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ABSTRACT 

 

The classification of hierarchical data streams inherits challenges from its foundation 
areas, i.e., hierarchical classification and data stream classification. In data stream 
classification, learning models handle the class structure as flat and without 
relationships between the classes, losing potentially valuable information within the 
class taxonomy. Meanwhile, in hierarchical classification, learning models assume 
finite and stationary data, with models not updating themselves, disregarding time, or 
incoming data. These assumptions do not reflect real hierarchical data stream 
problems, where class labels are organized in a structured hierarchy with parent and 
child nodes, and the underlying distribution of the hierarchical data stream is likely to 
change over time. This thesis provides an experimental study in the hierarchical data 
stream classification area by proposing and evaluating learning models suitable for 
working with potentially unbounded hierarchical data streams. These models use 
summarization techniques to store or represent data using limited computational 
resources. Therefore, this work also analyzes how these data summarization 
strategies affect the learning models regarding prediction correctness and 
computational performance. This work begins with a systematic literature review 
comprehending a formal definition of the hierarchical data stream classification field 
and a description of existing related work. Then, various hierarchical data stream sets 
are identified, adapted, and arranged. Next, this work presents novel learning models 
for hierarchical data stream classification based on nearest neighbors, clustering 
techniques, and gaussian probabilities. Finally, a benchmark for the hierarchical data 
stream classification field is established, comparing the proposed methods with related 
work. The results obtained with the proposed methods show that the learning models 
using summarization techniques, when compared regarding prediction correctness 
and computational performance, could achieve better rates in one criterion without 
significant impacts on the other one. 
 

Keywords: Hierarchical Classification; Data Stream Classification; Classification of 
Hierarchical Data Streams, Data Summarization. 
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RESUMO 

 

A classificação de fluxos de dados hierárquicos herda simultaneamente os desafios 
de suas áreas bases, isto é, a classificação hierárquica e a classificação de fluxos de 
dados. Na classificação de fluxos de dados, os modelos de aprendizado 
compreendem as classes de um problema como planas e independentes, perdendo 
toda a informação potencialmente útil contida na taxonomia de classes. Já na 
classificação hierárquica, modelos de aprendizado assumem dados finitos e 
estacionários, e não se atualizam ao longo do tempo, independentemente da chegada 
de novos dados. Essas premissas não são adequadas quando considerados 
problemas de fluxos de dados hierárquicos, onde as classes são organizadas 
hierarquicamente através de nós pais e nós filhos, e a distribuição de dados 
provavelmente mudará ao longo do tempo. Esta tese apresenta um estudo 
experimental na área de classificação de fluxos de dados hierárquicos, por meio da 
proposta e avaliação de modelos de aprendizado adequados para trabalhar com 
fluxos de dados hierárquicos potencialmente ilimitados. Esses modelos usam técnicas 
de sumarização para armazenar ou representar dados utilizando recursos 
computacionais limitados; este trabalho também analisa como essas estratégias de 
sumarização de dados afetam os modelos de aprendizado em relação a taxas de 
acerto de predição e de desempenho computacional. O trabalho apresenta uma 
revisão sistemática de literatura sobre o tema, incluindo uma definição formal da área 
de classificação de fluxos de dados hierárquicos e a descrição de trabalhos 
relacionados existentes. Em seguida, vários conjuntos de fluxos de dados hierárquicos 
são identificados, adaptados e organizados. Posteriormente, são introduzidos novos 
modelos de aprendizado para a classificação de fluxos de dados hierárquicos 
baseados em técnicas de vizinhos próximos, agrupamento e probabilidades 
gaussianas. Por fim, é apresentada uma comparação geral entre todos os métodos 
propostos e trabalhos relacionados a fim de estabelecer um ponto de referência de 
avaliação para novos modelos de aprendizado na área. Os resultados obtidos 
mostram que os métodos propostos, quando avaliados com critérios de taxas de 
acerto de predição e de desempenho computacional, podem alcançar melhores taxas 
em um dos critérios sem resultar em impactos significativos (perdas) no outro critério. 
 

Palavras-chave: Classificação Hierárquica; Classificação de Fluxos de Dados; 
Classificação de Fluxos de Dados Hierárquicos; Sumarização de Dados. 
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1 INTRODUCTION 

 

Pattern recognition is the primary task of Machine Learning. It consists in 

searching for regularities in the data via algorithms and using these regularities to 

perform some action, such as clustering similar data or assigning them to different 

known classes (BISHOP; NASRABADI, 2006). This last example, in which data is 

related to predetermined classes, is known as classification. 

The classification task involves developing, studying, and evaluating methods 

that receive previously labeled (or classified) input data, build a learning model capable 

of making predictions or decisions based on that data, and assign the most likely class 

to the unseen data according to the information seen during the previous training step 

(KOTSIANTIS, 2007). 

Classification is a popular and recurring task in the Machine Learning area as it 

has been successfully applied to several domains. For instance, in biology, by 

classifying patients into different clinical groups or by identifying disease groups 

(ALIZADEH et al., 2000; ROSS et al., 2000; TARCA et al., 2007); in languages, in the 

organization and classification of documents (SEBASTIANI, 2002); in the classification 

of images and their contents (CHAPELLE; HAFFNER; VAPNIK, 1999); and even in 

astronomy, with the automatic cataloging of sky objects (FAYYAD; WEIR; 

DJORGOVSKI, 1993). More recent applications can be observed from biomedicine 

with the enhancement of Computer-Aided Diagnosis (YASSIN et al., 2018), to politics, 

with the detection of fake news and its impact on presidential elections (SHU et al., 

2017). 

Given the wide variety of problems in which classification techniques can be 

applied to, these techniques also need to deal with different kinds of data and respond 

to them accordingly (TSOUMAKAS; KATAKIS, 2007). Classification problems can 

have two exclusive (non-overlapping) classes (binary classification), several mutually 

exclusive classes (multi-class classification), many potentially simultaneous classes 

(multi-labeled classification), and, finally, classes that are layered in a hierarchical 

structure (hierarchical classification) (SOKOLOVA; LAPALME, 2009). 

It is not straightforward to find a starting point or a chronological development 

of these distinct classification subtasks explicitly on individual studies across the 

literature. Therefore, it is also complex to define precedence between the subtasks, 

either chronologically or concerned with their complexities (KOTSIANTIS, 2007). 
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However, the literature usually presents such subtasks similarly to that presented 

earlier in this text. Binary classification can be understood as a specific case of 

multiclass classification (where the number of classes is two), just as the multiclass 

classification can be understood as a specific case of multilabel classification (in which 

the number of predicted labels is one). Finally, hierarchical classification problems can 

be decomposed into other types of classification, ignoring the hierarchy present in the 

classes (SILLA; FREITAS, 2011).  

Despite classification being an established research topic in the literature, 

research fields in which classification is applied to have also evolved simultaneously, 

resulting in changes in their processes, such as the way data and information are 

obtained and stored. Yet, the classification field has mainly focused efforts on batch 

learning, assuming that all data used to recognize patterns will be available to the 

model at the same time, on a well-defined training step (GAMA, 2010). 

However, this assumption no longer reflects many real-world scenarios where 

classification is applied based on data streams instead of batch data. Therefore, the 

classification task needs to adapt itself to handle these ever-changing environments, 

being able to incorporate new data into its learning processes on the fly (GAMA, 2010). 

Furthermore, data stream classification brings new challenges common to all 

classification subtasks. Data stream continuously provides potentially unbounded data 

over time, and, thus, learning models need to process data constrained by limited 

computational resources. Also, due to the intrinsic time component, data streams are 

expected to be ephemeral and provide non-stationary data. Therefore, learning models 

need to respond appropriately to newest data (BIFET; KIRKBY, 2009; GAMA, 2010). 

It is also relevant to state that as data stream classification regards the way the data is 

provided to the learning model  (examples are provided over time rather than in batch), 

it can be simultaneous to all other kinds of classification problems, and it has been 

revisiting many aspects related to classification in the last years (GAMA, 2010). 

New classification models and algorithms have been proposed or fitted to work 

with data streams, including new assessment platforms and protocols (AGGARWAL, 

2007; BIFET et al., 2010; GAMA; SEBASTIÃO; RODRIGUES, 2013). Thus far, data 

stream classification research has focused its main efforts on binary, multiclass, and 

multilabel classification (BIFET et al., 2010; BIFET; KIRKBY, 2009; READ et al., 2012). 

Nonetheless, data stream classification seems to have not yet explored the 

hierarchical classification subtask. On one hand, recently proposed data stream 



17 
 

 

classification methods do not consider any kind of hierarchy in their designs (BAHRI et 

al., 2021), and literature reviews regarding data stream classification do not even 

mention the hierarchical subtask (GOMES et al., 2019; KREMPL et al., 2014; 

RAMÍREZ-GALLEGO et al., 2017). On the other hand, most studies on hierarchical 

classification do not consider the data stream scenario, handling only batch and 

stationary data (DUMAIS; CHEN, 2000; FREITAS; CARVALHO, 2007; 

KOSMOPOULOS et al., 2015; SILLA; FREITAS, 2011). 

Novel research at the intersection of these two areas (data stream classification 

and hierarchical classification) seems likely. In hierarchical classification, advances in 

obtaining data may require new methods that are able to process data streams, 

similarly to ongoing research regarding the other classification subtasks. In data 

stream classification, new approaches to handle existing problems can incorporate 

naturally existing (but not used yet) hierarchies in the data, such as hierarchical 

contents of Web pages, hierarchical structures of sensor networks, biological 

taxonomy of animals, etc. (GAMA, 2010). 

Besides, research conducted on hierarchical classification stated that learning 

models can benefit from incorporating a naturally existent class hierarchy into the 

classification process, resulting in higher classification prediction rates or more 

information (FREITAS; CARVALHO, 2007; SILLA; FREITAS, 2011). Yet, recent 

reviews on data stream classification do not even mention hierarchical classification 

approaches. 

Studies published across different research areas proposed methods 

improperly associated with the classification of hierarchical data streams. For instance, 

studies have proposed methods regarding the classification of hierarchical data 

streams, yet, either use a batch configuration for training using the entire dataset or do 

not consider any changes in the data distribution (CAO et al., 2018; HUANG et al., 

2019; KHOWAJA et al., 2018; PUROHIT et al., 2014; WANG; GONG; GUO, 2009). At 

bottom, those methods are hierarchical classification methods in which the data source 

was a stream, but it is assumed to be stationary, and models are not updated. 

Furthermore, current state-of-the-art methods introduced for the classification of 

hierarchical data streams present limitations when applied to real-world problems, as 

they use complete representations of data and eventually perform redundant steps in 

their learning models (PARMEZAN; SOUZA; BATISTA, 2018). In other words, 

methods that are computationally heavy-weighted in terms of processing time and 
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memory consumption may represent infeasible strategies for handling potentially 

unbounded hierarchical data streams (BIFET; KIRKBY, 2009; GAMA, 2010; PRASAD; 

AGARWAL, 2016). 

This thesis provides an exploratory, experimental study on the hierarchical data 

stream classification area by proposing and evaluating learning models fitted to work 

with potentially unbounded hierarchical data streams. These models consider the 

constraints of hierarchical classification and data stream classification concomitantly. 

In other words, such learning models handle class hierarchies, are updatable over 

time, adapt to changes in data behavior, and are computationally light-weighted 

regarding processing time and memory consumption. 

In this sense, the hierarchical data stream models proposed in this thesis use 

summarization techniques to store or represent data with constrained computational 

resource usage. Therefore, this thesis also presents an analysis of how these data 

summarization strategies impact learning models regarding prediction correctness and 

computational performance. 

 

1.1 RESEARCH AIM AND OBJECTIVES 

 

This project aims at proposing and evaluating learning models with data 

summarization techniques for classifying hierarchical data streams. This thesis 

comprehends the following research objectives to fulfill the research aim: 

i. To review hierarchical classification literature; 

ii. To review data stream classification literature; 

iii. To perform a systematic literature review concerning the hierarchical data 

stream classification; 

iv. To provide formalizations for the hierarchical data stream classification problem; 

v. To identify and arrange hierarchical data stream sets fitted for the classification 

task; 

vi. To propose learning models that use data summarization techniques for 

classifying hierarchical data streams; 

vii. To evaluate the proposed learning models. 
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1.2 HYPOTHESIS 

 

This thesis encompasses several minor hypotheses discussed and validated 

throughout this work in specific sections. Yet, all of them are related to the two central 

hypotheses defined below. 

• 𝐻01: There is no significant difference between the hierarchical evaluation 

metrics obtained by traditional hierarchical data stream classifiers and 

hierarchical data stream classifiers that use data summarization techniques. 

• 𝐻𝐴1: There is a significant difference between the hierarchical evaluation metrics 

obtained by traditional hierarchical data stream classifiers and hierarchical data 

stream classifiers that use data summarization techniques. 

• 𝐻02: There is no significant difference between the computational performance 

of traditional hierarchical data stream classifiers and hierarchical data stream 

classifiers that use data summarization techniques. 

• 𝐻𝐴2: There is a significant difference between the computational performance of 

traditional hierarchical data stream classifiers and hierarchical data stream 

classifiers that use data summarization techniques. 

Note that 𝐻01 focuses on prediction correctness, while 𝐻02 regards computational 

performance. Therefore, the initial expectation of this thesis is to propose learning 

models that support at least one of the hypotheses. Thus, to propose learning models 

capable of obtaining better computational performance without significant impacts on 

prediction correctness or better prediction correctness with similar or improved 

computational performance. 

 

1.3 CONTRIBUTIONS 

 

This thesis provides learning models based on data summarization techniques 

tailored to hierarchical data stream classification. In addition to such methods, it also 

contributes to the formalization and consolidation of the hierarchical data stream 

classification area. 

Specifically, the explicit contributions of this project are as follows: 

• The hierarchical data stream classification area is unclear and, until this very 

point, has been addressed only sparsely in the literature. This thesis introduces 
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a proper formalization, both theoretically and practically (Section 2.2). 

Furthermore, this thesis maps the area with a systematic literature review, 

covering the main problems, datasets, classification algorithms, evaluation 

metrics, and research gaps related to the hierarchical data stream classification 

task, also discussing the adherence of related works to the field and specifying 

the state of the art (Sections 2.3 and 2.4). 

• Datasets fitted to hierarchical data stream classification are still scarce in the 

literature. This thesis identifies, adapts, and arranges various datasets and 

makes them available for further research in the classification of hierarchical 

data stream area (Section 4.1.1). 

• Up to now, studies related to hierarchical classification do not use data streams 

as input data for their processes; similarly, studies related to data stream 

classification do not consider possible class hierarchies in the dataset. In this 

thesis, four new main methods are proposed for the classification of hierarchical 

data streams: (i) “Global kNN-hDS” – based on nearest neighbors (Section 3.2), 

(ii) “kNC-hDS” and (iii) “Dribble-hDS” – based on clustering techniques (Section 

3.3), and (vi) “GNB-hDS” – based on gaussian probabilities (Section 3.4). 

• As a product originating from the experimental improvement of the GNB-hDS 

method, Section 3.4 also introduces an incremental adaptation of the well-

known Yeo-Johnson Power Transformation (YEO; JOHNSON, 2000). This 

proposed transformation can be used in the hierarchical data stream area as an 

attached data pre-processing step to reduce the skewness of the data and 

improve the prediction results. 

• The comparison and placement of new learning models in the literature are not 

straightforward unless the authors follow the same recommendations, 

experimental assessment procedures, and datasets. In this sense, this thesis 

provides a benchmark for the hierarchical data stream classification area, 

comparing all the proposed methods with related work under the same 

experimental protocol (Section 4.5). 

  

1.4 PUBLICATIONS 

 

The main contributions of this thesis were also reported in the following research 

manuscripts/articles: 
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• Eduardo Tieppo, Roger Robson dos Santos, Jean Paul Barddal, and Júlio 

Cesar Nievola. Hierarchical Classification of Data Streams: A Systematic 

Literature Review. Artificial Intelligence Review. Pages 1-40. 2021. 

• Eduardo Tieppo, Jean Paul Barddal, and Júlio Cesar Nievola. Adaptive Global 

k-Nearest Neighbors for Hierarchical Classification of Data Streams. In: IEEE 

International Conference on Systems, Man, and Cybernetics (SMC). Pages 

631-636. 2021. 

• Eduardo Tieppo, Jean Paul Barddal, and Júlio Cesar Nievola. Classifying 

Potentially Unbounded Hierarchical Data Streams with Incremental Gaussian 

Naive Bayes. In: Brazilian Conference on Intelligent Systems (BRACIS). Pages 

421-436. 2021. 

• Eduardo Tieppo, Jean Paul Barddal, and Júlio Cesar Nievola. Automatic 

Disease Vector Mosquitoes Identification via Hierarchical Data Stream 

Classification. In: The 37th ACM/SIGAPP Symposium on Applied Computing 

(SAC). Pages 1005-1012. 2022. 

• Eduardo Tieppo, Jean Paul Barddal, and Júlio Cesar Nievola. Classifying 

Hierarchical Data Streams using Global Classifiers and Summarization 

Techniques. In: The 2022 International Joint Conference on Neural Networks 

(IJCNN). Pages 1-8. 2022. 

• Eduardo Tieppo, Jean Paul Barddal, and Júlio Cesar Nievola. Improving Data 

Stream Classification using Incremental Yeo-Johnson Power Transformation. 

In: IEEE International Conference on Systems, Man, and Cybernetics (SMC). 

Pages 3286-3292. 2022. 

• (Submitted, under review) Eduardo Tieppo, Jean Paul Barddal, and Júlio Cesar 

Nievola. Adaptive Learning on Hierarchical Data Streams using Window 

Weighted Gaussian Probabilities. 2023. 
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Suporte à Pós-Graduação de Instituições de Ensino Superior (PROSUP), regulated 

by the ordinance “Portaria CAPES nº 181, de 18 de dezembro de 2012”. 

 

1.6 THESIS ROADMAP 

 

This thesis is organized as follows: 

• The current section introduced the rationale for this thesis, comprehending the 

research aim and objectives to be achieved, the assumptions that underlie the 

central hypotheses of this project, and the tangible contributions. 

• Section 2 provides the theoretical background of this thesis, including both 

foundations areas (hierarchical classification and data stream classification) 

and the specification of the hierarchical data stream classification area, with 

formalizations, state of the art, related works, and research gaps addressed by 

this thesis. 

• Section 3 is dedicated to presenting the learning models proposed in this thesis. 

Each part presents a method (or a group of similar methods) based on a shared 

concept. Sections 3.2, 3.3, and 3.4 describes, in that order, the proposed 

methods based on nearest neighbors, clustering, and gaussian probabilities. 

The sections include the description of the learning models, their specific 

definitions, and algorithms. As a topic related to gaussian probabilities, Section 

3.4 also presents the proposed data transformation mentioned in the 

contributions above. 

• Section 4 provides the experimental setup and the analysis performed for 

comparing the proposed learning models with related works and with each 

other. The first part (Section 4.1) describes the experimental protocol and the 

hierarchical data stream sets used in the experiments. Following the same 

organization of Section 3, Sections 4.2, 4.3, and 4.4 show the experimental 

results obtained by the methods based on nearest neighbors, clustering, and 

gaussian probabilities. The last section (4.5) shows a multiple comparison 

experiment between all proposed methods. 

• Finally, Section 5 concludes this thesis by summing up the fulfillment of the 

research objectives, outlining the contributions, and stating implications for 

further research. 
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2 THEORETICAL BACKGROUND 

 

Hierarchical data stream classification emerges from the intersection of its 

foundation areas: hierarchical classification and data stream classification. Although 

both foundation areas are well-established research topics, their characteristics are 

usually not addressed concomitantly in the literature.  

Moreover, current state-of-the-art techniques are not able to deal with 

hierarchical data stream classification problems directly. Hierarchical classification 

techniques cannot handle changing and potentially unbounded data, while data stream 

classification techniques do not account for hierarchical relationships on classes from 

data samples (TIEPPO et al., 2021). 

Comprehensive reviews on hierarchical classification were presented in (SILLA; 

FREITAS, 2011), (NAIK; RANGWALA, 2018), and (DEFIYANTI; WINARKO; 

PRIYANTA, 2019), in which grounding concepts and terminologies of the area were 

formally defined.  

Similarly, comprehensive reviews of data stream classification were presented 

in (GOMES et al., 2019), (WANKHADE; DONGRE; JONDHALE, 2020) (BAHRI et al., 

2021), showing that a fair amount of effort has been devoted to scenarios where data 

are made available as a stream and how its challenges can be tackled.  

These studies show successful approaches and future challenges in both areas 

but do not present a perspective comprising both areas together. In other words, 

despite the research conducted on hierarchical classification and data stream 

classification areas separately, there is a lack of studies in hierarchical data stream 

classification that consider the main characteristics of these kinds of problems 

together, such as hierarchical non-stationary data. 

This section introduces and characterizes the hierarchical data stream 

classification area. First, Section 2.1 reviews both foundation areas of hierarchical data 

stream classification: hierarchical classification and data stream classification. Section 

2.2 formalizes the hierarchical data stream classification problem. Section 2.3 

describes the state of the art and related works based on a systematic literature review. 

Finally, Section 2.4 presents a research gap on which this thesis relies, from the 

perspective of the limitations of existing state-of-the-art learning models. 
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2.1 FOUNDATION AREAS 

 

2.1.1 Hierarchical Classification 

 

In hierarchical classification, instances are assigned to a label (class) that is part 

of a label path, where inner labels in the path represent hierarchical relationships with 

the outer labels. Classes are arranged in hierarchical structures, where nodes 

represent the classes and specialized nodes represent specific classes of their general 

nodes (DEFIYANTI; WINARKO; PRIYANTA, 2019; FREITAS; CARVALHO, 2007; 

SILLA; FREITAS, 2011). 

Figure 2.1 compares a general approach of (a) flat classification and (b) 

hierarchical classification in an illustrative problem. The class taxonomy can be used 

to lead to specific decisions about the classes by splitting the context complexity. In 

flat classification, the decision must be made while considering all the classes of the 

problem (all the possible song genres). Meanwhile, the hierarchical classification 

concerns an existent class taxonomy, which can be used to make first smaller and 

generic decisions about the problem (in the example, to decide first between Rock and 

R&B genres), and then the specific ones. 

 

 

Figure 2.1 - Illustrative example of general approaches of (a) Flat Classification and (b) Hierarchical 
Classification. 

 

A class taxonomy can be formalized as a regular concept hierarchy (LU, 1997) 

under a partially ordered set (𝑌,≻), where 𝑌 represents a finite set containing all target 
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classes of a problem and the relation ≻ is defined as a subsumption relation (“is-a” 

relation) (DEFIYANTI; WINARKO; PRIYANTA, 2019; SILLA; FREITAS, 2011; WU; 

ZHANG; HONAVAR, 2005). 

According to the authors in (SILLA; FREITAS, 2011), a hierarchical 

classification problem can be categorized in a 3-tuple (Υ,Ψ,Φ), where: 

• Υ  specifies the data structure used to represent the class taxonomy and may 

be modeled using a Tree or a Directed Acyclic Graph (DAG) representation, 

according to how many parent nodes the same node has. 

• Ψ defines the label cardinality, where instances of a given problem can have 

only one single path of labels (SPL) associated with them or multiple paths of 

labels (MPL); and, 

• Φ describes the label depth, where problems support partial depth labeling (PD), 

or actual classes of the problem are represented only in the leaf nodes with full 

depth labeling (FD). 

Similarly, a hierarchical classification algorithm can be categorized in a 4-tuple 

(Ω, Δ, Ξ, Θ), where:  

• Ω specifies if the algorithm supports Tree or Directed Acyclic Graph (DAG) as 

data structures; 

• Δ indicates if the algorithm can assign to an instance at most one predicted label 

path (single path prediction - SPP), or it can potentially assign multiple predicted 

label paths (multiple path prediction - MPP); 

• Ξ specifies if the algorithm always assigns leaf node classes as the last class of 

a predicted label path (mandatory leaf-node prediction - MLNP) or if it can 

predict label paths where the deeper class is at any hierarchy level (non-

mandatory leaf-node prediction - NMLNP); 

• Θ describes how the hierarchical classifier handles the class hierarchy in its 

algorithm, comprising Local classifier per node (LCN), Local classifier per level 

(LCL), Local classifier per parent node (LCPN), or Global classifier (GC). In the 

LCN approach, one binary classifier per class handles each class in the 

hierarchy (except the root node). In the LCPN approach, one multi-class 

classifier per class (except on the leaf nodes) predicts between its child nodes. 

In the LCL approach, one multi-class classifier per level predicts between all 
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nodes at the same level. Finally, in the GC approach, one single multi-class 

classifier is built to handle all classes using the hierarchy information. 

Note that both categorizations are similar but use two different contexts: 

problems and algorithms. Nevertheless, some algorithm categories may be more 

suited to deal with specific categories of problems. For instance, a problem with full-

depth labeling (FD) should use a Mandatory leaf-node prediction scheme (MLNP) to 

be able to predict the entire path of labels since predicting only part of it would not 

represent an actual class of the problem (SILLA; FREITAS, 2011). 

Finally, the authors in (KIRITCHENKO et al., 2005) proposed three metrics able 

to measure the performance of a hierarchical classifier: hierarchical precision (ℎ𝑃), 

hierarchical recall (ℎ𝑅), and hierarchical F-Measure (ℎ𝐹). These metrics are variations 

of the traditional classification metrics (Precision, Recall, and F-Measure) but instances 

are associated with a path of labels and the entire path is evaluated. 

The ℎ𝑃 metric, depicted in Equation (1), computes the number of labels in a 

predicted label path (𝑦𝑖̂) that are also components of the ground-truth label path (𝑦𝑖) for 

the 𝑖-th instance. On the other hand, ℎ𝑅, depicted in Equation (2), quantifies the 

number of ground-truth labels comprised by the predicted label path for a given 

instance.  

 

 
ℎ𝑃 = 

∑ |𝑦̂𝑖⋂𝑦𝑖|𝑖

∑ |𝑦̂𝑖|𝑖
 (1) 

 

 
ℎ𝑅 =  

∑ |𝑦̂𝑖⋂𝑦𝑖|𝑖

∑ |𝑦𝑖|𝑖
 (2) 

 

Like traditional classification metrics, the hierarchical F-Measure, depicted in 

Equation (3), is the harmonic mean between hierarchical precision (ℎ𝑃) and 

hierarchical recall (ℎ𝑅). As in the traditional F-Measure, β weights ℎ𝑃 and ℎ𝑅 values 

(CERRI et al., 2015). 

 

 
ℎ𝐹 = (1 + β2) ×

ℎ𝑃 × ℎ𝑅

(β2 × ℎ𝑃) + ℎ𝑅
 (3) 
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2.1.2 Data Stream Classification 

 

Unlike traditional machine learning, where the dataset is static and can be 

accessed multiple times, data stream algorithms need to consider previously 

unmapped issues such as limited memory, single-pass data, readiness, and detection 

and adaptation to changes in the dataset (BIFET; KIRKBY, 2009; GAMA, 2010; 

GOMES et al., 2019; QUIÑONERO-CANDELA et al., 2008). 

Figure 2.2 compares a (a) traditional classification process and a (b) data 

stream classification process. Dashed arrows represent data flow, dotted lines are 

optional processes, and solid arrows illustrate a model deployment. In traditional (or 

batch) classification, data are assumed to be static and completely available to the 

model at the training step; the dataset is then divided into subsets of training and 

testing data; the training data are submitted to the learning model that reviews them 

as many times as necessary, until obtaining a unique satisfactory model. This final 

model is then applied to the subset of testing data and provides predictions.  

In contrast, in data stream classification, data are made available sequentially 

over time, and even a single instance can be provided to the model. The most common 

approach for handling streaming data is to process data on an instance basis. In this 

process, each arriving instance is tested by a current model resulting in a prediction, 

and, only after that, it is incorporated into the model (being used as training data). Next, 

the cycle restarts with a new instance from the data stream. Any processed instance 

must be eventually discarded to maintain the model's ability to process new instances 

since the data stream is potentially unbounded. 

 

 

Figure 2.2 - Illustrative example of general approaches of (a) Traditional (batch) classification and (b) 
Data Stream Classification. 
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According to the works of (GAMA, 2010), (NGUYEN; WOON; NG, 2015), and 

(WIDMER; KUBAT, 1996), due to the temporal and unbounded traits of data streams, 

learning algorithms must meet several constraints: 

• Single-pass: each instance in the stream should be examined just once and 

cannot be reused; 

• Readiness: learning and prediction should be made in real-time or near real-

time; 

• Bounded Memory: the amount of input data is gigantic or potentially infinite; 

therefore, a summary of the data stream is usually calculated and stored, and 

approximate results are acceptable; and 

• Concept drift detection: data streams are expected to be ephemeral due to the 

intrinsic time component, and, thus, the underlying data distribution is expected 

to change, a phenomenon named concept drift (GAMA et al., 2014; TSYMBAL, 

2004).  

As introduced above, a concept (𝐶) is defined as a set of prior probabilities of 

the classes and class-conditional probability density function given by 𝐶 =

⋃ {(𝑃[𝑦], 𝑃[𝑥⃗|𝑦])}𝑦∈𝑌 . A concept drift occurs if, between two timestamps 𝑡𝑖 and tj = 𝑡𝑖 +

Δ with Δ >  1, 𝐶𝑡𝑖   ≠  𝐶𝑡𝑗 holds. In addition, concept drifts can be classified according to 

how the underlying distribution of data changes concerning 𝑡. For instance, when 𝐶𝑡𝑖   ≠

 𝐶𝑡𝑗 holds and Δ = 1, an abrupt concept drift occurs; if Δ > 1, the concept drift is gradual 

(BARDDAL et al., 2016; NGUYEN et al., 2012; TSYMBAL, 2004).  

Since data streams are potentially unbounded, it is not possible to process all 

data at once. Thus, the data must be processed incrementally as data samples are 

made available. Data processing is performed according to different time window 

models, all of them sharing the same idea of heeding to specific portions of data 

(usually the most recent ones). These time windows can be of different types according 

to the way they process the data.  

Figure 2.3 shows different time window types. In the Landmark window (a), 

there is interest in portions of data between instances called “landmarks”; landmarks 

can be defined based on time, the number of instances (mini-batches), and memory 

constraints; older or newer data have the same importance. In the Sliding window (b), 

there is more interest in the newer data and the time window slides along with time; 

data outside the window is discarded. In the Fading window (c), the data is weighted 
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and there is more interest in newer data by assigning greater weights according to the 

data currency; thus, old data becomes less important in the learning process. Finally, 

in the Tilted-time window (d), there is interest in the most recent data by selecting 

instances based on elapsed time; the data are represented with different detail levels 

according to their age; thus, newer data has more instances and details and older data 

is represented with some smaller-scale pattern.  

It is also important to notice that the kinds of time windows are not limited to the 

ones illustrated in Figure 2.3 and different kinds can even be mixed depending on the 

characteristics of the data (BARDDAL et al., 2017; NGUYEN; WOON; NG, 2015). 

 

 

Figure 2.3 - Illustration of different time window kinds: (a) Landmark window, (b) Sliding window, (c) 
Fading window, and (d) Tilted-time window. 

 

The main challenge in selecting a time window strategy is choosing a well-suited 

size due to the stability-plasticity dilemma (MERMILLOD; BUGAISKA; BONIN, 2013). 

Shorter windows may help the model to become more responsive to drifts (plasticity). 

On the other hand, larger windows may result in more stable models (stability) 

(BARDDAL et al., 2017; GAMA, 2010).  
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that, algorithms in data stream classification can work with adaptations of batch mode 

(mini-batches), be incremental or adaptive (GAMA et al., 2014). 

Incremental algorithms regard updating or retraining the models with part of or 

all data as new instances become available. The Hoeffding Trees and Bayes models 

are examples of these algorithms (DOMINGOS; HULTEN, 2000; GAMA et al., 2014). 

Because of updating or retraining the models with eventually larger datasets, 

computational resources need to be tracked and evaluated. Nevertheless, as 

previously mentioned, concept drift also needs to be considered in data stream 

scenarios. In this case, models also need to adapt themselves to react to these drifts 

(GAMA et al., 2014). 

Adaptive algorithms also regard updating or retraining the models (as 

incremental ones), but the model includes strategies to forget the information 

previously learned. The adaptive models can be understood as advanced incremental 

learning models that are able to adapt to changes in data over time (GAMA et al., 

2014). 

Finally, concerning evaluation, the authors in (GAMA et al., 2014) proposed the 

prequential assessing method (or Interleaved Test-Then-Train (BIFET; KIRKBY, 

2009)) to evaluate learning algorithms in streaming scenarios. In this process, each 

instance is used to test the model and the evaluation metrics, e.g., precision, recall, F-

Measure, are updated. Next, the instance is used to train/update the model. As metrics 

are calculated for each instance, results are often summarized using some strategy, 

such as using maximum or mean values and considering some sampling frequency of 

the data stream.  

 

2.2 PROBLEM STATEMENT 

 

The hierarchical classification of data streams lies at the intersection of 

hierarchical classification and data stream classification, two well-established research 

areas. Consequently, this new area inherits characteristics and challenges from its 

base areas and differs from traditional classification in two key aspects. 

First, concerning hierarchical classification, examples must be assigned to not 

one independent label (class) but to a label path representing one of many possible 

label paths composing the class taxonomy. Next, concerning data stream 
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classification, the entire dataset containing examples for a training step is not available; 

instead, examples are provided to the model sequentially over time. 

Hierarchical classification of data stream methods must use data streams as 

input to their learning processes, not only as a source of data but effectively processing 

portions of the data over time using the assumption that there is no complete dataset. 

Regarding input data, let ℎ𝐷𝑆 = [(𝑥⃗𝑡 , 𝑦⃗𝑡)]𝑡=0
∞  be a hierarchical data stream 

providing instances (𝑥⃗𝑡, 𝑦⃗𝑡), each of which arriving at a timestamp 𝑡, where 𝑥⃗𝑡 is a 𝑑-

dimensional feature set and its values, and 𝑦⃗𝑡 is the corresponding ground-truth label 

path (hierarchically structured classes) for the given instance. 

As mentioned above, class labels are organized under a regular concept 

hierarchy under a partially ordered set (𝑌, ≻), where 𝑌 represents a finite set of all 

concepts and the relation ≻ is defined as an asymmetric, anti-reflexive and transitive 

subsumption (“is-a”) relation (SILLA; FREITAS, 2011). 

The hierarchical classification of data streams can be formalized as a mapping 

function 𝑓𝑡: 𝑥⃗𝑡 ↦ 𝑦⃗𝑡, where a hypothesis 𝑓𝑡 is continuously updated by features 𝑥⃗𝑡 to 

the corresponding labels 𝑦⃗𝑡 accurately (GAMA, 2010). 

Also, concerning the data stream classification foundation area, a hierarchical 

data stream classifier must consider non-stationary data and, consequently, being able 

to adapt itself to possible concept drifts. 

Considering a set 𝐶 of prior probabilities of the classes and class-conditional 

probability density function given by 𝐶 = ⋃ {(𝑃[𝑦], 𝑃[𝑥⃗|𝑦])}𝑦∈𝑌 , a hierarchical data 

stream classifier must be able to update its mapping function 𝑓𝑡 and capture the data 

dynamics if between two distinct timestamps 𝑡𝑖 and 𝑡𝑗 = 𝑡𝑖 + 𝛥  a concept drift occurs, 

i.e., 𝐶𝑡𝑖 differs from 𝐶𝑡𝑗. 

Finally, methods need to perform their processes using bounded computational 

resources (time and memory), examining each example only once according to their 

arrival and processing it in less time than the ratio in which new instances become 

available. Otherwise, the method will eventually need to drop incoming examples, or it 

will not be able to adapt quickly enough to handle concept drifts (BARDDAL et al., 

2016; BIFET; KIRKBY, 2009). 
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2.3 RELATED WORK AND STATE OF THE ART 

 

2.3.1 Related Work 

 

Due to the recentness of the hierarchical data stream classification area, a 

systematic literature review (SLR) was carried out to investigate the main 

characteristics of the area. 

The purpose of the SLR was to summarize and clarify the area guided by five 

research questions: (i) what kind of problems are handled by hierarchical classification 

of data streams, (ii) which datasets are frequently used in experiments in the existing 

studies, (iii) which algorithms, and (iv) evaluation metrics are used in the hierarchical 

classification of data streams and (v) what are the research gaps in the hierarchical 

classification of data streams. 

The protocol used to perform the SLR, as well as expanded results and 

discussions, are described in detail in the original paper of the SLR in (TIEPPO et al., 

2021). Yet, the main results, findings, and discussions about related works and the 

state of the art are described below. 

Table 2.1 details the related work of the hierarchical data stream classification 

area resulting from the SLR. 

 

Table 2.1 - Related work of the hierarchical data stream classification area. 

Id Year Title Reference 

1 2008 
Improving the performance of an incremental algorithm 
driven by error margins 

(DEL CAMPO-ÁVILAA et 
al., 2008) 

2 2009 
An Adaptive Hierarchical Model Based on Fusion of 
Ontology and Context 

(GU et al., 2009) 

3 2009 
Hierarchical Classification of Business Information on the 
Web Using Incremental Learning 

(WANG; GONG; GUO, 
2009) 

4 2009 
Problem classification method to enhance the ITIL incident 
and problem 

(SONG; SAILER; 
SHAIKH, 2009) 

5 2010 
Hierarchical classification of dynamically varying radar pulse 
repetition interval modulation patterns 

(KAUPPI; 
MARTIKAINEN; 
RUOTSALAINEN, 2010) 

6 2010 
Integrating support vector machine and genetic algorithm to 
implement dynamic wafer quality prediction system 

(CHOU; WU; CHEN, 
2010) 

7 2010 
On-line evolving image classifiers and their application to 
surface inspection 

(LUGHOFER, 2010) 

8 2010 
Soft Concept Hierarchies to Summarise Data Streams and 
Highlight Anomalous Changes 

(MARTIN; SHEN; 
MAJIDIAN, 2010) 

9 2011 
Pitch-density-based features and an SVM binary tree 
approach for multi-class audio classification in broadcast 
news 

(XIE et al., 2011) 
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10 2012 
A method for classifying packets into network flows based 
on GHSOM 

(SHI et al., 2012) 

11 2012 
Adaptive object recognition model using incremental feature 
representation and hierarchical classification 

(JEONG; LEE, 2012) 

12 2012 
Flashes in a star stream: Automated classification of 
astronomical transient events 

(DJORGOVSKI et al., 
2012) 

13 2012 
Hierarchical online problem classification for IT support 
services 

(SONG; SAILER; 
SHAIKH, 2011) 

14 2012 
Investigation of broadcast-audio semantic analysis scenarios 
employing radio-programme-adaptive pattern classification 

(KOTSAKIS; KALLIRIS; 
DIMOULAS, 2012) 

15 2014 Classifying XML data of semantic sensor networks (LA et al., 2014) 

16 2014 Dealing with temporal variation in patent categorization (D’HONDT et al., 2014) 

17 2014 Hierarchical multi-label classification of social text streams 
(LIANG; REN; DE 
RIJKE, 2014) 

18 2014 
Identifying seekers and suppliers in social media 
communities to support crisis coordination 

(PUROHIT et al., 2014) 

19 2015 
Anatomical-plane-based representation for human-human 
interactions analysis 

(ALAZRAI; MOWAFI; 
GEORGE LEE, 2015) 

20 2015 
Automatic identification of oculomotor behavior using pattern 
recognition techniques 

(KORDA et al., 2015) 

21 2015 
Cost-sensitive learning of hierarchical tree classifiers for 
large-scale image classification and novel category detection 

(FAN et al., 2015) 

22 2015 
Interactive open-ended learning for 3d object recognition: An 
approach and experiments 

(KASAEI et al., 2015) 

23 2015 Trending sentiment-topic detection on twitter (PENG et al., 2015) 

24 2016 
Adaptive learning process for the evolution of ontology-
described classification model in big data context 

(PEIXOTO; CRUZ; 
SILVA, 2016) 

25 2016 
Automated species counting using a hierarchical 
classification approach with Haar cascades and multi-
descriptor random forests 

(CHAVEZ et al., 2016) 

26 2016 
Enhancing normal-abnormal classification accuracy in 
colonoscopy videos via temporal consistency 

(PUERTO-SOUZA et al., 
2015) 

27 2016 
Human continuous activity recognition based on energy-
efficient schemes considering cloud security technology 

(CHEN et al., 2016) 

28 2016 
On improving performance of surface inspection systems by 
online active learning and flexible classifier updates 

(WEIGL et al., 2016) 

29 2016 
Phoneme sequence recognition via DTW-based 
classification 

(HAMOONI; MUEEN; 
NEEL, 2016) 

30 2017 A hierarchical approach towards activity recognition (ANDEREZ et al., 2017) 

31 2017 
SW-SGD: the sliding window stochastic gradient descent 
algorithm 

(CHAKROUN; HABER; 
ASHBY, 2017) 

32 2018 
Adapting Hierarchical Multiclass Classification to changes in 
the target concept 

(SILVA-PALACIOS; 
FERRI; RAMIREZ-
QUINTANA, 2018) 

33 2018 
Affect recognition from facial movements and body gestures 
by hierarchical deep spatio-temporal features and fusion 
strategy 

(SUN et al., 2018) 

34 2018 
Contextual activity based Healthcare Internet of Things, 
Services, and People (HIoTSP): An architectural framework 
for healthcare monitoring using wearable sensors 

(KHOWAJA et al., 2018) 

35 2018 Fine-grained entity type classification with adaptive context (LIU et al., 2018) 

36 2018 
GCHAR: An efficient Group-based Context-aware human 
activity recognition on smartphone 

(CAO et al., 2018) 

37 2018 
Reservoir of diverse adaptive learners and stacking fast 
hoeffding drift detection methods for evolving data streams 

(PESARANGHADER; 
VIKTOR; PAQUET, 
2018) 

38 2018 
Using deep features for video scene detection and 
annotation 

(PROTASOV et al., 
2018) 
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39 2019 
A crowdsource-based sensing system for monitoring fine-
grained air quality in urban environments 

(HUANG et al., 2018) 

40 2019 
Diagnosis and Monitoring of Alzheimer's Patients Using 
Classical and Deep Learning Techniques 

(RAZA et al., 2019) 

41 2019 
Learning skeleton representations for human action 
recognition 

(SAGGESE et al., 2019) 

42 2019 Towards Hierarchical Classification of Data Streams 
(PARMEZAN; SOUZA; 
BATISTA, 2018) 

 

As detailed in Table 2.1, the SLR resulted in 42 studies related to the 

hierarchical data stream classification area. These studies were published in the 2008-

2019 period, with an increase in the number of studies published each year. 

As aforementioned, the SLR investigated hierarchical data stream classification 

under five main research questions. The main findings related to them are summarized 

as follows: 

i. The main problems handled by related work include the classification of images, 

human activities, texts, and audio; 

ii. The datasets used in the study experiments are mostly created for the study or 

comprise synthetic data, revealing that there is not yet a baseline for the creation 

of testbeds. 

iii. The used algorithms are mainly well-known techniques, such as Support Vector 

Machines, k-Nearest Neighbors or Neural Networks, or adaptations of those. 

iv. The used evaluation metrics are mainly well-known techniques, such as 

accuracy, precision, recall, or F-Measure, with the addition of the Loss metric 

and other metrics concerned with computational resources. 

v. Research gaps in the hierarchical data stream classification context reported by 

the authors are mainly related to dynamism (ever-changing environment), data 

complexity (including large-scale data and non-stationary data over time), and 

computational resources (such as bounded memory and hardware limitations 

in real-world applications). 

 

2.3.2 Considerations concerning the state of the art 

 

The previously described related works were categorized according to the main 

properties of hierarchical and data stream classification areas (see Section 2.1) to 

highlight their adherence to the hierarchical data stream classification. 
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Table 2.2 details the adherence of the selected studies to the hierarchical data 

stream classification properties. Columns 2-5 show properties inherited from the 

hierarchical classification area and columns 6-11 from the data stream classification 

area. Time window values “S” and “L” stand for sliding and landmark windows; data 

stream handling strategies “I” and “A” stand for incremental and adaptive approaches. 

Unfilled cells (-) represent topics not comprehensively addressed by that study.  

One can note that there are few cases in the related work in which most of the 

properties from the hierarchical data stream classification area are fulfilled together. 

Some works present full hierarchical classifiers but only partially address the data 

streams aspect when considering data from streams as input while ignoring some 

constraints brought together by this data (like concept drifts) or only producing 

theoretical essays on their methods. On the other hand, some data stream classifiers 

even work with hierarchical data streams but perform their classification process by 

ignoring the hierarchy and obtaining a flat representation of classes. 

As an exception, the study presented in (PARMEZAN; SOUZA; BATISTA, 2018) 

(Id 42) covered both areas by proposing a method at the intersection of the areas from 

the beginning and also making available three datasets of hierarchical data stream 

classification. This method is based on the k-Nearest Neighbors (kNN) technique, 

represents the data hierarchically, and classifies new data using a top-down strategy 

within the hierarchy. The proposed algorithm performs a single path (Δ) and non-

mandatory leaf-node (Ξ) predictions, represents the hierarchy in a tree (Ω), and uses 

a local classifier per parent node approach to handle the hierarchy (Θ). In addition, the 

algorithm uses a sliding window by storing a memory buffer on each class node with 

the most recent examples of the data stream and discarding older instances when the 

buffer is full. After a predetermined number of initial instances used for training (burnout 

window), the method follows the prequential assessing protocol, processing the data 

stream on an instance basis and discarding each instance after analyzing it. 

This method successfully merged both areas (data stream classification and 

hierarchical classification) being able to classify hierarchical data streams with 

bounded computational resources and responsive to possible concept drifts. However, 

this approach still has some limitations in the context of hierarchical data stream 

classification area since the computational cost for classifying new instances is 

dependent on the number of instances that the model stores. 
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Table 2.2 - Adherence of the selected studies to the hierarchical data stream classification properties. 

Id
 

D
a
ta

 

S
tr

u
c
tu

re
 

𝚼
/𝛀

 

L
a
b

e
l 

c
a
rd

in
a

li
ty

 

𝚿
/𝚫

 

L
a
b

e
l 
D

e
p

th
 

𝚽
/𝚵

 

H
ie

ra
rc

h
y
 

h
a
n

d
li
n

g
  

𝚯
 

S
in

g
le

-p
a
s

s
 

R
e
a
d

in
e

s
s

 

B
o

u
n

d
e
d

 

M
e
m

o
ry

 

C
o

n
c
e
p

t 

d
ri

ft
  

T
im

e
 

W
in

d
o

w
 

D
a
ta

 s
tr

e
a
m

 

h
a
n

d
li
n

g
 

1 - - - - Yes Yes No No - I 

2 - - - - - - - - - - 

3 Tree MPL/MPP PD/NMLNP LCN No No No No - I 

4 Tree SPL/SPP FD/MLNP LCN No No No No - I 

5 Tree SPL/SPP FD/MLNP LCPN/LCN No No No No S - 

6 - - - - No Yes No Yes - I 

7 - - - - Yes Yes Yes Yes S I 

8 DAG/Tree SPL/SPP FD/MLNP - No No No No - - 

9 Tree MPL/MPP FD/MLNP LCPN No No No No S - 

10 Tree SPL/SPP FD/MLNP - No No No No S - 

11 - - - - No No No No - I 

12 Tree SPL/SPP FD /MLNP LCN Yes No No No - I 

13 Tree SPL/SPP FD /MLNP LCN No No No No - I 

14 Tree SPL/SPP FD/MLNP LCN No No No No - - 

15 Tree SPL/SPP FD/MLNP LCN No No No No - - 

16 Tree - - - No No No Yes - - 

17 Tree MPL/MPP PD/NMLNP - No No No Yes L I 

18 Tree SPL/SPP FD/MLNP - No No No No - - 

19 - - - - No No No No S - 

20 Tree SPL/SPP FD/MLNP LCPN No No No No S - 

21 Tree SPL/SPP PD/NMLNP LCP No No No No S I 

22 - - - - No No No No - I 

23 - - - - No Yes No No - - 

24 DAG/Tree MPL/MPP - - No No No Yes - A 

25 DAG SPL/SPP FD/MLNP LCPN No No No No - - 

26 - - - - No No No No S - 

27 DAG/Tree SPL/SPP FD/MLNP - No No No No - - 

28 - - - - Yes No No No - A 

29 Tree SPL/SPP FD/MLNP LCPN No No No No S - 

30 Tree SPL/SPP FD/MLNP LCPN No No No No S - 

31 Tree MPL/MPP FD/MLNP - No No No No S - 

32 Tree MPL/MPP FD/MLNP LCN No No No No - I 

33 DAG/Tree SPL/SPP FD/MLNP - No No No No - - 

34 DAG/Tree SPL/SPP FD/MLNP LCPN No No No No S - 

35 Tree SPL/SPP FD/MLNP - No No No No S - 

36 Tree SPL/SPP FD/MLNP - No No No No - - 

37 - - - - Yes Yes Yes Yes S A 

38 Tree SPL/SPP FD/MLNP - No No No No S - 

39 Tree SPL/SPP FD/MLNP - No No No No - - 

40 Tree SPL/SPP FD/MLNP - No No No No - - 

41 Tree SPL/SPP FD/MLNP - No No No No - - 

42 Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes S A 
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Consequently, the available computational resources still limit the method in 

representing information since larger buffers could compromise its readiness and even 

make it unfeasible because the processing time will eventually surpass the ratio in 

which incoming instances become available. Then, the method will need to discard 

those instances without processing them, and it will not adapt itself swiftly enough to 

handle concept drifts since information about changes in the data would be lost. 

Furthermore, one of the main insights extracted from this review is the difference 

between the number of candidate studies (primarily retrieved) and the selected studies 

(the ones listed in Table 2.1 obtained after filtering by inclusion and exclusion criteria). 

Direct exclusion criteria (such as the language or gray literature) filtered a 

considerable number of studies, but here we highlight the difference between the 

number of candidate studies after exclusion criteria and the number of selected 

studies. In other words, the lack of adherence between the previously returned studies 

and the inclusion criteria denotes a specific property of hierarchical data stream 

classification: it is a roughly unexplored gap that lies between two well-known areas. 

In this sense, there is room for methods that fulfill the requirements of the 

hierarchical data stream classification area and can still work with constant 

computational resources, avoiding the use of resources linearly scalable by the 

number of instances provided by the data stream. 

 

2.4 A NOTE ON THE RESEARCH GAP 

 

As discussed in the introduction, the data stream classification area has been 

revisiting the classification subtasks resulting in new research connections, initially with 

the binary classification of data streams, and then handling problems hierarchically 

structured. This evolution seems reasonable considering the improvement in obtaining, 

collecting, and storing large-scale data. 

For example, the authors in (SOUZA et al., 2020) proposed a new version of 

one of the datasets initially introduced in (PARMEZAN; SOUZA; BATISTA, 2018) (a 

aforementioned related work), comprehending more instances and with a formal 

definition of concept drifts within the data stream. 

This dataset is composed of instances representing flying insects captured by 

electronic traps built with optical sensors, obtaining the wing-beat frequency of the 

insects. The purpose of the dataset is to build classifiers to recognize and capture 
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particular species of interest that may represent disease vectors or cause agricultural 

damage (SOUZA et al., 2020). 

The central dataset generated by the authors contains all instances collected in 

natural order (randomly) along the data stream. The authors also proposed different 

filters and arrangements of the dataset based on ambient features, such as the 

temperature or the luminosity at a given time in which an instance was collected. By 

that, the authors controlled the occurrence and representation of concept drifts in the 

dataset. As result, the authors proposed 11 datasets, including the one containing the 

complete data, plus another ten sets representing balanced and unbalanced versions 

of five distinct patterns simulating concept drifts. 

Although the dataset was introduced by the authors as a flat dataset, the data 

stream maintains the hierarchical trait as initially proposed in (PARMEZAN; SOUZA; 

BATISTA, 2018). In other words, each instance component of the data stream 

represents species of disease vector mosquitoes, which are naturally organized in an 

entomological taxonomy. 

From the perspective of the classification task, this dataset can be handled in a 

few different ways. Note that, despite being a hierarchical data stream set, learning 

models from other classification subtasks can be applied if specific data traits are not 

taken into account. 

For instance, a hierarchical classifier can be applied to a hierarchical data 

stream handling it as a batch dataset, or a flat data stream classifier can be applied 

disregarding data hierarchy. However, both strategies have drawbacks that strengthen 

the rationale behind the investigation of the hierarchical data stream classification area 

proposed in this thesis. These drawbacks are discussed below. 

On one hand, regarding hierarchical classification, the main disadvantages of 

learning models are the premise of finite data available for a well-defined training step 

and the building of a stationary model. Data streams are potentially unbounded, and 

data are made available to the model continuously over time. Thus, several strategies 

used by hierarchical classifiers would fail in a data stream environment, such as storing 

all data or reprocessing a given instance. In addition, due to the ephemeral trait of the 

data, the stationary model could result in model degradation over time since it would 

use old information as a reference that may no longer describe the current data. 

Note that the forced use of exclusively hierarchical classifiers in a hierarchical 

data stream is possible, for example, if considered in hypothetical circumstances in 
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which data can be totally stored in memory. However, it may render a noticeable 

drawback to the classification results since the learning model would not use any 

update strategy to respond to possible changes in data distribution that affect 

predictions. 

On the other hand, concerning data stream classification, learning models have 

the main drawback of not considering intrinsically class hierarchies present in 

hierarchical data streams, losing information that could be useful to the classification 

process. 

Note that the forced use of flat data stream classifiers in a hierarchical data 

stream is even feasible by ignoring the hierarchy of classes, predicting a class in a flat 

and isolated way, and retrieving a hierarchical label path with a further analysis of an 

attached ontology. 

However, all the information on the relationship between the classes is wasted 

mainly in two aspects. First, the model would not consider any similarity between 

classes, which may affect the prediction and the classification costs (since the 

classification costs are different at different spots in the hierarchy). Second, the trade-

off between prediction reliability and usefulness is not an option since the classifiers 

do not have enough information to walk through the hierarchy and make decisions on 

discriminating generic classes (where there are more examples and thus more 

confidence but less usefulness) or specifying the prediction to deeper hierarchy 

classes (where there are fewer examples and thus less confidence but more 

usefulness) (FREITAS; CARVALHO, 2007). 
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3 PROPOSED METHODS 

 

This section describes the learning models proposed in this thesis. The first part 

provides an overview of the methods, summarizing their main characteristics and 

classification approaches. The remaining part (Sections 3.2, 3.3, and 3.4) describes 

the proposed methods based on nearest neighbors, clustering, and gaussian 

probabilities, including their descriptions and algorithms. 

 

3.1 OVERVIEW 

 

As previously reported in the systematic literature review that investigated 

research related to hierarchical data stream classification (see Section 2.3), the task 

was totally addressed first in (PARMEZAN; SOUZA; BATISTA, 2018), where the 

authors proposed a k-Nearest Neighbors (kNN) classifier fitted to work with 

hierarchically structured data streams.  

The method, hereafter referred to as Local kNN-hDS, stores 𝑛 instances on 

buffers assigned to each class node in the hierarchy. When the model receives a new 

instance, it applies a sliding window strategy to forget older data as a first-in/first-out 

strategy is followed. Additionally, the method uses local classifiers per parent node, 

building sub-datasets of instances at each step to perform the distance computations 

required by the kNN method. 

Despite being an effective hierarchical data stream classifier, the Local kNN-

hDS method has a main drawback regarding hierarchical data stream classification as 

it stores raw instances on buffers on the learning model and may put in jeopardy time 

and memory usage constraints required by streaming scenarios. 

In this sense, this thesis introduces novel hierarchical data stream methods that 

use different strategies of data summarization, making them more suitable to the 

hierarchical data stream classification task. 

First, in Section 3.2, it is introduced the Global kNN-hDS method, an adaptive 

global k-Nearest Neighbors method for hierarchical data stream classification. 

The Global kNN-hDS method can be understood as a natural first response to 

the aforementioned related work Local kNN-hDS, as it uses a global strategy to reduce 

the dependence of Local kNN-hDS on distance computations. 
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Likewise, Section 3.3 brings forward methods that use summarization 

techniques, i.e., incremental centroids (STEINBACH; ERTÖZ; KUMAR, 2004), and 

cluster feature vectors (𝐶𝐹𝑠) (ZHANG; RAMAKRISHNAN; LIVNY, 1996), as part of a 

hierarchical data stream classification process, to reduce the dependence on distance 

computations even more, and also being able to work with potentially unbounded 

hierarchical data streams with constant memory and time. 

Specifically, the section describes two pairs of methods: Local and Global kNC-

hDS, and Local and Global Dribble-hDS. Both global methods use the same global 

strategy used in the Global kNN-hDS method to perform fewer distance computations. 

Regarding summarization strategies, Local and Global kNC-hDS rely on centroid 

summarization, while Local and Global Dribble-hDS on cluster feature vectors. 

Finally, Section 3.4 introduces the GNB-hDS method, an adaptive Gaussian 

Naive Bayes that relies on the well-known Gaussian Naive Bayes classification 

technique (BISHOP; NASRABADI, 2006) and uses statistical descriptors as a 

summarization strategy instead of storing raw instances.  

In addition to the GNB-hDS method, Section 3.4 also describes the incremental 

Yeo-Johnson Power Transformation, an incremental adaptation of the well-known 

Yeo-Johnson Power Transformation (YEO; JOHNSON, 2000) that does not require a 

full view of the data, it is performed instance by instance, and it is adaptive along the 

data stream. This proposed transformation can be used attached to a classifier as a 

data pre-processing step to reduce the skewness of the data and improve the 

prediction results. Therefore, the GNB-hDS method was also experimented with 

different variations regarding the use of the incremental Yeo-Johnson Power 

Transformation. 

Table 3.1 summarizes all methods proposed in this thesis, briefing their 

summarization and prediction strategies. Each method is described in detail in the 

following sections. 

Table 3.2 specifies the proposed methods concerning the hierarchical data 

stream classification properties (using the same categorization previously used in 

Section 2.3.2, Table 2.2). In the last two columns, “S” stands for the sliding window 

strategy, and “I” and “A” stand for incremental and adaptive data stream handling 

approaches. 

Observe that the proposed methods fulfill all hierarchical data stream 

classification constraints.  
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Also, note that some specifications represent the current method in this thesis 

but do not necessarily imply a method limitation in that category. For instance, some 

methods that handle the data stream adaptively can also perform it incrementally only 

with parameter adjustments. The same idea applies to label cardinality or the window 

strategy. 

 

Table 3.1 - Overview of the proposed methods and their summarization and prediction strategies. 

Proposed Method Summarization strategy Prediction strategy 

Global kNN-hDS Buffers of instances Nearest neighbors and label path analysis 

Local kNC-hDS Centroids Nearest neighbors 

Global kNC-hDS Centroids Nearest neighbors and label path analysis 

Local Dribble-hDS Cluster Feature Vectors Nearest neighbors 

Global Dribble-hDS Cluster Feature Vectors Nearest neighbors and label path analysis 

GNB-hDS Statistical descriptors Bayesian probabilities 

 

Table 3.2 - Specification of the proposed methods concerning the hierarchical data stream 
classification properties. 
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Global kNN-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes S A 

Local kNC-hDS Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes S A 

Global kNC-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes S A 

Local Dribble-hDS Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes S A 

Global Dribble-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes S A 

GNB-hDS Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes S I/A 

 

3.2 GLOBAL K-NEAREST NEIGHBORS FOR HIERARCHICAL DATA STREAMS 

(GLOBAL KNN-HDS) 

 

The Global k-Nearest Neighbors for Hierarchical Data Streams (Global kNN-

hDS) is an adaptive method for the hierarchical data stream classification based on 

the traditional k-Nearest Neighbors (kNN) technique (AHA; KIBLER; ALBERT, 1991). 

The method performs single path predictions (SPP) and mandatory leaf-node 

predictions (MLNP) using a global classification (GC) approach. Global kNN-hDS 
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processes new instances with less computational effort when compared to local 

approaches. 

Here, it is essential to highlight that a global approach is usually smaller in 

computational resources than a local approach since it deploys a single model in 

contrast to multiple models in the local approaches (SILLA; FREITAS, 2011). Figure 

3.1 illustrates this difference in two kNN methods using a local classifier approach 

(LCPN, in this case) and a global classifier (GC) approach, where 𝑅 stands for the root 

node of the tree. 

 

 

Figure 3.1 - Illustrative comparison between LCPN and GC hierarchical classification approaches. 

 

While kNN-LCPN compares instances at each level in the hierarchy, the kNN-

GC performs only one comparison for the whole tree. Note that a kNN using a local 

approach (Figure 3.1, kNN - LCPN) comprises one classifier at each parent node in 

the hierarchy to choose between its child nodes using sub-datasets at each step. The 

kNN-LCPN placed in the root node performs one comparison using 400 instances to 

predict A or B. After that, another kNN-LCPN placed in the B node (the predicted one 

in the last step) repeats the process with its child nodes, performing another 

comparison with another 200 instances. 

In contrast, a global approach kNN (Figure 3.1, kNN - GC) performs only one 

comparison for the whole tree using the 400 instances available. It is important to note 

that this difference is dependent on the depth of the tree and tends to be even larger 

in deeper hierarchies. 

The global approach is achieved by selecting the kNN of an instance and 

comparing the labels for each level, picking the label paths with the most frequent label 

A B 

A1 A2 B1 B2 

𝑅 

(kNN - LCPN) 

A B 

A1 A2 B1 B2 

𝑅 
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for that level. Next, the process is repeated for the next level of the label path until it 

reaches a leaf node. 

Figure 3.2 illustrates this process with illustrative label paths and using 𝑘 =  5 

on the kNN. The most frequent label in each level is chosen, and the other label paths 

are discarded in the analysis of the next level. Ties are decided using the lowest 

distance between neighbors. The process is repeated until it reaches a leaf node. 

 

 

 

 

 

Figure 3.2 - Global approach via label path analysis using label frequency per hierarchy level. 

 

The proposed method is also adaptive since it uses a sliding window as a 

mechanism to forget older data. The method implements the window using a memory 

buffer 𝑛 at each leaf node in the tree. Thus, the method inherently responds to concept 

drifts. 

Algorithm 3.1 shows the pseudocode for the proposed adaptive global k-Nearest 

Neighbors method for hierarchical data stream classification. 

The algorithm receives a hierarchical data stream ℎ𝐷𝑆 providing instances 

(𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡, and the above described 𝑘 and 𝑛 parameters, representing the 

number of nearest neighbors and the upper bound of buffers on each node. 

The hierarchy representation step is performed in line 1. The loop started on line 

2 simulates the prequential loop. 

From lines 3 to 5, the method obtains all the instances temporarily stored in all 

the descendant nodes of the root node. Next, in lines 6-8, it calculates the Euclidean 

distance between the new instance and the data stored at the tree (the possible 

nearest neighbors obtained in the previous step). Thus, the 𝑘-nearest neighbors and 

their labels are obtained by sorting the possible nearest neighbors by the Euclidean 

distance (line 9). 
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Algorithm 

Global kNN-hDS - Adaptive global k-Nearest Neighbors for hierarchical data stream 

classification 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 

𝑘: number of nearest neighbors 

𝑛: maximum number of instances to be stored in each node 

Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  hDS) do 
3   foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡. 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠) do 
4     𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
5   end 

6   foreach (𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) do 
7     𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ {𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑑𝑎𝑡𝑎)}; 
8   end 

9   𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← (𝑡𝑎𝑟𝑔𝑒𝑡𝑠)1..𝑘; 
10   𝑦⃗𝑡

̂ ← 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑛𝐿𝑒𝑣𝑒𝑙(𝑡𝑎𝑟𝑔𝑒𝑡𝑠); 
11   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑦⃗𝑡; 
12   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∪ {𝑥⃗𝑡}; 
13   if (|𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎| > 𝑛) then 
14     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∖ {(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)1}; 
15   end 

16 end 

Algorithm 3.1 - Global kNN-hDS: Adaptive global k-Nearest Neighbors for hierarchical data stream 
classification. 

 

After that (line 10), the model can predict the label path by choosing the label 

returned by the function 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑛𝐿𝑒𝑣𝑒𝑙(), which implements the strategy 

previously described in Figure 3.2.  

Next, the method completes the prequential step by incorporating the new data 

into the original dataset using its correct label (lines 11 and 12). In lines 13-15, the 

model tests whether the number of instances in each node exceeds the stipulated 

upper bound 𝑛. If so, it applies a sliding window strategy by forgetting the oldest 

instance of that node, performing the proposed adaptive learning, and assuring that 

the method can work with a constrained and constant memory amount. 

 

3.3 K-NEAREST CENTROIDS FOR HIERARCHICAL DATA STREAMS (KNC-HDS) 

AND DRIBBLE FOR HIERARCHICAL DATA STREAMS (DRIBBLE-HDS) 

 

In this section, two methods are proposed: k-Nearest Centroids for Hierarchical 

Data Streams (kNC-hDS) and Dribble for Hierarchical Data Streams (Dribble-hDS), 

each with local and global variants. 
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These methods share the same trait of using summarization strategies to 

represent data using clustering techniques. 

Clustering is an unsupervised learning task that aims to find groups of instances 

in such a way that instances inside a group are similar to each other but distinguishable 

from those belonging to the other groups. In other words, given a set of instances, a 

clustering technique divides the instances into groups to minimize the intragroup and 

maximize the intergroup distance (STEINBACH; ERTÖZ; KUMAR, 2004). 

The clustering task helps to understand the data – finding patterns of behavior 

or similarity between instances – or summarizing them, reducing their size by choosing 

a sample that is the pattern or the average of the group (STEINBACH; ERTÖZ; 

KUMAR, 2004). 

The instance-based learning process used in a traditional kNN (in the same way 

as addressed by related work Local kNN-hDS and the proposed Global kNN-hDS) 

presents a drawback when applied in the data stream context since it depends on the 

instance comparison, which may not be feasible when considering the entire data 

stream (NGUYEN; WOON; NG, 2015; STEINBACH; ERTÖZ; KUMAR, 2004). 

In this sense, kNC-hDS and Dribble-hDS use clustering techniques in order to 

improve data representation and allow a faster comparison of a large volume of data. 

Specifically, both local and global kNC-hDS use incremental centroids (STEINBACH; 

ERTÖZ; KUMAR, 2004), while both local and global Dribble-hDS use cluster feature 

vectors (𝐶𝐹𝑠) (ZHANG; RAMAKRISHNAN; LIVNY, 1996) to represent data. 

Next, this section describes in detail both Local kNC-hDS and Local Dribble-

hDS methods. Afterward, both global variants are specified. 

First, both methods organize class labels in a hierarchically structured class 

taxonomy using a tree data structure, with the paths from the root node to the leaf 

nodes representing label paths (classes) of instances.  

kNC-hDS and Dribble-hDS follow different data representations compared to 

traditional kNN-based methods. 

While in the kNN instance subsets are buffered with their class labels, kNC-hDS 

and Dribble-hDS use summarization strategies and discard the instances, thus 

resulting in smaller memory consumption and fewer distance computations. 

kNC-hDS summarizes data using centroids, consequently resulting in a smaller 

number of distance computations when handling larger data volumes. A centroid is 
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defined as a mean of the instances that are clustered together according to some 

criteria (STEINBACH; ERTÖZ; KUMAR, 2004). 

The incremental centroids are built by storing the incremental mean of instance 

attributes. The incremental mean 𝜇𝑡 with the arrival of 𝑡 values is computed as depicted 

in Equation (4), where 𝑥̅𝑡−1 represents the current average, 𝑡 is the number of instances 

observed thus far, and 𝑥𝑡 is the arriving value to be incorporated. 

 

 
𝜇𝑡 =

𝑥̅𝑡−1(𝑡 − 1) + 𝑥𝑡
𝑡

 (4) 

 

Comparably, the Dribble-hDS method also summarizes instances but it uses 

Cluster Feature vectors (𝐶𝐹𝑠) (ZHANG; RAMAKRISHNAN; LIVNY, 1996). 

𝐶𝐹𝑠 enable summarizing data in hyperspherical regions and have been used in 

both data stream clustering and classification techniques (AGGARWAL et al., 2006). 

A 𝐶𝐹 is a triplet in the 𝐶𝐹 = (𝑁, 𝐿𝑆, 𝑆𝑆) format, where 𝑁 is the number of 

instances of the cluster summary, and 𝐿𝑆 and 𝑆𝑆 are the linear and square sum of the 

instances, respectively.  

Thus, 𝐿𝑆 and 𝑆𝑆 are 𝑁-dimensional vectors, such that the dimensions match the 

original features available in instances (ZHANG; RAMAKRISHNAN; LIVNY, 1996). 

From these components, the summary centroid (mean, 𝜇) and its radius (𝑟) are 

computed according to Equations (5) and (6) respectively, where 𝑑 is the number of 

features available.  

 
𝜇(𝐶𝐹𝑖) =

𝐿𝑆𝑖
𝑁𝑖

 (5) 

 

 

𝑟(𝐶𝐹𝑖) =
1

𝑑
∑√

𝑁𝑖(𝑆𝑆𝑖) − 2(𝐿𝑆𝑖
2) + 𝑁𝑖(𝐿𝑆𝑖)

𝑁𝑖
2

𝑑

𝑖=1

 (6) 

 

In addition to their potential to summarize data, 𝐶𝐹𝑠 also have an additive 

property, i.e., two feature vectors 𝐶𝐹𝑖 and 𝐶𝐹𝑗 can be merged by summing their 

components according to Equation (7) (ZHANG; RAMAKRISHNAN; LIVNY, 1996): 

 

 𝐶𝐹𝑘 = 𝐶𝐹𝑖 + 𝐶𝐹𝑗 = (𝑁𝑖 +𝑁𝑗 , 𝐿𝑆𝑖 + 𝐿𝑆𝑗 , 𝑆𝑆𝑖 + 𝑆𝑆𝑗) (7) 
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In both kNC-hDS and Dribble-hDS methods, instances are incorporated into the 

model by composing a set of 𝑛 incremental centroids (kNC-hDS) or 𝐶𝐹𝑠 (Dribble-hDS) 

in the respective class node, where 𝑛 is a user-defined hyper-parameter. 

To retrieve summary descriptions and build sub-datasets for the prediction step, 

it is performed a top-down traverse in the hierarchy obtaining all centroids/𝐶𝐹𝑠 stored 

at the leaf nodes of the tree using the siblings' policy to consider positive instances 

from the target node and its descendants (SILLA; FREITAS, 2011). 

The retrieval is straightforward in kNC-hDS since the model stores centroids 

representing a mean instance of the data stream. Meanwhile, in Dribble-hDS, we need 

an additional step to calculate the mean of the 𝐶𝐹𝑠 (see Equation (5)). Additionally, to 

avoid noise incorporation due to the intrinsic characteristic of small 𝐶𝐹𝑠, Dribble-hDS 

implements an outlier control by retrieving only reasonably populated 𝐶𝐹𝑠 (user-

defined, by default, one-third of 𝐶𝐹𝑠 size). 

At any moment, the model can perform a prediction by comparing an unseen 

instance to the centroids/𝐶𝐹𝑠 stored at the nodes of the tree. The class prediction is 

performed by calculating the Euclidean distance between a new instance and the 

centroids/mean of 𝐶𝐹𝑠 represented in the hierarchy nodes, returning the most frequent 

label between the selected 𝑘-nearest neighbors. 

Both methods perform single path and mandatory leaf-node prediction, using a 

local classifier per node (LCPN) approach. Thus, in the prediction step, one multi-class 

classifier is applied per class to predict between its child nodes. The resulting predicted 

label is appended to the final label path, representing the full hierarchical label path 

predicted to a given instance.   

After the prediction step, the methods update their summary descriptions. kNC-

hDS and Dribble-hDS differ in the way the data is summarized. However, both methods 

work with a limited size 𝑚 on centroids/𝐶𝐹𝑠, where 𝑚 is a user-defined hyper-

parameter. 

On kNC-hDS, a new (training) instance is incorporated into the stored centroid 

by incrementing its average (see Equation (4)). If the centroid is already full (i.e., if the 

number of summarized instances equals 𝑚), a new centroid is instantiated to the 

corresponding class node. As a consequence, if a node reaches the stipulated 

maximum number 𝑛 of centroids, a forgetting strategy is performed by applying a 

sliding window and discarding the oldest centroid. 
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On Dribble-hDS, when a new (training) instance is received, the method checks 

if the instance is encompassed by any of the hyperspheres represented in the correct 

class of the instance (i.e., whether the instance is between the 𝐶𝐹 mean and its radius 

or not). If so, it adds the new instance to the respective 𝐶𝐹. When the number of 

summarized instances surpasses 𝑚, the method performs a forgetting strategy by 

subtracting from the 𝐶𝐹 a statistical description (one mean instance) representing the 

oldest instance. Otherwise, if the instance is not encompassed by any of the 

hyperspheres, it starts a new hypersphere (at that moment, yet a single point). If the 

maximum number (𝑛) of hyperspheres (or points) in a class is reached, the two closest 

hyperspheres are merged using the additive property of the 𝐶𝐹𝑠. 

Algorithm 3.2 shows the pseudocode for the proposed Local k-Nearest 

Centroids for hierarchical data stream classification. Likewise, Algorithm 3.3 shows the 

pseudocode for proposed Local Dribble for hierarchical data stream classification. 

Both algorithms perform the same steps to handle the data stream and also in 

the prediction step. Thus, both algorithms receive a hierarchical data stream ℎ𝐷𝑆 

providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 and the aforementioned hyper-parameters 𝑘, 𝑛 

and 𝑚, and output a predicted label path for each incoming instance.  

The representation of the class hierarchy is performed on the first line, and the 

loop started in line 2 applies the described LCPN approach to retrieve the summary 

descriptions stored at the tree nodes. The prediction step is also performed equally for 

both methods and it is depicted from lines 11 to 16 on the algorithm. Note that, until 

this very point, both methods differ only by the data structure retrieved specified in the 

code as the data from a node. On kNC-hDS, data refers to the stored centroids, while 

on Dribble-hDS it refers to the means of the 𝐶𝐹𝑠.  

Both methods differ in summary updating and forgetting strategies, represented 

in the algorithm from line 19 on. The processes performed in this step on each method 

separately are described below. 

On kNC-hDS (Algorithm 3.2), the method incorporates the new instance into the 

stored centroid by incrementing its average (line 20) or it creates a new centroid if the 

newest centroid is already full (line 23). After that, the method tests whether the number 

of centroids in the ground-truth node exceeds the stipulated maximum number 𝑛 

allowed (line 25). If so, it applies a sliding window strategy by forgetting the oldest 

centroid (line 26). 
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Algorithm 

Local kNC-hDS – Local k-Nearest Centroids for hierarchical data stream 

classification 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 

𝑘: number of nearest centroids 

𝑛: maximum number of centroids 

𝑚: maximum number of instances to be summarized on a centroid 

Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  hDS) do 
3   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡; 
4   while ¬(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑖𝑠𝐿𝑒𝑎𝑓) do 
5     foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) do 
6       𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
7       foreach (𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑁𝑜𝑑𝑒 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) do 
8          𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
9       end 

10     end 

11     foreach (𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) do 
12       𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ {𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑑𝑎𝑡𝑎)}; 
13     end 

14     𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← (𝑡𝑎𝑟𝑔𝑒𝑡𝑠)1..𝑘; 
15     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑎𝑟𝑔𝑒𝑡𝑠); 
16     𝑦⃗𝑡

̂ ← 𝑦⃗𝑡
̂ ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙; 

17   end 

18   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑦⃗𝑡; 
19   if (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑛𝑒𝑤𝑒𝑠𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑. 𝑐𝑜𝑢𝑛𝑡 < 𝑚) then 
20     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑛𝑒𝑤𝑒𝑠𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝑖𝜇; 
21   end 

22   else 

23     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∪ {𝑛𝑒𝑤𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥⃗𝑡)}; 
24   end 

25   if (|𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎| > 𝑛) then 
26     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∖ {(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)1} 
27   end 

28 end 

Algorithm 3.2 - Local kNC-hDS: Local k-Nearest Centroids for hierarchical data stream classification. 

 

On Dribble-hDS (Algorithm 3.3), the method finds the nearest 𝐶𝐹 (line 19) to: 

update the 𝐶𝐹 using its additive property if the new 𝐶𝐹 is encompassed by the nearest 

𝐶𝐹 (line 21), or create a new 𝐶𝐹 if it is not encompassed by the nearest 𝐶𝐹 (line 27). 

Then, the method checks if the number of instances represented in the 𝐶𝐹𝑠 stored at 

the ground-truth node exceeds the stipulated maximum number 𝑚 allowed (line 22). 

In such a case, a 𝐶𝐹 mean is subtracted from the 𝐶𝐹 to forget a representation of the 

oldest instance (line 23).  
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Algorithm 

Local Dribble-hDS – Local Dribble for hierarchical data stream classification 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 

𝑘: number of nearest 𝐶𝐹 means 
𝑛: maximum number of 𝐶𝐹𝑠 

𝑚: maximum number of instances to be summarized on a 𝐶𝐹 
Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  hDS) do 
3   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡; 
4   while ¬(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑖𝑠𝐿𝑒𝑎𝑓) do 
5     foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) do 
6       𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
7       foreach (𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑁𝑜𝑑𝑒 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) do 
8          𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
9       end 

10     end 

11     foreach (𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) do 
12       𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ {𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑑𝑎𝑡𝑎)}; 
13     end 

14     𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← (𝑡𝑎𝑟𝑔𝑒𝑡𝑠)1..𝑘; 
15     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑎𝑟𝑔𝑒𝑡𝑠); 
16     𝑦⃗𝑡

̂ ← 𝑦⃗𝑡
̂ ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙; 

17   end 

18   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑦⃗𝑡; 
19   𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)); 
20   if (𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹. 𝑟𝑎𝑑𝑖𝑢𝑠) then 
21     𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 + 𝑛𝑒𝑤𝐶𝐹(𝑥⃗𝑡); 
22     if (𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹. 𝑐𝑜𝑢𝑛𝑡 > 𝑚) then 
23       𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹.𝑚𝑒𝑎𝑛; 
24     end 

25   end 

26   else 

27     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∪ 𝑛𝑒𝑤𝐶𝐹(𝑥⃗𝑡); 
28     if (|𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎| > 𝑛) then 
29       𝐶𝐹1, 𝐶𝐹2 ← 𝑓𝑖𝑛𝑑𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑠(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎);  
30       𝐶𝐹1 ← 𝐶𝐹1 + 𝐶𝐹2; 
31     end 

32   end 

33 end 

Algorithm 3.3 - Local Dribble-hDS: Local Dribble for hierarchical data stream classification. 

 

Finally, the method checks if the number of 𝐶𝐹𝑠 stored at the ground-truth node 

exceeds the stipulated maximum number allowed (line 28). If so, it merges the two 

closest 𝐶𝐹𝑠 to return to the maximum number 𝑛 of 𝐶𝐹𝑠 allowed on that node. To this 

end, a Euclidean distance calculation is performed between all 𝐶𝐹𝑠 at the node. 

As described at the beginning of this section, two global variants of kNC-hDS 

and Dribble-hDS methods are proposed next. The Global kNC-hDS and Global 

Dribble-hDS follow the same strategies to summarize data using incremental centroids 

and 𝐶𝐹𝑠. Also, both methods use a global strategy to handle the hierarchy in their 
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learning process, and thus, process new instances with fewer comparisons when 

compared to local approaches.  

Figure 3.3 illustrates the steps of the learning process shared by both methods. 

After building the hierarchy representation, each method receives instances 𝑖𝑡 =

(𝑥⃗𝑡, 𝑦⃗𝑡). A test/prediction phase starts by obtaining all data from nodes, comparing them 

to find nearest neighbors, and applying a global approach via label path analysis. At 

this point, the model can be requested to predict a class (label path) for 𝑥⃗𝑡. Next, the 

instance 𝑥⃗𝑡 and the corresponding label path 𝑦⃗𝑡 are used to update the model, and 

older data is discarded by a sliding window. 

 

 

Figure 3.3 - General view of Global kNC-hDS and Global Dribble-hDS learning process. 

 

Note that both learning models follow the same strategy as their local 

counterparts, except for the prediction strategy that relies on a global approach instead 

of the LCPN approach used by the local methods.  

The global approach used by both methods is the same one used in the Global 

kNN-hDS method (see Section 3.2, Figure 3.2). Both methods analyze label paths 

retrieved from the kNN step, not comparing instances but the frequency of component 

labels of each level of the label paths. The most frequent label in each level is chosen, 

and the other label paths are discarded in the analysis of the next level. Ties are 

decided using the lowest distance between neighbors. The process is repeated until it 

reaches a leaf node. 

The building of datasets for distance computations considers the entire 

hierarchy of the tree. Therefore, the resulting kNN can represent nodes at any 

hierarchy level. In contrast, in local approaches, the building of datasets is restricted 

to portions of the hierarchy (by node, by parent node, or by level) and needs to be 

performed several times until reaching the deeper levels of the hierarchy. 

Algorithm 3.4 and Algorithm 3.5 depict the pseudocodes for the Global kNC-

hDS and Global Dribble-hDS methods that encompass the steps described above. 

Update of 

Centroids or 𝐶𝐹𝑠 

𝑘NN of 𝑖𝑡 from 

Centroids or  

𝐶𝐹 means 

Global approach 

by label path 

analysis 

Sliding window 

on Centroids or 

𝐶𝐹𝑠 

Hierarchy 

representation 

Centroids or  

𝐶𝐹 means from 

tree nodes 

Incoming instance 𝑖𝑡 (Test/Prediction phase) (Training/Update phase) 

(Prediction) 



53 
 

 

Algorithm 

Global kNC-hDS - Global k-Nearest Centroids for hierarchical data stream 

classification 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 

𝑘: number of nearest centroids 

𝑛: maximum number of centroids 

𝑚: maximum number of instances to be summarized on a centroid 

Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  hDS) do 
3   foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡. 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠) do 
4     𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
5   end 

6   foreach (𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) do 
7     𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ {𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑑𝑎𝑡𝑎)}; 
8   end 

9   𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← (𝑡𝑎𝑟𝑔𝑒𝑡𝑠)1..𝑘; 
10   𝑦⃗𝑡

̂ ← 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑛𝐿𝑒𝑣𝑒𝑙(𝑡𝑎𝑟𝑔𝑒𝑡𝑠); 
11   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑦⃗𝑡; 
12   if (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑛𝑒𝑤𝑒𝑠𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑. 𝑐𝑜𝑢𝑛𝑡 < 𝑚) then 
13     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑛𝑒𝑤𝑒𝑠𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← 𝑖𝜇; 
14   end 

15   else 

16     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∪ {𝑛𝑒𝑤𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥⃗𝑡)}; 
17   end 

18   if (|𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎| > 𝑛) then 
19     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∖ {(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)1} 
20   end 

21 end 

Algorithm 3.4 - Global kNC-hDS: Global k-Nearest Centroids for hierarchical data stream 
classification. 

 

Both algorithms receive a hierarchical data stream ℎ𝐷𝑆 providing instances 

(𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 and the aforementioned 𝑘, 𝑛 and 𝑚 parameters. The hierarchy 

representation step (line 1) and the test/prediction phase (lines 2-10) are similar 

between Global kNC-hDS and Global Dribble-hDS. The global approach by label path 

analysis is performed by a function that receives a set of label paths, recursively 

removes infrequent labels at each level of the label hierarchy and returns the most 

frequent label path of the initial set (line 10). 

Next (from line 11 onwards), both methods update themselves and apply the 

sliding windows differently, equally to their local variants. The Global kNC-hDS method 

updates the centroids using the incremental mean (Equation (4)) (line 13) and checks 

the upper boundaries 𝑚 and 𝑛. If 𝑚 is reached, the method creates a new centroid 

instead of filling the newest one (lines 12-16). If 𝑛 is surpassed, the method applies the 

sliding window strategy by discarding the oldest centroid (lines 18-20).  
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Algorithm 

Global Dribble-hDS – Global Dribble for hierarchical data stream classification 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 

𝑘: number of nearest 𝐶𝐹 means 
𝑛: maximum number of 𝐶𝐹𝑠 

𝑚: maximum number of instances to be summarized on a 𝐶𝐹 
Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  hDS) do 
3   foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡. 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠) do 
4     𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ∪ {(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙, 𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)}; 
5   end 

6   foreach (𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑡𝑎𝑟𝑔𝑒𝑡𝑠) do 
7     𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡𝑎𝑟𝑔𝑒𝑡 ∪ {𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑡𝑎𝑟𝑔𝑒𝑡. 𝑑𝑎𝑡𝑎)}; 
8   end 

9   𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← (𝑡𝑎𝑟𝑔𝑒𝑡𝑠)1..𝑘; 
10   𝑦⃗𝑡

̂ ← 𝑚𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐼𝑛𝐿𝑒𝑣𝑒𝑙(𝑡𝑎𝑟𝑔𝑒𝑡𝑠); 
11   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑦⃗𝑡; 
12   𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥⃗𝑡 , 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎)); 
13   if (𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹. 𝑟𝑎𝑑𝑖𝑢𝑠) then 
14     𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 + 𝑛𝑒𝑤𝐶𝐹(𝑥⃗𝑡); 
15     if (𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹. 𝑐𝑜𝑢𝑛𝑡 > 𝑚) then 
16       𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡𝐶𝐹.𝑚𝑒𝑎𝑛; 
17     end 

18   end 

19   else 

20     𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎 ∪ 𝑛𝑒𝑤𝐶𝐹(𝑥⃗𝑡); 
21     if (|𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎| > 𝑛) then 
22       𝐶𝐹1, 𝐶𝐹2 ← 𝑓𝑖𝑛𝑑𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐶𝐹𝑠(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎);  
23       𝐶𝐹1 ← 𝐶𝐹1 + 𝐶𝐹2; 
24     end 

25   end 

26 end 

Algorithm 3.5 - Global Dribble-hDS: Global Dribble for hierarchical data stream classification. 

 

On Global Dribble-hDS, the method updates the 𝐶𝐹𝑠 using the additive property 

or creating a new 𝐶𝐹 (lines 14 and 20). In line 14, the incoming instance is 

encompassed by the nearest 𝐶𝐹, while in line 20, it is not. The method also checks the 

upper boundaries 𝑚 and 𝑛. If 𝑚 is surpassed, the method subtracts a mean 

representation of the hypersphere from the 𝐶𝐹 (lines 15-17). If 𝑛 is surpassed, the two 

closest 𝐶𝐹𝑠 are merged to match the number of 𝐶𝐹𝑠 to 𝑛 (lines 21-24). 

 

3.4 GAUSSIAN NAIVE BAYES FOR HIERARCHICAL DATA STREAMS (GNB-HDS) 

 

This section describes the Gaussian Naive Bayes for Hierarchical Data Streams 

(GNB-hDS), a method for the hierarchical data stream classification based on the well-
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known Naive Bayes technique (BISHOP; NASRABADI, 2006; FRIEDMAN; GEIGER; 

GOLDSZMIDT, 1997). 

The main idea behind GNB-hDS is the use of dynamic data summaries, 

specifically the mean, the standard deviation, and the number of data instances, that 

allow the calculation of probabilities used in the Bayes' Theorem (BISHOP; 

NASRABADI, 2006; HAN; PEI; KAMBER, 2011).  

These dynamic data summaries are attached to nodes of the hierarchy and are 

updated as new instances are gathered from the data stream. 

The method implemented two key adaptations in the traditional Naive Bayes 

classifier to make it handle hierarchical data streams. 

First, regarding the hierarchical data structure, the original algorithm was 

modified to consider not only one class, but all related classes of a given instance. As 

the hierarchical data structure represents a subsumption relation, any new instance 

provided from the data stream also belongs to its ancestors. Thus, the method 

traverses the hierarchy to update all data summaries of parent nodes recursively until 

the root node of the hierarchy. 

Second, regarding the streaming input data, the algorithm must store 

incremental or adaptive statistical descriptors instead of the actual instances. Thus, 

the method computes the mean, the standard deviation, and the count of data 

instances assigned to each class incrementally or adaptively, discarding the instance 

after it is analyzed. 

The GNB-hDS represents the class taxonomy in a tree structure using local 

classifiers at each parent node and assigns leaf node classes as the last class of one 

predicted label path 𝑦⃗𝑡 (mandatory leaf-node and single path prediction). 

Figure 3.4 illustrates the process performed by GNB-hDS when handling the 

data stream incrementally. Circles represent classes, and dashed squares enclose 

classifiers. The method represents the class taxonomy in a tree structure, where 𝑅 

stands for the root node of the hierarchy and classes are related to each other. 

When receiving an incoming instance for prediction, the method tackles the 

hierarchy using a local classifier per parent node (LCPN) approach, thus analyzing the 

current parent node and predicting between its child nodes by using probabilities 

obtained with the Bayes' Theorem. This process is repeated until a leaf node is 

reached.  
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Each node in the tree stores the count of instances (𝑛), a 𝑑-dimensional 

incremental mean (𝑥̅𝑛), and a 𝑑-dimensional incremental standard deviation (𝜎𝑛) of the 

class represented (as shown in class 2). After the incoming instance processing, the 

statistical descriptors (𝑛, 𝑥̅𝑛, σ𝑛) are updated incrementally with the instance feature 

values on all the classes through the hierarchy regarding the ground-truth label path 

of that instance. 

 

 

Figure 3.4 - Illustration of GNB-hDS method. 

 

As before introduced, the instances are represented by data summaries 

comprising three statistical descriptors stored incrementally: (i) the count of class 

instances, (ii) the 𝑑-dimensional mean instance, and the 𝑑-dimensional standard 

deviation of the instances of a given class.  

The number of instances assigned to a class 𝐶 is stored in an attached counter. 

When an instance is retrieved from the stream, the 𝐶-th class counter is incremented 

alongside the counters of 𝐶's ancestors. 

The incremental mean (𝑥̅𝑛) and the incremental standard deviation (𝜎𝑛) 

considering each attribute from a 𝑑-dimensional 𝑥𝑛 instance are obtained, respectively, 

from Equations (8) and (9), where 𝑛 stands for the number of instances observed so 

far assigned to 𝐶 (CHAN; GOLUB; LEVEQUE, 1983; WEST, 1979).  

Also, it is important to reinforce that the incremental mean and the incremental 

standard deviation are 𝑑-dimensional descriptors as the feature set and its values from 

the 𝑑-dimensional 𝑥𝑛 instance. Note that Equations (8) and (9) support only continuous 

feature sets and the current mean and the standard deviation of the previously 

observed instances assigned to 𝐶 are represented by 𝑥̅𝑛−1 and σ𝑛−1.  

 

1 2 

1 1

.

2

.

2

.

𝑅 

(𝑛, 𝑥̅𝑛 , 𝜎𝑛) (…) 

(…) (…) (…) (…) 
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𝑥̅𝑛 =

(𝑥̅𝑛−1(𝑛 − 1)) + 𝑥𝑛
𝑛

 (8) 

 

 

𝜎𝑛 = √
(𝑛 − 2)𝜎𝑛−1

2 (𝑛 − 1) + (𝑥̅𝑛−1 − 𝑥̅𝑛)2 + (𝑥𝑛 − 𝑥̅𝑛)2

𝑛 − 1
 (9) 

 

The prediction of the class to be assigned to an incoming instance provided from 

the data stream is performed in three steps: (i) computation of the a priori probabilities 

based on the count of class instances, (ii) computation of likelihood probabilities based 

on the Bayes' Theorem for each attribute of the incoming instance, and (iii) calculation 

of the maximum value of the a posteriori probability from the product of the independent 

feature probabilities given a class 𝐶. 

The calculation of the likelihood probability is described in Equation (10), where 

𝑖 represents a feature index and 𝑗 a class index (BISHOP; NASRABADI, 2006). 

 

 
𝑝(𝑥𝑖| 𝐶𝑗) =

1

√2𝜋𝜎𝑖,𝑗
2

𝑒𝑥𝑝 {−
1

2
(
𝑥𝑖 − 𝑥̅𝑖,𝑗

𝜎𝑖,𝑗
)

2

} 
(10) 

 

To perform the class assignment, the GNB-hDS obtains the class label with the 

maximum value of the a posteriori probability, as described in Equation (11), from the 

product of the independent feature probabilities given 𝐶 (BISHOP; NASRABADI, 

2006). 

 

 
𝑝(𝐶𝑗|𝑥) ∝ {∏𝑝(𝑥𝑖| 𝐶𝑗)

𝑖

} 𝑝(𝐶𝑗) (11) 

     

Moreover, these three steps are performed from the top of the hierarchy data 

structure and repeated until a leaf node is reached, resulting in the union of the class 

assignments made from Equation (11) and representing the final label path assigned 

to the incoming instance.  

Algorithm 3.6 shows the pseudocode for the proposed Gaussian Naive Bayes 

for Hierarchical Data Streams classification method. 
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Algorithm 

GNB-hDS - Gaussian Naive Bayes for Hierarchical Data Streams 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 
Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  ℎ𝐷𝑆) do 
3   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡; 
4   while ¬(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑖𝑠𝐿𝑒𝑎𝑓) do 
5     foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) do 
6       𝑝𝑟𝑖𝑜𝑟𝑠 ← 𝑝𝑟𝑖𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝐶𝑙𝑎𝑠𝑠); 
7     end 

8     𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ← 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥⃗𝑡, 𝑝𝑟𝑖𝑜𝑟𝑠); 
9     𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ← 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, 𝑝𝑟𝑖𝑜𝑟𝑠); 

10     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟); 
11     𝑦⃗𝑡

̂ ← 𝑦⃗𝑡
̂ ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙; 

12   end 

13   𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠(𝑥⃗𝑡 , 𝑦⃗𝑡); 
14 end 

Algorithm 3.6 - GNB-hDS: Gaussian Naive Bayes for hierarchical data stream classification. 

 

The algorithm receives a hierarchical data stream ℎ𝐷𝑆 providing instances 

(𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 and, if required, outputs a set of predicted labels (a label path) 𝑦⃗𝑡
̂  

for each given instance (𝑥⃗𝑡, 𝑦⃗𝑡), where 𝑥⃗𝑡 represents a 𝑑-dimensional feature set and 

its values, and 𝑦⃗𝑡 represents the corresponding ground-truth label path of that instance. 

The algorithm starts by understanding and representing the class taxonomy 

from the hierarchical data stream. The first loop (line 2 onwards) receives an incoming 

instance from the hierarchical data stream. The following loop (lines 4 - 12) handles 

the hierarchy using the LCPN approach by predicting one of the children labels 

possible for that parent node.  

The a priori probabilities are calculated in line 6 using the counts of class 

instances. The likelihood and posterior probabilities are calculated in lines 8 and 9 by 

the application of Equations (10) and (11), respectively.  

The predicted node for the evaluated parent is obtained in line 10, and the 

respective single label is appended to a partial label path 𝑦⃗𝑡
̂  (line 11). This process is 

repeated until a leaf node is reached and the label path 𝑦⃗𝑡
̂  is complete and ready to be 

output by the algorithm. 

Finally, the algorithm updates the statistical descriptors (the count 𝑛 of class 

instances, the incremental mean instance 𝑥̅𝑛, and the incremental standard deviation 

𝜎𝑛) of all classes contained in 𝑦⃗𝑡, from the leaf to the root class. 
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As aforementioned, GNB-hDS can also store adaptive statistical descriptors 

instead of incremental ones. Figure 3.5 illustrates the process performed by GNB-hDS 

when handling the data stream adaptively (cf. Figure 3.4). 

 

 

Figure 3.5 - Illustration of GNB-hDS method using adaptive data stream handling. 

 

As in the incremental variant, each node in the tree stores the statistical 

descriptors (𝑛, 𝑥̅𝑛𝜎𝑛) of the represented class. However, the adaptive GNB-hDS also 

stores one additional set (𝑐, 𝑥̅𝑐, 𝜎𝑐) representing the current statistical description of the 

last 𝑐 instances.  

The prediction of the class to be assigned to an incoming instance provided from 

the data stream is performed in the same way in both incremental and adaptive 

variants. However, in the adaptive GNB-hDS, both sets (𝑛, 𝑥̅𝑛𝜎𝑛) and (𝑐, 𝑥̅𝑐𝜎𝑐) of 

statistical descriptors are used to compute the historical and the current likelihood 

probabilities. Thus, the method obtains the maximum value of the historical a posteriori 

probability weighted by the current a posteriori probability. 

To update the statistical descriptors adaptively, the method performs a 

forgetting strategy by subtracting one pseudo-instance (a mean instance) from the 

current statistical descriptors (𝑐, 𝑥̅𝑐𝜎𝑐) representing the oldest instance. 

Algorithm 3.7 shows the pseudocode for the adaptive variant of the GNB-hDS 

method.  

In addition to the hierarchical data stream ℎ𝐷𝑆, the adaptive GNB-hDS algorithm 

also receives the 𝑤 (window) parameter representing the maximum number of 

instances to be considered on the current statistical descriptors (𝑐, 𝑥̅𝑐𝜎𝑐). 
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Algorithm 

GNB-hDS - Gaussian Naive Bayes (adaptive) for Hierarchical Data Streams 

Input 

ℎ𝐷𝑆: a hierarchical data stream providing instances (𝑥⃗𝑡, 𝑦⃗𝑡) over time 𝑡 

𝑤: maximum number of instances on the current statistical descriptors  

Output 

𝑦⃗𝑡
̂: a predicted label path for the input instance 

1 𝑇𝑟𝑒𝑒 ← 𝑐𝑙𝑎𝑠𝑠𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦(ℎ𝐷𝑆); 
2 foreach (𝑥⃗𝑡   ∈  ℎ𝐷𝑆) do 
3   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑟𝑜𝑜𝑡; 
4   while ¬(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑖𝑠𝐿𝑒𝑎𝑓) do 
5     foreach (𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒 ∈ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) do 
6       𝑝𝑟𝑖𝑜𝑟𝑠𝑛  ← 𝑝𝑟𝑖𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝐶𝑙𝑎𝑠𝑠); 
7       𝑝𝑟𝑖𝑜𝑟𝑠𝑐  ← 𝑝𝑟𝑖𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑐ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒. 𝐶𝑙𝑎𝑠𝑠); 
8     end 

9     𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑛 ← 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥⃗𝑡, 𝑝𝑟𝑖𝑜𝑟𝑠𝑛); 
10     𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑛 ← 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑛, 𝑝𝑟𝑖𝑜𝑟𝑠𝑛); 
11     𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑐 ← 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥⃗𝑡, 𝑝𝑟𝑖𝑜𝑟𝑠𝑐); 
12     𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑐 ← 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑐 , 𝑝𝑟𝑖𝑜𝑟𝑠𝑐); 
13     𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ← 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑛 × 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑐; 
14     𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟); 
15     𝑦⃗𝑡

̂ ← 𝑦⃗𝑡
̂ ∪  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑁𝑜𝑑𝑒. 𝑙𝑎𝑏𝑒𝑙; 

16   end 

17   𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠(𝑥⃗𝑡 , 𝑦⃗𝑡); 
18   𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒 ← 𝑇𝑟𝑒𝑒. 𝑦⃗𝑡; 
19   if (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎𝑐 . 𝑐𝑜𝑢𝑛𝑡 > 𝑤) then 
20     𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒. 𝑑𝑎𝑡𝑎𝑐); 
21   end 

22 end 

Algorithm 3.7 - GNB-hDS: Gaussian Naive Bayes (adaptive) for hierarchical data stream classification. 

 

Compared to the incremental variant of GNB-hDS, the adaptive GNB-hDS 

additionally computes the a priori (line 7) and the a posteriori (lines 11 and 12) 

probabilities concerning the current statistical descriptors. Also, the weighted a 

posteriori probability is calculated on line 14.  

After that, the method tests whether the number of instances represented in the 

current statistical descriptors (𝑐, 𝑥̅𝑐𝜎𝑐) exceeds the stipulated maximum number 𝑤 

allowed (line 19). If so, it applies a sliding window strategy by forgetting a 

representation of the oldest instance of (𝑐, 𝑥̅𝑐𝜎𝑐) (line 20). 

As aforementioned, the GNB-hDS method uses the premise of a Gaussian 

(normal) data distribution to deal with instance representation in the learning model. 

Thus, the GNB-hDS method may present an additional advantage to the other 

methods that do not use the same premise since it would be more adapted to classify 

normally distributed data (PONTES, 2018). 

Several studies have used data transformations to make input data more fitted 

to a given distribution and, consequently, to a learning model that uses this same 
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distribution as a premise. There are examples from Engineering (JIANG; CUKIC; 

MENZIES, 2008) to Medicine (LIANG et al., 2020), and even general research in 

machine learning about how data transformation techniques affect the learning models' 

performance (ZHANG; YANG, 2017). However, applying data transformation in 

streaming settings is not straightforward. As data streams are potentially unbounded, 

there is no full dataset to be transformed and supplied to the learning model.  

Next in this section, it is proposed an incremental adaptation of the well-known 

Yeo-Johnson Power Transformation (YEO; JOHNSON, 2000) for streaming settings. 

Traditionally, the Yeo-Johnson Power Transformation is applied considering a batch 

setup as it is applied to a fully known dataset, which is transformed into a more 

gaussian-like distributed dataset. 

More specifically, the Yeo-Johnson Power Transformation is proposed here to 

be applied incrementally, one instance at a time, without prior knowledge about data, 

and adaptively along the data stream. Thereby, the proposed Incremental Yeo-

Johnson Power Transformation can be attached to a data stream learning model that 

uses a gaussian (normal) data distribution as a premise, such as the well-known Naive 

Bayes method, in order to improve the prediction performance of this classifier when 

applied in a data stream scenario (HAN; PEI; KAMBER, 2011). 

The traditional Yeo-Johnson Power transformation 𝜓(𝜆, 𝑥) is defined as follows, 

where 𝑥 stands for the input data and λ is the power parameter used for the 

transformation (YEO; JOHNSON, 2000).  

 

 

𝜓(𝜆, 𝑥) =

{
 
 

 
 {(𝑥 + 1)𝜆 − 1}/ 𝜆, (𝑥 ≥ 0, 𝜆 ≠ 0)

𝑙𝑜𝑔(𝑥 + 1), (𝑥 ≥ 0, 𝜆 = 0)

−{(−𝑥 + 1)2−𝜆 − 1}/(2 − 𝜆), (𝑥 < 0, 𝜆 ≠ 2)

− 𝑙𝑜𝑔(−𝑥 + 1) , (𝑥 < 0, 𝜆 = 2)

 (12) 

 

The Yeo-Johnson Power transformation is based on the Box-Cox transformation 

(BOX; COX, 1964; SAKIA, 1992) and was proposed to cope also with negative values. 

When 𝑥 is positive, the Yeo-Johnson transformation is the same as the Box-Cox with 

(𝑥 + 1). When negative, the Yeo-Johnson transformation is the Box-Cox of (−𝑥 + 1) 

with power 2 − λ. 

Algorithm 3.8 shows the pseudocode for the traditional application of Yeo-

Johnson Power transformation (YEO; JOHNSON, 2000). 
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Algorithm 

Yeo-Johnson Power transformation - Traditional application 

Input 

𝐷: A dataset with instances 𝑥⃗ 

𝐿: a set of candidate λ values 
Output 

𝐷̂: a dataset with transformed instances 𝑥̂⃗ 

1 λ̂ ←  𝑎𝑟𝑔𝑚𝑎𝑥
λ ∈ 𝐿

ℓ(λ); 

2 foreach (𝑥⃗  ∈  𝐷) do 
3 

  𝑥̂⃗ ←

{
 
 

 
 {(𝑥 + 1)𝜆 − 1}/ 𝜆, (𝑥 ≥ 0, 𝜆 ≠ 0)

𝑙𝑜𝑔(𝑥 + 1), (𝑥 ≥ 0, 𝜆 = 0)

−{(−𝑥 + 1)2−𝜆 − 1}/(2 − 𝜆), (𝑥 < 0, 𝜆 ≠ 2)

− 𝑙𝑜𝑔(−𝑥 + 1) , (𝑥 < 0, 𝜆 = 2)

; 

4   𝐷̂ ← 𝐷̂ ∪ 𝑥̂⃗; 
5 end 

Algorithm 3.8 - Yeo-Johnson Power transformation: traditional application. 

 

Note that the estimated/optimal λ, λ̂, can be obtained by maximizing the log-

likelihood function ℓ of the transformation power parameter λ with Maximum Likelihood 

Estimation (MLE) using all data 𝐷. Also, if λ̂ is known (or chosen) a priori, the 

arguments of the maxima (line 1) for ℓ can be omitted and the transformation can be 

done on one single input 𝑥 at a time (via Equation (12)). 

Thus, to extend the traditional Yeo-Johnson Power transformation to handle 

unbounded data streams, the main concern is related to the estimation of the optimal 

λ̂ on the fly and the use of a strategy to ensure that this estimation will remain accurate 

over time. 

In this sense, the proposed Incremental Yeo-Johnson Power transformation 

tackles these issues by applying sample size determination and hypothesis testing to 

(i) find the optimal λ̂ based on a sample set and (ii) check if two sample sets obtained 

from the data stream at different timestamps significantly differ, and thus require a new 

λ̂ estimation. 

Figure 3.6 illustrates the incremental Yeo-Johnson Power Transformation 

structure in a data stream scenario. Let 𝐷𝑆 be a data stream supplying instances over 

time, 𝑁𝑖 a user-given size for a chunk of 𝐷𝑆 with 𝑖 ∈ {1, … ,∞}, and 𝑆𝑆 a sample size 

estimated based on 𝑁𝑖. In practice, 𝑁𝑖 represents the number of instances observed 

prior to sample size determination (𝑆𝑆𝑁𝑖). Also, new incoming instances of 𝑁𝑖+1 trigger 

new statistical validations resulting in 𝑆𝑆𝑁𝑖+1, and so forth. 
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Figure 3.6 - Overview of the incremental Yeo-Johnson Power Transformation setup in a data stream 
scenario. 

 

The process initially assumes λ̂ = 𝑙, where 𝑙 = 1 is a user-defined parameter 

(note that λ =  1 results in equivalent input and transformed data). The method buffers 

𝑆𝑆𝑁𝑖 instances and uses them to perform a Maximum Likelihood Estimation of λ̂. 

The sample size determination follows Equation (13), where 𝑁𝑖 stands for the 

population estimated size, 𝑧 for the standard normal distribution, 𝑝 and 𝑞 for the 

complementary proportions for the population, and 𝑑 for the error component of interval 

estimate. The sample size determination considers population proportions and also a 

finite population correction (DANIEL; CROSS, 2018). 

 

 
𝑆𝑆𝑁𝑖 =

𝑁𝑖𝑧
2𝑝𝑞

𝑑2(𝑁𝑖 − 1) + 𝑧2𝑝𝑞
 (13) 

 

The Maximum Likelihood Estimation of λ̂ is performed via Brent's algorithm 

(BRENT, 2013) by minimizing the negative log-likelihood function of the transformation 

power parameter λ for the input data buffered (𝑆𝑆𝑁𝑖), resulting in an optimal λ𝑆𝑆𝑁𝑖
, which 

is used for the ongoing data transformation. 

Once the data stream 𝐷𝑆 has provided 𝑁𝑖 instances, the statistical warranty 

boundary for the estimated population 𝑁𝑖 is reached. In other words, the sample set 

buffered in 𝑆𝑆𝑁𝑖 may not be representative anymore for 𝐷𝑆. Thus, the process is 

restarted by buffering the newest 𝑆𝑆𝑁𝑖+1 instances to compare both sample sets 𝑆𝑆𝑁𝑖 

and 𝑆𝑆𝑁𝑖+1. 

... 

Boundary for estimated 

population 𝑁𝑖   

... 

𝑁𝑖+1 

Wilcoxon's Test 

(𝑆𝑆𝑁𝑖+1 , 𝑆𝑆𝑁𝑖+1) 

𝐷𝑆 

Maximum Likelihood Estimation  

of 𝜆መ using 𝑆𝑆𝑁𝑖    

𝑁𝑖  

𝑆𝑆𝑁𝑖+1 𝑆𝑆𝑁𝑖  

𝜆መ = 𝑙 (default=1) 𝜆መ = 𝜆𝑆𝑆𝑁𝑖  
 𝜆መ = 𝜆𝑆𝑆𝑁𝑖  

 𝜆መ = ቊ
𝜆𝑆𝑆𝑁𝑖

, 𝑝 > 𝛼

𝜆𝑆𝑆𝑁𝑖+1
, 𝑝 ≤ 𝛼
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When 𝑆𝑆𝑁𝑖+1 is reached, a Wilcoxon's hypothesis test (WILCOXON, 1992) is 

performed to verify significant differences between both sample sets 𝑆𝑆𝑁𝑖 and 𝑆𝑆𝑁𝑖+1. 

The Wilcoxon's test is applied with a user-defined significance level 𝛼 (default =  0.05), 

according to the protocol provided in (DEMŠAR, 2006). 

Thus, the new value of λ̂ is assigned as follows (Equation (14)) according to the 

𝑝-𝑣𝑎𝑙𝑢𝑒 returned from Wilcoxon's test. If both sample sets are significantly different, 

the optimal λ̂ is recomputed for the newest input data buffered (𝑆𝑆𝑁𝑖+1); otherwise, the 

transformation continues with the λ𝑆𝑆𝑁𝑖
 computed on the previously MLE.  

 

 
𝜆መ = ቊ

𝜆𝑆𝑆𝑁𝑖
, 𝑝‐ 𝑣𝑎𝑙𝑢𝑒 > 𝛼

𝜆𝑆𝑆𝑁𝑖+1
, 𝑝‐ 𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼

 (14) 

 

Algorithm 3.9 shows the pseudocode for the proposed Incremental Yeo-

Johnson Power Transformation fitted for data stream classification. 

Note that, oppositely to the traditional application of the Yeo-Johnson Power 

Transformation (cf. Algorithm 3.8), the algorithm receives a data stream (𝐷𝑆) providing 

instances 𝑥⃗𝑡 over time instead of a complete dataset. In addition, the algorithm receives 

the parameters needed to perform the sample size determination (see Equation (13)) 

and an initial lambda set 𝑙 (default = 1).  

The loop started on line 3, and the transformations performed on line 33 are 

equivalent to the ones on the traditional algorithm. The difference between both 

algorithms lies in how the λ̂ estimation is performed. In the traditional algorithm, the 

estimation considers the entire dataset (cf. Algorithm 3.8, line 1), whereas, in the 

incremental strategy, this process is made along the data stream (lines 4-32). 

First, the algorithm determines the sample size (line 1) and assigns the initial 

lambda to λ̂. Note that λ̂ is 𝑑-dimensional as the 𝑥⃗𝑡, with possibly distinct values for 

each 𝑑.  

Inside the loop, the algorithm buffers |𝑆𝑆𝑁𝑖| instances (line 5) until the computed 

sample size and uses them to perform the first λ̂ estimation (line 9). Note that, if 

provided, MLE considers a set 𝐿 of candidate λ values. However, this is not critical 

when using Brent's algorithm, and the final estimation may not be a member of 𝐿 

(BRENT, 2013). 
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Algorithm 

Incremental Yeo-Johnson Power Transformation for Data Stream Classification 

Input 

𝐷𝑆: a data stream providing instances 𝑥⃗𝑡 over time 𝑡 ∈ ℕ 

𝐿: a set of candidate 𝜆  

𝑁: population estimated size 

𝑑: error component of interval estimate 

𝑝: proportion for population (𝑞 =  1 − 𝑝)  

𝑞: 1 − 𝑝 
α: significance level 

𝑙: Initial lambda 

Output 

𝐷𝑆̂: an incrementally transformed data stream 

1 𝑆𝑆 ← (𝑁𝑧2𝑝𝑞)/(𝑑2(𝑁 − 1) + 𝑧2𝑝𝑞); 
2 𝜆መ ← 𝑙; 
3 foreach (𝑥⃗𝑡   ∈  𝐷𝑆) do 
4   if (|𝑆𝑆𝑁𝑖| < 𝑆𝑆) then 
5     𝑆𝑆𝑁𝑖 ← 𝑆𝑆𝑁𝑖 ∪ 𝑥⃗𝑡; 
6   end 

7   else 

8     if ¬(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) then 
9       𝜆መ ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝜆 ∈ 𝐿
ℓ(𝑆𝑆𝑁𝑖); 

10       𝑀𝑜𝑑𝑒𝑙 ← ∅; 
11       𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ← ⊤; 
12     end 

13     else 

14       if (𝑡 𝑚𝑜𝑑 𝑁 = 0) then 
15         𝑡𝑒𝑠𝑡𝑒𝑑 ←⊥; 
16       end 

17       if (|𝑆𝑆𝑁𝑖+1| < 𝑆𝑆) then 
18         𝑆𝑆𝑁𝑖+1 ← 𝑆𝑆𝑁𝑖+1 ∪ 𝑥⃗𝑡; 
19       end 

20       else 

21         if ¬(𝑡𝑒𝑠𝑡𝑒𝑑) then 
22           𝑝‐ 𝑣𝑎𝑙𝑢𝑒 ← Wilcoxon(SSNi , SSNi+1); 
23           if (𝑝‐ 𝑣𝑎𝑙𝑢𝑒 <= α) then 
24             𝜆መ ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝜆 ∈ 𝐿
ℓ(𝑆𝑆𝑁𝑖+1); 

25             𝑀𝑜𝑑𝑒𝑙 ← ∅; 
26             𝑆𝑆𝑁𝑖 ← 𝑆𝑆𝑁𝑖+1;   
27           end 

28           𝑡𝑒𝑠𝑡𝑒𝑑 ← ⊤; 
29         end 

30       end 

31     end 

32   end 

33 

  𝑥⃗𝑡
̂ ←

{
 
 

 
 {(𝑥 + 1)𝜆 − 1}/ 𝜆,  (𝑥 ≥ 0, 𝜆 ≠ 0)

𝑙𝑜𝑔(𝑥 + 1),  (𝑥 ≥ 0, 𝜆 = 0)

−{(−𝑥 + 1)2−𝜆 − 1}/(2 − 𝜆),  (𝑥 < 0, 𝜆 ≠ 2)

− 𝑙𝑜𝑔(−𝑥 + 1) ,  (𝑥 < 0, 𝜆 = 2)

; 

34   𝐷𝑆̂ ← 𝐷𝑆̂ ∪ 𝑥⃗𝑡
̂; 

35 end 

Algorithm 3.9 - Incremental Yeo-Johnson Power Transformation for data stream classification. 
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When a new λ̂ estimation is performed, it is necessary to clear (or at least 

update) any current learning model (line 10) since any new instance 𝑥⃗𝑡 will be 

transformed into 𝑥⃗𝑡̂  using a different power parameter λ. 

The algorithm controls when the theoretical population size is reached (line 14) 

and starts to populate a new sample set with |𝑆𝑆𝑁𝑖+1| instances (line 18). When 𝑆𝑆𝑁𝑖+1 

is full, the algorithm tests both initial 𝑆𝑆𝑁𝑖 and current 𝑆𝑆𝑁𝑖+1 sample sets with the 

Wilcoxon's Test (line 22). If both sets are significantly different, the 𝜆መ is re-estimated 

using 𝑆𝑆𝑁𝑖+1 (line 24), and the current sample set is defined as the reference sample 

set. 

Observe that a learning model can be appended by replacing line 34 and works 

with every single 𝑥⃗𝑡̂  over time without any inner changes to the model since all the steps 

described in the proposed Incremental Yeo-Johnson Power Transformation are 

performed before the instance 𝑥⃗𝑡 is supplied to the classifier. 

Finally, two key aspects related to the application of the described Incremental 

Yeo-Johnson Power Transformation in the data stream classification scenario are 

noteworthy. First, every λ̂ estimation requires a new learning model that, at least, is 

more concerned with the newest data since subsets of transformed data with different 

λ present distinct distributions and may mislead the classifier. Also, note that this 

aspect justifies the use of Wilcoxon's test instead of promptly recomputing the optimal 

lambda with the newest buffer to try to avoid a change in λ̂ and keep more 

representative data. 

Second, depending on the error component of interval estimate (𝑑), few 

instances can theoretically represent unbounded data. For example, assuming a 

confidence level of 95% and a margin of error of 2%, the sample size is bounded to 

2,401 samples regardless of 𝑁 size. Naturally, this is not the case in a data stream 

classification problem. Thus, recomputing λ can act as a response to concept drifts 

(TSYMBAL, 2004) on the underlying distribution of the data stream. In other words, the 

𝐷𝑆 size (𝑁) can represent a user-defined boundary to renew the statistical warranty 

about the sample set with a trade-off between responsiveness to concept drifts and 

maintaining historical data. 
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4 ANALYSIS 

 

This section describes the experimental setup for comparing the proposed 

learning methods with previously identified related work and with each other to assess 

the proposals of this thesis concerning existing methods. Next, the experimental 

protocol is described, including the hierarchical data stream sets used in the 

experiments and the validation protocol (evaluation metrics and statistical validation).  

Sections 4.2, 4.3, and 4.4 show the results obtained by the proposed methods. 

Note that the sections are related to each other in both method and analysis sections 

(e.g., 3.2 describes Global kNN-hDS, while 4.2 depicts its analysis). 

Finally, the last section (4.5) shows a multiple comparison experiment between 

all proposed methods following a distinct protocol attempting to benchmark the 

hierarchical data stream classification area. 

 

4.1 EXPERIMENTAL PROTOCOL 

 

4.1.1 Datasets 

 

The systematic literature review in Section 2.3 listed the datasets used in 

studies in the hierarchical data stream classification area. However, as previously 

discussed, most studies represented false positives for the target area when 

considering all its constraints. As an outcome, the datasets used by the studies 

returned in the review do not necessarily represent hierarchical data stream sets. 

Consequently, to obtain datasets able to be used as input data into a 

hierarchical data stream classification, the datasets were filtered to keep only the ones 

with complete adherence to the hierarchical data stream classification area, resulting 

in three hierarchical data streams proposed in (PARMEZAN; SOUZA; BATISTA, 

2018). 

In addition, as previously introduced in Section 2.4, the authors in (SOUZA et 

al., 2020) introduced a new version of one of the datasets used in (PARMEZAN; 

SOUZA; BATISTA, 2018), with more instances and a formal definition of the concept 

drifts within the data stream. This dataset was presented by the authors as a flat 

dataset, but it maintained the intrinsic hierarchical structure as initially proposed in 

(PARMEZAN; SOUZA; BATISTA, 2018) since the instances still represent species of 
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disease vector mosquitoes, which are naturally organized in an entomological 

taxonomy. 

Table 4.1 depicts the resulting 14 hierarchical data stream sets used in the 

experiments, comprehending the three data sets proposed in (PARMEZAN; SOUZA; 

BATISTA, 2018) plus the 11 hierarchically labeled datasets resulting from the hierarchy 

incorporation on the Insects datasets proposed in (SOUZA et al., 2020). 

Note that, among the datasets proposed in (SOUZA et al., 2020),  the “Insects-

o-o-c” represents the main dataset, while other ones represent datasets built with 

different sampling strategies to simulate natural effects in insects' behavior and induce 

distinct concept drifts on data. Also, in the same datasets, the words “Abrupt”, 

“Balanced”, “Gradual”, “Imbalanced”, “Incremental” and “Reoccurring” are reduced to 

their initials to increase readability. 

 

Table 4.1 - Hierarchical data stream sets used in the experiments. 

Dataset Instances Features Classes 
Labels per 

level 
Reference 

Entomology 21,722 33 14 4,6,9,14 (PARMEZAN; SOUZA; BATISTA, 2018) 

Ichthyology 22,444 15 15 2,6,10,15 (PARMEZAN; SOUZA; BATISTA, 2018) 

Insects-a-b 52,848 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-a-i 355,275 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-a-r-b 79,986 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-a-r-i 452,044 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-b 57,018 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-g-b 24,15 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-g-i 143,323 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-i 452,044 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-r-b 79,986 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-i-r-i 452,044 33 6 1,1,2,6 (SOUZA et al., 2020) 

Insects-o-o-c 905,145 33 24 4,10,14,24 (SOUZA et al., 2020) 

Instruments 9,419 30 31 5,10,31 (PARMEZAN; SOUZA; BATISTA, 2018) 

  

4.1.2 Validation protocol 

 

During the experiments, the predictive correctness of the classifiers was 

measured using the hierarchical F-Measure (ℎ𝐹) (KIRITCHENKO et al., 2005) 

following a prequential evaluation method (interleaved test-then-train) (BIFET; 

KIRKBY, 2009; GAMA; SEBASTIÃO; RODRIGUES, 2013).  

As previously described, the hierarchical F-Measure is the harmonic mean of its 

hierarchical precision (ℎ𝑃) and hierarchical recall (ℎ𝑅) components (Equations  (1), (2), 
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and (3)). The ℎ𝐹 rates were computed and incrementally averaged for all incoming 

instances from the hierarchical data stream.  

Regarding performance assessment, the time performance of all methods was 

measured by calculating the number of instances that the method can process and 

classify per second (𝑖𝑛𝑠𝑡/𝑠). 

The methods proposed in this thesis were compared to the Local kNN-hDS 

method, previously described as a related work (Section 2.3.1) and understood as a 

state-of-the-art method in the hierarchical data stream classification area since it is the 

only retrieved study on the SLR that fulfills the area constraints. 

Table 4.2 summarizes the parameters used in all methods across all 

experiments. Note that all the methods were experimented with identical parameters 

when applicable. The comparison between Local and Global kNN-hDS used identical 

𝑛 and 𝑘 parameters. Then, the comparison between the Local kNN-hDS and kNC-hDS 

and Dribble-hDS also used 𝑛 and 𝑘, in addition to 𝑚 used on both proposed methods 

to perform the summarization strategy. Differently, the adaptive variant of GNB-hDS 

uses a 𝑤 parameter to perform a forgetting strategy not related to the other methods. 

 

Table 4.2 - Parameter settings used on methods across experiments. 

Method Parameter Description Experimented values 

Local kNN-hDS 
𝑛 

Maximum number of instances to 
be stored in a node 

{1, 5, 10, 15, 20} 

𝑘 Nearest neighbors {1, 3, 5} 

Global kNN-hDS 
𝑛 

Maximum number of instances to 
be stored in a node 

{1, 5, 10, 15, 20} 

𝑘 Nearest neighbors {1, 3, 5} 

kNC-hDS 
(Local and Global) 

𝑛 Number of centroids {1, 5, 10, 15, 20} 

𝑚 
Maximum number of instances 
summarized in a centroid 

{5, 10, 30} 

𝑘 Nearest centroids {1, 3, 5} 

Dribble-hDS 
(Local and Global) 

𝑛 Number of 𝐶𝐹𝑠 {1, 5, 10, 15, 20} 

𝑚 
Maximum number of instances 
summarized in a 𝐶𝐹 

{5, 10, 30} 

𝑘 Nearest 𝐶𝐹 means {1, 3, 5} 

GNB-hDS  
(when adaptive) 

𝑤 
Maximum number of instances on 
the current statistical descriptors 

{10,50,100,500,1000,5000} 

 

Besides, the GNB-hDS method was experimented over six method variations 

resulting from the incremental and adaptive variants of the method, plus the use of the 

incremental Yeo-Johnson Power transformation. These six variations are specified in 

Table 4.3. 
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Table 4.3 - GNB-hDS variants specification. 

Base 
method 

Data stream 
handling 

Window strategy Incremental 
Yeo-Johnson Method name 

GNB-hDS 

Incremental - 
No GNB-hDS 

Yes GNB-hDS-iYJ 

Adaptive 

Cw  
(Only the statistical descriptors of the 
current window are considered) 

No GNB-hDS-Cw 

Yes GNB-hDS-Cw-iYJ 

Hw 
(The historical statistical descriptors 
are weighted by the statistical 
descriptors of the current window) 

No GNB-hDS-Hw 

Yes GNB-hDS-Hw-iYJ 

 

Furthermore, the proposed incremental Yeo-Johnson Power Transformation 

was evaluated by measuring data normality and its impact on prediction performance. 

Data normality was measured using the Shapiro-Wilk test of normality (SHAPIRO; 

WILK, 1965). The test was performed on all data streams considering the original data, 

the transformed data with access to the complete data stream (known 𝐷𝑆), and the 

data incrementally transformed with the proposed incremental Yeo-Johnson Power 

Transformation. 

The prediction performance of the incremental primary version of GNB-hDS was 

measured when applied with and without the incremental Yeo-Johnson Power 

Transformation attached, using the same datasets previously specified in Table 4.1. It 

is noteworthy that the Incremental Yeo-Johnson Power Transformation can be 

attached to any data stream classifier without modifications in the main process since 

it represents an additional on-the-fly data preprocessing step. 

The GNB-hDS and GNB-hDS-iYJ classifiers were applied to scenarios with the 

original data stream, the transformed data with access to the complete data stream 

(known 𝐷𝑆), and the incrementally transformed data.  

All the experiments related to the incremental Yeo-Johnson Power 

Transformation were performed using 𝑁 = 1.0 × 107, 𝑑 =  (0.95, 0.02), 𝑝 =  0.5, 𝛼 =

 0.05 and 𝑙 = 1 (see Algorithm 3.9). Note that the population estimated size 𝑁 was set 

up with the first power of ten that reaches the upper bound (2,401) of sample size 

determination (see Equation (13)) and simulates a population estimated size always 

bigger than the known 𝐷𝑆. In addition, the pair of values provided in 𝑑 represent, 

respectively, the confidence level and the margin of error components of 𝑑. 
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Finally, the results obtained by all methods were compared using significance 

tests of pairwise or multiple comparisons considering a 95% confidence level 

according to the protocol provided in (DEMŠAR, 2006). The sample sets used as a 

basis for the statistical tests comprehend ordinal, non-parametric data, representing 

the evaluation metrics obtained by the classifiers in different datasets, assuming the 

null hypothesis that there is no significant difference between the results of the 

classifiers. More specifically, the Wilcoxon’s hypothesis test (WILCOXON, 1992) was 

used to perform pairwise comparisons, and the Friedman’s hypothesis test 

(FRIEDMAN, 1937) to make multiple comparisons in non-parametric data assuming a 

null hypothesis that there is no significant difference between the results of all methods 

in terms of predictive and performance rates. In the multiple comparison scenario, and 

in the case of the null hypothesis being rejected, the Nemenyi post hoc test (NEMENYI, 

1963) was applied to identify significant differences between two specific classifiers. 

Finally, in Section 4.5, a separate analysis was conducted to compare all 

proposed methods together. In addition to the above-mentioned statistical validation 

tests, this analysis compared the methods using the previously described ℎ𝐹 and 

𝑖𝑛𝑠𝑡/𝑠 rates understood as multiple attributes in a problem of Multi-Criteria Decision 

Making. 

Multi-Criteria Decision Making (MCDM) is a problem-solving technique fitted to 

deal with multiple conflicting objectives. It was first introduced in  (ZIONTS, 1979) and 

used to develop multiple criteria metrics for the evaluation of data mining algorithms in 

(NAKHAEIZADEH; SCHNABL, 1997). 

The MCDM analyzes distinct alternatives representing possible solutions to a 

problem. These alternatives are assumed to be finite and eventually ranked. The 

problem is associated with multiple decision criteria representing the dimensions from 

which the alternatives can be evaluated. Also, the criteria are usually conflicting and 

depicted via incommensurable units (TRIANTAPHYLLOU, 2000). 

Formally, an MCDM problem can be expressed as a finite set 𝐴 = 𝑎𝑖, 𝑖 =

{1, 2, 3, … , 𝑛} of alternatives and a finite set 𝐺 = 𝑔𝑗, 𝑗 = {1, 2, 3, … ,𝑚} of goals or criteria, 

and each goal has an associated weight 𝑊 (or desirability). The solution determines 

the optimal alternative 𝑎 that maximizes the degree of desirability concerning all goals 

𝑔𝑗 (TRIANTAPHYLLOU, 2000).  
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The analysis performed in Section 4.5 understands the proposed methods as 

the alternatives in the MCDM problem. The goals, or multiple decision criteria, are 

instantiated by ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates. 

Specifically, the MCDM was applied in a weighted product model (WPM) where 

each alternative (classifier) is compared against other alternatives by multiplying ratios 

for each weighted criterion (ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates). When used to compare or rank 

multiple alternatives, a variant approach of the WPM that uses only products without 

ratios can be used. Equation (15) shows the MCDM-WPM calculation, where 𝑛 is the 

number of criteria, 𝑎𝑖𝑗 is the metric value obtained by the 𝑖-𝑡ℎ classifier concerning the 

𝑗-𝑡ℎ criterion, and 𝑤𝑗 is the weight of 𝑗-𝑡ℎ criterion (TRIANTAPHYLLOU, 2000). 

 

 
𝑊𝑃𝑀(𝐴𝑖) =∏(𝑎𝑖𝑗)

𝑤𝑗

𝑛

𝑗=1

 (15) 

  

The ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates were normalized using the linear scale transformation 

(Max-Min method), considering both maximum and minimum performance ratings of 

ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠. The normalized value 𝑟𝑖𝑗 obtained by the linear scale transformation is 

calculated via Equation (16), where 𝑎𝑖𝑗 is the metric value obtained by the 𝑖-𝑡ℎ classifier 

concerning the 𝑗-𝑡ℎ criterion, and 𝑎𝑗
𝑚𝑎𝑥 and 𝑎𝑗

𝑚𝑖𝑛 are the maximum and the minimum 

performance rate obtained by the classifiers concerning the 𝑗-𝑡ℎ criterion (ÇELEN, 

2014). 

  

 
𝑟𝑖𝑗 =

𝑎𝑖𝑗 − 𝑎𝑗
𝑚𝑖𝑛

𝑎𝑗
𝑚𝑎𝑥 − 𝑎𝑗

𝑚𝑖𝑛
 (16) 

  

Besides, a constant equal to 1.00 × 10−6 was added to 𝑟𝑖𝑗 to avoid zero 

multiplication (which would result in ignoring the 𝑗-𝑡ℎ criterion) when 𝑎𝑖𝑗 = 𝑎𝑗
𝑚𝑖𝑛. 

Finally, the weights of the ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates were defined following 

percentages 𝑤 ∈ {
1

6
,
2

6
,
3

6
,
4

6
,
5

6
}, with ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 assuming complementary values on 

five distinct scenarios representing different importance given to prediction correctness 

and speed performance. 
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4.2 GLOBAL K-NEAREST NEIGHBORS FOR HIERARCHICAL DATA STREAMS 

(GLOBAL KNN-HDS) 

 

Table 4.4 shows the hierarchical F-Measure obtained by both Local kNN-hDS 

and Global kNN-hDS classifiers in the hierarchical data stream sets (greater values 

highlighted in bold). These results represent the best ℎ𝐹 rates obtained by methods 

considering the averaged best-performing parameter configuration across all datasets. 

In addition, Table 4.4 also depicts, in the last row, the average ranking for the methods 

per dataset. 

 

Table 4.4 - Global kNN-hDS results: Hierarchical F-Measure (%) obtained by methods considering the 
averaged best-performing parameter setting across all datasets. 

 Local kNN-hDS Global kNN-hDS 

Datasets 
𝑛 =  20 
𝑘 =  1 

𝑛 =  20 
𝑘 =  1 

Entomology 51.51 51.48 

Ichthyology 40.55 40.54 

Insects-a-b 80.95 80.95 

Insects-a-i 79.14 79.14 

Insects-i-a-r-b 79.49 79.52 

Insects-i-a-r-i 78.52 78.53 

Insects-i-b 79.78 79.78 

Insects-i-g-b 83.29 83.41 

Insects-i-g-i 78.94 78.95 

Insects-i-i 78.63 78.64 

Insects-i-r-b 80.14 80.18 

Insects-i-r-i 78.60 78.61 

Insects-o-o-c 55.24 55.28 

Instruments 65.42 65.06 

Avg. 𝒉𝑭 72.16 72.15 

Avg. Ranking 1.68 1.32 

 

Both methods obtained their best results with more comprehensive data 

representations (𝑛 = 20) and with minimal nearest neighbors (𝑘 = 1). 

The Global kNN-hDS method obtained better ℎ𝐹 rates in 8 out of the 14 

datasets. However, ℎ𝐹 values are similar across local and global approaches, such 

that the average difference between them is 0.01%, favoring the local proposal. The 

best average ranking of 1.32 against 1.68 of the local method also reflects the better 

ℎ𝐹 rates achieved by Global kNN-hDS. Yet, despite the improvements, a Wilcoxon’s 

signed-rank test showed that there is no statistical difference between ℎ𝐹 rates 

obtained by the methods (𝑝-𝑣𝑎𝑙𝑢𝑒 = 0.1949). 
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In terms of processing time, Table 4.5 compares the average number of 

instances per second processed by both methods in each dataset with the same best-

performing parameters settings (greater values highlighted in bold). 

 

Table 4.5 - Global kNN-hDS results: instances per second rates obtained by methods with averaged 
best-performing parameters settings. 

 Local kNN-hDS Global kNN-hDS 

Datasets 
𝑛 =  20 
𝑘 =  1 

𝑛 =  20 
𝑘 =  1 

Entomology 127 209 

Ichthyology 157 223 

Insects-a-b 151 383 

Insects-a-i 153 384 

Insects-i-a-r-b 153 386 

Insects-i-a-r-i 153 374 

Insects-i-b 148 363 

Insects-i-g-b 158 385 

Insects-i-g-i 154 385 

Insects-i-i 152 377 

Insects-i-r-b 153 388 

Insects-i-r-i 153 386 

Insects-o-o-c 75 135 

Instruments 79 110 

Avg. 𝒊𝒏𝒔𝒕/𝒔 140.43 320.50 

Avg. Ranking 2.00 1.00 

 

The Global kNN-hDS method was able to process more instances per second 

across all datasets, with an average rate of 320.50 instances against 140.43 of the 

local approach. Note that this value varies according to the number of features in the 

dataset (it needs more computational effort to calculate distances between two 

instances) and the number of classes (more comparisons due to the number of 

instances in memory buffers of each class node). 

On average, the global method was able to process 2.28 times more instances 

than the local approach. The Instruments, Ichthyology, Entomology, and Insects-o-o-c 

datasets (in that order) resulted in the smallest differences in the rate of instances per 

second obtained by both methods, equal to 1.56 times on average. In contrast, in all 

other insect datasets, the global approach was able to process 2.49 times more 

instances than the local approach. 

The rates of instances processed per second were submitted to a one-tailed 

Wilcoxon’s test to verify whether the rates achieved by the global approach are greater 

than the rates of the local method. The test indicated a statistical difference between 
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instances per second rates obtained by both methods (𝑝-𝑣𝑎𝑙𝑢𝑒 = 4.88 × 10−4) and 

confirmed that Global kNN-hDS is significantly faster when compared to the local 

approach. 

In addition to the general analysis, the behavior of both methods over variations 

of the 𝑛 parameter was evaluated. Table 4.6 and Table 4.7 depict, respectively, the 

average Hierarchical F-Measure (%) and the average instances per second rates 

obtained by both methods on each variation of 𝑛. 

 

Table 4.6 - Global kNN-hDS results: average Hierarchical F-Measure (%) obtained by methods on 
each variation of 𝑛. 

𝒏 Local kNN-hDS Global kNN-hDS 

1 62.82 62.87 

5 67.51 67.62 

10 69.90 69.94 

15 71.17 71.20 

20 72.08 72.09 

Avg. 𝒉𝑭 68.70 68.74 

Avg. Ranking 2.00 1.00 

 

Table 4.7 - Global kNN-hDS results: Average instances per second rates obtained by methods on 
each variation of 𝑛. 

𝒏 Local kNN-hDS Global kNN-hDS 

1 459.07 541.04 

5 316.64 481.11 

10 213.57 405.80 

15 169.21 350.19 

20 140.43 310.19 

Avg. 𝒊𝒏𝒔𝒕/𝒔 259.78 417.67 

Avg. Ranking 2.00 1.00 

 

Global kNN-hDS showed similar results compared to the local approach when 

analyzing the ℎ𝐹 averages in each variation of 𝑛. Still, the Global kNN-hDS method 

obtained a clear first ranking on the overall comparison. 

Regarding instances per second rates, Global kNN-hDS stands out from Local 

kNN-hDS with higher rates on all 𝑛 variations, processing around 417 instances per 

second. On average, Global kNN-hDS can process about 18% more instances with 

minimal data representation (𝑛 = 1), and more than twice as many instances with 

bigger data representations (𝑛 ∈ {15, 20}). 
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Also, note that Global kNN-hDS presents a small decrease in the instances per 

second rates with higher values in 𝑘 (see Table 4.5, local average with 𝑛 = 20 and 𝑘 = 

1) since the global approach via label path analysis is performed on more 𝑘 label paths. 

Finally, to validate the overall better results obtained by Global kNN-hDS in the 

experiments, a Wilcoxon’s test was applied using as sample sets the results obtained 

by Global and Local kNN-hDS methods with all parameters considering the ℎ𝐹 and 

𝑖𝑛𝑠𝑡/𝑠 rates. Table 4.8 summarizes these sample sets by averaging all ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 

rates obtained by methods and shows the overall average ranking of methods. 

 

Table 4.8 - Global kNN-hDS results: overall average Hierarchical F-Measure (%) and Instances per 
second rates obtained by methods. 

 Local kNN-hDS Global kNN-hDS 

𝒉𝑭 (%) 
Avg. 𝒉𝑭 69.60 69.65 

Avg. Ranking 1.81 1.19 

𝒊𝒏𝒔𝒕/𝒔 
Avg. 𝒊𝒏𝒔𝒕/𝒔 259.79 398.69 

Avg. Ranking 2.00 1.00 

 

Even with similar ℎ𝐹 rates, a Wilcoxon’s test (one-tailed) identified a statistical 

difference (𝑝-𝑣𝑎𝑙𝑢𝑒 = 8.46 × 10−14) between both methods favoring the Global kNN-

hDS method.  

Regarding 𝑖𝑛𝑠𝑡/𝑠 rates, as expected, a Wilcoxon’s test (one-tailed) also showed 

a statistical difference (𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.77 × 10−13) between both methods favoring the 

Global kNN-hDS method.  

These results demonstrate that the Global kNN-hDS method can use the global 

approach to obtain a more effective strategy to classify hierarchical data streams, 

statistically outperforming the Local kNN-hDS method in specific prediction 

correctness analysis and in all processing speed comparisons. 

 

4.3 K-NEAREST CENTROIDS FOR HIERARCHICAL DATA STREAMS (KNC-HDS) 

AND DRIBBLE FOR HIERARCHICAL DATA STREAMS (DRIBBLE-HDS) 

 

The results obtained by the kNC-hDS and Dribble-hDS methods are presented 

together in this section comprehending local and global variants of the methods. 

Table 4.9 shows the hierarchical F-Measure obtained by Local kNC-hDS, Local 

Dribble-hDS, Global kNC-hDS, and Global Dribble-hDS (also comparing them to the 
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related work Local kNN-hDS) in the hierarchical data stream sets (greater values 

highlighted in bold). These results represent the ℎ𝐹 rates obtained by methods 

considering the averaged best-performing parameter configuration across the different 

parameters experimented for each configuration. Note that the Local kNN-hDS results 

are the same presented in the previous section, shown here to facilitate the direct 

comparison. 

 

Table 4.9 - kNC-hDS and Dribble-hDS results: Hierarchical F-Measure (%) obtained by methods 
considering the averaged best-performing parameter setting across all datasets. 

 

Local 
kNN-hDS 

Local 
kNC-hDS 

Local 
Dribble-hDS 

Global 
kNC-hDS 

Global 
Dribble-hDS 

Datasets 

𝑛 =  20 
 

𝑘 =  1 

𝑛 =  20 
𝑚 =  10 
𝑘 =  3 

𝑛 =  5 
𝑚 =  30 
𝑘 =  1 

𝑛 =  20 
𝑚 =  10 
𝑘 =  3 

𝑛 =  5 
𝑚 =  30 
𝑘 =  1 

Entomology 51.51 57.38 53.61 57.41 53.71 

Ichthyology 40.55 41.52 37.00 41.72 37.11 

Insects-a-b 80.95 84.37 83.33 84.37 83.33 

Insects-a-i 79.14 82.62 82.55 82.60 82.55 

Insects-i-a-r-b 79.49 84.30 83.42 84.28 83.42 

Insects-i-a-r-i 78.52 82.64 82.11 82.62 82.11 

Insects-i-b 79.78 84.05 83.91 84.03 83.91 

Insects-i-g-b 83.29 88.02 86.66 87.99 86.66 

Insects-i-g-i 78.94 82.91 83.11 82.93 83.11 

Insects-i-i 78.63 82.58 83.08 82.57 83.08 

Insects-i-r-b 80.14 84.50 83.48 84.50 83.48 

Insects-i-r-i 78.60 82.63 82.70 82.62 82.70 

Insects-o-o-c 55.24 65.66 59.50 65.56 59.50 

Instruments 65.42 55.04 56.53 55.59 56.68 

Avg. 𝒉𝑭 72.16 75.59 74.36 75.63 74.38 

Avg. Ranking 4.57 2.00 3.18 2.29 2.96 

 

Overall, Local kNC-hDS and Local Dribble-hDS outperform Local kNN-hDS 

across 13 out of 14 datasets. Local kNC-hDS showed an average ℎ𝐹 rate of 75.59% 

and Local Dribble-hDS of 74.36%. The difference from Local kNC-hDS to Local kNN-

hDS was 3.43%, and from Local Dribble-hDS to the kNN method of 2.20%. 

Besides, Local kNC-hDS and Local Dribble-hDS showed similar ℎ𝐹 rates in all 

experiments with small differences favoring Local kNC-hDS (1.23% on average). 

Concerning the higher ℎ𝐹 rates obtained, Local kNC-hDS achieved greater 

rates in 10 out of the 14 datasets, and Local Dribble-hDS in 3 out of the 4 remaining 

hierarchical data streams.  

Regarding global variants, Global kNC-hDS and Global Dribble-hDS methods 

obtained better results than Local kNN-hDS also in 13 of the 14 datasets, with average 
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ℎ𝐹 rates of 75.63% and 74.38%, respectively, against values close to 72% of the Local 

kNN-hDS method. 

Also, note that all local and global kNC-hDS and Dribble-hDS methods obtained 

similar rates across all datasets, with a maximum difference of 1.27% between Global 

kNC-hDS and Local Dribble-hDS. 

Furthermore, Table 4.9 shows the average ranking for the ℎ𝐹 performances of 

the methods. One can observe that Local kNC-hDS presents the best results with an 

average ranking of 2.00. Global kNC-hDS achieved a ranking close to second place 

with 2.29. Both local and global Dribble-hDS achieved rankings close to the third place, 

and Local kNN-hDS obtained the last place in 12 out of the 14 datasets, resulting in 

the lower rank of 4.57.  

Finally, note that Local kNN-hDS and both kNC-hDS methods obtain their 

averaged best performances with the biggest data representation (𝑛 = 20), while both 

Dribble-hDS methods obtained their best performances with a smaller representation 

(𝑛 = 5), taking advantage of the data summarization strategy using 𝐶𝐹𝑠 to represent 

data. 

Next, Table 4.10 reports the number of instances classified per second by the 

methods during the experiments (greater values highlighted in bold). 

 

Table 4.10 - Local kNC-hDS and Local Dribble-hDS results: instances per second rates obtained by 
methods with averaged best-performing parameters settings. 

 

Local 
kNN-hDS 

Local 
kNC-hDS 

Local 
Dribble-hDS 

Global 
kNC-hDS 

Global 
Dribble-hDS 

Datasets 

𝑛 =  20 
 

𝑘 =  1 

𝑛 =  20 
𝑚 =  10 
𝑘 =  3 

𝑛 =  5 
𝑚 =  30 
𝑘 =  1 

𝑛 =  20 
𝑚 =  10 
𝑘 =  3 

𝑛 =  5 
𝑚 =  30 
𝑘 =  1 

Entomology 127 134 327 200 382 

Ichthyology 157 186 286 291 380 

Insects-a-b 151 152 452 353 543 

Insects-a-i 153 151 467 354 542 

Insects-i-a-r-b 153 152 456 354 541 

Insects-i-a-r-i 153 150 468 351 542 

Insects-i-b 148 152 456 345 541 

Insects-i-g-b 158 165 459 372 542 

Insects-i-g-i 154 155 466 359 543 

Insects-i-i 152 151 467 354 545 

Insects-i-r-b 153 152 458 356 543 

Insects-i-r-i 153 151 469 353 540 

Insects-o-o-c 75 78 247 127 275 

Instruments 79 121 221 164 256 

Avg. 𝒊𝒏𝒔𝒕/𝒔 140.43 146.54 407.00 309.40 479.60 

Avg. Ranking 4.57 4.43 2.07 2.93 1.00 
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Global Dribble-hDS obtained an absolute first place in the number of instances 

classified per second. Similarly, Local Dribble-hDS obtained a consistent second place 

in 13 out of 14 datasets, resulting in a ranking of 2.07. 

This result was expected since Dribble-hDS methods obtained their best 

performance with a considerably smaller data representation (𝑛 = 5) when compared 

to other methods (𝑛 = 20). 

Global kNC-hDS obtained third place in 13 out of 14 datasets taking advantage 

of its global approach when compared to Local kNN-hDS and Local kNC-hDS. 

Using the same data representation, Local kNN-hDS and Local kNC-hDS 

obtained similar instances per second rates. Local kNN-hDS placed in the last place 

in 8 datasets against 6 of Local kNC-hDS. 

Moreover, the behavior of the methods over variations of 𝑛 was evaluated.  

Table 4.11 compares the average ℎ𝐹 (%) rates obtained by methods on each variation 

of the 𝑛 parameter. 

 

Table 4.11 - kNC-hDS and Dribble-hDS results: average Hierarchical F-Measure (%) obtained by 
methods on each variation of 𝑛. 

𝒏 
Local 

kNN-hDS 
Local 

kNC-hDS 
Local  

Dribble-hDS 
Global  

kNC-hDS 
Global 

Dribble-hDS 

1 62.82 68.77 72.51 68.77 72.52 

5 67.51 73.50 68.74 73.52 69.88 

10 69.90 74.63 68.56 74.65 69.74 

15 71.17 75.12 68.39 75.14 69.49 

20 72.08 75.40 68.27 75.44 69.28 

Avg. 𝒉𝑭 68.70 73.48 69.29 73.50 70.18 

Avg. Ranking 3.80 2.30 4.20 1.50 3.20 

 

Global kNC-hDS and Global Dribble-hDS showed the best average results in all 

variations of 𝑛, with Global Dribble-hDS obtaining the best result with 𝑛 =  1 and 

Global kNC-hDS with 𝑛 ∈ {5, 10, 15, 20}, resulting in the best average ranking (1.50) 

for the Global kNC-hDS method.  

The Local kNN-hDS method obtained its better ℎ𝐹 rates with higher values of 𝑛 

in all datasets. Similarly, Local and Global kNC-hDS methods also perform better with 

more stored data (higher 𝑛). Meanwhile, both Dribble-hDS methods obtained their best 

mean results with smaller values in 𝑛 (i.e., 𝑛 ∈ {1,5}). 

As previously stated, Dribble-hDS benefits from smaller numbers of 𝐶𝐹𝑠 (𝑛), 

thus achieving competitive ℎ𝐹 rates even using less stored data.  
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The rationale behind the decrease of ℎ𝐹 rates with the increase of 𝑛 on Dribble-

hDS is related to noise incorporation, as several 𝐶𝐹𝑠 are potentially created to 

represent a few instances, and thus, are not as representative as those that incorporate 

most of the data. On the other hand, the performance of Dribble-hDS with small data 

representations is noticeable, as it with 𝑛 = 1 manages to obtain similar or better ℎ𝐹 

rates than the other methods with 𝑛 = 20. 

Likewise, Table 4.12 compares the average 𝑖𝑛𝑠𝑡/𝑠 rates obtained by methods 

on each variation of the 𝑛 parameter. 

 

Table 4.12 - kNC-hDS and Dribble-hDS results: Average instances per second rates obtained by 
methods on each variation of 𝑛. 

𝒏 
Local 

kNN-hDS 
Local 

kNC-hDS 
Local  

Dribble-hDS 
Global  

kNC-hDS 
Global 

Dribble-hDS 

1 459.07 457.41 448.70 551.76 527.77 

5 316.64 313.71 379.28 467.20 466.17 

10 213.57 226.06 297.10 398.77 379.49 

15 169.21 184.41 237.77 351.00 297.00 

20 140.43 149.84 190.06 310.36 236.85 

Avg. 𝒊𝒏𝒔𝒕/𝒔 259.79 266.29 310.58 415.82 381.46 

Avg. Ranking 4.40 4.20 3.40 1.00 2.00 

 

One can observe that the number of instances that methods can classify per 

second decreases according to higher 𝑛 values. On average, when increasing 𝑛 ∈

{1, 5, 10, 15, 20}, the number of instances classified drops by roughly 20% in each step. 

This behavior is expected since larger 𝑛 values induce larger numbers of distance 

computations between query instances and stored data. 

Furthermore, Global kNC-hDS and Global Dribble-hDS stand out from the other 

methods with the first and second rankings in all 𝑛 variations, processing, respectively, 

around 415 and 381 instances per second. On average, both methods can process at 

least 70% more instances than the Local kNN-hDS method. 

Besides, Local Dribble-hDS achieved a consistent third place since the increase 

of 𝑛 affects the method less due to the use of an outlier control (see Section 3.3) and 

consequently fewer distance computations performed than Local kNN-hDS or Local 

kNC-hDS. 

Finally, to look for differences in the results obtained by the methods in the 

experiments, a Friedman statistical test was applied using as sample sets the results 

obtained by methods with all parameters considering the ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates.  
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Table 4.13 summarizes these sample sets by averaging all ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates 

obtained by methods and shows the overall average ranking of methods used in the 

Friedman test. 

 

Table 4.13 - kNC-hDS and Dribble-hDS results: overall average Hierarchical F-Measure (%) and 
Instances per second rates obtained by methods. 

 

Local 
kNN-hDS 

Local 
kNC-hDS 

Local 
Dribble-hDS 

Global  
kNC-hDS 

Global 
Dribble-hDS 

𝒉𝑭 (%) 
Avg. 𝒉𝑭 69.60 74.39 73.77 74.42 73.80 

Avg. Ranking 4.79 2.21 3.08 2.20 2.72 

𝒊𝒏𝒔𝒕/𝒔 
Avg. 𝒊𝒏𝒔𝒕/𝒔 259.79 272.54 336.59 418.81 395.49 

Avg. Ranking 4.67 3.93 3.30 1.41 1.69 

 

First, the Friedman test showed a significant difference between the methods in 

both ℎ𝐹 (𝑝-𝑣𝑎𝑙𝑢𝑒 = 8.00 × 10−28) and 𝑖𝑛𝑠𝑡/𝑠 rates (𝑝- 𝑣𝑎𝑙𝑢𝑒 = 3.27 × 10−47). After that, 

a post hoc Nemenyi test was applied to perform pairwise comparisons. 

Figure 4.1 and Figure 4.2 show the resulting two critical difference charts for the 

ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates obtained by Local kNN-hDS, Local kNC-hDS, Local Dribble-hDS, 

Global kNC-hDS, and Global Dribble-hDS methods. 

 

 

Figure 4.1 - kNC-hDS and Dribble-hDS results: critical differences chart for ℎ𝐹 rates. 

 

 

Figure 4.2 - kNC-hDS and Dribble-hDS results: critical differences chart for 𝑖𝑛𝑠𝑡/𝑠 rates. 

 

Global kNC-hDS Local kNN-hDS 

Global Dribble-hDS 
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𝐶𝐷 =  0.7290 
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Regarding ℎ𝐹 rates, all proposed methods differ significantly from the Local 

kNN-hDS. Moreover, both kNC-hDS methods and Global Dribble-hDS do not differ 

significantly, with average rankings of 2.20, 2.21, and 2.72. Similarly, Global Dribble-

hDS do not differ significantly from Local Dribble-hDS. 

In contrast, Local kNN-hDS (in last place) obtained an average ranking of 4.79, 

surpassing more than twice the critical difference from the fourth place, the Local 

Dribble-hDS method. 

These results suggest that kNC-hDS can obtain better ℎ𝐹 rates than the other 

methods, and Dribble-hDS can also obtain better ℎ𝐹 rates than Local kNN-hDS. 

Furthermore, when considering scenarios where data changes are less severe, and 

the entire data stream contains relevant information, the Local kNN-hDS method 

requires a memory buffer big enough to consider all concepts together in the sampled 

instances. However, this strategy may become infeasible due to computational 

resource constraints of specific scenarios. The same cannot be said for both Local and 

Global kNC-hDS and Dribble-hDS, which summarize the entire data stream via 

centroids and 𝐶𝐹𝑠, thus enabling a representation of the data using all training 

instances and not putting computational performance in jeopardy. 

Regarding speed comparison, the post hoc Nemenyi test identified a clear 

difference between both global methods and the other ones, proving that Global kNC-

hDS and Global Dribble-hDS methods can use the global approach to obtain a more 

effective strategy to classify hierarchical data streams, statistically outperforming local 

methods in processing time. 

Furthermore, Local Dribble-hDS is significantly faster than Local kNN-hDS even 

using a local approach. Here, it is important to highlight that both kNC-hDS and Dribble-

hDS methods use additional steps in their learning processes to apply data 

summarization strategies, specifically the creation of centroids in kNC-hDS and the 

creation and merging of 𝐶𝐹𝑠 in Dribble-hDS. At first glance, this might indicate that 

both methods could be slower compared to the kNN method. However, the 

summarization property itself reverses this difference by summarizing data inside a 

centroid or a 𝐶𝐹. Note that even using equal values in 𝑛, the kNC-hDS and Dribble-

hDS methods manage to perform fewer distance computations within their data 

representations due to the summarization obtained by the parameter 𝑚 while the 

centroid or the 𝐶𝐹 is not full.  
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Combining the analysis of prediction quality and computational resources, one 

can observe that kNC-hDS and Dribble-hDS methods have the advantage of 

summarizing information with different granularity levels depending on the problem, 

making them more versatile than the traditional hierarchical kNN method. Also, 

considering the better averaged best-performing results obtained by kNC-hDS in terms 

of ℎ𝐹 and by Dribble-hDS regarding processing time, the best setup depends on 

specific data distribution characteristics and available resources. 

 

4.4 GAUSSIAN NAIVE BAYES FOR HIERARCHICAL DATA STREAMS (GNB-HDS) 

 

As previously introduced in Section 4.1.2, the GNB-hDS method was 

experimented over six distinct variations: GNB-hDS, GNB-hDS-iYJ, GNB-hDS-Cw, 

GNB-hDS-Cw-iYJ, GNB-hDS-Hw, GNB-hDS-Hw-iYJ (see Table 4.3). 

Table 4.14 shows the hierarchical F-Measure obtained by all GNB-hDS variants 

plus the related work Local kNN-hDS (greater values highlighted in bold). These results 

represent the ℎ𝐹 rates obtained by methods considering the averaged best-performing 

results across the different parameters experimented for each dataset. 

 

Table 4.14 - GNB-hDS results: Hierarchical F-Measure (%) obtained by methods considering the 
averaged best-performing parameter setting across all datasets. 

 

Local 
kNN-hDS 

GNB-hDS  
GNB-hDS 

-iYJ 
GNB-hDS 

-Cw 
GNB-hDS 
-Cw-iYJ 

GNB-hDS 
-Hw 

GNB-hDS 
-Hw-iYJ 

Datasets 
𝑛 =  20 
𝑘 =  1 

    
𝑤 =  100 𝑤 =  50 𝑤 =  100 𝑤 =  100 

Entomology 51.51 48.63 52.82 50.08 50.02 50.41 51.59 

Ichthyology 40.55 46.82 49.72 46.64 47.15 47.39 48.80 

Insects-a-b 80.95 81.11 81.96 86.49 86.97 86.10 86.81 

Insects-a-i 79.14 80.88 84.03 85.46 86.17 85.53 86.90 

Insects-i-a-r-b 79.49 81.42 84.07 85.84 85.94 86.21 86.59 

Insects-i-a-r-i 78.52 81.57 83.70 84.93 85.51 85.00 86.22 

Insects-i-b 79.78 80.55 82.40 83.83 84.05 83.65 84.44 

Insects-i-g-b 83.29 81.53 81.50 86.16 86.14 85.64 86.03 

Insects-i-g-i 78.94 80.40 83.38 86.93 85.42 85.23 86.00 

Insects-i-i 78.63 80.90 83.18 84.97 85.50 84.93 86.14 

Insects-i-r-b 80.14 78.57 80.21 85.79 86.08 85.64 86.18 

Insects-i-r-i 78.60 81.61 83.72 84.88 85.51 84.99 86.25 

Insects-o-o-c 55.24 64.14 69.38 59.33 62.40 61.47 66.54 

Instruments 65.42 48.31 49.48 40.06 36.91 45.93 42.36 

Avg. 𝒉𝑭 72.16 72.60 74.97 75.10 75.27 75.58 76.49 

Avg. Ranking 6.07 5.64 4.07 3.79 3.00 3.64 1.79 
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Overall, all GNB-hDS methods outperformed Local kNN-hDS. The primary 

incremental version (GNB-hDS) obtained a slight advantage of 0.45% over Local kNN-

hDS. Its variant using the incremental Yeo-Johnson (GNB-hDS-iYJ) achieved a larger 

difference of 2.81%.  

The adaptive versions of GNB-hDS using current windows (GNB-hDS-Cw and 

GNB-hDS-Cw-iYJ) obtained 75.10 and 75.27 respectively, and outperformed Local 

kNN-hDS and both GNB-hDS incremental versions. Likewise, the adaptive versions of 

GNB-hDS using historical windows (GNB-hDS-Hw and GNB-hDS-Hw-iYJ) achieved 

the highest ℎ𝐹 rates, with GNB-hDS-Hw-iYJ obtaining the best ℎ𝐹 rate in half of the 

datasets and the best average ranking of 1.79. 

Also, note that the incremental Yeo-Johnson improved the ℎ𝐹 rate obtained by 

the methods in all cases. The gains regarding GNB-hDS, GNB-hDS-Cw, and GNB-

hDS-Hw were, respectively, 2.37, 0.17, and 0.91 when using the data transformation. 

To validate the better results obtained by GNB-hDS when compared to the Local 

kNN-hDS, a Friedman test was applied using as sample sets the ℎ𝐹 rates obtained by 

the methods. 

The Friedman test showed a significant difference between the methods 

regarding the ℎ𝐹 rates (𝑝-𝑣𝑎𝑙𝑢𝑒 = 6.50 × 10−7) and a post hoc Nemenyi test was 

applied to perform pairwise comparisons. Figure 4.3 shows the resulting critical 

difference chart for the ℎ𝐹 rates obtained by all GNB-hDS methods. 

 

 

Figure 4.3 - GNB-hDS results: critical differences chart for ℎ𝐹 rates. 

 

Both adaptive GNB-hDS methods with the incremental Yeo-Johnson differ 

significantly from the Local kNN-hDS. Furthermore, both adaptive GNB-hDS methods 

without the incremental Yeo-Johnson (GNB-hDS-Cw and GNB-hDS-Hw) do not differ 

𝐶𝐷 =  2.4073 
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GNB-hDS-Hw-iYJ 

GNB-hDS-Cw-iYJ 
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85 
 

 

significantly from any other method, making possible improvements in processing time 

without losses in ℎ𝐹 rates, as described below. 

Table 4.15 compares the 𝑖𝑛𝑠𝑡/𝑠 rates obtained by all methods in each dataset 

with the same best-performing parameters settings (greater values highlighted in bold). 

 

Table 4.15 - GNB-hDS results: instances per second rates obtained by methods with averaged best-
performing parameters settings. 

 

Local 
kNN-hDS 

GNB-hDS  
GNB-hDS 

-iYJ 
GNB-hDS 

-Cw 
GNB-hDS 
-Cw-iYJ 

GNB-hDS 
-Hw 

GNB-hDS 
-Hw-iYJ 

Datasets 
𝑛 =  20 
𝑘 =  1 

    
𝑤 =  100 𝑤 =  50 𝑤 =  100 𝑤 =  100 

Entomology 127 380 395 397 370 335 287 

Ichthyology 157 395 426 398 394 366 338 

Insects-a-b 151 490 472 469 437 374 325 

Insects-a-i 153 495 473 472 444 378 325 

Insects-i-a-r-b 153 496 467 475 441 374 320 

Insects-i-a-r-i 153 492 465 476 442 376 323 

Insects-i-b 148 501 503 500 454 402 334 

Insects-i-g-b 158 483 469 466 441 371 323 

Insects-i-g-i 154 496 470 475 444 377 326 

Insects-i-i 152 497 479 473 445 385 323 

Insects-i-r-b 153 491 459 474 439 363 324 

Insects-i-r-i 153 494 451 476 443 377 323 

Insects-o-o-c 75 283 277 280 271 237 212 

Instruments 79 263 284 257 263 259 217 

Avg. 𝒊𝒏𝒔𝒕/𝒔 140.43 446.80 434.95 434.77 409.01 355.35 307.20 

Avg. Ranking 7.00 1.50 2.21 2.50 3.86 4.93 6.00 

 

Similar to the ℎ𝐹 rates, all GNB-hDS methods outperformed Local kNN-hDS in 

𝑖𝑛𝑠𝑡/𝑠 rates. The primary incremental version (GNB-hDS) obtained the highest 

average 𝑖𝑛𝑠𝑡/𝑠 rate, processing more than three times the number of instances 

processed by Local kNN-hDS. Note that the other GNB-hDS variants obtained 

decreasing rates in the same order as shown in the table columns.  

Note that the primary incremental version of GNB-hDS performs fewer steps 

than its variants, resulting in a higher 𝑖𝑛𝑠𝑡/𝑠. In this sense, the incremental Yeo-Johson 

and the forgetting strategy used on the adaptive versions of GNB-hDS constitute 

additional steps to the learning process and impact the computational performance.  

Thus, one can understand that GNB-hDS-iYJ and GNB-hDS-Cw perform one 

additional step than GNB-hDS, GNB-hDS-Cw-iYJ and GNB-hDS-Hw perform two 

additional steps, and GNB-hDS-Hw-iYJ performs three additional steps since the 

application of the historical window results in the storage and processing of two distinct 

sets of statistical descriptors. 
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Besides, note that these additional steps represent opposite results in the ℎ𝐹 

and 𝑖𝑛𝑠𝑡/𝑠 rates. The highest ℎ𝐹 rates were obtained by the methods that perform 

more additional steps, and, consequently, have lower 𝑖𝑛𝑠𝑡/𝑠 rates. Likewise, the GNB-

hDS method, which obtained the lowest average ℎ𝐹 rate, also obtained the highest 

number of instances processed per second. 

As with ℎ𝐹 rates, a Friedman test was applied using as sample sets the 𝑖𝑛𝑠𝑡/𝑠 

rates obtained by the methods. 

The Friedman test showed a significant difference between the methods 

regarding the 𝑖𝑛𝑠𝑡/𝑠 rates (𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.27 × 10−14) and a post hoc Nemenyi test was 

applied to perform pairwise comparisons. Figure 4.4 shows the resulting critical 

difference chart for the 𝑖𝑛𝑠𝑡/𝑠 rates obtained by all GNB-hDS methods. 

 

 

Figure 4.4 - GNB-hDS results: critical differences chart for 𝑖𝑛𝑠𝑡/𝑠 rates. 

 

The incremental GNB-hDS, the GNB-hDS-iYJ, and both adaptive GNB-hDS 

methods using current windows (GNB-hDS-Cw and GNB-hDS-Cw-iYJ) differ 

significantly from the Local kNN-hDS. Also, note that Local kNN-hDS obtained the 

absolute last place, and GNB-hDS surpassed the local kNN by more than two critical 

distances. It is noteworthy that GNB-hDS-Cw-iYJ differs significantly from the Local 

kNN-hDS in both ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 analyses. 

Two additional analyses were also performed regarding the window parameter 

𝑤 and the effectiveness of the incremental Yeo-Johnson Power Transformation. 

First, the behavior of the methods over variations of 𝑤 was evaluated. Table 

4.16 compares the average ℎ𝐹 (%) rates obtained by methods on each variation of the 

𝑤 parameter. Observe that this analysis considers only the adaptive variants of GNB-

hDS. 
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Table 4.16 - GNB-hDS results: average Hierarchical F-Measure (%) obtained by adaptive methods on 
each variation of 𝑤. 

𝒘 
GNB-hDS-

Cw 
GNB-hDS-

Cw-iYJ 
GNB-hDS-

Hw 
GNB-hDS-

Hw-iYJ 

10 72.55 72.83 73.76 74.52 

50 74.85 75.27 75.51 76.52 

100 75.10 75.20 75.58 76.49 

500 73.94 74.77 74.89 76.01 

1000 73.92 74.84 74.66 75.87 

5000 74.20 74.64 74.01 75.28 

Avg. 𝒉𝑭 74.09 74.59 74.73 75.78 

Avg. Ranking 3.83 2.67 2.50 1.00 

 

GNB-hDS-Hw-iYJ showed the best average results in all variations of 𝑤, 

resulting in a clear first ranking. Note that the average ℎ𝐹 rates follow the same order 

that the one obtained in the best-performing results previously described (Table 4.14). 

Also, the best results of all methods occur with 𝑤 ∈ {50,100}, suggesting that these 

values obtain a reasonable trade-off between historical and current data. 

Regarding the effectiveness of the incremental Yeo-Johnson Power 

Transformation, the proposed data transformation was assessed regarding data 

normality and prediction performance, following the protocol previously described in 

Section 4.1.2.  

Table 4.17 depicts the Shapiro-Wilk W Statistic for original, transformed (known 

𝐷𝑆), and incrementally transformed data streams (greater values highlighted in bold). 

 

Table 4.17 - Incremental Yeo-Johson results: Shapiro-Wilk 𝑊 Statistic for original, transformed, and 
incrementally transformed hierarchical data streams. 

Datasets 
Original 

Transformed  
(known 𝑫𝑺) 

Incrementally  
transformed 

Entomology 0.7489 0.9517 0.9513 

Ichthyology 0.9028 0.9839 0.9773 

Insects-a-b 0.7236 0.9240 0.9204 

Insects-a-i 0.7248 0.9272 0.9229 

Insects-i-a-r-b 0.7268 0.9273 0.9250 

Insects-i-a-r-i 0.7234 0.9269 0.9311 

Insects-i-b 0.7239 0.9239 0.9254 

Insects-i-g-b 0.7280 0.9273 0.9148 

Insects-i-g-i 0.7227 0.9288 0.9166 

Insects-i-i 0.7234 0.9269 0.9305 

Insects-i-r-b 0.7250 0.9252 0.9249 

Insects-i-r-i 0.7234 0.9269 0.9307 

Insects-o-o-c 0.7416 0.9468 0.9462 

Instruments 0.9689 0.9868 0.9865 

Avg. 𝑾  0.7577 0.9381 0.9360 

Avg. Ranking 3.00 1.29 1.71 
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The average 𝑊 Statistic obtained with the original data is 0.7577. In contrast, 

the averages obtained with both transformations (known 𝐷𝑆 and incremental) surpass 

0.93. The 𝑊 statistic is similar across all hierarchical data stream sets, with Yeo-

Johnson being applied with the data known a priori and incrementally. The average W 

Statistic of traditional and incremental transformations differ by 0.0021. 

Figure 4.5 shows the critical difference chart for the Shapiro-Wilk W Statistic 

obtained with original data and both transformations on the hierarchical data streams.  

 

 

Figure 4.5 - Incremental Yeo-Johson results: critical differences chart for Shapiro-Wilk 𝑊 Statistic on 
hierarchical data streams. 

 

The test showed a significant difference between the Shapiro-Wilk 𝑊 Statistic 

obtained with both transformations and the original data (𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.45 × 10−5). Also, 

the test confirmed no difference between both transformations. Thus, the Incremental 

Yeo-Johnson could achieve the same improvements in the data normality without 

accessing the complete data stream. 

Regarding prediction performance, Table 4.18 depicts the Hierarchical F-

Measure (ℎ𝐹) obtained by GNB-hDS with original, transformed, and incrementally 

transformed (GNB-hDS-iYJ) hierarchical data streams (greater values highlighted in 

bold). 

As expected, both transformations improve the prediction performance of the 

GNB-hDS. The average ℎ𝐹 obtained using the original data is 72.60%, and it is 

improved by more than 2% with transformed (known 𝐷𝑆) and incrementally 

transformed data stream sets. The values obtained with both transformations are 

similar across all data streams, with an average difference of 0.02% favoring the 

incremental one. 

It is noteworthy that the GNB-hDS-iYJ was even able to obtain better results 

using the incremental transformation than the traditional (known 𝐷𝑆) transformation in 

9 out of the 14 data streams, probably due to its ability to obtain a better λ estimation. 

Transformed (known 𝐷𝑆) Original 

Incrementally transformed 

𝐶𝐷 =  0.8858 

1 2 3 
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Table 4.18 - Incremental Yeo-Johson results: Hierarchical F-Measure (%) obtained with original, 
transformed, and incrementally transformed hierarchical data streams. 

Datasets 
Original 

Transformed  
(known 𝑫𝑺) 

Incrementally  
transformed 

Entomology 48.64 53.87 52.82 

Ichthyology 46.82 50.27 49.72 

Insects-a-b 81.11 81.90 81.96 

Insects-a-i 80.88 84.05 84.03 

Insects-i-a-r-b 81.42 83.48 84.07 

Insects-i-a-r-i 81.57 83.40 83.70 

Insects-i-b 80.55 82.28 82.40 

Insects-i-g-b 81.53 81.42 81.50 

Insects-i-g-i 80.40 83.16 83.38 

Insects-i-i 80.90 83.05 83.18 

Insects-i-r-b 78.57 79.58 80.21 

Insects-i-r-i 81.61 83.45 83.72 

Insects-o-o-c 64.14 69.46 69.38 

Instruments 48.31 49.93 49.48 

Avg. 𝒉𝑭  72.60 74.95 74.97 

Avg. Ranking 2.86 1.71 1.43 

 

The ℎ𝐹 rates obtained with all data transformations were submitted to a 

Friedman test to check if GNB-hDS and GNB-hDS-iYJ could achieve the same 

prediction results using both transformations.  

Figure 4.6 shows the critical difference chart obtained after Friedman and 

Nemenyi tests for the ℎ𝐹 rates obtained. 

 

 

Figure 4.6 - Incremental Yeo-Johson results: critical differences chart for ℎ𝐹 rates. 

 

Friedman and Nemenyi’s tests identified a difference between the performance 

of the classifiers with and without data transformations but not between the traditional 

(GNB-hDS) and the incremental transformations (GNB-hDS-iYJ) (𝑝-𝑣𝑎𝑙𝑢𝑒 = 3.35 ×

10−4). 

These results corroborate the claims that the proposed Incremental Yeo-

Johnson Power Transformation can be applied to a data stream classification learning 

model as an attached data processing step without the need for a full view of the input 

Incrementally transformed Original 

Transformed (known 𝐷𝑆) 

𝐶𝐷 =  0.8858 
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data and can still improve the prediction performance of the classifier by reducing the 

skewness of the data. 

In conclusion, considering predictive performance and processing speed rates, 

GNB-hDS can obtain computational performance improvements without significant 

threats to the predictive performance by using statistical summaries of data combined 

with the class hierarchy information. 

Moreover, as the GNB-hDS method uses the premise of a gaussian data 

distribution to deal with instance representation in the learning model, it presents an 

additional advantage to the Local kNN-hDS method (or to any other method that does 

not use the premise of data normality) since it is more adapted to classify normally 

distributed data.  

This advantage can be even more noticeable when we consider the data stream 

context, where data are potentially unbounded and statistical descriptors, such as 

mean and standard deviation, are more likely to obtain better representations of the 

population. 

 

4.5 BENCHMARKING 

 

This section presents a separate analysis to compare all proposed methods 

attempting to benchmark the hierarchical data stream classification area. 

The proposed methods were compared against the related work Local kNN-

hDS and among each other. The comparisons were based on the averaged best 

performance of all methods (like the analysis carried out in the previous sections) and 

on a trade-off performance, which considered the best trade-off between ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 

rates obtained by all methods separately resulting from an MCDM-WPM analysis (as 

described in Section 4.1.2). 

Table 4.19 depicts the overall hierarchical F-Measure obtained by all proposed 

methods (also comparing them to the related work Local kNN-hDS) in the hierarchical 

data stream sets (greater values highlighted in bold).  

As aforementioned, these results represent the ℎ𝐹 rates obtained by methods 

considering the averaged best-performing parameter settings. 
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Table 4.19 - Overall results: Hierarchical F-Measure (%) rates obtained by methods with averaged 
best-performing parameters settings. 
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Datasets 

𝑛 = 20 

 

𝑘 = 1 

𝑛 =  20 

 

𝑘 =  1 

𝑛 =  20 

𝑚 = 10 

𝑘 =  3 

𝑛 = 5 

𝑚 = 30 

𝑘 =  1 

𝑛 =  20 

𝑚 = 10 

𝑘 =  3 

𝑛 =  5 

𝑚 = 30 

𝑘 =  1 

  𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100 

Entomology 51.51 51.48 57.38 53.61 57.41 53.71 48.63 52.82 50.08 50.02 50.41 51.59 

Ichthyology 40.55 40.54 41.52 37.00 41.72 37.11 46.82 49.72 46.64 47.15 47.39 48.80 

Insects-a-b 80.95 80.95 84.37 83.33 84.37 83.33 81.11 81.96 86.49 86.97 86.10 86.81 

Insects-a-i 79.14 79.14 82.62 82.55 82.60 82.55 80.88 84.03 85.46 86.17 85.53 86.90 

Insects-i-a-r-b 79.49 79.52 84.30 83.42 84.28 83.42 81.42 84.07 85.84 85.94 86.21 86.59 

Insects-i-a-r-i 78.52 78.53 82.64 82.11 82.62 82.11 81.57 83.70 84.93 85.51 85.00 86.22 

Insects-i-b 79.78 79.78 84.05 83.91 84.03 83.91 80.55 82.40 83.83 84.05 83.65 84.44 

Insects-i-g-b 83.29 83.41 88.02 86.66 87.99 86.66 81.53 81.50 86.16 86.14 85.64 86.03 

Insects-i-g-i 78.94 78.95 82.91 83.11 82.93 83.11 80.40 83.38 86.93 85.42 85.23 86.00 

Insects-i-i 78.63 78.64 82.58 83.08 82.57 83.08 80.90 83.18 84.97 85.50 84.93 86.14 

Insects-i-r-b 80.14 80.18 84.50 83.48 84.50 83.48 78.57 80.21 85.79 86.08 85.64 86.18 

Insects-i-r-i 78.60 78.61 82.63 82.70 82.62 82.70 81.61 83.72 84.88 85.51 84.99 86.25 

Insects-o-o-c 55.24 55.28 65.66 59.50 65.56 59.50 64.14 69.38 59.33 62.40 61.47 66.54 

Instruments 65.42 65.06 55.04 56.53 55.59 56.68 48.31 49.48 40.06 36.91 45.93 42.36 

Avg. 𝒉𝑭 72.16 72.15 75.59 74.36 75.63 74.38 72.60 74.97 75.10 75.27 75.58 76.49 

Avg. Ranking 10.32 9.96 5.39 6.96 5.71 6.75 9.50 6.07 5.36 4.18 5.07 2.71 

 

The Local kNN-hDS and Global kNN-hDS methods obtained the lowest average 

ℎ𝐹 rates and the lowest average rankings among all methods (10.32 and 9.96, 

respectively). Next, the GNB-hDS method obtained a ranking of 9.50. Most of the other 

methods obtained similar rankings between the fourth and seventh ranking. As an 

exception and highlight, the GNB-hDS-Hw-iYJ method achieved the best average ℎ𝐹 

rate (76.49%) and the best average ranking (2.71), reaching the best overall results in 

7 out of 14 hierarchical data streams. 

The overall ℎ𝐹 results were submitted to a Friedman test, which identified a 

significant difference between the methods (𝑝-𝑣𝑎𝑙𝑢𝑒 = 7.15 × 10−10). Thus, a post hoc 

Nemenyi test was applied to perform pairwise comparisons. Figure 4.7 shows the 

resulting critical difference chart for the ℎ𝐹 rates obtained by all methods. 

The four adaptive variants of GNB-hDS plus both local and global kNC methods 

are significantly different from the Local kNN-hDS method. The Global kNN-hDS 

shows a similar set of differences, except that it does not significantly differ from the 

Global kNC-hDS. Also, the primary incremental GNB-hDS significantly differs from its 

adaptive counterparts that use the incremental Yeo-Johnson Power Transformation.  
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Figure 4.7 - Overall results: critical differences chart for ℎ𝐹 rates obtained by methods with averaged 
best-performing parameters settings. 

 

Complementarily to the overall results regarding ℎ𝐹 rates, Table 4.20 depicts 

the overall 𝑖𝑛𝑠𝑡/𝑠 rates obtained by all proposed methods. Likewise, these results 

represent the 𝑖𝑛𝑠𝑡/𝑠 rates obtained by methods when using the averaged best-

performing parameter settings. 

  

Table 4.20 - Overall results: instances per second rates obtained by methods with averaged best-
performing parameters settings. 
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Datasets 

𝑛 = 20 

 

𝑘 = 1 

𝑛 =  20 

 

𝑘 =  1 

𝑛 =  20 

𝑚 = 10 

𝑘 =  3 

𝑛 = 5 

𝑚 = 30 

𝑘 =  1 

𝑛 =  20 

𝑚 = 10 

𝑘 =  3 

𝑛 =  5 

𝑚 = 30 

𝑘 =  1 

  𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100 

Entomology 127 209 134 327 200 382 380 395 397 370 335 287 

Ichthyology 157 223 186 286 291 380 395 426 398 394 366 338 

Insects-a-b 151 383 152 452 353 543 490 472 469 437 374 325 

Insects-a-i 153 384 151 467 354 542 495 473 472 444 378 325 

Insects-i-a-r-b 153 386 152 456 354 541 496 467 475 441 374 320 

Insects-i-a-r-i 153 374 150 468 351 542 492 465 476 442 376 323 

Insects-i-b 148 363 152 456 345 541 501 503 500 454 402 334 

Insects-i-g-b 158 385 165 459 372 542 483 469 466 441 371 323 

Insects-i-g-i 154 385 155 466 359 543 496 470 475 444 377 326 

Insects-i-i 152 377 151 467 354 545 497 479 473 445 385 323 

Insects-i-r-b 153 388 152 458 356 543 491 459 474 439 363 324 

Insects-i-r-i 153 386 151 469 353 540 494 451 476 443 377 323 

Insects-o-o-c 75 135 78 247 127 275 283 277 280 271 237 212 

Instruments 79 110 121 221 164 256 263 284 257 263 259 217 

Avg. 𝒊𝒏𝒔𝒕/𝒔 140.43 320.50 146.54 407.00 309.40 479.60 446.80 434.95 434.77 409.01 355.35 307.20 

Avg. Ranking 11.57 8.00 11.36 5.50 9.00 2.00 2.29 3.07 3.21 5.43 7.21 9.36 

 

𝐶𝐷 =  4.4535 

1 2 3 4 5 6 7 

GNB-hDS-Hw-iYJ 

GNB-hDS-Cw-iYJ 

GNB-hDS-Cw 

GNB-hDS-Hw 

Local kNN-hDS 

GNB-hDS 

GNB-hDS-iYJ 

8 9 10 11 12 

Global kNN-hDS 

Local Dribble-hDS 

Global Dribble-hDS Local kNC-hDS 

Global kNC-hDS 
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Both Local kNN and kNC methods obtained the lowest average 𝑖𝑛𝑠𝑡/𝑠 rates and 

the lowest average rankings among all methods (11.57 and 11.36, respectively). Next, 

the GNB-hDS-Hw-iYJ method obtained a ranking of 9.36. On the other ranking side, 

GNB-hDS-iYJ and GNB-hDS-Cw obtained similar rankings of 3.21 and 3.07. Also, 

GNB-hDS and Global Dribble-hDS achieved similar rankings (2.29 and 2.00, 

respectively), with Global Dribble-hDS in first place in 10 out of 14 hierarchical data 

streams. 

The overall 𝑖𝑛𝑠𝑡/𝑠 results were submitted to a Friedman test, which identified a 

significant difference between the methods (𝑝-𝑣𝑎𝑙𝑢𝑒 = 2.15 × 10−24). Thus, a post hoc 

Nemenyi test was applied to perform pairwise comparisons. Figure 4.8 shows the 

resulting critical difference chart for the 𝑖𝑛𝑠𝑡/𝑠 rates obtained by all methods. 

 

 

 

Figure 4.8 - Overall results: critical differences chart for 𝑖𝑛𝑠𝑡/𝑠 rates obtained by methods with 
averaged best-performing parameters settings. 

 

Both Dribble methods plus four variants of GNB-hDS (incremental ones and 

both adaptive with current window (Cw)) are significantly different from the Local kNN-

hDS method. Global Dribble-hDS, GNB-hDS, GNB-hDS-iYJ, and GNB-hDS-Cw are 

also significantly different from both kNN, both KNC, and GNB-hDS-Hw-iYJ methods. 

Considering both ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates together, one can observe that some 

methods obtained slightly opposite rankings in both analyses. For instance, GNB-hDS-

Hw-iYJ achieved first place (ranking of 2.71) regarding ℎ𝐹 rates, but the third to last 

place on 𝑖𝑛𝑠𝑡/𝑠 (ranking of 9.36). The same can be said about both kNC methods, with 

competitive ℎ𝐹 rates, but slower 𝑖𝑛𝑠𝑡/𝑠 rates.  

Note that, as already discussed, both Dribble methods take advantage of using 

a smaller data representation (𝑛 = 5) to obtain their averaged best performance. This 

𝐶𝐷 =  4.4535 
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ensured the first place for Global Dribble-hDS among the 𝑖𝑛𝑠𝑡/𝑠 performances and yet 

a competitive ℎ𝐹 rate. A broader analysis in this sense regarding the averaged best 

performances is shown later in this section, with the application of the Multi-Criteria 

Decision Making (MCDM) technique. 

Also in that context, the MCDM was applied to all performances of the classifiers 

in an isolated view to retrieve the best trade-off performances of all methods 

considering both ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates together (see Section 4.1.2). 

As previously described, the ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates obtained by a method with 

each parameter setup were compared among each other concerning five different 

assignments of importance (weights, 𝑤) following the complementary percentage set 

𝑤 ∈ {
1

6
,
2

6
,
3

6
,
4

6
,
5

6
}. In other words, each result set obtained with a specific parameter 

setup was evaluated with the MCDM-WPM analysis using complementary weighted 

ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates (𝑤ℎ𝐹 and 𝑤𝑖𝑛𝑠𝑡/𝑠) resulting in a 𝑊𝑃𝑀 performance.  

After that, the 𝑊𝑃𝑀 performances were ranked among each other to obtain the 

best result set for each pair (𝑤ℎ𝐹, 𝑤𝑖𝑛𝑠𝑡/𝑠). Lastly, all sets of 𝑊𝑃𝑀 rankings were 

averaged, and the best overall average was understood as the best trade-off 

performance of that method.  

Table 4.21 depicts the hierarchical F-Measure obtained by all proposed 

methods in the hierarchical data stream sets considering the best trade-off 

performance of each method retrieved by the MCDM-WPM analysis (greater values 

per dataset highlighted in bold). Note that the table also depicts the parameter setup 

used by each method to achieve its best trade-off performance. 

All kNN, kNC, and Dribble methods obtained their best trade-off performances 

with 𝑛 = 5. This is probably because this parameter setup is the fastest possible with a 

reasonable representation of data. Also, note that the averaged best performances 

and the best trade-off performances of all GNB-hDS methods are the same since the 

𝑤 parameter does not affect the processing speed. 

All GNB-hDS variants (except for the incremental GNB-hDS) obtained the best 

average ℎ𝐹 rates and rankings regarding the trade-off performances. Next, kNC and 

Dribble methods obtained similar average rates. The incremental GNB-hDS obtained 

the third to last place, and both kNN obtained the lowest average rate among all 

methods, with the Local kNN-hDS method in the last position. 
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Table 4.21 - Overall results: Hierarchical F-Measure (%) rates obtained by methods on best trade-off 
performance. 
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Datasets 

𝑛 = 5 

 

𝑘 = 1 

𝑛 =  5 

 

𝑘 =  1 

𝑛 =  5 

𝑚 = 30 

𝑘 =  3 

𝑛 = 5 

𝑚 = 30 

𝑘 =  1 

𝑛 =  5 

𝑚 = 30 

𝑘 =  3 

𝑛 =  5 

𝑚 = 30 

𝑘 =  1 

  𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100 

Entomology 46.79 46.79 55.68 53.61 55.71 53.71 48.63 52.82 50.08 50.02 50.41 51.59 

Ichthyology 36.66 36.66 39.44 37.00 39.53 37.11 46.82 49.72 46.64 47.15 47.39 48.80 

Insects-a-b 77.63 77.64 84.05 83.33 84.07 83.33 81.11 81.96 86.49 86.97 86.10 86.81 

Insects-a-i 75.32 75.32 82.29 82.55 82.30 82.55 80.88 84.03 85.46 86.17 85.53 86.90 

Insects-i-a-r-b 76.89 76.96 84.00 83.42 83.96 83.42 81.42 84.07 85.84 85.94 86.21 86.59 

Insects-i-a-r-i 74.98 75.00 82.31 82.11 82.29 82.11 81.57 83.70 84.93 85.51 85.00 86.22 

Insects-i-b 76.43 76.42 83.62 83.91 83.62 83.91 80.55 82.40 83.83 84.05 83.65 84.44 

Insects-i-g-b 79.97 80.12 87.61 86.66 87.62 86.66 81.53 81.50 86.16 86.14 85.64 86.03 

Insects-i-g-i 75.62 75.65 82.22 83.11 82.20 83.11 80.40 83.38 86.93 85.42 85.23 86.00 

Insects-i-i 75.01 75.03 82.40 83.08 82.40 83.08 80.90 83.18 84.97 85.50 84.93 86.14 

Insects-i-r-b 77.33 77.42 84.33 83.48 84.29 83.48 78.57 80.21 85.79 86.08 85.64 86.18 

Insects-i-r-i 75.05 75.06 82.31 82.70 82.31 82.70 81.61 83.72 84.88 85.51 84.99 86.25 

Insects-o-o-c 49.99 50.21 65.00 59.50 64.90 59.50 64.14 69.38 59.33 62.40 61.47 66.54 

Instruments 50.60 50.48 50.29 56.53 50.68 56.68 48.31 49.48 40.06 36.91 45.93 42.36 

Avg. 𝒉𝑭 67.73 67.77 74.68 74.36 74.71 74.38 72.60 74.97 75.10 75.27 75.58 76.49 

Avg. Ranking 11.21 10.79 6.14 6.43 5.86 6.14 9.07 5.79 5.07 4.00 4.79 2.71 

 

Both sides of the ranking (first and last positions) on both averaged best 

performances and best trade-off performances are the same. This occurs since the 

methods with the lowest trade-off performance rates were not able to obtain enough 

increases in ℎ𝐹 rates even with larger data representations. Also, the primary version 

of GNB-hDS does not differ significantly from both kNN regarding ℎ𝐹 rates, but it does 

differ regarding 𝑖𝑛𝑠𝑡/𝑠 rates (as discussed in its specific section). 

Following the same protocol of the analysis performed with the averaged best 

performances, the overall ℎ𝐹 results of the trade-off performances were submitted to 

a Friedman test. As expected, it identified a significant difference between the methods 

(𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.49 × 10−12). Thus, a post hoc Nemenyi test was applied to perform 

pairwise comparisons. Figure 4.9 shows the resulting critical difference chart for the 

ℎ𝐹 rates obtained by all methods in the trade-off performances. 

All the proposed methods obtained significantly higher rates than the related 

work Local kNN-hDS, except for methods Global kNN-hDS and GNB-hDS. Also, the 

incremental GNB-hDS significantly differs from its adaptive counterparts that use the 

incremental Yeo-Johnson Power Transformation. 
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Figure 4.9 - Overall results: critical differences chart for ℎ𝐹 rates obtained by methods on best trade-
off performance. 

 

Regarding speed comparison, Table 4.22 depicts the overall 𝑖𝑛𝑠𝑡/𝑠 rates 

obtained by all proposed methods on their best trade-off performances. 

  

Table 4.22 - Overall results: instances per second rates obtained by methods on best trade-off 
performance. 
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Datasets 

𝑛 = 5 

 

𝑘 = 1 

𝑛 =  5 

 

𝑘 =  1 

𝑛 =  5 

𝑚 = 30 

𝑘 =  3 

𝑛 = 5 

𝑚 = 30 

𝑘 =  1 

𝑛 =  5 

𝑚 = 30 

𝑘 =  3 

𝑛 =  5 

𝑚 = 30 

𝑘 =  1 

  𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100 

Entomology 283 370 265 327 335 382 380 395 397 370 335 287 

Ichthyology 294 363 309 286 384 380 395 426 398 394 366 338 

Insects-a-b 354 568 355 452 534 543 490 472 469 437 374 325 

Insects-a-i 357 570 360 467 534 542 495 473 472 444 378 325 

Insects-i-a-r-b 340 583 360 456 535 541 496 467 475 441 374 320 

Insects-i-a-r-i 345 582 359 468 535 542 492 465 476 442 376 323 

Insects-i-b 365 584 297 456 527 541 501 503 500 454 402 334 

Insects-i-g-b 354 579 366 459 540 542 483 469 466 441 371 323 

Insects-i-g-i 348 581 364 466 536 543 496 470 475 444 377 326 

Insects-i-i 358 448 340 467 536 544 497 479 473 445 385 323 

Insects-i-r-b 344 576 360 458 537 543 491 459 474 439 363 324 

Insects-i-r-i 343 581 359 469 536 540 494 451 476 443 377 323 

Insects-o-o-c 170 196 179 247 231 275 283 277 280 271 237 212 

Instruments 178 215 187 221 230 256 263 284 257 263 259 217 

Avg. 𝒊𝒏𝒔𝒕/𝒔 316.64 485.54 318.60 407.00 466.46 479.60 446.80 434.95 434.77 409.01 355.35 307.20 

Avg. Ranking 11.00 3.50 10.50 7.29 4.07 2.71 3.64 4.43 4.57 6.93 8.21 11.14 

 

Global kNN-hDS obtained the best average 𝑖𝑛𝑠𝑡/𝑠 rate (485.54), while Global 

Dribble-hDS obtained the best average ranking. Global kNN-hDS and GNB-hDS 

achieved close rankings, as well as Global kNC-hDS, GNB-hDS-iYJ and GNB-hDS-

𝐶𝐷 =  4.4535 
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Cw. The slower performances resulted from both local kNN and kNC methods and 

from the GNB-hDS-Hw-iYJ. 

The 𝑖𝑛𝑠𝑡/𝑠 rates of the trade-off performances were also submitted to a 

Friedman test. As with the ℎ𝐹 rates, the Friedman test identified a significant difference 

between the methods (𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.40 × 10−19). Figure 4.10 shows the resulting critical 

difference chart for the 𝑖𝑛𝑠𝑡/𝑠 rates obtained by all methods in the trade-off 

performances after the application of a post hoc Nemenyi test. 

 

 

Figure 4.10 - Overall results: critical differences chart for 𝑖𝑛𝑠𝑡/𝑠 rates obtained by methods on best 
trade-off performance. 

 

All global methods and both incremental GNB-hDS and GNB-hDS-Cw obtained 

significantly faster 𝑖𝑛𝑠𝑡/𝑠 rates than the related work Local kNN-hDS (and than Local 

kNC-hDS and GNB-hDS-Hw-iYJ). In the first and second places, Global Dribble-hDS 

and Global kNN-hDS significantly differ from Local kNN-hDS and Local kNC-hDS, and 

from both adaptive GNB-hDS variants with historical windows. 

Attempting to portray an overview of both ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates together, the 

MCDM-WPM analysis was also applied to the overall results of all methods together, 

considering both averaged best performance and trade-off performance.  

First, regarding the averaged best performance, Table 4.23 details the 𝑊𝑃𝑀 

performances for each variation of the ℎ𝐹 criterion weight (𝑤ℎ𝐹). Note that, as 

previously described, the 𝑤𝑖𝑛𝑠𝑡/𝑠 is the complementary percentage of 𝑤ℎ𝐹. The last 

column shows the average 𝑊𝑃𝑀 performance concerning all 𝑤 variations. Also, note 

that zero with decimal places is a rounding from a constant equal to 1.00 × 10−6 and 

represents the minimum value obtained with the criterion normalization. 
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Table 4.23 - Overall results: MCDM-WPM (values) of methods with averaged best performance. 

Method 
 𝒘𝒉𝑭 Avg.  

𝑾𝑷𝑴 1/6 2/6 3/6 4/6 5/6 

Local kNN-hDS 0.0000 0.0000 0.0000 0.0002 0.0006 0.0002 

Global kNN-hDS 0.0590 0.0066 0.0007 0.0001 0.0000 0.0133 

Local kNC-hDS 0.0338 0.0636 0.1194 0.2244 0.4216 0.1726 

Local Dribble-hDS 0.7310 0.6799 0.6323 0.5881 0.5470 0.6357 

Global kNC-hDS 0.5393 0.5838 0.6319 0.6841 0.7405 0.6359 

Global Dribble-hDS 0.8952 0.8014 0.7174 0.6422 0.5749 0.7262 

GNB-hDS 0.6308 0.4406 0.3077 0.2149 0.1501 0.3488 

GNB-hDS-iYJ 0.8273 0.7883 0.7510 0.7156 0.6818 0.7528 

GNB-hDS-Cw 0.8332 0.8000 0.7681 0.7375 0.7081 0.7694 

GNB-hDS-Cw-iYJ 0.7792 0.7668 0.7546 0.7425 0.7307 0.7548 

GNB-hDS-Hw 0.6575 0.6822 0.7078 0.7344 0.7619 0.7088 

GNB-hDS-Hw-iYJ 0.5535 0.6230 0.7012 0.7893 0.8884 0.7111 

 

Additionally, Table 4.24 shows the rankings corresponding to the values shown 

in Table 4.23 regarding each 𝑤 variation. The last column shows the final overall 

average ranking of all methods when considering their averaged best performance. 

 

Table 4.24 - Overall results: MCDM-WPM (rankings) of methods with averaged best performance. 

Method 
 𝒘𝒉𝑭 Avg.  

Ranking 1/6 2/6 3/6 4/6 5/6 

Local kNN-hDS 12.00 12.00 12.00 11.00 11.00 11.60 

Global kNN-hDS 10.00 11.00 11.00 12.00 12.00 11.20 

Local kNC-hDS 11.00 10.00 10.00 9.00 9.00 9.80 

Local Dribble-hDS 5.00 6.00 7.00 8.00 8.00 6.80 

Global kNC-hDS 9.00 8.00 8.00 6.00 3.00 6.80 

Global Dribble-hDS 1.00 1.00 4.00 7.00 7.00 4.00 

GNB-hDS 7.00 9.00 9.00 10.00 10.00 9.00 

GNB-hDS-iYJ 3.00 3.00 3.00 5.00 6.00 4.00 

GNB-hDS-Cw 2.00 2.00 1.00 3.00 5.00 2.60 

GNB-hDS-Cw-iYJ 4.00 4.00 2.00 2.00 4.00 3.20 

GNB-hDS-Hw 6.00 5.00 5.00 4.00 2.00 4.40 

GNB-hDS-Hw-iYJ 8.00 7.00 6.00 1.00 1.00 4.60 

 

The Local kNN-hDS method obtained the last combined ranking (11.60), 

followed by the proposed Global kNN-hDS method. Regardless of the weights given 

to ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 rates, both methods did not perform well in any scenario as they have 

the lowest individual rates. On the other hand, the GNB-hDS-Cw method obtained the 

first combined ranking (2.60), obtaining the second place with smaller weights in the 

ℎ𝐹 rate, the first place with equal weights in both rates, and the third and fifth place 

with greater weights on the ℎ𝐹 rate.  
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The GNB-hDS-Cw-iYJ method obtained the second-best combined ranking 

(3.20), with a worse performance than the GNB-hDS-Cw method, mainly in the speed 

comparisons. 

The Global Dribble-hDS and GNB-hDS-iYJ methods share the third-best 

combined ranking (4.00). The GNB-hDS-iYJ method proved to be competitive in all 

variations of 𝑤, and even obtained better rankings than the Global Dribble-hDS method 

with higher weights in 𝑤ℎ𝐹. Furthermore, it is noteworthy that Global Dribble-hDS 

achieved the first place in the ranking when the weights were favoring the 𝑖𝑛𝑠𝑡/𝑠 rate. 

Moreover, note that the GNB-hDS-Hw-iYJ method obtained only the sixth 

combined ranking (4.60), even though it obtained the first place in the ranking with 

weights favoring the ℎ𝐹 rate, meaning that the method, despite having the best 

prediction correctness, could not obtain competitive processing times when compared 

to the other methods. 

The same general MCDM-WPM analysis was applied to the overall results of 

the methods considering their best trade-off performance. Table 4.25 details the 𝑊𝑃𝑀 

performances for each variation of the ℎ𝐹 criterion weight (𝑤ℎ𝐹). The last column shows 

the average 𝑊𝑃𝑀 performance concerning all 𝑤 variations.  

 

Table 4.25 - Overall results: MCDM-WPM (values) of methods with best trade-off performance. 

Method 
 𝒘𝒉𝑭 Avg.  

𝑾𝑷𝑴 1/6 2/6 3/6 4/6 5/6 

Local kNN-hDS 0.0086 0.0014 0.0002 0.0000 0.0000 0.0021 

Global kNN-hDS 0.3984 0.1587 0.0632 0.0252 0.0100 0.1311 

Local kNC-hDS 0.0973 0.1480 0.2252 0.3427 0.5215 0.2670 

Local Dribble-hDS 0.5885 0.6188 0.6506 0.6841 0.7194 0.6523 

Global kNC-hDS 0.8761 0.8596 0.8433 0.8273 0.8116 0.8436 

Global Dribble-hDS 0.9286 0.8919 0.8568 0.8230 0.7905 0.8581 

GNB-hDS 0.7394 0.6985 0.6598 0.6233 0.5887 0.6619 

GNB-hDS-iYJ 0.7336 0.7512 0.7693 0.7878 0.8068 0.7698 

GNB-hDS-Cw 0.7349 0.7551 0.7757 0.7970 0.8188 0.7763 

GNB-hDS-Cw-iYJ 0.6113 0.6546 0.7010 0.7506 0.8037 0.7042 

GNB-hDS-Hw 0.3298 0.4028 0.4919 0.6008 0.7338 0.5118 

GNB-hDS-Hw-iYJ 0.0000 0.0001 0.0010 0.0100 0.1000 0.0222 

 

As well, Table 4.26 shows the rankings corresponding to the values shown in 

Table 4.25 regarding each 𝑤 variation. The last column shows the final overall average 

ranking of all methods when considering their best trade-off performances. 
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Table 4.26 - Overall results: MCDM-WPM (rankings) of methods with best trade-off performance. 

Method 
 𝒘𝒉𝑭 Avg.  

Ranking 1/6 2/6 3/6 4/6 5/6 

Local kNN-hDS 11.00 11.00 12.00 12.00 12.00 11.60 

Global kNN-hDS 8.00 9.00 10.00 10.00 11.00 9.60 

Local kNC-hDS 10.00 10.00 9.00 9.00 9.00 9.40 

Local Dribble-hDS 7.00 7.00 7.00 6.00 7.00 6.80 

Global kNC-hDS 2.00 2.00 2.00 1.00 2.00 1.80 

Global Dribble-hDS 1.00 1.00 1.00 2.00 5.00 2.00 

GNB-hDS 3.00 5.00 6.00 7.00 8.00 5.80 

GNB-hDS-iYJ 5.00 4.00 4.00 4.00 3.00 4.00 

GNB-hDS-Cw 4.00 3.00 3.00 3.00 1.00 2.80 

GNB-hDS-Cw-iYJ 6.00 6.00 5.00 5.00 4.00 5.20 

GNB-hDS-Hw 9.00 8.00 8.00 8.00 6.00 7.80 

GNB-hDS-Hw-iYJ 12.00 12.00 11.00 11.00 10.00 11.20 

 

As in the analysis concerning the best average performance of the methods, the 

Local kNN-hDS method also obtained the last place in the combined ranking 

considering the best trade-off performance. Even with smaller data representations (𝑛 

= 5) and competitive 𝑖𝑛𝑠𝑡/𝑠 rates, the method could not maintain the ℎ𝐹 rates obtained 

when using more data. 

Next, the GNB-hDS-Hw-iYJ method obtained only the second-to-last ranking 

since it obtained the lowest overall 𝑖𝑛𝑠𝑡/𝑠 rate. Even with the best overall ℎ𝐹 rate, the 

method did not achieve a good position in the combined ranking, as the gains in ℎ𝐹 

rates were not enough to offset the low 𝑖𝑛𝑠𝑡/𝑠 rates in the combined MCDM-WPM 

analysis. 

On the other side of the combined ranking, Global kNC-hDS and Global Dribble-

hDS methods obtained the first and second places, respectively (1.80 and 2.00). The 

Global kNC-hDS method achieved the first place with 𝑤ℎ𝐹 = 4 6⁄ , and the second place 

in the other variations of 𝑤. The Global Dribble-hDS method achieved the first place in 

the ranking when the weights were favoring the 𝑖𝑛𝑠𝑡/𝑠 rate and with equal weights in 

both rates.  

Furthermore, when the weights were strongly favoring the ℎ𝐹 rate, the GNB-

hDS-Cw method obtained the first place in the ranking, resulting in a third place in the 

combined ranking (2.80). 

Overall, regarding averaged best performance analysis, all GNB-hDS variants, 

plus the Global Dribble-hDS method, presented competitive results with each other, 

with the Global Dribble-hDS method obtaining higher processing speed rates, GNB-
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hDS-Hw-iYJ obtaining better prediction correctness rates, and the other methods in 

between, with GNB-hDS-Cw obtaining the best equally weighted performance. 

Regarding best trade-off performance analysis, Global kNC-hDS and Global 

Dribble-hDS methods stand out, with Global Dribble-hDS obtaining higher processing 

speed rates and Global kNC-hDS obtaining better prediction correctness, together with 

the GNB-hDS-Cw method. 

Also, it is important to point out that the analysis using the best trade-off 

performances presents less bias in the comparison of the methods, since the analysis 

using the best average performances intrinsically gives greater relevance to the ℎ𝐹 

rate in the selection of the parameter configuration to be considered in the MCDM 

analysis, even before weights are assigned to the ℎ𝐹 and 𝑖𝑛𝑠𝑡/𝑠 criteria. 

Finally, two key aspects related to the application of the described MCDM-WPM 

analysis are noteworthy. First, it should be understood only as a guide for interpreting 

the results of the methods when compared together. The application of the MCDM-

WPM method with different criteria and different weight ranges can change the rank of 

the methods. In this thesis, the MCDM-WPM analysis was performed separately on 

each method (in order to remove the initial bias of the averaged best performances) 

and then in the methods together, normalizing the rates obtained by the methods. 

However, other MCDM protocols are possible and could result in the same rankings or 

not, and generate other interpretations. 

Second, merging evaluation metrics is not straightforward nor trivial, and the 

resulting overall average ranking obtained in the MCDM-WPM analysis should not be 

understood as a single measure that can be used instead of individual ones. The best 

learning model may depend on several external traits not measured by the ℎ𝐹 and 

𝑖𝑛𝑠𝑡/𝑠 metrics computed in this thesis. It may also require specific solutions to specific 

problems which are not comprehended by this study, such as unusual data 

distributions, higher responsiveness to concept drifts, and different constraints 

regarding computational resources. 
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5 CONCLUSION 

 

This section concludes this thesis by summarizing the fulfilled objectives and 

listing the resulting contributions. In addition, implications for upcoming works and 

experiments are provided to guide further research on the hierarchical data stream 

classification area. 

 

5.1 FULFILLED OBJECTIVES AND CONTRIBUTIONS 

 

In this thesis, learning models for classifying hierarchical data streams using 

data summarization techniques have been proposed and evaluated. 

To fulfill the research objectives of this thesis and build a theoretical foundation, 

formal concepts of classification, hierarchical classification, and classification of data 

stream areas were presented (Section 2). In addition, this thesis presented a 

systematic literature review (Section 2.3) focused on the hierarchical data stream 

classification, corroborating the initial claims of lack of studies in the area and non-

adherence of the few existent studies in the literature to the characteristics and 

constraints imposed by both foundation areas together. 

Regarding the research aim of this thesis, four new main methods were 

proposed for the classification of hierarchical data streams: (i) “Global kNN-hDS” – 

based on nearest neighbors (Sections 3.2 and 4.2), (ii) “kNC-hDS” and (iii) “Dribble-

hDS” – based on clustering techniques (Sections 3.3 and 4.3), and (vi) “GNB-hDS” – 

based on gaussian probabilities. Additionally, an incremental adaptation of the Yeo-

Johnson Power Transformation was proposed to be used attached to a hierarchical 

data stream learning model as a data pre-processing step to reduce the skewness of 

the data and improve the prediction results (Sections 3.4 and 4.4). 

This thesis also tried to provide a testbed for benchmarking the hierarchical data 

stream classification area. To this end, all hierarchical data stream sets available in the 

literature were identified, adapted, and arranged. Also, the proposed methods were 

experimented using different parameter settings and statistical validation and 

compared under the same experimental protocol (Sections 4.1 and 4.5). 

Regarding the comparisons with the state-of-the-art method and the 

investigation of the hypothesis of this thesis, the Global kNN-hDS method is statistically 

faster than the Local kNN-hDS, while achieving similar prediction rates. These 
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methods, based on nearest neighbors, presented high computational costs due to the 

distance computations used in their prediction strategies and performed on potentially 

complete data representation. Therefore, usually, there is a trade-off between 

prediction correctness and computational performance related to the possibility of 

bigger data representation. 

However, as a response to this limitation (or characteristic) and corroborating the 

claims of the hypotheses, the methods based on clustering techniques and gaussian 

probabilities propose improvements in the representation of data using summarization 

techniques, allowing better computational performance without significant impacts on 

prediction correctness. Thus, the kNC-hDS, Dribble-hDS, and GNB-hDS methods 

showed the greatest gains in this relationship. 

Local versions of kNC-hDS and Dribble-hDS obtained similar or better 

computational performance and higher prediction correctness, while global versions 

obtained simultaneously better prediction correctness and computational performance. 

Likewise, GNB-hDS could also obtain better computational performance without 

significant impacts on prediction correctness.  

Therefore, all the proposed methods validated the initial expectation concerning 

the hypotheses of the thesis. Regarding prediction correctness and computational 

performance, all proposed learning models using summarization techniques could 

achieve better rates in one criterion without significant impacts on the other. 

 

5.2 IMPLICATIONS FOR FUTURE WORK 

 

Lastly, it is noteworthy that even though this thesis addressed the hierarchical 

data stream classification area and introduced novel learning models fitted to classify 

hierarchical data streams, the resulting contributions should be understood as an initial 

step in the research area. In this sense, some implications and proposals for future 

work in the area are briefly described below: 

• The datasets used on the experimental protocol adopted in this thesis contain 

different features, instances, and domains, thus allowing a reasonable 

assessment of the behavior of the proposed methods in different scenarios. 

However, there is room for work that aims to create hierarchical data stream 

sets, detailing the underlying distribution of data, eventual concept drifts, and 
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metrics concerning imbalanced data. Although the emergence of hierarchical 

data streams seems natural (given the evolution in data generation and storage 

mechanisms), creating labeled datasets fitted for the classification task is a quite 

expensive challenge, especially considering the difficulty of labeling large-scale 

data. 

• The experimental protocol adopted in this thesis comprehended limited 

parameter settings and did not experiment variations of each parameter 

exhaustively. For instance, kNN and kNC methods seem to obtain better 

prediction correctness with bigger data representations while putting in jeopardy 

the computational performance. Thus, it is worth describing the relationship 

between these variables (data representation and prediction correctness) and 

eventually using this information to support the design of new methods or 

summarization techniques. 

• Among the datasets used in the experimental protocol, the ones proposed in 

(SOUZA et al., 2020) were introduced with well-defined concept drifts along the 

stream. In future work, different time window strategies and the application of 

existing drift detectors (BARROS et al., 2017; BIFET; GAVALDA, 2007; FRÍAS-

BLANCO et al., 2015) could be tested to increase the responsiveness to 

changes in the data distribution. For instance, pilot experiments with the 

adaptive variants of GNB-hDS showed that the size of the window significantly 

affects the number of instances used by the model to adapt itself to concept 

drifts compared to other variants. 

• Finally, the next natural step in this research is the design of a learning model 

based on a different learning paradigm or method, such as decision trees. State-

of-the-art learning models of the foundation areas – such as CLUS-HMC (VENS 

et al., 2008) on Hierarchical Classification, and Adaptive Random Forest 

(GOMES et al., 2017) on Data Stream Classification – must be accounted for, 

used as a concept idea for the designing of a novel decision tree-based method 

fitted to the hierarchical data stream classification task, and benchmarked 

against the methods proposed in this thesis to understand its behavior regarding 

prediction correctness and computational performance on this new 

classification task. 
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