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Abstract

Feature drifts occur whenever a subset of features becomes, or ceases to be, relevant to

the learning task. Even though this type of drift was mentioned in pioneer works on data

stream mining, most of the offered algorithms assume that the same features are relevant

to the concepts to be learned throughout the whole process and that drifts occur in

partitions or ranges of each feature. This thesis is devoted to analyzing features in drifting

scenarios. This work starts with a survey on the topic, including a formal definition to

feature drifts and existing techniques capable of dealing with this trait. Furthermore,

it introduces novel generators and inspects existing ones capable of synthesizing feature

drifts. Regarding novel methods for handling feature drifts, the following are offered:

(i) new scoring operators based on Information Theory, i.e., Conditional Entropy and

Symmetrical Uncertainty, to keep track of features’ relevance during the processing of

data streams, (ii) the application of (i) as a weighting factor in both bayesian, instance-

based and decision tree-based learning schemes, (iii) the use of (i) as the core of a merit-

based feature selection method; and finally, (iv) a boosting-based strategy for dynamic

feature selection on data streams. The results obtained for the novel techniques show that

accuracy rates can be improved significantly across feature weighting, merit-guided feature

selection, and the boosting-based feature selection methods, whereas at the expense of

bounded computational resources for the weighting scheme and eventual improvements

for the remainder of the proposals.

Keywords: Data Stream Classification; Concept Drift; Feature Drift; Feature Selec-

tion; Feature Weighting.
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Resumo

Feature drifts ocorrem sempre que um subconjunto de atributos se torna, ou deixa de ser,

relevante para a tarefa de aprendizagem. Por mais que este tipo de mudança tenha sido

mencionado em trabalhos pioneiros da área de mineração de fluxos contínuos de dados,

maior parte dos algoritmos propostos assume que o conjunto de atributos relevante para

a aprendizagem é mantido durante todo o processo e que mudanças ocorrem em partições

e intervalos de cada atributo. Esta tese objetiva a análise de atributos em cenários com

mudanças de conceito. Este trabalho inicia com um levantamento de trabalhos existentes

na área, incluindo uma definição formal de feature drifts e técnicas existentes para o

tratamento destes. Ademais, este trabalho apresenta novos geradores de dados capazes

de sintetizar este tipo de problema, assim como reporta os geradores existentes. Em

termos de novos métodos para tratamento de feature drifts, o seguinte é proposto: (i)

operadores de ranqueamento baseados na Teoria da Informação, i.e., Entropia Condicional

e Incerteza Simétrica, para identificar o poder de discriminação de cada atributo durante

o processamento de fluxos de dados, (ii) a aplicação de (i) como um fator de ponderação

em métodos bayesianos, baseados em instância e em árvores de decisão, (iii) o uso de

(i) como parte principal de um método de seleção baseado em mérito; e finalmente, (iv)

um método baseado em boosting para seleção dinâmica de atributos em fluxos de dados.

Os resultados obtidos para as novas técnicas mostram que melhorias de acurácia para

diversos classificadores podem ser obtidas com os métodos de ponderação de atributos,

seleção de atributos baseada em mérito e em boosting, contudo, com aumentos no custo

computacional para o esquema de ponderação e eventuais ganhos para o restante dos

métodos propostos.

Palavras-chave: Classificação de Fluxos Contínuos de Dados; Mudança de Conceito;

Feature Drift ; Seleção de Atributos; Ponderação de Atributos.
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Chapter 1

Introduction

In the last decades, the interest in mining massive and potentially unbounded

datasets which arrive at rapid rates, namely data streams, has grown substantially. Data

Stream Mining has become of the utmost importance as most of the available data gener-

ators sequentially produce enormous amounts of data. Examples of data streams include,

but are not limited to, consumer click streams, telephone usage flows, posts in social net-

works (BRAVO-MARQUEZ; FRANK; PFAHRINGER, 2015), multimedia data mining

(GUHA, 2009; SILVA et al., 2013), computer networks intrusion detection (AGGARWAL

et al., 2003) and stock market share exchanges (BARDDAL; GOMES; ENEMBRECK,

2015a). Aiming at extracting useful knowledge from these massive amounts of data, a

variety of inductive learning techniques were developed and achieved concrete results in

both supervised (BIFET et al., 2013; KOSINA; GAMA, 2012; GAMA et al., 2014) and

unsupervised (AGGARWAL et al., 2003; KRANEN et al., 2011) learning fashions.

By far, the most common task in the streaming scenario is classification. In this

task, instances1 are associated with labels and the primary objective is to learn from

labeled data how to accurately classify future instances. Data stream classification al-

gorithms are presented to an enormous and possibly unbounded amount of data, each

of which is made available to the algorithm in a serialized fast-paced fashion (GAMA et

al., 2014). Moreover, due to the temporal and ephemeral characteristics of data streams,

one must assume that the underlying concept is unstable, i.e., changes in the concept

to be learned are expected to occur over time, a phenomenon named concept drift

(TSYMBAL, 2004; WIDMER; KUBAT, 1996).

Even though current techniques for data stream classification handle most of the

challenges posed by such environments, not much attention has been given to one of
1The term “instance” is often referred as “example” and “record” in other data mining and database

works.
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their characteristics: possible changes in the relevant subset of features, namely feature

drift. This type of drift has been cited in pioneer studies on data streams (WIDMER;

KUBAT, 1996), yet, they are virtually neglected, broadening both formalization and

efficient proposals, and assessment procedures (BARDDAL et al., 2017).

The latter characteristic enforces classification algorithms to possess strategies to

keep track or highlight the most discriminative set of features of the stream via feature se-

lection and weighting methods. By performing feature selection as the stream progresses,

classifiers are expected to compute faster, whilst requiring smaller memory space usage

(due to lower dimensionality) and to present as good as or, sometimes, higher accuracy

(NAIDU; DHENGE; WANKHADE, 2014). In addition to these expected results, several

real-world scenarios require models that are intelligible and easy to explain, traits that

can also be achieved with feature selection. Nevertheless, performing dynamic feature

selection during the processing of streams is not straightforward, since this process must

occur incrementally and adaptively, which is a current research gap.

1.1 Objectives

Although stated in pioneer works of data stream learning (WIDMER; KUBAT,

1996), recent works have shown that feature drift is, so far, a nearly neglected charac-

teristic of such environments (BARDDAL et al., 2017). Due to the recent reminisce of

the topic, this thesis provides an extensive study on feature drifts and techniques to excel

at this problem. This study includes: (i) formalizations, (ii) surveys existing works, (iii)

proposals of novel methods for tracking the relevance of features over time, thus allowing

their selection or weighting; and finally (iv) assessment strategies for such techniques.

The specific objectives of this project are presented as follows:

1. To provide formalizations for the feature drift problem.

2. To survey and discuss existing works that perform feature drift adaptation.

3. To identify how feature selection should be evaluated in streaming scenarios and

whether assessment techniques developed for batch scenarios can be used in stream-

ing settings.

4. To introduce dynamic scoring techniques based on concepts from Information The-

ory to track the relevance of features throughout data streams.

5. To propose and evaluate feature selection and weighting techniques that use the

latter scoring operators to overcome feature drifts.
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6. To develop and assess a boosting-based technique for dynamic feature selection from

streaming scenarios.

1.2 Hypotheses

Due to the recentness of works aiming at feature drifts, this thesis encompasses

several hypotheses, each one being discussed and evaluated throughout this work.

Hypothesis #1. It is possible to compute and keep track of features’ relevance

as a stream progresses.

Hypothesis #2. The tracking of features’ relevance as a stream progresses allows

swift model adaptation in the occurrence of feature drifts.

Hypothesis #3. Dynamic feature weighting improves instance-based, Bayesian

and adaptive decision tree learners during both feature drifts and stationary streams when

confronted with irrelevant features.

Hypothesis #4. Adaptive Information Theory scoring operators discover, keep

track, and filter both irrelevant and redundant features as a stream progresses.

Hypothesis #5. Higher order interactions between features can be discovered

by an adaptive boosting process, thus allowing the identification, tracking, and filtering

of relevant features as a stream progresses.

1.3 Contributions

Besides merely providing techniques for dynamic feature selection, this thesis also

contributes to feature drift formalization, thus filling an existing gap in the literature.

The main contributions of this thesis are as follows:

• Feature drift is an unclear and nearly neglected research topic. In this thesis, a

proper formalization is introduced, detailing its characteristics in theoretical and

application ends (see Chapter 3).

• Until this very point, feature drifts are barely accounted for by existing data streams

generators, therefore, some generators are extended (STREET; KIM, 2001; BIFET

et al., 2010) and novel ones are proposed to synthesize feature drifts based on other

works (ENEMBRECK et al., 2007; HALL et al., 2009). Additionally, all these gen-

erators are incremented with strategies to allow the addition of redundant features,

and thus, making the experiments even more challenging (see Chapter 4).
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• Most of the existing works on data streams that perform feature selection assume

that the underlying data distribution is stationary, e.g., Very Fast Decision Tree (see

Section 5.1) and Very Fast Decision Rules (see Section 5.2). Therefore, Chapter 5

is entirely devoted to surveying and benchmarking existing works on feature drift

adaptation and detection (see Chapter 5).

• Tracking the relevance of features as a stream progresses is not straightforward. As

one of the major contributions of this thesis, adaptive formulas for Information’s

Theory Entropy and Symmetrical Uncertainty are provided, thus allowing their

adaptive computation following a sliding window approach (see Chapter 6).

• Instance-based learning algorithms often rely on which instances are deemed “close”

to predict class labels. To determine how “close” two instances are, distance mea-

sures are commonly applied, being the Euclidian the most widely used. Nevertheless,

the Euclidian distance allows irrelevant features to possess the same importance as

those which are relevant. Another common approach for classification is Bayesian

learning. Bayesian learning is often referred to as an appropriate approach for high-

dimensional classification problems (CHEN; WANG, 2012), however, it has been re-

cently shown to be prone to features drifts (BARDDAL; GOMES; ENEMBRECK,

2015b). In this thesis, extensions to the k-Nearest Neighbor and Naive Bayesian

algorithms are proposed so that features’ discriminative power are promptly com-

puted given a sliding window, and this discriminative power is used as dynamic

weights during classification. Additionally, these modified learners are later used at

the leaves of Hoeffding Adaptive Trees (BIFET; GAVALDÀ, 2009), thus leading to

higher accuracy rates (see Chapter 7).

• The introduction of a dynamic filter for selecting the relevant subset of features

of a data stream is proposed along with different selection strategies. This filter

allows the discovery and tracking of discriminative features as the stream progresses,

and the removal of irrelevant and redundant ones, both based on the concepts

of Symmetrical Uncertainty (WITTEN; FRANK, 2005), Predominant Correlation

(YU; LIU, 2003) and the Hoeffding Bound (HOEFFDING, 1963) (see Chapter 8).

• The proposal of a dynamic boosting-based feature selection process for data streams

hereafter referred to as Adaptive Boosting for Feature Selection (ABFS). ABFS

chains decision stumps and drift detectors, and as a result, identifies which features

are relevant to the learning task as the stream progresses with relative success. As
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a result, ABFS improves the classification rates of different types of learners and

eventually improve computational resources usage (see Chapter 9).

1.4 Publications

The main results reported in this thesis are reported in the following publications.

• Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck. Analyzing the

Impact of Feature Drifts in Streaming Learning. In: Proceedings of the 22th Inter-

national Conference on Neural Information Processing (ICONIP’15). pages 21–28.

2015.

• Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck. A Survey on

Feature Drift Adaptation. In: Proceedings of the 26th IEEE International Confer-

ence on Tools with Artificial Intelligence (ICTAI’15). pages 1053–1060. 2015.

• Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, and Bernhard

Pfahringer. A Survey on Feature Drift Adaptation: Definition, Benchmark, Chal-

lenges and Future Directions. In: Journal of Systems and Software. pages 278–294.

2016.

• Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, Bernhard Pfahringer,

and Albert Bifet. On Dynamic Feature Weighting for Feature Drifting Data Streams.

In: Proceedings of the 2016 European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Databases (ECMLPKDD’16). pages

129–144. 2016.

• Jean Paul Barddal, Heitor Murilo Gomes, Jones Granatyr, Alceu de Souza Britto

Jr., and Fabrício Enembreck. Overcoming Feature Drifts Through Dynamic Feature

Weighted k-Nearest Neighbor Learning. In: Proceedings of the 2016 International

Conference on Pattern Recognition (ICPR’16). pages 2186–2191. 2016.

• Jean Paul Barddal, Heitor Murilo Gomes, Alceu de Souza Britto Jr. and Fabrício

Enembreck. A Benchmark of Classifiers on Feature Drifting Data Streams. In: Pro-

ceedings of the 2016 International Conference on Pattern Recognition (ICPR’16).

pages 2180–2185. 2016.

• Jean Paul Barddal, Heitor Murilo Gomes, Fabrício Enembreck, Albert Bifet, and

Bernhard Pfahringer. Merit-guided Dynamic Feature Selection Filter for Data Streams.

In: Expert Systems with Applications. 2019.
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• (Accepted – To appear) Jean Paul Barddal, Heitor Murilo Gomes, Fabrício

Enembreck, Albert Bifet, and Bernhard Pfahringer. Boosting Decision Stumps for

Dynamic Feature Selection on Data Streams. In: Information Systems.

1.5 Financial Support

This thesis was financially supported by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior (CAPES) through the Programa de Suporte à Pós-Graduação

de Instituições de Ensino Particulares (PROSUP) program program under the Finance

Code 001, which was later replaced by the Programa de Suporte à Pós-Graduação de Insti-

tuições Comunitárias de Ensino Superior (PROSUC). Also, between March and August

of 2016, this thesis was developed at the University of Waikato, New Zealand, under the

supervision of Professor Bernhard Pfahringer, in which travel and accommodation costs

were financed by the Computer Science department of the hosting university. Finally,

between September and December of 2017, the development of this thesis took place at

Télécom ParisTech, at Paris, France, under the supervision of Professor Albert Bifet,

while its respective travel expenses have been financed by CAPES under the Programa

de Doutorado-sanduíche no Exterior (PDSE) program.

1.6 Overview

This thesis project is partitioned into three parts. The first part introduces (i) basic

concepts on data stream mining, (ii) the fundamentals regarding features that enable a

proper formalization of feature drifts, (iii) the evaluation framework adopted, and (iv) a

survey of the existing algorithms for feature drift detection and adaptation. This first

part is divided into the following chapters:

• Chapter 2 states the data stream mining problem, focusing on the classification task

and its conventionally tackled challenges, i.e., concept drifts, bounded processing

time and memory space.

• Chapter 3 is devoted to features and the definition of relevance, redundancy, and

selection. This chapter also provides a categorization for feature selection algo-

rithms and discerns between feature selection and other related techniques of the

area. Furthermore, based on previously introduced definitions, this chapter delivers

formalizations to the main topic of this thesis: feature drifts.
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• Chapter 4 introduces the evaluation framework adopted throughout this work. It

broadens data stream generators capable of synthesizing feature drifts, real-world

data and the experimental protocol adopted, i.e., processing time, memory usage,

and feature selection specific metrics, such as selection accuracy and stability. It

is relevant to mention at this point that the computation of both Selection Accu-

racy and Stability do exist for batch scenarios, but they can also be considered as

contributions of this thesis since they have not been assessed before in streaming

scenarios.

• Chapter 5 yields a survey on existing works on feature drift adaptation and highlight-

ing open gaps in the area (BARDDAL; GOMES; ENEMBRECK, 2015c; BARD-

DAL; GOMES; ENEMBRECK, 2015b). Furthermore, this chapter evaluates the

use of drift detectors and existing classifiers in feature drifting streams, as discussed

in (BARDDAL et al., 2017) and (BARDDAL et al., 2016b).

The second part introduces the main contributions of this work, encompassing

novel adaptive feature scoring operators and their usage as a feature weighting scheme

and as the core of a novel filter for dynamic feature selection for data streams. Finally,

a boosting-based technique for feature selection on data streams is also proposed. A

fine-grained overview of the second part and its chapters is as follows.

• Chapter 6 introduces the proposed dynamic scoring operators. Moreover, it shows

how these operators can be swiftly computed over a data stream. The foundations

here provided refer back to the information theoretic Entropy (SHANNON, 1948)

and Symmetrical Uncertainty (WITTEN; FRANK, 2005).

• Chapter 7 shows how the proposed dynamic feature scoring schemes (BARDDAL et

al., 2016; BARDDAL et al., 2016a) can be used to boost both Bayesian and instance-

based learning in feature drifting streams and real-world datasets. Furthermore, it

shows how these two feature-weighted algorithms can improve the prediction accu-

racy of the state-of-the-art Hoeffding Adaptive Trees (BIFET; GAVALDÀ, 2009).

• Chapter 8 introduces a novel proposal for dynamic feature selection from data

streams. Additionally, this chapter assesses several selection strategies in a vari-

ety of synthetic and real-world scenarios.

• Chapter 9 introduces an dynamic boosting-based feature selection method for data

streams. As the chapter above, it also encompasses an analysis of the proposed

method in different scenarios and classifiers.
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Finally, the last part concludes this work, providing a discussion about the results

obtained and the existing gaps that will be assessed in future work.

• Chapter 10 states the conclusions obtained and introduces envisioned future works.



Chapter 2

Data Stream Mining

Recent advances in hardware and software allowed the gathering and storage of

massive amounts of data. However, as foreseen by Wirth’s law (WIRTH, 1995), compu-

tational processing advances did not grow as swiftly as the latter ones. Therefore, dealing

and extracting useful knowledge from these massive amounts of data has become a great

challenge due to the physical constraints of current computers.

In addition to data being generated in monumental quantity, most generators do so

sequentially, thus giving rise to data streams (AGGARWAL, 2006; GAMA, 2010; WID-

MER; KUBAT, 1996). Streaming applications involve sequentially generated datasets

that are too big to be stored in main memory, and as a result, are stored in secondary

memory. Since performing random access in secondary memory to retrieve data is a costly

process, the only feasible data access mode is according to the arrival of data, a technique

named single-pass processing (GUHA, 2009).

Extracting useful knowledge from data streams is a challenge per se. Most of

the data mining techniques assume that there is a static set of data, which probability

distribution is stationary and that can be analyzed in a multi-step fashion by a batch-

like algorithm. Nevertheless, none of the above conditions can be verified in streaming

scenarios, mainly due to their ephemerality, i.e., a stream’s data underlying distribution

is likely to change with time, giving rise to concept drifts.

This chapter probes the data stream mining problem. First, Section 2.1 reviews the

most common approach for extracting useful knowledge from data streams: classification.

The problem of concept drift is detailed in Section 2.2, and existing drift detectors are

briefly discussed in Section 2.3. Finally, Section 2.4 concludes this chapter, focusing on

its main aspects for the remainder of this work.

10
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2.1 Data Stream Classification

Classification is the task that distributes a set of instances into discrete classes

according to relations or affinities. Given a set of possible classes Y = {y1, . . . , yc}, a
classifier builds a model that predicts for every unlabeled instance ~x its corresponding

class y with accuracy.

Definition 1. The batch classification task can be formalized as follows: a set of n

training instances in the (~x, y) form, where y ∈ Y is a discrete class label and ~xi is a

d-dimensional vector of attributes belonging to a feature set (dimensions) X , that can

be categorical, ordinal, numeric or mixed. A classifier produces from this training set a

model f : ~x→ Y that is used to classify future unlabeled instances.

Definition 2. According to the Bayesian theory, classification can also be posed as the

prior probabilities of the classes P [y] and the class conditional probability density func-

tions (pdfs) P [~x|y] for all possible classes y ∈ Y (DUDA; HART; STORK, 2001). The

classification decision is performed given the posterior probabilities of the classes, where

Equation 2.1 states the posterior probability for an arbitrary class y.

P [y|~x] =
P [y]× P [~x|y]

P [~x]
(2.1)

Data stream classification, or online classification, is a variant of the traditional

batch classification. The difference between these two approaches regards how data is

presented to the learner. In the batch configuration, a static and entirely accessible dataset

is provided to the learning algorithm, which returns a model f to predict future instances.

Conversely, in streaming environments, instances are not readily available to the classifier

for training, instead, these are presented sequentially over time, and the learner must

update its model according to the arrival of instances from the stream (BIFET, 2010;

GAMA, 2010).

Definition 3. Let S = [(~xt, yt)]∞t=0 define a data stream providing instances (x t, y t), each

of which arriving at a timestamp t, where ~x t is a d-dimensional attribute1 vector belonging

to a feature set X and yt is the corresponding ground-truth label (class) of ~x t.

Definition 4. The feature set of a data stream S can be described as X = [Xj]
d
j=1 that

can be continuous, ordinal, categorical, or mixed with cardinality d. In order to access

the value of a feature Xi in an instance ~x t, the ~x t[Xi] notation is used. Furthermore, the

values of an attribute Xi are expressed as a single letter variable, as for instance, q ∈ Xi.
1Throughout this work, the words “attribute”, “dimension” and “feature” are used interchangeably.
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In traditional batch machine learning, most of the techniques assume that there is

a static dataset generated by an unknown and stationary probability distribution, which

can be physically stored and analyzed in multiple steps by a batch algorithm. Nonetheless,

none of the latter assumptions are verifiable in the streaming scenario and the development

of algorithms must take into account several constraints (BIFET, 2010; GAMA et al.,

2014; NGUYEN; WOON; NG, 2014; SILVA et al., 2013). Firstly, instances continuously

become available over time and there is no control over their arriving order nor how they

should be processed. Additionally, streams are potentially unbounded, therefore, instances

should be discarded right after their processing (or given available main memory space).

Due to the inherent temporal aspect of data streams, their underlying data distribution

is expected to dynamically change over time, implying in changes in the concept to be

learned, a phenomenon named concept drift (see Section 2.2).

2.1.1 Assumptions and Constraints

Throughout this work a few assumptions and constraints of streaming environ-

ments are considered:

• Single pass processing: Classifiers must be able to process instances sequentially

according to their arrival. A classifier must process instances as soon as they become

available and discard them right after. Although there is no restriction against

buffering instances for a limited amount of time, this must not put in jeopardy the

memory space and processing time constraints.

• Memory space: Primary memory is finite and its usage must be optimized. Con-

sequently, classifiers and their respective models must be bounded according to

existing available hardware.

• Processing time: The processing time of each arriving instance must not surpass

the ratio in which new instances become available. If the processing time of each

instance scales up, arriving instances will be discarded or enqueued for processing

until the system crashes. Also, if the algorithm is unable of processing instances in

real-time, it will not be unable to adapt to concept drifts (see Section 2.2) rapidly

neither.

• Label availability: In this thesis it is assumed that after the arrival of an instance

~x t, its respective label yt becomes available for training before the arrival of the fol-

lowing instance ~x t+1. This is, by far, the most used framework for the development of
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data stream learners (GAMA et al., 2004; GAMA; KOSINA, 2011) and frameworks,

e.g., Massive Online Analysis (MOA) (BIFET et al., 2010) and Scalable Advanced

Massive Online Analysis (SAMOA) (MORALES; BIFET, 2015). Although other

problem settings for data streams do exist, e.g., semi-supervised and unsupervised

learning fashions, they are not yielded here, therefore, the reader is referred to spe-

cific works on other learning schemes, e.g., unsupervised (SILVA et al., 2013) and

semi-supervised learning (LIU et al., 2013; MASUD et al., 2011).

2.2 Concept Drift

Due to the temporal and ephemeral characteristics of data streams, these are

expected to undergo changes in their data distributions, thus giving rise to concept

drifts (WEBB et al., 2018). Even though concept drifts are possible in both regression

and clustering problems, the formalization provided aims exclusively at the classification

task, which is the scope of the current work. For references on concept drift detection

and adaptation in these two tasks, the reader is referred to the following works (GAMA,

2010; NGUYEN; WOON; NG, 2014).

Definition 5. Let Equation 2.2 denote a concept C, a set of prior probabilities of the

classes and class-conditional probability density function (NGUYEN et al., 2012).

C =
⋃
y∈Y

{(P [y], P [~x|y])} (2.2)

Given a stream S, instances (~xt, yt) will be generated by the current concept Ct.

If during every instant ti of S we have Cti = Cti−1 , it occurs that the concept is stable.

Otherwise, if between any two timestamps ti and tj = ti+ ∆ occurs that Cti 6= Ctj , we

have a concept drift.

The cause of drifts cannot be determined nor predicted by conventional learning

algorithms since it is not feasible to assume that these hold access to secondary data

sources or its access cost is high enough to be considered prohibitive. Therefore, data

stream classification algorithms must detect and adapt to these changes automatically

and autonomously.

If the data generator process is non-stationary (as in most real applications),

changes in the context impact the concept to be learned; therefore, detecting and adapting

to concept changes is an obligation for new algorithms for data stream mining (GAMA et

al., 2014). Besides detecting concept drifts, it is also expected that algorithms be capable
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of discerning between a concept drift and noisy data and outliers (WIDMER; KUBAT,

1996; TSYMBAL, 2004).

Concept drifts may occur in two fashions: abruptly or gradually. In order to

determine whether a drift occurs abruptly or gradually, one must analyze the size of the

drift window Wdrift. Hypothetically, considering that a drift occurs after an instance ~x t

and that it becomes stable after an instance ~x t+Wdrift , if Wdrift = 1 holds, the drift is said

abrupt, otherwise (Wdrift > 1), gradual.

Inside a drift zone, the probability of an instance ~x t of belonging to an old concept

CA or to the new one CB is specific to each problem domain. However, many of these

probabilities can be synthesized through well-known probability distribution functions

(pdfs). Regardless of the function being adopted, we need to guarantee that P [CA] +

P [CB] = 1, as P [~x t ∈ CA] = 1 − P [~x t ∈ CB]. Finally, an interesting point in these

functions is the convergence of these probabilities, i.e., when P [~x t ∈ CA] = P [~x t ∈ CB] =

0.5, which is known as the “drift moment”, hereafter denominated tdrift.

2.3 A Note on Drift Detectors

Learning with concept drifts is a challenging problem that raises several questions.

Many proposals were introduced in the last years to tackle this issue, broadening the

use of drift detectors to adaptation through ensemble-based learning. This section aims

solely at drift detectors and does not claim for completeness, yet, focuses on recent pro-

posals that presented better average results in recent empirical evaluations (BIFET et

al., 2015; FRÍAS-BLANCO et al., 2015; GAMA et al., 2014; GONÇALVES et al., 2014;

SIDHU, 2015). Furthermore, specific details about the functioning of each of the detectors

mentioned in this section can be found in Appendix A.

It is important to highlight that all of the surveyed drift detectors assume as input

the misclassification rates of a classifier. Therefore, a drift is signalled when the monitored

misclassification rate deviates from its usual value past a certain detection threshold,

computed based on a statistical upper bound or a significance technique. Nevertheless,

their statistical procedures are generic and can be applied to any sequence of real numbers.

By far, the most widely used drift detector is the Adaptive Sliding Window Algo-

rithm (ADWIN) (BIFET; GAVALDÀ, 2007). ADWIN keeps a variable-length window of

recently seen items, with the property that the window has the maximal length statisti-

cally consistent with the hypothesis “there has been no change in the average value inside

the window”. The ADWIN change detector is parameter- and assumption-free in sense

that it automatically detects and adapts to the current rate of change.



15

Next, the Exponentially Weighted Moving Average Control Charts (ECDD) weights

the misclassification rates according to their position inside a sliding window using an

exponential function (ROSS et al., 2012). The ECDD output rate fluctuates across three

threshold levels: in-control, warning, and out-of-control. A drift will be flagged by ECDD

whenever the misclassification rate of a learner reaches the out-of-control level.

Finally, the authors in (FRÍAS-BLANCO et al., 2015) proposed two variants of

the Hoeffding Drift Detection Method (HDDM) detector: HDDM-A and HDDM-W. Both

the former and the latter are similar to ECDD in the sense that they use moving averages

to detect drifts, yet, only the latter uses an exponentially weighted procedure to provide

higher importance to most recent data. In both cases, the moving averages are compared

to flag concept drifts based on the misclassification rates of a classifier, where the Hoeffding

Bound (see Section 5.1 for more details) is used to set an upper bound to the accepted

level of difference between them.

2.4 Concluding Remarks

This chapter provided an overview of data stream mining, focusing on the classifica-

tion task and its major challenges regarding processing time, memory usage, and concept

drift identification. This chapter does not claim for completeness, therefore, the reader

interested in more details regarding these topics is referred to surveys on data stream min-

ing and concept drift adaptation (GAMA, 2010; GAMA et al., 2014; NGUYEN; WOON;

NG, 2014; WANKHADE; HASAN; THOOL, 2013; WEBB et al., 2018).

Additionally, this chapter also reviewed the most used drift detectors. This review

is important since change detectors presented here are part of existing works (see Chapter

5) and will be used during empirical analyses throughout this thesis (Chapters 7 through

9). The following chapter provides insights into features, broadening basic definitions,

e.g., feature relevance, redundancy, and selection; that together enable the introduction

of feature drifts, which is the main topic tackled in this work.



Chapter 3

Features: From Foundations to Drifts

Datasets and streams may contain hundreds, thousands, or even millions of fea-

tures, many of which may be irrelevant or redundant to the mining task. Dealing with

this massive amount of features is not only computationally expensive, but they are also

likely to damage inductive learning algorithms. Observing too many features often leads

to unnecessarily complex models and makes the problem too sparse, since the training set

would cover a dwindling part of the attribute space. Even if we assume a large dataset

with trillions of instances (examples) in a moderate attribute space of 100 binary dimen-

sions, only about 10−18 of the feature space would be covered (DOMINGOS, 2012). Also,

great dimensions can be a problem due to the curse of dimensionality, where learning

algorithms based on distance computations are known to fail (AGGARWAL; HINNEB-

URG; KEIM, 2001). As a result, dimensionality reduction is of the utmost importance

to overcome all of the aforementioned issues. Yet, if this reduction is poorly performed,

and relevant attributes are left out or irrelevant ones are kept, the whole process would

be damaged and result in patterns of poor quality (CHANDRASHEKAR; SAHIN, 2014).

This chapter is dedicated to features, broadening their foundations, the selection

task, and finally, feature drifts. Firstly, Section 3.1 defines feature relevance, while Section

3.2 defines feature redundancy. Both are important definitions that will be extensively

used throughout this work. Later, Section 3.3 formally defines the feature selection task

and its paradigms, while Section 3.4 reviews the classic categorization of feature selection

algorithms. Sections 3.5 and 3.6 provide additional information regarding the no free lunch

theorem and the difference between feature selection and extraction, respectively. Section

3.7 is devoted to feature drifts, the main issue tackled in this thesis, while Section 3.8

details the differences between dynamic feature selection and streaming feature selection.

Finally, Section 3.9 concludes this chapter by reviewing important topics that will be

useful in the remainder of this work.

16
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3.1 Feature Relevance

Up to this point, the term “relevance” was used without a formal definition. This

section defines the concept of relevance in the feature selection task. As stated in (KO-

HAVI; JOHN, 1997; RUDNICKI; WRZESIEŃ; PAJA, 2015; CIOS et al., 2007), there

do exist different definitions available in the literature, nevertheless, several may be con-

tradictory and misleading. In this work, the definition provided in the seminal work

of (KOHAVI; JOHN, 1997) is followed, as features are divided into irrelevant, strongly

relevant, or weakly relevant.

Definition 6. Assuming Si = X \ {Xi} and si to be a value-assignment to all variables

in Si, a feature Xi is strongly relevant iff there exists some q, y and si for which

P [Xi = q, Si] > 0 such that the following holds:

P [Y = y|Xi = q, Si = si] 6= P [Y = y, Si = si] (3.1)

Definition 7. A feature Xi, will be considered as weakly relevant iff Definition 6 does

not hold, and there exists a subset of features S ′i ⊂ Si for which exists some q, y and s′i
with P [Xi = q, S ′i = s′i] > 0 such that the following holds:

P [Y = y, |Xi = q, S ′i = s′i] 6= P [Y = y, S ′i = s′i] (3.2)

Otherwise, Xi is said to be irrelevant.

According to the previous definitions, if a feature that is statistically relevant is

removed from a feature set, it will incur in changes in the prediction power, most likely

reducing it. This definition encompasses two possibilities for a feature to be statistically

significant: (i) it alone is strongly correlated with the class; or (ii) it forms a feature

subset with other features and this subset is strongly correlated with the class (CHAN-

DRASHEKAR; SAHIN, 2014; ZHAO et al., 2010).

3.2 Feature Redundancy

Besides relevance, another important property of features is redundancy. Redun-

dancy notions are normally given in terms of feature correlation, since it is widely accepted

that two features are redundant to a concept if their values are correlated. Redundant
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features are problematic and should be eliminated since they provide an extra computa-

tional cost for both storage and processing (YU; LIU, 2004) and make classifiers more

prone to overfitting (YU; LIU, 2003). Therefore, there is also the need of determining

and eliminating redundant features prior to learning.

Definition 8. Assuming Si = X \ {Xi}, a feature Xi is redundant iff

P [Y |Si] ≈ P [Y |Xi, Si] (3.3)

According to Definition 8, a feature becomes redundant due to the existence of an-

other feature that provides similar prediction power. Several studies proposed the removal

of redundant features as this might improve prediction accuracy since fewer features often

lead to less overfitted models, while others noticed that the removal of this type of fea-

ture may cause the exclusion of potentially relevant features. Most of the existing works

propose to find redundant features through correlations (HALL; SMITH, 1999; HALL,

2000; YU; LIU, 2003) or grouping similar patterns into feature clusters (OES et al., 2009;

PARK, 2013).

3.3 Feature Selection and Paradigms

The number of possible definitions for the feature selection task is nearly as wide

as the amount of proposed methods to perform it. This section introduces the three

most used definitions and discuss their respective rationales. Regardless of the strategy

being used, the goal of feature selection is to remove irrelevant and/or redundant features,

while maintaining the probability distribution of the original data classes P [Y ]. Learning

from a dataset with smaller dimensionality has several benefits: (i) it results in a smaller

amount of parameters in the patterns discovered, thus making the final classification

model simpler and easier to understand, (ii) assuming that the feature selection was

successful, we should obtain as good or better accuracy rates compared to the model

trained with all the original features also while requiring less data (CARVALHO; COHEN,

2006; CHANDRASHEKAR; SAHIN, 2014), and (iii) smaller processing times and memory

consumption rates, due to items mentioned above (NAIDU; DHENGE; WANKHADE,

2014).
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3.3.1 Relevance and Redundancy Criteria-based Feature Selection

Based on the definitions of relevance and redundancy, the feature selection task

can be formalized as a process that eliminates irrelevant and/or redundant features.

Definition 9. The feature selection task based on the definitions of relevance and redun-

dancy can be posed as follows:

∃Xr,Xt ⊆ X , X ∗ = X \ {Xr} \ {Xt} (3.4)

where Xr is the subset of features that are deemed relevant (for which Definitions 6 and

7 hold) and Xt is the subset of redundant features in X (for which Definition 8 is true).

Computing redundancy is a task that is computationally expensive in the O
(
2d
)

order since there is the need to verify the redundancy between each possible pair of

features. Therefore, the most simplistic approaches (mostly filters – see Section 3.4)

for feature selection often do not encompass redundancy verification by relaxing this

constraint.

In order to determine if a feature is either relevant or redundant, proposals use both

linear (e.g., Pearson correlation) and nonlinear approaches (e.g., Entropy, Information

Gain and Symmetrical Uncertainty). This section refrains from providing a detailed

description of such metrics since many of these are fundamental and will be explored

throughout the proposed methods introduced in Chapters 6, 7, and 8.

3.3.2 Optimal Feature Selection

Optimal feature selection is a paradigm that relies on a predictor and its perfor-

mance. More precisely, optimal feature selection depends on the predictor (usually a

classifier), its performance evaluation, e.g., Accuracy, Area under the Receiver Operat-

ing Characteristic Curve (AUROC), and a dataset (CHANDRASHEKAR; SAHIN, 2014;

WITTEN; FRANK, 2005). Even though this type of method claims for optimatily, their

solution may not be unique since different subsets of features may incur in the same

performance.

Definition 10. Optimal feature selection can be described an optimization problem X ∗

as follows:

X ∗ = argmax
X ′⊆X

Q(X ′) (3.5)

where Q(·) is the evaluation metric of a classifier in the possibly diminished dataset

described by the features in X ′ ⊆ X .
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Finding X ∗ is a difficult task that, assuming dmax = d, requires an exploratory

search which, by definition, leads to a search with O(2d) cost. Due to the exponential

computational complexity, all algorithms do possess some kind of heuristic to guide the

selection process, which may lead to different feature subsets. Therefore, designers of

optimal feature selection algorithms must account for the bias/variance dilemma, which

underlines the controversy of a learning algorithm and feature set complexity, namely

the need to find the best model for a given dataset simultaneously to providing better

generalization for future instances (CIOS et al., 2007; SAMMUT; WEBB, 2011). If the

designer overfits the complex processing algorithm to given data in a large feature set,

then the algorithm’s ability to generalize for upcoming instances may deteriorate. By

increasing the complexity of the processing algorithm and feature set, it is possible to

reduce bias and increase variance. On the other hand, a processing algorithm with a

small feature set may not be able to process a given dataset satisfactorily. Simplistic and

inflexible learning algorithms (with a small number of parameters), when applied to small

feature sets, may have too big a bias and too small variance. Therefore, robust learners

must implement this tradeoff between its ability to maximize the gain into the training

dataset while not overfitting to it, managing to augment its generalization capability for

predicting future instances accurately.

3.3.3 Minimum Construction Paradigm Feature Selection

Performing optimal feature selection is problematic due to the number of feature

subsets to be explored and evaluated. The minimum construction paradigm relaxes this

problem of optimal feature selection by defining a maximum amount of features to be

selected. This can be performed via heuristics like the Occam’s razor 1, which hypothesizes

that the simplest model obtained from observations of a phenomena is most likely the

correct one; or analytical formalizations to it, as the Minimum Description Length (MDL)

(BARRON; RISSANEN; YU, 1998).

Definition 11. Assuming the full set of features X , the goal of feature selection is to

select a subset X ∗ with a maximum length dmax that retains the relevant information in

a dataset. Suppose that the goodness of a subset of features X ′ ⊆ X is given by Q(·),
then feature selection can be stated as in Equation 3.6, where dmax is the upper bound

1William of Ockham (c. 1287–1347) was an English Franciscan friar and philosopher that produced
significant works on logic, physics and theology. The original claim behind its most notorious work,
the Occam’s razor, is that when confronted with a problem-solving situation, one should assume the
hypothesis with least assumptions.
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on the number of selected features.

X ∗ = argmax
X ′⊆X

Q(X ′) subject to |X ′| ≤ dmax (3.6)

This paradigm prunes the amount of subsets of features to be evaluated from 2d

to 2dmax , where dmax � d. Nonetheless, this decrease may still result in an unfeasible pro-

cessing time for feature selection if the evaluation metric Q(·) depends on building and

evaluating a classifier. Therefore, it is also common for minimum construction paradigm-

based feature selection algorithms to assume heuristic evaluation metrics, e.g., Pearson

Correlation, Entropy, Information Gain; to evaluate each possible subset of features. Al-

though clearly non-optimal, algorithms designed according to this paradigm are important

in applications where the classifier must act within limited memory space, therefore, its

memory usage can be bounded according to dmax, which is often an user-given parameter.

3.4 Categorization of Feature Selection Methods

Beyond the paradigms provided in the last section, it is also important to categorize

feature selection methods into the following classes: rankers, filters, wrappers and embed-

ded methods (GUYON, 2003). Details on existing algorithms are not surveyed since they

are neither incremental nor adaptive, and thus, not applicable in streaming scenarios.

Nevertheless, this categorization is useful in introducing related works in Chapter 5.

Rankers assign a score to each feature based on a user-given criterion, e.g., mutual
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Figure 3.1: Visual schematics for ranker, filter, wrapper and embedded feature selection
approaches assuming a feature set X = {X1, X2, X3, X4}.
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information, correlation, entropy. Rankers are often not referred as pure feature selection

algorithms since they do not eliminate features, yet, provide a metric that determines to

what extent each feature is relevant to the concept. Figure 3.1a presents a visual schematic

of a ranker, where 4 features are inputted and the ranker outputs an importance metric

to each one of them.

Filters are similar to rankers in the sense that they apply statistical measures

to assign a score to each feature. Features are then ranked by scores and either se-

lected to be kept or removed according to a threshold or a merit-guided selection. This

threshold can be defined as the maximum amount of features to be maintained or a

minimum score that deems a feature as relevant. These methods are usually univariate

and consider each feature independently or regarding the dependent variable (class fea-

ture). Two important traits of filters are their independence from the learning algorithm

adopted and low computational cost. Examples of filter methods include, but are not

limited to, the χ2 test, Information Gain, Entropy, Correlation Coefficient Scores (LIU;

MOTODA, 2007), Las Vegas Filters, Relief, ReliefF (NAIDU; DHENGE; WANKHADE,

2014), Correlation-based Feature Selection (CFS) (HALL; SMITH, 1999; HALL, 2000)

and the Fast Correlation-based Filter (FCBF) (YU; LIU, 2003). Figure 3.1b presents a

visual representation of a filter, where only two of the original four features are selected.

Wrappers consider the selection of a subset of features as a search problem, where

different combinations are prepared, evaluated and pairwisely compared, usually in bottom-

up or top-down approaches. Also, a predictive model is used to evaluate each combination

of features and assign a score based on each model accuracy, therefore, wrappers can be

stated as optimization systems. Wrappers are sensitive to the learning algorithm’s bias

and recognize that certain algorithms may work better with different features (AGGAR-

WAL, 2014). Nevertheless, an important drawback of wrappers is their computational

cost, which is computationally prohibitive in high dimensional or in real-time scenarios.

The most common search processes are best-first search, stochastic hill-climbing algo-

rithms, forward and backward passes, beam search, and simulated annealing; to add or

remove features from the current subset. Examples of wrapper feature selection meth-

ods are exhaustive search, recursive elimination algorithm (YUAN; HREBIEN; KAM,

2005), branch and bound (CHEN, 2003), stepwise forward search, greedy stepwise search

(HALL et al., 2009) and backward feature selection (CIOS et al., 2007). Figure 3.1c de-

picts a wrapper, where a classifier (graphically represented as a decision tree) is inputted

alongside the feature set X .
Finally, embedded methods learn which features best contribute to the overall

accuracy of the learning algorithm while the model is created. Decision trees and rules
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learning are examples of embedded methods since the construction of the model (tree or set

of rules) and the selection of the features are interleaved, but the selection of features itself

is done by filters. Embedded approaches interact directly with the learning algorithm and

present better computational complexity than wrappers (CHANDRASHEKAR; SAHIN,

2014). Figure 3.1d exemplifies the construction of a decision tree, where a filter is used

in order to decide which feature will be tested in every split.

3.5 The No Free Lunch Theorem and Feature Selec-

tion

The “No Free Lunch Theorem” is a result of optimization algorithms (DUDA;

HART; STORK, 2001). It states that there is no algorithm that can outperform stochastic

search on all problems. The same rationale can be applied to feature selection. For

instance, empirical analysis conducted in (BACCIANELLA; ESULI; SEBASTIANI, 2010)

showed that certain randomly picked pairs and triples of features may give better results

than the best 10—20 single features ranked by Gini Impurity and Information Gain.

Another important consideration about feature selection algorithms is the effect

of classification bias. In the case of filters, which are classifier-independent, it is possible

that resulting selected features lead to significantly different results in terms of accuracy

when these are inputted to different types of classifiers, e.g., decision tree and instance-

based learning. Therefore, there is the need to evaluate the results obtained from a

feature selection algorithm either (i) across multiple classifiers with different biases; or

(ii) classifier-independently, if there is a known ground-truth set of non-redundant and

relevant features to be used for comparison (SAMMUT; WEBB, 2011), e.g., Selection

Accuracy, which is later discussed in Section 4.4.3.

3.6 Feature Selection versus Extraction

Feature selection and extraction are two different tasks that aim at performing

dimensionality reduction of a dataset. The first selects a subset of features among the

entire feature set from the original dataset, i.e., X ′ ⊂ X , while the latter generates new

features based on the original dataset (CIOS et al., 2007). Feature extraction refers to

the transformation of a original d-dimensional dataset into a d′-dimensional one, such

that d′ ≤ d. The transformation and dimensionality reduction function can be considered

as a non-linear transformation, which must be designed based on available knowledge
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about the domain and data statistics. The gains of data transformation through projec-

tion include: (i) the removal of irrelevant features, (ii) redundancy removal, (iii) dataset

compression, and a (iv) low-dimensionality view of data which enables better clustering

and visualization of other relationships in data. Even though the reasons for performing

data transformation highly overlap with those provided by feature selection, the result

of feature projection jeopardizes readability since transformed features may not evoke

back to the original ones. The scope of this thesis does not encompass feature extraction,

therefore, projection techniques, e.g., principal component analysis, random projections,

semidefinite embedding and latent semantic analysis and Wavelets; are not part of this

work. For details on feature extraction from data streams, the reader is referred to

(KUNCHEVA; FAITHFULL, 2014; HUNTER; COLLEY, 2007; YAN et al., 2006).

3.7 Feature Drift

Most of existing algorithms for data streams tackle the infinite length and drifting

concept characteristics. However, not much attention has been given to a specific kind

of drift: feature drifts. Feature drifts occur whenever a subset of features becomes, or

ceases to be, relevant to the concept to be learned. This enforces the learning algorithm

to adapt its model to ignore the irrelevant attributes and account for the newly relevant

ones (NGUYEN et al., 2012).

Definition 12. Given a feature space X at a timestamp t, we are able to select the

ground-truth relevant subset X ∗t ⊆ X such that ∀Xi ∈ X ∗t definitions 6 and 7 hold and

∀Xj ∈ X \ X ∗t the same definitions do not. A feature drift occurs if, at any two time

instants ti and tj = ti + ∆ with ∆ > 0, X ∗ti 6= X
∗
tj
betides.

Definition 13. Let r(Xi, tj) ∈ {0, 1} denote a function which determines whether the

disjunction between definitions 6 and 7 holds for a feature Xi in a timestamp tj of the

stream. A positive relevance (r(Xi, tj) = 1) states that Xi ∈ X ∗ in a timestamp tj and

that Xi impacts the underlying probabilities P [~x|yi] of the concept Ct of S. A feature

drift occurs whenever the relevance of an attribute Xi changes in a timespan between tj
and tk, as stated in Equation 3.7.

∃tj∃tk, tj < tk, r(Xi, tj) 6= r(Xi, tk) (3.7)

Changes in r(·, ·) directly affect the ground-truth decision boundary to be learned

by the learning algorithm. Therefore, feature drifts can be posed as a specific type of con-
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cept drift that may occur with or without changes in the data distribution P [~x] (BARD-

DAL et al., 2017).

As in conventional concept drifts, changes in r(·, ·) may occur during the stream.

This enforces learning algorithms to detect changes in X ∗, discerning between features

that became irrelevant and the ones that are now relevant and vice-versa. Finally, it is

necessary to either (i) discard and learn an entirely new classification model; or (ii) adapt

the current model to relevance drifts (NGUYEN et al., 2012). It is important to emphasize

that feature drifts are indeed targeted by the generic concept drift formalization, yet, most

existing works on concept drift detection and adaptation assume that the relevant subset

of features remains the same and that drifts occur if certain values (or ranges of values)

of attributes have their class distribution re-skewed.

Although feature drifts may occur in a variety of environments, one of the most

common is text mining. In order to exemplify a feature drift, one should consider the e-

mail spam detection system presented in (KATAKIS; TSOUMAKAS; VLAHAVAS, 2006).

This system is the result of a text mining process on an online news dissemination system.

Essentially, this work intended on creating an incremental filtering of emails that classifies

emails as spam or ham and, based on this classification, it decides whether an e-mail is

relevant for dissemination among users. The dataset contains 9,324 instances and 39,917

features, such that each attribute represents the presence of a single word (feature) in

an instance (e-mail). This dataset, namely Spam Corpus, is known for containing a

feature drift which occurs gradually around the instance of number 1,500 (KATAKIS;

TSOUMAKAS; VLAHAVAS, 2006) and that highly impacts the learner.

Figure 3.2a presents a plot of the information gain (a possible feature goodness

measure for determining its discriminative power) (HALL et al., 2009) of two specific

attributes presented in this problem, namely “directed” and “info”, where one can see that

the importance of these two features starts to gradually change around instance 1,500

(BARDDAL; GOMES; ENEMBRECK, 2015b; KATAKIS; TSOUMAKAS; VLAHAVAS,

2006). Detecting and discerning the 2 features out of nearly 40,000 that exchange rele-

vances as the stream’s progress is an important example of task that must be embedded

within streaming learning algorithms, since changes greatly impact the accuracy of the

model (Figure 3.2b) and learning with a subset of the original feature set is also compu-

tationally faster. A detailed description of these classifiers is omitted since the Very Fast

Decision Tree (VFDT) and Very Fast Decision Rules (VFDR) are discussed in Sections

5.1 and 5.2, respectively.
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Figure 3.2: Analysis of information gain for two specific features and accuracy obtained on
the Spam Corpus dataset. Adapted from (BARDDAL; GOMES; ENEMBRECK, 2015c;
BARDDAL; GOMES; ENEMBRECK, 2015b).

3.8 Dynamic Feature Selection versus Streaming Fea-

ture Selection

At this point, it is important to emphasize the difference between Dynamic Feature

Selection for data streams and Streaming Feature Selection (also commonly referred as

Online Feature Selection (HOI et al., 2012; LI et al., 2013; YIN et al., 2015)). In this

work, the dynamic feature selection is said to be the process that continuously keeps track

of the relevance of features over time and that selects only a subset of them according to

this heuristic. Conversely, streaming feature selection regards the possibility of finding

the best subset of features in a very high-dimensional space (hundreds of thousands or

millions of dimensions), which is a typical problem of big data (HOI et al., 2012). Although

both tasks’ objectives overlap in the sense that both tackle the issue of feature selection,

streaming feature selection receives as input a stream of features (not instances), and

their inclusion in the model is performed sequentially, without observing future features

(ZHOU; HUANG; SCHÖLKOPF, 2005). Therefore, Streaming Feature Selection is used

in batch learning, when the number of features is gigantic, scaling up to thousands or

millions of attributes and the number of instances is static and does not vary with time

(YIN et al., 2015).

3.9 Concluding Remarks

During this chapter, several definitions regarding features were presented and for-

malized. Feature relevance and redundancy are concepts that guide this work and will
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be exhaustively used during the remainder of this thesis. As discussed in this section,

performing feature selection, even in static datasets, is a challenging task that requires

heuristics in order to avoid exhaustive searches, and thus, efficient techniques that provide

accurate feature subsets is a challenge. Finally, this chapter formalized feature drift, a

nearly neglected issue of data streams that will be tackled throughout the next chapters.

More specifically, the following chapter introduces the evaluation framework adopted to

evaluate both existing algorithms for data streams and the proposed methods.



Chapter 4

Evaluation Framework

In order to assess the applicability of both existing and proposed algorithms, an

analysis environment was constructed. First, Section 4.1 introduces the computational

framework that allowed the implementation and evaluation of learning algorithms, data

generators and evaluation metrics, the Massive Online Analysis (MOA) (BIFET et al.,

2010). Next, Section 4.2 discusses synthetic data generators and the procedure adopted to

introduce irrelevant and redundant data into streams, while Section 4.3 briefly describes

the real-world datasets used. Section 4.4 presents the experimental protocol, broadening

not only accuracy, processing time and memory usage but also feature selection specific

metrics and the statistical testing procedure adopted. Finally, remarks on this analysis

environment are discussed in Section 4.5.

4.1 Massive Online Analysis (MOA)

The Massive Online Analysis (MOA) is a popular open source framework for data

stream mining that includes a collection of machine learning algorithms and tools for

evaluation (BIFET et al., 2010). MOA was designed to deal with several problems of the

streaming scenario, broadening synthetic data generation, the use of real datasets, the

implementation of new algorithms and evaluation metrics. Due to the open source char-

acteristic, MOA enables the quick test of hypotheses by data stream mining researchers.

One important aspect to be recalled here is that the classifiers embedded within the

MOA framework are either incremental or adaptive. This is an important characteristic

since no explicit windowing is required for classifiers to be retrained on. Otherwise, a

conventional batch classifier, e.g., J48, Naive Bayes, Logistic Regression, would be trained

every time a new batch of instances with a pre-defined window size becomes available. In

practice, such behavior would require a priori knowledge about the data distribution and

28
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whether concepts drifts are expected to occur and when so that an appropriate window

size is set before training.

Also, even though MOA has a strong aim towards the classification task, it also

comprehends regression, clustering, outlier detection and recommending systems tasks,

all in streaming fashion. MOA was written in Java and allows the quick addition or

adaptation of existing code, therefore, is widely used in several works. MOA and several

plug-ins are available for download from <http://moa.cms.waikato.ac.nz/>.

4.2 Synthetic Data Generators

In order to evaluate whether a learning algorithm is able to work in different sce-

narios, it is necessary to assess its performance across different datasets. In opposition

to real-world data, synthetic data stream generators are important and widely used due

to their flexibility since they allow a precise definition of drifts types and location during

the streams. This section starts by presenting the general drift framework adopted for

experiments. Later, several generators able to synthesize feature drifts are surveyed and

proposed, thus enabling proper evaluations of learning algorithms in feature drifting sce-

narios. All of these generators were either available at MOA or will be made available in

an upcoming release.

4.2.1 Drift Framework

Drifts in experiments are synthesized according to the framework proposed in

(BIFET, 2010). This framework models a drift as the change between two pure distri-

butions given by two different concepts CA and CB. Intuitively, at the beginning of a

drift window there is a higher probability that instances belongs to the concept CA. As

we move towards its end, the probability that it belongs to concept CB raises. The drift

window ends when concept CB becomes stable. To model the probability that every new

instance it drawn from S belongs to concept CA or CB this framework adopts a sigmoid

function stated in Equation 4.1, where P [CB] and P [CA] = 1−P [CB] are the probabilities

of (~xt, yt) belonging to CA or CB, W is the drift window size, t is the current timestamp

and tdrift is the time of the drift, i.e., P [CA] = P [CB] = 50% occurs.

P [CB] = f(t) = |1− P [CA]| = 1(
1 + e−Wdrift(t−tdrift)

) (4.1)

In (BIFET, 2010) authors observe that Equation 4.1 has a derivative at time tdrift

http://moa.cms.waikato.ac.nz/
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equal to f ′(tdrift) = s/4 and that tan β = f ′(tdrift), thus tan β = s/4. Also, tan β = 1/W

and asWdrift = 4 tan β then β = 4/W , where β is an optional phase angle. In this sigmoid

model there are only two parameters to be specified: tdrift and Wdrift.

Therefore, with the following generators, feature drifts occur when the relevant

subset of features X ∗ of CA differs from the relevant subset of features X ∗ of the subsequent
concept CB.

4.2.2 AGRAWAL Generator (AGR)

The AGRAWAL generator (AGRAWAL; IMIELINSKI; SWAMI, 1993) produces

data streams with the aim of determining whether a loan should (or not) be given to a

bank customer. This generator is composed of 6 categorical and 3 numeric features, and

possesses 10 functions for mapping instances to two possible classes, each of which relying

on different subsets of features. A perturbation factor is used to add noise to data, thus,

creating fuzzy decision borders. This factor changes the original value of a feature with

the addition of a deviation value, which is defined by a uniform distribution.

4.2.3 Asset Negotiation Generator (AN)

The Asset Negotiation (AN) generator1 was originally presented in (ENEMBRECK

et al., 2007), where the aim was to simulate drifting bilateral multi-agent system nego-

tiation of assets, each of which being described by 5 attributes. The task is to predict

whether an opposing agent would be interested or not in an asset (binary classification

problem). Drifts were synthesized by changing the interest of this agent by changing the

concept through time according to five functions.

4.2.4 Binary Data with Feature Drift Generator (BG-FD)

The Binary Generator with Feature Drift (BG-FD) generates instances composed

of boolean ({0, 1}) features. BG-FD has three functions: BG1-FD, BG2-FD, and BG3-

FD, all inspired by the work of (HALL, 2000).

In BG1-FD, presented in Equation 4.2, from the entire set of features X , only a

random subset X ∗ ⊂ X is relevant to the concept to be learned. Additionally, |X ∗| =

Xr, where Xr is a user-given parameter. Conversely, in BG2-FD (Equation 4.3) and

BG3-FD (Equation 4.4), the size of the relevant subset of features is fixed, where X ∗ =

1The Asset Negotiation Generator has been contributed to the Massive Online Analysis (MOA) frame-
work and will be made available in MOA 2016-10.
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{Xα, Xβ, Xε}.

y =


1, if

∧
Xi∈X ∗

Xi

0, otherwise
(4.2)

y =

1, if (Xα ∧Xβ) ∨ (Xα ∧Xε) ∨ (Xβ ∧Xε)

0, otherwise
(4.3)

y =

1, if (Xα ∧Xβ ∧Xε) ∨ (¬Xα ∧ ¬Xβ ∧ ¬Xε)

0, otherwise
(4.4)

In all cases, class labels yi ∈ Y are evenly likely to occur and instances have a 10%

probability of being generated as noise.

4.2.5 Random Tree Generator with Feature Drift (RTG-FD)

The original Random Tree Generator (RTG) builds a decision tree by randomly

performing splits on features and assigning a random class label to each leaf. Instances

are created by generating a random valued ~x and traversing the tree for its corresponding

label. This generator is extended in this work to allow that given a random X ∗ ⊂ X is

relevant, where |X ∗| < |X | is a user-given parameter. Therefore, the remaining attributes

generated will be either irrelevant or redundant.

4.2.6 SEA-FD Generator

In (BARDDAL; GOMES; ENEMBRECK, 2015b), authors proposed a data stream

generator that extends the SEA generator (STREET; KIM, 2001) namely SEA-FD. SEA-

FD simulates streams with d > 2 uniformly distributed features given by the user, where

∀Xi ∈ X , Xi ∈ [0; 10] and only two randomly picked features are relevant to the concept

to be learned: X ∗ = {Xα, Xβ}. As in (STREET; KIM, 2001), the class value y is given

according to Equation 4.5, where θ is a user-given threshold.

y =

1, if Xα +Xβ ≤ θ

0, otherwise
(4.5)
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4.2.7 Adding Irrelevant and Redundant Data into Generators

The generators introduced in the last section rely on few attributes to determine

the class outcome of an instance. Originally, such generators do not allow the introduction

of extra irrelevant features and thus, to harden the experiments, all were extended to allow

their addition.

The proposed strategy to append irrelevant features is to simply increment the

attribute set X of a data stream with numeric or categorical attributes. In the first case,

values for a numeric attribute are sampled from a uniform distribution bounded in [0; 1],

with no regard to the instance outcome. The procedure for categorical features is similar,

where new irrelevant attributes possess m different values, such that m is a user-given

value and the probability of each partition being used in an instance equals 1/m. With

the exception of BG-FD experiments that are composed of binary attributes, m was set

to 10 for all other scenarios. This value was empirically set and its variation did not show

major differences in the experiments results, yet, m can be easily customized for future

experiments.

Another trait that can deceive feature selection algorithms is the presence of redun-

dant data. In addition to irrelevant attributes, three proposals for embedding redundant

data into existing generators are also introduced.

Copy with perturbation factor. Let Xi and Xj be features such that the

Definition 8 (redundancy) holds. This strategy generates values for Xj by copying the

value Xi and adding a perturbation factor p ∈ [0; 1]. If Xi is a numeric attribute, Xj will

be set to a value in the ~x[Xi]± p×∆ interval given that ∆ = maxXi −minXi. On the

other hand, if Xi is a categorical attribute, Xj is then set to the same value of Xi with

(1− p) probability, or otherwise set to one of the other possible values. Either way, this

strategy leads to a linear correlation where the Pearson coefficient decays exponentially

with the growth of p.

Radial Basis Function. The Radial Basis Function (RBF) strategy generates

values by projecting an attribute into a Gaussian distribution. Working under the assump-

tion that Xi’s distribution is uniform (as it holds for all generators earlier described), its

expectation is given by E(Xi) = maxXi−minXi

2
. Given the expectation, the value of Xi can

then be projected using Equation 4.6. One of the drawbacks of this strategy is that it

can only be applied to numeric data.

rRBF(~x,Xi) = (~xi[Xi]− E(Xi))
2 (4.6)

Cosine. This strategy is similar to the latter one with regard to value projection.
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Table 4.1: Synthetic data stream experiments.
Experiment
Identifier

# of
Features

# of
Relevants

# of
Irrelevants

# of
Linear Redundants

# of
RBF Redundants

# of
Cosine Redundants

Drift Window Size
(Wdrift)

AGR 20 3± 1 6± 1 11 – – 1,000
AN 20 3.5± 1 1.5± 1 15 – – 1,000
BG1 50 4± 1 31± 1 15 – – 1,000
BG2 50 3 32 15 – – 1,000
BG3 50 3 32 15 – – 1,000
RTG 50 5 30 5 5 5 1,000
SEA 50 2 33 5 5 5 1,000

The rationale here is to use trigonometry cosine to project the value of an attribute Xi

into a new range of values. Since cosine expects a degree as input, the value of Xi must

be first converted in a degree as depicted in Equation 4.7. As with the RBF strategy, this

scheme can only be applied to numeric attributes.

rcosine(~x,Xi) = cos

(
360

~x[Xi]

maxXi −minXi

)
(4.7)

4.2.8 Summary of Synthetic Experiments

Given the latter generators, several synthetic experiments were created encom-

passing different dimensions and both abrupt and gradual drifts. Table 4.1 presents an

overview of these experiments, which will be repeatedly used in the upcoming chapters to

evaluate the proposed methods. All experiments are binary problems, i.e., |Y | = c = 2,

contain 100,000 instances, possess 9 drifts, each at every 10,000 instances (tdrift); and a

noise rate of 10%. It is important to emphasize that even though certain experiments pos-

sess a static amount of relevant features, they do change over the stream as drifts occur.

Furthermore, it is important to highlight that only a small fraction of the attributes in

each experiment are deemed as relevant (from 4% to 10%). And finally, all experiments

using synthetic data streams have been performed 30 times, each time with a different

random seed for each of the inning concepts and the respective average results will be

reported in the following chapters.

4.3 Real-world Data

In contrast to synthetic data, real-world problems present differentiated behavior:

the distribution between classes is often unbalanced and there might exist temporal de-

pendencies between instances, i.e., between two instances (~xt, yt) and (~xt+1, yt+1), there

is a high probability that yt = yt+1 (ŽLIOBAITĖ et al., 2014). On the other hand,

it is nearly impossible to affirm if and where drifts occur, making evaluation harder.
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This section presents real-world datasets used in evaluation and their goals. It is impor-

tant to emphasize that the datasets used were chosen due to their appearance in other

data stream mining works and reasonable number of features. For instance, other tradi-

tional datasets, e.g., Airlines (IKONOMOVSKA et al., 2011), Electricity (RODRIGUES;

GAMA; PEDROSO, 2008), and Pokerhand (CATTRAL; OPPACHER; DEUGO, 2002),

were not used since they possess a number of features that is already too small and feature

selection would not be beneficial.

4.3.1 Internet Advertisements (IADS)

The Internet Advertisements (IADS) (KUSHMERICK, 1999) dataset targets the

classification task of images on websites, either by labelling them as advertisements or

not. A variety of features is available, including the geometry of the image (if available)

as well as phrases occurring in the URL, the image’s URL and alt text, the anchor text,

and words occurring near the anchor text.

4.3.2 NOMAO

The NOMAO Challenge dataset (NOMAO) (CANDILLIER; LEMAIRE, 2012)

was introduced during the ECMLPKDD’12 challenge was part of a deduplication task.

This dataset targets the identification of whether two spots, represented by an instance,

should have their data merged or not.

4.3.3 Spam Corpus

The Spam Corpus database was developed in (KATAKIS; TSOUMAKAS; VLA-

HAVAS, 2006) as a result of a text mining process on an online news dissemination

system. Part of this work intended on creating an incremental filtering of emails classi-

fying them as spam or not, and based on this classification, deciding whether this email

was relevant for dissemination among users. This dataset has 9,324 instances and 39,917

boolean attributes, such that each attribute represents the presence of a single word (the

attribute label) in the instance (e-mail). As discussed in Section 3.7, the Spam Corpus

dataset possesses a drift around the instance 1,500 which impacts the learning accuracy

of classification algorithms (KATAKIS; TSOUMAKAS; VLAHAVAS, 2006).
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Table 4.2: Summary of real-world data used during experiments.
Dataset Identifier Dataset # of features # of instances Class distribution (%)

IADS Internet Ads 1,559 3278 14–86
NOMAO Nomao Challenge 118 34,465 29–71
SPAM Spam Corpus 39,917 9,324 25–75

4.3.4 Summary of Real-world Experiments

Even though synthetic data stream generators allow higher flexibility, real-world

data give researchers the possibility of evaluating their proposals in different scenarios with

no a priori knowledge. It is also relevant to highlight the lack of real-world data streams

that are made publicly available (GAMA et al., 2014), thus rendering the evaluation in

such scenarios brief. Table 4.2 summarizes the main characteristics of evaluated datasets.

All the presented datasets are binary classification problems and are sorted as a time

series, thus, giving rise to one of the main traits of streaming scenarios.

4.4 Experimental Protocol

Evaluating learning algorithms is a challenge per se. Additionally, the evaluation

of feature selection proposals is unclear and the procedures to be followed are not common

sense in the machine learning community (GALELLI et al., 2014; KUNCHEVA, 2007).

This section presents evaluation metrics that broadens accuracy, processing time, mem-

ory usage, selection accuracy and feature selection stability. Furthermore, it states the

statistical testing procedure adopted for testing all the results obtained.

4.4.1 Accuracy Evaluation

Holdout error estimation is one of the most straight-forward evaluation methods for

machine learning algorithms. The rationale behind holdout evaluation is to periodically

sacrifice n instances to estimate classification accuracy.

Definition 14. Let S ′ be the set of n sacrificed instances and let L(·, ·) be the loss function
(usually a 0-1 function). The holdout error He of a classifier in a chunk S ′ of instances is
given by Equation 4.8, where yi is the ground-truth class and ŷi the the predicted class.

He =
1

n

n∑
i=1

L(yi, ŷi) (4.8)

Sacrificing chunks of data for evaluation may not faithfully represent a classifier’s
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accuracy over a data stream. Adopting a test-then-train scheme, authors in (GAMA;

RODRIGUES, 2009) proposed the Prequential procedure to monitor the evolution of a

classifier’s performance over time. Although the Prequential evaluation is known for being

pessimistic, it converges to a periodic holdout estimative when estimated over a sliding

window.

Definition 15. Given a sliding window of size w′, the Prequential error Pe of a classifier

at a timestamp ti is given by Equation 4.9, where yi is the ground-truth class and ŷi the

the predicted class.

Pe(w
′, ti) =

1

w′

i∑
k=i−w′+1

L(yk, ŷk) (4.9)

As stated in the original paper, the choice of the window size is critical and the

outcome depends on the scale of change of the stream. Even though strategies to avoid

this rather empirical definition of an evaluation window size exist (BIFET et al., 2015),

they do not allow a precise comparison when evaluating different classifiers. Therefore,

the original Prequential evaluation process is maintained where the window size is set to

10% of the stream since several pairwise evaluations will be performed throughout this

work.

4.4.2 Processing Time and Memory Usage

Besides measuring accuracy, it is important that data stream mining algorithms

perform both rapidly and within memory boundaries. In the following experiments, pro-

cessing time is reported as the time that the algorithms spend in the processor (in seconds)

namely CPU Time, while memory usage is presented in RAM-Hours, where 1 RAM-Hours

equals 1 GB of RAM used per hour. All experiments’ results reported in the following

chapters were obtained on an Intel Xeon CPU E5649 @ 2.53GHz ×8 based computer

running CentOS with 16GB of memory.

4.4.3 Selection Accuracy

The selection accuracy (SA) score expresses the degree to which a selected subset

of features matches the true input subset of relevant features (GALELLI et al., 2014).

SA is based on a simple similarity score that makes no distinction between irrelevant and

redundant features and simply treats both as unnecessary and extraneous.

Definition 16. Assuming a feature set X , its relevant subset of features X ∗ and the

selected subset of features X ′, the selection accuracy SA is given by Equation 4.10, where
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γ is a weighting factor that influences the penalty applied to the selection of extraneous

features in relation to the gain obtained from each correctly selected feature.

SA(X ,X ∗,X ′) = γ

RSR︷ ︸︸ ︷(
|X ∗ ∩ X ′|
|X ∗|

)
+(1− γ)

(
1− |(X \ X

∗) ∩ X ′|
|X | − |X ∗|

)
︸ ︷︷ ︸

CUCP

(4.10)

The SA score is bounded in the [0; 1] interval, where 1 corresponds to a perfectly

specified feature selection, while 0 represents a selection with no relevant features and all

extraneous ones selected. SA has as an advantage the fact that the information about

the degree to which a model has been correctly or incorrectly specified is combined into

a single value, which makes the comparison between several feature selection proposals

clear.

One of the drawbacks of the SA score is that it requires the choice of an appro-

priate value of γ. This choice is subjective and depends on how much one wants to favor

accuracy over parsimony or vice versa. Hereafter, the two components that compose the

SA formula are referred as Relevant Selection Recall (RSR) and Complement of Unnec-

essary Complexity Penalty (CUCP). A suitable value for γ should reflect the fact that

choosing an extraneous feature is usually better than missing a relevant one, something

that can be achieved by selecting γ, such that γ
|X ∗| >

1−γ
|X |−|X ∗| (MOLINA; BELANCHE;

NEBOT, 2002). On the other hand, γ should not be large to the point that there is

no substantial penalty to unnecessary model complexity. Authors in (GALELLI et al.,

2014) provided an empirical evaluation of different values of γ and claimed that 0.7 is an

interesting value since it satisfies the above condition while being sufficiently less than 1

to appropriately penalize unnecessary complexity.

The advantage of computing Selection Accuracy scores is that they express the

degree to which a selection model over- or under-specifies. For instance, if a method is

consistently over-specified over a range of datasets, this may indicate that the stopping

criterion is inappropriately penalizing model complexity or that the significance level used

to compute input relevance is inadequate. Yet, it also is worth to highlight that the SA

score is impacted by the total number of features we have in the data stream being

analyzed since the denominator in CUCP depends on the cardinality of the original input

feature set X .
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4.4.4 Stability

Another important trait of feature selectors that deserves attention is stability.

Stability measures the sensitivity of the feature selection solution given perturbations in

input data. The goal is to provide evidence that the selected features are consistent across

different input data samples. Therefore, stable feature selection algorithms are preferable

when compared to those with highly volatile outputs. It is important to highlight that

stability, however, does not relate to the performance of the selected features as it indicates

how unstable a feature selection algorithm is w.r.t. perturbations in input data, and not

on how accurate the selection is.

In batch learning, stability is often measured by repeatedly performing feature

selection over n different bootstraps of disjoint folds of a static dataset, leading to a set

of feature selection results. Let X ′i be the subset of features selected over the ith samples

of instances extracted from a static dataset. The stability of a feature selection algorithm

can be computed by averaging the similarity coefficient φ for each of the k pairs of (X ′i ,X ′j)
of selected features, as stated in Equation 4.11.

S =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

φ(X ′i ,X ′j) (4.11)

Although several similarity metrics (φ) for stability do exist, until recently, there

has not been an agreement on which one to use (KUNCHEVA, 2007). Recently, the

work of (NOGUEIRA; BROWN, 2016) has provided insights on the main properties

a stability measure should possess. First, it should be fully defined, as a stability

measure should be defined regardless of the selected feature sets and respective lengths.

Also, it must have pre-defined upper and lower bounds to facilitate the comparison

between selectors. The third trait is the relationship called Deterministic Selection

⇔ Maximum Stability: if a selector always selects the same k features, then it should

present maximum stability. The converse should also hold, i.e., the stability is maximum

only if the selection is deterministic. Finally, it should have chance correction, so if the

selector is random, its stability should be 0. Even though these traits are rather simple,

the analysis conducted in (NOGUEIRA; BROWN, 2016) shows that most approaches

do not fulfil these criteria. More importantly, in the same work, authors show that the

Pearson coefficient overcomes this problem. This coefficient is given by Equation 4.12,

where d = |X |, ri,j = |X ′i ∩ X ′j |, and vi =
√

ki
d

(
1− ki

d

)
with ki = |X ′i |.

φPearson(X ′i ,X ′j) =
ri,j − kikj

d

d vivj
(4.12)
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Finally, the last challenge to be tackled here regards how stability scores can be

calculated in streaming scenarios. A naive proposition to select samples of a stream would

be to adopt a landmark windowing scheme, where every m instances would be grouped

and inputted to a feature selection algorithm. After performing feature selection over n

batches, the stability could then be computed. The major drawbacks of such proposal are

that it assumes that (i) the feature selection algorithm is not dynamic and that (ii) the

underlying data distribution is static since the selected subset of features for each batch

is expected to be the same. As discussed in the previous sections of this paper, none

of the latter assumptions hold or are preferable, thus, evaluating with landmarks is not

reasonable.

To overcome such limitations, the proposal is to adapt the Prequential Cross-

Validation (Preq-CV) scheme presented in (BIFET et al., 2015) for stability computation.

Following the original Preq-CV, three different k-fold approaches can be used to evaluate

the stability of a feature selector: cross-validation, split-validation and bootstrap-

ping. The first strategy updates (k − 1) folds, while the second updates only one of the

k folds. Finally, the bootstrapping approach updates each of the k folds using a weight

obtained with a Poisson distribution with a parameter λ = 1. In this scheme, x is the

number of times in which an instance will be associated with a fold drawn from a Poisson

distribution with λ mean. Therefore, the probability of an instance being used in each

fold is approximately two thirds, as P [x > 0] = 1− P [x = 0] = 1− e−1

x!
= 1− e−1

0!
≈ 63%

and the same value depicts the intersection of instances used in each pair of folds.

Similarly to Selection Accuracy, calculating a Stability score is computationally

intensive as it requires k(k−1)
2

pairwise similarity computations, and thus, these are only

calculated according to an user-given evaluation window size. Also, even though this

score is calculated only every n instances, it is important to notice that the actual fea-

ture selection process occurs incrementally, which causes the process to be different from

performing batch feature selection and conventional stability computation.

4.4.5 Statistical Testing Procedure

The evaluation procedure resides in assessing algorithms’ efficiency in accuracy,

processing time, memory usage and feature selection accuracy. In order to provide sta-

tistical confidence to presented claims, Wilcoxon’s test or a combination of Friedman’s

and Nemenyi’s non-parametric hypothesis tests were adopted, depending on the number

of evaluated hypotheses.

Wilcoxon’s signed-rank test (WILCOXON, 1945) is used when there is the need to
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compare two paired samples ~a1 and ~a2 to assess whether their mean ranks differ signifi-

cantly. Wilcoxon’s test computes the absolute difference |~a2[j]−~a1[j]| for each datum pair

and ignores cases where differences are equal to zero, thus resulting in a new sample with

size Nr. Later, it ranks (Ri) the absolute differences, from smallest to largest, employing

tied ranks when needed. Signs (sgn(·) ∈ {+1,−1}) are associated with ranks according

to their original differences. Positive signs (+1) occur if ~a2[j] − ~a1[j] > 0 and negative

signs (−1) otherwise.

Under the null hypothesis, i.e., the samples possess the same population, it occurs

that the W statistic (Equation 4.13) is below Wα,Nr , a value found in statistical tables.

W =
Nr∑
j=1

sgn(~a2[j]− ~a1[j])×Ri (4.13)

Finally, if there is the need to compare more than two hypotheses at the same time,

one should proceed with the Friedman test (FRIEDMAN, 1937). It ranks algorithms for

each dataset separately, where the best performing algorithm receives the rank number

1, the second best rank number 2 and so forth. Let rkj be the rank of the kth of m

algorithms on the jth of N datasets. Friedman’s test compares the average ranks of

algorithms Rj = 1
N

∑
j r

k
j . Under the null hypothesis, all algorithms are equivalent if

their ranks are equal according to the Friedman statistic (presented in Equation 4.14),

which is distributed according to χ2
F with (m− 1) degrees of freedom (DEMSAR, 2006).

χ2
F =

12N

m(m+ 1)

[∑
j

R2
k −

m(m+ 1)2

4

]
(4.14)

If the null hypothesis is rejected, one can proceed with Nemenyi’s posthoc test

(NEMENYI, 1963), which compares all algorithms with each other. The performance of

two algorithms are significantly different if the corresponding average ranks differ by at

least one critical difference (CD) given by Equation 4.15, where qα is a range statistic

that relies on a required significance level α.

CD = qα

√
m(m+ 1)

6N
(4.15)

Finally, statistical differences are reported according to critical differences charts,

where hypotheses connected by line segments do not present significant statistical differ-

ences.
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4.5 Concluding Remarks

Evaluating data stream learning algorithms embeds the measuring and comparison

of accuracy, processing time and memory usage metrics. Furthermore, a variety of feature

drifting data generators were introduced, thus enabling a proper evaluation of algorithms

in these scenarios. Also, one should always bear in mind that both synthetic and real-world

data should be used, each one to provide insights into different aspects of the evaluation.

Throughout this chapter, two specific metrics for the feature selection task, i.e., Selection

Accuracy and Stability, have been introduced and considerations about their computations

in streaming environments were discussed. Together, this set of metrics, data generators,

datasets and statistical evaluation procedures, constitute a solid evaluation environment.

This environment will be repeatedly used during the following chapters in order to evaluate

the proposed algorithms.

The following chapter surveys related works on feature drift adaptation. Addition-

ally, several of the algorithms presented are evaluated alongside drift detectors.
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Related Work

There are few works in the literature that perform feature selection or weight-

ing during stream learning. There are even fewer that aim at explicitly detecting and

adapting to feature drifts. This chapter summarizes existing algorithms that perform

feature selection or weighting as the stream progresses, either assuming the existence or

not of feature drifts. This chapter is an abbreviated version from the surveys presented

in (BARDDAL; GOMES; ENEMBRECK, 2015c) and (BARDDAL et al., 2017). It is im-

portant to highlight that this chapter does not include a thorough study over ensembles

that explore different subspaces in parallel. This is due to the fact that ensembles are

computationally expensive compared to single classifier methods, and have an aggregate

behavior that is hard to explain. For instance, it is hard to justify if an ensemble presents

certain accuracy rates due to its resampling technique, drift detection scheme, or vote

combination strategy, or if it is the mix of all these that yields such results. In practice,

evaluating ensembles is puzzling since one must justify if an ensemble performs well be-

cause of the combination of all its internal procedures, or simply because some of these

are very effective while others are useless or detrimental.

Furthermore, it must also be emphasized that this survey does not include feature

selection proposals that assume that the stream’s data generation is stationary. For

instance, the work of (FONG; WONG; VASILAKOS, 2016) is not included since (i)

streams are summarized into large data batches and a conventional batch Particle Swarm

Optimization (PSO) feature selection algorithm is used to guide the classifier learning,

and (ii) no drifting experiments were evaluated. The work of (YAN et al., 2006) is

also omitted since the proposed dimensionality reduction techniques are incremental and

assume that no drifts occur during the stream. More recently, feature selection from

streams have received some attention, where the work of (TURKOV et al., 2016) is

accentuated. Nevertheless, in this work no datasets with irrelevant features are tested,

42
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Table 5.1: Summary of existing algorithms that perform feature selection during stream
learning. Adapted from (BARDDAL et al., 2017).

Algorithm Learning
Approach

Feature Selection
Algorithm

Feature Drift
Adaptation Method

Explicit Dynamic
Feature Selection Reference

VFDT Tree
Entropy

Information Gain
Gini Coefficient

– (DOMINGOS; HULTEN, 2000)

Facil Rules Purity – (FERRER-TROYANO; AGUILAR-RUIZ; SANTOS, 2005)
VFDR Rules Entropy – (GAMA; KOSINA, 2011)

Streaming Random Forest Ensemble (Trees) – Randomness/Combinatorics (ABDULSALAM; SKILLICORN; MARTIN, 2007)
(ABDULSALAM; SKILLICORN; MARTIN, 2011)

Random Rules Ensemble (Rules) – Randomness/Combinatorics (ALMEIDA; KOSINA; GAMA, 2013)
Streaming Stacking – Ensemble Combinatorics (BIFET EIBE FRANK; PFAHRINGER, 2010)

CVFDT Tree
Entropy

Information Gain
Gini Coefficient

Windowing 3 (HULTEN; SPENCER; DOMINGOS, 2001)

HEFT-Stream Ensemble FCBF Windowing 3 (NGUYEN et al., 2012)

HAT Tree
Entropy

Information Gain
Gini Coefficient

Windowing 3 (BIFET; GAVALDÀ, 2009)

HUWRS Ensemble – Windowing (HOENS; CHAWLA; POLIKAR, 2011)
ARF Ensemble (Trees) – Randomness & Windowing (GOMES et al., 2017)

and there are no experiments with feature drifts.

Table 5.1 categorizes the surveyed algorithms, which are layered given four char-

acteristics: their learning approach, the feature selection algorithm used, feature drift

adaptation method adopted; and whether explicit dynamic feature selection occurs or

not. Sections 5.1 and 5.2 start this chapter by discussing two important and widely used

approaches: decision trees and decision rules, respectively. Although most of the summa-

rized algorithms presented in this section were not developed aiming at performing feature

drift detection and adaptation, these are discussed and their capabilities to attack this

problem are highlighted, either through randomness (Section 5.3), combinatorics (Section

5.4) or windowing (Section 5.5).

5.1 Decision Tree Learning

Learning with decision trees is a predictive approach used in statistics, data mining

and machine learning. In its simplest implementations, each internal node contains a test

on a feature Xi ∈ X , each branch from a node corresponds to an outcome of the test and

each leaf contains a possible prediction (class value from Y ) (BIFET, 2010).

Predictions for instances ~x are obtained by traversing the tree with features’ values,

determining which branch should be followed until a leave is reached.

Decision trees are learned by recursion, replacing leaves by test nodes, starting at

the root. The feature of each test node is chosen by comparing all the available attributes

Xi ∈ X according to some heuristic measure.

By far, the most used decision tree for data streams is the Very Fast Decision

Tree (VFDT) (DOMINGOS; HULTEN, 2000). The VFDT algorithm constructs decision

trees by using constant time per instance. Trees are built by recursively replacing leaves
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with decision nodes, as data arrives. Different heuristic evaluation functions are used to

determine whether a split should be performed or not, such as Entropy, Linear correlation,

Information Gain and Gini Impurity (HAN; KAMBER; PEI, 2011).

Given the values for the chosen metric, to determine whether an split should be

performed, VFDT assumes that the input data meets the Hoeffding bound (HOEFFD-

ING, 1963).

Definition 17. The Hoeffding Inequality states that with probability (1−δ) the true mean

of a variable is at least r̄− ε, where ε is given by Equation 5.1, δ is a user-given confidence

bound, r ∈ R+ is a random variable with range R, n is the number of independent

observations and n̄ is the mean computed by the latter observations.

ε =

√
R2 ln (1/δ)

2n
(5.1)

The Hoeffding bound is able to give results regardless the probability distribution

that generates data. However, the number of observations needed to reach certain values

of δ and ε are different across different probability distributions (BIFET; GAVALDÀ,

2007), therefore, it must be seen as a pessimistic bound.

Generally, with probability (1−δ), one can say that one attribute is superior when

compared to others when the observed difference of information gain (or any other metric

that computes the importance of an attribute) is greater than the Hoeffding Bound ε

(given by Equation 8.2). Although VFDT performs embedded feature selection in data

streams, it assumes that the distribution generating data does not change over time,

therefore, it does not detect nor adapt to a possible concept or feature drift. With this

goal, adaptive versions such as Concept-adapting Very Fast Decision Tree and Hoeffding

Adaptive Trees have been proposed and will be later discussed in Sections 5.5.1 and 5.5.3.

It is also important to highlight that many works have been developed by extending

Hoeffding Trees with different purposes, e.g., memory consumption (MANAPRAGADA;

WEBB; SALEHI, 2018) and learning from imbalanced scenarios (LYON et al., 2014), but

an exhaustive analysis of such proposals is not part of the current work.

5.2 Decision Rule Learning

Although decision trees account for readability, in some specific scenarios, where

trees tend to grow largely, they become hard to understand since nodes appear in a
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specific context defined by tests at antecedent nodes (ALMEIDA; FERREIRA; GAMA,

2013). In contrast, classifiers based on rules have the advantage of both modularity and

interpretability (RIVEST, 1987), where each rule is independent of the others and can

also be interpreted isolated from others.

A decision rule is a logic predicate in the IF antecedent THEN label form,

where the antecedent is a conjunction of conditions over features Xi ∈ X and the label is

a possible class value that belongs to Y .

5.2.1 Facil

The first rule learner for data streams published was Facil (FERRER-TROYANO;

AGUILAR-RUIZ; SANTOS, 2005). Facil creates rules according to the arrival of in-

stances in an incremental fashion. In order to cope with concept drifts, Facil encompasses

both explicit and implicit forgetting mechanisms. The explicit approach occurs when the

examples are older than a user-given thresholdW , adopting a sliding window approach to

eliminate old rules. Conversely, implicit forgetting occurs when removing rules that are

not relevant as they do not enforce any concept description boundary. This approach’s

rationale is that rules are inconsistent if they store both positive and negative instances

that are near to one another at the decision boundary. Therefore, rules are removed if

the impurity (ratio between positive instances it covers and its total number of cover

examples) of a rule reaches a lower bound user-given threshold. Whenever the removal

of a rule occurs, the subset originally covered by these rules are used to form two new

rules that achieve satisfiable purity. One of the major restrictions of Facil is that input

numeric data must be normalized in the [0; 1] interval.

5.2.2 Very Fast Decision Rules

A more robust approach for learning rules from data streams, namely Very Fast

Decision Rules (VFDR) is proposed by authors in (GAMA; KOSINA, 2011). The algo-

rithm starts with an empty rule set and rules are grown and expanded as new instances

become available according to the minimization of the entropy of class labels of instances

covered by each rule and if the entropy values meet the Hoeffding bound (Equation 5.1).

VFDR considers two cases of rule learning: ordered and unordered sets of rules. In

the former, all labeled instances update statistics of the first rule triggered by it, while in

the latter labeled instances update statistics of all the rules that cover it. In both cases,

if no rules cover an instance, the default rule is updated.

Finally, VFDR encompasses two classification strategies. The first uses only the
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information about class distribution and does not account for attribute’s values. Since

it uses a small part of the available information, it is a crude approximation of the in-

stances. Conversely, in an informed strategy, instances are classified with the class that

maximizes the posteriori probability assuming the independence of attributes given the

class (P [yi|~x] ∝ P [yi]
∏
P [~xj|yi]).

5.3 Randomness

Diversity is a trait of a variety of recently proposed algorithms for learning from

data streams (BIFET et al., 2009; BIFET, 2010; OZA, 2005). In these approaches,

ensembles of experts are trained in parallel or cascade, and often each one receives differ-

ent inputs for training (BREIMAN, 1996). The most well-known approach for inducing

diversity in ensembles is Bagging (BREIMAN, 1996). Originally, a bagging ensemble is

composed of m classifiers, which are trained with bootstraps (sampling with replacement)

of the whole training set. However, sampling usually is not feasible in a data stream config-

uration, since that would require storing all instances before creating subsets. Therefore,

authors in (OZA, 2005) observed that the probability of an instance ~xi to be selected for

a subset can be approximated by a Poisson distribution with λ = 1.

Although promoting diversity through instances is an interesting approach to

boost the accuracy of learners, more recent approaches aims at promoting diversity

through different feature subsets (ABDULSALAM; SKILLICORN; MARTIN, 2007; AB-

DULSALAM; SKILLICORN; MARTIN, 2011). By learning through ensembles with dif-

ferent subsets of features, experts learn partially (or completely) disjoint areas of the

feature space, implying in a highly diverse ensemble. Although these algorithms do not

focus explicitly on adapting to feature drifts, they possess implicit adaptation to this

characteristic of data streams.

5.3.1 Streaming Random Forest (SRF)

The Streaming Random Forest (SRF) classifier is an adaptation of the ensemble-

based Random Forest classifier (BREIMAN, 2001). Random forests are ensembles of

decision trees. Assuming a dataset with n instances, each belonging to a feature set X ,
random forests grow a set of trees, each from a bootstrap from the whole training set.

Bootstrapping guarantees that about n/3 of the records are not included in the training set

and are available for evaluation of each tree (ABDULSALAM; SKILLICORN; MARTIN,

2011; DENIL; MATHESON; FREITAS, 2013).
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The construction of each tree follows a variant of typical decision tree building

algorithm. In standard decision tree algorithms, the set of attributes considered at a

node is the entire set X . Conversely, in the random forest algorithm, the set of attributes

considered at each test node of a tree in the ensemble is a randomly chosen subset X ′ ⊂ X ,
where |X ′| ≤M .

Since a random forest is an ensemble classifier, the classification of each new in-

stance is the fusion of the votes of the containing trees. The random forest classification

error depends on (i) the correlation among its component trees, since smaller correlations

imply in higher variance canceling in voting and (ii) the strength of each individual tree,

since the more accurate each subtree is, the better its individual vote and smaller is the

error rate (ABDULSALAM; SKILLICORN; MARTIN, 2007).

Therefore, the value of M is a sensitive parameter of random forests and must be

chosen carefully. Smaller values of M tend to increase the strength of each individual

tree, while decreasing the correlation between them (ABDULSALAM; SKILLICORN;

MARTIN, 2007).

More recently, another variant of Random Forests has been proposed in (GOMES

et al., 2017), and it will be later discussed in Section 5.5.5 since it combines randomness

and windowing, i.e., drift detectors, to overcome feature drifts.

5.3.2 Random Rules

In (ALMEIDA; KOSINA; GAMA, 2013), authors extend the VFDR algorithm by

promoting randomness. This algorithm, namely Random Rules for Data Streams (RR),

encompasses the following parameters: a number of rule sets (Ns) and the number of

attributes M that must respect the M < |X | restriction.
Initially, each of the composing rule sets is empty and each of these is associated

with a random subset X ′ ⊂ X of size M . For each instance (~xt, yt) retrieved from S, RR
generates a random number p between 0 and 1 for each rule set. If p ≥ Trnd, a user-given

threshold, RR verifies whether each rule set contains a rule that covers (~xt, yt), i.e., if

all the literals of the rule are true for the given instance. If so, all covering rules are

expanded using only the features adopted by the rule set. Otherwise, i.e., if no rules cover

(~xt, yt), the default rule is updated to cover it, again, respecting the features in X ′. If

the sufficient statistics of the default rule reach certain thresholds discussed in (GAMA;

KOSINA, 2011), this rule is added to the rule set and the default rule is reset.

Finally, authors presented two voting schemes. The first classifies ~xt with the class

yi that maximizes P [yi], while the second assumes the class that maximizes the posteriori
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probability, i.e., argmaxyi∈Y P [yi|~xt].

5.4 Combinatorics

By exploring combinatorics, both random forest, and random rules algorithms

can be extended and posed as dynamic wrappers for dynamic feature selection for data

streams. If one assumes a random forest or a random rule algorithm, where each of its

containing experts is trained with a different subset of the entire feature set X , and that

the cardinality of each subset is at maximum M , the ensemble would contain
∑M

i=1

(
M
i

)
experts. Although training this high amount of experts is computationally expensive

in terms of both processing time and memory space, it guarantees that a near optimal

(or optimal, if M ≥ |X ∗|) subset X ′ allocated to one of the experts will maximize its

acuity metric (ABDULSALAM; SKILLICORN; MARTIN, 2011). Therefore, by applying

dynamic weighted majority voting (KOLTER; MALOOF, 2007), feature drifts can be

detected according to the increase of the weights of experts with the current most dis-

criminative subsets of features, while those with subsets of irrelevant features will possess

alleviated weights due to lower accuracy performance.

5.4.1 Streaming Stacking (SS)

In (BIFET EIBE FRANK; PFAHRINGER, 2010), authors produce a classifica-

tion model based on an ensemble of decision trees, each of which is built from a random

and distinct subset of X ′ ⊂ X . The overall model, namely Streaming Stacking (SS), is

formed by combining the log-odds of the class probabilities of its containing trees us-

ing sigmoid perceptrons, with one perceptron per class. Contrarily to the conventional

boosting approach, which forms an ensemble in a greedy fashion, each tree is built in

sequence by assigning weights as a by-product. Trees are generated in parallel and their

votes (individual predictions) are combined using stacking (WOLPERT, 1992) with per-

ceptrons (FREUND; SCHAPIRE, 1999). Due to the streaming scenario, VFDTs are used

as ensemble members since they are able to be trained incrementally. Additionally, the

ensemble adopts the ADWIN change detector (see Section A.2) in order to detect and

adapt to possible concept drifts. This approach is based on generating trees for all possi-

ble feature subsets of a given size M . Assuming a feature set X of size d, there are
(
d
M

)
possible subsets. Clearly, only moderate values of M or values close to d are practical,

since
(
d
M

)
=
(

d
d−M

)
. Authors claim that M = 2 is very practical for datasets with a

moderate number of features, although certainly not feasible for high-dimensional data
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(e.g., Spam Corpus, discussed in Section 3.7).

5.5 Windowing

A common approach for both data management and dealing with drifting data is

to maintain a predictive model consistent with a set of recent examples (SILVA et al.,

2013). There are three major windowing techniques in the literature: sliding, damped

and landmark; and in all cases, the difficulty is to select their appropriate size due to the

plasticity-stability dilemma. While short windows reflect the current data distribution

and ensure fast adaptation to drifts (plasticity), they usually worsen the performance of

the system in stable areas. Conversely, larger windows give better performance in stable

periods (stability), however, these imply in slower reaction to drifts (BARBARÁ, 2002;

GAMA, 2010; GAMA et al., 2004; SILVA et al., 2013).

Sliding Window. Sliding windows store in memory a fixed or variable amount of

recent examples. In the fixed approach, whenever a new instance arrives, it is enqueued

in a FIFO (first in, first out) policy data structure, where the oldest one is discarded. In

variable-sized windows, the number of instances in this data structure may change over

time, usually according to the outputs of a change detector. A straightforward idea is to

shrink the window when changes in data are detected so that the data stored in memory

reflects the posterior concept, and maintain larger windows during stable areas of the

stream.

Damping Window. In opposition to sliding windows, damping windows asso-

ciate a weight to each datum, which decays with time (JIANG; GRUENWALD, 2006).

Therefore, more recent instances receive a higher weight than older ones, and these weights

decay with time according to a decaying function. This windowing technique is interesting

because weights can be seen as indications of how important an instance is to the current

concept, thus, may be accounted for during prediction.

Landmark Window. Finally, landmark windows require processing a stream by

handling disjoint chunks of data separately by instances called “landmarks”. Landmarks

can be defined in terms of time, in terms of the number of instances seen since the previ-

ous landmark or according to memory constraints (METWALLY; AGRAWAL; ABBADI,

2005). All instances belonging to the same landmark are stored or summarized into a

common data structure, which is used for training. When a new landmark is reached, all

data in the current window is discarded and further instances retrieved from the stream

are kept until a new landmark is reached. Again, the issue in defining the gap between

landmarks takes back to the plasticity-stability dilemma.
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This section presents existing works that rely on windowing approaches to explic-

itly adapt to feature drifts.

5.5.1 Concept-adapting Very Fast Decision Tree (CVFDT)

The Concept-adapting Very Fast Decision Tree (CVFDT) algorithm is an extension

to the VFDT to deal with concept drifts (HULTEN; SPENCER; DOMINGOS, 2001). It

keeps a model consistent with respect to the current state of a sliding window from the

data stream, thus creating and replacing alternate decision subtrees when it detects that

the distribution of data is changing at a node. Whenever a new instance it arrives,

CVFDT updates the statistics at its nodes by decrementing counters according to the

oldest element in the window, which is about to be dequeued and “forgotten”.

Therefore, CVFDT is a Hoeffding Tree which periodically verifies the statistics of

nodes to determine if the Hoeffding criterion is still met. Given three user-given window

sizes T0, T1 and T2, CVFDT traverses the entire decision tree and checks at each node if

the splitting feature is still the best when compared to others every T0 instances. If there

is an alternate better splitting attribute, the whole subtree is replaced by a new split node

with this attribute. Later, during the next T1 instances, all retrieved instances from S
are used to build the new subtree, which is then tested with the following T2 instances.

5.5.2 Heterogeneous Ensemble for Data Stream (HEFT-Stream)

The Heterogeneous Ensemble with Feature Drift for Data Streams (HEFT-Stream)

is an algorithm that incorporates feature selection into a heterogeneous ensemble to adapt

to different types of concept and feature drifts (NGUYEN et al., 2012). HEFT-Stream

adopts a modification of the Fast Correlation-Based Filter (FCBF) algorithm so it dy-

namically updates the selected relevant feature subset of a data stream.

FCBF is a feature selection algorithm based on Information Theory where the class

relevance and the pairwise dependency between features are accounted for. This metric

will be further detailed and discussed in Chapter 6 since it is a part of the proposed

methods.

HEFT-Stream adopts a landmark windowing approach. After the arrival of each

data batch, a new FCBF feature selection is run, and if the resulting feature subset

differs from the other computed in the previous batch, HEFT-Stream postulates that a

feature drift has occurred and the worst classifier in the ensemble is substituted by a

new classifier with the same learning model type, e.g., Naive Bayes, VFDT, as the best

performing one in the ensemble. Additionally, in order to boost the ensemble overall
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accuracy, HEFT-Stream promotes diversity among member classifiers by encompassing a

sampling technique inspired on Online Bagging (OZA, 2005).

5.5.3 Hoeffding Adaptive Tree (HAT)

Most of the decision tree-based algorithms for learning from data streams either

assume that the underlying distribution is static, e.g., VFDT (see Section 5.1), or con-

tain hardwired constants concerning the speed or frequency of change, e.g., CVFDT (see

Section 5.5.1). These choices are inconclusive and often incorrect due to the plasticity-

stability dilemma, but also since one cannot assume that all changes in a stream share

the same frequencies and lengths.

In (BIFET; GAVALDÀ, 2009) authors proposed the adoption of an adaptive sliding

window drift detector, named ADWIN (BIFET; GAVALDÀ, 2007), inside decision trees

for data streams. Their proposal called Hoeffding Adaptive Tree (HAT), is an extension

to CVFDT in which an ADWIN detector is used to monitor and flag changes in split

nodes of the tree. Therefore, instead of relying on window parameters T0, T1 and T2 for

re-evaluating split nodes, HAT replaces split nodes when a significant error rate change

occurs, given a significance level δ.

HATs are thus able to cope with both concept drifts and feature drifts since split

nodes are re-evaluated. This allows split nodes to be consistent in terms of the feature

adopted to perform the split and in which range/value of this feature the decision should

be made.

5.5.4 Heuristic Updatable Weighted Random Subspaces (HUWRS)

The Heuristic Updatable Weighted Random Subspaces (HUWRS) is a random

subspace ensemble for data streams (HOENS; CHAWLA; POLIKAR, 2011). HUWRS

works under the hypothesis that when a feature drift occurs, there is no need to learn

an entirely new predictive model so it builds its containing experts in different feature

subspaces, while feature drifts are detected according to a landmark window. On each ar-

riving batch, numeric features are discretized in equal-sized bins and the class distribution

inside each bin of every feature is computed.

HUWRS postulates that a feature drift occurs in a feature Xi if the Hellinger

weight between the class distribution of the current and prior landmarks differ at least

by p, a user-given threshold. The Hellinger weight is given by Equation 5.2, which is

a normalization to the Hellinger distance, given by Equation 5.3. In Equations 5.2 and

5.3, Y ′ and Y ′′ stand for the class distributions of the current and prior landmarks for an
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arbitrary feature Xi and q iterates over all the possible values of an attribute Xi.

wH(Y ′, Y ′′) =

√
2− dH(Y ′, Y ′′)√

2
(5.2)

dH(Y ′, Y ′′) =

√∑
q∈Xi

(√
P [Y ′|Xi = q]−

√
P [Y ′′|Xi = q]

)2
(5.3)

Since a low Hellinger distance1 means a high agreement in the two distributions,

a low Hellinger distance should correspond to a high weight.

Whenever a feature drift is flagged for a featureXi, HUWRS resets only the experts

associated with such feature, and thus, HUWRS is expected to adapt to feature drifts

while performing less retraining when compared to full reset approaches.

5.5.5 Adaptive Random Forest (ARF)

The Adaptive Random Forest (ARF) is an ensemble-based classifier tailored for

data stream classification proposed in (GOMES et al., 2017). In contrast to Streaming

Random Forest (SRF) earlier reported in Section 5.3.1, ARF includes an effective re-

sampling method and adaptive operators that can cope with different types of concept

drifts without complex optimizations for different data sets. First, to induce diversity

amongst the trees in the ensemble, each subtree is trained with different instances follow-

ing a boostrapping process earlier proposed in Leveraging Bagging (BIFET; HOLMES;

PFAHRINGER, 2010). Furthermore, each split decision is limited to observing a propor-

tion m of the entire subset of features M , with m < M . Finally, each tree is associated

with a drift detector. Instead of reseting a subtree whenever a drift is signalled, ARF

also takes into account a “warning” level that starts the creation of a background tree.

Each background tree is trained in parallel with the ensemble, yet, does not affect its

predictions. Therefore, if a tree flags a drift, its respective background tree is used as a

replacement to speed up the drift recovery process. Even though ARF is not bounded to

a specific drift detector, authors in (GOMES et al., 2017) have adopted ADWIN (BIFET;

GAVALDÀ, 2009) as the default detector.

1
√
2 is the maximum Hellinger distance between distributions for binary classification problems, thus,

this value is used as a normalization factor so that the Hellinger weight is bounded in [0; 1].



53

5.6 Benchmarking Related Work

This section assesses the performance of the surveyed algorithms and evaluates

the use of conventional drift detectors presented in Section 2.3. The results stated in

this section will serve as baselines for comparing the proposed methods to verify whether

feature selection or feature weighting schemes are beneficial.

5.6.1 Drift Detectors

As discussed in Section 3.7, feature drifts are one specific kind of concept drift

where the relevant subset of features changes. Intuitively, the first postulation regarding

solutions for this problem is that conventional drift detectors will enable classifiers to

quickly recover. This section evaluates ADWIN (BIFET; GAVALDÀ, 2007) and ECDD

(ROSS et al., 2012) drift detectors and their combination with the Very Fast Decision

Tree (VFDT), k-Nearest Neighbor (kNN), Naive Bayes (NB) and Hoeffding Adaptive

Tree (HAT) classifiers. The remainder of the metrics are not judged since the focus of

this analysis is strictly on classification rates. The parameter for ADWIN is the δ = 0.002

for flagging changes, whereas ECDD was tested with λ = 0.2.

Table 5.2 presents the Prequential accuracy obtained in experiments, where HAT

presents higher accuracy in most of the experiments. With the aid of hypothesis tests, it

follows that {HAT, VFDT-ADWIN, VFDT-ECDD, VFDT, HAT-ADWIN, HAT-ECDD,

NB-ECDD, NB-ADWIN} are statistically superior to others (Figure 5.1), thus highlight-

ing the capability of HAT and tree-based learners combined with drift detectors to over-

come feature drifts. The results obtained are expected since HAT performs evaluations of

features used in test nodes of the tree according to drifts flagged by the ADWIN detector.

This must be emphasized since HAT is the only algorithm capable of performing dy-

namic feature selection as the stream progresses, since bad performing splits are replaced

on-the-fly given error rates.

Furthermore, HAT results also show that partial model resets are more interesting

than full model resets (BARDDAL et al., 2017). In contrast to full model resets, partial

resets are beneficial since classifiers still possess a partial model to classify upcoming

instances, even after drifts.

5.6.2 Ensemble-based Classifiers

This section is devoted to the results obtained by the following algorithms: Ran-

dom Rules (RR), Streaming Random Forest (SRF), HEFT-Stream (HEFT), Streaming
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Figure 5.1: Critical differences chart for base learners and drift detectors.

Stacking (SS), and Adaptive Random Forest (ARF). All of these methods are ensem-

bles, and thus, analyzing their results is difficult since these methods combine different

building blocks, e.g., selection strategies, voting combinations and diversity induction

schemes, since all impact the final outcome. The parameters for both algorithms are the

ones stated in their original papers. HEFT-Stream has an ensemble size of 10 experts

(NGUYEN et al., 2012), while Streaming Stacking covers all feature subsets with M = 2

(BIFET EIBE FRANK; PFAHRINGER, 2010). Both Random Rules and Streaming Ran-

dom Forests explore all possible feature subsets in parallel with both M = 1 and M = 2

following the rationale behind Streaming Stacking by limiting the number of feature sub-

set combinations. Finally, the Adaptive Random Forest (ARF) uses the ADWIN drift

detector, randomly selects (
√
d + 1) features for determining which feature to split on

such that d is the cardinality of the original feature set X , a grace period of 50 instances,

and an ensemble size of 100 trees (GOMES et al., 2017).

Accuracy results obtained are presented in Table 5.3, where Streaming Stacking

presents the best results in most experiments, followed by ARF, HEFT-Stream, and SRF

(M = 2). In practice, Streaming Stacking is the best performing algorithm in all but two

experiments, i.e., BG3 and SPAM, such that in the latter it failed due to lack of available

memory. If one ignores these errors, Streaming Stacking and HEFT-Stream outperform

other ensemble-based methods, as shown in Figure 5.2.

Table 5.2: Average Prequential Accuracy (%) obtained during experiments that bench-
mark base learners and drift detectors.
Experiment No drift detector ADWIN ECDD

kNN NB VFDT VFDR HAT kNN NB VFDT VFDR HAT kNN NB VFDT VFDR HAT
AGR 54.71 59.13 57.21 56.16 69.84 53.95 63.04 63.48 37.74 63.35 53.95 64.27 62.89 54.49 63.24
AN 67.31 74.37 82.86 58.03 84.74 66.59 78.88 77.71 51.85 80.33 65.95 78.74 78.17 54.60 79.83
BG1 79.35 76.21 80.86 70.26 91.76 79.37 82.60 83.17 56.61 82.48 78.15 83.22 83.56 62.92 82.60
BG2 71.37 75.80 78.06 68.67 78.92 72.03 77.14 78.51 47.99 77.61 70.88 77.26 77.90 65.16 76.30
BG3 55.50 57.70 64.04 52.75 64.45 55.68 57.64 59.42 51.38 57.90 55.29 57.13 57.36 52.19 57.29
RTG 52.31 54.15 54.84 51.77 56.64 52.50 54.27 54.85 51.91 53.98 52.45 55.72 55.13 51.33 54.65
SEA 63.46 79.26 77.63 68.91 78.80 64.18 79.27 78.38 55.47 77.46 64.34 74.97 74.93 63.47 75.63
IADS 100.00 67.95 92.90 88.20 83.90 100.00 68.02 92.92 79.71 82.56 100.00 67.42 91.55 77.12 80.12

NOMAO 95.16 83.86 91.08 85.14 92.67 95.30 86.19 90.80 78.77 90.22 94.88 84.91 89.22 82.14 89.60
SPAM 83.72 71.13 78.07 74.81 84.48 84.15 79.16 85.50 81.42 85.50 84.98 66.82 87.10 83.30 86.79

Bold-faced results represent the best overall values obtained by all classifiers in given experiment. Underlined values stand for the best results

obtained by each classifier in the given experiment. † represents an execution error (VFDR code failed).
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Table 5.3: Average Prequential Accuracy obtained during ensemble-based experiments.

Experiment
Random
Rules

(M = 1)

Random
Rules

(M = 2)

Streaming Random
Forest

(M = 1)

Streaming Random
Forest

(M = 2)
HEFT-Stream Streaming Stacking Adaptive

Random Forest

AGR 58.42 54.62 49.52 57.30 51.83 69.65 67.78
AN 58.24 63.15 58.59 65.32 75.06 84.19 82.18
BG1 68.13 69.54 64.99 70.22 72.88 84.16 81.22
BG2 51.85 48.91 52.78 68.84 73.25 78.57 75.99
BG3 50.52 52.03 49.35 49.80 57.17 64.18 73.88
RTG 52.80 53.64 53.77 52.81 53.09 53.52 52.51
SEA 53.82 53.34 50.09 59.21 76.45 82.14 72.90
IADS 58.33 58.88 56.18 67.08 74.15 83.15 79.75

NOMAO 56.25 56.46 54.16 60.50 65.68 73.77 77.26
SPAM 75.22 3 74.17 3 82.65 3 80.07

Bold-faced results represent the best overall values obtained by all classifiers in given experiment. Underlined values stand for the best results

obtained by each classifier in the given experiment. † represents an execution error while 3 represents an insufficient memory error.

1234567

CD = 2.84

SS
ARF
HEFT
SRF2

RR2
RR1
SRF1

Figure 5.2: Critical differences chart for ensemble-based methods.

Given these results, it is important to compare the results obtained by Streaming

Stacking against the Hoeffding Adaptive Tree. A comparison between these algorithms’

accuracy metrics using Wilcoxon’s paired test shows that these algorithms perform, on

average, without significant differences. More importantly, in contrast to SS, HAT is a

single decision tree, which allows not only better understanding, but also better efficiency

in processing time and memory consumption. To corroborate with this claim, Figures 5.3

and 5.4 present comparisons between the processing time and memory consumption for

both HAT and SS during experiments. Again, with the aid of Wilcoxon’s paired test, it is

possible to affirm that HAT is significantly faster and computationally cheaper than SS.

Therefore, choosing HAT as a baseline for future comparisons is an intuitive choice since:

(i) it provides as good as or better accuracy results, (ii) consumes less processing time

and memory space, and (iii) clearer readability since understanding a single decision tree

is much easier than understanding an ensemble that combines several decision trees with

a perceptron.
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Figure 5.3: CPU Time (s) comparison between Hoeffding Adaptive Tree (HAT) and
Streaming Stacking (SS) in experiments.
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Figure 5.4: RAM-Hours (GB-Hour) comparison between Hoeffding Adaptive Tree (HAT)
and Streaming Stacking (SS) in experiments.

5.7 Concluding Remarks

This chapter yielded a survey on existing works on feature drift adaptation. The

brevity of surveyed works, especially compared to broader surveys on concept drift adap-

tation (GAMA et al., 2014; NGUYEN; WOON; NG, 2014; WANKHADE; HASAN;

THOOL, 2013), shows the lack of efficient proposals for handling feature drifts. Thus, it

is enlightened that feature drift is, so far, a nearly neglected problem in the data stream

mining community. Besides serving as a mere survey on the topic, it is expected that the

provided categorization aids in the positioning of new adaptive learning techniques and

applications to which these apply.

The following chapter is devoted to the introduction of dynamic feature scoring
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operators. These operators will be used as weighting factors and as the core of a novel

dynamic feature selection algorithm. In both cases, the best performing algorithm, i.e.,

the Hoeffding Adaptive Tree, will be used as a baseline for comparisons.



PART II

CONTRIBUTIONS



Chapter 6

Dynamic Feature Scoring

Tracking the relevance of features as a stream progresses is not straightforward.

This chapter is devoted to the introduction of dynamic feature scoring operators based

on the information theoretic Entropy (SHANNON, 1948) and Symmetrical Uncertainty

(WITTEN; FRANK, 2005). These scoring operators are the core of the proposed methods,

which are subsequently introduced in Chapters 7 and 8.

Section 6.1 introduces Entropy and Symmetrical Uncertainty metrics and how both

can be dynamically computed along sliding windows with low complexity. Nevertheless,

one of the drawbacks of entropy-based metrics in classification environments is that they

require attributes to be discrete. In addition to that, discretizing features in streaming

scenarios, where the maximum and minimum values of a variable are unknown, makes

this task even more cumbersome. Therefore, Section 6.2 is dedicated to the attribute

discretization scheme adopted.

As discussed in Section 5.5, any window-based algorithm suffers from the plasticity-

stability dilemma, where deciding an appropriate window size is a trade-off without a clear

solution, and thus, Section 6.3 is dedicated to an experimental evaluation of different win-

dow sizes that provides insights into reasonable window sizes for the upcoming proposals.

Finally, Section 6.4 concludes this chapter with an overview of the proposed scoring oper-

ators, which will be used in the following chapters in a weighting scheme and in a dynamic

feature selection algorithm.
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6.1 Information Theoretic Scoring Operators

Shannon’s Entropy1 (SHANNON, 1948) measures how chaotic a system is and can

be applied as a measure of uncertainty about a partition.

Definition 18. Given a discrete random variable A, its entropy can be computed as

follows:

H(A) = −
A∑
a

P [A = a] log2 P [A = a] (6.1)

where a iterates through all possible values of A.

Entropy is bounded in the [0; log2 n] interval, where n is the number of possible val-

ues (partitions) the variable A has. A perfect distribution in terms of entropy is achieved

when H(A) = 0, meaning that one partition is certain and the others are impossible while

the extreme chaotic distribution occurs when H(A) = log2 n, meaning that all partitions

are equally likely.

In order to introduce the computation of entropy over a sliding window, a slightly

different notation is followed. All of the following provided definitions and proofs are

based on the work of (SOVDAT, 2014).

Definition 19. Assuming A = {ai}ni=1 to be a sample of real numbers and Sn =
∑n

i=1 a
i

be the sum of these elements, the sample entropy Hn is defined as follows:

Hn = −
n∑
i=1

ai

Sn
log2

ai

Sn
(6.2)

Lemma 1. Given a sample A = {ai}ni=1, its sum Sn =
∑n

i=1 a
i and Hn to be its entropy,

for any positive real number R > 0, it occurs that:

−
n∑
i=1

(
ai

Sn +R
log2

ai

Sn +R

)
=

Sn
Sn +R

(
Hn − log2

Sn
Sn +R

)
(6.3)

1Entropy is a broader concept originally introduced by Rudolf Clausius in 1854 to measure the un-
availability of a system’s thermal energy for conversion into mechanical work. It is also a landmark of the
second law of thermodynamics, which states that “The energy of the universe if constant. The entropy
of the universe tends to a maximum.”
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Proof. If one writes ai

R+Sn
= 1 · ai

R+Sn
= Sn

Sn

ai

Sn+R
= ai

Sn

Sn

Sn+R
, it follows:

−
n∑
i=1

(
ai

Sn +R
log2

ai

Sn +R

)
= −

n∑
i=1

ai

Sn

Sn
Sn +R

log2

(
ai

Sn

Sn
Sn +R

)
= −

n∑
i=1

ai

Sn

Sn
Sn +R

(
log2

ai

Sn
+ log2

Sn
Sn +R

)

= − Sn
Sn +R

(
n∑
i=1

ai

Sn
log2

ai

Sn
+

n∑
i=1

ai

Sn
log2

Sn
Sn +R

)

=
Sn

Sn +R

(
Hn − log2

Sn
Sn +R

n∑
i=1

ai

Sn

)

=
Sn

Sn +R

(
Hn − log2

Sn
Sn +R

)

The sample entropy Hn can be updated when a new positive real number an+1 > 0

enters it as follows.

Lemma 2. Based on Hn and Sn, the entropy can be updated after the arrival of a new

positive real number an+1 > 0 according to:

Hn+1 =
Sn
Sn+1

(
Hn − log2

Sn
Sn+1

)
− an+1

Sn+1

log2

an+1

Sn+1

(6.4)

Proof. By definition, and by following Lemma 2, the updated entropy is given by:

Hn+1 = −
n+1∑
i=1

ai

Sn+1

log2

ai

Sn+1

= −a
n+1

Sn
−

n∑
i=1

ai

Sn+1

log2

ai

Sn+1

=
Sn
Sn+1

(
Hn − log2

Sn
Sn+1

)
− an+1

Sn+1

log2

an+1

Sn+1

The next lemma is a generalization to the last claim and provides formulas for the

entropy of concatenated samples.

Lemma 3. Let A = {ai}ni=1 and B = {bi}mi=1 be two data samples, Rm =
∑n

i=1 a
i and

Sn =
∑m

i=1 b
m be their respective sums and Gm and Hn be their entropies. Defining a
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sample

zi =

 ai, if 1 ≤ i ≤ n,

bi−n, if n+ 1 ≤ i ≤ m+ n

and Zm+n = Rm + Sn =
∑n+m

j=1 zj, it follows that

Em+n =
Rm

Zm+n

(
Gm − log2

Rm

Zm+n

)
+

Sn
Zm+n

(
Hn − log2

Sn
Zm+n

)
(6.5)

Proof. Similarly as before, it occurs that

En+m = −
n+m∑
i=1

zi
Zm+n

log2

zi
Zm+n

= −
m∑
i=1

ai

Zm+n

log2

ai

Zm+n

−
n∑
i=1

bi

Zm+n

log2

bi

Zm+n

=
Rm

Zm+n

(
Gm − log2

Rm

Zm+n

)
+

Sn
Zm+n

(
Hn − log2

Sn
Zm+n

)
where the last equality is produced after applying Lemma 1 twice, once per summation.

Finally, Lemma 4 provides an entropy formula for when some elements ai are

increased by ri > 0, where I is the index set and ri = 0 for i /∈ I.

Lemma 4. Again, let A = {ai}ni=1, Sn and Hn be a data sample, its sum and entropy,

respectively. Suppose that ai increases by ri > 0 for i ∈ I and r =
∑n

i=1 ri, where ri = 0

for i /∈ I. In this case, Hn should be updated as follows:

Sn
Sn + r

(
Hn − log2

Sn
Sn + r

)
−
∑
i∈I

(
ai + ri
Sn + r

log2

ai + ri
Sn + r

− ai

Sn + r
log2

ai

Sn + r

)
(6.6)

Proof. This is a direct application of Lemma 3. The rationale is to treat ai+ri
Sn+r

as new

values to be added and subtract the replaced values ai

Sn+r
. It is important to highlight

that in the subtraction, the denominator is Sn+r since the subtraction is performed from

the updated entropy, the one obtained after Lemma 3 was applied.

Following the last lemma, it is straightforward to provide formulas for a sliding

window computation of entropy. Algorithm 1 provides a pseudocode for the Entropy

computation of a variable along a data stream. It is important to highlight that the
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Algorithm 1: Sliding window entropy. Adapted from (SOVDAT, 2014).
input : window size w, a data stream S.
output : be ready to provide the entropy h at any time.

[1]Let W ← ∅ be the sliding window;
[2]Let h← 0 be the entropy;
[3]Let n← 0 be the number of instances in W ;
[4]Let ni ← 0 be the number of instances that belong to the ith partition;
[5]foreach ni ∈ S do
[6] if |W | = w then
[7] Dequeue oldest element from W from the nj-th partition;
[8] h← DEC(h, n, nj);

[9] W ←W ∪ {ni};
[10] h← INC(h, n, ni);

[11]Function INC(h, n, ni)
[12] Update n← n+ 1;
[13] Update ni ← ni + 1;
[14] return n−1

n

(
h− log2

n−1
n

)
− ni

n log2
ni
n + ni−1

n log2
ni−1
n

[15]Function DEC(h, n, ni)
[16] Update n← n− 1;
[17] Update ni ← ni − 1;

[18] return n+1
n

(
h+ ni+1

n+1 log2
ni+1
n+1 −

ni
n+1 log2

ni
n+1

)
+ log2

n
n+1

algorithm provided is very efficient, since the entropy computation is performed in O(1)

for both enqueueing and dequeueing of a value.

Clearly, one of the major drawbacks of picking entropy-based metrics as a goodness

measure is that they are unable to work with numeric features, unless they are discretized.

Discretizing numeric variables in which their minimum and maximum values are a priori

unknown, such as data streams, is not trivial and thus, specific techniques shall be used for

this purpose. The proposed solution for discretizing numeric attributes in data streams

is discussed in Section 6.2.

6.1.1 Conditional Entropy Scoring Operator

The first scoring operator is conditional entropy. Conditional entropy quantifies

the amount of information needed to describe the outcome of the class Y given that the

value of another a feature Xi is known. This conditional entropy is stated in Equation 6.7,

where H(Y |Xi) = 0 occurs if Y is completely determined by Xi and H(Y |Xi) = H(Y ) if
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Xi and Y are independent random variables.

H(Xi|Y ) = −
Y∑
yj

P [Y = yj]×H(Xi | Y = yj)

= −
Y∑
yj

P [Y = yj]
X∑
q

P [Xi = q | Y = yj] log2 P [Xi = q | Y = yj]

(6.7)

Taking this definition to the classification scenario, the conditional entropy scor-

ing operator for an attribute Xi w.r.t. its class Y discrimination would be computed

as H(Y |Xi). As stated in Equation 6.7, this entropy can be break down into several

H(Y |Xi = q) conditional entropies, such that the conditional entropy for the qth value of

Xi can be computed given Algorithm 1. Furthermore, the final conditional also requires

the probabilities of each class, a computation that is trivial and depends on a single

counter per class cj and the window size w, since P [Y = yj] = cj/w.

6.1.2 Symmetrical Uncertainty Scoring Operator

One of the major problems with entropy is that it is biased towards attributes

with more values. For instance, let us assume a dataset that contains an unique identifier

attribute. In this case, each identifier would be associated with a single class value, and

thus, the entropy would be optimal, i.e., zero. This is an extreme case, where the identifier

would not be an interesting attribute since it does provide any insights for predicting the

final class since it is massively overfitted to the training data.

On the other hand, entropy is the basis for more refined metrics. For instance,

entropy can be used to compute Information Gain (IG), a popular choice for learning

decision trees. Information Gain is the amount by which the Entropy of a variable Y

decreases reflecting additional information about Y provided by Xi, and is given by:

IG(Y,Xi) = H(Y )−H(Y |Xi) (6.8)

An important trait of Information Gain is that it is symmetrical, i.e., IG(Xi, Y ) =

IG(Y,Xi). To prove it, one needs to verify that H(Xi) − H(Xi|Y ) = H(Y ) − H(Y |Xi)

and this can be derived from H(Xi, Y ) = H(Xi) +H(Y |Xi) = H(Y ) +H(Xi|Y ).

However, as Entropy, Information Gain is biased towards features with more values.

Therefore, different metrics that compensate for this bias are preferred. For instance, one

could proceed with Gain Ratio (GR), given by Equation 6.9, which is a normalization
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that aims at compensating the latter bias by computing the ratio between the Information

Gain and the entropy of the non-class variable.

GR(Y,Xi) =
IG(Y,Xi)

H(Xi)
(6.9)

Similarly to Gain Ratio, another possibility would be Symmetrical Uncertainty

(SU). As an attribute goodness measure, Symmetrical Uncertainty is also known for

atoning the bias provided by attributes with more distinct values and has been successfully

used as the core of many batch feature selection algorithms (YU; LIU, 2003), and thus,

was chosen as the second scoring operator. The Symmetrical Uncertainty between two

discrete random variables X and Y is given by:

SU(Xi, Y ) = 2

[
IG(Xi, Y )

H(Xi) +H(Y )

]
= 2

[
H(Y )−H(Y |Xi)

H(Xi) +H(Y )

] (6.10)

The range of possible values for SU is the [0; 1] interval, where 1 indicates that

the value of a variable completely predicts the other, while 0 indicates that Xi and Y are

completely independent.

In order to compute SU along a sliding window, one must keep track of H(Xi),

H(Y ) and H(Y |Xi) entropies. Both H(Xi) and H(Y ) can be incremented and decre-

mented in O(1) according to Algorithm 1, while the Conditional Entropy H(Y |Xi) can

be computed with separate H(Y |Xi = q) entropies (see Equation 6.7), also given by Al-

gorithm 1. If one assumes that q ∈ Xi and |Xi| = m, then SU can be computed with

low computational complexity in the O(m) order for a single feature and O(dm) for all

features in a d-dimensional data stream.

Memory-wise, the cost of tracking H(Y ) is O(|Y |), while the cost for H(Xi) is

O(m), thus, the total complexity is O(md) for a d-dimensional stream. Finally, H(Y |Xi =

q) incurs a cost of O(|Y |), therefore the total cost is O(md × |Y |), when considering all

features Xi ∈ X . In practice, this cost can be reduced since each of these entropies is

independent from one another, and thus are allowed to be computed in parallel. The

implementation of both scoring operators introduced in this work adopts the Java 8

parallel stream processing and functional programming frameworks, which together use

all of the available cores and threads to update the required entropies.
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6.2 Discretization of Numeric Features on Data Streams

Discretization is an important task in machine learning used either in classification

or feature selection methods. As discussed earlier, one of the drawbacks of adopting

entropy-based metrics for quantifying the relevance of a feature is that it is only capable

of dealing with discrete variables. Discretizing numeric variables in which their minimum

and maximum values are unknown is not trivial, and thus, specific techniques shall be

used for this purpose.

In this work, a two-layer histogram strategy is proposed as an extension to Par-

tition Incremental Discretization (PiD) (GAMA; PINTO, 2006). In the first layer, PiD

constructs and maintains equal-size bins that summarize the values provided by a stream.

Given the partitions computed in the first layer, periodically, or whenever a partition is

accentuated compared to others, PiD’s second layer of partitions is reconstructed, follow-

ing an equal frequency strategy. One of the pitfalls of PiD is that it is unable to “forget”

older data, and thus, this section introduces Partition Adaptive Discretization (PaD), in

which the histograms in both layers are updated to reflect the distribution of the data in

a sliding window. Another drawback of PiD is that partitions are stored in a linear search

structure, in which the corresponding bin for a certain value incurs in a O(n) complexity

since no binary search process was used, where n is the amount of bins stored.

Algorithm 2 depicts the pseudocode for PaD. As in PiD, PaD’s first layer sum-

marizes data, while the second layer constructs the final histogram. In contrast to PiD,

partitions in PaD are layered in a red-black tree structure2, where both insertions and

searches occur in O(log2 n) for the first layer and O(log2 F ) for the second, where F is the

number of partitions requested by the user. The first layer retrieves and stores the first

w values in a buffer V to create a histogram with equal-width bins, such that each bin

has a length equal to 1
max(V )−min(V )

. After the initial computation of the first layer (lines

30-41), incoming values are stored in a sliding window (line 6), where enqueued values

vi are used to increment existing partitions (or to allocate new ones if none contains vi)

and dequeued values decrement their corresponding partitions (lines 8-12). Therefore, the

process of updating the first layer is linear as it performs a linear scan over arriving data.

The second layer is reconstructed (i) periodically or (ii) whenever a “significant”

change is detected in the first layer of histograms. In opposition to the first strategy,

which reconstructs the second layer regardless of the distribution of the data into bins,

the histogram change detection scheme provided by PiD is here extended. Given two
2In practice, a common sorted array or any other tree-like structure could be used, as long as a binary

search process is adopted.
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Algorithm 2: Partition Adaptive Discretization (PaD) pseudocode, which is
inspired by Gama’s PiD (GAMA; PINTO, 2006).

input : a stream of numeric values S that correspond to a single feature Xi, the amount of partitions F and
the sliding window size w.

output : be able to provide at any moment F equal-width bins: sLayer.
/* lb = lower bound, up = upper bound, c = counter */

[1]Let fLayer ← ∅ be a red-black tree structure to store the first layer bins b = (lb, up, c);
[2]Let sLayer ← ∅ be a red-black tree structure to store the second layer bins b = (lb, up, c);
[3]Let V ← ∅ be a sliding window;
[4]foreach xt ∈ S do
[5] mustReconstruct← FALSE ; /* flag for second layer reconstruction */
[6] V ← V ∪ {xt};
[7] if |V | > w then
[8] incrementLayer(xt, fLayer);
[9] Dequeue oldest element xt−w from V ;

[10] decrementLayer(xt−w, fLayer);
[11] mustReconstruct← decrementLayer(xt−w, sLayer);
[12] mustReconstruct← mustReconstruct or incrementLayer(xt, sLayer);
[13] else if |V | = w then

/* first window is complete, thus, both layers can be constructed */
[14] buildF irstLayer();
[15] mustReconstruct← TRUE;

[16] if mustReconstruct then buildSecondLayer();

[17]Function incrementLayer(xt, layer)
[18] Traverse layer to find the node (lb, ub, c) containing xt;
[19] if If no such partition exists then
[20] Create a new bin with binLength size at the head or tail of the list that contains xt;
[21] else
[22] Increment the counter c;

[23] if layer = sLayer and c > (1 + α)× Tmax then return TRUE ;
[24] return FALSE

[25]Function decrementLayer(xt, layer)
[26] Traverse layer to find the node (lb, ub, c) containing xt;
[27] Decrement the counter c;
[28] if layer = sLayer and c < (1− α)× Tmin then return TRUE ;
[29] return FALSE

[30]Function buildF irstLayer()
[31] fLayer ← ∅;
[32] binLenght← 1/(maxV −minV );
[33] init← minV ;
[34] end← minV + binLenght;
[35] while end 6= F × binLength do
[36] fLayer ← fLayer ∪ {(init, end, c = 0)};
[37] init← end;
[38] end← init+ binLength;

[39] foreach xt ∈ S do
[40] Traverse fLayer to find the node (lb, ub, c) containing xt;
[41] Increment the counter c;

[42]Function buildSecondLayer()
[43] sLayer ← ∅;
[44] np← w/F ;
[45] init← end← counter ← 0;
[46] foreach (lb, ub, c) ∈ fLayer do
[47] if init = 0 then init← lb;
[48] end← ub;
[49] counter ← counter + c;
[50] if counter ≥ np then
[51] sLayer ← sLayer ∪ {(init, end, counter)};
[52] init← end← counter ← 0;

thresholds Tmin and Tmax, which are the minimum and maximum frequencies of all existing

partitions, the second layer of PaD is reconstructed (lines 42-52) whenever a partition with
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frequency above (1 + α) × Tmax (line 23) or below (1 − α) × Tmin (line 28) is observed.

As noticed by authors in (GAMA; PINTO, 2006), the choice of α is not trivial, however,

α = 1% seemed reasonable in PiD’s original experiments and the same is adopted here.

The construction of the second layer is trivial. Given a number of partitions F and

the sliding window size w, each partition in the second layer will possess approximately
w/F frequency. The second layer is constructed linearly by traversing and aggregating the

first layer bins until a w/F frequency is reached (lines 42-52).

In the following experiments, the classic rule of thumb that numeric features are

discretized into F = 10 equal-frequency partitions is followed, however, different number

of partitions can be easily configured and assessed in further studies.

6.3 The Plasticity-Stability Trade-off and Symmetri-

cal Uncertainty Computation over Sliding Win-

dows

As any other window-based approach for learning from data streams, the proposed

Symmetrical Uncertainty scoring operator also requires the definition of a proper window

size. As discussed in Section 5.5, the size of a window should be as small as possible to

allow quick drift recognition and adaptation, but at the same time, large enough so it

correctly reflects the distribution of stable regions of a stream. Following this trend, an

experimental window size evaluation strategy was set. First, several synthetic stationary

data streams were generated, each with 100, 000 instances. Given each stream, all of

its features had their attributes’ Symmetrical Uncertainty to the class computed in batch

mode to serve as a gold standard. Later, different sliding window sizes w ∈ [10; 1000] were

evaluated by computing the deviation between the obtained Symmetrical Uncertainty

values and the gold standard for each feature. The final results reported here are averages

obtained for all features in each experiment. Standard deviations were omitted since they

are barely visible. With these results, it is possible to verify the smallest window size

value that also satisfies a feasible Symmetrical Uncertainty deviation compared to the

overall sample distribution.

Results are presented in Figure 6.1a, where is depicted that the error rates between

the obtained SU values over sliding windows quickly decay with the increase of w. In

practice, very small values, e.g., 100 to 150, already allow a fair SU computation regardless

of the experiment domain during stationary experiments. Therefore, slightly higher values

around 200 or 300 (see Figure 6.1b) are expected to provide a fair trade-off between drift
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Figure 6.1: Average error between the SU computed over the whole dataset and the one
provided by the sliding window version.

adaptation and correct SU rendering during stable regions.

Moreover, this experiment also provides evidence that the Symmetrical Uncertainty

provided by the proposed scoring operator is correct, with errors below 10−3 when w ≥
250.

6.4 Concluding Remarks

This chapter introduced a time and memory-bounded solution for the dynamic

relevance scoring of features based on the information theoretic concepts of Entropy and

Symmetrical Uncertainty. Both of the latter metrics are tracked over sliding windows. As

other existing techniques for data streams, the definition of the window size is a trade-off

without a solution. Albeit the plasticity-stability dilemma, empirical experiments have

shown that even small window sizes (around 200), are enough to correctly represent the

Symmetrical Uncertainty of a stationary stream. These results validate the first hypoth-

esis of this thesis, as the proposed scoring schemes are able to highlight the importance

of features compared to the traditional batch implementation of the same metrics.

In the following chapters, the use of the proposed scoring operators is investigated.

Chapter 7 explores both Entropy and Symmetrical Uncertainty operators as a feature

weighting procedure, while Chapter 8 investigates the Symmetrical Uncertainty operator

as the core of a feature selection algorithm for data streams.



Chapter 7

Dynamic Feature Weighting

Feature weighting is a technique used to approximate the optimal degree of in-

fluence of features in data. When successful, relevant features are attributed with high

weights, whereas irrelevant features are associated with weight values close to zero. Fea-

ture weighting is broadly used in batch learning (AGGARWAL, 2014; CHEN; WANG,

2012), while very few feature weighting techniques to streaming environments have been

proposed so far (ALIPPI; BORACCHI; ROVERI, 2009). The proposed technique signif-

icantly differs from the above cited work since there, the weights are given by temporal

functions developed for smooth changes and do not rely on information theory aspects.

In opposition to static learning scenarios, the relevance of features may increase

or decrease during the processing of a data stream, thus, techniques for tracking and

quantifying the proportions of such changes in weights are needed and expected to alleviate

the impact of feature drifts. This chapter introduces the use of Entropy and Symmetrical

Uncertainty scoring operators as weights for the Naive Bayes and k-Nearest Neighbors

(kNN) classifiers (BARDDAL et al., 2016). The main hypothesis behind this proposal

is that features can be dynamically weighted given the current data distribution of the

stream and the updating of these weights will incur in improvements of prediction accuracy

in feature drifting streams.

The proposed weighted versions of Naive Bayes and kNN are evaluated and later

investigated as custom leaves of the Hoeffding Adaptive Tree as presented in (BARDDAL

et al., 2016). Instead of computing weights globally, the use of weighted classifiers at

the leaves of decision trees will incur in specialized weights for different samples of data

determined by different branches of the tree.

70
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7.1 k-Nearest Neighbor with Feature Weighting for

Data Streams (kNN-FW)

k-Nearest Neighbors (kNN ) is one of the most fundamental, simple and widely

used classification methods, which is able to learn complex (non-linear) functions (AHA;

KIBLER, 1991). kNN is a lazy learner since it does not require building a model before

actual use. It classifies unlabeled instances according to “closest” previously seen labeled

ones stored in a buffer. The definition of “close” means that a distance measure is used

to determine how similar/dissimilar two instances are. There are several approaches to

compute distances between instances, nevertheless, the most used one is the Euclidian

distance, given by Equation 7.1, where ~xi and ~xj are two arbitrary instances, and the

summation occurs over all features Xk ∈ X .

dEuclidian(~xi, ~xj) =

√∑
Xk∈X

(~xi[Xk]− ~xj[Xk])2 (7.1)

kNN classifies unlabeled instances according to the label of the majority of the

k closest instances, and thus, picking an appropriate value of k for each application is

also significant. If k is too small, kNN becomes more prone to overfitting and tends

to misclassify instances in easy situations. Conversely, bigger values of k may mislead

classification in cases when an instance is surrounded by several instances of an opposite

label in fuzzy decision borders.

Another important trait of kNN refers to the dimensionality of the data, either in

static or streaming scenarios. As discussed in a variety of works (CAO et al., 2006; SILVA

et al., 2013), Euclidian distances fail on representing in effective fashion the distance

between points (instances) in a high-dimensional space, a phenomenon named curse of

dimensionality. Although the curse of dimensionality is commonly tackled in static learn-

ing scenarios, very few works aim at providing techniques for dealing with it in streaming

scenarios, either through feature selection or dimensionality reduction.

Performing kNN classification in data streams requires an additional important

trait: dealing with time and memory limitations. Continuously buffering instances as they

arrive is unfeasible since the stream is potentially unbounded, therefore, an incremental

version of kNN must “forget” older instances as the stream progresses. A naive approach

for “forgetting” is storing instances in a queue with size W . Again, defining a value for

W is nontrivial and it must be set according to available memory space and processing

time since the computational time for classifying each new instance is O(Wd).

The success of kNN relies on which instances are deemed close, a concept defined
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by its distance function. A Euclidian distance allows irrelevant and noisy features to

have as much effect on distances as relevant ones. The hypothesis behind this proposal is

that an incremental version of kNN can be extended to overcome irrelevant features and

feature drifts through the incremental track of their discriminative power.

k-Nearest Neighbor with Feature Weighting (kNN-FW ) is an extension presented

in (BARDDAL et al., 2016a) to the original kNN algorithm that performs dynamic feature

weighting to overcome both irrelevant features and feature drifts. Hence, kNN-FW is

associated with the Entropy and Symmetrical Uncertainty scoring operators to emphasize

relevant features and disdain irrelevant ones. The computation of distances in kNN-FW

follows Equation 7.2, where w(Xi) is the weight associated to a feature Xi and depends

on the chosen scoring operator.

d(~xi, ~xj) =

√∑
Xk∈X

w(Xk)× (~xi[Xk]− ~xj[Xk])
2 (7.2)

If entropy is chosen, the weight w(·) will be given according to Equation 7.3 since

smaller values of entropy highlight discriminative features.

w(Xi) = log2 |Y | −H(Y |Xi) (7.3)

On the other hand, if Symmetrical Uncertainty is used, then w(·) follows Equation
7.4, which depicts the Symmetrical Uncertainty between Xi and the class Y .

w(Xi) = SU(Xi, Y ) (7.4)

Due to the dynamic computation of the scoring operators, it is expected kNN-FW

to be able to dynamically assign weights to features according to their current discrimina-

tive power. During non-feature-drifting scenarios, it is expected that irrelevant features

are unaccounted for during voting, while discriminant features are emphasized. In feature-

drifting cases, features that become, or cease to be, relevant to the learning task will be

promptly detected by changes in their entropies, implying in changes in features’ weights.

7.2 Updatable Naive Bayes with Feature Weighting

(NB-FW)

Naive Bayes (NB) is a probabilistic classifier based on Bayes theorem that works

under the naive independence assumption between features. These predictors are easy to
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build, can easily be incremented, and have no complicated parameter estimation, making

them useful for large datasets and streams. The labelling of instances in this learning

scheme is given by Equation 7.5, that is, the class is chosen according to the label yi that

maximizes the conditional probability of features given classes.

y = argmax
yi∈Y

P [yi]
d∏
j=1

P [~x[Xj] | yi] (7.5)

Although Naïve Bayes is commonly referred as an appropriate solution for high

dimensionality problems (CHEN; WANG, 2012), it has been shown to be prone to feature

drifts (BARDDAL; GOMES; ENEMBRECK, 2015b).

Analogously to kNN-FW, the adoption of scoring operators in Naive Bayes pre-

diction is simple. Naive Bayes with Feature Weight (NB-FW) labels instances according

to Equation 7.6, where w(·) is the weighting function that follows either Equation 7.3

or 7.4 depending on the chosen scoring operator and ξ is a small padding factor, set to

0.0001, used to avoid zero weights which would nullify the probabilities of all possible

class outcome values.

y = argmax
yi∈Y

P [yi]
d∏
j=1

[w(Xi) + ξ]× P [~x[Xj] | yi] (7.6)

7.3 Evaluating Feature Weighted Base Learners

Table 7.1 presents the prequential accuracy results obtained by the proposed fea-

ture weighted classifiers during the experiments. In all cases, the use of dynamic feature

weighted classifiers was beneficial, providing an average increase of 5.36% for kNN and

3.64% for Naive Bayes using SU, and 2.67% for kNN and 3.14% for Naive Bayes if entropy

is followed.

To provide statistical significance to the aforementioned claim, Figure 7.1 presents

the Nemenyi critical differences, which shows that HAT is still the best performing al-

gorithm followed by kNN-SU and NB-SU. These results highlight that Symmetrical Un-

certainty provides better description of data when compared to Entropy and provides

compelling accuracy gains when compared to their original versions.

In contrast to the enhancements obtained in accuracy, the proposed weighting

scheme comes at the expense of both processing time and memory space. Figures 7.2 and

7.3 present the ratio between the weighted versions of kNN and NB classifiers against

the original ones for processing time and memory consumption rates. The increases in
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Table 7.1: Prequential accuracy (%) obtained by weighted classifiers.

Experiment kNN kNN-ENTROPY kNN-SU NB NB-ENTROPY NB-SU HAT
AGR 54.71 58.54 64.20 59.13 67.60 67.71 69.84
AN 67.31 72.04 79.81 74.37 76.36 76.93 84.74
BG1 79.35 80.62 82.98 76.21 75.34 76.55 91.76
BG2 71.37 73.67 78.16 75.8 76.84 76.88 78.92
BG3 55.50 60.97 63.00 57.70 64.65 64.65 64.45
RTG 52.31 53.78 54.11 54.15 57.67 57.68 56.64
SEA 63.46 70.46 74.11 79.26 78.65 78.72 78.80
IADS 100.00 100.00 100.00 67.95 76.54 76.64 83.90

NOMAO 95.16 95.66 95.66 83.86 83.88 84.99 92.67
SPAM 83.72 83.87 84.52 71.13 73.47 75.22 84.48

Bold-faced results represent the best overall values obtained by all classifiers in given experiment. Underlined values stand for the best results

obtained by each classifier in the given experiment.

processing time are expected, since the weight computation for all features is an overhead

that is added to the classifier. As discussed in Section 6.1, the overhead for maintaining the

scoring operators relies on the dimensionality of the stream and results in the following

increases of 4.78% for kNN-Entropy, 9.36% for kNN-SU, 12.29% for NB-Entropy and

13.98% for NB-SU. Statistically, as shown in Figure 7.4, these increases are significant

once the weighting schemes are worse than the original classifier with a 95% confidence

level.

Similarly to the results obtained in processing time, the memory consumption

rates obtained by the weighted classifiers also increase, as depicted in Figure 7.3. Due

to the cost of maintaining entropy calculators and discretization structures for numeric

features, such increases are also expected and result in an average ratio increment of

6.62% for kNN-Entropy, 6.78% for kNN-SU, 12.10% for NB-Entropy and 15.50% for NB-

SU. Furthermore, the increasing rates are consistent across all scenarios, and Friedman

and Nemenyi tests’ results (presented in Figure 7.5) show that the original kNN and NB

classifiers outperform the weighted versions in memory consumption.

1234567

CD = 1.96

HAT
KNN-SU
NB-SU

KNN
NB

NB-ENTROPY
KNN-ENTROPY

Figure 7.1: Critical differences chart for the accuracy obtained by weighted classifiers.
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Figure 7.2: CPU Time ratio comparison between base learners and their Entropy and
Symmetrical Uncertainty weighted versions.

A
G
R

A
N

B
G
1

B
G
2

B
G
3

R
T
G

SE
A

IA
D
S

N
O
M
A
O

SP
A
M

1

1.05

1.1

1.15

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
.1
1
×

1
.0
4
×

1
.0
7
×

1
.0
6
×

1
.0
6
× 1
.0
8
×

1
.1
1
×

1
.0
1
×

1
.1
1
×

1
.0
2
×

1
.1
1
×

1
.0
4
×

1
.0
7
×

1
.0
6
×

1
.0
7
×

1
.0
8
×

1
.1
1
×

1
.0
1
×

1
.1
1
×

1
.0
2
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
×

1
.1
2
×

1
.1
×

1
.1
2
×

1
.1
2
×

1
.1
3
×

1
.1
1
×

1
.1
2
×

1
.1
2
× 1

.1
4
×

1
.1
3
×

1
.1
6
×

1
.1
7
×

1
.1
5
×

1
.1
3
×

1
.1
8
×

1
.1
7
×

1
.1
5
×

1
.1
5
×

1
.1
4
×

1
.1
5
×

R
A
M
-H

ou
rs

R
at
io

kNN kNN-Entropy kNN-SU NB NB-Entropy NB-SU

Figure 7.3: RAM-Hours ratio comparison between base learners and their Entropy and
Symmetrical Uncertainty weighted versions.
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Figure 7.4: Critical differences chart for the processing time (CPU Time) obtained by
weighted classifiers.
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Figure 7.5: Critical differences chart for the memory consumption (RAM-Hours) obtained
by weighted classifiers.



76

7.4 Improving Hoeffding Adaptive Tree with Custom

Feature Weighted Leaves

The results obtained by the feature weighted versions Naive Bayes and kNN showed

compelling accuracy gains when compared to their original versions. Nevertheless, both

classifiers are still outperformed by a single Hoeffding Adaptive Tree (HAT). As presented

in Section 5.5.3, HATs are adaptive trees that perform model prunes whenever a drift is

detected in one of its internal nodes. At the leaves, a Naive Bayes Adaptive (NBAdaptive)

prediction occurs, which is given by the best performing strategy: a simple majority class

voting or a Naive Bayes classifier.

This section investigates the adoption of the proposed feature weighted classifiers

at the leaves of HATs in replacement of the NBAdaptive strategy. Results obtained are

presented in Table 7.2, where it is clear that adopting a weighting scheme is beneficial,

since it provides better accuracy rates in all of the 10 experiments.

A comparison between the best performing leaf-weighted HAT to its original ver-

sion presents a 0.02% to 12.06% gain and an average improvement of 2.91%, showing that

even when working with few data, i.e., only instances that were traversed in the tree to

each leaf, the proposed weighting schemes are beneficial in terms of accuracy. Figure 7.6

presents the Nemenyi test results for a comparison of different leaf prediction strategies,

where all of the proposed schemes are superior to the original HAT.

Similarly to the results obtained by the weighted classifiers presented in the previ-

ous section, the proposed weighting scheme also impacts the processing time and memory

usage of the custom HATs. Figures 7.7 and 7.9 depict comparisons between the original

HAT and its leaf-weighted variants in CPU Time and RAM-Hours, respectively. In terms

Table 7.2: Prequential Accuracy (%) for different leaf prediction strategies in HAT.

Experiment HAT HAT
kNN - Entropy

HAT
kNN - SU

HAT
NB - Entropy

HAT
NB - SU

AGR 69.84 70.54 81.90 70.54 71.23
AN 84.74 86.43 88.24 87.28 88.97
BG1 91.76 92.37 94.42 94.51 94.51
BG2 78.92 82.87 86.04 79.71 81.29
BG3 64.45 68.53 72.47 65.74 65.10
RTG 56.64 57.47 58.16 57.21 58.34
SEA 78.80 79.59 79.62 81.16 82.74
IADS 83.90 94.55 94.72 84.72 85.08

NOMAO 92.67 94.81 94.94 92.69 93.24
SPAM 84.48 86.91 92.62 84.89 85.25

Bold-faced results represent the best overall values obtained.
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Figure 7.6: Critical differences chart for the accuracy rates of different leaf prediction
strategies for HAT.
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Figure 7.7: CPU Time (s) comparison between HAT and its variations using feature
weighted custom leaves.

of average processing time, exchanging the original NBAdaptive leaf prediction strategy

by a kNN-Entropy incurs in an increase of 11.57% and kNN-SU by 13.38%, while the

weighted NB strategies results in the following increases: NB-Entropy of 14.55% and NB-

SU of 12.44%. According to Friedman and Nemenyi tests, such increases are statistically

significant, as shown in Figure 7.8. However, as discussed in Section 6.1, the computation

of both scoring operators is bounded to the dimensionality, and since all experiments

possess a fairly great dimensionality these increases can be considered acceptable in most

scenarios given that the implementation is easily parallelized as the one here evaluated.

Memory-wise, the increases shown in Figure 7.9 obtained by adopting dynami-

cally weighted leafs in HATs have the following average rates: 2.59% for NB-Entropy,

4.30% for NB-SU, 6.80% for kNN-Entropy and 8.90% for kNN-SU. Despite such in-

creases, the critical differences chart presented in Figure 7.10 show that {HAT, HAT-
NB-ENTROPY} � {HAT-NB-SU} � {HAT-KNN-ENTROPY, HAT-KNN-SU}. At this

point, it becomes important to highlight that the higher memory usage expressed by kNN

leafs is expected since, in contrast to the original NBAdaptive strategy, kNN is a lazy

classifier that maintains a buffer of instances, instead of conditional probabilities.
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Figure 7.8: Critical differences chart for the processing time obtained by different leaf
prediction strategies for HAT.
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7.5 Concluding Remarks

This chapter introduced dynamically weighted versions of the Naive Bayes and

kNN classifiers where weights are given by Entropy and Symmetrical Uncertainty scoring

operators. Validating the third hypothesis of this thesis, empirical evidence shows that the

weighted versions present interesting prediction accuracy improvements when compared

to the original classifiers in both synthetic and real-world datasets. Furthermore, these

classifiers were investigated as leaves of Hoeffding Adaptive Trees and lead to interesting

accuracy improvements to the currently best-performing decision tree for data streams. In

spite of the accuracy gains, the weighting scheme comes at the expense of extra processing

time and memory space, which are statistically significant, yet, still considered feasible in

most scenarios.

The results presented in this chapter shed light on the importance of tracking

the relevance of features throughout the processing of the stream. The next chapter

introduces a dynamic filter for feature selection over data streams that has as its core the

Symmetrical Uncertainty scoring operator.



Chapter 8

Merit-guided Dynamic Feature Selection

In Chapter 6, two dynamic scoring operators (Conditional Entropy and Symmetri-

cal Uncertainty) based on Information Theory were introduced and later used in Chapter

7 as weighting factors during predictions. As a result, both kNN and Naive Bayes clas-

sifiers were extended and showed compelling accuracy improvements in several streams

since weights were promptly updated given changes in the underlying concept of each

scenario. Furthermore, the use of these dynamically weighted classifiers at the leaves of

the Hoeffding Adaptive Tree was investigated, and this strategy also lead to sound results.

This chapter investigates the Symmetrical Uncertainty scoring operator as the

core of a dynamic filter for feature selection over data streams. This operator was chosen

over Entropy since it reduces the bias towards features with more distinct values and has

shown better accuracy results in the feature weighting scope. First, Section 8.1 introduces

the proposed filter, namely DynamIc SymmetriCal Uncertainty Selection for Streams

(DISCUSS) (BARDDAL et al., 2019). The rationale behind DISCUSS is to (i) keep track

of the relevance of each feature w.r.t. the class, (ii) eliminate irrelevant features, and (iii)

discard redundant attributes. The proposed filter can be customized according to two

different selection strategies, i.e., n Best and Thresholding, which are later introduced in

Section 8.2. One of the major bottlenecks of DISCUSS is that redundancy computations

must be performed in batch mode. To manage this bottleneck, Section 8.2.4 introduces a

heuristic to decrease the complexity of the proposed method by adopting the Hoeffding

Bound as a criterion for redundancy computation.

DISCUSS and its selection strategies are then evaluated in Section 8.3 to analyze

the impact of their parameters and to verify their applicability comparing the results

obtained with the ones from the original classifiers and the Hoeffding Adaptive Tree.

Despite the promising results obtained by DISCUSS, it still fails in some specific

scenarios. To explain the limitations of DISCUSS, Section 8.5 describes when and why

80
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DISCUSS fails in probability terms.

Finally, Section 8.6 concludes this chapter by discussing the main results obtained.

8.1 DynamIc SymmetriCal Uncertainty Selection for

Streams (DISCUSS)

This section introduces a novel dynamic filter for feature selection from data

streams. This filter has as its core the Symmetrical Uncertainty scoring operator, which

is used to quantify how important a feature is w.r.t. class prediction and whether it is

redundant to another peer attribute.

DISCUSS consists primarily of (i) updating the necessary entropies for Symmet-

rical Uncertainty computation to the class, (ii) a baseline comparison, (iii) a selection

strategy, and (iv) a redundancy check. The central claim on proposing DISCUSS is that

it will dynamically check the importance of features w.r.t. class prediction, while also

identifying redundant ones. Given that, DISCUSS will continuously try to maximize a

merit function that aims the maximization of feature relevance while decreasing feature

redundancy. As a result, classification models should be learned within smaller dimension-

alities, also prospectively resulting in smaller processing times and memory consumption

rates.

Algorithm 31 presents the pseudocode for the DynamIc SymmetriCal Uncertainty

Selection for Streams algorithm (DISCUSS). The proposed filter receives as input a data

stream S and the buffer size w. Given S, DISCUSS retrieves its first w instances (lines

25-30) that are used to increment the necessary entropies for Symmetrical Uncertainty

computation and initial selection, which is performed in line 30, and provides a selected

subset of features X ′ and a baseline attributeXbaseline that will be used for comparisons. In

practice, a new feature selection will occur if a feature that had a Symmetrical Uncertainty

w.r.t the class below the baseline has its metric now above it, or vice-versa. After the

burnout window, DISCUSS operates over its buffer W as a sliding window (lines 5-24).

Given arriving instances and the oldest ones which are being dropped as S progresses, its

corresponding entropies and Symmetrical Uncertainty values are updated (lines 6-10).

After SU computation, a comparison of these updated values is performed to verify

whether a feature that was irrelevant has now surpassed the baseline feature Xbaseline or a

feature that was relevant had its discriminant power decreased and is now below Xbaseline

1DISCUSS is based on a baseline to verify whether a new feature selection is required. This algorithm
presents a feature as the baseline, yet, the baseline can also be a threshold value, as later introduced in
Section 8.2.2.
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Algorithm 3: Pseudocode of the proposed filter.
input : a data stream S that provides instances (~xt, yt) and a buffer size w.

[1]Let W ← ∅ be a queue that maintains a sliding window with length w;
[2]Let expert be a classifier;
[3]X ′ ← ∅ ; /* Subset of selected features */
[4]Xbaseline ← NULL ; /* Baseline feature */
[5]foreach (~xt, yt) ∈ S do
[6] if |W | = w then
[7] W ←W ∪ {(~xt, yt)};
[8] Increment entropies H(Y ), H(Xi) and H(Y |Xi) with (~xt, yt);
[9] Dequeue the oldest instance (~xt−w−1, yt−w−1) from W ;

[10] Decrement entropies H(Y ), H(Xi) and H(Y |Xi) given (~xt−w−1, yt−w−1);
[11] flag ← FALSE;
[12] foreach Xi ∈ X \ {Xbaseline} do
[13] if (SU(Xi, Y ) > SU(Xbaseline, Y ) and Xi /∈ X ′) or

(SU(Xi, Y ) < SU(Xbaseline, Y ) and Xi ∈ X ′) then
/* This condition is satisfied when a feature either (i) becomes

relevant and surpasses Xbaseline, or (ii) turns irrelevant and
has its SU w.r.t. the class now below Xbaseline’s */

[14] flag ← TRUE;
[15] break;

[16] if flag then
[17] (X ′, Xbaseline)← selectFeatures(X ) ; /* Selects new features and defines a

new baseline feature based on one of the selection strategies
described in Section 8.2 */

[18] expert.reset() ; /* Resets the learner */
/* Starts the learning of a new model with the instances in buffer

given the newly selected attributes */
[19] foreach i′ ∈W do
[20] i′ = extract(i′,X ′);
[21] expert.train(i′);

[22] else
[23] i′ ← extract(i′,X ′);
[24] expert.train(i′);

[25] else
/* Condition met during the first w instances obtained from S. */

[26] W ←W ∪ {(~xt, yt)};
[27] Update entropies H(Xi), H(Y ) and H(Y |Xi) given (~xt, yt);
[28] expert.train((~xt, yt));
[29] if |W | = w then

/* Selects the first subset of relevant features given the instances
stored in W and also sets a baseline X ′ that will be used during
the main loop. */

[30] (X ′, Xbaseline)← selectFeatures(X );

(lines 12-15). If such condition holds, a new feature selection is triggered (lines 17-21),

or otherwise, the classification model is updated using the arriving instance (lines 23-24).

This selection is configurable, and such strategies are next discussed in Section 8.2. In

addition to the selection of new features, the underlying classification system is reset and

re-trained with the instances stored in the buffer using only the selected attributes (lines
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19-21).

8.2 Selection Strategies

This section introduces two different selection strategies for DISCUSS. Both are

simple and aim at selecting relevant features while ignoring both redundant and irrelevant

ones. The first is an iterative approach that selects the n best-ranked attributes with the

guarantee that they are not redundant to one another. The second strategy is similar,

where features are selected if they possess a Symmetrical Uncertainty w.r.t. the class

above a threshold θ and if they are not redundant to one another. One of the pitfalls of

this second approach is that picking a proper θ is not trivial since it is domain dependent.

With this limitation in mind, an automatic thresholding technique based on the Hoeffding

bound is offered and evaluated.

8.2.1 n Best

The first proposed selection strategy, detailed in Algorithm 4, iteratively selects

the n best-ranked features with the guarantee that none of these are redundant to one

another. This strategy receives as input a single parameter, which is the number n of

attributes to be selected and as an outcome, it outputs both the selected subset of features

X ′ and the baseline attribute, which is used for comparisons.

The rationale behind the comparison against the baseline attribute is that feature

drifts occur if an attribute that was in a lower position in the ranking has now surpassed

the baseline or the contrary, i.e., when an attribute that was above the baseline is not

anymore, and in these cases, a new selection is deemed necessary.

First, the list of features is sorted in descending order given their Symmetrical

Uncertainty w.r.t the class. In practice, during the first time the features will be sorted,

QuickSort (HOARE, 1961) is used since it has O(d log2 d) cost, yet, during posterior

executions, Insertion Sort is preferred as the list of features is mostly sorted already,

resulting in a O(dk), where each input element is no more than k positions from its sorted

position. Next, the selected subset of attributes X ′ is initialized as an empty set, which

will be iteratively incremented given the feature ranking until the n best-ranked attributes

are selected or there are not any candidate features left in X . The loop described by lines

3–13 retrieves at each iteration the best-ranked attribute, which is then evaluated against

the attributes already selected and stored in X ′ for a redundancy check following the

concepts of Predominant Correlation and Predominant Feature.
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Definition 20. (Predominant Correlation) The correlation between Xi ∈ X and the class

Y is predominant iff SU(Xi, Y ) ≥ θ and ∀Xj ∈ X , (i 6= j) there exists no Xj such that

SU(Xi, Xj) ≥ SU(Xi, Y ) (YU; LIU, 2003).

Definition 21. (Predominant Feature) A feature Xi is predominant to the class Y iff its

correlation is predominant or it can become after removing its redundant peers (YU; LIU,

2003).

Given the previous definitions, a feature is good if it is predominant in predicting

the class, and thus, a feature selection algorithm should identify all predominant features

and ignore the rest. Also following the previous definitions, a redundancy is flagged

between two attributes Xi and Xj if SU(Xi, Xj) > SU(Xi, Y ) (see line 9). In other

words, a feature is deemed as redundant if it is correlated to an already selected attribute

to a bigger extent compared to how it is to the class.

Clearly, performing redundancy checks is the main drawback of this proposal, since

computing SU(Xi, Xj) requires, by definition, H(Xi), H(Xj) and IG(Xi, Xj), where the

last component must be computed in batch mode.

Finally, this selection strategy returns both the selected subset of features and the

baseline attribute, which is used for comparisons in Algorithm 3. The rationale behind

the comparison against the baseline attribute is that feature drifts occur if an attribute

that was in a lower position in the ranking has now surpassed the baseline or the contrary,

Algorithm 4: Selection scheme for the n best features.
input : the feature set X and the amount of features to be selected n
output : the selected features X ’ and the baseline feature Xbaseline

[1]Sort X in descending order of SU(·, Y );
[2]Let X ′ ← ∅ be the set of selected features;
[3]while |X ′| < n and X 6= ∅ do
[4] candidate← head(X ); /* Removes the first item from X */
[5] redundant← FALSE;
[6] γ ← SU(candidate, Y );
[7] foreach Xi ∈ X ′ do
[8] ξ ← Compute SU(Xi, candidate) /* Batch computation */
[9] if ξ > γ then

/* This holds if the candidate feature is so correlated with another
selected feature that this surpasses its correlation to the class,
i.e., it is redundant. */

[10] redundant← TRUE;
[11] break;

[12] if not redundant then
[13] X ′ ← X ′ ∪ {candidate};

[14]Xbaseline ← peekLast(X ′) ; /* Peeks the last item in X ′. */
[15]return (X ′, Xbaseline);
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i.e., when an attribute that was above the baseline is not anymore, and in these cases, a

new selection is deemed necessary.

At a first sight, this selection strategy seems to be computationally prohibitive since

it requires d2 redundancy computations, however, it is important to emphasize and clarify

that in practice |X ′| is bounded in [0;n]. Since the goal is to provide a fair dimensionality

reduction, only values n� d should be used, and thus, this proposal shall be considered

feasible. Therefore, the complexity of this selection strategy is O(nd).

8.2.2 Thresholding

The thresholding strategy is quite similar to the previous one. It assumes the same

heuristics to select attributes with the difference that there is no baseline feature since

the baseline is now a relevance threshold θ. Algorithm 5 presents the pseudocode for this

selection strategy. It receives as input the relevance threshold θ. Similarly to the previous

scheme, the attribute set X is sorted in descending Symmetrical Uncertainty order. In this

scheme, sorting is necessary2 to avoid comparisons with attributes that are guaranteed

to possess SU values below θ. While candidate features Xi drawn from X have their

Symmetrical Uncertainty values SU(Xi, Y ) above θ, they are evaluated for redundancy

against all the previously selected attributes in X ′. The redundancy verification procedure

is the same as the one used in the n Best strategy, and thus, will not be detailed here.

8.2.3 Automatic Thresholding via Hoeffding Bound

The major drawback of the thresholding selection strategy is picking an appropri-

ate threshold value θ. Intuitively, the optimal threshold value for each data domain is

different, and thus, there is no evidence that there is a one-fits-all standard value to be

followed. Still, a last investigation is necessary and aims at verifying how well DISCUSS

behaves when working with a fixed threshold θauto. The principle behind this scheme is

simple and assumes that a feature Xi is relevant if its Symmetrical Uncertainty w.r.t.

the class SU(Xi, Y ) is significantly different from 0, which is the minimum possible value

that depicts complete uncorrelation. To perform such verification, the Hoeffding bound

(Definition 17) is once again recollected and used similarly as in Hoeffding Trees.

Definition 22. (Automatic Thresholding via Hoeffding Bound) A feature Xi will be
2In practice, the main loop depicted by lines 4–14 of the algorithm could evaluate all features with a

O(d) cost, however, sorting using Quicksort (O(d log2 d)) and then drawing attributes is faster since it
requires fewer redundancy checks.
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Algorithm 5: Selection scheme for the the thresholding scheme.
input : the feature set X and the relevance threshold θ
output : the selected features X ′

[1]Sort X in descending order of SU(·, Y );
[2]Let X ′ ← ∅ be the set of selected features;
[3]candidate← head(X );
[4]while SU(candidate, Y ) > θ do
[5] redundant← FALSE;
[6] γ ← SU(candidate, Y );
[7] foreach Xi ∈ X ′ do
[8] ξ ← Compute SU(Xi, candidate) /* Batch computation */
[9] if ξ > γ then

/* This holds if the candidate feature is so correlated with another
selected feature that this surpasses its correlation to the class,
i.e., it is redundant. */

[10] redundant← TRUE;
[11] break;

[12] if not redundant then
[13] X ′ ← X ′ ∪ {candidate};
[14] candidate← head(X );
[15]return (X ′);

deemed relevant if Equation 8.1 holds,

SU(Xi, Y ) > θauto

SU(Xi, Y ) > ε

SU(Xi, Y ) >

√
R2 ln (1/δ)

2n

(8.1)

where θauto = ε is the Hoeffding Bound earlier described in Definition 17, δ is the signifi-

cance level, R = 1 is the range of Symmetrical Uncertainty and n is the window size.

Following the latter definition, if one uses θ = θauto = ε, it will be guaranteed that

all selected features Xi have a correlation to the class that is statistically significant and

non-zero. Table 8.1 depicts different values of Hoeffding Bound obtained by varying the

parameters δ and n. One of the drawbacks of using these threshold values is that they

are fixed over time. This will fatally result in good behaviors for some scenarios and bad

for others.

8.2.4 A Heuristic to Decrease the Number of Redundancy Computations

The proposed redundancy verification presented in Algorithm 3 verifies if each

candidate feature is redundant to any of the attributes already selected. Computing

redundancy values is one of the bottlenecks of the proposed method since part of its

entropies that compose the Information Gain must be computed in batch mode when
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Table 8.1: Hoeffding bound values (ε) obtained by varying n and δ parameters.
n (1− δ) θauto = ε

0.95 0.0106100 0.99 0.0047

200 0.95 0.0075
0.99 0.0033
0.95 0.0061300 0.99 0.0027

400 0.95 0.0053
0.99 0.0023
0.95 0.0047500 0.99 0.0021

Algorithm 6: Pseudocode for the heuristic redundancy check in DISCUSS.
[1]foreach Xi ∈ X ′ do
[2] ψ ← SU(candidate, Y );
[3] if |γ − ψ| < ε then
[4] ξ ← Compute SU(Xi, candidate) /* Batch computation */
[5] if ξ > γ then
[6] redundant← TRUE;
[7] break;

necessary. In this section, a heuristic to reduce the number of redundancy computations

is proposed. This heuristic is straightforward and also adopts the Hoeffding bound to

verify whether a redundancy computation must be performed between two attributes.

The following heuristic works under the assumption that if two attributes are

redundant to one another, they possess similar Symmetrical Uncertainty values w.r.t. the

class.

Definition 23. Given two attributes Xi, Xj ∈ X , a redundancy computation between

such features must occur iff Equation 8.2 holds, where ε is the Hoeffding bound.

|SU(Xi, Y )− SU(Xj, Y )| < ε (8.2)

In other words, Definition 23 states that a redundancy verification between two

attributes must occur when the difference between the Symmetrical Uncertainties of these

attributes w.r.t. the class is less than the Hoeffding Bound, meaning that they are not

statistically different.

In practice, to adopt this heuristic in DISCUSS, the procedure depicted in Algo-
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rithm 6 should replace lines 7–11 in both Algorithms 4 and 5.

8.3 Evaluation

This section evaluates the two proposed selection strategies of DISCUSS by varying

their main parameters. The results are obtained by applying DISCUSS to kNN, Naive

Bayes and Very Fast Decision Tree (VFDT) classifiers. The results obtained are then

benchmarked against the original learners and against the Hoeffding Adaptive Tree, which

has been used so far as a baseline in this project. Accuracy results obtained for the

heuristic redundancy verification are omitted since they are, on average, 0.5% lower than

the ones obtained here, whereas processing time and memory usage metrics are further

discussed in Section 8.3.4.

8.3.1 n Best

The only parameter for the n Best selection strategy is the number of attributes

to be selected n. This section evaluates the impact of n given the complex guidelines

provided in Chapter 4, that is, including accuracy, processing time, memory usage and

selection accuracy. Results for real-world datasets were omitted from this section since

they do not allow the computation of classifier independent metrics, whereas results for

the gradual drifted experiments were also omitted since they present the same behavior

as the abrupt ones. Results for real-world datasets will be later evaluated in Section 8.3.3.

Figure 8.1 presents the average prequential accuracy obtained during synthetic

experiments using different classifiers, window sizes, and values of n. In almost half of the

experiments, i.e., AN, BG1, BG3, it follows that bigger values of n lead to increases in

accuracy. Corroborating with the claims presented in Section 3.5, the results presented

here show that indeed different classifiers act differently given the same set of attributes.

An example of that is the AN experiment, where the kNN classifier obtains accuracies up

to 75%, while Naive Bayes obtains 90%+ using the same attributes. Also, there are some

experiments which are interestingly odd, such as the RTG, where a single experiment

presents an accuracy increase of approximately 20% compared to the rest (Figure 8.1g)

or the AGR experiment, where VFDT has it’s accuracy fall in 30% (Figure 8.1a). These

results are expected since our filter selects features independently from the others and

does not evaluate subsets of complementary features, causing classifiers to underfit.

Figures 8.2, 8.3 and 8.4 depict the Selection Accuracy (SA), Relevant Selection

Recall (RSR) and Complement of Unnecessary Complexity Penalty (CUCP) results, re-
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spectively. Again, the results presented in Figure 8.2 are inconclusive, showing that with

the increase of n, the overall selection accuracy can both increase or decrease, depending

on the stream. In order to facilitate the understanding of these results, selection accuracy

is split into RSR and CUCP. The RSR results (Figure 8.3) clearly enlighten that with the

rapid increase of n, RSR also increases and swiftly reaches a plateau, meaning that small

values of n allow the selection of the desired relevant attributes. This is expected since

there are few relevant attributes and they figure amongst the best ones for each stream,

and thus, were correctly selected. Conversely, results in Figure 8.4 show that with the

increase of n, CUCP drops, meaning that more irrelevant attributes were selected incor-

rectly. Combining the results obtained in terms of accuracy, SA, RSR and CUCP, there

does not seem to be a direct correlation showing that maximizing a single metric, e.g.,

SA; overall accuracy would be improved.

Furthermore, it is important to highlight that different window sizes barely impact

the SA, RSR and CUCP results obtained, showing that the Symmetrical Uncertainty

computation is robust, as earlier stated in Section 6.3.

Figures 8.5 and 8.6 present the results obtained for processing time and memory

usage. In both cases, these metrics slightly increase with the increment of n, models

become more complex and more computationally intensive. Nevertheless, the greatest

increases come from the use of different window sizes, which lead to important differences

among the executions of DISCUSS. Given these results, it is possible to state that smaller

values of w are preferred, e.g., w = 100 or w = 200, since they perform just as well as

bigger windows, whilst requiring less computational resources.
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Figure 8.1: Prequential Accuracy (%) obtained by varying the n parameter.
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Figure 8.3: Relevant Selection Recall (RSR) obtained by varying the n parameter.
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Figure 8.4: Complement of Unnecessary Complexity Penalty (CUCP) obtained by varying
the n parameter.
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Figure 8.5: CPU Time (s) obtained by varying the n parameter.



94

1.6

1.65

1.7

1.75

1.8
·10−12

kN
N

0.85

0.9

0.95

1
·10−12

N
B

0 5 10 15

1.2

1.25

1.3

1.35

1.4
·10−12

n

V
F
D
T

(a) AGR

0.5

1

1.5

·10−12

0.5

1

1.5

·10−12

0 5 10 15
0.5

1

1.5

·10−12

n

(b) AN

1

2

3
·10−12

0.5

1

1.5

2

2.5
·10−12

0 5 10 15

1

2

3
·10−12

n

(c) BG1

0.5
1

1.5
2

2.5
3
·10−12

0.5

1

1.5

2

2.5
·10−12

0 5 10 15

1

2

3
·10−12

n

(d) BG2

0.5
1

1.5
2

2.5
3
·10−12

kN
N

0.5

1

1.5

2

2.5
·10−12

N
B

0 5 10 15

0.5

1

1.5

2

2.5
·10−12

n

V
F
D
T

(e) BG3

0.5
1

1.5
2

2.5
3
·10−12

0.5

1

1.5

2
·10−12

0 5 10 15

0.5

1

1.5

2
·10−12

n

(f) RTG

2

4

6

·10−12

1

2

3

4

5
·10−12

0 5 10 15

1

2

3

4

5
·10−12

n

(g) SEA

w = 100 w = 200 w = 300 w = 400 w = 500

Figure 8.6: RAM-Hours (GB-Hour) obtained by varying the n parameter.
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Figure 8.7: Comparison of the impact on Selection Accuracy by using the Hoeffding Bound
to trigger redundancy checks.

Finally, Figure 8.7 presents a comparison between the average Selection Accuracy

(SA) obtained by the original n Best strategy and the same strategy using the Hoeffding

bound-based heuristic for triggering redundancy checks. Results show that the Hoeffding

versions obtained slightly lower results in all synthetic experiments. In practice, these

results show that the Hoeffding heuristic allows redundant features to be selected, thus

leading to lower SA results. The impact of this Hoeffding heuristic in processing time and

memory space is later discussed in Section 8.3.4.

8.3.2 Thresholding

Analogously to the n best strategy, the thresholding strategy also relies on a single

parameter: the relevance threshold θ. As the analysis performed in the previous section,

the evaluation of the thresholding results should also encompass accuracy, processing time,

memory usage and selection accuracy results.

Figure 8.8 presents the average prequential accuracy results obtained by varying

base learners, window sizes and the relevance threshold θ. At a first glance, it is possible

to notice that there is no deterministic behavior such as “increase θ to obtain greater

accuracy rates”, since in some experiments, as for instance AGR, the overall accuracy

increases, while in others, such as the SEA, the accuracy decreases with the increment

of θ. Following the same trend presented in the previous section, it becomes once again

clear that different classifiers obtain different accuracy rates using the same attributes,

such as the AN experiment, where the kNN classifier obtained approximately 72% of

accuracy while Naive Bayes achieves results above 90%. Also, the relevance threshold can

impact different classifiers in dissimilar fashions. An example of that is the AN experiment

(Figure 8.8b), where with the increase of θ both Naive Bayes and Very Fast Decision Tree

classifiers are improved, while kNN is jeopardized.
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Figures 8.9, 8.10 and 8.11 depict the Selection Accuracy (SA), Relevant Selection

Recall (RSR) and Complement of Unnecessary Complexity Penalty (CUCP) results ob-

tained by varying the same parameters. With the exception of the BG1 experiment (see

kNN results in Figure 8.8c), there seems to exist a decreasing tendency of SA with higher

values of θ. Focusing on the RSR results, it becomes clear that with the increase of the

relevance threshold, the RSR results decrease dramatically. These results are expected

since higher values of threshold difficult the selection procedure, where attributes, even if

relevant, are not selected if θ is inappropriately picked. A similar rationale can be applied

when analyzing the CUCP results, depicted in Figure 8.11. In this case, the increase of

the relevance threshold θ leads to less irrelevant attributes being selected. Again, these

results are predicted since smaller values of θ allow lowly discriminative attributes to be

selected, whereas with θ’s increase, such attributes would be ignored.

Finally, Figures 8.12 and 8.13 show the processing time and memory usage results

obtained. The results are the opposite compared to the ones obtained in the n Best

selection strategy, where both CPU Time and RAM-Hours decrease with the increment

of θ. As described earlier, the augment of θ leads to fewer attributes being selected, which

makes model simpler (memory-wise) and faster to compute. In addition to that, the same

characteristic that bigger sliding windows lead to higher results is still valid, meaning that

buffering more instances is more costly in both memory space and processing time.
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Figure 8.8: Average Prequential Accuracy (%) obtained by varying the threshold θ.
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Figure 8.12: CPU Time (s) obtained by varying the threshold θ.
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Figure 8.13: RAM-Hours (GB-Hour) obtained by varying the threshold θ.
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Figure 8.14: Average number of features selected using the threshold selection strategy.

At this point, it is important to provide default parameters to DISCUSS, hereafter

represented by (n̄, w̄) and (θ̄, w̄). Both parameters were determined following the best

average rankings amongst all parameter variations across all different classifiers. The

justification to this procedure is to facilitate the comparison of the final results and to

allow DISCUSS to be easily parametrized regardless of which classifier will be used. As

a result, the parameters chosen as default ones are the following: n̄ = 5 with a window

size w = 300 for the n Best strategy and θ̄ = 0.03 with a window size w = 200 for the

thresholding strategy.

Another open topic regarding the thresholding strategy is the number of attributes

selected with and without the heuristic for redundancy checks. Figure 8.14 presents the

average number of features selected using or not the Hoeffding redundancy check heuristic.

Clearly, adopting the Hoeffding redundancy check strategy allows more features to be

selected, meaning that redundant peers are ignored and wrongly selected.

Similarly as before, Figure 8.15 presents the average Selection Accuracy (SA) ob-
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Figure 8.15: Comparison of the impact on Selection Accuracy by using the Hoeffding
Bound to trigger redundancy checks.
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tained by the conventional thresholding strategy and its variation using the Hoeffding-

based heuristic to trigger redundancy checks. Once more, the adoption of the heuristic

for redundancy checks decreases the overall SA scores obtained, meaning that more re-

dundant attributes are inappropriately selected. As a reminder, the impact of adopting

the Hoeffding heuristic for redundancy tests in processing time and memory usage is later

discussed in Section 8.3.4.

8.3.3 Comparison against Original Learners and the Hoeffding Adaptive Tree

Both of DISCUSS’ strategies were evaluated focusing on variations in their main

parameters and window sizes. Additionally, it is critical to verify whether DISCUSS en-

ables classifiers to overcome feature drifts accurately and how these classifiers behave

when compared to the chosen baseline: the Hoeffding Adaptive Tree. Tables 8.2 and 8.3

present the results obtained by the n Best and thresholding selection strategies, respec-

tively. In the following reports, (n∗, w∗) and (θ∗, w∗) represent the n and θ values that

maximize the average prequential accuracy in each experiment, while (θ∗auto, w
∗
auto) is the

automatic threshold that also optimizes the accuracy obtained given different window

sizes. As mentioned in the previous section, the parameters used for this comparison are

as follows: n̄ = 5 with a window size w = 300 for the n Best strategy and θ̄ = 0.03 with

a window size w = 200 for the thresholding strategy.

Results for the application of DISCUSS to HAT were omitted since they jeopardize

the final accuracy results. This is due the fact that performing full model resets, in a

classifier that is able to perform local resets, is often unnecessary and makes the tree to

perform less accurately (BARDDAL; GOMES; ENEMBRECK, 2015b).

Starting with the n Best strategy, depicted in Table 8.2, it is clear that all classifiers

benefit from the selection provided by DISCUSS in almost all scenarios. Experiments,

where classifiers had their accuracies decreased include mainly real-world datasets, where

the distribution is unknown and there is no clear justification of whether they contain or

not feature drifts, and thus, resetting the classifier is possibly prejudicial. On average,

the accuracy increases are promising as they average 5.47% for kNN, 10.74% for NB and

11.00% for VFDT. To test the hypothesis that DISCUSS is able to significantly improve

the classifiers’ accuracy, several pairwise Wilcoxon tests were performed, and as a result,

DISCUSS is able to significantly improve kNN’s, NB’s and VFDT’s accuracy with a 99%

confidence. Finally, an execution of Friedman and Nemenyi tests was performed in order

to compare all combinations against the HAT classifier. Figure 8.16a presents the resulting

critical differences chart, where {VFDT-n∗, NB-n∗, VFDT-n̄, kNN-n∗, HAT} � {NB-n̄,
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Table 8.2: DISCUSS results comparison for the n Best strategy against base learners and
Hoeffding Adaptive Tree.

Experiment kNN kNN
(n̄, w̄)

kNN
(n∗, w∗)

NB NB
(n̄, w̄)

NB
(n∗, w∗)

VFDT VFDT
(n̄, w̄)

VFDT
(n∗, w∗)

HAT

AGR 54.71 62.28 89.88 59.13 91.3 91.60 57.21 91.28 91.56 69.84
AN 67.31 75.86 76.85 74.37 89.99 91.80 82.86 92.61 93.31 84.74
BG1 79.35 85.39 87.13 76.21 89.99 93.64 80.86 93.52 93.76 91.76
BG2 71.37 72.71 77.99 75.8 78.01 92.05 78.06 89.89 92.84 78.92
BG3 55.50 52.27 70.60 57.70 56.74 67.81 64.04 70.44 90.28 64.45
RTG 52.31 54.41 54.50 54.15 59.62 60.78 54.84 63.83 83.21 56.64
SEA 63.46 64.73 69.36 79.26 83.22 87.40 77.63 80.57 81.51 78.80
IADS 100.00 100.00 100.00 67.95 68.02 78.28 92.90 92.09 93.87 83.90

NOMAO 95.16 95.66 96.77 83.86 83.94 84.78 91.08 91.09 92.34 92.67
SPAM 83.72 84.32 84.56 71.13 78.95 86.00 78.07 78.30 78.85 84.48

Underlined values stand for the best results obtained by a classifier, while bold-faced ones represent the best overall results.

Table 8.3: DISCUSS results comparison for the thresholding strategy against base learners
and Hoeffding Adaptive Tree.
Experiment kNN kNN

(θ̄, w̄)
kNN

(θ∗, w∗)
kNN

(θ∗auto, w
∗)

NB NB
(θ̄, w̄)

NB
(θ∗, w∗)

NB
(θ∗auto, w

∗)
VFDT VFDT

(θ̄, w̄)
VFDT
(θ∗, w∗)

VFDT
(θ∗auto, w

∗)
HAT

AGR 54.71 57.79 64.95 65.15 59.13 62.92 65.94 62.13 57.21 62.73 65.73 62.48 69.84
AN 67.31 72.05 72.27 67.11 74.37 75.54 77.91 77.59 82.86 83.55 84.35 84.67 84.74
BG1 79.35 82.21 84.49 77.88 76.21 81.15 81.16 80.63 80.86 81.61 82.03 81.63 91.76
BG2 71.37 77.10 79.92 73.44 75.80 77.57 80.35 75.05 78.06 82.52 84.22 77.88 78.92
BG3 55.50 61.48 64.59 53.22 57.70 54.07 57.60 56.82 64.04 53.32 65.51 64.83 64.45
RTG 52.31 52.63 53.78 54.21 54.15 54.77 55.09 55.03 54.84 56.86 57.34 54.90 56.64
SEA 63.46 71.15 74.56 67.98 79.26 80.14 84.02 81.98 77.63 80.98 81.21 80.29 78.80
IADS 100.00 100.00 100.00 100.00 67.95 70.77 85.12 82.91 92.90 98.58 100.00 99.19 83.90

NOMAO 95.16 95.81 96.69 96.22 83.86 87.22 92.83 89.80 91.08 92.20 95.44 94.22 92.67
SPAM 83.72 84.79 86.16 85.39 71.13 73.98 86.56 71.84 78.07 81.19 86.97 79.63 84.48

Underlined values stand for the best results obtained by a classifier, while bold-faced ones represent the best overall results.
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Figure 8.16: Critical differences chart DISCUSS variations against base learners and
Hoeffding Adaptive Tree.

VFDT, kNN-n̄, kNN, NB} is observed with a 95% confidence.

Table 8.3 presents the results obtained for the thresholding selection of discuss,

which enable an analogous analysis. Similarly to the results obtained for the previous

selection strategy, DISCUSS using thresholding is also capable of boosting classifiers’

accuracy in interesting rates. For instance, kNN, NB and VFDT classifiers see their
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average accuracies increase in 5.01%, 4.57% and 3.32%, respectively. Pairwise Wilcoxon

tests were once again performed and as a result, DISCUSS is able to enhance all classifiers’

accuracy with a 99% confidence level.

Another required analysis is to verify whether automatic thresholding is beneficial

compared to the results obtained by base learners alone. The increases provided by

automatic thresholding are not as appealing, however, they exist and are as follows: 3.48%

for kNN, 4.00% for NB and 0.74% for VFDT. With the aid of Wilcoxon’s test, it follows

that DISCUSS using automatic thresholding is also statistically superior to the original

base learners with 99% confidence level. A multiple comparison amongst all classifiers

and their combinations with thresholding strategies of DISCUSS was performed, and the

critical differences chart reporting the results is depicted in Figure 8.16b, where {VFDT-

θ∗, HAT, NB-θ∗, kNN-θ∗, VFDT-θ∗auto, VFDT-θ̄} � { kNN-θ̄, VFDT, kNN-θ∗auto, NB-θ∗auto,

NB-θ̄, kNN, NB} with 95% confidence.

8.3.4 Processing Time and Memory Usage of DISCUSS Variations

The evaluation of DISCUSS should also encompass processing time and memory

usage. Traditional feature selection is known for decreasing both metrics in batch learning,

however, there is no guarantee that the same would hold in streaming scenarios. To

righteously evaluate the efficiency of a feature selection algorithm in streaming scenarios,

one must not only accumulate its processing time, but also the classifier’s training and

prediction times. By doing so, it is possible to verify if the overhead of computing the

scoring operators and selecting attributes can be justified by sufficiently decreasing the

complexity of the classifier. This section compares the processing time and memory

usage of DISCUSS’ selection strategies n∗ and θ∗ when applied to kNN, NB and VFDT

classifiers. To facilitate visualization, both CPU Time and memory usage as presented as

ratios of DISCUSS to the base learner.

Figures 8.17 and 8.18 present the processing time ratio results obtained for the

n Best and thresholding strategies, respectively. In addition to that, these figures also

report the ratios obtained by the Hoeffding-based heuristic for redundancy testing. In

both figures, it becomes clear that DISCUSS produces an overhead that produces an in-

crement to the running times of both NB and VFDT, while kNN has it’s running time

decreased. These results are interesting since DISCUSS, by selecting features, decreases

the complexity of kNN sufficiently to justify the overhead of computing the Symmetrical

Uncertainty of each attribute w.r.t the class over a sliding window and selecting features

given feature drifts. An important example of that is the Spam Corpus (SPAM) exper-
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iment, where kNN becomes approximately 30% faster compared to its original version,

while being more accurate. The combination of these results shed light on the fact that

DISCUSS is able to improve kNN not only in accuracy, but also in processing time.
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(c) VFDT

Figure 8.17: CPU Time (s) comparison between base learners and DISCUSS using n Best
strategy.
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(c) VFDT

Figure 8.18: CPU Time (s) comparison between base learners and DISCUSS using thresh-
olding strategy.
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Figure 8.19: Number of redundancy computations using n best selection strategy.
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Figure 8.20: Number of redundancy computations using the threshold selection strategy.

The processing time results are easily explained if one compares the number of

redundancy computations made in each strategy using or not the Hoeffding-based heuristic

for redundancy verifications. Figures 8.19 and 8.20 depict the number of redundancy

computations performed in each of the experiments in n Best and thresholding variations

of DISCUSS. In all experiments, it is verified that adopting the Hoeffding bound to trigger

redundancy verifications leads to a smaller number of redundancy computations, which

is known to be the major bottleneck of the proposed method (see Section 8.2.4). The

decreases in the number of redundancy computations is interesting especially in real-world

datasets, where the number of attributes is usually bigger than in synthetic data.
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The results for memory consumption are presented in Figures 8.21 and 8.22 for the

n Best and Thresholding strategies, respectively. The results are clear in showing that all

classifiers, i.e., kNN, NB and VFDT, suffer from increases in memory consumption when

combined to DISCUSS. Such increases are expected, since DISCUSS requires storing (i) a

sliding window of instances, (ii) structures for computing the necessary entropies, and (iii)

discretization structures if the stream contains numeric data. Discretion is advised when

analyzing memory consumption results, since such increases may not be prohibitive in

most scenarios, mainly if the base learner is memory-efficient, e.g., NB or VFDT classifier,

while smaller increases may cause kNN-based systems to fail due to lack of memory.

Finally, it is also important to point out that adopting the Hoeffding-based heuris-

tic for redundancy tests leads to increased memory consumption, meaning that the classi-

fication model is built upon more attributes (the redundant ones that were inappropriately

selected).
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(c) VFDT

Figure 8.21: RAM-Hours (GB-Hour) comparison between base learners and DISCUSS
using n Best strategy.
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(c) VFDT

Figure 8.22: RAM-Hours (GB-Hour) comparison between base learners and DISCUSS
using thresholding strategy.
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8.4 Stability

In addition to verifying how accurate the feature selection of DISCUSS is, this

section is devoted to quantifying how stable its selection is when the algorithm is fed with

different inputs according to the method proposed in Section 4.4.4.

In Figure 8.23 the results obtained during the experiments are reported, following

bootstrap-, split-, and cross-validation schemes in a 10-fold validation environment (see

Section 4.4.4). At first, it is important to highlight that the stability rates achieved by

DISCUSS vary according to the experiment conducted, but more importantly, according

to the validation process adopted. Naturally, the highest stability rates are achieved using

the cross-validation scheme, as 9 out of the 10 folds are updated with the arrival of each

instance, thus making the selection process much more uniform across the folds. The same

rationale can be applied to explain the rates obtained by the bootstrap-based validation

experiments, as each instance is used to update the feature selection process allocated in

each fold approximately 66% of the times. The results obtained with the split-validation

process are the lowest, as only 1 out of the 10 folds are updated with the arrival of each

instance. Also, it is worthy to highlight that it is hard to tell how ‘stable’ DISCUSS is

due to the lack of competing techniques, and as a result, the results reported here may

serve as baselines for future works on the area. Finally, the results obtained across the

n-Best and Thresholding strategies, depicted in Figures 8.23a and 8.23b, respectively;

show similar results, where the latter is, in average, 12% less stable.

(a) n Best (b) Theresholding

Figure 8.23: Average Stability results obtained by DISCUSS on synthetic experiments.

8.5 When and Why DISCUSS Fails

In the previous sections, DISCUSS was evaluated using different classifiers and

in a variety of experiments. Focusing on accuracy, it has been observed that the scores
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obtained for BG3 and RTG experiments were reasonably lower when compared to the

remaining experiments. Now, these experiments are used as examples to explain when

and why DISCUSS fails.

BG3. In this concept, earlier introduced in Equation 4.4, we see that three di-

mensions Xα, Xβ and Xε are relevant to the class in a manner that resembles an XOR

problem. During this section, it is assumed that we have a stream that also encompasses

an irrelevant attribute Xξ. In this case, if we generate instances following this concept,

we would have the following 16 features combinations and the following probabilities:
Xα Xβ Xε Xξ Y

1 1 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 1 0 0

0 1 0 1 0

0 0 1 1 0

1 1 1 0 1

1 1 0 1 0

1 0 1 1 0

0 1 1 1 0

0 0 0 0 1

and since all features

combinations are

equally likely to occur,

it follows that:



Features Probabilities

P [Xα = 1] = 1/2

P [Xβ = 1] = 1/2

P [Xε = 1] = 1/2

P [Xξ = 1] = 1/2

Class Probabilities

P [Y = 1] = 4/16 = 1/4

P [Y = 0] = 12/16 = 3/4

This analysis is started by comparing a relevant and an irrelevant attribute: Xα and

Xξ. For Xα, if we compute the joint probability P [Xα = 1, Y = 1], it follows that we have

only 2 cases out of 16 (1/8) that match these criteria, which occur whenXα = Xβ = Xε = 1

regardless of the value of Xξ, i.e., Xξ = 1 or Xξ = 0. In this case, we could verify if Xα

and Y are independent from each other, by checking if P [Xα = 1, Y = 1] = P [Xα =

1] × P [Y = 1]. The last assertion is true, since P [Xα = 1] × P [Y = 1] = 1/2 × 4/16 = 1/8,

which is the same probability presented above.

We could then repeat the same process for Xξ. First, the joint probability P [Xξ =

1, Y = 1] would end up with the same value 1/8. Next, by comparing if Xξ and Y are

independent, it follows that P [Xξ = 1, Y = 1] = P [Xξ = 1] × P [Y = 1] holds, because

P [Xξ = 1] × P [Y = 1] = 1/2 × 4/16 = 1/8. Now, we can infer the following: (i) both

Xα and Xξ are equally biased towards the class, and thus, probability-based measures

would score them equally, and that (ii) probability-wise, both attributes are claimed to

be independent w.r.t. the class, which should not have been held true for Xα, since the

class determination depends on the value of Xα.

The rationale here is simple: by evaluating each feature solely, any “single feature

metric” such as Symmetrical Uncertainty, would fail at depicting the discriminative power
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Figure 8.24: Example of RTG concept.

of attributes in cases where the class seems independent from attributes. In such cases,

more complex metrics that evaluate subsets of attributes, such as a joint Symmetrical Un-

certainty SU([Xα, Xβ, Xε], Y ) would be sufficient at depicting these complex relationships

between features, however, it’s computation is not trivial nor efficient to be performed on

data streams.

RTG. Similarly to the BG3 discussion, let us now work under the assumption

that our RTG concept relies on Xα, Xβ and Xε to determine the class Y and that we also

have an irrelevant feature Xξ. Given that all of these features are binary, a possible RTG

concept would be the one depicted in Figure 8.24, which would result in features-class

combinations and probabilities presented below.

Xα Xβ Xε Xξ Y

1 1 1 1 1

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 1

0 1 1 0 0

0 1 0 1 1

0 0 1 1 0

1 1 1 0 1

1 1 0 1 0

1 0 1 1 0

0 1 1 1 0

0 0 0 0 1

and since all features

combinations are

equally likely to occur,

it follows that:



Features Probabilities

P [Xα = 1] = 1/2

P [Xβ = 1] = 1/2

P [Xε = 1] = 1/2

P [Xξ = 1] = 1/2

Class Probabilities

P [Y = 1] = 8/16 = 1/2

P [Y = 0] = 8/16 = 1/2

Using the same procedure as before, let us now compare two relevant features (Xα and

Xε) and an irrelevant one (Xξ). Computing the joint probabilities between each feature

and the class, we obtain: P [Xα = 1, Y = 1] = 1/4, P [Xε = 1, Y = 1] = 1/8 and P [Xξ =

1, Y = 1] = 1/4.

Next, we could verify if these attributes are independent w.r.t the class as follows:

(i) Xα is independent since P [Xα = 1, Y = 1] = P [α = 1] × P [Y = 1] holds, (ii)
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Xε is not dependent since P [Xε = 1, Y = 1] 6= P [ε = 1] × P [Y = 1]; and (iii) Xξ is

independent since P [Xξ = 1, Y = 1] = P [ξ = 1] × P [Y = 1] also holds. As a result,

DISCUSS would compute the following Symmetrical Uncertainty values: SU(Xα, Y ) =

0.0000, SU(Xε, Y ) = 0.1887 and SU(Xξ, Y ) = 0.0000. These results show that DISCUSS

is unable to depict correlations between relevant attributes and the class since it performs

a “flat” evaluation of the features, while on a RTG concept it would be necessary to

evaluate different partitions of data, such as the ones that are traversed by the first node

of the tree. Similarly as before, these complex relationships amongst subsets of variables

would require the computation of joint Symmetrical Uncertainties.

8.6 Concluding Remarks

This section introduced DISCUSS, a novel filter for feature selection from data

streams. DISCUSS has as its core the Symmetrical Uncertainty operator, which is able

to portrait the discriminative power of an attribute given a window of most recent data.

Furthermore, Symmetrical Uncertainty is also used to verify whether two features are

redundant to one another, however, in batch mode.

DISCUSS is generic in the sense that allows different selection strategies to be used

and is classifier-independent. Until this point, DISCUSS has two selection strategies: the

selection of the n best-ranked attributes and the selection given a relevance threshold

θ. Even though the results obtained showed that single classifiers have their accuracies

boosted in feature drifting scenarios, while corroborating the fourth hypothesis of this

thesis, it is rather unclear if there is still room for accuracy improvements. The major

drawback of DISCUSS is that both selection strategies verify the individual relevance of

each attribute w.r.t. the class but not how discriminative a subset of features is together.

As earlier discussed in Section 3.3.2, doing such verification is demanding as the problem

space grows exponentially with the number of dimensions in the O(2d) order.

In the next chapter, a different approach for feature selection based on adaptive

boosting is proposed. This chapter will introduce the basic aspects of adaptive boosting

for data streams and how it can be adapted for the feature selection task.



Chapter 9

Boosting-based Dynamic Feature Selection

In the previous chapter, a novel dynamic feature selection method based on merit

was introduced. This method continuously kept track of the importance of features as

the stream progressed, and upon significant changes on these values, redundancy amongst

them was computed so that a subset of features with high relevance and low redundancy

was selected. In this chapter, a different method for dynamically selection features during

the processing of data streams called Adaptive Boosting for Feature Selection (ABFS).

ABFS chains decision stumps and drift detectors, and as a result, identifies which features

are relevant to the learning task as the stream progresses with success. Internally, ABFS

takes advantage of the ‘mistakes’ made by a set of boosting units to highlight hard-to-

classify instances. By intuition, these instances are either (i) located at the decision

boundaries of classes, or (ii) noise. If one works under the assumption that the labels of

incoming instances are trustworthy (not noisy), decision stumps will be able to select the

most important features according to these hard-to-classify instances as they naturally

account for these weights during the feature selection process. In ABFS, each decision

stump will be responsible for finding the feature that maximizes a gain function, while

observing features that have been selected previously.

This chapter is divided as follows. Section 9.1 introduces preliminary content on

Boosting and its adaptive variants for streaming scenarios. These concepts are relevant

as they are the basis for the proposed method. Section 9.2 introduces ABFS, detailing

how decision stumps, drift detectors work both individually and together, thus allowing

dynamically feature selection to occur in streaming scenarios. Next, Section 9.3 assesses

ABFS following the experimental protocol adopted in the previous chapters (see Chapter

4). Finally, Section 9.5 concludes this chapter.

117
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9.1 Preliminaries on Boosting

In machine learning, Boosting is a family of meta-learning methods that target the

construction of a strong learner by combining multiple weak learners that, by definition,

are slightly better than random guessing.

The most widely used and well-known implementation of Boosting is AdaBoost

(SCHAPIRE, 1990), and multiple variants of it were proposed throughout the years (AP-

PEL; PERONA, 2017; MIAO et al., 2016). In AdaBoost, a set of weak learners H is

trained over a series of rounds t = 1, . . . , T . During each iteration, a new weak learner

ht : ~x→ y is trained over the dataset (~x1, y1), . . . , (~xn, yn) taking into account a distribu-

tion of weights Dt for these instances. In the first round, it is assumed that all instances

have the same weight, i.e., D1(i) = 1
n
. The error of a weak learner in the t-th round is

the sum of the weights of misclassified instances, as shown in Equation 9.1.

εt = Pri∼Dt

[
ht(~x

i) 6= yi
]

=
∑

∀i,ht(~xi) 6=yi
Dt(i) (9.1)

In each of the following rounds, the weights Dt(i) are updated according to a

parameter αt, which is calculated according to Equation 9.2.

αt =
1

2
ln

(
1− εt
εt

)
(9.2)

In practice, αt quantifies how “important” ht is, as αt ≥ 0 if εt ≤ 1/2 and that αt
increases with the decrease of εt. According to αt, the weight distribution can be updated

following Equation 9.3, where Zt =
∑n

i Dt(i) is a normalization factor to guarantee that

Dt is a distribution.

Dt+1(i) =
Dt(i)

Zt
×

e−αt if ht(~xi) = yi

eαt if ht(~xi) 6= yi
(9.3)

With this update, the weights of correctly classified instances will decrease, while

misclassified instances will increase. As a result, this process highlights hard-to-classify

instances for future rounds. And finally, predictions1 can be extracted from the final
1The original prediction scheme presented in (SCHAPIRE, 1999) focuses only on binary classification

tasks and has been extended here to account for multi-class problems. Details about the use of AdaBoost
in binary classification tasks and proofs on its error bounds can also be found in the same paper.
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“strong” learner as depicted in Equation 9.4.

H(~x) = argmax
yi∈Y

 T∑
t=1

αtht(~x) if ht(~x) = yi

0 if ht(~x) 6= yi

 (9.4)

Even though AdaBoost is iterative, it works under the assumption that all instances

of the dataset are available at all times so that re-weighting occurs. Naturally, this is

an assumption that does not hold in streaming scenarios, as each instance should be

processed and discarded right after. Targeting the development of boosting techniques

for data streams, different approaches for classification (OZA, 2005; PELOSSOF et al.,

2009; WANG; PINEAU, 2016) and regression (HU et al., 2017) tasks have been developed

over the years.

In this work, we follow a similar framework proposed in (OZA, 2005), called Oza-

Boost. OzaBoost was tailored to be an approximation of AdaBoost for data streams.

In opposition to AdaBoost, where the number of rounds T determines the ensemble

size, OzaBoost has a predefined number of weak learners M and counters for correctly

(λci , 1 < i < M) and incorrectly (λei , 1 < i < M) classified instances which are updated

as new instances are processed. For each instance (~xt, yt) drawn from the data stream S,

a weight λ = 1 is set. The instance is then traversed along the weak learners h1, . . . , hM
sequentially. For each hi, the instance is tested to check whether if it is correctly classified

or not, i.e., hi(~xt) = yt or not; and as a result, the counters λci and λei are incremented

with λ (Equations 9.5 and 9.6, respectively). Next, the value of λ is incremented or

decremented following Equation 9.7. This is the same procedure adopted by AdaBoost in

Equations 9.3 and 9.4, except the normalization factor Zt, which cannot be used in data

streams as past instances have been discarded.

λci ← λci + λ; (9.5)

λei ← λei + λ; (9.6)

λ← λ×


λci+λ

e
i

2λci
if hi(~x) = yt

λci+λ
e
i

2λei
if hi(~x) 6= yt

(9.7)
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9.2 Adaptive Boosting for Feature Selection in Data

Streams

The properties of boosting have been investigated to improve classification rates,

but also as a proxy for feature selection in batch scenarios. For instance, the work of

(XU et al., 2014) uses gradient boosted regression trees to select features. Also, related

to our approach, authors in both (DAS, 2001) and (MIAO et al., 2015) proposed different

boosting techniques that use decision stumps to select features in batch scenarios.

We now propose a novel method based on Boosting to dynamically select features

in streaming scenarios hereafter referred to as Adaptive Boosting for Feature Selection

(ABFS). At this point, it is important to disclaim that the term Adaptive used here

stands for the fact that the proposed method incrementally selects features as the stream

is processed, but it is also able to detect feature drifts and adapt to them on the fly.

ABFS combines decision stumps and drift detectors to perform dynamic feature

selection. Decision stumps are light-weighted, incremental, easy to implement and under-

stand, but more importantly, an elegant approach to identify which feature maximizes a

purity criterion and selects a feature accordingly. Next, each of these components are de-

scribed individually, followed by how they are chained together to allow dynamic feature

selection in data streams.

9.2.1 Decision stumps

The decision stump implementation used here is the core unit of incremental de-

cision trees, e.g., Hoeffding Trees (DOMINGOS; HULTEN, 2000), and receive as input

three parameters: a selection threshold θ, a grace period gp and a purity metric Ω(·) that
one wishes to maximize, e.g., Information Gain and Gini Index. By definition, a decision

stump ds gathers statistics on the arriving data until the grace period gp is reached. After

that, all features fi ∈ F are evaluated according to a criterion Ω(·). Let fα and fβ be

the two best-ranked features according to Ω. As proposed in (DOMINGOS; HULTEN,

2000), a decision stump will split on fα if Ω(fα) − Ω(fβ) > ε, where ε is the Hoeffding

bound (HOEFFDING, 1963), previously discussed in Section 5.1.

As in (DOMINGOS; HULTEN, 2000), the Hoeffding bound is used here to approx-

imate how many samples are required to achieve the optimal selection of a feature that

would occur if the entire data stream was observed. As a result, with probability (1− δ),
it is statistically valid that fα is the best feature to be selected (DOMINGOS; HULTEN,

2000).
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In the proposed method, the decision stump is extended in two aspects. First,

a decision stump will select the most appropriate feature fα from a subset of features

that have not been previously selected by other decision stumps. The idea on using

boosting with decision stumps is that by traversing each instance across all the boosting

units, instances that are hard to classify will be highlighted and will force the decision

stump that is about to split to select a feature that better separates such samples. And

second, the best-ranked feature fα will only be selected if Ω(fα) > θ, which is a user-given

threshold. Naturally, the definition of a selection threshold θ depends on the data domain

being worked on, and different values are evaluated in Section 9.3.

9.2.2 Drift detectors

A drift detector is a statistical method that observes a data sequence and upon on

its distribution, flags the occurrence of significant changes. In data streams, most of the

drift detectors are used to monitor the error rates of a classifier. In this work, ψ denote a

drift detector that receives as input a value of 1 if h(~xt) 6= yt, or 0 otherwise. Evidently,

different realizations of ψ exist (see Section 2.3 and further details in Appendix A), e.g.,

ADWIN (BIFET; GAVALDÀ, 2009), HDDM-A and HDDM-W (FRÍAS-BLANCO et al.,

2015); and the impact of different techniques are also assessed in Section 9.3.

9.2.3 Chaining decision stumps and drift detectors in a boosting scheme

The rationale behind ABFS is that boosting gives more weight to instances that

are hard to classify. By intuition, these instances are either (i) located at the decision

boundaries between classes, or (ii) are noise. If we work under the assumption that the

labels of incoming instances are trustworthy (not noisy), decision stumps will be able to

select the most important features according to these hard-to-classify instances as they

naturally account for these weights during the feature selection process. In ABFS, each

decision stump will be responsible for finding the feature that maximizes the gain function

Ω without observing features that have been selected previously.

Since ABFS was tailored for feature selection in classification scenarios and not

for actually training classifiers, a slightly different notation from the boosting schemes

presented earlier is adopted. ABFS is composed of a dynamic set of boosting units U

such that each unit ui ∈ U is a 4-tuple in the (dsi, λ
c
i , λ

e
i , ψi) form, where dsi is a decision

stump, λci and λei are counters for correctly and incorrectly classified instances by dsi and

ψi is a drift detector. The functioning of ABFS is detailed in Algorithm 7 by lines 1

to 4, where ABFS is initialized (INITIALIZE), and then updated with labeled instances
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(UPDATE), and periodically used to retrieve the selected features during predictions

(SELECT).

In the initialization step (lines 5-8 of Algorithm 7), ABFS instantiates both the

set of boosting units U and the subset of selected features F ′ as empty lists, a candidate

decision stump dscandidate that will gather statistics about incoming data to determine

which feature to split on and select.

During the update step (lines 9-36 of Algorithm 7), ABFS updates its internal

structures according to the arrival of an instance (~xt, yt). First, the instance weight λ

and an index to store the first layer that detects a drift idrift are initialized. Next, the

arriving instance is sequentially traversed along all of the boosting units in U . In each

boosting unit ui = (dsi, λ
c
i , λ

e
i , ψi), it is verified if the decision stump is able to correctly

predict the class label (dsi(~xt) = yt), or not (dsi(~x) 6= yt). Here, AdaBoost’s weighting

strategy is followed (Equations 9.5, 9.6 and 9.7), where higher values of λ will be associated

with instances that are hard to classify. It is also important to highlight that after the

classification of the instance in a unit ui, the selected feature used in its decision stump

dsi is removed from ~x (line 25) so that the candidate decision stump dscandidate is enforced

to select a feature that has not been selected already by the decision stumps in U .

In addition to the definition of λ, the drift detector is fed with the classification

result (1 represents an error, while 0 represents a correct classification). Therefore, each

drift detector is used to keep track of the error distribution of each decision stump. The

rationale here is that changes in these distributions work as a proxy to identify when

the importance of a feature changes, and thus, upon the flagging of a drift, it becomes

necessary to re-start the feature selection process. In practice, if a drift is flagged by ψi,

its index i will be stored in idrift so that this and the following units are removed, and that

the feature selection process can self-adjust upon the new data distribution. Naturally,

depending on the drift, it would be possible that multiple units flag drifts, and thus, only

the first layer that detects such changes is stored.

If no changes are detected (lines 26-31), the candidate decision stump dscandidate

is trained2 with (~xt, yt) assuming a weight λ. With the arrival of multiple instances, the

candidate decision stump will reach the grace period gp, and as a result, it will eventually

select a new feature fα according to the process described earlier. When this condition

holds, a new boosting unit is instantiated with this decision stump, and it is added to U .

A new candidate decision stump is then created to select the next best feature, and the

selected subset of features is incremented with fα.
2In decision stumps, whenever an instance (~xt, yt) is used for training with a weight λ, it means that

the same instance has been observed λ times
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Algorithm 7: ABFS pseudocode. S is the data stream, h is a pointer to the
classifier, dscandidate a candidate decision stump, F ′ the currently selected subset
of features, θ a selection threshold used in decision stumps, and U the set of
boosting units such that the ui is the i-th unit and it is composed of a decision
stump dsi, a set of counters for correctly (λci) and misclassified (λei ) instances,
and a drift detector ψi.

[1]Function ABFS(h,F , θ,S)
[2] INITIALIZE(h,F , θ);
[3] for (~xt, yt) ∈ S do
[4] TRAIN(~xt, yt, h, θ);

[5]Function INITIALIZE(h,F , θ)
[6] U ← ∅;
[7] dscandidate ← new DecisionStump(θ);
[8] F ′ ← ∅;
[9]Function UPDATE(~xt, yt, h, θ)
[10] λ← 1;
[11] idrift ← −1;
[12] if |U | > 0 then
[13] for i← 1 to |U | do
[14] if dsi(~xt) = yt then
[15] λci ← λci + λ;
[16] λ← λ× λci+λ

e
i

2λci
;

[17] Update ψi with 0;
[18] else
[19] λei ← λei + λ;
[20] λ← λ× λci+λ

e
i

2λei
;

[21] Update ψi with 1;

[22] if ψi flagged a drift and idrift = −1 then
[23] idrift ← i;
[24] break;

[25] Remove from ~x the feature selected at dsi;

[26] if idrift = −1 then
[27] Train dscandidate with (~xt, yt) assuming a weight λ;
[28] if dscandidate has selected a feature fα ∈ F then
[29] U ← U ∪ {new BoostingUnit(dscandidate)};
[30] dscandidate ← new DecisionStump(θ);
[31] F ′ ← F ′ ∪ {fα};
[32] else
[33] while |U | > idrift do
[34] Remove from F ′ the feature selected in U.last();
[35] U ← U \ {U.last()};
[36] Reset the learner h;

[37]Function SELECT(~x)
[38] return ~x after selecting the features selected in F ′ and dropping the

remainder of the features ;
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On the other hand, it is, a feature drift is detected, all boosting units from the

index that detected the change until the end of the list are removed (loop described by

lines 33-35), as a boosting unit ui affected the creation of its following units ∀uj, j ≥ i.

Next, and the classifier h is reset to allow faster adaptation to the new concept.

Finally, the last part is the testing step (lines 37-38 of Algorithm 7), ABFS filters

the arriving instance ~x so that only the features in F ′ are selected. This instance can

then be passed to the classifier with a reduced dimensionality equals to |F ′|.

9.2.4 Complexity Analysis

The initialization step of ABFS is trivial, as it simply instantiates the required

structures, which result in O(1). Naturally, the most computationally intensive part of

ABFS is training step. In practice, the upper bound cost of ABFS is given by the loop

described by lines 8 to 20 of Algorithm 7, which has a cost of O(|U |) = O(|F ′|) which is

the number of features selected. Another important part of the computational cost resides

in the decision stump training step (line 22), which has to iterate over all features that

have not been selected previously, i.e., O(|F \ F ′|), yet, this procedure occurs only every

gp instances, i.e., O
(
|F\F ′|
gp

)
. As a result, in the training step, the overall complexity in

the worst case is of O
(
|F ′|+ |F\F ′|

gp

)
. Finally, the selection step is also simple, as it builds

a new instance by iterating over the selected subset of features F ′, and thus, with a cost

of O(|F ′|).

9.3 Evaluation

This section analyzes the proposed method in light of the evaluation framework

defined in Chapter 4. First, synthetic data is used to assess the impact of different

parametrizations of ABFS, followed by a comparison against base learners. Next, ABFS

is applied to real-world data, also including a discussion about computational resources

and characteristics of the models learned.

Furthermore, due to the lack of techniques that dynamically select features during

the processing of data streams, ABFS is compared to a theoretical upper bound hereafter

referred to as the “oracle”3, which always selects the relevant features and ignores the

irrelevant ones resulting in SA = 1. As a result, every time a change in the relevant

subset of features is detected, the classifier is reset. The term ORACLE is used to label

this strategy in the following experiments.
3The term oracle is borrowed from dynamic selection methods in ensemble learning.
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9.3.1 Synthetic Data

In this section, the results obtained by different classifiers with and without ABFS

in synthetic experiments are reported. In contrast to real-world datasets, synthetic exper-

iments allow greater flexibility. As depicted in the previous section, the target here is the

dimensionality aspect of data streams, where 100, 200, and 500 features are appended to

each of the experiments. The rationale behind this process is to verify how each learner

and ABFS behave when noisy features are added to a data stream regarding accuracy,

processing time, and memory consumption.

This section starts by investigating how different values for each of the main pa-

rameters of ABFS impact final classification accuracy and selection accuracy rates. Our

investigation targets the parameters and values detailed below, whereas each one will

be analyzed individually w.r.t. classification accuracy and selection accuracy metrics,

and finally, the best parametrization will be chosen as the default one. The parameters

analyzed are as follows:

• Grace period (gp): This parameter controls how “fast” the candidate decision

stump will attempt to select a feature. Smaller values of gp allow the decision

stump to branch quicker, yet, the sample distribution obtained during this grace

period is expected to be less precise compared to the samples obtained with greater

grace periods. The values of 100, 200, 500 and 1,000 were tested for this parameter.

• Selection threshold (θ): This parameter determines the minimum value of Ω so

that a feature is selected. In practice, if the candidate decision stump determines

that fα is the most appropriate feature to be selected, it will only select it if Ω(fα) ≥
θ. Three different values were tested for this parameter: 0.01, 0.05 and 0.1.

• Drift detector (ψ): this parameter determines which type of drift detector is used

in each boosting unit. Three different competitive methods have been tested here,

namely ADWIN (BIFET; GAVALDÀ, 2009), HDDM-A and HDDM-W (FRÍAS-

BLANCO et al., 2015).

As a result, 36 different configurations for ABFS were tested in association with

Naive Bayes, KNN, Hoeffding Tree and Hoeffding Adaptive Tree classifiers, culminating

in a total of 144 executions per stream. Hereafter, box-plots are used to report the results

obtained across different classifiers, streams, and parameter values.

In Figure 9.1 the results obtained by different grace period values across experi-

ments grouped by the number of irrelevant features appended are reported. Even though



126

(a) Accuracy (%) (b) Selection Accuracy

(c) Recall of Relevant Features (d) Complement of Complexity Penalty

Figure 9.1: Results obtained across different grace period values.

no clear difference is observable across different grace period concerning accuracy (Fig-

ure 9.1a), the highest results are obtained when the grace period is set to either 500 or

1000, showing that higher grace periods are preferable. Nevertheless, the results observed

in Figures 9.1b, 9.1c and 9.1d show the results for Selection Accuracy and its compo-

nents, where gp = 500 is the most stable and preferred value regardless of the experiment

dimensionality in terms of Selection Accuracy and Recall of Relevant Features.

Naturally, an important aspect here is the high variance observed in the results, as

the rates go from 50% up to 90% or more. This high variance occurs mainly because of the

BG3 and RTG experiments. If we analyze the classification and selection accuracy rates,

depicted in Figures 9.2a and 9.2b, respectively; we can observe that these experiments

result in rates that are much lower than the rest. The explanation is that these concepts

are much more complex than the others, as BG3 is a XOR-like classification problem

(HALL, 2000), and RTG has complex interactions between the features (BARDDAL et

al., 2017).

In Figure 9.3 a similar analysis for the selection threshold (θ) parameter is con-

ducted. From the accuracy results shown in Figure 9.3a, the three threshold values behave

similarly in terms of variance, yet smaller values, i.e., 0.01 and 0.05, show higher accuracy

rates. When analyzing Selection Accuracy rates (Figure 9.3b) and its components (Fig-
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(a) Accuracy (%) (b) Selection Accuracy (%)

Figure 9.2: Classification and selection accuracy rates obtained per experiment.

(a) Accuracy (%) (b) Selection Accuracy

(c) Recall of Relevant Features (d) Complement of Complexity Penalty

Figure 9.3: Results obtained across different selection threshold (θ) values.

ures 9.3c and 9.3d), we observe a trade-off between θ and the accuracy of the selection

process. In practice, higher threshold values are more ‘selective’ as less irrelevant features

are selected (higher Complement of Complexity Penalty rates), while it misses the rele-

vant ones (lower Recall of Relevant Features values). Overall, both θ = 0.01 and θ = 0.05

seem reasonable as they are able to correctly identify relevant features in all the tested

dimensionalities (Figure 9.3c), while reasonably ignoring the irrelevant ones (Figure 9.3d).

Finally, the results for different drift detectors are reported in Figure 9.4. Re-

garding classification accuracy, depicted in Figure 9.4a, the use of different drift detectors

barely impact the overall results regardless of the dimensionality of the experiments.
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(a) Accuracy (%) (b) Selection Accuracy

(c) Recall of Relevant Features (d) Complement of Complexity Penalty

Figure 9.4: Results obtained across different drift detectors.

Yet, when analyzing the results for Selection Accuracy and its components (Figures 9.4b

through 9.4d), we observe that HDDM-A is slightly better in overall Selection Accuracy

rates, while experiments with ADWIN are better at retaining the relevant features, and

HDDM-W is the best performing in terms of ignoring the irrelevant features. It is impor-

tant to note that even though these drift detectors are not part of the feature selection

process, they indirectly impact the entire process, as they may flag drifts at different

moments, which cause the feature selection process adapt itself at different regions of the

stream. As a result, ABFS becomes more or less precise according to each of the metrics

mentioned above depending on the drift detector being used.

Naturally, since the goal of classification is to achieve the highest classification

rates possible, Figure 9.5 shows the 10 best-ranked configurations of ABFS. In this figure,

we can corroborate the values identified in the previous analyses, as the best performing

parametrization, in average, for ABFS in synthetic experiments was (gp = 500, θ =

0.01, ψ = ADWIN), and this configuration is assumed for comparisons against the base

learners and the ORACLE feature selector. It is relevant to highlight, however, that this

configuration is not the optimal one for each of the experiments conducted, and thus,

these parameters’ values must not be assumed to be the result of a tuning process.

Accuracy rates. The accuracy rates obtained by the classifiers without feature
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Figure 9.5: Accuracy rates (%) obtained across the 10-best ranked ABFS configurations
in synthetic experiments.

selection, with the ORACLE selector and ABFS are reported in Tables 9.1, 9.2 and 9.3.

Focusing on the accuracy rates obtained in experiments with 100 irrelevant features, we

observe that ABFS can improve the classification rates of the NB, KNN and HT classi-

fiers in all scenarios. In average, the improvements for NB, KNN and HT classifiers are

of 7.67%, 11.95%, and 4.64%, respectively. On the other hand, the combination of ABFS

with the HAT classifier results in accuracy decreases in most scenarios with an average of

-5.76%, which shows that combining two adaptive approaches that concomitantly select

features jeopardizes the learning process. It is also important to highlight that ABFS is

even able to surpass the ORACLE selector in several experiments. The main exception is

the KNN classifier, in which the ABFS selector never surpasses the ORACLE results. De-

spite counter-intuitive, the ORACLE selector only guarantees that the selection accuracy

will be maximum, and not that the classification rates will be maximized. In practice, the

relationship between achieving higher selection accuracy and classification rates depicted

in Figure 9.6 is not as clear as one would expect. These results show that different learners

benefit differently when fed with the same subset of features. For instance, despite irrele-

vant features being created using uniform distributions across all classes, when analyzed

in conjunction with other features, they might still present some predictive power. Here,

it is also important to highlight that the fact that most of the results obtained by ABFS

in Figure 9.6 are located in regions of high Selection Accuracy and classification accuracy

rates, thus showing the efficacy of the proposed method.
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Table 9.1: Accuracy (%) obtained by different classifiers and feature selection methods
in experiments with 100 irrelevant features. Results in bold highlight the best accuracy
rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS

AGR 67.27 74.72 76.10 50.62 84.38 73.30 77.38 86.96 85.90 91.15 86.95 81.38
AN 81.52 88.82 91.20 64.57 74.59 70.05 92.92 90.86 93.63 94.33 82.37 93.61
BG1 80.17 87.06 86.96 70.94 80.48 76.92 86.41 87.09 88.79 89.09 74.77 89.13
BG2 74.11 86.41 88.56 57.63 82.18 75.98 79.91 86.34 88.55 88.06 67.96 84.76
BG3 55.84 56.39 60.94 53.11 74.26 65.46 70.46 80.90 72.17 85.61 68.78 67.31
RTG 59.22 65.41 65.93 54.57 67.07 55.64 66.09 84.71 74.48 88.56 86.12 80.01
SEA 79.15 83.49 81.33 59.14 81.52 76.90 84.05 84.71 86.22 86.41 84.78 86.66

Table 9.2: Accuracy (%) obtained by different classifiers and feature selection methods
in experiments with 200 irrelevant features. Results in bold highlight the best accuracy
rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS

AGR 67.19 74.72 75.67 50.55 84.38 61.62 77.53 86.96 86.06 91.07 86.95 81.39
AN 81.58 88.85 91.21 61.15 74.75 69.67 92.53 90.99 93.85 94.36 82.48 93.12
BG1 79.72 86.89 86.81 65.87 80.56 75.38 85.87 86.98 88.76 89.11 74.47 89.22
BG2 74.11 86.48 89.09 55.41 82.00 69.01 79.01 86.41 89.11 88.02 68.24 89.12
BG3 55.47 55.88 60.52 51.90 74.32 65.29 68.56 80.85 71.11 86.22 69.32 78.70
RTG 59.22 67.02 66.18 55.78 65.47 57.66 63.25 85.51 69.98 91.01 88.15 84.07
SEA 79.04 83.57 84.63 56.79 81.51 76.58 82.52 84.55 86.18 84.69 84.61 86.56

The results obtained in experiments with 200 and 500 irrelevant features, reported

in Tables 9.1 and 9.2, follow the same behavior as noticed in Table 9.1, where NB, KNN,

and HT classifiers benefit from ABFS, while HAT has its accuracy rates decreased. In

quantitative terms, accuracy changes of 8.25% and 7.99% for NB, 11.11% and 9.24% for

KNN, 5.11% and 5.21% for HT, -3.19% and -2.35% for HAT, are observed in experiments

with 200 and 500 irrelevant features, respectively.

Computational resources. In addition to the comparisons conducted in terms of

classification accuracy and selection accuracy, it is also important to verify if the introduc-

tion of ABFS in the data stream classification process is not computationally prohibitive,

or in the best case scenario, improves the processing time and memory consumption rates

(a) Naive Bayes (b) K-Nearest Neighbors (c) Hoeffding Tree (d) Hoeffding Adaptive
Tree

Figure 9.6: Relationship between Selection Accuracy and classification accuracy rates
across different classifiers with ABFS. The results plotted in this figure report the rates
obtained with different ABFS configurations and stream dimensionalities (100, 200, and
500).
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Table 9.3: Accuracy (%) obtained by different classifiers and feature selection methods
in experiments with 500 irrelevant features. Results in bold highlight the best accuracy
rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS

AGR 66.97 74.72 75.78 50.41 84.38 52.49 75.60 86.96 85.02 90.80 86.95 81.44
AN 81.56 88.85 91.31 56.99 74.75 70.12 92.74 90.99 93.58 94.39 82.48 93.00
BG1 79.49 86.44 86.81 60.18 80.43 73.53 85.84 87.02 88.71 89.04 74.61 89.25
BG2 73.84 86.55 88.19 53.28 82.18 63.93 77.57 86.49 85.79 87.50 67.86 88.48
BG3 55.85 56.14 59.72 50.85 74.20 54.61 67.51 80.73 71.91 85.46 69.09 83.22
RTG 68.08 76.92 76.59 58.84 73.99 62.50 70.17 87.94 77.81 89.93 88.88 82.14
SEA 79.05 83.54 82.39 53.90 81.43 71.99 82.28 84.80 85.34 81.81 84.64 84.98

of learners. For the sake of brevity, only the computational resources required for the

biggest experiments are compared, i.e., those with 500 irrelevant features, as they are

the most computationally intensive. In Table 9.4, the processing times obtained by clas-

sifiers both with and without ABFS are reported. From these results, we observe that

the introduction of ABFS impacts different learners differently. For instance, NB has its

processing times significantly increased in all scenarios, while KNN has the opposite be-

havior. Regarding KNN, such processing time decreases are expected as the complexity

of computing distances between instances with reduced dimensionality are faster than

computing distances with the entire set of features. It is also worthy to highlight that

even decision trees have their processing times decreased in a handful of scenarios.

Similarly, the results obtained for memory consumption are reported in Table

9.5. Regarding the NB and HAT classifiers, the introduction of ABFS introduces sig-

nificant overheads in memory consumption rates, while KNN highly benefits from it, as

the buffered instances are stored in reduced dimensionality. Next, the results for the HT

classifier show that in most cases ABFS does introduce a relatively small overhead, yet,

some improvements are also observed.

Finally, it is important to highlight that when analyzing the computational re-

source metrics mentioned above, the technology in which the method is implemented on

is important. As the implementation of ABFS evaluated here has been performed on the

Massive Online Analysis framework, it is important to highlight that when a classifier is

fed with an instance for training, it still loops over all the original feature set F and not

only over the selected subset F ′. As a result, the overall processing times are expected to

be incremented, but this behavior may change if the base learners allow sparse data rep-

resentations. Similarly, the NB, HT and HAT classifiers still instantiate data structures

for each of the original features in F and not only for F ′, and as a result, the introduc-

tion of ABFS negatively impacts the memory consumption rates of these learners. In

practice, this a gap that should be pursued in future works, as the assessment conducted

here relies on the MOA implementation, whereas a theoretical evaluation based on the

computational cost in terms of asymptotic notation could be done.
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Table 9.4: Processing time (s) obtained by different classifiers and feature selection meth-
ods in experiments with 500 irrelevant features. Results in bold highlight the smallest
times per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ABFS KNN KNN-ABFS HT HT-ABFS HAT HAT-ABFS

AGR 32.03 58.81 818.80 525.66 178.27 98.85 165.19 215.49
AN 69.53 117.76 1827.45 1023.79 392.34 267.95 395.43 367.15
BG1 13.08 51.10 612.49 570.14 44.27 75.90 45.93 80.55
BG2 11.55 30.86 606.38 387.84 45.24 52.23 51.92 59.97
BG3 12.78 38.11 596.88 437.59 43.52 45.00 50.33 70.55
RTG 52.23 71.95 698.87 422.32 187.92 148.03 145.52 117.78
SEA 27.01 28.86 656.02 259.64 85.78 53.86 195.08 79.92

Table 9.5: RAM-Hours (GB-Hour) obtained by different classifiers and feature selection
methods in experiments with 500 irrelevant features. Results in bold highlight the smallest
memory consumption rates per classifier and underlined results are the best across learners
and selectors.
Experiment NB NB-ABFS KNN KNN-ABFS HT HT-ABFS HAT HAT-ABFS

AGR 1.76× 10−6 7.82× 10−4 6.63× 10−3 1.23× 10−4 1.21× 10−3 1.45× 10−3 4.05× 10−4 3.68× 10−3

AN 7.87× 10−6 8.33× 10−4 7.04× 10−3 5.32× 10−4 4.73× 10−3 2.60× 10−3 2.65× 10−3 4.53× 10−3

BG1 6.03× 10−7 2.40× 10−4 2.65× 10−3 9.01× 10−5 7.84× 10−5 4.21× 10−4 3.69× 10−5 4.04× 10−4

BG2 5.32× 10−7 8.40× 10−5 1.04× 10−3 8.92× 10−5 8.53× 10−5 1.71× 10−4 5.14× 10−5 1.81× 10−4

BG3 5.90× 10−7 3.36× 10−4 3.77× 10−3 8.80× 10−5 7.46× 10−5 4.21× 10−4 4.47× 10−5 6.88× 10−4

RTG 2.97× 10−6 2.69× 10−4 1.62× 10−3 1.03× 10−4 2.24× 10−3 1.32× 10−3 4.15× 10−4 6.58× 10−4

SEA 1.61× 10−6 5.89× 10−4 5.16× 10−3 9.53× 10−5 3.13× 10−4 1.18× 10−3 1.03× 10−3 1.95× 10−3

Number of selected features. To finalize the discussion on synthetic experi-

ments, two examples on the number of selected features over the processing of streams

are highlighted. In Figure 9.7 the number of features that were selected by HT and HAT

classifiers with and without ABFS in BG1 and SEA experiments are shown. These exper-

iments are targetted as these are cases where the overall accuracy of tree-based learners

has improved with ABFS. In Figure 9.7a we can observe that the number of features used

by the Hoeffding Tree (HT) classifier continuously increases, while the Hoeffding Adaptive

Tree (HAT) can discard features when drifts occur, which are the areas highlighted in the

plot. It is important to remember that in this experiment, only 3 features are relevant,

and thus, both HT and HAT are rapidly growing and selecting features as new instances

become available. In contrast to this behavior, we observe that the same classifiers with

ABFS selects up to 4 features and quickly flags and adapts to drifts, which are marked as

a vertical line in the plot. A different behavior is observed in Figure 9.7b, where HAT has

the same behavior of a conventional incremental HT, as the number of selected features

continuously increases, showing the HAT is unable to discard features that become irrel-

evant after drifts. Again, ABFS shows a limited number of selected features, which result

in much smaller decision trees, thus improving their readability and understandability.
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(a) BG1 (b) SEA

Figure 9.7: Number of features selected and used by decision tree models with and without
ABFS in experiments with 500 irrelevant features. Grayed areas are drifting regions and
vertical black lines depict the moments where drifts have been flagged by ABFS. The drift
moments for HT-ABFS and HAT-ABFS as ABFS is classifier independent.

9.3.2 Real-world Data

As conducted in the synthetic experiments, the different configurations of ABFS

were ranked across all the real-world experiments according to the accuracy rates obtained.

The 10 best configurations among the 36 tested are reported in Figure 9.8 with the

accuracy results. In contrast to what was observed for synthetic experiments, smaller

grace periods combined with the ADWIN drift detector dominate the top positions, and

as a result, gp = 100, θ = 0.05 and ADWIN are selected as the default configuration for

real-world experiments.

In Table 9.6 the accuracy rates obtained by different classifiers with and without

ABFS are compared. Here, we note that the NB and HT classifiers benefit from ABFS

in all three experiments. The observed increases are relevant as they broaden 9.77% to

32.05% for NB and 3.34% to 5.18% for HT. Regarding KNN, the accuracy in IADS is

maintained, while in NOMAO decreases by 0.73%, while increases in 9.60% for SPAM.

Similarly, the results for HAT show no difference for IADS, while a decrease of 4.19% is

observed in NOMAO and an increase of 1.90% for SPAM. Following the outcome of the

Wilcoxon test, both NB and HT classifiers are significantly improved regarding accuracy

in these scenarios.

Table 9.6: Accuracy rates (%) obtained by different classifiers and ABFS in real-world
experiments. Results in bold are the highest accuracy rates obtained per classifier type.
Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT

IADS 67.95 100.00 100.00 100.00 92.90 100.00 83.90 83.90
NOMAO 83.86 93.63 95.16 94.43 91.08 94.42 92.67 88.48
SPAM 76.86 88.90 85.04 94.64 83.58 88.76 83.60 85.50
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Table 9.7: Processing times (s) obtained by different classifiers and ABFS in real-world
experiments. Results in bold are the smaller rates obtained per classifier type.
Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT

IADS 4.07 9.78 48.86 28.08 5.93 10.93 6.81 12.55
NOMAO 3.40 7.83 33.52 22.98 4.97 10.04 7.16 11.17
SPAM 563.77 586.37 8074.58 3062.64 686.36 716.81 739.13 1277.11

In Table 9.7 the processing times of the classifiers with and without ABFS are

compared. Here, we observe similar behavior to what has been observed for synthetic data,

where the processing time rates of all classifiers have increased, except for KNN. Here, the

Wilcoxon test showed that ABFS significantly improves the KNN running times, while

NB is worsened. The results obtained for the remainder of the classifiers are inconclusive.

The memory consumption results, depicted in Table 9.8 show that ABFS also introduces

overheads to all classifiers. One exception worthy to mention is that memory consumption

of HAT in the IADS experiment, which has significantly decreased, while the accuracy

rate was maintained. Again, the Wilcoxon test was used, and its outcomes show that both

NB and HT are significantly penalized when combined with ABFS, while the remainder

of the classifiers is not.

Finally, it is relevant to highlight the improvements observed in the SPAM ex-

periment, which are important as it is the experiment with the highest dimensionality.

In this experiment, all classifiers have their accuracy rates significantly improved (Table

9.6), while their processing time and memory consumption rates decreased (Tables 9.7

Figure 9.8: Accuracy rates (%) obtained across the 10-best ranked ABFS configurations
in real-world experiments.
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Table 9.8: RAM-Hours (GB-Hour) obtained by different classifiers and ABFS in real-
world experiments. Results in bold are the smaller rates obtained per classifier type.
Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT

IADS 7.78× 10−7 7.25× 10−4 1.48× 10−4 1.73× 10−3 1.87× 10−6 7.95× 10−4 2.62× 10−6 6.16× 10−9

NOMAO 5.59× 10−8 2.80× 10−5 6.38× 10−6 5.64× 10−5 7.32× 10−7 3.02× 10−5 5.70× 10−7 3.43× 10−5

SPAM 4.09× 10−3 9.15× 10−2 6.32× 10−1 4.82× 10−1 8.51× 10−3 1.26× 10−1 1.28× 10−2 2.22× 10−1

and 9.8). To understand the impact of ABFS in the SPAM experiment, Figure 9.9 shows

the number of features selected by ABFS and used by decision tree-based classifiers. Here,

we observe that out of the nearly 40 thousand features, and only 16 were used by the

HAT alone, while the maximum number of features used by the same classifier with ABFS

was 5. A similar behavior can be observed for the HT classifier, which used 10 features,

while its version with ABFS used only 5. These results are particularly interesting as it

shows that despite the fact that decision trees select a small subset of features to build

its predictive model, they can still be further simplified so that their models are smaller

and achieve higher generalization rates.

9.4 Stability

The stability scores of ABFS are reported in Figure 9.10. As performed for DIS-

CUSS, the results for bootstrap-, split-, and cross-validation schemes were obtained in a

10-fold validation environment. The results observed here show similar behavior to the

one earlier observed in Section 8.4, as the stability results obtained mainly vary according

to the validation process adopted. Compared to the results obtained by DISCUSS, the

stability rates achieved here are, in average, 1.80% higher for bootstrap-validation, 2.48%

higher for cross-validation, and 1.00% higher for split-validation. As stated previously,

the results obtained for ABFS are also inconclusive due to the lack of existing techniques

for comparison. Therefore, these rates shall be used as a baseline for future comparisons.

Figure 9.9: Number of features selected and used during the SPAM experiment.
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Figure 9.10: Stability results obtained across different experiments.

9.5 Concluding Remarks

In this chapter ABFS was introduced. ABFS is a novel adaptive boosting-based

feature selection algorithm for data streams. ABFS includes strategies to select features

over data streams and to detect and adapt to concept drifts. The proposed method is

classifier-independent, and results show that ABFS can improve all types of classifiers

in different scenarios, thus, corroborating the fifth hypothesis of this thesis. Despite

performing interesting cuts to the dimensionality of data streams, ABFS still increases

the processing time and memory consumption of Bayesian and decision tree-based types

of learners. An important exception is the KNN classifier, in which the results show that

both processing times and memory consumption rates are improved.

In addition to the proposed method, is is expected that the contributions on fea-

ture selection evaluation and the framework added to the Massive Online Analysis soft-

ware to help in the assessment and comparison of future works in the area. Feature

selection-specific metrics, such as Selection Accuracy and Stability have been introduced

to streaming scenarios, and the results reported here can be assumed as baselines in future

works of the area.
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Chapter 10

Conclusion

Feature drifts is a relevant issue of data streams that should be accounted for by

novel learning techniques. This thesis contributes to the machine learning as it proposes

data generators (Chapter 4), evaluation and validation schemes (also on Chapter 4),

and mainly techniques for handling feature drifting scenarios (Chapters 7, 8, and 9).

Regarding techniques for handling feature drifts, it is important to recall the dynamic

feature scoring operators proposed in Chapter 6 (Conditional Entropy and Symmetrical

Uncertainty), which allow the tracking of features’ importance throughout the processing

of data streams. Both scoring operators were successfully used as the core of a weighting

scheme for the kNN and Naive Bayes classifiers, which were later used as custom leaves

predictors to boost the already powerful Hoeffding Adaptive Tree (Chapter 7). Next, the

Symmetrical Uncertainty scoring operator was used as the core of a dynamic filter for

feature selection over data streams (Chapter 8). This filter encompasses two different

selection strategies, which were evaluated and uncovered promising results. Between

these strategies, thresholding has showed the most promising results, as it allowed simple

classifiers to achieve accuracy results that are as high as Hoeffding Adaptive Tree’s. As a

downside to the aforementioned proposed techniques, results highlighted that our feature

scoring operator based on Symmetrical Uncertainty is incapable of correctly depicting

the discriminative power of subsets of features since this operator is only capable of

depicting the correlation between an attribute individually w.r.t. the class. To overcome

this important drawback, an adaptive boosting-based feature selection method called

Adaptive Boosting for Feature Selection (ABFS) is proposed in Chapter 9. ABFS chains

decision stumps and drift detectors, and as a result, it is able to identify which features

are relevant throughout the processing of a data stream with reasonable success.

138
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10.1 Future Work

Finally, it is important to highlight that even though this thesis shed light on the

feature drift topic and introduced novel methods for tackling it, most of the contributions

obtained should be considered as the seed for upcoming research on the field. Below,

future works that are planned on data stream mining and feature drifts are layered:

1. Hoeffding trees are an elegant, efficient and robust approach that learns decision

trees using constant time per instance and has theoretical guarantees that the con-

vergence between the decision trees learned in streaming and batch fashions basically

depend on the sample size. Despite the aforementioned positive characteristics, the

original Hoeffding trees have two important drawbacks: (i) they assume that the

data distribution is stationary, and (ii) they continuously grow in terms number of

selected features and of nodes as new data becomes available, regardless of (i). As

observed in several experiments, the Hoeffding Adaptive Tree (BIFET; GAVALDÀ,

2009) is an example of method tailored for tackling issue (i), yet, does not confront

issue (ii). This is relevant since Hoeffding trees overfit to data, and they lose the

important characteristic of being “white-boxes” in the sense that they become too

complex and are no longer human-understandable. As a result, a proposed future

work would be to bring forward a regularization scheme for Hoeffding trees with the

goal of preventing them from splitting - and consequently growing - unnecessarily as

new data becomes available. Regularization is a process that discourages learning

algorithms from unnecessary complexity. In decision tree learning, regularization

may have many flavors, such as: (i) limiting the maximum depth of the tree, (ii)

bagging more than a single tree, or even (iii) setting a stricter stopping criterion

(such as a minimum gain function value) to avoid unnecessary splits. A proposal

being developed brings regularization to Hoeffding trees by taking into account:

(i) a penalty factor that controls the gain obtained by creating a new split using

a feature that has not been selected thus far (DENG; RUNGER, 2012), and (ii)

the information retained in previous splits to determine whether the gain observed

in a leaf is indeed sufficient to justify a new split. Finally, the hypothesis is that

these smaller trees will contain a small number of split nodes, and their conjunction

will contain the most relevant features from a concept thus helping in the feature

selection process for data streams.

2. Random Forests is a family of meta-learners that is recurrently used in several real-

world batch machine learning applications. Random Forests are often preferred since
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they display high learning performance and nearly zero demand in terms of input

preparation and hyper-parameter tuning. Even though Streaming Random Forests

exist and were surveyed in this thesis project, the obtained accuracies were not de-

sirable. This can be attributed mainly to the lack of adaptiveness of the ensemble,

where nearly no drift detection is performed such as necessary adjustments. In a

recent collaboration, a novel Adaptive Random Forest algorithm (ARF) was intro-

duced (GOMES et al., 2017). It combines drift detection, ensemble adjustments, and

background learning to improve accuracy rates over concept drifting data streams.

As future work, ARF could be investigated in feature drifting scenarios, such as new

adaptive subspace selection for branching trees could also be embedded to improve

ARF and make it even more robust. Furthermore, ARF could be the cornerstone

for the computation of feature scores such as Mean Decrease Impurity (MDI) or

Mean Decrease in Accuracy (MDA) (STROBL et al., 2008).

3. One important drawback of the experimental setting adopted in this thesis regards

the class distribution of the synthetic experiments. As observed in Chapter 4, all of

the synthetic experiments are (nearly) class-balanced, meaning that the probability

of observing an instance from each of the classes during the stream is the same.

Yet, this is a strong assumption that is unlikely to hold in real-world scenarios, and

thus, it is important to verify how the proposed methods behave when applied to

scenarios with class imbalance and whether they are able to improve the accuracy

rates of classifiers. Furthermore, it is also worthy to verify how the proposed feature

selection and weighting schemes behave in scenarios where the ground-truth labels

of instances are delayed.

4. Recently, the work of (WEBB et al., 2018) has proposed the use of covariances

to identify, track, and most importantly, quantify concept drifts according to their

magnitude per feature or globally, i.e., across all features. Even though the compu-

tation of covariances is too computationally intensive to performed incrementally,

the framework provided by the authors could be used to identify whether concept

drifts occur in real-world data, and thus, shedding light on whether the datasets

contain feature drifts or not.

5. Finally, the scope of the research towards dimensionality reduction could be ex-

panded. For instance, Principal Components Analysis (GHASHAMI; PERRY;

PHILLIPS, 2015; YANG; XU, 2015), Random Projections (PHAM et al., 2017),

and Hashing Tricks (LANGFORD; LI; STREHL, 2007) are techniques that are gain-
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ing traction in streaming scenarios and that should be analyzed in feature drifting

scenarios.
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Appendix A

Drift Detectors

This appendix describes the functioning of the drift detectors used throughout this

thesis, namely the: (i) Exponentially Weighted Moving Average Control Charts (ECDD),

(ii) Adaptive Sliding Window Algorithm (ADWIN), and the Hoeffding-based Drift De-

tection Methods (HDDM-A and HDDM-W).

A.1 Exponentially Weighted Moving Average Control

Charts (ECDD)

The Exponentially Weighted Moving Average (ECDD) was proposed in (ROSS

et al., 2012), where misclassification rates are exponentially weighted according to their

position inside a sliding window. ECDD maintains three threshold levels: in-control,

warning, and out-of-control. Given the overall misclassification rates inside the sliding

window, the current system state fluctuates in between these three thresholds. ECDD

postulates that a concept drift occurs whenever the misclassification rate achieves the

out-of-control level.

Let X = x1, x2, . . . , xt be a random variable, where t is the arrival timestamp,

which has a common mean µ0 before a drift and µ1 after it. To note that this notation

is generic, it is adopted µt to be the mean at an arbitrary timestamp t. Even though

the mean µ0 and the standard deviation σx are a priori unknown, authors work under

the assumption that they are known. The ECDD estimator of µt is defined following

Equation A.1.

Zt =

 µ0, if t = 0

(1− λ)Zt−1 + λxt, otherwise
(A.1)
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This estimator forms a “recent” estimate of µt, where older data is progressively

down-weighted. In practice, λ is the parameter that controls how much weight is given

to recent data compared to older data.

Additionally, authors in (ROSS et al., 2012) show that independently of the un-

derlying distribution of xt, the mean and standard deviation of Zt are given by Equations

A.2 and A.3, respectively.

µZt = µt (A.2)

σZt = σxt

√
λ

1− λ
(1− (1− λ)2t) (A.3)

Before the drift point, µt = µ0 holds, and Zt fluctuates around this value. When

a change occurs, µt will change to µ1, and Zt will react accordingly to this trend by

diverging away from µ0 and towards µ1. Intuitively, this can be used to flag drifts by

verifying whether Equation A.4 holds.

Zt > µ0 + LσZt
(A.4)

The parameter L is a “control limit” that determines how far Zt must diverge from

µ0 before a drift is flagged. L should be defined correctly to ensure that the detector

achieves a predefined performance level. The proposed performance measure is the ex-

pected time between false positive detections, the Average Run Length, here denoted as

ARL0. The choice of ARL0 and the computation of L are not trivial, and thus, the reader

is referred to (ROSS et al., 2012) for details.

Finally, ECDD postulates that its input sequence X = x1, x2, . . . , xt is a stream

of errors, which can be seen as a Bernoulli sequence with a parameter pt representing the

probability of misclassifying an instance in a time t. Drift detection is then posed as a

problem of detecting an increase in the parameter pt, while pt is assumed to have only

two possible values: p0 before the drift point and p1 after.

Following the previous definitions, it becomes clear that they require modifications

before they can be used for actual drift detection. The main problem is that p0 is assumed

to be known, while this is not the case in real-world scenarios as it must be estimated

from the stream along with σ0. Therefore, a new estimator p0,t is proposed to substitute

Zt:

p̂0,t =
1

t

t∑
i=1

xi =
t− 1

t
p̂0,t−1 +

1

t
xt (A.5)
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Unlike Zt, this estimator does not assign bigger weights to recent observations.

This implies that Zt is more sensitive to changes in p0 and should give an estimate close to

its current value. On the other hand, p̂0,t is less sensitive to changes in p0 and it is intended

to be an estimate of the pre-change value. Virtually, Zt is expected to react quicker

and converge towards the new value, while p̂0,t should converge towards the same value,

however slower. Along these lines, Algorithm 8 presents the pseudocode for ECDD, where

drifts and warnings are flagged following Equations A.6 and A.7, the pre-change standard

deviation is estimated by Equation A.8 and the standard deviation follows Equation A.9.

Zt > p̂0,t + LσZt
(A.6)

Zt > p̂0,t + 1/2LσZt
(A.7)

σ̂0,t = p̂0,t(1− p̂0,t) (A.8)

σZt =

√
p̂0,t × (1− p̂0,t)×

λ

2− λ
× (1− (1− λ)2t) (A.9)

Finally, it is necessary to correctly determine λ. The optimal value of λ will

depend on the pre- and post-change values of pt. Since these are not known in advance,

it is followed the rule of thumb provided in (ROSS et al., 2012), where λ is set in the

[0.1; 0.3] interval, being λ = 0.2 the default in several papers and data stream frameworks.

A.2 Adaptive Sliding Window Algorithm (ADWIN)

The Adaptive Sliding Window (ADWIN) change detector keeps a variable length

window of recently seen items consistent with the hypothesis “there has been no change in

the average output value inside the window according to a confidence bound δ” (BIFET;

GAVALDÀ, 2007).

More formally, ADWIN receives as input a significance level δ and a sequence of

values xt ∈ R, where t is the arrival timestamp. Let µt denote the expected value of the

inputted distribution, which is unknown since the ground-truth generator distribution is

also uncertain.

ADWIN uses a sliding window W with the most recently read xt. Let µ̂W be the

known average of the elements in W and µW be the unknown average of µt for t ∈ W .

ADWIN’s pseudocode is depicted in Algorithm 9. The rationale behind it is simple:
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Algorithm 8: The ECDD drift detection algorithm. Adapted from (ROSS et
al., 2012).

input : a sequence of values xt defined as xt = 1 if the classifier correctly predicted an
instance and xt = 0 otherwise, a fading factor λ and the average run length
ARL0.

output : a flag for drift and warning detection flag.
[1]Z0 ← 0;
[2]p̂0,0 ← 0;
[3]foreach t > 0 do
[4] p̂0,t ← t

t+1 p̂0,t−1 +
1
t+1x

t;
[5] σ̂xt ← p̂0,t(1− p̂0,t);
[6] σ̂Zt ← σ̂xt

√
λ

2−λ
(
1− (1− λ)2t

)
;

[7] Compute Lt given the current value of p̂0,t using functions presented in (ROSS et
al., 2012);

[8] Zt ← (1− λ)Zt−1 + λxt;
[9] if Zt > p̂0,t + Ltσ̂Zt then
[10] flag ← DRIFT ;
[11] else if Zt > p̂0,t + 1/2Ltσ̂Zt then
[12] flag ←WARNING;
[13] else
[14] flag ← NONE;

[15] return flag

Algorithm 9: The ADWIN algorithm. Adapted from (BIFET; GAVALDÀ,
2007).

input : a sequence of values xt and a confidence level (1− δ).
output : a flag for drift detection flag.

[1]W ← ∅;
[2]foreach t > 0 do
[3] W ←W ∪ {xt};
[4] flag ← FALSE;
[5] while |µ̂0 − µ̂1| < εcut holds for every split of W into W0 and W1 do
[6] Drop an element from the tail of W ;
[7] flag ← TRUE;

[8]return flag

whenever two “large enough” sub-windows of W exhibit “distinct enough” averages, one

can conclude that their corresponding expected values are different, and thus, originated

from distinct generators, which then forces ADWIN to drop the older portion of the

window and flag a drift. Evidently, “large enough” and “distinct enough” should be made

precise by using the Hoeffding bound (HOEFFDING, 1963), which has been previously

presented in Section 5.1.

ADWIN’s test comes down to verifying whether the average of two sub-windows
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is larger then εcut, which is given by Equation A.10.

εcut =

√
1/|W0|+ 1/|W1|

4
× ln

4|W |
δ

(A.10)

The algebra behind εcut is presented in (BIFET; GAVALDÀ, 2007), just as the

proofs for ADWIN’s bound on false positives and false negatives. ADWIN is parameter-

and assumption-free since it automatically detects and adapts to the current rate of

change. One of the major drawbacks of this method is that ADWIN is known for triggering

too many false positives (HUANG et al., 2015), i.e., it flags changes when they do not

really occur.

A.3 Hoeffding-based Drift Detection Methods (HDDM-

A and HDDM-W)

The Hoeffding-based Drift Detection Methods were proposed in (FRÍAS-BLANCO

et al., 2015), hereafter referred to as HDDM-A and HDDM-W. Here, the suffixes A and

W stand for Averages and Weighted averages, respectively, as these concepts are at the

core of the statistical tests being adopted. In practice, both HDDM-A and HDDM-W

follow the same algorithm, depicted in Algorithm 10, yet, their differences reside in the

way statistics about the data stream is maintained and statistically tested.

A simple method for monitoring the occurrence of changes in data streams is to

use interval estimators. Two different intervals, warning and drift, are defined based on a

probabilistic distribution, e.g., the gaussian distribution. Thus, the method computes an

statistic p from the previously observed is statistically far from the expected one µ with a

standard deviation σ. For instance, if one sets the warning level at 95% and the drift level

at 99%, a warning would be raised whenever p lays outside the [µ− 2σ;µ+ 2σ] interval,

while a drift would be flagged if p falls outside [µ− 3σ;µ+ 3σ]. What HDDM does is to

relax the normality assumption, and substitutes the estimation of the standard deviation

σ with another that fixes the desired significance level α and estimates the confidence

interval based on εα, or ε̂α, depending on whether the A or W variant is being adopted.

Also, two different confidence levels are set. The first, αW represents the warning level,

while αD is used for the drift level, such that αW < αD.

Algorithm 10 receives as input a sequence of values x1, x2, . . . , xcut, xcut+1, . . . , xn

which are the error rates of a classifier and the problem is to detect a significant increase

in the mean of this sequence. Therefore, the first goal is to estimate a relevant cut point
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Algorithm 10: The HDDM algorithm. Adapted from (FRÍAS-BLANCO et al.,
2015).

input : a sequence of values xt, a confidence level αW for the warning level, and a
confidence level αD for the drift level.

output : a flag for warning and drift detection flag.
[1]Let X̂cut be the statistic computed until the cut point x1, . . . , xcut;
[2]Let Ŷn−cut be the statistic computed from after the cut point until t: xcut+1, . . . , xt;
[3]Let Ẑn be the statistic computed from the entire sequence x1, . . . , xt;
[4]W ← ∅;
[5]foreach t > 0 do
[6] Update Ŷn−cut, Ẑi, and εẐi

using xt;
[7] if Ẑi + εẐi

≤ X̂i + εX̂i
then

[8] X̂cut ← Ẑi;
[9] εX̂cut

← εẐi
;

[10] Reset Ŷn−cut and εŶn−cut ;

[11] if H0 : E[X̂cut] ≥ E[Ŷn−cut] is rejected with αD then
[12] flag ← DRIFT ;
[13] else if H0 : E[X̂cut] ≥ E[Ŷn−cut] is rejected with αW then
[14] flag ←WARNING;
[15] else
[16] flag ← NONE;

[17]return flag

referred to as cut in this sequence, to later carry out either the A or W tests by comparing

the subsamples until and after the cut point, i.e., x1, x2, . . . , xcut and xcut+1, . . . , xn.

Assuming X̂i + εX̂i
(1 ≤ i ≤ n), where X̂i can either be a moving average or a

weighted moving average, and εX̂i
is its corresponding error bound, calculated either using

Equations A.11, or A.12 depending on whether the A-test or W-test is being followed,

respectively. The variables involved in these equations are as follows: [a; b] is the range

in which the arriving data values xt are bounded to, n is the length of the subsample

until the cut point, m is the length of the subsample after the cut point, and Dn,m =

(b− a)2
[∑cut

i=1 vi +
∑n

i=cut+1 v
′
i

]
where vi and v′i are the weights of instances generated by

a time-decay function.

εα = (b− a)

√
n−1 +m−1

2
ln

1

α
(A.11)

ε̂α =

√
Dn,m

2
ln

1

α
(A.12)

In practice, both of the equations listed above are direct applications of the Ho-

effding Bound earlier discussed in Section 5.1. Yet, for the sake of brevity, the reader is
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referred to the work of (FRÍAS-BLANCO et al., 2015) for the mathematical formalization

behind these formulas and their respective bounds for error types I and II.

Given the aforementioned processes, Algorithm 10 works as follows. With the

arrival of an input value xt, the statistics X̂cut, Ŷn−cut, and Ẑn are updated. The former

(X̂cut) is the average, or weighted moving average, computed from the beginning of the

stream x1 until the cut point xcut, while the second (Ŷn−cut) is the same statistic, yet,

computed from the cut point xcut+1 until the last observed value xt, and finally, the last

value Ẑn is the statistic given all observed values, from x1 until xt (line 6).

Next, the algorithm verifies if the cut point should be updated depending on the

error bounds (line 7) given by Equations A.11 or A.12, depending on the test adopted,

and if the condition holds, all the respective statistics are updated accordingly (lines 8–

10). Given the updated statistics, HDDM then checks the current state of the stream by

computing the expected values of the statistics before and after the cut point X̂cut and

Ŷn−cut against the user-given confidence levels αW and αD (lines 11 and 13), and warnings

and drifts are flagged accordingly (lines 12 and 14).
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