4 PA4Biz : A personal assistant for the enactment of business processes 100

Note that a separation of concerns was used during the design of the architecture, avoiding
strong dependencies between the PA and the BPM system. There is a thin layer in our
architecture. For example, the PA does not have access to the BPM ontology. Only the
representative and the BPM system have access to it. In the same way, only the personal
assistant have access to the dialog ontology. However, all agents have access to the domain
ontology (and the action taxonomy).
This clear separation could be helpful to the evolution of our research on BPM systems
and personal assistants.

Personal assistant architecture

A great part of this chapter is dedicated to the personal assistant. Thus, it is important to
give an overview of the PA’s architecture before detailing each component. Figure 5.9
presents an illustration containing all elements of the PA, grouped by functionality.
The communication between the PA and its master is made through a written dialog
interface mixed with graphical controls such as buttons, graphics and input controls that
are generated by the dialog manager. The OMAS platform [8], developed at our laboratory
allows two types of interface (both desktop and web) with minimum effort of adaptation to
port from one environment to another.
As mentioned before, the scope of our work is not strongly related to natural language
processing. Thus, a set of techniques for shallow semantic parsing is used. The package of
NL modules contains the following components :

— A syntactic annotation function that is used to identify syntactic elements of a
sentence, identify named entities (e.g. names, locations, people) and the dialog act.

— A semantic annotation function that captures and annotates the sentence with
domain ontology elements.

— An information extraction function that contains a set of handcrafted linguistic
rules used to extract information from a sentence and finally update the dialog
context memory.

A set of predefined dialogs have been created for the business process enactment problem :
A top-level dialog, a sub-dialog that takes notes during the conversation, a sub-dialog used
for selecting and triggering business processes, as well as performing tasks. Note that the
dialog used to perform tasks is asynchronously added during the conversation, which
augments the level of complexity of the application.
The group of BPM modules contains two components : The first is the BPM event handler,
implemented as a set of skills. It is responsible for notifying the dialog manager when a
process event arrives (e.g. a new task, a process that have just finished and so on). The

5.4 PA4Biz : A personal assistant for the enactment of business processes 101

second contains a set of functions used for querying the BPM system agent (e.g. check
pending tasks, check pending processes).
The PA has access to two ontologies and a taxonomy : the domain ontology, the dialog
ontology, and the action taxonomy are used to interpret user sentences and manage the
dialog memory. The master group contains basic functions to retrieve the user profile (e.g.
name, organization, role).
Now that a brief overview of the architecture was provided, we start by giving more details
about the top-level dialog : the starting point for all users.

5.4.2 The top-level dialog

We have proposed a top-level conversation graph for the problem of business process
selection. The top-level dialog is rather simple, having only four states as can be seen in
Figure 5.10. Its main objective is to interpret the master’s sentence and make a decision if :
(i) the user is only describing something, the PA will only take notes ; (ii) if the user is
asking or requesting something, the PA will take notes and propose the execution of one or
more business processes. For instance, if the user says : “I am 26 years old, married, and
my salary is between 4,000 and 5,000 e”, the PA identifies that this is an assertion and it
will extract information and store it in the dialog context memory for further usage. If the
same user continues : “What do you recommend ?”, the PA will take notes and also search
for business processes based on the information provided since the last sentence is a
question. The PA could suggest an investment funds application or a treasury notes
application.
The dialog starts in the entry state that is used to prepare the conversation object and
display an opening message. Then the user sentence is retrieved in get input state, which
transfer the control to the take notes sub-dialog (the plus sign denotes a sub-dialog). As it
name suggests, this sub-dialog is responsible for interpreting the user’s sentence, extract
information and store it for further usage. If the dialog act is a directive or a question, the
control is transferred to the business process selection and trigger sub-dialog that tries to
find the most suitable process or set of processes for its master.

5.4.3 Taking notes

The take notes sub-dialog is a generic sub-dialog that is used by both the top-level dialog
and the task execution sub-dialog. It makes use of all shallow natural language modules
presented in the PA architecture as can be seen in Figure 5.11.

5.4 PA4Biz : A personal assistant for the enactment of business processes 102

It starts by making the syntactic annotation of the sentence, retrieving, among other
information, the dialog act of the sentence. Next, the semantic annotation uses the domain
ontology, the action taxonomy and the dialog ontology as a source to annotate the sentence
for further information extraction. Note that this sub-dialog is only prepared to handle
assertive, directive and interrogative acts. All other types of dialog acts are transferred to
Eliza, a safety net used to avoid letting user without any answer. As can be seen in Figure
5.11, both the semantic annotation and the information extraction are invoked as
sub-dialogs. Both sub-dialogs allow the user to give up at any time, aborting the dialog.
We continue by explaining the syntactic annotation sub-dialog.

5.4.4 Syntactic annotation

The objective of this process is threefold : (i) Capture grammatical relations of the
sentence. These relations will be used for further processing. It is desirable that the whole
approach could be easily ported to other languages such as French and Portuguese for
further evolution of the framework, although our preliminary effort is dedicated to the
English language. (ii) Annotate the sentence with named entities (people, location, and
organizations) as well as temporal and numeric content. (iii) Identify the dialog act for
further processing. Figure 5.12 presents a diagram with the steps taken during the syntactic
annotation, producing additional information over time.

Capturing grammatical relations

We have chosen a typed dependency approach developed by the Stanford Natural
Language Processing Group, called Universal Dependency Representation [30]. The
resulting structure provides a description of grammatical relationships in a sentence as
typed dependency relations. The outcome is a set of triples of a relation between pairs of
words. For instance, the sentence “The balance of my account is positive” has a triple
stating that positive refers to the balance. The illustration below shows the sentence with
labeled arcs. The outgoing word is the governor of the dependency and the incoming word
is the dependent word :

5.4 PA4Biz : A personal assistant for the enactment of business processes 103

The balance of my account is positive

root

det

nsubj

case
nmod :poss

nmod

cop

The outcome of this process is a tree, which is generated from the set of dependency
triples. Our information extraction procedure will use this tree based on handcrafted roles,
described in details in the next section.

Annotating the sentence with named entities

Needless to say, the interpretation of sentences is a notoriously difficult endeavor. Noisy
sentences and ambiguities may appear during both the syntactic or semantic analysis.
Thus, to help reduce ambiguities, we have added a step during the syntactic annotation, the
objective of which is to recognize entities, temporal expressions, and number expressions.
Such expressions can be seen as unique identifiers of entities (organizations, persons, and
locations), times (date, time) and quantities (monetary values, numbers, and percentages).
As argued by Kiryakov et al. [54], named entity is an alternative to the traditional notion of
token (word stems) for classical information retrieval systems.
We have chosen Stanford NER as our named entity recognizer. The software provides a
general implementation of (arbitrary order) linear chain Conditional Random Field (CRF)
sequence models (see Finkel et al. in [38]). We provide more details about the usage of
Stanford NER in Chapter 6, used to describe the implementation and tests. Models were
trained on a mixture of CoNLL, MUC-6, MUC-7 [23] and ACE named entity corpora, and,
as a result, the models are relatively robust across domains.
The example below presents a sentence with its corresponding grammatical relations. The
analysis annotated the sentence with three labels : The word Paris was recognized as
location, The word 5,150 was identified as a number and the fragment this Friday was
identified as date/time.

5.4 PA4Biz : A personal assistant for the enactment of business processes 104

The Paris index closed at 5,150 points this Friday

root

det
compound nsubj

case
nummod

nmod

det

nmod :tmod

location number

date/time

This complementary information is particularly useful for the semantic annotation and the
information extraction. It is to be used to resolve ambiguities and reduce the space search
where unclassified information is found. For instance, suppose that both the words index
and closed have been identified as attributes of a concept called market history. The value
Paris is assigned to the attribute index of market history, and the value of 5,150 is assigned
to points since both attributes are compatible with the extracted information. However, the
fragment this Friday does not have yet an “owner”, and it is “floating” on the sentence.
There is no evident approach to properly link this information to an attribute. The
date/time flag could be a clue to discover possible attributes present in the market history
concept that could own this information. The algorithm might assume that this Friday
refers to the attribute close date that belongs to the market history or asks for confirmation
if it is not sure. A section dedicated to information extraction gives more details on how
these annotations will be used for solving this type of problem.
From now on, the outcome of this analysis is a set of labels assigned to one or more words
present in the sentence.

Dialog act identification

We have discussed the importance of dialog acts for dialog managers in Chapter 3. Dialog
acts are strongly related to the turn-taking phenomenon, which means that both the
personal assistant and users have a dialog act associated with each sentence that they
produce. Now we are interested in the user (the master) dialog acts.
Table 5.2 presents the adopted taxonomy of dialog acts used by the human actor. For
practical reasons a dialog act has two levels : the first level is more general and follows the
traditional taxonomy of acts. The second level, more specific, reduces the semantic scope,
useful for filtering purposes during the dialog.
We start by discussing directive acts. They are attempts by the user to get the assistant to
do something, like start a task or describe a situation. A directive/request act is an order, a

5.4 PA4Biz : A personal assistant for the enactment of business processes 105

TABLE 5.2 Dialog acts and some examples of sentences

Dialog Act ExamplesGeneral Specific

directive
request

Please, create an insurance product.
I want to evaluate the risk management plan.

abort Please stop !

assertive

inform
My car is broken, parked near the Chateau de Compiègne.
The manager of the Bercy branch is Clement Martin.

inform-fragment The responsible of the claims department.
answer-affirmative Yeah.
answer-rejection No no.

interrogative

what What is the e-mail of Maxime Bertrand ?
who Who is the manager of the Compliance department ?

where Where the meeting will be held ?
when When will the project finish ?

conditional Is the project managed by John Silver ?

command with an action verb that sometimes have the desired state associated with. The
first example “Please, create an insurance project” indicates the desired state at the end of
the action. The second example “I want to evaluate the risk management plan” is more
subtle. Even different in style, both sentences are directives and are treated without
distinction. Another type of directive act is the directive/abort that contains negative
statements used to abort the current task. We use this act to detect when the user wants to
abort the execution of a sub-dialog.
An assertive act is an attempt to committing the speaker to the truth of a proposition. Here,
the act assertive/inform indicates that the user is describing something to the assistant. The
interpretation of this type of dialog act is highly context-dependent. For instance, the
sentence “My car is broken and parked near the Chateau de Compiègne” is an example of
an assertive/inform act of a user that is having some problems with his or her car and is
contacting the call center of an insurance company. He or she preferred to describe the
problem instead of the solution (e.g. request a taxi or technical assistance to repair the
vehicle). When the user freely describes something without having a previous question
posed by the assistant, it means that the assistant should simply take notes and find
compatible services when things get clearer.
Other specific types of assertions can appear as a result of a previous question made by the
assistant. The assertive/inform-fragment is a fragment, also known in the spoken dialog
domain as a non-sentential utterance. The sentence “The responsible of claims department”
could be an answer to the question “Who is the contact in case of problems in the risk
plan ?” made by the personal assistant. Sometimes users might be more verbose when they

5.4 PA4Biz : A personal assistant for the enactment of business processes 106

answer questions, and the resulting act is not a fragment but a complete sentence. The
sentence “The manager of the Bercy branch is Clement Martin” is an assertive/inform act,
but also the answer to the question "Who is the manager of the Bercy branch ?". Thus,
when assistants are expecting assertions, a useful filter could be assertive/inform*, getting
both complete assertions and fragments. Finally, the acts assertive/answer-affirmative and
assertive/answer-rejection are self-explanatory and can be used for confirmation purposes
or grounding.
Interrogative acts are divided into specific types of questions. The interrogative/what is
more general and their questions are related to the state of things. The interrogative/who
reduces the scope of questions to persons, organizations, and roles. The
interrogative/where normally asks something about locations and places. When the
expected outcome is a temporal information, the act is classified as interrogative/when.
Finally, interrogative/conditional is used when the user wants to test the truth of some
proposition.

Wrap up : A unified format for the syntactic annotation

Figure 5.13 presents an example of the final outcome of the syntax annotation task. It has
three distinct parts, specifying the dialog act, the dependency graph and the set of labels
for entities, number and date expressions. For the phrase “The Paris index closed at 5,150
points this Friday”, the task identified an assertion/inform dialog act and three tags : a
location (Paris), a number (5150) and a temporal expression (Sep/9/2015 at morning). This
structure is the input for the remaining processes used for semantic annotation and
information extraction.

5.4.5 Semantic annotation

The semantic annotation is used by both the business process selection and triggering
sub-dialog and the task execution sub-dialog. They have different objectives : The former
is responsible for finding the most suitable business process based on one or more
sentences and trigger this process in the BPM system. The latter is responsible for the
execution of a specific task.
What they have in common is that both must deal with the problem of the interpretation of
the user’s sentence : From the business process selection perspective, the objective is to
understand what the user wants to do. From the task execution perspective, the objective is
to extract input parameters. Both activities must take into account the information
available in the dialog context memory. This is indeed a very difficult task and requires full

5.4 PA4Biz : A personal assistant for the enactment of business processes 107

understanding of natural language for open domains. This is clearly out of the scope of this
thesis. A more modest target is the detection of instances of known concepts and the
intention of the user (e.g. if he or she is requesting, asserting or confirming something) in a
controlled domain.
Our approach to semantic annotation and information extraction is based on the notion that
the meaning of sentences can be inferred from using domain ontologies. Hopefully, the
information extraction using ontologies is a very active research field and is called
ontology-based information extraction (OBIE). Our scope is limited to the techniques used
for ontology population (i.e. the identification of key terms in the text and then relating
them to concepts of a domain ontology [69]).
The semantic annotation can be summarized in four distinct steps as can be seen in Figure
5.14. The first step annotates the sentence with ontology concepts. More specifically, it
identifies words or group of words with the potential to be concepts, attributes or relations
of the domain ontology. The example present in the figure shows the sentence “Please,
create a project, it is sponsored by the AMF 2”. The task identified three tags in the
sentence : one concept and two possible attributes. The second step annotates the sentence
with references to individuals when the sentence has missing clauses (i.e. due to the
ellipsis or anaphora phenomenon). The task tries to find individuals present in the dialog
context memory, and if found, it annotates them for further analysis. The pronoun “it” in
the sentence ‘Please, create a project, it is sponsored by the AMF” has been annotated with
a new individual of project. The third step annotates the sentence with an action if the
dialog act is directive and has one or more action verbs. For example, the verb “create” has
been annotated as an action. Finally, the fourth step checks if the sentence has overlapping
tags. In the case of an overlap, the step evaluates the overlapping of tags and finds the most
suitable combination.
Domain ontologies are critical elements for the semantic annotation. Thus, we discuss the
role of domain ontologies in next section.

The role of domain ontologies for the semantic interpretation

As stated by Wimalasuriya and Dou in [111], OBIE systems use domain ontologies as a
“guide” for the information extraction process. Ontologies provide formal and explicit
specifications of conceptualizations of a given domain. We argue that this approach is
suited to applications in which both the vocabulary and the scope are well known. Taking
into account that organizations already have several domain ontologies implemented in

2. Autorité des Marchés Financiers is the French Financial Market Authority

5.4 PA4Biz : A personal assistant for the enactment of business processes 108

their information systems, a question arises immediately : What is the necessary degree of
adaptation of a domain ontology, so that it can be used for dialog and IE purposes ?
Eriksson in [39] argues that the domain ontology used for dialog systems must incorporate
the user’s view of the world or part of the world, in terms of the types of entities that can
be included and how they can be organized. Indeed, ontologies provide a common
vocabulary that can be used to state facts and to formulate questions about the domain. She
suggests a number of techniques to adapt the domain ontology to the user perspective. For
example, multiple inheritances can be a way to deal with the requirement that the ontology
used by a dialogue system should reflect both the users’ and systems’ view of the domain.
It is a modification that does not globally affects the semantics of the ontology. Dzikovska
et al. in [35] have a different view : Domain ontologies must remain untouched. They
present a method for customizing a broad-coverage parser to different domains by
maintaining an additional ontology with linguistic elements, and defining mappings
between the linguistic one and the domain one.
Different modeling strategies are also proposed from the field of information extraction.
For Wimalasuriya and Dou [111] who investigate OBIE techniques, this is an open
question, and there is no consensus to decide if IE components such as linguistic rules
should affect the domain ontology or not. They argue that, for example, it is hard to defend
the idea that IE components such as linguistic rules lie in the domain ontology. Moreover,
IE elements are prone to errors (they are not 100% accurate). Conversely several authors
have argued that information extractors should be considered a part of an ontology when
linguistic rules are used as the information extraction technique (e.g. Yildiz and Miksch
[115], Maedche et al. [65], and Embley [36]).
From the dialog perspective, we follow the vision of Eriksson, who states that the domain
ontology must reflect the user view of the domain. Another argument to use and align the
domain ontology to the user’s view of world is pointed by Kietz et al. [51] and Maynard et
al. [70]. They state that an ontology-based information extraction can also be used to
evaluate the quality of this ontology. If a given domain ontology can be successfully used
by an OBIE system to extract the semantic contents from a set of documents related to that
domain, it can be deduced that the ontology is a satisfactory representation of the domain.
Furthermore, the weaknesses of the ontology can be identified by analyzing the types of
semantic content it has failed to extract. From the IE perspective, our approach separates
domain ontology elements from IE components. Our linguistic rules (extractors) are
outside the domain ontology.
To give some examples, we use a domain ontology fragment of our illustrative example of
credit grant. Figure 5.15 presents the diagram. We intentionally reduced the ontology to a

5.4 PA4Biz : A personal assistant for the enactment of business processes 109

bare minimum, extracting only some elements for illustrative purposes (rectangles are
concepts, white circles are attributes, and gray circles are synonyms).

Concepts and their relations Concepts and their relations (binaries) are the basic
elements that constitute the ontology. The use of hyponymy and hyperonymy to link
concepts (is-a relation) and meronymy to describe dependency (has-a) may help interpret
incomplete or unexpected statements. For instance, the user demands to the PA : List the
balance of profiles. According to the ontology in Figure 5.15, listing the balance of risk
profiles could be easier to interpret because balance is an attribute of risk profile instead of
profile. However, thanks to the hyperonymy relation between profile and risk profile, a
formal representation would be obtained as well.

Definition of attributes To describe each attribute of a concept, one should define its
type, a set of synonyms, its cardinality, and type. Type restrictions are useful for
information extraction and asking a clarifying question to users. They should be one of the
following :

— string : a typical sequence of characters with the following possible
specializations :
— people : for describing people.
— organization : for describing organizations.
— location : for describing geographic information such as cities and countries.

— date/time : a typical representation of temporal data
— number : a typical representation of numeric data with the following possible

specializations :
— percentage
— monetary value

— Boolean : A Boolean value
Both dialog and IE techniques make use of language phenomena for reasoning such as
hypernyms/hyponyms, holonyms/meronyms and synonyms. For example, Table 5.3
presents some examples of linguistics and knowledge management semantics used for the
domain ontology of credit grant.

Definition of multiple instances Since ontologies should be able to incorporate several
views of a domain, (e.g. user and system, or several different information sources), as
advocated by Eriksson [39], multiple instantiation is important. Multiple instantiation is
useful for defining the list of tasks in the task ontology, as well. The resultant ontology

5.4 PA4Biz : A personal assistant for the enactment of business processes 110

TABLE 5.3 Linguistic and knowledge management semantics

Type Example KM equivalent
hypernym profile is the hypernym of risk profile (profile :type-of risk profile)
hyponym risk profile is a hyponym of profile (risk profile :is-a profile)

holonym
credit grant is a holonym of amount (credit-grant :has-attr amount)
credit grant is a holonym of risk mgr (credit grant :has-mgr risk mgr)

meronym
amount is a meronym of credit grant (amount :is-attr-of credit grant)
risk msg is a meronym of credit grant (risk msg :is-mgr-of credit-grant)

synonym
sum is synonym of amount (sum :is-syn-of amount)
loan is synonym of credit grant (loan :is-syn-of credit grant)

contains domain information but also information on synonyms. To avoid any
misunderstanding, it is important to highlight that the main ontology structure (concepts
and their relations) construction is guided by the domain application and not by its
utilization in the semantic interpretation system.
Tables 5.4 and 5.5 present a definition for the credit grant system using the MOSS
ontology language. All language elements are self-explanatory, except for the notion of
synonym. Each synonym is an integral part of the description of the ontology, separated by
a semicolon (;).

TABLE 5.4 The domain ontology fragment written using the MOSS language (:att speci-
fies an attribute, :rel a relation)

(defontology (:title “credit grant ontology”)
(:version “1.2”) (:language :en))

(defconcept “profile”
(:doc “Represents a customer profile”)
(:att “account number” (:type number) (:unique))
(:att “customer name” (:type people) (:unique))
(:att “customer type” (:type string) (:unique)))

(defconcept “risk profile”
(:doc “Represents a risk profile used for credit evaluation”)
(:is-a “profile”)
(:att “salary ; income” (:type money)) (:att “since” (:type datetime))
(:att “balance” (:type money)) (:att “timestamp” (:type datetime)))

Annotating the sentence with ontology concepts

The objective of this task is, given a sentence, to recognize ontology concepts, attributes,
relations and individuals from the dialog context memory. As a result, it returns the
sentence with tags (i.e. words or group of words and their corresponding tags).

5.4 PA4Biz : A personal assistant for the enactment of business processes 111

TABLE 5.5 The domain ontology fragment written using the MOSS language (:att speci-
fies an attribute, :rel a relation)

(defconcept “credit profile”
(:doc “Represents an evaluation of credit risk”)
(:rel “profile” (:to “risk profile”) (:unique))
(:att “score” (:type string))
(:att “timestamp” (:type datetime)))

(defconcept “credit grant”
(:doc “Represents a credit grant”)
(:rel “risk evaluation” (:to “credit risk”) (:unique))
(:att “amount ; sum” (:type money) (:max 1))
(:rel “approved by” (:to “employee”) (:min 1))
(:att “timestamp” (:type datetime)))

(defconcept “employee”
(:doc “Represents a regular employee”)
(:att “name” (:type people) (:max 1))
(:att “role” (:type people) (:max 5))
(:att “created” (:type datetime) (:max 1)))

The mechanism is straightforward : It matches words and group of words present in a
sentence with the set of labels of the domain ontology (synonyms of concepts, relations
and attributes). Entry points are also included in the set of labels. As stated earlier, an entry
point is a useful functionality of the MOSS language that allows mapping an individual of
a knowledge base to a string. From the dialog perspective, an individual is generated
during the interaction with the user and is stored during the conversation. The information
extraction component is responsible for the creation of individuals. From now on, we
consider that these individuals are already present in the dialog context memory.
The following example illustrates a tagged sentence. Tags came from both the domain
ontology and the knowledge base.

Jacques Dubois is the risk manager of ACME.

entry point : $e-employee.1 relation : $s-risk-manager

entry point : $e-company.1

The matching algorithm has identified that the name Jacques Dubois is an entry point to an
employee. Again, we assume that this individual is available in the dialog context memory.
The phrase risk manager points to a relation tag that links a company to an employee.
Finally ACME has been annotated as a company.

5.4 PA4Biz : A personal assistant for the enactment of business processes 112

Tagging references with individuals

In dialogs users often use anaphora and ellipsis. This means that the dialog context is
essential to identify some fragments in the sentence [39]. The dialog manager should
decide if the information present in the sentence is a complement of what is already
provided. It is up to the dialog manager to integrate the new content to the referenced
fragment. Ellipsis and anaphora are complex phenomena studied by linguistics.
Phenomena like gapping, stripping verb phrase ellipsis, answer ellipsis, sluicing ellipsis
are much more profound in the sense of linguistics. The first version of our system only
deals with the following situations :

— A subject pronoun (e.g. he, she, it).
— An object pronoun (e.g. him, her, its).
— A possessive adjective (e.g. its, his, her).

For the sake of balancing examples of different domains other than the banking
environment, we use an example of sentence used in travel search portals. The example
below presents two sentences : The first one (1) requests a hotel reservation, which triggers
the creation an individual of type hotel-search-criteria. Then the user complements the
information in (2) using the subject pronoun It. Note that the pronoun was annotated with
a tag that points to the individual created in (1). The idea here is to provide enough
information for resolving reference looking for the latest updated individual of the dialog
context memory.

(1) : I want to book a hotel in Amsterdam for tomorrow

(2) : It must cost less than 100 e, and have breakfast included

entry point : $e-hotel-search-criteria.1

attribute : $e-hotel-search-criteria-cost attribute : $e-hotel-search-criteria-breakfastmoney

A note on special cases : When the entry point is marked as a tag for reference resolution
purposes, it is not clear it the user is really mentioning the entry point or not. Thus, one
necessary step is to complement the annotation of pronouns with the each concept present
in the sentence, so it can “compete” with the referring entry point”.

Annotating the sentence with the action

As stated in the previous chapter, the business process ontology describes processes in
terms of capabilities. One of the elements of the business process capability is the set of
preconditions and effects. Thus, is normal and expected that there is a unidirectional

5.4 PA4Biz : A personal assistant for the enactment of business processes 113

dependency between the business process ontology and the domain ontology. That is to
say, when a business process is described, it has references to concepts, attributes and
relations of the domain ontology as a way to describe preconditions and effects.
An effect is a formal description of the action produced after the execution of the business
process. An effect always has an action verb associated with. To illustrate the presence of
action verbs, we use our illustrative example of credit grant. Table 5.6 has a line with a pair
of type preconditions =⇒ effects. For the sake of simplicity we have used an informal
description of the effect using natural language, with a focus on the action itself. As it can
be seen, each effect statement has an action (in bold) followed by the object. The object in
this context is a concept of the domain ontology, sometimes accompanied by a criterion. In
this particular example, the business process produces three different effects : it creates a
grant, it approves a credit grant, and it makes a money transfer.
Just to recap from the previous chapter, actions are very simple concepts that belong to the
action taxonomy. They can be organized in a hierarchical fashion, so subsumption-based
matching is allowed. These actions are fine-grained. That is to say, they should
characterize what is the basic operation performed on this concept by the business process.
Thus, an action must directly or indirectly inherit from one of four basic actions namely
create, modify, get and remove. Going back to the example present in Table 5.6, the first
effect and the second effect uses the action create. As expected, a new individual of this
concept will be generated at the end of the operation. The third effect uses the action
approve. Here, we assume that this of action modifies the existing credit grant, by adding,
for instance, the person who approved the request, the timestamp of the approval, and so
on. Thus, the approve action for the grant concept should be a child of the modify action.

TABLE 5.6 The credit grant example : the set of actions produced after the execution of the
business process

preconditions =⇒ effects

have a valid account
create a credit request without fees
create a money transfer from the bank to the customer account
approve a credit grant

A dialog-related task is to supplement the action taxonomy with synonyms and verb
phrases to improve the recognition of actions. This task is easily executed using some
Wizard-of-Oz interactions.
As mentioned before, annotated sentences may present overlaps in some exceptional
situations. We have developed an algorithm that is called each time one or more overlaps
occur. The algorithm and some examples of overlaps are available in Appendix ??.

5.4 PA4Biz : A personal assistant for the enactment of business processes 114

Wrap-up : Semantic annotation as a sub-dialog

From the dialog manager perspective, the semantic annotation is a sub-dialog. More
specifically, the semantic annotation is called by the take notes sub-dialog. Thus, semantic
annotation has states and transitions as can be seen in Figure 5.16.
During the first state, the dialog manager calls the annotation function. If there are no
overlaps, the control is returned to the caller with the status equal to success (2). In case of
overlapping (the event of a tie), the sub-dialog manager checks what is the preferable
combination of annotations. This function returns only a small set of combinations that
have exactly the same semantic density (or the same overall cost). Thus, we have chosen a
very simple grounding mechanism : the dialog manager retrieves the first combination in
(3) and asks its user in (4) if the current representation of the overlapping tag is the
preferred one (e.g. “When you say price, do you mean the price of shares ?”). If the user
refuses the suggestion, the control is then return back to (3) to get the next combination,
checking again with the user, until all possible alternatives have been exhausted (5) or if
the user aborts the dialog (6). If the user accepts the suggestion, then the control is given to
(7) that will update the facts base and the dialog returns the control to the caller with the
status equals to success in (8).

5.4.6 Information extraction

Now we fall into a particular type of information extraction. Our target is a sentence
annotated with named entities and ontological information (i.e. concepts, relations,
attributes, individuals and actions). One of the methods used for IE is the production of
linguistic rules [111]. The most common type of linguistic rules is based on regular
expressions (e.g. Faustus and GATE). Linguistic rules based on dependency trees has
become very popular since they become faster and robust on irregular texts [15]. Systems
such as Kraken [1] and ClauseIE [29] are examples of information extraction that use
hand-crafted rules on dependency trees, some of them outperforming traditional
classification-based approaches [2].
For our task of information extraction, we have chosen a rule-based approach based on
dependency trees. The main reason is the ease of customization and interpretation of the
outcomes based on fired rules. We have built a handcrafted set of rules to (i) simplify a
dependency tree, (ii) generate a formal representation of the extracted information and (iii)
update the dialog context memory. Figure 5.17 illustrates the overall process.

5.4 PA4Biz: A personal assistant for the enactment of business processes 115

Tree simplification using hand-crafted rules

This task uses a dependency tree annotated with syntactic and semantic tags as an input
and generates a simplified version for further information extraction. Our method
simplifies the tree by merging, transforming and removing nodes by traversing the
dependency tree using a depth-first search, until the tree is stable. The main objective of
this step is as follows :

— Grouping nodes : nodes that belong to the same tag are grouped. If one specific
tag annotates two or more words, the corresponding nodes of the tag are dispersed
in the tree. The objective is to merge these nodes into a single one. Some
examples : The noun phrase “this morning” is a date/time named entity. Thus, the
nodes this and morning becomes a single node. The same occurs with the
compound noun “credit grant”, where nodes credit and grant are also merged.

— Identifying sources of information : to fill concepts, attributes and relations a
number of grammatical relations are used (e.g. nominal subjects, adjectival
modifiers, adjectival complements, appositional modifiers and so on).

— Recognizing relational operators : A set of rules is used to recognize expressions
that have the potential to become relational operations (i.e. >, ≥, <, ≤, =, ̸=).
Nodes that follow a pattern compatible with one of these operations will be merged
into a single operation unit. Depending on the position on the tree, the node could
become a left-hand operand, a right-hand operand, or the operator itself.

To illustrate the simplification process, we use the following sentence :

I want to travel from Paris to London for two days, departing tomorrow.

Figure 5.18 presents the original dependency tree on the left-hand side and the simplified
tree and the right-hand side. This sentence has triggered 4 out of 38 existing rules. A brief
description of the fired rules is presented in Table 5.7.
Having the simplified tree, the next step is the creation of the formal representation of the
sentence.

Information extraction from the simplified tree

During this step, the remaining set of extraction rules is used to build the final
representation of the extracted information. This step follows the same approach of the
three simplification, by traversing the tree using a depth-first search, running handcrafted
rules for each visited node. In the end, a formal representation is generated according to
the following BNF form :

5.4 PA4Biz : A personal assistant for the enactment of business processes 116

TABLE 5.7 Rules triggered for the sentence “I want to travel from Paris to London for two
days, departing tomorrow”

Rule # Description Effect

r13
A numeric modifier of a noun that is
marked as an attribute becomes an
operation (noun = nummod)

travel-days = 2

r14

an object of a preposition that is assignable
and the preposition is marked as an attribute
becomes an operation (prep = obj)

travel-to = "London :location"

travel-from = "Paris :location"

r8
A preposition that is in the middle of two
operations is removed for is removed

r2
A personal pronoun that does not have an
annotation and is linked with the main verb
is removed

I is removed

<sentence> ::= <action> (<concept | <indiv>) {<clause>}* {<unknown>*})

<concept> ::= the name of the concept

<indiv> ::= reference of an individual (a string starting with \$)

<action> ::= <action-keyword> <action-concept>

<action-keyword> ::= :action

<action-concept> ::= the name of the action

<clause> ::= <property-clause> | <sub-query> | <ask-clause>

<property-clause> ::= (<property> {<property-op> <value>})

<ask-clause> ::= (:ask <clause>*)

<sub-query> ::= (<concept> <query>)

<property-op> ::= < | <= | = | != | >= | >

<property> ::= the name of the property

<value> ::= constant value

<unknown> ::= (:un {<utuple>*})

<utuple> ::= (<moss-type> :from <offset> :to <offset> <string>)

<offset> ::= numeric value

The main objective of this step is as follows :
— Identifying indirect properties : Sometimes users are not aware of relations

between concepts. As a result, some relations are “flattened” by the user. The
objective here is to rebuild the hierarchy between these concepts.

— Identifying floating values : Sentences may present important information
floating on the sentence, without an attribute that “owns” this value. The objective

5.4 PA4Biz : A personal assistant for the enactment of business processes 117

is to find one or more potential attributes so that a clarifying question can be sent to
the master.

— Identifying the head of the sentence : Our approach only accept one “head”
concept per sentence. Sometimes users do not specify the concept in the sentence.
For these cases, we use attributes and relations as a source to find the head. If more
than one concept that does not have direct relations is found, then an error is
produced.

Tables 5.8 and 5.9 contain some test cases used to validate the extraction rules. Cases from
1 to 8 are examples of unambiguous sentences. All outcomes have an action, a concept and
attributes with compatible values. Cases 4 and 5 are a bit different but still valid. The
sentence did not specify that VISA the value of the attribute type of the credit card.
However, one of the rules identified that VISA is a noun compound modifier of credit card.
It used the type of the node to recursively look for compatible properties of the credit card,
finding at the end, only the attribute named type. Case 9 has a well-defined outcome, but as
can be seen, there are parts of the sentence that could not be recognized. For instance, the
stream of tokens “because I am not using it in” have been marked as unknown, as well as
the location “New York”. From now, we simply discard this content and use grounding to
confirm if the information extraction was satisfactory.
When a value can fit more than one direct or indirect attribute of a concept, the algorithm
annotates the value using the tag ask followed by the set of potential attributes. For
example, sentence 9 has one example. The user said : “Please, increase my credit card
number 9500125143214433 up to 5000”, and the algorithm found both limit and
issue-number as potential attributes. When it happens, a sub-dialog is used to ask the user
what is the most appropriate attribute. For instance, the PA asks “For the value 5000, do
you mean the limit or the issue number ?”.

Update memory

Here we assume that the formal representation does not have ambiguities (i.e. all attributes
have been identified). This task uses the formal representation to create or update the
individual in the dialog context memory. This individual also carries two essential
elements used to find suitable business processes : the dialog act and the action. The dialog
act is used by the search engine to infer if the user is talking about his or her current state
(i.e. assertion) or desired state (i.e. a directive act).
The following sentence is used to show how the individual is created :

5.4 PA4Biz : A personal assistant for the enactment of business processes 118

TABLE 5.8 Some test cases showing different types of sentences and the outcome

1
Directive act with action and concept
Sentence : Cancel my credit card
Outcome : (:action “cancel” "credit-card")

2
Directive act with action, concept and direct attributes with compatible values

Sentence :
Please, cancel my credit card with number 9500125143214433, expiring next
month

Outcome :
(:action “cancel” ("credit-card" ("number" = "9500125143214433")
("expiration-date" = "10/2015")))

3
Directive act with action, concept and direct relation with compatible reference
Sentence : Add John Silver as a member of the ACME project
Outcome : (:action “add” "project" ("name" = "ACME") ("member" = "$e-person.1"))

4
Directive act with action, concept and indirect known attribute without value

Sentence List the quantity of points of my credit card
Outcome (:action “list” "credit-card" ("reward-program" ("points")))

5
Directive act without action verb
Sentence : I want a credit card
Outcome : (:action “create” "credit-card")

6
Directive act with action, without concept and attribute with compatible value
Sentence : I want to increase my limit up to 7000
Outcome : (:action “increase” "credit-card" ("limit" = "7000"))

7

Directive act with action, concept and a value that is compatible with the concept
hierarchy
Sentence : Please cancel my VISA credit card
Outcome : (:action “cancel” ("credit-card" ("type" = "VISA")))

Sentence (directive act) : Fees must be less than 1%

Formal representation : (:action “create’ "credit-grant" ("fee" < "1%"))

(defindividual "credit-grant"
("fee" :lt 1)
("act" "directive")
("action" "create")
("timestamp" (get-universal-time)))

Note that the individual is stored even if the expression has relational operators (i.e. >, ≥,
<, ≤, =, ̸=). This is particularly useful for the business process selection task, that could
use those operators to better filter and classify processes.

Wrap-up : Information extraction as a sub-dialog

As it happens with the semantic annotation, the information extraction is also implemented
as a sub-dialog. It is also called by the take notes sub-dialog. Thus, the information
extraction also has states and transitions as can be seen in Figure 5.19.

5.4 PA4Biz : A personal assistant for the enactment of business processes 119

TABLE 5.9 Some test cases showing different types of sentences and the outcome (conti-
nuation)

8
Assertion using an individual and direct attributes with compatible values
Sentence : It must cost less than 100 euros and have breakfast.
Outcome : (:action “modify” "$e-hotel-search" ("cost" < "100") ("breakfast" = "true"))

9

Directive act with action, concept, one direct attribute with a compatible
value and one named entity that is incompatible with the concept hierarchy

Sentence :
Please cancel my credit card with number 9500125143214433 because I am
not using it in New York.

Outcome :
(:action “cancel” "credit-card" ("number" = "9500125143214433")
(:unknown (:string :from 9 :to 15 "because I am not using it in")
(:location :from 16 :to 17 "New York"))

10

Directive act with action, concept, one direct attribute with compatible value and
another compatible value compatible with two direct attributes
Sentence : Please, increase my credit card number 9500125143214433 up to 5000

Outcome
(:action “increase” ("credit-card" ("number" = "9500125143214433")
(:ask ("limit" = "5000") ("issue-number" = "5000"))))

The dialog manager starts by calling the IE function in (1). If there is no ambiguity the
control is transferred to the caller with the status equals to success (2). In the case of
ambiguity, the dialog manager asks clarifying questions to the user. For instance, user says
“The ACME share has reached 34.02”, and the recognized concept (share-log has two or
more attributes that are compatible with this type like buying price and selling price. The
dialog manager gets the ambiguity from the stack in (3) and asks the user in (4) to choose
from a set of options what is the most appropriate type of information (including discard
the information). For instance, the PA asks : “When you mention 34.02, do you mean
buying price, selling price or none of them ?”. The user can abort (5) or choose from one
of the options. Then the choice is updated in (6). When there are no more elements in the
stack, the dialog context memory is updated in (7), and the control is transferred to the
caller with the status equals to success (8).

5.4.7 Business process selection and triggering

The business process selection and triggering is one important feature of our conversation
interface. It aims at capturing potential business processes based on what the master said
(i.e., what is stored in the dialog context memory).

5.4 PA4Biz : A personal assistant for the enactment of business processes 120

The business process conversation dialog

In practical terms, the business process selection is modeled as a conversation graph with
conversation states linked with a facts base and edges representing the decision made
during the transition. Figure 5.20 presents an illustration of the conversation graph.
At this point, the take notes sub-dialog was already executed. Thus the formal
representation of the previous sentence is available in the memory. The sub-dialog starts in
(1), preparing the query to be sent to the BPM agent. That is to say, the PA collects the set
of individuals created by the PA during the take notes activity. In (2) a request containing
these individuals is sent to the BPM agent. The BPM agent answers with a set of
compatible business processes. Then, the list of compatible processes is presented to the
user in (3). The list of processes by decreasing order of overall score is presented to the
user. Each line contains a description of the process, the score of preconditions, the score
of effects and the overall score. Just to recap, the precondition score measures the level of
conformity of the set of assertions made by the user with preconditions of the business
process. The effect score measures the level of conformity of the effects of the business
process with the user’s expectation. Finally the overall score is a ratio between the
precondition and the effect score. Finally the user can start one of the processes (4) or
simply get information about what the business process offers and continues the dialog.

5.4.8 Business process enactment

In our approach, the enactment of a business process is not managed by the dialog
manager, but by the BPM system. The BPM system is responsible for the whole
orchestration of the business process and the dialog manager for selecting and triggering
processes and executes human tasks when required. It means that the dialog manager must
be aware if several asynchronous events are generated during the conversation with its
master. Some examples : a task allocation that arrives during the selection of a process ; a
process that finishes the execution of a task. Thus, a special mechanism for dialog
management is necessary.
This section explains how our system works in connection with a typical BPM system. The
lifecycle of a process instance is first analyzed, assuming that the master is authenticated
and has active agents.

Creation of a process instance

The main outcome of the previous section was the act of triggering a business process
from a dialog session. We recapitulate this functionality in more details by using a

5.4 PA4Biz : A personal assistant for the enactment of business processes 121

sequence diagram present in Figure 5.21. The solid arrowhead denotes synchronous
messages. The corresponding return messages are drawn as dotted lines with an open
arrowhead back to the originating lifeline. Asynchronous messages are drawn as solid
lines with an open arrowhead to the receiver.
First, each element of the sequence diagram is presented. <usr> is our master, a human.
We have used the placeholder <usr> to denote the user id (e.g. Barthes, Moulin). The
agent <usr>-pa is a personal assistant in charge of the dialog management and <usr>-rep
represents a logged user in the BPM system. The fourth component of the sequence
diagram is the BPM system agent representing a generic software that is driven by explicit
process designs to enact and manage operational business processes (van der Aalst [103]
[106]. This agent has access both to the domain ontology, the business process ontology
and its knowledge base, as well as a skill to execute the matchmaking.
The example starts when the user asks something to the PA using a directive act (e.g. "I
want a credit grant of 5000 euros without fees") in (1). Then, the PA interprets the user’s
directive using both the domain ontology and the dialog ontology. It makes a request to its
partner (bpm-rep) to find processes or services that are compatible with the given
information (2). This agent, however, does not have a specific skill for making a semantic
match between the set of individuals sent by the PA and the set of business process
capabilities present in the knowledge base. Thus, it delegates this task to the BPM system
agent in (3). The matchmaking is made, and the agent returns the result to bpm-rep that, in
turns return the result to the PA. Finally the PA formats the result to its master.
The user accepts the suggestion of the PA in (4). The PA asks its partner to create and run a
process instance in (5). Then, bpm-rep requests the creation of the process instance to the
BPM system. A new instance of the process is created (7), the representative is added as a
listener for all lifecycle events of the process (8) and the process starts (9). Note that the
message sent in (9) is asynchronous, which means that the BPM system agent does not
wait for the process to finish and other agents are free to execute other activities.
The act of listening for BPM events is one of the most important roles of the bpm-rep
agent. It listens not only to events of processes that have been created by its user, but it
also listens to the arrival of tasks that have been allocated or offered to the user. Each event
will be explained in the remaining of this section following the typical lifecycle sequence.
Now, we examine how tasks are executed.

Task notifications

Just to recap : a process is a sequence of tasks and each one is a work item that has been
allocated to a resource. It can be executed automatically if it does not require a human

5.4 PA4Biz : A personal assistant for the enactment of business processes 122

resource. Conversely, a human task requires a human to provide information, to see results
or both. The master of a PA could be the initiator of a process (i.e. he or she has started the
process), or the master could be a participant in a process. For instance, the customer that
requests a credit grant is the initiator of the process ; the risk manager that evaluates the
credit request is a participant.
Figure 5.22 illustrates the lifecycle of a work item, adapted from Russel in [84]. A work
item is first created and then allocated by offer or direct allocation. When allocated, a work
item becomes a task and the human starts the task. During its execution, the task can be
suspended to be further resumed, can fail due to technical problems or can complete
successfully.
We start by describing the moment when the BPM system notifies the PA that its master
has a task (i.e. task at the allocated state). The PA should avoid interrupting its master if
she is already involved in a conversation. For instance, the master could be providing
information to another task or the master could be selecting a business process. In both
situations, the PA assumes that its master is busy. Thus, it adds the notification of new task
to its todo list slot. The user interface component listens to modifications of this slot, so in
the case of new elements, it displays a discrete hint indicating that a new task has arrived
for further verification. At any time, the master can access the todo list and start the task it
contains. If the master is free (i.e. running only the top-level dialog), then the task
conversation is started immediately.
The second type of notification is used to offer a work item to the master. The master is not
yet the owner nor committed with the work item. It is up to the master to accept the task
offer or to refuse the task offer. This type of message is directly added to the todo slot of
the PA. At any time, the master can access the todo panel and accept or refuse the task
offer.
The third type of notification is the cancelation of a task offer, meaning that a previous task
offer has been canceled (the sender has given up or has found another participant). This
type of message is added to the todo slot of the PA. At any time, the master can access the
todo panel and get informed. No follow-up action is required.

Starting a task

As stated earlier, a human task is not started automatically by the system, since it requires
a human action : the fulfillment of input parameters, the visualization of content or both.
Thus, a sequence of messages is exchanged between agents to properly start the task (e.g.
filling information, validating preconditions, displaying error messages). We present a
sequence diagram in Figure 5.23 illustrating the communication between agents.

5.4 PA4Biz : A personal assistant for the enactment of business processes 123

We assume here that a process instance is active, and a human task has been allocated to
our master. Our master could be the initiator of the process (e.g. the customer asking for
credit) or a participant (e.g. the risk manager in charge of approving or refusing the credit).
The sequence diagram begins with the BPM system agent sending a notification to the
bpm-rep agent (1) informing that its user has a pending task. The message is then
forwarded to the PA in (2). Again, if the PA is busy, then the notification is added to its
todo list slot. If it is idle, then a dialog dedicated to executing a task is started. The dialog
procedure that follows is the same in both cases. In this example, we assume that the PA
was idle, and it automatically started a dialog.
Suppose that this task requires the fulfillment of the amount to borrow. The PA follows the
message instructions and asks its master to specify the amount in (3). Having all
parameters filled, the PA sends a message to the bpm-rep agent, requesting to start the task
in (4). It then delegates the request to the BPM system agent that detects a violation of the
precondition (e.g. an amount superior to a limit). It then answers the request containing
details about the violation. The PA informs the user about the violation and asks again for
the value in (7). This process continues until all information is correctly fulfilled and the
task starts as can be seen in (10). Finally, when the task finishes, a notification message is
sent to the PA (12), that displays the results to the user (13).

Task dialog

To provide information for the task, a task sub-dialog has been created. The purpose is to
help users filling input parameters. Notice that in general, business process systems make
use of traditional forms as a communication channel with the user. These forms are
dispersed among several tasks of the process. This model has been used during decades in
typical information systems, and users are familiar with it. Our approach is slightly
different, having a personal assistant, asking questions, taking notes and using previous
notes as a source for automatically filling information. When developing the task
sub-dialog we have obeyed the following requirements :

— Help users during the fulfillment of complex parameters : Input parameters may be
atomic (strings, numbers) or complex (a concept with attributes and relations).
Complex parameters have cardinality constraints that must be observed.

— Allow users to make general assertions at any time : Users should be free to
provide information without needing to wait for the “right time” to give the
information.

— Reuse notes taken by the assistant while filling parameters.
— Allow users to select and trigger business processes during the conversation.

5.4 PA4Biz : A personal assistant for the enactment of business processes 124

We present here some highlights of the algorithm. It transforms the current task and the list
of parameters into a directed acyclic graph (DAG). It is not a tree because the
corresponding types of each parameter are linked with a common and reusable type (e.g.
string, number and domain ontology concepts). This DAG is traversed using breadth-first,
visiting each node and expanding them when needed. More specifically, an expansion is
not necessary for simple ranges (e.g. string, number) does not need expansion and the
corresponding action when reaching the node is just asking the user for the value. When
the type is a concept, then an expansion is executed, taking into account the concept and its
corresponding properties (attributes and relations). Note that when the property is a
relation, a recursive call is performed. Of course, a list of visited nodes is used to avoid
infinite recursive calls when the concept has a relationship with itself (e.g. a person with an
attribute conjoint).
Figure 5.24 presents an example of sub-dialog for task parameter fulfillment. In this
example, the user is interested in buying some shares. The user sends a directive act to the
PA that in turns takes notes and creates an individual to store the information (symbol and
price) into the dialog memory (1). The PA continues the dialog selecting and triggering a
business process in (2). As soon after the process is started, the PA receives a notification
of a pending task from the BPM system. The user must provide information to register the
order. Next, the PA matches all parameters with its context memory, finding two
compatible individuals : The current account is matched with the first parameter, and the
order details created from the take notes sub-dialog is also used. Of course, this individual
is not complete. The PA starts by asking for the due date in (4). Note that users Are free to
make assertions, directives and so on. In (5) the user changes his mind, altering the symbol
and the price. The PA take notes in (6) but continues from the previous request, asking for
the due date. Note that take notes sub-dialog is used in all points where user data is
necessary.

Finishing a task

The PA is notified when the following events occurs :
— A task was finished with success.
— A task was canceled with success.
— A general error occurred.
— The process instance to which the task belongs was canceled.

For all the above scenarios, the PA does not take any special action, only displaying the
information attached to the message. The most common and expected event is when a task
finishes with success, having a description after completion. Other events (cancelation and

5.5 Discussion 125

error) have an attached message with the error reason that will be simply shown to the
user.

Finishing a process

The PA is notified when the following events occurs :
— A process was finished with success.
— A process was canceled.
— A general error occurred during the execution of the process.

The behavior is the same than for the task function. For all the above scenarios, the PA
does not take any special action, only displaying the information attached to the message.
The most common and expected event is when the process finishes with success.Other
events (cancelation and error) have an attached message with the error reason that will be
simply displayed to the user.

5.5 Discussion

We started this chapter by discussing how the control structure of a process has a direct
influence on the user experience and how it affects the productivity of users. The
expressiveness power of traditional interfaces makes virtually impossible for stakeholders
(e.g. personal assistants) to search useful processes directly from the process space.
Another aspect discussed is more a motivation than a problem, but affects directly the IT
budget of organizations : the growing acceptance of natural language (written or spoken)
as a common interface for applications and the prohibitive effort to port those applications
to more natural and expressive interfaces.
Then, an overview of the OMAS dialog manager was given, developing at the end a simple
dialog and drawing some basic requirements for developing our approach. The PA4Biz
conversational interface for enacting process was presented in three distinct parts :
working with controlled natural language sentences and using ontologies for information
extraction, selecting and triggering processes and enacting processes. The PA4Biz can be
viewed as an attempt to provide a modern enactment interface, combining the flexibility of
dialog systems with the robustness (but also rigidity) of business processes.
Since this topic (assistants for processes) uses concepts from several domains (e.g. BPM,
MAS, PA, shallow NLU, KM and so on.) we have developed a dialog manager
architecture in separated layers, with a low degree of cohesion. Unfortunately, the time to
make a comprehensive test on each component and algorithms developed is incompatible
with the timeline or a PhD research.

5.5 Discussion 126

The idea of combining personal assistants and business processes must be evaluated in
different scenarios. PA4Biz is at the time of writing at an early stage of development and
does not benefit from the years of incremental refactoring and testing shown by more
mature architectures. A number of issues and possible improvements have been detected
during the designing of PA4Biz, like :

— Hand-crafted rules may not cover all cases and are too general to be universally
applicable.

— The semantic interpretation only analyzes factual information and does not make a
differentiation between space and time.

— Personal assistants could “learn” new rules from the BPM system but they do not
learn from the user.

— Semantic lexicons could dramatically improve the interpretation of sentences
Further development work is certainly needed to move PA4Biz from being a research
prototype to a platform capable of being deployed in any application domain.

5.5 Discussion 127

(a)

(b)

FIGURE 5.7 Two dialog sessions : (a) with the customer, and (b) with the risk manager

5.5 Discussion 128

FIGURE 5.8 Overall architecture of PA4Biz

FIGURE 5.9 Personal assistant architecture

5.5 Discussion 129

FIGURE 5.10 Top-level dialog for the business process selection problem

FIGURE 5.11 The sub-dialog used for taking notes

FIGURE 5.12 The syntactic annotation process with an example of sentence been annota-
ted

5.5 Discussion 130

FIGURE 5.13 From the sentence to the unified format

FIGURE 5.14 The semantic annotation process with an example of sentence been annota-
ted

5.5 Discussion 131

FIGURE 5.15 A fragment of a domain ontology for our illustrative example of credit grant

FIGURE 5.16 The semantic annotation sub-dialog

FIGURE 5.17 Three steps for information extraction

5.5 Discussion 132

FIGURE 5.18 An example of tree simplification using hand-crafted rules

FIGURE 5.19 The information extraction as a sub-dialog

FIGURE 5.20 The conversation graph of the business process selection

5.5 Discussion 133

FIGURE 5.21 A sequence diagram showing the interaction between the MAS and the BPM
system to instantiate and start a process

FIGURE 5.22 The lifecycle of a work item that becomes a task [84]

5.5 Discussion 134

FIGURE 5.23 Receiving a notification of a pending task, providing information and star-
ting the task

FIGURE 5.24 An example of dialog used to fulfill parameters

Chapitre 6

Realization and experiments

In Chapter 4, we introduced an approach to describe and build the capabilities of business
processes using a business process model as a source, as well as an approach to query the
business process space. To endow agents with these capabilities, we described in Chapter 5
a query mechanism based on the interpretation of user sentences and a dialog manager
adapted to the business process enactment problem.
In this chapter, we first describe the implementation of a functional prototype, PA4Biz, in
Section 6.1. Then, we present the evaluation of our functional prototype in Section 6.2,
which includes an investment application. Section 6.3 summarizes the chapter.

6.1 Technical Architecture

We have built a functional prototype based on previous specifications. Figure 6.1 presents
the technical architecture of our functional prototype. The system was developed
progressively, and its components are detailed in the following sections from the bottom to
the top, from the user interface to the enactment engine.

Web agent

We used the OMAS framework allowing the creation of conversational interfaces using
both client applications and web applications. A client application requires the installation
of a Lisp environment and the personal assistant on the user machine. A web application
requires not only these components but also a web server to handle HTTP requests. The
first version of our functional prototype is a web application that uses the Allegro Lisp
Environment and AllegroServe, an open-source Web server [3].

6.1 Technical Architecture 136

FIGURE 6.1 Technical architecture of the PA4Biz functional prototype

Note that part of the multi-agent system becomes client/server in nature when exposing the
user interface to users through a web server, losing the P2P characteristic of multi-agent
systems. Thus, the direct exposition of the personal assistant to the end user using a single
web entry point could result in a lack of scalability and portability. For this reason, we
have designed the web agent that is responsible for (i) receiving requests coming from the
user, (ii) identifying and delegating the most proper service to execute, and (iii) building
the response to the user at the end.
The web agent can be considered a hybrid service agent in the sense that it must deal not
only with its pairs using the internal protocol, but also receive requests coming from a web
server. To allow a clear separation from the presentation logic to the application logic, we
use the Front Controller pattern used to separate the application in logical layers
(presentation, control, and logic). To accelerate the development process, we use the
open-source web framework called WebActions [4] that already implements these features.
To better understand how it works, Figure 6.2 presents a UML deployment diagram. Let’s
assume that the user called Sarah is using a web browser and is already authenticated into

6.1 Technical Architecture 137

FIGURE 6.2 The role of the web agent into the application

the system. Using the dialog interface, she writes the sentence "What is my balance ?" and
sends the request to the web server. A particular thread of the AllegroServe instance
receives the HTTP message. Next, the WebActions component takes control and chooses
the most suitable action to execute from a set of predefined actions. In this particular case,
the controller invoked the action that sends a message to the personal assistant. The agent
delivers the message to the personal assistant of Sarah and waits for the assistant’s
response. Having the response, it forwards the assistant’s answer to the controller. In the
end, the controller invokes the presentation logic function to build the result for the user.

Authentication agent

The purpose of the authentication agent is twofold : Its first role is to check the credentials
of users, and its second role is to prepare the working session when used for the first time.
That is to say, this agent is responsible for the creation of user agents during the
authentication process and destroying them during the logout process. It is a service agent
that attends requests coming from the web agent. The web agent receives an HTTP request
from the user during the login and logout processes, forwarding it to the authentication
agent.
Figure 6.3 shows an example of authentication using a UML sequence diagram. The
authentication process starts when the user fulfill her credentials (id and password) using a
web form, followed by the submission of the request to the web agent. Next, the web agent
forwards the request to the authentication agent. Note that the authentication agent does
not have the skill to communicate with the BPM enactment system, so it sends the request
the authentication to the BPM system agent. Having a valid credential, the BPM system
agent answers with a session token, that will be used by the user during the BPM

6.1 Technical Architecture 138

FIGURE 6.3 An example of authentication

enactment system usage. Next, the agent creates two dedicated agents to handle the
subsequent requests from the user : the BPM representative and the personal assistant.
Both the authentication token and the user profile are injected into the BPM representative
agent, used in subsequent requests.
Note that the authentication process may vary from system to system. The authentication
agent has been designed to be independent of the enactment engine, so it forwards the final
authentication request to the BPM system agent. The latter has the skills of transformation,
marshaling and unmarshaling messages, according to the implementation of the enactment
engine.

A note on the chosen BPM engine. For our purposes we selected the Bonita BPM engine.
The authentication agent has been designed to be scalable. This agent is stateless, which
means that it does not store context information. Thus, if the number of users increases
substantially, it is easy to implement a pool of sparse agents to attend concurrent requests.
However for this first version of our prototype, we provided only one authentication agent.
Since Bonita runs on a JEE web server, the authentication is made by sending an HTTP
message to the login endpoint, as can be seen in the following example :

POST http://samos.gi.utc:8080/bonita/loginservice HTTP/1.1

username=walter.bates&password=bpm&redirect=false

If the user credentials are valid, an HTTP response is sent to the caller containing a header,
more accurately a cookie called JSESSIONID, as can be seen below :

6.1 Technical Architecture 139

HTTP/1.1 200 OK

Cookie: JSESSIONID=75B64F4991EBD57746B8AAE58DDC7A8B

The standard installation of Bonita is configured to invalidate inactive sessions that reach
30 minutes of inactivity. In such cases, the system redirects the user to the login page to
perform a new authentication.

Personal Assistant

FIGURE 6.4 The personal assistant architecture

As mentioned earlier, each user has his own personal assistant, created by the
authentication agent during login. Figure 6.4 presents the personal assistant and its
components. This agent has full access to the domain ontology, the dialog ontology, and
the action taxonomy. It has a set of skills for triggering business process actions (start a
process, start a task), A standard dialog manager that controls the context memory and
uses predefined dialogs (i.e., conversation graphs) for the selection and the enactment of
processes. These skills are triggered from a particular user interface developed for the web
environment.

User Interface

As can be seen in Figure 6.5, the user interface is purposefully simple, having only two
panels. The left panel contains the traditional dialog history between the user and the
assistant. The right panel has multiple functions, and its content may vary depending on
the context.

6.1 Technical Architecture 140

FIGURE 6.5 Conversational Interface

The first role of the panel is to display extracted information. When the user makes an
assertion, a question or a directive sentence, the information extraction process collects the
information and stores it into the dialog context memory in the form of individuals. The
dialog manager listens for changes in the dialog context memory and displays new or
modified information to the user. The user in turn, can see the information in real time,
make corrections or even discard the information provided at any time.
This approach can be seen as a demonstration grounding act. As described by Clark and
Schaeffer [24], positive evidence of understanding can be expressed by demonstrating the
evidence, by reformulating the speaker sentence. Displaying the individual as-is to the
master produces an implicit feedback, without the need to ask for confirmations that could
bother the user. In the example shown in Figure 6.5, the user starts by asking the assistant
to request a mission from Paris to Hong Kong and the interpretation process is executed.
The dialog manager detects a change in the context memory and displays the individual of
type mission in the left-panel. The user continues the dialog, making an assertion, stating
that he will stay five days. Note that sometimes the assistant must ask clarifying questions
when the semantic interpreter is not sure whether a value belongs or not to a property. In
this particular case, it asks the user to confirm the number of days.
The second function of the panel is to provide information about the pending tasks of its
master. Just to recap, BPM systems have different strategies for task allocation. According
to Russel [83], there are three distinct groups of resource allocation : (i) creation patterns,

6.1 Technical Architecture 141

FIGURE 6.6 Task Information

which allocates people at design time, (ii) push patterns, for which new items are
proactively offered to workers by the BPM system, and (iii) pull patterns, for which
workers take the initiative in committing to and undertaking the work item. In this first
version of the prototype, we detect all types of allocations made by the BPM system,
whether the assignment was made at design time or runtime. It includes variations of
create patterns and push patterns. Other variations of the pull pattern have not been
implemented yet and are reserved for future work.
In Figure 6.6, the assistant alerts its master that a new task has arrived. Note that an
internal window appears in the right panel, containing details about tasks. The master can
(i) accept the task so that the task will become an assigned pending task ; (ii) start, so the
task is allocated and immediately started ; or (iii) refuse the offer.
The third function of the panel is to provide information about the search in the process
space. Each time the master gives new information to the assistant, it sends a request to the
BPM system that in turn, answers its master with a set of advertised services. Figure 6.7
shows an example : The user asks the assistant for an investment with a return on
investment greater than 8%. The assistant answers and adds a set of services in the left
panel, allowing the user to get more information and trigger each process on demand.

6.1 Technical Architecture 142

FIGURE 6.7 Searching the process space

Natural Language Module

We have implemented a natural language module that is responsible for the syntactic and
semantic annotation of sentences and information extraction. This module was developed
in Java and uses the Stanford Core NLP framework. The function have been exposed as a
REST endpoint. The module is accessed by the personal assistant during the conversation.
Just to summarize, the syntactic annotation is responsible for generating a dependency tree.
This tree is then processed by an algorithm that simplifies this tree, until all nodes are
sources of information extraction. The information extraction procedure traverses all
remaining nodes and builds a representation used to update the dialog context memory.
Figure 6.8 presents an example of the tree simplification process for the phrase “The city is
Gent and the taxpayer number is 2299”. The figure at the right-hand side is the original
dependency tree, and the figure at the left-hand side is the simplified tree. The algorithm,
described in Chapter 5 use a set of handcrafted rules that are used to merge, add and
discard nodes until the tree is stable.

Memory Management

The memory management module is responsible for updating the information extracted
during the interpretation of sentences into memory. It uses MOSS to manage all domain
ontology individuals.

6.1 Technical Architecture 143

FIGURE 6.8 Distribution of respondents by sector (a), and size (b)

(a)

(b)

Dialog manager

The dialog manager is responsible for managing the dialog flow and maintaining a
representation of the dialog state for decision-making purposes. As detailed in Chapter 5,
this component has a predefined set of dialogs used for taking notes of user sentences,
querying process, controlling the enactment of processes and managing parallel
conversations.

BPM user representative

The BPM user representative, as the name suggests, is a service agent that represents the
user into the enactment engine. Both the user representative and the personal assistant are

6.1 Technical Architecture 144

created during the authentication. It stores the session token that will be used during the
dialog.

BPM system agent

The BPM system agent is the mediator between the multi-agent system and the enactment
engine. It has a standard agent written according to the specification provided in Chapter 4.
This implementation contains the following elements :

— A BPM ontology : It is a blueprint on how business processes should be
supplemented with semantic information. More precisely, how input and output
parameters are linked with the domain ontology and how preconditions and effects
are described (concept level) ;

— A BPM knowledge base : it is a set of individuals of the BPM ontology,
supplementing each business process with semantic information (instance level) ;

— A query mechanism : It is a skill used to query business processes based on notes
taken by the personal assistant ;

— A set of abstract skills : They are used as a source of communication between the
multi-agent system and the enactment engine to manage processes.

— A set of concrete event-based skills : They are used to receive notifications of
events from the BPM enactment engine. These skills can be seen as callback
functions.

FIGURE 6.9 The class diagram of the BPM system agent

6.1 Technical Architecture 145

Figure 6.9 presents a UML class diagram to illustrate the BPM system agent and its
properties. This agent has full access to the domain ontology, to the BPM ontology as well
as its corresponding knowledge base. It also has a concrete skill called
query-process-space, used to query processes based on a set of notes taken by the personal
assistant. We refer to notes taken as a set of individuals of the domain ontology created
during the conversation between the master and the assistant. This skill returns a set of
pairs of business process and their corresponding scores.
Note that the BPM system agent is represented as an abstract class. Due to the lack of
standards for BPM enactment engines, the communication varies from implementation to
implementation. As a consequence, each enactment engine must have its own BPM system
agent adapted to its communication standards. As can be seen in the diagram, we have
designed a set of abstract skills used for the authentication and the management of process
instances. Thus, all concrete classes that inherit from the base class must provide a
concrete implementation of these skills. For example, the Bonita BPM engine allows three
different ways of integration : It can be locally by using a Java library or remotely via
Enterprise Java Beans (EJB) or REST API. Since the core of our functional prototype is
written in Lisp, the REST API is the most convenient form of access. Thus, our concrete
implementation of the BPM system agent for Bonita transforms all requests internal into
HTTP requests. The majority of operations use the JSON format for message interchange.
The example below is an HTTP response of the enactment engine after requesting the
creation of a process instance.

HTTP/1.1 200 OK

Cookie: JSESSIONID=75B64F4991EBD57746B8AAE58DDC7A8B

{

"processDefinitionId": "6606043060015038213",

"start": "2015-12-02 20:02:23.859",

"rootCaseId": "77",

"id": "77",

"state": "started",

"started_by": "23",

"last_update_date": "2015-12-02 20:02:23.859",

"startedBySubstitute": "23"

}

Needless to say, enactment engines are multi-user and multi-process. As a consequence,
this type of system generates several asynchronous events. For instance, a single user starts

6.1 Technical Architecture 146

a collaborative business process could have one or more participants during the process
instance lifecycle. These users should be notified when a task is assigned to them so they
can contribute to the execution. They should also be notified when the task finishes or
some problem has been found. Thus, a conversational interface for business process must
be aware of these events, providing mechanisms to deal with asynchronous events and
alert policies, without boring users with alerts during the conversation.
The standard agent has two skills that should be called when an event occurs : The first
skill is the receive-task-notification, called when an event of task is generated (e.g. an
assignment of a task to a user, a validation error, an invitation to perform a task, the
finalization of a task). The second skill called receive-process-notification has the
semantics of the previous one, but for processes. When a process is finished, canceled or
an error has been generated, this skill should be executed. These skills are programmed to
forward the notification to the agent that represents the target user. These skills solve part
of the problem. It still remains an actor that is responsible for handling these events and
notifying the agent.
Our implementation uses a functionality of the Bonita BPM engine that allows the
registration of event handlers written in Java. The event handler is represented by the
bonita-event-listener component in the class diagram. It is an external component that has
a strong cohesion with the enactment engine. When an event arrives, the listener sends an
inform message to the BPM system agent, invoking the skill that correspond to the event.

BPM enactment engine

We have chosen Bonita BPM Community to provide the reference implementation of a
BPM enactment engine [18]. Bonita BPM is an open-source business process management
framework created in 2001. It started at the ECOO team of the France National Institute
for Research in Computer Science (INRIA) [64]. The project has received several
contributions from the research and development department of Bull, a French software
house. Since 2009, the development of Bonita is supported by a company dedicated to this
activity called Bonitasoft 1. The framework comprises the following modules :

— A graphic modeling tool based on the BPMN 2.0 standard. We used this modeling
tool to design our processes, define flow control elements, data elements and
resource allocation policies.

— A portal that allows users and administrators manage organization information
such as workers, roles as well as business process information (instances, tasks and
so on).

1. http ://www.bonitasoft.com

6.2 Experimental validations 147

— An engine that allows the enactment of business processes. We use this engine to
access organization information (e.g. roles and users) manage process instances
and tasks.

The BPM engine is an essential component of the framework. It executes processes,
handling actions related to tasks, such as database access, and housekeeping operations
such as logging. The engine is compatible with any Java Enterprise Edition (JEE) server.
For our prototype, the engine runs remotely on an Apache Tomcat server.

6.2 Experimental validations

In order to validate the proposed approach of business process enactment using personal
assistants, we implemented a functional prototype. The chosen scenario for the prototype
was the investment application introduced in Section 4.7. In this scenario, a customer
wants to invest an amount of money but he or she is not sure about what is the most
suitable type of investment, among a list of different options. The PA must help its master,
taking notes of relevant information like risk level, amount to invest and expectations on
the return on investment, ranking the options according to a composite score. Then, the
user triggers the business process with the highest score, been notified by the PA when a
task arrives. During the execution of the task, the PA assists his master fulfilling
information and reusing previous data whenever possible.

6.2.1 The investment scenario

FIGURE 6.10 Business processes used for investment applications and their preconditions
and effects

The scenario is composed of a set of banking business processes, among which four types
of investment applications, as can be seen in Figure 6.10. Besides their similarity in terms
of preconditions and effects, each business process is an independent unit of work, making

6.2 Experimental validations 148

integration with different information systems (multi market funds, treasury notes bidding,
real estate).
Note that all effects are deterministic, except the Treasury Notes Auction that is
non-deterministic. That is to say, this process applies for a special type of investment,
where customers make a bid in order to buy notes. The success of the investment depends
on the availability of the treasury notes. Thus, customers may have a valid investment in
the best case or a bid refusal in the worst case, as can be seen in the effect expression using
the diamond symbol (♢).

6.2.2 Evaluation

We have conducted an evaluation to better understand the performance of our approach.
More precisely, the central question investigated in this experiment is the following :
“Does the proposed personal assistant and its conversational interface can improve the
efficiency of the selection and the enactment of business processes ?” The evaluation
covers two major parts : one that evaluates the performance of the business process
enactment and an other one that evaluates the performance of the dialog manager.
In order to evaluate the business process perspective, we have built a traditional
form-based enactment application containing exactly the same set of business processes
present in PA4Biz. That is to say, business process models are shared by both PA4Biz and
the form-based application without any changes. Using the counterpart application,
evaluators are able to access the set of processes and perform queries using a
keyword-based search, trigger processes and perform tasks using traditional form-based
interfaces. User satisfaction and the overall time to execute each scenario are compared.
For the dialog manager perspective, there are standard approaches of evaluation like the
PARADISE framework of Walker et al. [108] and the three-tiered model of Stibler and
Denny [95]. PARADISE uses a weighted function to combine a set of individual measures
like task success and user satisfaction into an unified measure. The three-tiered approach
of Stibler and Denny evaluates dialog systems at three levels of abstraction namely user
satisfaction, task success and component performance. Both approaches allow the
combination of subjective measures (e.g. user opinion) and objective measures (e.g. task
success and effort), producing a subject-independent assessment (Dybkjær and Bernsen
[34]).
In order to evaluate the dialog, we have chosen a set of performance measurements
collected while using the conversational interface (see Table 6.1). A similar principle of
the PARADISE framework has been followed : the measurements of performance are used
by a weighted function in order to produce a unified measure, useful for further

6.2 Experimental validations 149

TABLE 6.1 Quantitative and qualitative measures

Type Measure
Task success Confusion matrix

Component performance
Amount of time to perform the task
Dialog length
Number of misinterpreted sentences

User opinion User satisfaction (a score ranging from 1 to 6)

comparisons. The first measure is the task success obtained from a confusion matrix. If the
personal assistant guided the user to the right business process, then it is considered a true
positive. Conversely, if the PA guided the user to the wrong business process, then it is
considered a false positive. The second measure is related to the dialog manager
component, computing the overall time to execute a session, the dialog length (i.e. number
of sentences sent by the user during the session) and the number of misinterpreted
sentences per session. Finally, the user opinion is collected at the end of the session.

Evaluation setup

In the provided scenario, we consider customer banking services, and our target user is a
typical customer of a banking system, interested in investing some amount of money. To
reproduce a real environment, we have developed a small set of banking services, as can
be seen in Table 6.2.

TABLE 6.2 Set of available business processes for both systems

Id Business Process Name
p1 Apply for multi market investment
p2 Apply for treasury notes investment
p3 Apply for real estate investment
p4 Participate in a treasury notes auction
p5 Get the account balance
p6 Change the investment profile
p7 Apply for credit
p8 Apply for credit limit increase
p9 Apply for a health insurance
p10 Apply for a property insurance
p11 Report a lost or stolen credit card

Three different investor profiles have been created, each one leading to a target business
process, as can be seen in Table 6.3. The target business process can be reached by using

6.2 Experimental validations 150

the expectations of the customer (e.g. risk awareness, ROI expectation) and the constraints
imposed by the process (e.g. minimum amount to invest). For instance, the Multi Market
Investment is compatible with the profile 1, having a ROI between 9% and 11%, medium
risk and minimum amount of investment greater or equal than 100,000.00 e. The Real
Estate investment is compatible with the profile 3, having low risk, fees equals to 0,7% and
minimum amount to invest greater or equal than 5,000 e.

TABLE 6.3 Evaluation setup : Formation of profiles and their corresponding information

Profile Description Target Business
Process

1
Aims at investing 50% of the balance (200,000.00 e)

p1 - Multi marketReturn on investment (ROI) must be greater than 9%
Investment risk profile is medium

2
Aims at investing 50% of the balance (50,000.00 e)
e p2 - Treasury notes
Investment risk profile is low
Fees must be lower than 1%

3
Risk is low

p3 - Real estate
Aims at investing 50% of the balance (16,000.00 e)
Investment risk profile is low e
Fees must be lower than 1%

A group of 12 evaluators have participated in this experiment. Each evaluator has access to
all profiles and instructions on how to use the target system (Appendix ??). We have
intentionally omitted the balance information, so evaluators must find the appropriate
process to get this information. The first group of 6 participants have been invited to use
the conversational interface PA4Biz and the remaining group have been invited to use
counterpart application. Both groups have the same objective, that is apply for a specific
type of investment. Table 6.4 presents the set of expected actions, followed by how the
action is accomplished using each system.
As stated before, we consider the evaluation in two different parts : the performance of the
business process enactment and the performance of the conversational interface. Next
sections presents the evaluation results for the business process enactment perspective and
the conversational interface perspective.

Evaluation results for the business process enactment

The business process enactment performance has the objective of measuring how well the
system performs using a traditional enactment interface as a baseline. The metrics used are

6.2 Experimental validations 151

TABLE 6.4 Actions executed by evaluators for each profile

Action How the action is performed
PA4Biz Enactment Application

Perform the authentica-
tion

Standard form using login
and password

Standard form using login
and password

Get the account ba-
lance

By describing needs using
natural language sentences
and triggering the most ap-
propriate process

By navigating through the
list of business processes,
matching the process descrip-
tion with their needs

Select and trigger the
investment application

By describing needs using
natural language sentences
and triggering the most ap-
propriate process

By navigating through the
list of business processes,
matching the process descrip-
tion with their needs

Perform tasks By answering the personal
assistant using natural lan-
guage sentences

By filling traditional forms

the time spent to select, trigger and enact the business process, the false positive ratio and
an indicator of satisfaction assigned by the evaluator for each round.
We start by showing some measures related to the business process enactment performance
in Table 6.5.

TABLE 6.5 Summary of collected measures that are comparable to the form-based applica-
tion

Measure System
Form-based enactment PA4Biz

Average time to find the business process 01 :59 (± 00 :54) 01 :31 (± 00 :49)
Average time to execute tasks 03 :34 (± 01 :39) 02 :58 (± 01 :18)
Average session time 05 :33 (± 02 :01) 04 :28 (± 01 :45)
Average user satisfaction (from 1 to 6) 4,4 (± 0.7) 5,2 (± 0.4)
False positive ratio 4

18 ⇝ 22% 0
18 ⇝ 0

The first line presents the average time to find the target business process. We have noticed
a slight improvement in both the time spent on finding the business process (1’59” using
the counterpart system versus 1’31” using PA4Biz), and in the standard deviation (54”
using the counterpart system versus 49” using PA4Biz). It represents a reduction of 24% of
the time spent and 10% of standard deviation for the cases that used PA4Biz.
The same improvement occurred for the time to execute tasks (3’34” using the form-based
system versus 2’58” using PA4Biz) as well as the standard deviation (1’39” using the
form-based system versus 1’18” using PA4Biz). This represents a reduction of 17% of

6.2 Experimental validations 152

time and 21% of variation when using PA4Biz. As a result, PA4Biz shortened the the total
amount of time to perform the application in 18%, and reducied the standard deviation of
15%.
The counterpart system presented a false positive ratio of 22%. That is to say, in 4 out of
18 sessions, users selected and triggered the wrong business process, (i.e a business
process that is not entirely adapted to the profile, but at the same time fulfilling the
business process precondition). For instance, one of the users has selected process p3 (real
estate) instead of process p2 (treasury notes). Since users must find processes using a
keyword search and also interpret the business process description, it is easy to mistakenly
choose the wrong process.
User satisfaction was obtained from a single question to the tester after the execution of a
session, asking him or her to rate the experience, providing a numeric value ranging from 1
to 6, where 1 represents the the worst experience and 6 represents an excellent experience.
The average user satisfaction of PA4Biz was 18% greater than the form-based system as
well as presented a lower standard deviation (0,4 versus 0,7).
Overall, the evaluation shows a slight reduction of the average time to find and trigger
processes. More importantly, the prototype prevented users from selecting the wrong
process. However, we have identified several cases that the counterpart application
performed better than the conversational interface in terms of time to complete the session.
All of these cases belong to the second and the third session. We argue that the learning
curve of this type of application is more evident, since the level of repetitiveness and
predictability of form-based applications is high. For instance, user 1 spent 3’44” to
provide information in the first session, followed by 2’43” in the second session and 1’33”
in the third session. It represents a reduction of 58% of time from the first to the third
session. The same improvement of learning curve was not observed in sessions using
PA4Biz. That is to say, there is a reduction of time from session to session, but much more
discrete than the form-based application. Thus, we believe that a conversational interface
could not be considered as a substitute for a form-based interface, but a new way of
enacting business processes. A conversational interface is well suited for users that do not
have time or do not want to memorize sequences of steps to use the system. It is is also
better suited when users have a variety of available services and different possibilities for
doing the same thing. In these cases, a personal assistant could improve the overall
performance by guiding his master during the enactment of the whole process. Conversely,
the interaction with an assistant may slow down the use for repetitive and daily tasks. Thus,
we believe that a form-based and traditional interface is better suited for this type of task.

6.2 Experimental validations 153

Evaluation results for the conversational interface

In this section we present some measures to evaluate how well the system recognized the
set of sentences, looking more closely at every turn taking. That is to say, we check if the
system response was appropriate, and if it was not, which aspect of the dialog manager
was mainly responsible for the problem.

FIGURE 6.11 Average dialog length per user

Figure 6.11 shows the average dialog length (counting only the number of sentences
produced by the user) for each user. Over all 18 sessions, users took 11 sentence on
average to apply for the investment. The variation of the number of sentences depends on
(i) the successful recognition of concepts in a sentence, (ii) the amount of information
existing on each sentence, (iii) the number of clarifying questions asked by the assistant to
the user.
We start by taking the example of user 2 that has the best case with a dialog length of 5
sentences. This user started the conversation with the sentence “I would like to invest the
amount of 100000 euros with a ROI greater than 9% and fees less than 1%, medium risk is
acceptable.” This sentence produced sufficient information to select the most suitable
service, as well as provide information for the enactment. Subsequent requests or
enactment will benefit from the information provided a priori. Another example taken
from user 1 : During the enactment, this user informed the city, the country and taxpayer
number in only one sentence “The city is Amsterdam, Netherlands, taxpayer number is
2233.” Since the concept of country was not present in the sentence, the system requested
a confirmation if “Netherlands” was the country, followed by the confirmation of the user.
In the majority of cases during their preliminary usage, users preferred to produce
fine-grained sentences like the sequence “I want to invest an amount of money. I want fees

6.2 Experimental validations 154

lower than 1%. I have a low risk profile.” Other users did not notice that temporal
expressions like “two days from now” and ”next week” could be used in the sentence to
specify the date of debit in the current account, resulting in a longer dialog length, and
consequently, a longer time to finish the session. This shows that some users, perhaps able
to gain more experience through some sessions with PA4Biz, could interact with the
system in more flexible and effective ways than others.
The worst case needed 15 sentences to complete the session. The reason for this long
dialog was that the dialog manager did not recognize the expression “I want to invest 50%
of my current balance.” The objective of the sentence is clear and unambiguous. However,
to reach the objective, the system must build a plan, executing first the business process
that retrieve the balance, and then executing the investment business process, using the
balance as input. This is a typical problem of service composition that is out of the scope
in this first version of our functional prototype, although it is part of our future work. As an
effect, the dialogue manager interpreted the fragment 50 as a potential candidate to fulfill
the investment individual. The dialog manager traversed all potential attributes of the
investment individual and asked to the user, for example "I guess that 50 refers to the
taxpayer number. Is that right ?" The user had to repeatedly refuse 6 suggestions and,
needles to say the user experience was affected for this session. We changed the system in
order to limit the number of suggestions, allowing the user to rephrase when the extraction
was not possible.
Another example of misinterpretation occurred with user 4. During the conversation, he
produced the sentence “balance” to the assistant. The assistant assigned the assertive
dialog act to the sentence. When the user makes an assertion, the assistant only take notes
and continue listening. In this particular case, the assistant took notes but did not start any
matchmaking to find the process to get the balance. Then, the user tried again, changing
the sentence to “What is my balance ?”, which was properly labelled as a interrogative
dialog act. As a consequence, the matchmaking was executed and the assistant suggested
to proper process to start. In order to avoid such situation, we have changed the dialog
manager, so it triggers the semantic match even when the user produce an assertion at the
top-level dialog.

TABLE 6.6 Summary of collected measures related to the conversational interface

Measure Value
Dialog length 11,3
Average number of words per sentence 6,8
Average number of non-recognized sentences 0,27

6.3 Discussion 155

We finish by presenting the summary of measures in Table 6.6. The table contains the
actual dialog length (i.e. the number of sentences sent by the user), the average number of
words per sentence and the average number of non-recognized sentence per session. This
set of measures can be used to validate the performance of the conversational interface and
create a baseline for future improvements.

6.3 Discussion

The present chapter has described the architecture of our functional prototype, and our
experimental evaluation in the field of e-banking systems. The outcome of the experiment
corroborates one of the central claims of this thesis – namely, that a personal assistant
could improve the enactment of business processes, more specifically for querying the
process space using semantic descriptors (using the formalism of business process
description in this thesis).
The presented approach could represent an alternative to the traditional interface between
humans and enactment engines. Existing business processes can benefit from this approach
with minimum effort. As shown by the investment example, the whole set of business
processes was shared by the traditional application and our system without any changes in
their models. Of course, the effort for building the domain ontology and the semantic
annotation of processes must be considered.
Of course, there are limits to the approach. The semantic analyzer uses only the domain
ontology as a source for the identification of potential values for information extraction
and is unable to extract information from sentences that lacks ontological cues. This
restriction could be canceled by learning from previous experiences.
Another limitation of the approach is when user tasks require the fulfillment of lots of
information. Even if the personal assistant dynamically presents its notes during the
fulfillment, allowing corrections at any time, a traditional form is easier to fill. An
alternative for this limitation could be a hybrid interface, giving the PA the ability to build
dynamically input forms, assisting the user for filling them. Another alternative is to use a
vocal input, either through the native operation system speech-to-text mechanism or better
using a third party software. The main problem of the speech-to-text recognition systems
is that they do not recognize everything being said, which leads to noisy inputs.
The system presented here is not a substitute for business process enactment interfaces, but
just supports the implementation of dialogs for existing business processes without
structural changes. Thus, the quality of the overall process will depend on the level of
detail used during the annotation of business process and how well the domain ontology

6.3 Discussion 156

has been modeled. We are quite willing to accept errors and quid pro quo in the dialog, as
long as it results in enough information to find business processes or provide input
parameters to tasks. If the process is not what the user wants, then the user will ignore it,
trigger the next process or provide information differently.
The approach presented here is both simple and efficient, in particular when the effort to
adapt the interface of business processes to be used by personal assistants is prohibitive in
both technical and financial terms. Furthermore, the approach can be extended and refined
to improve the accuracy of the dialog manager.

Chapitre 7

Conclusion

The research in this thesis concerns dialog management in personal assistant applications
that allow the selection and enactment of business processes through a written natural
language dialog. The developed prototype, PA4Biz, is a multi-agent system, in which
dialog management is performed by a personal assistant, acting as the central component
for coordinating other agents, as well as maintaining a coherent dialog with the user. This
agent-based approach in an attempt to provide a conversational interface for the selection
and enactment of business processes, without the need to re-engineer the whole set of
existing business process models of an organization every time there are changes.
The contribution of our work is twofold, covering two perspectives : (i) the dialog
management perspective ; and (ii) the characterization of processes perspective.
For dialog management (i), most existing methods are suitable for specialized tasks,
requiring a considerable effort of development (e.g. dialog management, user interface,
and domain model). The originality of our approach is a dialog model that is scalable to
different business process models, consequently to different domains. The dialog manager
relies on domain and business process ontologies, yet necessitating a minimal effort of
adaptation on domain ontologies to enable the interaction.
For characterization of business processes (ii), we proposed a formalism to describe the
capabilities of business processes, allowing the definition of deterministic and
non-deterministic effects. This feature is quite useful for describing human tasks and other
non-deterministic scenarios, sometimes difficult to encode using declarative rules. Based
on machine-readable descriptors, we have developed both a safe approximation of the
whole business process based on tasks, and a querying mechanism based on preconditions
and effects of processes. Note that business processes have an independent life cycle,
controlled by a workflow engine that performs its orchestration. Our dialog manager can

7.1 Future research 158

handle both user interaction and asynchronous events of the engine without disrupting the
conversation.
Our approach makes use of a cognitive agent architecture for the dialog management and
the integration with a business process enactment engine. To identify user needs and select
the most suitable business process, we make use of the concepts of speech acts and of the
semantic interpretation of sentences. Our dialog manager can be seen as a hybrid solution
combining the following techniques : (i) Information state, modeling a library of dialogs as
conversation graphs ; (ii) script-based, providing a set of rules for each conversation state ;
(iii) frame-based, modeling tasks and elements as frames ; and (iv) task-oriented, linking
each dialog with a library of tasks. The dialog control flow is derived automatically as the
result of the interpretation of the conversational graph. The conversational context, the
domain-specific knowledge, and the user model are shared by the personal assistant and
the user representative agent. Of course, this approach requires an environment restricted
to a professional context or a focused context in which domain ontologies play a key role
to provide a common vocabulary.
The potential of our agent-based approach has been demonstrated through the realization
of our functional prototype and the evaluation results, which shows a high task completion
rate. We have developed a functional prototype implemented using the OMAS platform,
running in the Allegro Common Lisp environment. We have carried out the evaluation of
PA4Biz with the intention of evaluating the performance for the selection and the
enactment of business processes, compared with a traditional enactment interface.
Although the recognition of some sentences was not perfect, the system was able to
execute the enactment of all processes, been more assertive than the traditional interface
for the selection problem. It also prevented users from filling redundant information, by
using previous notes taken during the conversation. Additionally, most users were satisfied
with the overall performance of the system and indicated their willingness to use such a
system in future.

7.1 Future research

There are many areas of improvement for the current PA4Biz system that might be
undertaken as future work.
We only use the business process model as a learning source. Our personal assistant, the
dialog manager component, can be more adaptable to each user, choosing different
strategies for suggesting services and filling parameters, according to the user’s

7.1 Future research 159

preferences. Also, we can learn some language patterns employed by users, such as the use
of expressions, abbreviations, and references (referring to people using nicknames, etc.).
As mentioned in Chapter 5, we have perceived that we need to give an additional skill to
our agent so that it can perceive the environment and the context and decide what is the
best interface to provide. For example, a form-based interface is better suited when users
need to fill lots of information. The turn-taking characteristic of the dialog-based approach
may slow down the whole process. There are also other situations in which users are
unable to interact with a web interface. A vocal interface could be better suited in this case.
Finally, our work also suggests possibilities for future research in dialog management.
Current trends show an increased use of pervasive devices as first-class citizens in business
processes. These devices are used both for providing, but also receiving information
produced during the enactment (e.g. fitness monitoring tools and vehicle sensors, and so
on.). Both written and spoken dialog interaction would be useful for applications that deal
with these devices to improve usability. The dialog model of PA4Biz could be reused and
extended for use in these domains. Our model must be enhanced to allow multimodal
support. The multimodal dialog management using our agent-based approach could be
another future research problem.
Moreover, we support the integration with only one enactment engine. Supporting the
integration with a “federation” of enactment engines could also be an interesting research
area that we did not consider.

Bibliographie

[1] Akbik, A. and Alexander, L. (2012). KrakeN : N-ary facts in open information
extraction. In AKBC-WEKEX ’12 Proceedings of the Joint Workshop on Automatic
Knowledge Base Construction and Web-scale Knowledge Extraction, pages 52–56.

[2] Akbik, A., Konomi, O., and Melnikov, M. (2013). Propminer : A Workflow for
Interactive Information Extraction and Exploration using Dependency Trees. In
Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics : System Demonstrations, pages 157–162.

[3] Allegro (2013). AllegroServe - A Web Application Server. Available at
http://franz.com/support/documentation/current/doc/aserve/aserve.html.

[4] Allegro (2015). Allegro Webactions. Available at
http://franz.com/support/documentation/current/doc/webactions.html.

[5] Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., and Stent, A. (2000).
An architecture for a generic dialogue shell. Natural Language Engineering,
6(3&4) :213–228.

[6] Allen, J. F. and Perrault, C. R. (1980). Artificial Intelligence. Analyzing intention in
utterances, 15 :143–178.

[7] Atrash, A., Abel, M.-H., Moulin, C., Darène, N., Huet, F., and Bruaux, S. (2015).
Note-taking as a main feature in a social networking platform for small and medium
sized enterprises. Computers in Human Behaviour, 51(B) :705–714.

[8] Barthès, J.-P. (2011a). OMAS - A Flexible Multi-agent Environment for CSCWD.
Future Generation Computer Systems, 27(1) :78–87.

[9] Barthès, J.-P. and Moulin, C. (2014). MOSS : A Formalism for Ontologies Including
Multilingual Features. Knowledge and Systems Engineering, 245 :95–107.

[10] Barthès, J.-P. A. (2011b). Exchanging Information among Cognitive Agents in
Collaborative Environments. In IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 1908–1913, Anchorage, AK. IEEE.

[11] Barthès, J.-P. A. (2013). Improving Human-Agent Communication Using Linguistic
and Ontological Cues. International Journal on Electronic Business, 10(3) :207–231.

[12] Barthès, J.-P. A. and Tacla, C. (2001). Agent-Supported Portals and Knowledge
Management in Complex R & D Projects. In Computer Supported Cooperative Work in
Design, pages 287–292. IEEE.

http://franz.com/support/documentation/current/doc/aserve/aserve.html
http://franz.com/support/documentation/current/doc/webactions.html

Bibliographie 161

[13] Becker, J., Brocke, J. V., and de Marco (Eds.), M. (2015). Proceedings of the
European Conference on Information Systems. In Association for Information Systems,
Münster. AIS Electronic Library.

[14] Bettahar, F., Moulin, C., and Barthès, J.-p. (2009). Towards a Semantic Interoperability
in an e-Government Application. Electronic Journal of E-government, 7(3) :209–226.

[15] Bohnet, B. (2010). Very high accuracy and fast dependency parsing is not a
contradiction. In Proceedings of the 23rd International Conference on Computational
Linguistics (COLING ’10), pages 89–97.

[16] Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal
on Robotics and Automation, 2(1) :14–23.

[17] Brooks, R. (1991). Intelligence without Reason. In IJCAI, pages 569–595. Morgan
Kaufmann.

[18] Chabanoles, N. and Ozil, P. (2015). Bonita BPM : an open source BPM based
application development platform to build adaptable business applications. In
International Conference on Business Process Management.

[19] Chan-Lam, V. (1979). Conception et réalisation d’une base de données ensembliste.
PhD thesis, Université de technologie de Compiègne.

[20] Chen, B. and Cheng, H. H. (2010). A review of the applications of agent technology
in traffic and transportation systems. IEEE Transactions on Intelligent Transportation
Systems, 11(2) :485–497.

[21] Chen, K. (2008). Contribution à la conception de la mémoire d’un agent assistant
personnel. PhD thesis, Université de technologie de Compiègne.

[22] Chen, P. P. (1976). The Entity-Relationship Model : Towards a unified view of Data.
ACM Transactions on Database Systems, 1 :9–36.

[23] Chinchor, N. (1997). MUC-7 Named Entity Task Definition. Technical report, NIST.

[24] Clark, H. H. and Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science,
13(2) :259–294.

[25] Clavel, C., Faur, C., Martin, J.-C., Pesty, S., and Duhaut, D. (2013). Artificial
companions with personality and social role. In CICAC, pages 87–95.

[26] Clément, L., König, D., Mehta, V., Mueller, R., Rangaswamy, R., Rowley, M., and
Trickovic, I. (2010a). Web Services - Human Task (WS-HumanTask). Technical report,
OASIS.

[27] Clément, L., König, D., Mehta, V., Mueller, R., Rangaswamy, R., Rowley, M., and
Trickovic, I. (2010b). WS-BPEL Extension for People (BPEL4People) Specification.
Technical report, OASIS.

[28] Cohen, P. R. and Perrault., C. R. (1979). Elements of a plan-based theory of speech
acts. Cognitive Science, 3(3) :177–212.

Bibliographie 162

[29] Corro, L. D. and Gemulla, R. (2013). ClausIE : clause-based open information
extraction. In WWW ’13 Proceedings of the 22nd international conference on World
Wide Web, pages 355–366.

[30] de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., and
Manning, C. D. (2014). Universal Stanford Dependencies : A cross-linguistic typology.
In International Conference on Language Resources and Evaluation (LREC’14).

[31] Derguech, W. and Bhiri, S. (2013). Business Process Model Overview : Determining
the Capability of a Process Model Using Ontologies. Business Information Systems,
157 :62–74.

[32] D’Inverno, M. and Luck, M. (2004). Understanding Agent Systems. Springer, 2nd
edition.

[33] Dumas, M., van der Aalst, W. M. P., and ter Hofstede, A. H. M. (2005). Process-Aware
Information Systems : Bridging People and Software through Process Technology. Wiley.

[34] Dybkjær, L. and Bernsen, N. O. (2001). Usability Evaluation in Spoken Language
Dialogue Systems. In Proceedings of the workshop on Evaluation for Language and
Dialogue Systems -, volume 9, pages 1–10.

[35] Dzikovska, M. O., Allen, J. F., and Swift, M. D. (2003). Integrating linguistic and
domain knowledge for spoken dialogue systems in multiple domains. In Workshop on
Knowledge and Reasoning in Practical Dialogue Systems.

[36] Embley, D. W. (2004). Toward semantic understanding : an approach based on
information extraction ontologies. In ADC ’04 Proceedings of the 15th Australasian
database conference, pages 3–12.

[37] Enembreck, F. (2003). Contribution à la Conception d’Agents Assistants Personnels
Adaptifs. Phd thesis, Université de technologie de Compiègne.

[38] Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating non-local
information into information extraction systems by Gibbs sampling. In Proceedings of
the 43nd Annual Meeting of the Association for Computational Linguistics (ACL 2005),
pages 363 – 370.

[39] Flycht-eriksson, A. (2003). Design of Ontologies for Dialogue Interaction and
Information Extraction. In IJCAI.

[40] Georgakopoulos, D., Hornick, M., and Sheth, A. (1995). An Overview of Workflow
Management : From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3 :119–153.

[41] Hammer, M. and Champy, J. (1993). Reengineering the Corporation : A Manifesto
for Business Revolution. HarperBusiness.

[42] Hazewinkel, M. (2001). Disjunctive normal form. In Encyclopedia of Mathematics.
Springer.

Bibliographie 163

[43] Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., and Teschke, M. (1999). A
comprehensive approach to flexibility in workflow management systems. In International
Joint Conference on Work Activities Coordination and Collaboration, pages 79–88.

[44] Hepp, M., Leymann, F., Bussler, C., Domingue, J., Wahler, A., and Fensel, D.
(2005a). Semantic business process management : a vision towards using semantic web
services for business process management. IEEE International Conference on
eBusiness Engineering ICEBE05, 5(1) :535–540.

[45] Hepp, M., Leymann, F., Domingue, J., Wahler, A., and Fensel, D. (2005b). Semantic
business process management : a vision towards using semantic Web services for
business process management. IEEE International Conference on e-Business
Engineering (ICEBE’05), pages 1–6.

[46] Hepp, M. and Roman, D. (2007). An Ontology Framework for Semantic Business
Process Management. Wirtschaftsinformatik 2007, pages 1–18.

[47] Hoque, F., Walsh, L. M., and Mirakaj, D. L. (2011). The Power of Convergence :
Linking Business Strategies and Technology Decisions to Create Sustainable Success.
Amacom.

[48] Jennings, N. R. and Wooldridge, M. J. (2002). Agent Technology : Foundations,
Applications, and Markets. Springer, 2nd edition.

[49] Jones, A., Kendira, A., Lenne, D., Gidel, T., and Moulin, C. (2011). The TATIN-PIC
project : A multi-modal collaborative work environment for preliminary design. In
International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pages 154–161, Lausanne.

[50] Jones, A., Moulin, C., Barthès, J.-p., Lenne, D., Kendira, A., and Gidel, T. (2012).
Personal Assistant Agents and Multi-agent Middleware for CSCW. In IEEE 16th
International Conference on omputer Supported Cooperative Work in Design, pages
72–79.

[51] Kietz, J.-U., Mädche, A., Maedche, E., and Volz, R. (2000). A Method for
Semi-Automatic Ontology Acquisition from a Corporate Intranet. In EKAW-2000
Workshop “Ontologies and Text”, pages 2–6.

[52] Kim, G. and Suhh, Y. (2010). Ontology-based semantic matching for business
process management. ACM SIGMIS Database, 41(4) :98.

[53] Kim, G. and Suhh, Y. (2012). Building Semantic Business Process Space for Agile
and Efficient Business Processes Management : Ontology-Based Approach. Business
Enterprise, Process, and Technology Management : Models and Applications, pages
51–73.

[54] Kiryakov, A., Popov, B., Ognyanoff, D., Manov, D., and Kirilov, M. G. (2004).
Semantic annotation, indexing, and retrieval. Journal of Web Semantics, 2 :49–79.

[55] Klusch, M., Fries, B., and Sycara, K. (2009). OWLS-MX : A hybrid Semantic Web
service matchmaker for OWL-S services. Web Semantics : Science, Services and
Agents on the World Wide Web, 7(2) :121–133.

Bibliographie 164

[56] Larsen, L. B. and Baekgaard, A. (1994). Rapid Prototyping of a Dialogue System
Using a Generic Dialogue Development Platform. In Proceedings of the Third
International Conference on Spoken Language Processing, pages 919–922.

[57] Larsson, S. and Traum, D. R. (2000). Information state and dialogue management in
the TRINDI dialogue move engine toolkit. Natural Language Engineering,
6(3&4) :323–340.

[58] Leidner, D. and Ross (Eds.), J. (2015). Proceedings of the International Conference
on Information Systems. In Association for Information Systems. Association for
Information Systems.

[59] Leopold, H. (2013). Natural Language in Business Process Models : Theoretical
Foundations, Techniques and Applications. Springer, New York, New York, USA.

[60] Leymann, F. (2002). Web services and business process management. IBM Systems
Journal, 41(2) :1980211.

[61] Lhommet, M., Lourdeaux, D., and Barthès, J.-P. (2012). Foule sentimentale :
influence des caract{é}ristiques individuelles sur la contagion {é}motionnelle. Revue
d’Intelligence Artificielle, 26(3) :281–308.

[62] Li, L. and Horrocks (2003). A software framework for matchmaking based on
semantic web technology. In Proceedings of the 12th international conference on
World Wide Web, pages 331–339.

[63] Lison, P. (2013). Structured Probabilistic Modelling for Dialogue Management. PhD
thesis, University of Oslo.

[64] Loridan, C. and Valdes, M. (2004). Bonita : A Java 2 platform, Enterprise Edition
(J2EE) open source cooperative workflow system. In Java One.

[65] Maedche, A., Neumann, G., and Staab, S. (2003). Bootstrapping an Ontology-Based
Information Extraction System. Intelligent Exploration of the Web, 111 :345–359.

[66] Maes, P. (1994). Agents that Reduce Work and Information Overload.
Communications of the ACM, 37(7) :30–40.

[67] Maruster, L. and Jorna, R. J. (2005). From data to knowledge : A method for
modeling hospital logistic processes. IEEE Transactions on Information Technology in
Biomedicine, 9(2) :248–255.

[68] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, K. S. (2002). Semantic
Matching of Web Services Capabilities. Lecture Notes in Computer Science,
2342 :333–347.

[69] Maynard, D., Li, Y., and Peters, W. (2008). NLP Techniques for Term Extraction and
Ontology Population. In Proceedings of the 2008 conference on Ontology Learning and
Population : Bridging the Gap between Text and Knowledge, pages 107–127.

[70] Maynard, D., Peters, W., and Li, Y. (2006). Metrics for evaluation of ontology-based
information extraction. In international World Wide Web Conference, volume 179,
pages 1–8.

Bibliographie 165

[71] Negroponte, N. (1996). Being Digital. Vintage.

[72] OASIS (2012). Reference Architecture Foundation for Service Oriented Architecture.
Technical Report December, OASIS.

[73] OMG (2011). Business Process Model and Notation (BPMN). Technical Report
January, OMG.

[74] Paraiso, E. C. (2005). Une Interface Conversationnelle pour une Aide Intelligente.
PhD thesis, Université de technologie de Compiègne.

[75] Paraiso, E. C. and Malucelli, A. (2011). Ontologies Supporting Intelligent
Agent-Based Assistance. Computing and Informatics, 30 :829–855.

[76] Persson, A. and Stirna (Eds.), J. (2015). International Conference on Advanced
Information Systems Engineering. In Springer, Stockholm.

[77] Pesic, M. (2008). Constraint-based workflow management systems : shifting control
to users. Phd thesis, Eindhoven University of Technology.

[78] Porter, M. E. (1985). Competitive Advantage : Creating and Sustaining Superior
Performance. Free Press.

[79] Ramos, M. (2000). Structuration et évolution conceptuelles d’un agent assistant
personnel dans les domaines techniques. PhD thesis, Université de technologie de
Compiègne.

[80] Ramos, M. P., Tacla, C. A., Sato, G. Y., Paraiso, E. C., and Barthès, J.-P. A. (2011).
CSCW in Software Development : Collaboration among Humans and Artificial Agents
through Dialogs. International Journal of Energy, Information and Communication,
2(4) :31–45.

[81] Ribeiro, J., Carmona, J., Mısır, M., and Sebag, M. (2014). A Recommender System
for Process Discovery. Lecture Notes in Computer Science, 8659 :67–83.

[82] Rivière, J., Adam, C., and Pesty, S. (2014). Un ACA sincère comme compagnon
artificiel. Revue d’Intelligence Artificielle, 28(1) :67–99.

[83] Russell, N. and van der Aalst, W. M. P. (2007). Evaluation of the BPEL4People and
WS-HumanTask extensions to WS-BPEL 2.0 using the workflow resource patterns.
Technical report, BPM Center Report.

[84] Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., and Edmond, D. (2005).
Workflow resource patterns : Identification, representation and tool support. Advanced
Information Systems Engineering, 3520 :216–232.

[85] Russell, S. and Norvig, P. (2009). Artificial Intelligence : A Modern Approach.
Pearson, 3rd edition.

[86] Sadiq, S., Soffer, P., and Völzer (Eds.), H. (2014). International Conference on
Business Process Management. Lecture Notes in Computer Science, 8659 :1–434.

Bibliographie 166

[87] Sbodio, M. L. (2009). Planning Web Agents. PhD thesis, Université de technologie de
Compiègne.

[88] Scalabrin, E. E. and Barthès, J.-P. A. (1993). OSACA : une architecture ouverte
d’agents cognitifs independents. In Journée Nationale du PRC-IA sur les systèmes
multi-agents, Montpellier, France.

[89] Schonenberg, H., Mans, R., Russell, N., Mulyar, N., and van der Aalst, W. M. P.
(2008). Process flexibility : A survey of contemporary approaches. Lecture Notes in
Business Information Processing, 10 :16–30.

[90] Schonenberg, M. H., Mans, R. S., Russell, N. C., Mulyar, N. A., and Van Der Aalst,
W. M. P. (2007). Towards a taxonomy of process flexibility. Technical report, BPM
Center.

[91] Seneff, S. and Polifroni, J. (2000). Dialogue Management in the Mercury Flight
Reservation System. In Proceedings of the ANLP/NAACL 2000 Workshop on
Conversational Systems, pages 11–16.

[92] Shen, W. and Barthes, J.-P. a. (1996). An Experimental Multi-Agent Environment for
Engineering Design. International Journal of Cooperative Information Systems,
5(2-3) :131–151.

[93] Smith, A. and Krueger, A. B. (1776). The Wealth of Nations. Bantam Classics.

[94] Soffer, P. (2005). On the notion of soft-goals in business process modeling. In
Conference on Advanced Information Systems Engineering.

[95] Stibler, K., Denny, J., Street, F., and Nj, C. (2001). A three-tiered evaluation
approach for interactive spoken dialogue systems. In Proceedings of the first
international conference on Human language technology research, pages 1–5.

[96] Sugawara, K., Manabe, Y., Shiratori, N., Yaala, S. B., Moulin, C., and Barthès,
J.-P. A. (2011). Conversation-based support for requirement definition by a Personal
Design Assistant. IEEE 10th International Conference on Cognitive Informatics and
Cognitive Computing (ICCI-CC’11), pages 262–267.

[97] Sycara, K. P. (1998). Multiagent Systems. AI Magazine, 19(2) :79–92.

[98] Trastour, D., Bartolini, C., and Gonzalez-Castillo, J. (2001). A Semantic Web
Approach to Service Description for Matchmaking of Services. In Proceedings of the
International Semantic Web Working Symposium.

[99] Vallabhaneni, S. R. (2008). Corporate Management, Governance, and Ethics Best
Practices. Wiley.

[100] van Der Aalst, W. M. P. (1998). The Application of Petri Nets To Workflow
Management. Journal of Circuits, Systems and Computers, 08(01) :21–66.

[101] van der Aalst, W. M. P. (2009). Process-aware information systems : Lessons to be
learned from process mining. Transactions on Petri Nets and Other Models of
Concurrency II, pages 1–26.

Bibliographie 167

[102] van der Aalst, W. M. P. (2011). Process Mining : Discovery, Conformance and
Enhancement of Business Processes. Springer-Verlag, Berlin.

[103] van der Aalst, W. M. P. (2013). Business Process Management : A Comprehensive
Survey. ISRN Software Engineering, 2013 :1–37.

[104] van der Aalst, W. M. P., Aldred, L., Dumas, M., and ter Hofstede, A. H. M. (2004).
Design and Implementation of the YAWL System. Advanced Information Systems
Engineering, 3084 :142–159.

[105] van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, a. P.
(2003a). Workflow Patterns. Distributed and Parallel Databases, 14(1) :5–51.

[106] van der Aalst, W. M. P., ter Hofstede, A. H. M., and Weske, M. (2003b). Business
Process Management : A Survey. Lecture Notes in Computer Science.

[107] van der Aalst, W. M. P., Weske, M., and Grünbauer, D. (2005). Case handling : A
new paradigm for business process support. Data and Knowledge Engineering,
53(2) :129–162.

[108] Walker, M. A., Litman, D., Kamm, C. A., and Abella, A. (1997). PARADISE : A
framework for evaluating spoken dialogue agents. In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics, ACL/EACL 97, pages
271–280.

[109] Weizenbaum, J. (1966). ELIZA - A Computer Program For the Study of Natural
Language Communication Between Man and Machine. Communications of the ACM,
9(1) :36–45.

[110] Weske, M. (2007). Business Process Management : Concepts, Languages,
Architectures. Springer-Verlag New York, Inc.

[111] Wimalasuriya, D. C. and Dou, D. (2010). Ontology-Based Information Extraction :
An Introduction and a Survey of Current Approaches. Journal of Information Science,
36(3) :306–323.

[112] Wooldridge, M. (2002). An Introduction to Multi-Agent Systems. John Wiley & Sons.

[113] Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents : Theory and Practice.
The Knowledge Engineering Review, 10(2) :1–46.

[114] WS-BPEL Technical Committee, O. (2007). Web Services Business Process
Execution Language Version 2.0. OASIS Standard.

[115] Yildiz, B. and Miksch, S. (2007). ontoX - A Method for Ontology-Driven
Information Extraction. In Computational Science and Its Applications–ICCSA 2007,
pages 660–673. Springer Berlin Heidelberg.

	Table des matières
	Table des figures
	Liste des tableaux
	1 Introduction
	1.1 Problem Statement
	1.2 Hypothesis
	1.3 Motivation
	1.4 Contributions of our work
	1.5 Document Outline

	2 Business Process Management
	2.1 Overview of Business Process Management
	2.2 Business process model
	2.3 Classification of business processes
	2.3.1 Degree of human involvement
	2.3.2 Degree of structure
	2.3.3 Tradeoff between support and flexibility

	2.4 Process flexibility
	2.4.1 Flexibility by definition
	2.4.2 Flexibility by deviation
	2.4.3 Flexibility by underspecification
	2.4.4 Flexibility by change
	2.4.5 Choosing flexibility requirements to improve mediation

	2.5 An approach towards flexibility
	2.5.1 Case handling

	2.6 Discussion

	3 Personal Assistant Agents
	3.1 Agent definition
	3.1.1 Agent properties
	3.1.2 Strategies towards reasoning

	3.2 Multiagent Systems
	3.2.1 The OMAS platform

	3.3 Personal Assistants
	3.3.1 The evolution of the PA in the OMAS platform
	3.3.2 Dialog management

	3.4 How a PA could contribute to the BPM domain ?
	3.5 Summary

	4 Characterizing business processes
	4.1 Introduction
	4.1.1 Problem statement
	4.1.2 Contributions of this chapter
	4.1.3 Organization

	4.2 Illustrative example
	4.3 Control flow perspective: a canonical process format
	4.4 Function and resource perspective: The task model
	4.4.1 Task resources
	4.4.2 Process space
	4.4.3 Task capabilities
	4.4.4 Deriving the capability matrix

	4.5 Determining the capability of business processes
	4.5.1 Data flow perspective
	4.5.2 An algorithm for deriving the business process model capability

	4.6 Improving the data representation perspective
	4.6.1 Improving the description of preconditions
	4.6.2 Improving the description of effects
	4.6.3 Action taxonomy
	4.6.4 Condition format

	4.7 Semantic matching using the process space
	4.7.1 Matching concepts and their actions
	4.7.2 Matching attribute clauses
	4.7.3 Matching effects
	4.7.4 Matching preconditions
	4.7.5 Sending results to the requester

	4.8 Discussion

	5 A conversational interface for enabling the enactment of business processes
	5.1 Introduction
	5.1.1 Contributions of this chapter
	5.1.2 Organization

	5.2 Our baseline: The OMAS dialog system
	5.2.1 Examples of conversational interfaces built with OMAS

	5.3 Dialog approach
	5.3.1 Dialog mechanism
	5.3.2 Modeling dialogs using conversation graphs
	5.3.3 The library of tasks
	5.3.4 The selection mechanism in details
	5.3.5 Building a conversation graph from a business process model
	5.3.6 Discussion

	5.4 PA4Biz: A personal assistant for the enactment of business processes
	5.4.1 Overall architecture
	5.4.2 The top-level dialog
	5.4.3 Taking notes
	5.4.4 Syntactic annotation
	5.4.5 Semantic annotation
	5.4.6 Information extraction
	5.4.7 Business process selection and triggering
	5.4.8 Business process enactment

	5.5 Discussion

	6 Realization and experiments
	6.1 Technical Architecture
	6.2 Experimental validations
	6.2.1 The investment scenario
	6.2.2 Evaluation

	6.3 Discussion

	7 Conclusion
	7.1 Future research

	Bibliographie

