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O sonho é ver as formas invisíveis  

da distância imprecisa, e, com sensíveis 

Movimentos da esp’rança e da vontade, 

Buscar na linha fria do horizonte 

A árvore, a praia, a flor, a ave, a fonte –  

Os beijos merecidos da Verdade. 

Fernando Pessoa 

 

It is possible to believe that  

all the human mind has ever accomplished 

 is but the dream before the awaking. 
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Resumo 

 

Uma das questões mais importantes na interface de computador-cérebro é a análise de 

padrões cerebrais, geralmente representados por sinais elétricos. Este trabalho tem como 

objetivo introduzir uma ferramenta de mineração de dados para sinais de EEG, analisando os 

padrões no plano tempo-freqüência utilizando a transformada contínua de odeletas. Este 

trabalho também aspira aperfeiçoar a análise de sinal eletroencefalográfico, e sua melhor 

classificação, e possivelmente, aumentar a eficiência do sistema de interface computador-

cérebro aumentando sua velocidade e acurácia. Nesta pesquisa a tranformada contínua de 

odeleta permite uma maior legibilidade de informações sobre sinais de eletroencefalográfico 

analisado qualitativamente. Os resultados sugerem que a metodologia proposta seja capaz de 

identificar padrões significativos com freqüências e tempo específicos, relacionadas com as 

atividades cerebrais do usário. Em um segundo momento nesse trabalho busca-se classificar 

esses padrões usando o classificador ingênuo de Bayes. Posteriormente, a velocidade e a 

precisão dos resultados apresentados por essa classificação são analisados. E como resultado o 

método apresentado obteve 61 bit/min de velocidade e 70% de acurácia, aumentando-se 

significativamente a velocidade em relação ao estado da arte, pois foram utilizados segmentos 

menores de sinais, possibilitando uma resposta mais rápida. Todavia, a precisão foi reduzida 

em relação ao estado da arte. Adicionalmente o ferramental desenvolvido neste projeto cria 

novas possibilidades em pesquisas de sinais fisiológicos e análise de série de temporais não-

estacionárias. 

 

 

Palavras-Chave: Analise de Padrões, Classificação, Processamento de Sinas, Interface 

computador máquina.  
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Abstract 

 

One of the most important issues in brain-computer interface (BCI) is the analysis of 

patterns in brain states generally represented by electrical signals. The main objective of this 

work is to present an exploratory approach on electroencephalographic (EEG) signal, 

analyzing the patterns in the time-frequency surface. This work also aims to optimize the EEG 

signal analysis through the improvement of classifiers and, eventually, of the BCI 

performance. In this paper a novel exploratory approach for data mining on EEG signal based 

on continuous wavelet transformation (CWT) and wavelet coherence (WC) statistical analysis 

is introduced and applied. The CWT allows legibility of signal information content to 

represent time-frequency patterns illustrated in WC qualitative analysis. Results suggest that 

the proposed methodology is capable of identifying regions in time-frequency spectrum 

during the specified task on BCI. Furthermore, an example of a region is identified, and the 

patterns were classified using a Naïve Bayes Classifier. This innovative characteristic of the 

process justify the feasibility of the proposed approach for another data mining applications. It 

can open new physiologic researches in this field and researches in different non-stationary 

time series analysis.  

 

 

Keywords: Pattern analysis, Classification, Signal Processing, Brain Computer Interface. 

 





Chapter 1   

 Introduction 

1.1 Motivation 

 

From the first moments in this world, a human initiates a communication exchange, 

using different interfaces, such as the cry vocalization of a newborn infant, after a normal 

childbirth. Communication is the basis of human development, it allows us to interact with 

others, express ideas, desires, feelings etc. However, for individuals with the locked-in 

syndrome, the communication is a difficult challenge, as for the amyotrophic lateral sclerosis 

(ALS) disease. Patients with ALS lose the autonomy by a progressive neurodegenerative 

disease that causes the loss of control over voluntary muscles. For these cases the only 

interface remaining for communication is their brains activity, and the Brain-Computer 

Interface (BCI) field proposes to allow users with motor disabilities to communicate, 

improving the life quality of the lock-in patients. 

The BCI uses electrophysiological measurements of brain activity to enable 

communication with external devices, as computers and prosthesis [Bostanov, 2004]. 
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Generally, electrical signals represent brain states, which are organized in large dataset. In this 

field the pattern analysis is an essential process to understand the brain-states features 

underlying these datasets. The state-of-the-art describes various algorithms to identify these 

patterns. Nonetheless, comparison of these algorithms is a difficult task given the diversity of 

BCI systems for different aspects such as target application, neuromechanism used, amount of 

data tested, number of subjects experimental paradigms, and other specifications. The BCI 

represents a novel interdisciplinary knowledge field, with many challenges for researchers to 

provide a step towards the current state-of-the-art. On this way, a strategic contribution for 

this field is a useful and understandable pattern extraction method for knowledge discovery in 

databases (KDD). 

The KDD becomes an important subject for academia, industry and that 

interdisciplinary field in particular. KDD is a process of extraction of novel, useful and 

understandable patterns from a collection of datasets. For the extraction of this novel 

information, a powerful technique current applied is the continuous wavelet transformation 

(CWT). Although wavelet transformations have attracted much attention in the data mining 

community, there has been no defined exploratory approach, to produce understandable 

patterns for futures studies in the current field of EEG. The studies of an exploratory approach 

based on CWT will also be a future promising contribution for applications beyond BCI 

systems, as Epilepsy and Alzheimer pattern recognition. 

 

1.2 Focus 

 

The target population is disabled patients, although few works concern this population 

for BCI systems validation. Nonetheless, validating algorithms with datasets from disabled 

subjects is crucial, simply because disabled subjects are the target population for work. The 

current work uses the EEG dataset acquired and organized by Hoffmann et al [Hoffmann 

et al., 2008]. They described a BCI system based on a six-choice P300-based system. Four 

disabled and four able-bodied subjects tested the system on four different sessions, with six 

individual runs, one for each possible choice of the system. Hoffmann et al (2008) made the 

dataset available for downloading on the website of the BCI group in École Polytechnique 

Fédérale de Lausanne (EPFL) (http://bci.epfl.ch/p300). 
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The BCI systems include diverse applications, although this dissertation focuses on 

systems that record and analyze signals from brain noninvasively. A particularly popular 

noninvasive method used on this work is the electroencephalogram (EEG), which is an 

electric potential measurement of the brains scalp, at a resolution about microvolts and 

milliseconds. Physicians know this measurement method as a low risk procedure, comparing 

with invasive electrodes implanted by a surgical procedure in the motor cortex. Although, this 

noninvasive method decrease the signal-to-noise ratio, demanding efficient signal processing 

and feature extraction methods. 

According to Wolpaw et al (2002) and recently Bashashati et al (2007) the BCI 

systems could be categorized in seven majors groups: sensorimotor activity, P300, visual 

evoked potential (VEP), slow cortical potential (SCP), activity of neural cell (ANC), response 

to mental task and multiple neuromechnisms. This dissertation works with the P300 group 

defined as an infrequent or particularly significant auditory, visual, or somatosensory stimuli, 

when interspersed with frequent or routine stimuli, typically evoke in the EEG over the 

parietal cortex a positive peak at about 300 ms after the stimulus is received (Allison and 

Pineda 2003).  

Hoffmann et al (2008) captured the activity of the brain using the EEG scalp 

electrodes with the 10-20 standard, a widely used noninvasive technique. It acquired a brain 

electrical signal that has differences of potential in the range (0 - 100µV). With such small 

amplitude, the contamination of EEG data during the recording process is common. 

Therefore, an artifact removal and filtering procedure is necessary before the analysis of EEG 

signals. Even so, the signal must be filtered to avoid contaminations, and focus in a particular 

oscillation frequency. Such oscillation relies on the neurophysiologic observations, that large 

populations of neurons in the respective cortex are sending in rhythmical synchrony when a 

subject is not engaged with one of his limbs, i.e. movements, tactile senses, or just mental 

introspection [Lemm et al., 2005]. 

This work uses Mason et al (2007) designing model for compare different application, 

and also define the innovative aspect of the current dissertation, illustrated on figure 1.1. This 

model includes a variety of process, and on chapter 2 it will be detailed. However, the Feature 

Extraction and the Classification process are the main focus of this work, and in the 

referenced figure they are the two boxes painted on black with white words. These two 



 4 

processes represent are important for BCI system, they represent the knowledge needed to 

perform the fill the ability gap between the user and the device.  

 
Figure 1.1: A functional model of a BCI system. 

 

1.3 Main Contributions 

This work intent to design and apply a framework to analyze time-frequency patterns 

illustrated on CWT and WC qualitative analysis, and classifies those patterns through a 

quantitative measurement extracted from the CWT to analyses the electroencephalographic 

(EEG) signal patterns. The objective of such framework is to introduce and apply an 

exploratory approach for data mining based on EEG signal provided from users with motor 

disabilities. Thus research intent also to improve the results of classification and eventual BCI 

performance. A vital feature of BCI system is the capability to distinct between the attended 

and ignored events with speed and accuracy. These characteristics differentiate artificial 

pattern recognition systems applied on BCI. For that reason, this research intent to improve 

the bit rate measurement, as a speed parameter, with an acceptable accuracy. Therefore, the 

accuracy is not the only characteristic of the classifier analyzed. The speed of communication 

is another desirable characteristic for BCI systems. 
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1.4 Original Contributions 

 

The original contributions of this Dissertation are [Bassani and Nievola, 2008]: 

 The CWT significance and confidence method of analysis developed by 

Torrence and Compo applied on atmospheric time series was extended for 

EEG signals [Torrence and Compo, 1998]. The geophysical time series was 

modeled as a univariate lag-1 autoregressive red noise signal (Markov 

process). However, this work analyzes the EEG signal of BCI application with 

another statistical analysis based on the Monte Carlo method. Each EEG signal 

segment was processed with CWT, and this transformation was applied on 

Monte Carlo method to establish the significance levels and confidence 

interval for the wavelet spectrum; 

 The significance level and confidence interval allow the development of a 

novel exploratory framework for BCI systems, based on CWT with WC 

measurement; 

 This work also presents an experimental demonstration of the usefulness of the 

developed framework for BCI. 

 

 

1.5 Organization 

 

This work is organized into four chapters, beside this introductory one. The second 

chapter introduces BCI, and presents the principle of EEG signals, where BCI communication 

relies. This chapter also presents some EEG features, and the features extraction method 

correlated with this research.  Chapter three deals with the methodology applied on this work. 

The dataset organization, the FIR filter process, the CWT method, and the Naïve Bayes 

Algorithm are also presented on that chapter. All experimental results are given in chapter 

four with specifications and parameters used. And finally, on chapter five a discussion of the 

results is presented followed by the final conclusions and further works. 





Chapter 2  

 Review of BCI Wavelet Analysis 

2.1 Introduction 

The brain-computer interface is a system that contrast with other interface by the use 

of brain signals to provide a non-muscular communication channel. This interface can allow 

locked-in patients to communicate with others, or to control their environment. Many 

researchers are currently investigating this knowledge field, and the number of publications 

had strongly increased during the last few years. Therefore, many reviews papers of this study 

field were consulted and referenced in this work, as Wolpaw et al. [Wolpaw et al., 2002], 

Bashashati el al. [Bashashati et al., 2007], Lebedev and Nicolelis [Lebedev and Nicolelis, 

2006], Lotte et al. [Lotte et al., 2007], Birbaumer and Cohen [Birbaumer and Cohen, 2007], 

and Mason et al. [Mason et al., 2007]. The technical terminology of Mason et al is the chosen 

reference used on this work to organize the state-of-the-art, and asserting novelty and 

inventive step of the proposed methodology. This technical terminology provides an objective 

evaluation among applications as a general framework. 
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The first section introduces BCI and a briefly overview of the main issues of the 

general framework. The next section introduces the EEG signal with the recording technique, 

and some concerning its use. Section 2.4 and section 2.5 introduce previous studies of EEG 

patterns related with neurophysiologic activities. On section 2.6 the method of extracting and 

translating EEG features is discussed, and the conclusion in section 2.7 closes this state-of-

the-art chapter. 

 

2.2 Brain Computer Interface 

 

In the framework adopted [Mason et al., 2007], a subject with physical limitations 

desires to interact with other ones, or with the environment that surrounds him or her. These 

so called limitations, produces a gap between the person abilities and those abilities required 

for interaction. A proposed assistive, or augmentative, technology (AT) provides the 

additional functionality that he requires to perform the interaction, or activity, as illustrated in 

fig. 2.1. The AT allows an individual with physical limitations to answer the stimuli of the 

environment and receive an appropriated feedback from their interaction, or even interact 

spontaneously. 

The brain interface (BI) is an AT, and it provides additional functionality to a target 

population. In this context the BI is described in this research as a sequence of three 

components: a BI Transducer, a Control Interface, and an Assistive Device, as depicted in 

figure 2.2. The focus of this work is specifically the BI Transducer component. This 

component, like the previous one, is represented by a more detailed model, as shown in figure 

2.3. Following the framework more details of the taxonomy components and sub-components 

used are presented in Table 1.1, which also presents the techniques that the current work 

applies classified following Mason et al.  
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Figure 2.1: Assistive Technology solution adapted from Mason et al [Mason et al., 2007]. 

 

 
Figure 2.2: A functional model of 3-component BI AT based on Mason et al [Mason et al., 

2007]. 

 

 
Figure 2.3: A functional model of a BCI system based on Mason et al [Mason et al., 2007]. 
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Table 2.1: The BI transducer design attributes, and brief description of each attribute, and 

the techniques applied on this work. According on Mason et al [Mason et al., 2007]. 

BI Transducer 

Attribute 

Description Current 

Work 
Target Population The target population defines on general terms the set of users of 

the system. 

Full paralysis 

Target Activity The activity intended to be performed by the Target Population. Communicati

on with 

people 

Transducer 

Design Model 

The general architecture used for the transducer design. There 

are three primary design models: exogenous (an external 

stimulator in used to evoke response from the user), endogenous 

(no stimulator is required as control signals are generate 

internally) and modulated response (a variation on exogenous 

designs). 

Exogenous 

Bio-recording 

Technology 

This attribute refers to the class of equipment (sensors, 

amplifiers, converters and filters) used to measure a person’s 

brain activity in a BI Transducer. Researchers have used EEG, 

ECoG, custom implanted microelectrode arrays and amplifiers, 

and functional near infrared. Others have discussed possible 

fMRI and MEG solutions, but the practicality of these later 

approaches is suspect. 

EEG 

Neurological 

Phenomenon 

This attribute refers to the phenomenon (or phenomena) used to 

control a BI Transducer. For example, a P300 response in EEG 

to an oddball stimulus is a well-studied phenomenon employed in 

several BI Transducers. Another well-known phenomenon is the 

increase in neural firing rates measured in microelectrodes as 

neural activity increases. 

Mu, alpha, 

beta or other 

rhythm 

power 

Sensor Placement Sensor Placement identifies the general location of bio-sensors 

used in a BI Transducer. 

Over multiple 

cortical areas 

Artifact Processor A component of a BI Transducer that removes artifact from the 

input signal. Note, many transducer designs do not include 

artifact processing. 

None 

Stimulator (and 

Stimulus 

Mechanism) 

The Stimulator and its associated Stimulus Mechanism (e.g., 

strobe lights or flashing areas of a screen) are used to stimulate 

the user and evoke a response in exogenous or modulated-

response transducers. A wide variety of stimuli methods have 

been used and are directly related to the neurological 

phenomenon. 

Flashing area 

of a screen 

Feature Extractor A component of a BI Transducer that translates the (artifact-

free) input brain signal into a value correlated to the neurological 

phenomenon. The output value is referred to by the Pattern 

Recognition community as a ‘‘feature vector’’. The function of 

this component is sometimes referred to as noise reduction, 

filtering, preprocessing or spike detection/sorting depending on 

the background of the investigator.  

Wavelet 

Transform 

Feature 

Translator 

The component of a BI Transducer that translates the feature 

vector into a useful control signal. Researchers working with 

discrete transducer outputs often refer to this component as a 

Feature Classifier or Classifier as these terms are more specific. 

For similar reasons, researchers working with implanted 

microelectrodes use the term ‘‘decoding function’’ (or something 

similar). 

Naïve Bayes 

Output The type and dimensionality of a BI Transducer output. For 

example, 2-state discrete output, or one-dimensional, continuous 

amplitude digital signal. 

6-state 
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2.3 Electroencephalogram Signal Acquisition 

 

A BI device should have a low cost, non-invasive, practical and efficient procedure. 

The electroencephalogram (EEG) could potentially complete this interface requirements. This 

method captures the brain activity through electrical potential difference between electrodes, 

for example at the head scalp. The EEG signal contains valuable information about the cortex 

activity, for example the visual awareness [Struber and Herrmann, 2002], and motor activity 

[Bland et al., 2006]. 

The EEG represents the extracellular activity potential sum of a large group of 

neurons. Caton, on 1875, realized the first record of an electrical activity of the brain from rats 

and monkeys [Caton, 1875]. However, it was only on 1929 that Hans Berger applied such 

method on humans [Berger, 1929]. Berger initiated his study on 1924, using galvanometers, 

and he demonstrated the different characteristics in the brains signal such as: the alpha 

rhythm, some evidences of neurological disorders, and the sleep stages.  

The electric potential could be measured between electrodes, or using specific 

reference electrodes, The EEG record is acquired through high conductivity electrodes inside 

or outside the brain [Knight, 2003]. The invasive techniques place the electrodes directly 

inside the cortex, for example using the eletrocorticogram (ECoG) method. This technique 

provides signals with superior signal-to-ratio, nonetheless the invasive surgery procedure 

increases the costs of the application. The most common noninvasive technique presented is 

the scalp EEG, which set the electrodes at the head skin. The signal of EEG is composed 

basically by the sum of millions of postsynaptic electrical potentials in the cortex. 

The electrodes of the EEG signal are organized on a standard placement called 

International System 10-20, the position of each electrode is exemplified in figure 2.4. This 

system has two electrodes positioned at each auricular side on the ear (A1 and A2). These two 

electrodes are used for reference, since the potential remains fairly constant at the ear lobes. 

The other electrodes are identified with capital letters indicating the respective cortical zone: 

Frontal (F), Central (C), Parietal (P), Temporal (T), Occipital (O), and Frontopolar (Fp). The 

odd numbers with the capital letter indicate electrodes on the left side of the head, the even 

numbers on the right side. The letter "z" describes the electrodes in the midline of the head. 

 



 12 

 
Figure 2.4: The placement of electrode of the International System 10-20. Based on: 

[Hoffmann, 2007]. 

A high risk of scalp EEG analysis is the potential interference from other biological 

electrical signal, or external signals. These other signals combined with the focus neuronal 

target rhythms difficult the EEG evaluation, as shown on figure 2.5. The noise produced by 

artifacts could be injected on the EEG signal from different sources during the EEG recording 

process: eye blink, eye movement, electrical source noise, muscle activity, pulse. For 

example, the averaged electrical amplitude of an EEG signal record is represented between -

50 µV to +50 µV, a single eye blink could generate a signal with 100 µV [Knight, 2003]. This 

single eye blink on this example could invalidate an EEG recorded.  

 
Figure 2.5: Wave forms of some artifacts in EEG: (a) EEG without artifacts, (b) Eye blink, 

(c) Eye movement, (d) Noise with 60 Hz, (e) muscle activity, (f) pulse. Adapted from: 

[Knight, 2003]. 
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2.4 Event-Related Potential 

 

A particular “event” or an external stimulus causes an involuntary brain activity 

response, called Event-Related Potential (ERP). The scalp EEG captures these responses 

when the patient does a specified task. For the BCI system used on this work, the target 

stimulus appears rarely, while nontarget stimuli appear more often. In this system six flashing 

images stimulate event-related Visual Evoked Potential (VEP), displayed on a Personal 

Computer controlled Liquid Cristal Display monitor. Patients are asked to count to a unique 

target image on each experimental run. The visual stimulus of this image causes the VEP, and 

the averaged over multiple trials has labeled components, positive and negative electrical 

waves. These cortical events in turn are hypothesized to be closely related to psychological 

processes. The literature defines a set of components studied previously: P1, N1, P2, N2 and 

P300 [Lee et al., 2006]. Donchin and co-workers applied successfully these components in BI 

spelling device [Donchin et al., 2000]. The first cortical area to receive sensory input have 

preeminently early components, labeled exogenous potentials, e.g. P1, N1, P2, N2, shown on 

Figure 2.6. They represent neural activity in the sensory pathways that are closely related to 

the physical properties of the stimulus. The later occurring potentials in Figure 2.6, e.g. N2, 

P3 and N400, are labeled endogenous potentials. These potentials are affected by 

psychological processes, such as discrimination difficulty, attention, expectancy, and 

intention. They are unrelated to physical changes in the stimulus, and may occur in the 

absence of external stimulation. These endogenous potentials have also interest to cognitive 

psychophysiology, because they are related to complex psychological processes that occur 

during cognitive activity. 

The most commonly studied ERP is the P300. This positive deflection in the EEG 

occurs about 300 ms after the stimulus onset. The P300 is commonly recorded during an odd-

ball paradigm, involving a target and a non-target stimulus [Polich and Kok, 1995]. 

Unfortunately, this approach may be slow as one character/minute. The signal-to-noise ratio 

of the scalp EEG requires improvements. 
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Figure 2.6: An Illustration of the exogenous and endogenous components. Source: (Knight, 

2003). 

 

2.5 Event-Related Oscillations 

 

The oscillatory brain activity in the EEG could be analyzed with different frequency 

bands or rhythms. This approach is called Event-Related Oscillations (ERO) and the rhythms 

could be visualized on Table 2.2. This method is suited to temporal and spatial characteristics 

of continuous wavelet analysis method. Basar et al, 1999, convincingly demonstrated that 

assessing specific oscillations frequencies can often yield insights into the functional 

cognitive correlations of ERP signals [Basar et al., 1999]. Although the evoked oscillations 

are not visible due to low amplitude and high frequency, it usually results from sensory 

events, e.g. visual, auditory and somatosensory. 
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Table 2.2: The event-related Potentials and the associated frequency band, period band and 

oscillation. 

Frequency 

Band 

Period Band Oscillations Correlated ERP 

Components 

0 – 4 Hz 250ms – 500ms Delta N3, P300 

4 – 8 Hz 125 – 250 ms Theta N2, P2 

8 – 12 Hz 80 – 125 ms Alpha N1, P1 

12 -30 Hz 30 – 80 ms Beta Exogenous 

30 – 80 Hz 30 – 12 ms Gama Exogenous 

  

The evoked delta and theta oscillations represent slow potentials in ERP, e. g. P300 

and N3. These oscillations are not identical to those in raw EEG signal which is related to 

deep sleep, hypnosis and coma [Steriade et al., 1993]. These oscillations appear during motor 

tasks [Bland et al., 2006]. 

The alpha rhythm presents bursts mostly related with a sensory stimulus. The alpha 

activity has been associated with memory processes [Klimesch, 1997], attention [Klimesch 

et al., 1998], and visual awareness [Struber and Herrmann, 2002].  

The beta activity is associated with cognitive processes like memory rehearsal, 

sensory and motor processes [Tallon-Baudry et al., 2001]. Haenschel et al assumed that beta 

oscillations are induced by faster gamma oscillations and maybe they induce slower alpha 

oscillations [Haenschel, 2000]. 

The gama oscillations are correlated with binding phenomena [Muller et al., 1997], 

perceiving meaningful objects [Keil et al., 1999], attention [Debener et al., 2003] and maybe 

even consciousness [Llinas and Ribary, 1993]. These frequencies could be described even by 

higher frequencies, e. g. 600 Hz [Curio, 1999].  

 

2.6 Related Studies 

 

The recognition of dissimilarities between target and non-target EEG response by the 

presented stimuli is a pre-requirement for a reliable P300 Speller system. Such dissimilarities 

could be investigated through the EEG coherence measurement, as a well-established tool to 

analyze the linear relationship between two signals [Stam and van Dijk, 2002] [Micheloyannis 

et al., 2005]. The classical Fourier analysis requires stationary feature within each window 

analyzed, which is not found on brain dynamical signal of EEG. A more appropriate 

approach, applied on this research, is the Continuous Wavelet Transformation (CWT). Such 
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technique analyses fractal structure in time series that contain non-stationary power at 

different frequencies [Kantz and Schreiber, 1997] [Grinsted et al., 2004], so the dissimilarities 

between target and non-target EEG signal are recognized. 

What distinguishes the Discrete Wavelet Transformation (DWT) and the CWT is the 

scale shift domain, which is in ℤ+
 or in ℝ+

 respectively, although both transformations allow 

working with discrete sampled time series, like the EEG signals. These characteristics are 

valid with different wavelet functions: the use of orthogonal basis implies in the use of DWT, 

while a non-orthogonal wavelet function can be used with either the DWT or CWT [Farge, 

1992]. For analysis purposes, the orthogonal CWT is better suited because its redundancy 

allows good illustration of signal information content [McKhann et al., 1984], in contrast to 

the DWT, which does not permit such analysis. The CWT also uses complex wavelet basis 

functions that capture the amplitude and phase information from the signal [Stam and van 

Dijk, 2002]. 

Reviewing the literature, few works were found related to the present study. Lachaux 

et al (2002) studied and applied single-trial brain signals using Wavelet Coherence (WC) 

method of CWT [Lachaux et al., 2002], showing its statistical properties and comparing it 

with Fourier coherence on this particular time series analysis. They presented a qualitative 

approach to compare two non-stationary neural signals, although for BCI system a 

quantitative measurement is still needed for classification purposes.  

Bostanov et al (2004) applied a method based on CWT and Student’s t-statistic, 

named t-CWT method, on single-trial ERPs signal [Bostanov, 2004]. The first steps calculate 

the CWT of each signal in each channel, using the Mexican Hat wavelet, and compute the 

mean and variance of each group. The next step applies the Student’s t-statistic to measure the 

distance between each trial of the two groups: the target and non-target (P300 category). The 

final step uses a pattern recognition system called the Linear Discriminate Analysis (LDA). 

This approach introduces a quantitative measurement based on the CWT and Student’s t-

statistic method for pattern classification. 

Sakkalis et al (2006) applied a method to analyze schizophrenic brain activity and test 

a known hypothesis of disconnection and working memory deficits [Sakkalis et al., 2006]. 

They used the WC with graph theory measurements to evaluate distance functional 

connectivity in complex neural network. The results presented are graph networks used to 
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distinguish healthy from schizophrenic disturbance connections. The WC method used is 

capable to reveal novel patterns in neural signals. 

Hoffmann et al (2005) first applied a Gradient Boosting with an Ordinary Least 

Squares (OLS), a regression method, to detect the P300 in a spelling device [Hoffmann et al., 

2005]. This classification method produces a precision between 90% and 100% with the 

dataset of the BCI Competition 2003. At 2008 they presented a work with disabled users’ 

dataset, using a Bayesian Linear Discriminant Analysis (BLDA) with a standard algorithm 

[Hoffmann et al., 2008]. The classification accuracy was 100%, and the bitrates for the 

disabled subjects was between 10 and 25 bits/min.  

 

2.7 Conclusion 

 

The performance of a pattern recognition system depends mainly on the features. For 

the feature extractions study, the CWT is a feasible technique, with a visual feedback of ERP 

and ERO in time-frequency domains for further analysis. Despite the existence of many 

works using CWT [Lachaux et al., 2002] [Bostanov, 2004] [Sakkalis et al., 2006], there is 

many potential works for use of the WC. This work intends to review this powerful technique, 

and exploit it as a measure of distance between the target and non-target stimuli, with the 

visual feedback similar to the CWT technique. 

 





Chapter 3  

 Methodology 

3.1 Introduction 

 

The classification framework developed in this study has five steps based on 

knowledge discovery in databases (KDD) processes, described on figure 3.1. The first step is 

the data cleaning process. This process contemplates exclusion of signal discontinuities and 

its division on blocks. The subsequent step analyzes the blocks of trials using the CWT and 

WC statistical process. The objective of this analysis is to identify significant patterns that 

show dissimilarities, with higher than 95% of confidence level. On the third step, these 

patterns are represented by the scale-averaged wavelet power, which extracts the frequency 

features in a time vector. On step four, this vector is down-sampled to reduce its 

dimensionality, and normalized between 0 and 1 using all samples in the dataset. The fifth 

step uses the pre-processed vectors for cross-validation training of a Naïve Bayes Classifier 

(NBC) classification algorithm. The outcome of this step is the performance measurements 

that might change a specific preceding step or restart the entire process. 
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Figure 3.1: An overview of the framework purposed. 

 

3.2 Signal Dataset 

 

The signals used in this work were acquired, digitalized and make available by 

Hoffmann et al (2008) in École Polytechnique Fédérale de Lausanne (EPFL) [Hoffmann 

et al., 2008]. The dataset contains data from four disabled and four able-bodied subjects. 

These disabled subjects are all wheelchair-bounded; however they have different 

communication and limb muscle control abilities as described by them. 

Each one of the eight subjects of the dataset was instructed to face a laptop screen, 

with six images as shown in fig. 3.2. The images exemplify an application scenario, which the 

user could control other devices like a television or a radio using the BCI. To evoking the 

P300 response each image flashes in a random sequence. Each one has four sessions with six 

runs (sequence of flashes). The first flash comes 400 ms after the beginning of the EEG 

recording. The image lights for 100 ms and during the following 300 ms none of the images is 

lighted. The stimulus flashes on a random sequence divided in blocks of 2 seconds. The 

stimuli are spaced by 400 ms from each other, the maximum time that a stimulus repeats is 

4.400 ms, and the minimum is 400 ms. Each random sequence of stimuli is called a block. 

Fig. 3.3 shows these blocks with the six stimuli represented by each level 1 to 6. The non 

target stimulus is shaded on dark gray bars and the target are the white bars. The first stimulus 

begins at 400 ms, or at sample 820 with a 2048 Hz sample rate. The last stimulus finishes 

around 60 s. Each run contains an average of 150 stimuli, with 25 target stimuli. 
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Figure 3.2: The six images flashed used for evoking the P300. Source: [Hoffmann et al., 

2008]. 

 

 

 

 
Figure 3.3: The sequence of stimuli divided in blocks. 
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The EEG used was recorded at 2048 Hz sampling rate from 32 electrodes placed at the 

standard positions of the 10-20 international system (as shown on figure 2.4). These 

electrodes were connected to a Biosemi Active Two® device, which amplify and digitalize 

the EEG signals. 

The first step to analyze the signal is to review and to clean the signal from zeros and 

other external artifacts; on figure 3.4 the channels Pz, Oz, Fz and Cz exemplifies these 

artifacts showing a single recording session. Theses raw signal, as presented on figure 3.4-A, 

contain outliers, and this slice of signal must be excluded. In this particular example an outlier 

is presented at the end of the session, therefore the slice containing the outlier should be 

expelled, and the rest of the session is not affected. However, it is important to review each 

session for other outliers, such as presented on figure 2.5. The output of this process is 

exemplified on figure 3.4-B. The next step is to use the average signal form the two mastoid 

electrodes and reference all other channels; the following figure 3.4-C demonstrates the result 

of this referencing process, or also called by referential montage. 
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Figure 3.4: An EEG signal recording session of an locked-in subject during the three pre-

processing step: A) a raw EEG of the four electrodes: Pz, Oz, Fz and Cz.; B) a raw 

EEG without outliers; and C) the referenced EEG. 

A) 
B) 

C) 
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3.3 Finite Impulse Response Filter 

 

The filter used is a Finite Impulse Response Filter  (FIR) with the equiripple method, a 

high-order filter with a linear phase and stable. This filter is close to the ideal with about 

10dB/Hz slope in the transition bands, which frequency response is finite and rectangular. The 

Butterworth Filter also used is an infinite impulse response (IIR), in contrast to the FIR filter 

all poles are not located at the origin, and is therefore not always stable. Nonetheless, the IIR 

filters are preferred over the FIR filter, because the IIR filters could achieve sometimes a 

sharper transition region than the FIR filter of the same order. The magnitude and phase of 

each FIR filter built is presented on figure 3.4 and 3.5.  

 

 

 
 

Figure 3.5: The magnitude and phase of each FIR filter: A) delta (0-4 Hz); B) theta (4-8 

Hz); C) alpha (8-12 Hz); D) beta (12-30 Hz). 

 

A) B) 

C) D) 
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Figure 3.6: The magnitude and phase of each FIR filter: A) delta and theta band (0-8 Hz); 

B) delta to beta band (0-30 Hz); C) theta and alpha band of 4-12 Hz. 

 

3.4 Continuous Wavelet Transformation 

 

Each signal block is analyzed using a CWT, represented by Wn(s) as defined in Eq. 

(3.1). The CWT is a convolution of xn with a scaled and translated version of a wavelet 

function ψ, defined in the next section. 
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The (*) indicates the complex conjugated of ψ, and s is the wavelet scale [Torrence 

and Compo, 1998]. Here, xn represents a time series spacing by δt and the vector n=0,…,N-1, 

and N is the number of points in the time series. The variation of the wavelet scale s and the 

translation of this function along the time generate the CWT. It can be constructed showing 

both the amplitude of any feature versus the scale and how this amplitude varies with time. 

 

3.5 Morlet Wavelet Function 

 

In order to apply the CWT technique the wavelet function is an important choice. It 

could be orthogonal or non-orthogonal, based on ℂ or ℝ domain, and many other 

fundamental requirements depending on the kind of features one wants to extract from the 

A) B) 

C) 
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signal. To apply an acceptable function one must look at its reproducing kernel, which 

characterizes its space, scale and angular selectivity. This work chooses a complex-valued 

wavelet Morlet function, the most commonly used, indicated in Eq. (3.2). 
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, where ψ(t) is the wavelet function that depends on a non-dimensional time parameter 

t, and i denotes the imaginary unit, (-1)
1/2

 . This wavelet function forms two exponential 

functions modulating a Gaussian envelope of unit width, where the parameter ω0 is the non-

dimensional frequency parameter, here taken to be 6 to satisfy the admissibility condition and 

having zero average [Farge, 1992]. 

In spite of that, the method presented is generally applicable to other wavelet 

functions, for example the Mexican hat. By using the Morlet instead of the Mexican hat, the 

wavelet transformation can extract features that are better located in the frequency domain, 

e.g. phase-locked (“evoked”) gamma oscillations [Bostanov, 2004]. 

 

3.6 Cone of Influence 

 

Fourier Transformations does not consider the edges of the time series, since its 

method assumes that the time series is cyclic. Nonetheless, the EEG signals are considered in 

this work a non-cyclic time series, and the edges will affect the time series analysis. The 

effect of these edges in CWT is called cone of influence (COI), and is composed by the two 

edges effects, each one forms a cone of influence through the scale. Exemplifying, for higher 

scale of periods (lower frequencies) fewer is the reliable results of the analysis, the decrease 

of this effects goes until a point where the beginning COI cross the end COI. These effects are 

illustrated on figure 3.6, that show a target time window from -0.2 seconds to 0.2 seconds, 

painted on gray. To get reliable results from the CWT analysis on this time window for the 

frequency of 2 Hz the data input time window must be higher than -0.884s to 0.884s. To 

analyze a 4 Hz frequency a lower data input time window is required, from -0.542s to 0.542s, 

illustrated by a dashed line on the figure 3.6. 

Following the method of Meyer et al. (1993), the relationship between the equivalent 

Fourier period and the wavelet scale can be derived analytically for a particular wavelet 
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function, by substituting a cosine wave of the know frequency into the wavelet transformation 

equation and computing the scale s [Meyers et al., 1993]. 

 

 
Figure 3.7: A correct position of the COI for a specific target time window in different 

target frequencies: 2 Hz, 4 Hz and 8 Hz. 

 

3.7 Wavelet Power Spectrum 

 

As the Morlet wavelet function is complex, so is the CWT, Wn(s) defined on Eq. (3.1). 

Hence, the power spectrum defined as |Wn(s)|
2
 is commonly used to represent this wavelet 

transformation. This power is used in WC and for representing a scale-averaged wavelet 

power, and is shown on figure 3.7. The outer elliptical region at the edges of the second graph 

with wide contour indicates the COI in which errors may be apparent due to the 

transformation of a finite-length series EEG signal. The Monte Carlo estimation of the 

significance level requires the order of 10.000 surrogated data set pairs. The thick contour 

designates the 5% significance. The captured rhythm signal could be visualized outside the 

COI, as showed on figure 3.7 A higher level of the power spectrum indicate a higher 

relationship level between the scaled wavelet and the time-frequency. For example, figure 

3.7-A shows three graphs: the first is a sine signal of t with 2 Hz; the second is a wavelet 

spectrum power; and the third is the amplitude of the FT. The CWT indicates a higher level of 

spectrum power at 2 Hz, and the FT also identifies the sine frequency of 2 Hz. The same 
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example is shown with other rhythms: the theta 6 Hz on figure 3.7-B; the alpha 10 Hz on 3.7-

C; and the beta 16 H on 3.7-D.  

 

 

 
Figure 3.8: The sine signal of: A – delta (2 Hz); B – theta(6 Hz); C – alpha (10 Hz); and D 

– beta(16 Hz) rhythms; the CWT wavelet power spectrum of each signal; and the Fast 

Fourier Transformation Frequency of each signal. 

 

Another example of the rhythm signal is showed on figure 3.8. The first example sum 

all four sine functions presented before, figure 3.8-A. And both CWT and Fourier 

Transformation (FT) presented the target frequencies as a result. On the next example each 

function is sequentially and exclusively presented, figure 3.8-B. The CWT shows each 

frequency in the time window that it occurs. The FT also shows each frequency, however the 

discontinuity of the signal produce a permanent noise in the signal. The last example shows 

the second example with a step signal, figure 3.8-C. The CWT presents higher levels of 

discontinuity, on the other hand the FT shows almost low frequencies of the discontinuities, 

and the targets sine functions are suppressed. 

 

A) B) 

C) D) 
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Figure 3.9: The sine signal of: delta (2 Hz); theta (6 Hz); alpha (10 Hz); and beta (16 Hz) 

are : A) summed together; B) sequentially and exclusively presented; and C) 

sequentially and exclusively presented with a step degree. 

 

3.8 Wavelet Coherence 

From the CWTs, average target Wn
X
 and non-target Wn

Y
 EEG response WC to 

analyze the similarities and synchronicity between the signals can be constructed. This could 

be illustrated as local correlation between both CWTs. This measurement is defined as the 

square of the cross-spectrum, defined on Eq. (3.3), and normalized by the individual power 

spectra. This gives a quantity between 0 and 1, and measures the cross-correlation from two 

time-series as a function of frequency, expressed on Eq. (3.4), where S is a smoothing 

operator. This operator smoothes the time and then smoothes the scale axis in both CWTs 

applied. The design of the smooth operator was based on Grinsted et al. [Grinsted et al., 

2004]. 
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, where the Wn
XY

 is the cross-spectrum, between Wn
X
 and Wn

Y
, the CWTs of target 

and non- target EEG response. 

The statistical significance level of the wavelet coherence is estimated using Monte 

Carlo methods. A large ensemble of surrogate data set pairs was generated with the first order 

autoregressive coefficients (AR) for each calculated WC. 

The phase difference is calculated using the complex phase angle. PCn(s) is the phase-

coherence defined on Eq. (3.5), over regions with higher than 5% statistical significance that 

is outside the COI to quantify the phase relationship. 
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3.9 Scale-Averaged Wavelet Power 

 

The scale-averaged wavelet power (SAWP) is used to represent a selected range of 

scales, here defined as non-dimensional frequencies s. This measurement is defined on Eq. 

(3.6). 
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, where W
2

n is the weighted sum of the wavelet power spectrum over scales s1 to s2, 

i.e. representing an average fluctuation power non-dimensional j1 = 1Hz and j2 = 4Hz of 

wavelet scale. The symbol δt is the time series spacing, the δj is the scale spacing, j is the 

scale series from j1, (j1+δj),… to j2. The parameter Cδ is the reconstruction factor that Morlet 

function uses which is empirically set as equal to 0.776. 

 

3.10 Naïve Bayes Classifier 

The scale-averaged wavelet power measurement is a time-series extracted from the 

brains signal, organized in vectors which represent the user intention. The Naïve Bayes 
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Classifier (NBC) learns the user intentions from a set of training vectors. The NBC is 

characterized by two main advantages: the simplicity of its structure, and the speed of the 

learning algorithm it employs.  

The probabilistic approaches make strong assumptions about how data is generated, 

and posit a probabilistic model about these assumptions. The Naïve Bayes classifier is the 

simplest of these models, and assumes all attributes of the example as independent of each 

other. While this assumption is intuitively false in most real-world tasks, the model often 

performs very well [Lin et al., 2008]. 

The NBC is a probabilistic classifier. This method simply classifies, for example, the 

vector x in the class ck if it has the highest probability  k
P c x , where k is the number of 

classes. Following the Bayes theorem and the assumption of the independence between the 

features of the vector x, this probability could be calculated using eq. 3.7. 

 

   
 

 
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d

j kj

k k

P x c
P c x P c

P x

 (3.7) 

 

 The classifier searches for the maximum a posteriori probability hypothesis, on other 

words, the most probable hypothesis to fit the vector x at the class ck.  

 





Chapter 4  

 Experimental Results 

4.1 Pattern Analysis 

 

A vital feature of BCI system is the capability to distinct between the attended and 

ignored events with speed and accuracy. These characteristics differentiate artificial pattern 

recognition systems applied on BCI. This research develops a pattern recognition framework 

based on CWT and FIR filter feature extraction method. This framework intends to 

investigate the patterns recognized by those methods. Additionally, the framework review the 

EEG events with a pattern analysis method based on CWT. 

An essential concern of pattern analysis is to comprehend, and understand the result 

patterns of the entire process. The CWT allows the illustration of patterns of each stimulus, 

and assists the staff and the user to comprehend the natural meaning of EEG patterns. 

The recording session is divided in block as described on figure 3.1. Each block has 

five non target stimuli and one target stimuli. After the cleaning process, described on figure 

3.1, the CWT is used to analyze some of the patterns in each EEG signal stimuli. In figure 4.1 
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one could visualize a common example of such analysis. The target and non-target of subject 

2 are exemplified by the time-frequency wavelet spectrum. There, no significant region is 

presented by the frequency between 2-30 Hz, and the figure 4.1-A shows a slow increase on 

the waver spectrum power after the stimulus starts, approximately on 4 Hz. Figure 4.1-B 

shows a slow decrease of the wavelet power over that region. Another example of pattern is 

on frequencies higher than 8 Hz on figure 4.1. It shows a low average power on figure  4.1-A, 

in contrast to the higher average power on figure 4.1-B. Although these two patterns are not 

significant on any figure, the process of WC shows significant patterns most of it higher than 

8 Hz, visualized on figure 4.3-A. 

 

              
Figure 4.1:  A CWT example from Subject 2 on Pz channel during: A) one target stimulus; 

B) and one non-target stimulus. 

 

              
Figure 4.2:  A CWT example from Subject 3 on Oz channel during: A) one target stimulus; 

B) and one non-target stimulus. 

 

For each pair of target and non-target stimuli the wavelet coherence (WC) was 

calculated. Like on CWT, the outer elliptical region at the edges with wide contour indicates 
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the Cone of Influence. The Monte Carlo estimation was also used for the significance level 

and it requires the order of 10.000 surrogated data set pairs. The thick contour designates the 

5% significance level in figure 4.3. The number of scales per octave should be high enough to 

capture the rectangle shape of the scale smoothing operator while minimizing computing 

time. Empirical tests were run with 2, 5, 10, 15 and 20 scales per octave; the satisfactory 

computational costs obtained 5 scales per octave. 

The WC analyzes the cross-correlation between the target stimulus and the non target 

stimulus at the same block. For Subject 2 the WC figure 4.3-A show some significant pattern 

around the stimulus start and with frequencies higher than 16 Hz. The coherence phase 

measurement shows an out-of-phase behavior. Subject 3 presented more significant cross-

coherent signal patterns, visualized on figure 4.3-B. A pattern is observed on 4 Hz around the 

stimulus start, with an on-phase behavior. 

 

                 
Figure 4.3:  A WC example from A) Subject 2 on Pz channel between a target and non-

target stimulus; B) Subject 3 on Oz channel between a target and non-target stimulus. 

 

4.2 Feature Extraction methods 

 

After the pattern analysis the features were extracted from the EEG trials. This 

procedure selects pre-defined frequency bands representations. The bands analyzed were: 

delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz). Additionally, the 

oscillations of the delta and theta band (0-8 Hz), a delta to beta (0-30 Hz), and the band of 4-

12 Hz applied by Hoffmann et al on a Butterworth filter [Hoffmann et al., 2008]. Those 

frequencies were used by three feature extraction methods: the filter, the CWT and the 
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combination of the filter and the CWT. The first one uses a FIR filter process and also the 

Butterworth filter. On this experiment the CWT was not applied, and the FIR filter process is 

tested with each analyzed band, e.g. the filter selects a particular frequency band delta (2-4 

Hz) setting the cutoff frequency to 2 and 4 Hz, shown on figure 4.2-A. Additionally, the data 

set was tested without the filter process, to mark a base line for both methods. The second set 

of experiments tests the performance of the CWT without the filter process. A scale-averaged 

wavelet power were uses the EEG trials to process selecting each frequency band from the 

CWT. And the third set of experiments combines the filter process first with the scale-

averaged wavelet power. The filter selects a specific frequency band and the CWT is applied 

in this band also. 

 

4.3 Classification 

 

A BCI classifier should test mainly the precision and communication speed of the BCI 

system. This work uses a Naïve Bayes Classifier implemented by the software WEKA 

(Waikato Environment for Knowledge Analysis) to perform the classification. The class used 

applies a Naïve Bayes Updatable Classifier and the default precision is 1% for the current 

dataset; for further details of the algorithm consult [John and Langley, 1995]. The general 

performance was obtained through k-fold cross-validation using 10x10-folds method 

[Dietterich, 1997]. This technique divides the data randomly into ten parts, each part is held 

out in turn and the learning scheme is trained in the remaining nine parts. The procedure is 

repeated ten times and the average for the ten parts is calculated, for cross-validation training 

and validation procedure. 

The decision made by the classifier is organized in a structure known as a confusion 

matrix or contingency table, shown on Table 4.1. The confusion matrix has four categories: 

True positives (TP), False positives (FP), True negatives (TN) and False negatives (FN). 

Given the confusion matrix, we are able to define each metric: the precision on eq. 4.1, recall 

on eq. 4.2, sensitivity on eq. 4.3, specificity on eq. 4.4 and accuracy on eq. 4.5. 
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Table 4.1: Confusion Matrix. 
 

 
Actual class 

Target Non-target 

Predicted Target TP FP 

Predicted Non-target FN TN 

 

 

Precision: TP / (TP + FP) (4.1) 
Recall(Sensitivity): TP / (TP + FN) (4.2) 
Specificity: TN / (TN + FP) (4.3) 
Accuracy: (TP + TN) / (TP + TN + FP + FN) (4.4) 

 

Each run contains 150 stimuli, with 25 target stimuli and 125 non target stimuli. This 

unbalanced proportion of samples in class targets with 16% and non target with 83% of 

stimulus difficult the training process and could generate a tendentious response of the 

classification process. If the classifier responds always a non target class, its accuracy, defined 

by eq. 4.4 will be 83%. An acceptable solution should analyze all stimuli as a different class, 

avoiding tendentious responses. This work considers only the accuracy of the target class, and 

the averaged accuracy of all non target classes. This decision not only avoids the tendentious 

response to the system, but also allows reviewing the system performance with reliable 

metrics. So the accuracy baseline for all classifier is 50%, any lower performance is invalid. 

The speed of communication is an important characteristic of a BCI system. This 

feature depends on interstimulus interval, the number of different stimuli, the classification 

accuracy, and the control flow algorithm. The bit rate is a theoretical measurement that 

simulates all these factors as a performance metric for the speed of communication, and it is 

used to compare BCI systems. The bit rate b in bits/min can be computed according to the 

following eq. 4.5 [Wolpaw et al., 2000] 

 

       2 2 2

1 60
, , log log 1 log

1

  
      

  

p
b N p t N p p p

N t
 (4.5) 

 

,where the variable N denotes the number of different commands a user can send, 

which is six for this approach. Furthermore, p denotes the probability that a command is 

correctly recognized by the system. The t is the time in seconds that is needed to send one 

command. Th is work studies each stimulus individually, the stimuli time window is one 

second, and it begins 0.2 seconds before its occurrence. 
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4.4 Experiments 

The eight subjects of the dataset were submitted by fourteen tests, which return the 

accuracy, the bitrate, the specificity and sensitivity of the Naïve Bayes Classifier. The 

performance of the BCI systems tests three different feature extraction methods: without 

filtering; with FIR filter and Butterworth filter; and with the CWT with scale-averaged 

wavelet power. These methods are applied on seven different frequency bands: 2-4 Hz; 4-8 

Hz; 8-12 Hz; 12-30 Hz; 2-8 Hz; 2-30 Hz; and 4-12 Hz.  

The first experiment is to obtain the classification performance of the FIR filter 

process and also the Butterworth filter. Additionally, the data set was tested without the filter 

process. The EEG filtered signal measurement is used as an input signal for the NBC 

algorithm directly. As a result, the data set is optimally classified into two classes, targets and 

non targets following the validation process, and an average accuracy metric is then 

calculated; the results can be visualized on fig. 4.4. 

 

 

Figure 4.4: The results of Experiment I represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

 

The second set of experiments tests the performance of the CWT without the filter 

process. The wavelet transformation uses the scale-average wavelet power measurement to 

select each analyzed frequency band setting the parameters s1 and s2 on Eq 3.6. Following, 

the SAWP measurement is applied on NBC algorithm, and the results of this classification are 

calculated, as showed on fig. 4.5. 

A) B) 
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Figure 4.5: The results of Experiment II represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

 

The third set of experiments combines the target filter process with the CWT. The 

filter selects a specific frequency band and the CWT is applied also in this band, generating a 

vector with the SAWP applied on the NBC, the results are presented on fig. 4.6. 

 

 

Figure 4.6: The results of Experiment III represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

 

The next experiments describe the use of the FIR filter or the Butterworth filter 

initially, and the CWT method is also applied. Nonetheless, the CWT method is applied on a 

set of possible frequency bands inside the initial filtered frequency band. The result of this 

method is shown on: FIR 2-8 Hz (fig. 4.7); FIR 2-30 Hz (fig. 4.8); FIR 4-12 Hz (fig. 4.9); and 

Butterworth 4-12 Hz (fig. 4.10). 

A) B) 

A) B) 
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Figure 4.7: The results of Experiment IV represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

 

 

 

Figure 4.8: The results of Experiment V represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

 

 

 

Figure 4.9: The results of Experiment VI represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

A) B) 

A) B) 

A) B) 
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Figure 4.10: The results of Experiment VII represented by A) Accuracy and Bitrate; and B) 

Specificity and Sensitivity. 

 

The base line of 50% of accuracy shown on figure 4.4 without the filter process was 

not achieved by other experiments. Although the results didn’t achieve a expressive accuracy 

increase with the CWT, or with both filter process and the CWT, the results present a slightly 

increase of 5% for the specific frequencies of 12-30 Hz and 4-12 Hz, as suggested by the WC 

analysis on figure 4.3, with significant signal exemplified by subjects 2 and 3 around 4 Hz 

and 16 Hz. 

 

A) B) 





Chapter 5  

 Conclusion 

5.1 Summary of results 

 

The results on figure 4.4 could be described as two groups. The first group is 

represented by all tests which performed under 55% of accuracy and under 25 bits/min, which 

includes the tests without filter, and with the filter FIR 2-4 Hz, FIR 2-8 Hz, FIR 2-30 Hz, and 

FIR 4-12 Hz. Those methods do not present reliable results, due a low accuracy result.  

The second group is composed by the tests which achieve a higher accuracy and bit 

rate performance, such as FIR 4-8 Hz, FIR 8-12 Hz, FIR 12-30 Hz and Butterworth 4-12 Hz. 

The highest accuracy was 70,34%, and the highest bit rate was 61,15 bits/min, both from the 

Butterworth filter. The FIR 12-30 Hz achieves also a high accuracy of 70,04% and bit rate 

60,51 bit/min. Furthermore, the average specificity of this test (68,74%) was higher than the 

Butterworth test (67,38%). This difference is significant because the Butterworth has higher 

false positive proportion, it means that this method have a tendency to classify more non 

target stimulus as being a target stimulus than FIR 12-30 Hz. And the difference of specificity 
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between these tests is higher than the difference between their accuracies. The FIR 12-30 Hz 

is reasonable method to obtain more reliable results, then the Butterworth filter. 

The experiment II, III, IV, V and VI present a lower accuracy compared with 

experiment I. The accuracy results for these experiments did not achieve a significant 

performance. The bitrate is approximately 29 bits/min and the averaged accuracy is 

approximately 52%. Although they had a low accuracy, their bit rate performance is equal to 

the state-of-art (Hoffmann et al achieved 29 bits/min) [Hoffmann et al., 2008]. Wolpaw et al 

assumed that the user communicates an infinite amount of data, and the data is encoded. The 

BCI has a limited amount of data, and this interface does not apply any encode process in this 

case. Therefore, on this work a lower accuracy performance doesn't represent a system that is 

performing worst or better then the state-of-art. 

The increase on the bit rate measurement occurs due the reduction of the time window 

analyzed, with only one second of length. This time window enables 60 characters per minute. 

A subject without disabilities types on a computer an average of 95 characters per minute, 

while composing a text [Galitz, 2007]. Therefore, in this case an increase in communication 

speed (characters per minute) causes a decrease in the accuracy. The chosen solution of FIR 

12-30 Hz could represent a reliable solution with an averaged accuracy of 70,04% and 60,51 

bit/min, enabling a communication of 60 characters per minute. 

  

5.2 Discussion 

 

The main purpose of this work was to develop an exploratory approach for EEG 

signal, in which the patterns could be studied in the time-frequency plane. This innovative 

characteristic of the technique justifies the feasibility of the proposed approach on other data 

mining applications. This approach allows the study of not only the most prominent pattern, 

and at the same time it allows the visualization and classification of other time-frequency 

windows. Furthermore, it can also open new physiologic studies on this field and on non 

stationary time series analysis. 

The algorithmic approach sketches the idea of using statistically-based feature vectors 

in the time-scale CWT domain in order to select the most relevant time-frequency segments 

able to show the most prominent task changes out of the background signal. Results suggest 

that the proposed methodology is also able to identify regions of the WC spectrum during the 
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specified task. Moreover, in the identified regions, patterns could be used by a classification 

algorithm, as the NBC, to translate the EEG-signal to control commands. Further studies are 

necessary to determine the extent and possible causes of the patterns recognized. 

 

5.3 Further Works 

 

Brain-computer interface (BCI) provides a nonmuscular communication channel. This 

channel could be used on several application, such as assisting people with severe motor 

disabilities [Wolpaw et al., 2003], supporting biofeed-back in people suffering epilepsy 

[Strehl et al., 2006b], stoke [Buch et al., 2008], attention deficit hyperactive disorder [Strehl 

et al., 2006a], diagnostic of Alzheimer disease [Polikar et al., 2008], or even controlling 

computer games [Mason et al., 2004]. While researchers have demonstrated this technology in 

the laboratory, it is not ready for use in real world situations. The BCI robustness of the 

technology requires more improvements to be considered a practical and reliable technology. 

Further works should consider other filter techniques, with a deeper study on 12-30 Hz 

frequency band. 
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