ANDREY JULIANO FISCHER

PROPOSTA DE MÉTODO PARA ENGENHARIA DE TRÁFEGO EM REDES *MESH*

Dissertação apresentada ao Programa de Pós-Graduação em Informática Aplicada da Pontificia Universidade Católica do Paraná como requisito parcial para obtenção do título de Mestre em Informática Aplicada.

CURITIBA 2010

ANDREY JULIANO FISCHER

PROPOSTA DE MÉTODO PARA ENGENHARIA DE TRÁFEGO EM REDES *MESH*

Dissertação apresentada ao Programa de Pós-Graduação em Informática Aplicada da Pontificia Universidade Católica do Paraná como requisito parcial para obtenção do título de Mestre em Informática Aplicada.

Área de Concentração: Redes de Computadores e de Telecomunicações.

Orientador: Prof. Dr. Edgard Jamhour

CURITIBA 2010

Dados da Catalogação na Publicação Pontificia Universidade Católica do Paraná Sistema Integrado de Bibliotecas – SIBI/PUCPR Biblioteca Central

Fischer, Andrey Juliano

F529p 2010 Proposta de método para engenharia de tráfego em redes Mesh / Andrey Juliano Fischer; orientador, Edgard Jamhour. – 2010.

xxvi, 128 p. : il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Paraná, Curitiba, 2010

Bibliografia: p. 109-114

 Informática. 2. Engenharia de tráfego. 3. IEEE 802.11 (Normas).
 Controle de qualidade. I. Jamhour, Edgard. II. Pontifícia Universidade Católica do Paraná. Programa de Pós-Graduação em Informática. III. Título.

CDD 20. ed. - 004

ATA DE DEFESA DE DISSERTAÇÃO DE MESTRADO PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

DEFESA DE DISSERTAÇÃO Nº 05/2010

Aos 25 dias do mês de março de 2010 realizou-se a sessão pública de Defesa da Dissertação "Proposta de Método para Engenharia de Tráfego em Redes Mesh," apresentada pelo aluno Andrey Juliano Fischer como requisito parcial para a obtenção do título de Mestre em Informática, perante uma Banca Examinadora composta pelos seguintes membros:

Prof. Dr. Edgar Jamhour PUCPR (Orientador)	Edgard Jamhom.	APROVADO
(a	ssinatura)	(aprov/reprov.)
Prof. Dr. Manoel Camillo de (O. Penna Neto	
- OCFR	- // M	grovad
Prof. Dr. Marcelo Eduardo Pe PUCPR	ellenz	APROVODO
_		THROUND
Prof. Dr. Carlos Marcelo Ped PUCPR/UFPR	roso	APROVADO
Conforme as normas regime	entais do PPGla e da	PUCPR, o trabalho
		PROVADO
(aprovadolreprovado), segund		
Banca Examinadora. Este re	esultado está condicionad	do ao cumprimento
integral das solicitações da	Banca Evaminadora racio	ao ao campiinento
Defesas do programa.	Danca Examinadora regis	stradas no Livro de
Prof. Dr. Mauro Sérgio Pereira	Fonseca	

Diretor do Programa de Pós-Graduação em Informática

Aos meus pais, Albano e Maria Tereza, e a minha esposa Juliana.

Agradecimentos

À minha família, principalmente aos meus pais, por toda a orientação, dedicação e apoio durante toda minha vida, e a minha esposa Juliana, por todo amor, incentivo e compreensão.

Ao Prof. Dr. Edgard Jamhour pela confiança, paciência e orientação durante a execução deste trabalho.

Aos amigos conhecidos durante o mestrado e demais amigos que de alguma maneira colaboraram na realização desta dissertação.

Aos colegas e professores do Programa de Pós-Graduação em Informática Aplicada da PUC-PR que me acompanharam nestes anos.

Ao Centro Internacional de Tecnologia de Software - CITS e a Nokia Siemens Networks - NSN pelo apoio financeiro, e a Datacom Telemática.

Sumário

Agrade	ecimentos	vii
Sumár	rio	ix
Lista d	de Figuras	xiii
Lista d	de Tabelas	XV
Lista d	de Símbolos	xvii
Lista d	de Abreviaturas	xix
Resum	10	xxiii
Abstra	act	XXV
Capítu	ılo 1	27
Introdu	lução	27
1.1.	Motivação	28
1.2.	Proposta	30
1.3.	Estrutura do Documento	31
Capítu	ılo 2	33
Método	os de Otimização	33
2.1.	Introdução	33
2.2.	Random Search	34
2.3.	Simulated Annealing	35
2.4.	Nelder-Mead	37
2.4	4.1. Reflexão	37
2.4	4.2. Expansão	38
2.4	4.3. Contração	39
2.4	4.4. Redução	40
2.5.	Differential Evolution	40
2.5	5.1. Mutação	41

2.5.	2. Cruzamento	42
2.5.	3. Seleção	44
2.6.	Conclusão	45
Capítul	lo 3	47
Redes 1	Mesh sem Fio	47
3.1.	Introdução	47
3.2.	Redes Mesh padrão IEEE 802.11	47
3.2.	1. Classificação das Redes <i>Mesh</i>	49
3.3.	Protocolos de Roteamento	50
3.4.	Métricas de Roteamento	52
3.5.	Controle de Acesso ao Meio	52
3.5.	1. Interferências Devido ao Terminal Oculto	53
3.5.	2. Interferências Devido ao Terminal Exposto	55
3.6.	Trabalhos Correlatos	57
3.7.	Conclusão	58
Capítul	lo 4	59
Cálculo	da Capacidade das Redes Mesh sem Fio	59
4.1.	Introdução	59
4.2.	Trabalhos Relacionados	59
4.3.	Considerações Iniciais	60
4.4.	Capacidade do Canal	61
4.5.	Domínios de Colisão	62
4.5.	1. Capacidade Efetiva	63
4.6.	Cálculo da Capacidade da Rede	64
4.7.	Conclusão	65
Capítul	lo 5	67
Algorit	mo para Engenharia de Tráfego em Redes <i>Mesh</i> sem Fio	67
5.1.	Introdução	67
5.2.	Descrição da Estrutura do Algoritmo	68
5.2.	1. Definição dos Parâmetros de Entrada	68
5.2.	2. Construção do Grafo de Conectividade	69
5.2.	3. Identificação dos Caminhos	70

5.2.4. Identificação dos Domínios de Colisão	72
5.2.5. Identificação dos Domínios de Reuso Espacial	73
5.2.6. Cálculo da Carga das Arestas	74
5.2.7. Cálculo da Carga dos Domínios de Colisão	75
5.2.8. Cálculo da Capacidade Teórica do Canal	76
5.2.9. Algoritmo de Otimização	76
5.2.10. Resultados do Algoritmo	80
5.3. Validação	80
5.4. Conclusão	82
Capítulo 6	83
Simulação e Resultados Obtidos	83
6.1. Introdução	83
6.2. Simulação	84
6.2.1. Parâmetros de Entrada	84
6.2.2. Grafo de Conectividade	84
6.2.3. Identificação dos Caminhos	85
6.2.4. Domínios de Colisão	86
6.2.5. Domínios de Reuso Espacial	88
6.2.6. Carga das Arestas	90
6.2.7. Carga dos Domínios de Colisão	92
6.2.8. Cálculo da Capacidade Teórica do Canal	92
6.3. Análise dos Métodos de Otimização	93
6.3.1. AtenderDemanda - Comparação dos Métodos de Otin	nização93
6.3.2. AtenderDemanda - Tempo de Convergência	96
6.3.3. MaximizarCapacidade - Comparação dos Métodos de	Otimização97
6.3.4. MaximizarCapacidade - Tempo de Convergência	100
6.4. Análise dos Resultados	102
6.4.1. AtenderDemanda - AD	102
6.4.2. MaximizarCapacidade - MC	105
Capítulo 7	107
Conclusão e Trabalhos Futuros	107
Referências Bibliográficas	109

Apêndice A	. 115
Tabelas de Domínios de Colisão e Reuso Espacial	. 115

Lista de Figuras

Figura	1.1 : Áreas de cobertura para diferentes padrões de redes sem fio $[01] \dots$	28
Figura	2.1: Exemplo de Reflexão - Nelder-Mead [21]	38
Figura	2.2: Exemplo de Expansão - Nelder-Mead [21]	39
Figura	2.3: Exemplo de Contração - Nelder-Mead [21]	39
Figura	2.4: Exemplo de Redução - Nelder-Mead [21]	40
Figura	2.5: Processo para gerar o vetor doador $V^{(q+1)}$ [22]	42
Figura	2.6: Processo de cruzamento binomial para α = 2 , β = 4 e γ = Np [23]	43
Figura	2.7: Processo de cruzamento exponencial para $\alpha=2$, $\beta=4$ e $\gamma=Np$ [23]]44
Figura	3.1: Arquitetura de uma rede <i>mesh</i> [26]	49
Figura	3.2: Exemplo do Problema do Terminal Oculto [39]	53
Figura	3.3: Uso do RTS / CTS no problema do terminal oculto [38]	54
Figura	3.4: Exemplo do Problema do Nó Escondido [10]	55
Figura	3.5: Problema do Nó Escondido – Redução de Banda [10]	55
Figura	3.6: Exemplo do Problema do Terminal Exposto [41]	56
Figura	3.7: Exemplo do Problema do Terminal Exposto [38]	56
Figura	4.1: Exemplo para identificação de Domínio de Colisão [10]	63
Figura	5.1: Topologia utilizada por Jun e Sichitiu [09]	81
Figura	5.2: Topologia utilizada por Aoun e Boutaba [10]	82
Figura	6.1: Topologia usada na simulação	85
Figura	6.2: AD - Tempo de convergência para 1 nó ativo	96
Figura	6.3: AD - Tempo de convergência para 2 nós ativos	96
Figura	6.4: AD - Tempo de convergência para 3 nós ativos	97
Figura	6.5: MC - Tempo de convergência para 1 nó ativo	100
Figura	6.6: MC - Tempo de convergência para 2 nós ativos	100

Figura 6.7: MC - Tempo de convergência para 3 nós ativos	101
Figura 6.8: MC – Tempo de Convergência x Número de Nós Ativos	101
Figura 6.9: Comparação dos Tempos de Convergência: AD x MC	102
Figura 6.10: Demanda não Atendida x Método de Otimização	105

Lista de Tabelas

Tabela 4.1: Parâmetros para Diferentes Tecnologias de Camada MAC [11] 65
Tabela 6.1: Parâmetros de Entrada
Tabela 6.2: Identificação dos Pares de Vértices do Conjunto de Arestas
Tabela 6.3: Conjunto de Vértices na Área de Transmissão - CVAT
Tabela 6.4: Identificação dos Caminhos
Tabela 6.5: Conjunto de Arestas na Área de Transmissão - <i>CAAT</i>
Tabela 6.6: Conjunto de Vértices no Área de Interferência - CVAI
Tabela 6.7: Conjunto de Domínios de Colisão - <i>CDC</i>
Tabela 6.8: Conjunto de Vértices de Transmissões Simultâneas - <i>CVTS</i>
Tabela 6.9: Conjunto de Reuso Espacial - CRE
Tabela 6.10: Conjunto de Arestas de Transmissões Simultâneas - <i>CATS</i> 90
Tabela 6.11: Vetor Binário Bidimensional - <i>VBD</i>
Tabela 6.12: Soma das Cargas de cada Aresta - <i>SCA</i>
Tabela 6.13: Carga dos Domínios de Colisão - <i>SCDC</i>
Tabela 6.14: AD-Comparativo entres os Métodos de Otimização-1 Caminho 94
Tabela 6.15: AD-Comparativo entres os Métodos de Otimização-2 Caminhos 94
Tabela 6.16: AD-Comparativo entres os Métodos de Otimização-3 Caminhos 98
Tabela 6.17: AD-Comparativo entres os Métodos de Otimização-4 Caminhos 98
Tabela 6.18: MC-Comparativo entres os Métodos de Otimização-1 Caminho 98
Tabela 6.19: MC-Comparativo entres os Métodos de Otimização-2 Caminhos 98
Tabela 6.20: MC-Comparativo entres os Métodos de Otimização-3 Caminhos 99
Tabela 6.21: MC-Comparativo entres os Métodos de Otimização-4 Caminhos 99
Tabela 6.22: Demanda não atendida por método - nó ativo 2
Tabela 6.23: Demanda não atendida por método - nó ativo 2 e 15 10^{4}

Tabela 6.24: Carga Máxima Admitida na Rede e os Caminhos Utilizado	s 105
Tabela 6.25: AD x MC	106
Tabela A.1: Conjunto de Domínios de Colisão	117
Tabela A.2: Conjunto de Reuso Espacial	119
Tabela A.3: Conjunto de Arestas de Transmissões Simultâneas	120
Tabela A.4: Conjunto com a Carga dos Domínios de Colisão	123

Lista de Símbolos

 $f(x_0 + \Delta x_i)$ Ponto experimental do *Random Search*

 $f(x_0)$ Ponto base do *Random Search*

E Átomos de Energia

T Temperatura

 T_i Temperatura inicial

 T_f Temperatura final

 T_{DIFS} Tempo DIFS de espera para acesso ao meio (menor prioridade)

 T_{SJES} Tempo SIFS de espera para acesso ao meio (maior prioridade)

 T_{BO} Tempo de Backoff (janela de contenção)

 T_{CTS} Tempo gasto para se enviar um CTS

 T_{RTS} Tempo gasto para se enviar um RTS

 T_{ACK} Tempo gasto para se enviar um quadro ACK

 T_{DATA} Tempo gasto para se enviar um quadro de dados

Δ*E* Variação da Energia

 $P(\Delta E)$ Função de probabilidade de variação de energia

 K_b Constante de Boltzmann

 $V^{(q+1)}$ Vetor doador

 $U^{(q+1)}$ Vetor experimental

G(V, E) Grafo unidirectional que representa uma WMN

V Conjunto de vértices do grafo

E Conjunto de enlaces sem fio bidirecionais

C Conjunto de domínios de colisão

F Conjunto de tráfegos

 $v \in V$ Vértices do grafo (ou *Access Point*)

 $\Delta(v)$ Nós vizinhos que residem na área de transmissão / interferência de v

 $(v,u) \in E$ Enlace sem fio entre um nó v e seu vizinho $u \in \Delta(v)$

 f_{v} Representa o tráfego total gerado pelo vértice v

 $A_{v,e} \in \{0,1\}$ Variável binária para indicar a presença do fluxo f_v no enlace $e \in E$

 l_e Representa a carga total de um enlace $e \in E$

 α e β Componentes de atraso para cálculo do TMT

 C_e Identifica o domínio de colisão do enlace $e \in E$

 W_{C_a} Representa a carga total do domínio de colisão C_e

 Nb_{pkt} Número de *bytes* de um pacote

 Cap_s Representa a capacidade disponível no domínio de colisão $s \in C$

U Unidade de tráfego a ser computada

∑ Somatório

∀ Para todo

Complemento

∩ Interseção

U União

 $p_x c_y$ Representa a demanda de tráfego x seguindo o caminho y

Lista de Abreviaturas

ACK Acknowledgment

AD Atender Demanda

ADSL Asymmetric Digital Subscriber Line

AODV Ad hoc On-demand Distance Vector

AP Access Point

AWPP Adaptive Wireless Path Protocol

BER Bit Error Rate

BO Backoff

BSS Basic Service Set

CAAT Conjunto de Arestas na Área de Transmissão

CATS Conjunto de Arestas que podem Transmitir Simultaneamente

CDC Conjunto de Domínios de Colisão

CNA Conjunto de Nós Ativos

CRE Conjunto de Reusos Espaciais

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSN Carrier Sensing Neighbors

CTS Clear To Send

CVAI Conjunto de Vértices na Área de Interferência CVAT Conjunto de Vértices na Área de Transmissão

CVTS Conjunto de Vértices de Transmissões Simultâneas

DCF Distributed Coordination Function

DE Differential Evolution

DHCP Dynamic Host Configuration Protocol

DI Distância de Interferência

DIFS Distributed Inter Frame Space

DSDV Destination-Sequenced Distance-Vector

DSR Dynamic Source Routing

DSSS Direct Sequence Spread Spectrum

DT Distância de Transmissão

DV Distance Vector

ED Euclidean Distance

ETSI European Telecommunications Standards Institute

FHSS Frequency Hopping Spread Spectrum

GHz Gigahertz

HR-DSSS High Rate - Direct Sequence Spread Spectrum

IEEE Institute of Electrical and Electronic Engineers

LAN Local Area Network

LB Load Balance

LIR Least Interference Routing

LP Linear Programming

MAC Medium Access Control

MAN Metropolitan Area Network

MANETS Mobile Ad-hoc Networks

Mbps Megabits per second

MC Maximizar Capacidade

MCS Modulation and Coding Schemes

MHz Megahertz

MIT Massachusetts Institute of Technology

MMFC Max Min Fair Capacity

MNR Maximize Network Resources

MSDU MAC Service Data Unit

MUD Minimize Unmet Demand

NC Nominal Capacity

NM Nelder-Mead

NMC Número Máximo de Caminhos

NMS Número Máximo de Saltos

NP Non deterministic Polynomial time

OFDM Orthogonal Frequency Division Multiplexing

OLSR Optimized Link State Routing

OSPF Open Shortest Path First
PAN Personal Area Network

PCF Point Coordination Function

PHY Physical

PON Passive Optical Network

PUCPR Pontificia Universidade Católica do Paraná

QoS Quality of Service

RIP Routing Information Protocol

RS Random Search

RSS Received Signal Strength

RTS Request To Send

SA Simulated Annealing

SCA Soma das Cargas das Arestas

SCDC Soma das Cargas dos Domínios de Colisão

SDU Service Data Unit

SIFS Short Inter Frame Space

SINR Signal to Interference plus Noise Ratio

TMT Theoretical Maximum Throughput

TORA Temporally Ordered Routing Algorithm

UFF Universidade Federal Fluminense

UWB *Ultra-Wideband*

VBD Vetor Binário biDimensional

WAN Wide Area Network

Wi-Fi Wireless Fidelity

WiMax Worldwide Interoperability for Microwave

WLAN Wireless Local Area Network

WMN Wireless Mesh Networks

WRP Wireless Routing Protocol

ZRP Zone Routing Protocol

3GPP 3rd Generation Partnership Project

Resumo

As redes *mesh* sem fio, baseadas no padrão IEEE 802.11, surgem como tecnologia alternativa para fornecer infraestrutura de acesso a áreas metropolitanas de menor poder aquisitivo devido ao seu custo reduzido, facilidade de instalação, manutenção e expansão. Porém, por utilizarem o meio compartilhado e faixas de frequência não licenciadas (2,4GHz e 5,8GHz), estão sujeitas aos problemas inerentes das redes sem fio como largura de banda limitada, interferências, degradação do sinal e contenção. Por essas razões, o provisionamento da capacidade das redes sem fio, a implantação de mecanismos para fornecer qualidade de serviço e balanceamento de carga, constituem um tema com grande potencial de pesquisa e desenvolvimento. Neste trabalho propomos um método para prover engenharia de tráfego às redes *mesh* sem fio onde a capacidade da rede é estimada considerando-se a capacidade teórica do canal e a contenção imposta pela camada de acesso ao meio. Como a contenção é fortemente influenciada pelos caminhos que o tráfego segue pela rede, o método proposto emprega técnicas de otimização para determinar os melhores caminhos a serem utilizados, visando oferecer o melhor provisionamento possível da rede sem exceder a capacidade máxima do canal.

Palavras-Chave: Redes *Mesh*, 802.11, Engenharia de Tráfego, Controle de Admissão, Qualidade de Serviço.

Abstract

The wireless mesh networks, based on IEEE 802.11 standard, has emerged as an alternative technology to provide infrastructure access to metropolitan areas inhabited by low income population, because it offers cheap installation, cheap maintenance and scalability facilities. However, due to the use of shared access medium and free frequencies (2.4GHz and 5.8GHz), this technology is subject to the inherent problems of wireless networks such as restricted bandwidth, interferences, signal degradation and contention. For these reasons, the wireless mesh networks capacity provisioning and the establishment of mechanisms to provide quality of service and load balancing, are topics with great potential for research and development. In this paper we propose a method to provide traffic engineering for wireless mesh networks. The method estimates the network capacity considering the theoretical channel capacity and the contention imposed by the medium access layer. As the contention is strongly influenced by the routes that traffic follow on network, the proposed method employs optimization techniques to determine the best routes to be used in order to offer the best network provisioning without exceeding the maximum channel capacity.

Keywords: Wireless Mesh Networks, 802.11, Traffic Engineering, Admission Control, Quality of Service.

Capítulo 1

Introdução

Atualmente, a pesquisa de soluções de comunicação de baixo custo para redes metropolitanas e redes de acesso é um dos tópicos mais importantes na área de telecomunicações. Podemos definir as redes metropolitanas como sendo a infraestrutura de rede necessária para interconectar os diversos pontos de uma cidade entre si. As tecnologias utilizadas para construção dessa infraestrutura podem ser subdivididas em duas categorias: tecnologias para construção do *backbone* metropolitano e tecnologias para construção das redes de acesso. O *backbone* metropolitano corresponde às vias de alta velocidade capazes de transportar o tráfego agregado de múltiplos usuários. As redes de acesso, por outro lado, correspondem às vias de menor velocidade que conectam os usuários ao *backbone*.

Tecnologias como ADSL (*Asymmetric Digital Subscriber Line*), PON (*Passive Optical Network*) e *cable modem* apresentam-se como soluções para a construção de redes de acesso para *backbones* metropolitanos. Todavia, sua utilização torna-se inviável para suprir acesso às zonas metropolitanas de menor poder aquisitivo, ou com pouca densidade demográfica, pois implicam em custos de implantação e manutenção elevados, motivando a pesquisa de tecnologias alternativas de baixo custo que tenham potencial para atender esse tipo de demanda.

Entre as tecnologias de rede alternativas podemos citar o Wi-Fi (*Wireless Fidelity*), padrão IEEE 802.11, que apesar de apresentar baixo custo de implantação, manutenção e expansão, apresenta-se mais vulnerável a interferências por utilizar frequências de operação não licenciadas, como 2.4GHz e 5.8GHz. Por essas razões, o dimensionamento da capacidade, a implantação de mecanismos para controle de qualidade de serviço e o

balanceamento de carga em redes Wi-Fi constituem um tópico com grande potencial de pesquisa e desenvolvimento.

1.1. Motivação

Os serviços oferecidos por *backbones* podem ser distribuídos através de diversas redes de acesso, como PON ou ADSL. Todavia, as tecnologias sem fio são uma das possíveis soluções para construção das redes de acesso de baixo custo. Entre as tecnologias sem fio, destacam-se a família de padrões IEEE 802.11 (Wi-Fi - *Wireless Fidelity*) e IEEE 802.16 (WiMax - *Worldwide Interoperability for Microwave Access*) [01]. A Figura 1.1 ilustra como as tecnologias Wi-Fi e WiMax se enquadram no contexto das tecnologias sem fio atualmente propostas e utilizadas em relação à velocidade e a área de cobertura.

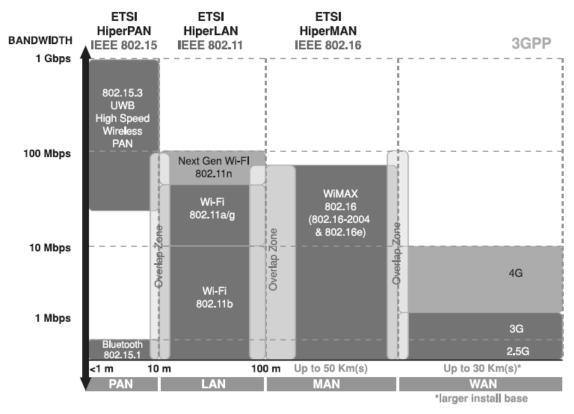


Figura 1.1: Áreas de cobertura para diferentes padrões de redes sem fio [01]

Conforme ilustrado na Figura 1.1, a tecnologia WiMax foi projetada para operar como solução para construção de redes metropolitanas (MAN – *Metropolitan Area Network*), pode

operar tanto em modo ponto-a-ponto quanto ponto-multiponto. A tecnologia Wi-Fi, por outro lado, foi concebida para operar como uma solução para redes locais (LAN – *Local Area Networks*) devido a sua área de cobertura reduzida, contudo, pode operar em distâncias similares ao WiMax em modo ponto-a-ponto.

A tecnologia Wi-Fi também pode ter seu alcance ampliado através da utilização de uma topologia *mesh*. Historicamente, o termo *mesh* refere-se à organização de redes em uma malha que oferece múltiplos caminhos entre dois pontos quaisquer. No caso específico das redes sem fio e da tecnologia Wi-Fi, o termo *mesh* refere-se a um tipo de estrutura no qual cada nó da rede é potencialmente um roteador. Aplicada às redes sem fio, essa topologia traz a vantagem de necessitar apenas de enlaces de curta distância entre os nós, e de oferecer muitos caminhos redundantes entre dois pontos quaisquer da rede [02, 03]. A proposta Roofnet do MIT (*Massachusetts Institute of Technology*) [03], por exemplo, define um tipo de rede no qual o próprio equipamento de acesso dos usuários é utilizado como roteador para os demais usuários da rede. Isto é, o equipamento de cada usuário conecta-se aos equipamentos dos usuários próximos, sucessivamente, até atingir um ou mais pontos de escoamento para a Internet. Existem diversas variações dessa estratégia, inclusive com equipamentos comerciais. A *Microsoft Research* também possui um projeto nessa mesma linha [04, 05].

O trabalho proposto difere de outros, como a do MIT e da Microsoft, em termos da estratégia de organização da rede. Essas propostas visam à criação de redes auto-organizáveis, onde novos nós e caminhos são descobertos dinamicamente, pois a rede está sujeita mudanças constantes pela entrada e saída de novos nós. Nas topologias fortemente dinâmicas, algoritmos de roteamento convencionais, como o OSPF (*Open Shortest Path First*), são considerados ineficientes. Por essa razão, existem várias propostas de algoritmos de roteamento para redes *mesh* dinâmicas, tanto ao nível acadêmico [04, 05], quanto em equipamentos comerciais destinados especificamente à construção de redes sem fio.

Este trabalho, por outro lado, foca o estudo de redes Wi-Fi pré-concebidas, com pouca dinamicidade em sua estrutura. Se por um lado à falta de mobilidade simplifica o problema de roteamento, por outro lado abre espaço para estudos mais aprofundados em termos de desenvolvimento de estratégias que possam ofertar serviços com garantia de qualidade de serviço, engenharia de tráfico e balanceamento de carga.

1.2. Proposta

Existem muitos trabalhos relacionados à pesquisa da capacidade de redes *ad-hoc* como Gupta e Kumar [06], Jain *et al.* [07] e Couto *et al.* [08], porém os resultados apresentados são inadequados para as redes *mesh* devido às suas particularidades. Conforme Aoun e Boutaba [06], podemos dizer que ao contrário de uma rede *ad-hoc*, uma WMN (*Wireless Mesh Network*) apresenta topologia estável, exceto para eventuais falhas e adição de novos nós. Em uma WMN praticamente todo tráfego é encaminhado para um *gateway*, enquanto o tráfego nas redes *ad-hoc* flui entre pares de nós arbitrários. Devido a esta característica, os *gateways* tornam-se os gargalos de uma WMN, afetando drasticamente o cálculo da capacidade.

Entre os trabalhos que abordam o cálculo da capacidade das WMN podemos destacar Jun e Sichitiu [09] e Aoun e Boutaba [10].

Jun e Sichitiu [09] resolveram o problema para o cálculo da capacidade das redes WMN utilizando o conceito de menor domínio de colisão (ou contenção). Porém, apesar de determinar a capacidade de uma WMN, o trabalho considera somente o domínio de colisão com a maior carga da rede e não leva em conta o reuso espacial dentro dos domínios de colisão, reduzindo a eficiência de utilização dos recursos da rede.

Aoun e Boutaba [10] estendem o método apresentado por Jun e Sichitiu [09] considerando vários domínios de colisão e o reuso espacial, tornando a estimativa da capacidade mais próxima da real.

Baseado nos trabalhos de Jun e Sichitiu [09] e Aoun e Boutaba [10] podemos identificar um método para o cálculo da capacidade das redes sem fio baseado na teoria de grafos, nos domínios de colisão e na capacidade teórica do canal, conforme apresentado por Jun *et al.* [11].

Para se obter uma solução aproximada e ao mesmo tempo satisfatória ao problema de alocação de recursos e identificação dos melhores caminhos da rede, foram utilizados métodos de otimização heurísticos como *Differential Evolution*, *Simulated Annealing*, *Nelder-Mead*, e *Random Search*, pois conforme sugerido por M. Pióro e D. Medhi [12], o excessivo número de variáveis e restrições impostas por grandes redes, tornam as abordagens baseadas em *Linear Programming* inadequadas, pois podem falhar e / ou levar muito tempo para convergir a uma resposta quando aplicadas diretamente.

O objetivo deste trabalho é utilizar os conceitos de domínio de colisão, nós escondidos, reuso espacial, capacidade teórica do canal e dos métodos de otimização para

propor um método capaz de identificar se uma determinada demanda de tráfego pode ou não ser admitida na rede, identificando os caminhos a serem utilizados, e a carga associada a cada caminho. Com o método proposto é possível realizar engenharia de tráfego em redes *mesh* sem fio (considerando um único canal nesta etapa), baseadas no padrão IEEE 802.11, obtendo o melhor provisionamento possível da rede sem exceder a capacidade dos enlaces sem fio, considerando os problemas inerentes a estas redes como contenção e largura de banda limitada.

1.3. Estrutura do Documento

Este trabalho está dividido em sete capítulos. O Capítulo 2 apresenta os principais métodos de otimização heurísticos utilizados para identificar os melhores caminhos da rede e para resolver o problema de alocação de recursos na rede.

O Capítulo 3 descreve a tecnologia de redes *mesh* com suas principais características, funcionalidades e os principais trabalhos que estão sendo desenvolvidos por empresas e universidades.

O Capítulo 4 descreve o método para o cálculo da capacidade teórica do canal, identificação dos domínios de colisão e reuso espacial, carga dos enlaces e domínios de colisão.

O Capítulo 5 apresenta em detalhes o algoritmo proposto para realizar engenharia de tráfego em redes *mesh* sem fio e o método utilizado para validação do algoritmo.

O Capítulo 6 apresenta as simulações realizadas em um cenário típico, a análise dos métodos de otimização e os resultados obtidos comparados com os métodos existentes.

O Capítulo 7 conclui o trabalho realizado e apresenta propostas para trabalhos futuros.

Capítulo 2

Métodos de Otimização

2.1. Introdução

Problemas de otimização são formulados como um conjunto de equações (ou inequações) que descrevem o comportamento de um determinado sistema em conjunto com uma função objetivo a ser maximizada (ou minimizada) na busca pela melhor solução.

Existem muitas classificações possíveis para os problemas de otimização, algumas apresentam métodos exatos, cujos resultados podem ser obtidos através de *Linear Programming*, e outras que conduzem a métodos não exatos (heurísticos), uma vez que sua formulação / resolução leva a um problema polinomial não determinístico, também conhecido como NP-Completo (NP – *Non deterministic Polynomial Time*).

Segundo M. Pióro e D. Medhi [12], o excessivo número de variáveis e restrições impostas por grandes redes, tornam as abordagens baseadas em LP inadequadas, pois podem falhar e / ou levar muito tempo para convergir a uma resposta quando aplicadas diretamente.

Para se obter uma solução aproximada ao problema pode-se utilizar métodos heurísticos, os quais buscam uma resposta aproximada, porém satisfatória ao problema, pesquisando apenas parte do universo de soluções.

Por não retornarem uma solução exata ao problema, deve-se estabelecer critérios de parada para estes métodos, que tipicamente são atrelados ao fator tempo (tempo computacional, número de iterações sem melhoria, etc).

As próximas seções apresentam alguns dos principais métodos heurísticos utilizados para resolver os problemas de otimização, dentre eles: *Random Search*, *Simulated Annealing*, *Nelder-Mead* e *Differential Evolution*.

2.2. Random Search

O algoritmo de *Random Search* (RS) é provavelmente o método heurístico de busca direta mais simples utilizado para solução dos problemas de otimização. Pode ser utilizado em situações onde se busque uma solução que maximize ou minimize um determinado critério em um conjunto finito de soluções candidatas.

Embora seja trivial gerar uma sucessão de pontos de amostragem, o método pode enfrentar um problema de granularidade se a função objetivo não for bem conhecida. Se a granularidade é grande, o mínimo pode não ser encontrado, caso a granularidade seja muito pequena, então o tempo de busca pode crescer exponencialmente porque um espaço amostral de tamanho N e dimensão D, terá N^D pontos de amostragem.

Segundo Price et~al. [13], o método contorna o problema da granularidade através da amostragem do valor da função objetivo em pontos gerados de forma aleatória, onde novos pontos de amostragem são gerados pela adição de uma variação randômica, Δx , para um determinado ponto x. Em geral, cada coordenada Δx_i de uma variação randômica segue uma distribuição Gaussiana (2.1), onde, σ_i e μ_i são respectivamente o desvio padrão e o valor médio para a coordenada i.

$$p(\Delta x_i) = \frac{1}{\sigma_i \times \sqrt{2 \times \pi}} \times e^{\left(-0.5 \times \frac{(\Delta x_i - \mu_i)^2}{\sigma_i^2}\right)}$$
2.1

O critério de seleção do método RS sempre aceita soluções melhores, ou seja, sempre que o ponto experimental, $f(x_0 + \Delta x_i)$, for menor que o ponto base, $f(x_0)$, $f(x_0 + \Delta x_i) \le f(x_0)$, então $x_0 + \Delta x_i$ é o novo ponto base, caso contrário, o ponto base x_0 é mantido e a busca por outras soluções continua até que uma solução considerada ótima local seja encontrada ou algum critério de parada, como o tempo de busca, seja satisfeito.

2.3. Simulated Annealing

O algoritmo de *Simulated Annealing* (SA) surgiu em 1983, tendo como precursor Kirkpatrick *et al.* [14] que se baseou nas idéias de Metropolis *et al.* [15]. O método faz analogia ao processo de recozimento (*annealing*) da metalurgia. Sabe-se da metalurgia que quando o metal é resfriado em condições apropriadas, um cristal simples pode ser obtido [14]. No recozimento, o metal é aquecido a altas temperaturas, causando um choque violento nos átomos, fazendo com que os átomos se movimentem livremente. Se o metal for resfriado de forma brusca, a microestrutura tende a um estado randomicamente instável, porém, se o metal é resfriado de forma suficientemente lenta, o sistema procurará um ponto de equilíbrio caracterizado por uma microestrutura ordenada e estável.

Os parâmetros de controle para iniciar o procedimento são: a função objetivo f(X), que representa a energia do sistema; as variáveis iniciais, X; o número de variáveis, n; a temperatura inicial, T_i ; a temperatura final, T_f ; o número de iterações para cada temperatura, n_i ; o número de temperaturas, n_{temp} , e o critério de parada [16].

A configuração inicial das variáveis é adotada como centro (em torno do qual ocorrerão as variações de temperatura). O valor inicial da função objetivo é adotado como o melhor valor.

Metropolis *et al.* [15] introduziram um método numérico simples que representa o estado de equilíbrio de um conjunto de átomos a uma dada temperatura, onde cada configuração é definida por um conjunto de átomos de energia E e temperatura T. A cada passo do algoritmo, os átomos sofrem um pequeno deslocamento aleatório provocando uma pequena variação da energia ΔE no sistema. Se esta nova energia ΔE é menor ou igual a zero ($\Delta E \leq 0$), o deslocamento é aceito e esta configuração é usada como ponto de partida para o próximo passo. Caso contrário, ($\Delta E > 0$), o deslocamento ainda pode ser aceito dependendo da função de probabilidade $P(\Delta E)$ dada pela Equação 2.2, onde K_b é a constante de Boltzmann (constante física que relaciona temperatura e energia das moléculas):

$$P(\Delta E) = e^{\left(\frac{-\Delta E}{K_b T}\right)}$$
 2.2

Um número aleatório w, uniformemente distribuído, deve ser gerado no intervalo [0,1]. Se $w \le P(\Delta E)$ a nova configuração é aceita. Se $w > P(\Delta E)$ a configuração anterior é utilizada para iniciar um novo passo.

A escolha da função de probabilidade $P(\Delta E)$, conforme descrito acima, deve-se ao fato de que o sistema evolui segundo uma distribuição de Boltzmann, porém outras funções de distribuição podem ser utilizadas.

Se T tiver magnitude muito superior ao desvio padrão da função objetivo no intervalo estudado, quase todos os pontos são aceitos. Ao passo que se T for igual a zero, o método se torna uma busca aleatória do mínimo. Assim, adota-se: T_i como o valor do desvio padrão da função objetivo no intervalo estudado e T_f com a ordem de grandeza desejada para a precisão do ponto ótimo [17].

Na otimização via SA considera-se a perturbação aleatória das variáveis e a manutenção do melhor valor da função objetivo. As variáveis são perturbadas aleatoriamente e o melhor valor da função objetivo é armazenado a cada iteração. A temperatura é então reduzida e novas tentativas executadas.

No próximo passo, o número s, baseado em números aleatórios w, é gerado (Equação 2.3) e as variáveis são modificadas [18]. Assim, uma nova configuração é obtida (Equação 2.4) e um novo valor da função objetivo pode ser calculado.

$$s = w_1 + w_2 - w_3 - w_4 2.3$$

$$X = center + T \times s$$
 2.4

O algoritmo inicia com uma temperatura alta, que é reduzida discretamente, até que o sistema "resfrie", usando o fator r_t , $0 < r_t < 1$, conforme as Equações 2.5 e 2.6. Após a temperatura ser reduzida, novas tentativas são realizadas até que um critério de parada seja satisfeito.

$$r_{t} = e^{\frac{\ln\left(\frac{T_{f}}{T_{i}}\right)}{n_{temp}-1}}$$
 2.5

$$T = T \times r_t \tag{2.6}$$

2.4. Nelder-Mead

Método numérico para otimização proposto por Nelder e Mead [19] para minimizar uma função objetivo de n variáveis. O método usa o conceito de um simplex genérico, que é um polítopo (generalização dos conceitos de polígono e poliedro) de N+1 vértices em N dimensões, onde N é o número de variáveis da função objetivo. Para uma variável temos um segmento de linha sobre uma linha, para duas variáveis um triângulo sobre um plano (2D), para três variáveis um tetraedro em um espaço de três dimensões (3D) e assim sucessivamente.

O algoritmo inicia usando o *simplex* e depois move este *simplex* através do conjunto de soluções possíveis tentando substituir o pior vértice do polítopo por um vértice melhor. Um novo polítopo é formado e a busca continua. O processo gera uma sequência de polítopos (que podem ter diferentes formas) para que o valor da função objetivo nos vértices seja cada vez menor, este processo é repetido até que a função seja minimizada ou algum critério de parada seja satisfeito. A busca por melhores vértices ocorre através de quatro operações, caracterizadas por parâmetros escalares: reflexão (ρ), expansão (χ), contração (γ) e redução (σ) [20]. As próximas seções apresentam um exemplo das operações para uma função objetivo de 2 variáveis conforme definido por J. A. Robinson [21].

2.4.1. Reflexão

No início das iterações o *simplex* é definido e os seus vértices ordenados, assim B (Best) é o melhor resultado, G (Good) é um resultado aceitável e W (Worst) é o pior resultado.

A função objetivo diminui conforme o polítopo se movimenta de W para B e de W para G. Por isso, é possível que a função objetivo assuma valores menores para pontos que estejam distantes de W (lado oposto da linha entre B e G). Um ponto de teste R é obtido através da reflexão do polítopo pela aresta \overline{BG} , conforme a Figura 2.1. Para determinar R, primeiro é necessário encontrar o ponto médio M da aresta \overline{BG} , conforme a Equação 2.7:

$$M = \frac{B+G}{2} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 2.7

Para encontrar o vértice R utilizamos a Equação 2.8, onde ρ é o coeficiente de reflexão:

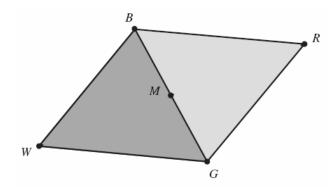


Figura 2.1: Exemplo de Reflexão - Nelder-Mead [21]

2.4.2. Expansão

Caso o valor da função em R seja melhor que o valor de função em B, então o método convergiu em direção ao mínimo e tenta encontrar um valor melhor além do ponto R. Assim o segmento de linha entre M e R é estendido para o ponto E, conforme a Figura 2.2. Isto forma um polítopo expandido BGE. Se o valor da função objetivo em E for melhor que o valor da função em R, então E é o novo vértice do polítopo. A fórmula para o cálculo do ponto E é definida na Equação 2.9, onde χ é o coeficiente de expansão:

$$E = M + \chi \times (R - M)$$
 2.9

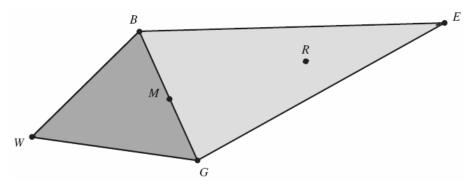


Figura 2.2: Exemplo de Expansão - Nelder-Mead [21]

2.4.3. Contração

Se o valor da função em R é melhor que valor da função em W, mas pior que o valor em B, então uma contração em direção a C_2 será realizada (*Outside Contraction*), caso o ponto de reflexão seja pior do que W, então uma contração em direção a C_1 será realizada (*Inside Contraction*), conforme apresentado na Figura 2.3. A contração C é definida pelas Equações 2.10 e 2.11, onde γ é o coeficiente de contração.

$$C_1 = M - \gamma \times (R - M)$$
 2.10

$$C_2 = M + \gamma \times (R - M)$$
 2.11

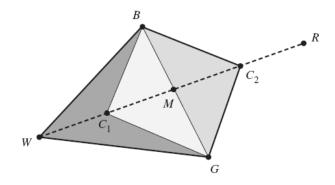


Figura 2.3: Exemplo de Contração - Nelder-Mead [21]

2.4.4. Redução

Caso nenhuma das operações anteriores melhore o vértice W, então o algoritmo realiza uma redução, como observado na Figura 2.4, e n novos vértices são definidos, conforme as Equações 2.12 e 2.13, onde σ é o coeficiente de redução.

$$S = B + \sigma \times (W - B)$$
 2.12

$$M = B + \sigma \times (G - B)$$
 2.13

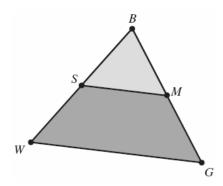


Figura 2.4: Exemplo de Redução - Nelder-Mead [21]

2.5. Differential Evolution

Segundo Storn e Price [22], a evolução diferencial (DE – *Differential Evolution*) é uma abordagem heurística de busca direta utilizada para minimizar espaços contínuos não lineares e não diferenciáveis.

A idéia principal da evolução diferencial é gerar novos indivíduos, denotados vetores modificados ou doadores, através da adição da diferença vetorial ponderada entre dois indivíduos aleatórios da população a um terceiro indivíduo. Esta operação é conhecida como mutação e é apresentada na seção 2.5.1.

As componentes deste novo indivíduo doador são misturadas às componentes de um indivíduo escolhido aleatoriamente (denotado vetor alvo ou vetor a ser substituído), resultando no vetor tentativa ou vetor experimental. O processo de misturar os parâmetros é referido frequentemente como cruzamento na comunidade dos algoritmos evolutivos e é descrito na seção 2.5.2.

Se o custo do vetor experimental for menor que o custo do vetor alvo, então o vetor experimental será o vetor alvo da próxima geração, operação chamada de seleção (seção 2.5.3). O procedimento é finalizado através de algum critério de parada.

2.5.1. Mutação

Para obter o vetor doador $V^{(q+1)}$, considera-se os vetores $X_{\alpha}^{(q)}$, $X_{\beta}^{(q)}$ e $X_{\gamma}^{(q)}$ distintos entre si e escolhidos aleatoriamente em uma população com Np indivíduos, onde $Np \geq 4$ para garantir uma quantidade suficiente de indivíduos para a execução do método, e os índices aleatórios α , β , $\gamma \in \{1,...,Np\}$. Utilizando o par de vetores $\left(X_{\beta},X_{\gamma}\right)$ da q – ésima geração define-se o vetor diferença $\left(X_{\beta}-X_{\gamma}\right)$. Esta diferença é multiplicada pelo fator de perturbação Fp, resultando na diferença vetorial ponderada que será usada para perturbar o terceiro vetor, X_{α} . O fator de perturbação Fp é um número real positivo pertencente ao intervalo [0,2] e controla a amplitude do vetor diferença. O processo de mutação pode ser escrito conforme a Equação 2.14:

$$V^{(q+1)} = X_{\alpha}^{(q)} + F_p \times \left(X_{\beta}^{(q)} - X_{\gamma}^{(q)} \right)$$
 2.14

A Figura 2.5 apresenta um exemplo bidimensional que ilustra os diferentes vetores que geram o vetor doador $V^{(q+1)}$.

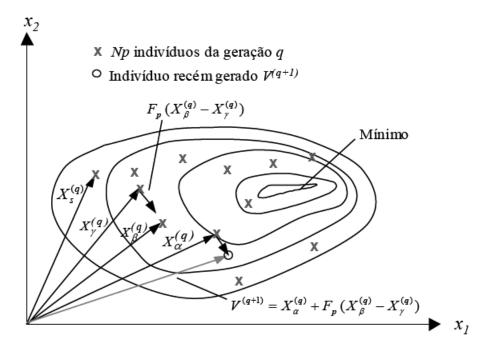


Figura 2.5: Processo para gerar o vetor doador $V^{(q+1)}$ [22]

2.5.2. Cruzamento

O cruzamento é introduzido para aumentar a diversidade dos indivíduos que sofreram mutação. Assim, utilizando o vetor doador $V^{(q+1)}$ e o vetor alvo $X_s^{(q)}$, escolhido de forma aleatória entre os indivíduos da população, onde $s \in \{1,...,Np\}$ e diferente dos índices α , β , γ , é possível identificar as componentes do vetor experimental $U^{(q+1)}$ conforme a Expressão 2.15.

$$u(i)^{(q+1)} = \begin{cases} v(i)^{(q+1)}, se & rand_i \le Pc. \\ x_s(i)^{(q)}, se & rand_i > Pc, i = 1,..., n. \end{cases}$$
 2.15

Sendo $v(i)^{(q+1)}$ a (q+1)-ésima componente do vetor doador $V^{(q+1)}$, $x_s(i)$ a do vetor alvo $X_s^{(q)}$, $rand_i$ um número aleatório gerado no intervalo [0,1] e $Pc \in [0,1]$ a probabilidade do cruzamento que representa a probabilidade do vetor experimental herdar os valores das variáveis do vetor doador. Quando Pc = 1, por exemplo, todas as componentes do vetor experimental virão do vetor doador $V^{(q+1)}$. Por outro lado, se Pc = 0, todas as componentes

do vetor experimental virão do vetor alvo $X_s^{(q)}$. Este tipo de cruzamento, apresentado por Storn e Price [22], é denominado operador de cruzamento binomial, sendo executado em cada variável sempre que um número aleatório $rand \in [0,1]$ for menor ou igual à probabilidade de cruzamento Pc. A Figura 2.6 demonstra o processo de cruzamento binomial para uma função de 7 variáveis.

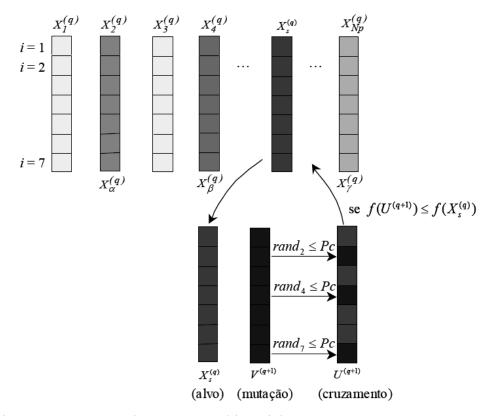


Figura 2.6: Processo de cruzamento binomial para $\alpha = 2$, $\beta = 4$ e $\gamma = Np$ [23]

Alguns anos mais tarde, Storn e Price [24] desenvolveram o operador de cruzamento exponencial, em que o cruzamento é executado nas variáveis enquanto o número aleatório $rand \in [0,1]$ for menor que a probabilidade de cruzamento Pc. A primeira vez que este número aleatório ultrapassar o valor de Pc, nenhum cruzamento é executado e as variáveis restantes são deixadas intactas, ou seja:

Enquanto
$$rand_i \le Pc, u(i)^{(q+1)} = v(i)^{(q+1)},$$

Se $rand_i > Pc, u(j)^{(q+1)} = x_s(j)^{(q)}, j = (i+1),...,n$

$$2.16$$

A Figura 2.7 apresenta o processo de cruzamento exponencial para uma função de 7 variáveis.

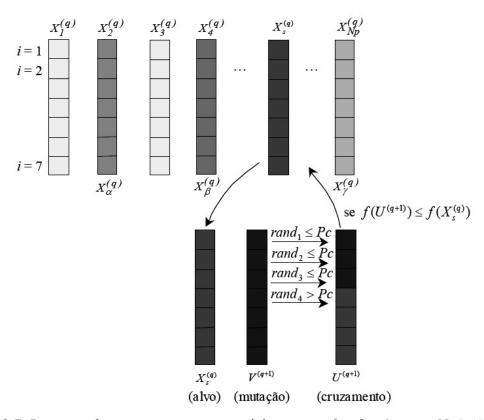


Figura 2.7: Processo de cruzamento exponencial para $\alpha = 2$, $\beta = 4$ e $\gamma = Np$ [23]

2.5.3. Seleção

Diferentemente de outros algoritmos evolutivos, a evolução diferencial não usa hierarquia (elitismo) nem seleção proporcional. Ao invés disso, o custo do vetor experimental $U^{(q+1)}$ é calculado e comparado com o custo do vetor alvo $X_s^{(q)}$. Se o custo do vetor experimental for menor que o custo do vetor alvo, o vetor alvo da próxima geração será o vetor experimental. Caso contrário, o vetor alvo da próxima geração será o vetor alvo da geração atual, conforme demonstrado na Expressão 2.17.

$$\begin{cases} Se & f(U^{(q+1)}) \le f(X_s^{(q)}) & então & X_s^{(q+1)} = U^{(q+1)} \\ Se & f(U^{(q+1)}) > f(X_s^{(q)}) & então & X_s^{(q+1)} = X_s^{(q)} \end{cases}$$
 2.17

2.6. Conclusão

Conforme apresentado por M. Pióro e D. Medhi [12], podemos dizer que devido ao grande número de variáveis e restrições impostas por grandes redes, as abordagens baseadas em LP tornam-se inadequadas para resolver os problemas impostos pela engenharia de tráfego, como por exemplo, encontrar os caminhos primários e secundários para todos os fluxos de uma rede, baseando-se em critérios como: carga nos enlaces sem fio, menor caminho, interferência entre nós, entre outros (ver Capítulo 5). Portanto, para resolver o problema de alocação de recursos e identificação dos melhores caminhos da rede, conforme proposto neste trabalho, os métodos heurísticos se apresentam como ótima opção.

Capítulo 3

Redes Mesh sem Fio

3.1. Introdução

Diferente de uma rede de infraestrutura, onde todos os nós se comunicam através de um ponto de acesso (AP - *Access Point*), uma rede *mesh* é composta por vários nós que se comportam como uma única rede comunicando-se e compartilhando os recursos entre si.

As redes *mesh* aumentam a conectividade da rede, interconectam redes isoladas provendo acesso às redes cabeadas de banda larga, e ao mesmo tempo reduzem o custo da infraestrutura por não utilizarem cabos. Numa arquitetura *mesh*, alguns dos dispositivos participantes compõem o *backbone* da rede, trabalhando apenas como repetidores e / ou roteadores, comunicando-se entre si via múltiplos saltos. Esse *backbone* é responsável por estender o alcance do acesso à rede cabeada além do alcance da transmissão de um único ponto de acesso.

Este capítulo apresenta os conceitos básicos das redes *mesh* sem fio padrão IEEE 802.11, bem como os principais trabalhos que estão sendo desenvolvidos na área e os problemas inerentes às redes sem fio.

3.2. Redes Mesh padrão IEEE 802.11

Atualmente, o padrão mais utilizado para as redes sem fio é o IEEE 802.11 [25], comercialmente conhecido como Wi-Fi (*Wireless Fidelity*). O principal uso dessa tecnologia é em redes locais e públicas onde os pontos de acesso, ligados diretamente a uma rede fixa tradicional, permitem que dispositivos móveis tenham acesso, por exemplo, à *Internet* banda

larga. Nesse modo, chamado infraestrutura, todos os nós se comunicam através de um ponto de acesso. Quando um nó necessita enviar uma mensagem para outro nó na mesma rede, a mensagem é enviada para o ponto de acesso, sendo que este encaminha a mensagem para o nó destino.

Outra forma de uso da tecnologia IEEE 802.11 é baseada no modo *ad-hoc*, as MANETS (*Mobile Ad-hoc Networks*). No modo *ad-hoc* não existe necessariamente uma infraestrutura, os nós se comunicam diretamente uns com os outros. Embora objeto de intensas pesquisas, as redes *ad-hoc* têm uso limitado devido ao pouco incentivo de seus participantes no compartilhamento de seus recursos, especialmente quando escassos, como por exemplo, limitações de energia [26, 27]. Sendo assim, as redes *ad-hoc* são empregadas em situações onde não existe uma infraestrutura de comunicação disponível e questões como segurança e qualidade de serviço não são importantes.

As redes *mesh* sem fio (*Wireless Mesh Networks* - WMN), que evoluíram a partir das redes *ad-hoc*, são redes dinamicamente auto-organizadas e autoconfiguradas. As principais diferenças entre as redes *mesh* a as redes *ad-hoc* são:

- Os dispositivos ou nós das redes *mesh* possuem localização fixa ou mobilidade limitada, e por isso, não apresentam as limitações de energia, devido à possibilidade de estarem conectados diretamente à rede elétrica, eliminando assim algumas das restrições das redes *ad-hoc*.
- Geralmente o tráfego converge em direção a um gateway que possui conexão com a rede fixa convencional, melhorando assim a conectividade, fornecendo uma rede backhaul de acesso para os nós que estão distantes da área de alcance dos gateways.
- Nas redes mesh há o compartilhamento compulsório dos recursos para formação do backbone principal da rede, que é sem fio.
- Nas redes *ad-hoc* não existe a caracterização de uma estrutura de *backbone*, já em redes *mesh* existe o *backbone* e o acesso dos nós clientes (última milha) ao *backbone* pode ser com ou sem fio.

A Figura 3.1 apresenta um exemplo de rede *mesh* onde os roteadores, que se comunicam entre si, encaminham pacotes de dados para as sub-redes ou para os *gateways* de acesso à Internet. Juntos, os roteadores formam o *backbone* sem fio da rede *mesh*. Outros nós

podem fazer o papel de ponte para sub-redes sem fio, conectando-se a pontos de acesso que servirão aos dispositivos móveis como porta de entrada para a rede. A idéia principal é que os roteadores sem fio possam fornecer uma infraestrutura de acesso para diferentes grupos de dispositivos como, por exemplo, redes de sensores ou clientes convencionais (guiados).

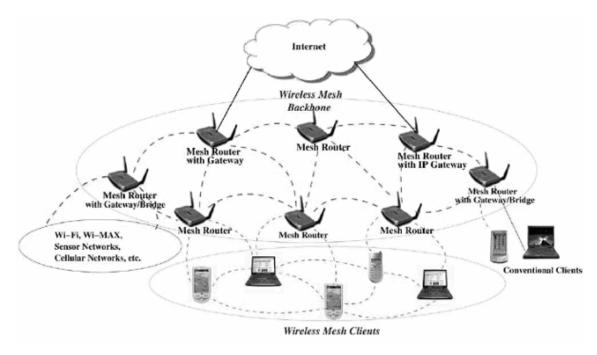


Figura 3.1: Arquitetura de uma rede *mesh* [26]

3.2.1. Classificação das Redes Mesh

Segundo Akyildiz *et al.* [26], uma rede *mesh* pode ser classificada em três grupos principais conforme as funcionalidades presentes nos nós:

Infraestrutura / backbone: nesse tipo de arquitetura os roteadores mesh formam uma malha entre si, servindo de backbone para os clientes guiados. As funcionalidades de gateway e / ou bridge, presentes nos roteadores, permitem a integração com outras redes sem fio e a conexão com a Internet. O backbone pode ser constituído de várias tecnologias de rádio, sendo que a comunicação entre os roteadores mesh pode ser estabelecida através de técnicas de comunicação de longo alcance, incluindo antenas direcionais;

- Cliente: esse tipo de arquitetura não requer roteadores *mesh*, sendo que os próprios nós dos clientes desempenham as funcionalidades de roteamento e configuração da rede. Em geral são formados por apenas um tipo de rádio;
- Híbrida: é constituída pela combinação das arquiteturas de infraestrutura e cliente, onde os usuários *mesh* podem acessar a rede através dos roteadores *mesh* ou diretamente entre os clientes. Um exemplo de rede *mesh* híbrida é apresentada na Figura 3.1.

A escolha da arquitetura depende da finalidade de utilização da rede, entretanto a arquitetura híbrida é a que proporciona a utilização de todas as potencialidades da tecnologia *mesh* sem fio [26].

3.3. Protocolos de Roteamento

Os roteadores das redes *mesh* precisam utilizar algum protocolo de roteamento capaz de montar suas tabelas de rotas para encaminhar os pacotes. Os protocolos de roteamento tradicionais, como o RIP (*Routing Information Protocol*), baseado no *Distance Vector* (DV), e o OSPF (*Open Shortest Path First*), baseado no *Link State*, funcionam bem nas redes guiadas que apresentam topologias relativamente estáveis. Porém, apresentam problemas para convergir em redes sem fio devido à dinamicidade de sua topologia [28].

Protocolos de roteamento *ad-hoc*, que são adaptados à alta mobilidade, são recomendados às redes *mesh*, dada a mobilidade dos nós e os problemas de interferências e degradação do sinal.

Podemos classificar os protocolos de roteamento para as redes sem fio em três grupos principais:

Pró-Ativos: os protocolos pró-ativos exigem que todos os nós da rede mantenham a rota de todos os possíveis destinos de modo que, quando houver necessidade de envio de um pacote de dados, a rota seja conhecida a *priori*. Estes protocolos realizam atualizações contínuas das tabelas de roteamento, fazendo que exista sempre um número constante de transmissões em andamento, mesmo quando a rede esteja em equilíbrio, e sem trafego de dados. A vantagem de utilizar um protocolo pró-ativo é ter uma tabela de roteamento constantemente atualizada. A

grande desvantagem dessa classe de protocolos é o custo para manter as tabelas atualizadas devido à troca de mensagens de controle que ocupam parte da capacidade de transmissão das redes. Em redes *mesh* esta desvantagem não é tão grande por não haver uma mudança constante da topologia da rede, o que diminui o envio de pacotes de controle entre os dispositivos de roteamento. Como exemplo de protocolos pró-ativos podemos citar: DSDV (*Destination-Sequenced Distance-Vector Routing*) [29], OLSR (*Optimized Link State Routing*) [30] e WRP (*Wireless Routing Protocol*) [31].

- Reativos: são protocolos onde os nós descobrem os destinos sob demanda, ou seja, não necessitam de uma rota até que precisem enviar pacotes de dados para os destinos. Desta forma, o processo de descoberta de rotas é disparado por um pacote de dados que precisa ser enviado. Assim que a rota é descoberta, utiliza-se um procedimento de manutenção de rota para que essa continue ativa. Como a chegada de um pacote de dados é o evento que dispara a descoberta de rotas, estes protocolos não trocam mensagens a intervalos regulares, o que economiza banda passante e energia. O volume de tráfego de controle de roteamento varia de acordo com a utilização da rede. Porém, estes protocolos apresentam maior latência, uma vez que a transmissão de dados só pode ser efetuada após a construção de uma rota para o destino. Como exemplos de protocolos reativos podemos citar: DSR (Dynamic Source Routing) [32], AODV (Ad hoc On-demand Distance Vector) [33], e TORA (Temporally Ordered Routing Algorithm) [34].
- Híbridos: combinam as características dos protocolos pró-ativos e reativos. Um exemplo de protocolo híbrido é o ZRP (*Zone Routing Protocol*) [35] que estabelece uma zona que atua com protocolo pró-ativo, a partir do limite dessa zona passa a atuar com protocolo reativo, fazendo um *flood* de pacotes de controle para descobrir qual rota utilizar. Esses protocolos são adequados para redes *ad-hoc* com muitos nós porque é possível estabelecer uma zona onde se tem conhecimento parcial da topologia da rede e, caso seja necessário enviar alguma informação para um nó mais distante este protocolo atua como um protocolo reativo.

Em [36] uma lista de protocolos de roteamento para redes sem fio é apresentada em detalhes.

3.4. Métricas de Roteamento

Apesar da maioria dos protocolos utilizarem o número de saltos como métrica de roteamento, essa não é a única opção. Nas redes sem fio uma outra métrica que merece destaque é a LIR (*Least Interference Routing*), ou roteamento por menor interferência, na qual se atribui a cada enlace um custo de interferência, e se utiliza o caminho com o menor custo total. Outras métricas possíveis são a confiabilidade e a taxa de erros, podendo até mesmo ser utilizada uma métrica híbrida.

O roteamento em redes *mesh* e redes *ad-hoc* é feito de forma semelhante, porém com métricas distintas, conforme demonstrado por Broch *et al.* [37].

Entre as métricas que podem ser utilizadas pelas redes *mesh* podemos citar: qualidade de serviço, largura de banda mínima necessária à transmissão (avaliação do estado dos *links*), latência (escolha do caminho não necessariamente pelo mais curto), segurança, níveis de congestionamento, disponibilidade de canais de frequência, ganho de antena, energia de transmissão, níveis de ruído e erro. Todas estas métricas devem ser consideradas e podem variar mesmo em curtos espaços de tempo, podendo inviabilizar diversas aplicações suportadas pela tecnologia *mesh* [37].

3.5. Controle de Acesso ao Meio

Os protocolos de camada MAC (*Medium Access Control*) do padrão IEEE 802.11 são caracterizados por operar em *half-duplex*. Os terminais geram interferência quando transmitem, que é percebida pelo receptor do próprio terminal, fazendo com que a detecção de colisões não seja possível enquanto os dados são enviados, o que pode gerar desperdício do canal, pois as colisões são detectadas apenas ao final da transmissão. Por este motivo, o controle de acesso ao meio em redes sem fio usa a estratégia baseada na tentativa de evitar colisões (CSMA / CA - *Carrier Sense Multiple Access with Collision Avoidance*). O mecanismo de controle de acesso ao meio deve ter condições ainda de tratar as variações do sinal recebido, pois o sinal sofre variações no tempo e com desvanecimento (*fading*), o que faz com que o sinal recebido seja o somatório das cópias atenuadas do sinal transmitido.

Como numa rede *mesh* não há um ponto central para controlar o acesso ao meio, devido ao uso do DCF (*Distributed Coordination Function*), os terminais verificam o meio de comunicação antes de iniciarem as suas transmissões, com o objetivo de verificar se seus vizinhos estão utilizando o canal. Caso o canal esteja ocioso, o terminal pode iniciar a sua transmissão. Esta estratégia diminui a chance de ocorrer uma colisão, mas pode levar a problemas de terminal oculto e terminal exposto.

3.5.1. Interferências Devido ao Terminal Oculto

Em redes *mesh* o fenômeno do terminal oculto deve ser levado em consideração devido ao fato de que as transmissões podem não ser detectadas utilizando o mecanismo de CSMA / CA. Um terminal da rede *mesh* pode ter somente alguns vizinhos diretos, mas muitos vizinhos indiretos que pode não ter conhecimento. Portanto, somente os terminais intermediários podem informar à vizinhança indireta sobre a existência destes terminais ocultos

A Figura 3.2 apresenta um exemplo do problema do terminal oculto. Assumindo que o terminal A está enviando dados para o terminal B e que o terminal C também deseja transmitir para o terminal B. No entanto, o terminal C está fora da área de transmissão de A, sendo assim, o terminal C acha que o meio está livre e envia seus dados o terminal B, o que resulta em uma colisão em B, porque este recebe dados de A e C simultaneamente. Neste caso, dizemos que A e C são terminais ocultos em relação a B [38].

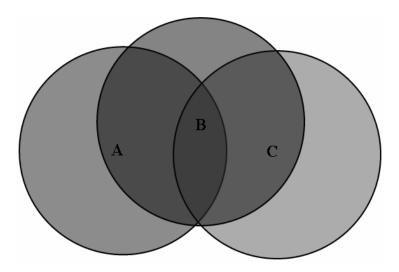


Figura 3.2: Exemplo do Problema do Terminal Oculto [39]

Os terminais ocultos reduzem a capacidade da rede devido à possibilidade de colisões e consequentemente retransmissão dos pacotes. Uma forma de minimizar o problema do terminal oculto é o *four-way handshaking*, [25], que estabelece a reserva do canal através do envio de mensagens curtas entre o transmissor e o receptor, antes da transmissão dos dados.

A Figura 3.3 mostra que a mensagem de RTS (*Request To Send*) do terminal A chega ao terminal B, mas não chega ao terminal C. Como os terminais A e C estão na área de transmissão de B, a mensagem de CTS (*Clear To Send*) que contém a duração da transmissão de A para B, chega ao terminal C, que identifica que um terminal oculto está utilizando o canal e adia a transmissão até que o tempo de transmissão tenha se esgotado [38].

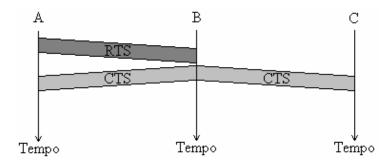


Figura 3.3: Uso do RTS / CTS no problema do terminal oculto [38]

Xu *et al*. [40] demonstraram que o problema do nó escondido ainda existe em redes de múltiplos saltos, mesmo considerando a proposta do *four-way handshaking* e do CSMA / CA. Considerando a rede da Figura 3.4, é possível identificar o problema do nó escondido entre os nós 1 e 4 pelas seguintes razões:

- Uma vez que o nó 1 não pode perceber a transmissão do nó 4, tentará acessar o canal continuamente devido ao CSMA / CA, contudo o nó 2 não poderá responder ao RTS enviado pelo nó 1 porque está na área de interferência do nó 4, fazendo com que o tempo de *backoff* de 1 aumente exponencialmente.
- Além disso, caso o nó 1 consiga realizar com sucesso a troca do RTS / CTS, o fluxo 4 → G irá interferir com o fluxo 1 → 2 (devido à área de interferência), causando colisões no nó 2.

Define-se a área de transmissão como a distância na qual os pacotes recebidos por um vértice do grafo podem ser decodificados corretamente. Enquanto que a área de interferência,

muitas vezes descrita como alcance de detecção de portadora (CSN - *Carrier Sensing Neighbors*), pode ser definida como a distância na qual um vértice é capaz de detectar a transmissão de outro vértice, porém não consegue decodificar os pacotes recebidos.

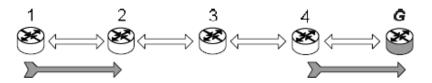


Figura 3.4: Exemplo do Problema do Nó Escondido [10]

A Figura 3.5 mostra a severa redução de banda causada no fluxo $1 \rightarrow 2$ devido ao problema do terminal oculto quando as cargas oferecidas pelos nós 1 e 4 são iguais a capacidade total da camada MAC.

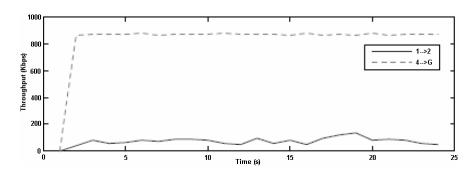


Figura 3.5: Problema do Nó Escondido – Redução de Banda [10]

3.5.2. Interferências Devido ao Terminal Exposto

O problema do terminal exposto pode ser caracterizado se um nó decidir que o canal não está disponível, mesmo que sua transmissão simultânea a outra não cause uma interferência negativa. Como os terminais expostos não são prejudiciais a outros dispositivos, a maior parte dos padrões de redes sem fio não os leva em consideração, mesmo que haja redução da capacidade. No caso das redes *mesh*, o problema do terminal exposto deve ser considerado, já que a comunicação por múltiplos saltos torna o espectro de frequência muito mais ocupado do que em outros tipos de rede de comunicação por um único salto. Isto resulta em perda de capacidade, como no caso do terminal oculto.

No problema do terminal exposto, um terminal se abstém de utilizar o canal que está, de fato, disponível. Na Figura 3.6, o terminal B está transmitindo para o terminal A e C pode transmitir para D, sem interferir com a transmissão de B para A. No entanto, C está exposto à transmissão de B, e assim se abstém de transmitir. Em outras palavras, C é muito conservador e desperdiça a capacidade do canal [38].

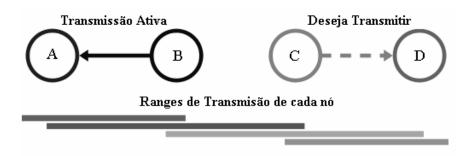


Figura 3.6: Exemplo do Problema do Terminal Exposto [41]

A troca de mensagens de RTS e CTS não pode ajudar no caso do terminal exposto. O terminal C recebe o RTS de B, mas não ouve o CTS de A. O terminal C, depois de receber o RTS de B, aguarda um tempo para que o CTS de A chegue até B, em seguida, envia um RTS indicando o desejo de se comunicar com D. Os terminais B e D, podem ouvir este RTS, mas B está no modo de transmissão e não no modo de recepção. O terminal D, que está no modo de recepção, responde com um CTS. O problema está aqui. Se o terminal B já iniciou a transmissão dos dados, C não irá receber o CTS da estação D por causa da colisão, e não pode enviar seus dados para D, permanecendo exposto até o término da transmissão de B, conforme mostra a Figura 3.7 [38].



Figura 3.7: Exemplo do Problema do Terminal Exposto [38]

3.6. Trabalhos Correlatos

Atualmente existem vários grupos de pesquisa em redes *mesh*, entre os principais projetos podemos citar:

- RoofNet [42]: desenvolvido no MIT em Cambridge Massachusetts. O projeto consiste de uma rede *mesh* com 38 nós espalhados numa área de aproximadamente seis quilômetros quadrados. Cada nó da rede é composto por um computador pessoal equipado com uma placa de rede sem fio padrão 802.11, conectada a uma antena omni-direcional. Todos os nós operam no mesmo canal. Os usuários, voluntários do projeto, ligam seus computadores aos nós da rede *mesh* por meio de cabos Ethernet. Cada nó da rede executa o sistema operacional Linux e possui um servidor DHCP (*Dynamic Host Configuration Protocol*) e um servidor *web* para endereçamento e monitoramento das máquinas dos clientes da rede, respectivamente. O fornecimento de qualidade dentro da rede é tratado pelo protocolo de roteamento que é uma extensão do protocolo DSR (*Dynamic Source Routing*), tendo como diferença principal a métrica utilizada para encontrar o melhor caminho entre dois nós.
- ReMesh [43]: O projeto ReMesh está sendo desenvolvido na Universidade Federal Fluminense (UFF), tendo como objetivo principal implantar uma rede sem fio de acesso comunitário em um dos campi da UFF. A rede foi desenvolvida com o intuito de fornecer acesso em banda larga, a um preço reduzido para alunos, funcionários e professores que residem ao redor do campus. Esta rede utiliza o protocolo de roteamento OLSR (Optimized Link State Routing Protocol) com algumas modificações, O OLSR foi escolhido pelos desenvolvedores considerarem o mais estável para ser executado nesse tipo de rede.
- MeshNet [44]: O projeto MeshNet está sendo desenvolvido na Universidade da Califórnia. A rede possui 25 nós, equipados com interfaces 802.11 a / b / g, distribuídos em 5 andares dentro do edifício da Faculdade de Engenharia. A principal utilização da rede é para o desenvolvimento de protocolos escaláveis, gerenciamento eficiente de rede e QoS (Quality of Service). A rede possui um gateway para o escoamento do tráfego da rede mesh para a Internet. O gateway é

um computador pessoal equipado com uma interface de rede sem fio 802.11b, utilizada para conectar o *gateway* à rede *mesh*, e uma interface Ethernet utilizada para prover acesso a Internet e gerenciamento dos dados.

- Solução Mesh da Nortel [45]: A solução mesh desenvolvida pela Nortel é composta por diversos pontos de acesso que formam uma rede comunitária, funcionando como porta de entrada à rede para os dispositivos móveis. A solução possui um robusto sistema de gerenciamento e configuração, sendo utilizada em projetos nos Estados Unidos, Canadá e China.
- Solução Mesh da Cisco [46]: A solução mesh desenvolvida pela Cisco tem como objetivo fornecer uma rede sem fio para pequenos espaços empresariais até espaços metropolitanos. A proposta implementa um protocolo de roteamento inteligente e um sistema de gerenciamento integrado como outros equipamentos da Cisco. A solução possui suporte simultâneo para os padrões IEEE 802.11 a / b /g e utiliza o AWPP (Adaptive Wireless Path Protocol), protocolo de roteamento proprietário da Cisco para formar uma rede mesh dinâmica entre os pontos de acesso remotos.

Vários projetos de redes de acesso comunitárias, mais conhecidas como cidades digitais, oferecem infraestrutura de comunicação sem fio em ambientes metropolitanos. Podemos citar o exemplo de cidades como Pittsburgh, Filadélfia, Dublin e Taipei. Em [47] temos uma lista de cidades onde o acesso sem fio já está disponível.

3.7. Conclusão

Este capítulo apresentou a tecnologia de redes *mesh*, operando sob o padrão IEEE 802.11, com suas principais características, funcionalidades, trabalhos que estão sendo desenvolvidos na área e os detalhes envolvidos nos problemas do terminal oculto e exposto, considerados para o cálculo da capacidade da rede, conforme definido no Capítulo 4.

Através deste estudo e dos trabalhos correlatos, também foi possível verificar que as redes *mesh* sem fio podem ser utilizadas como alternativa de baixo custo, fácil implantação, manutenção e expansão para redes de acesso a *backbones* metropolitanos, como alternativa às tecnologias como ADSL, PON, *cable modem* e WiMax.

Capítulo 4

Cálculo da Capacidade das Redes Mesh sem Fio

4.1. Introdução

Este capítulo apresenta um modelo para o cálculo da capacidade de uma WMN (Wireless Mesh Network) baseado nos trabalhos de propostos por Jun e Sichitiu [09] e Aoun e Boutaba [10]. O método descrito nesta seção baseia-se nos conceitos de domínios de colisão, reuso espacial e capacidade teórica máxima do canal (TMT – Theoretical Maximum Throughput) para determinar a capacidade máxima dos enlaces sem fio de uma WMN.

O método apresentado permite determinar se um fluxo pode ou não ser admitido em certo enlace sem fio, visando garantir que a capacidade disponível em determinado caminho não seja excedida, permitindo assim o correto provisionamento da rede, garantia de qualidade de serviço (QoS), acesso justo ao canal e uso eficiente dos recursos.

4.2. Trabalhos Relacionados

Existem muitos trabalhos relacionados à pesquisa da capacidade de redes *ad-hoc* como Gupta e Kumar [06], Jain *et al.* [07] e Couto *et al.* [08], porém os resultados apresentados são inadequados às WMN devido às suas particularidades. Entre elas, podemos citar que ao contrário de uma rede *ad-hoc*, uma WMN apresenta topologia estável, exceto para eventuais falhas e adição de novos nós, e que praticamente todo tráfego é encaminhado de / para um *gateway*, enquanto o tráfego nas redes *ad-hoc* flui entre pares de nós arbitrários, conforme descrito no Capítulo 3. Devido a estas características, os *gateways* tornam-se os gargalos de uma WMN, afetando drasticamente o cálculo da capacidade.

Entre os trabalhos que abordam o cálculo da capacidade das WMN podemos citar: Jun e Sichitiu [09], Aoun e Boutaba [10] e Max *et al.* [48].

Jun e Sichitiu [09] resolveram o problema para o cálculo da capacidade das WMN utilizando o conceito de menor domínio de colisão (seção 4.5). Apesar de determinar a capacidade de uma WMN, o trabalho considera um único domínio de colisão para toda rede e não leva em conta o reuso espacial dentro dos domínios de colisão, reduzindo a eficiência de utilização dos recursos da rede.

Aoun e Boutaba [10] estendem o método apresentado por Jun e Sichitiu [09] considerando vários domínios de colisão e o reuso espacial, tornando a estimativa da capacidade mais próxima da real.

Max *et al.* [48] apresentam melhorias sobre o método proposto por Aoun e Boutaba [10], considerando diferentes esquemas de modulação e codificação (MCS - *Modulation and Coding Schemes*), relação sinal ruído (SINR - *Signal to Interference plus Noise Ratio*) e força do sinal recebido (RSS - *Received Signal Strength*).

Entre os trabalhos acima, Jun e Sichitiu [09] e Aoun e Boutaba [10], apresentam-se como as melhores opções para o trabalho proposto (ver Capítulo 5), pois não necessitam de conhecimentos específicos da rede como: a força do sinal no transmissor e no receptor; a relação sinal ruído (SINR), e o esquema de codificação e modulação utilizado (MCS).

4.3. Considerações Iniciais

Uma WMN pode ser representada por um grafo unidirecional G(V, E), conhecido como grafo de conectividade, onde os nós da rede (ou AP) são identificados por $v \in V$, e seus vizinhos, que representam os nós que residem na área de transmissão / interferência de v, representados por $\Delta(v)$.

Considera-se que existe um enlace sem fio bidirecional entre um nó (vértice) v e todos os seus vizinhos $u \in \Delta(v)$, representados por $(v, u) \in E$.

Todo tráfego agregado por um AP forma um fluxo f_v que representa o tráfego total gerado pelo nó v. Uma variável binária $A_{v,e} \in \{0,1\}$ é introduzida para indicar a presença do fluxo f_v no enlace $e \in E$, desta forma é possível identificar a carga total de um enlace $e \in E$,

representada por l_e , como a soma de todos os fluxos f_v que percorrem o enlace v, portanto, temos que:

$$l_e = \sum_{v \in V} A_{v,e} \times f_v \tag{4.1}$$

4.4. Capacidade do Canal

Segundo Jun *et al.* [11], o cálculo da capacidade teórica máxima do canal (TMT – *Theoretical Maximum Throughput*) para as redes IEEE 802.11 (802.11, 802.11b, 802.11a) pode ser obtido através da divisão do número de bits do MSDU (MAC *Service Data Unit*) pelo atraso total para se enviar um MSDU, conforme a Equação 4.2, onde Nb_{pkt} representa o tamanho do pacote em bytes.

$$TMT(Nb_{pkt}) = \frac{8 \times Nb_{pkt}}{\alpha \times Nb_{pkt} + \beta} \times 10^6 bps$$
 4.2

O atraso total para se enviar um MSDU é uma simplificação de todas as suas componentes de atrasos: $T_{DIFS} + T_{SIFS} + T_{BO} + T_{CTS} + T_{RTS} + T_{ACK} + T_{DATA}$, onde T_{DIFS} é o tempo DIFS (*Distributed Inter Frame Space*) de espera para acesso ao meio, T_{SIFS} é o tempo SIFS (*Short Inter Frame Space*) de espera e assim sucessivamente. As componentes de atraso são representadas na Equação 4.2 pelos parâmetros α e β , cujos valores são apresentados na Tabela 4.1.

O TMT é definido sobre as seguintes suposições:

- BER (*Bit Error Rate*) igual a zero;
- Não existem perdas devido a colisões;
- PCF (*Point Coordination Function*) não é utilizado;
- Não ocorrem perdas de pacotes devido a estouro das filas no receptor;
- A camada MAC não usa fragmentação;
- Os quadros de gerenciamento (*beacons*) não são considerados.

Padrão **Esquema** Taxa α 1 Mbps 8,25 1179,5 **FHSS** 2 Mbps 4,125 1039,25 802.11 1 Mbps 8 1138 DSSS 2 Mbps 4 1002 5.5 Mbps 1,45455 915,45 802.11b **HR-DSSS** 11 Mbps 0,72727 890,73 1,33333 223,5 6 Mbps 12 Mbps 0,66667 187 802.11a **OFDM** 170,75 24 Mbps 0,33333 159,94 54 Mbps 0,14815 1 Mbps 8,25 1763,5 **FHSS** 2 Mbps 4,125 1623,25 802.11 1 Mbps 8 1814 **DSSS** 4 2 Mbps 1678 1,45455 5.5 Mbps 1591,45 802.11b **HR-DSSS** 11 Mbps 0,72727 1566,73 6 Mbps 1,33333 337,5 12 Mbps 0,66667 273 802.11a **OFDM**

Tabela 4.1: Parâmetros para Diferentes Tecnologias de Camada MAC [11]

4.5. Domínios de Colisão

O domínio de colisão de um enlace sem fio $e \in E$, identificado por C_e , é composto pelo conjunto de enlaces vizinhos a e, $\Delta(e)$, que compartilham seu canal local, e consequentemente interferem em sua transmissão. Pode-se dizer que um domínio de colisão representa o conjunto de nós que devem estar inativos para que um enlace possa transmitir com sucesso.

24 Mbps

54 Mbps

0,33333

0,14815

244,75225,95

A carga total transportada pelos enlaces pertencentes ao domínio de colisão C_e , representada por W_{C_e} , é definida conforme a Equação 4.3.

$$W_{C_e} = \sum_{w \in C_e} l_w \le TMT \tag{4.3}$$

Diz-se que um domínio de colisão $d \in C$ limita o fluxo $f \in F$ se e somente se a capacidade total do domínio de colisão (W) é igual à capacidade total do canal local (TMT). Neste caso, considera-se que o domínio de colisão d está saturado.

4.5.1. Capacidade Efetiva

Até o presente momento, a carga nominal do domínio de colisão foi utilizada para simplificar o cálculo da capacidade da rede, porém, a capacidade disponível por fluxo é calculada de forma mais precisa quando a carga efetiva do domínio de colisão é considerada.

A Figura 4.1 ilustra o domínio de colisão referente ao enlace $4 \rightarrow 3$, onde $C_{4\rightarrow 3} = \{6 \leftrightarrow 5, 5 \leftrightarrow 4, 8 \leftrightarrow 4, 4 \leftrightarrow 3, 3 \leftrightarrow 2, 2 \leftrightarrow 1, 9 \leftrightarrow 2\}$. Existem 3 fluxos sendo gerados nos nós 7, 8 e 9 que são agregados e encaminhados em direção ao *gateway G*.

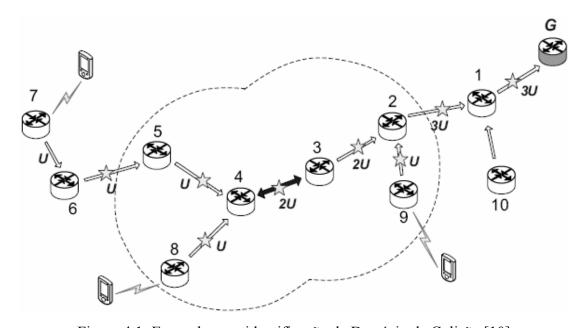


Figura 4.1: Exemplo para identificação de Domínio de Colisão [10]

Xu *et al.* [40] demonstraram que o problema dos nós escondidos podem ocorrer em uma rede de múltiplos saltos mesmo com o uso do RTS / CTS, conforme apresentado no Capítulo 3. Para o cenário da Figura 4.1, o problema do nó escondido é identificado na cadeia composta pelos nós 4, 3, 2, 1 e *G* . Neste caso, os nós 4 e 1 estão fora da área de percepção mútua, assim, o nó 4 não percebe as transmissões do nó 1 para *G* , fazendo com que o tempo de *backoff* do nó 4 cresça exponencialmente devido às interferências geradas nó 3. Portanto,

deve-se incluir o enlace $1 \to G$ no domínio de colisão $C_{4\to 3}$ (enlaces com estrela na Figura 4.1).

Na Figura 4.1 observa-se que o tráfego total a ser encaminhado pelo domínio de colisão $C_{4\to3}$ é 14U, sendo 11U referente a soma dos fluxos do domínio de colisão, mais 3U referentes ao enlace escondido $1\to G$, onde U é a unidade de tráfego a ser computada.

Visando considerar o reuso espacial do domínio de colisão, identifica-se situações em que as transmissões podem ser feitas de forma simultânea. Portanto, da Figura 4.1 temos que o enlace sem fio $6 \rightarrow 5$ pode transmitir simultaneamente com $2 \rightarrow 1$ e $1 \rightarrow G$, assim como $5 \rightarrow 4$ e $8 \rightarrow 4$ podem transmitir simultaneamente com $1 \rightarrow G$.

Para contabilizar o reuso espacial, a carga do enlace menos congestionado do par de transmissões simultâneas é removido para evitar contagens duplicadas. Assim, remove-se 1U de cada uma das seguintes transmissões: $\{5 \rightarrow 4, 1 \rightarrow G\}$, $\{8 \rightarrow 4, 1 \rightarrow G\}$ e $\{6 \rightarrow 5, 1 \rightarrow G\}$ ou $\{6 \rightarrow 5, 2 \rightarrow 1\}$, totalizando 3U, assim a carga efetiva do domínio de colisão é reduzida para 11U.

4.6. Cálculo da Capacidade da Rede

Para o cálculo da capacidade de uma WMN, um grafo N(C,F) é utilizado para representar os recursos disponíveis na rede. O grafo N é composto por F, que representa o conjunto de fluxos agregados, e C, que representa o conjunto de domínios de colisão.

A primeira etapa do cálculo da capacidade consiste na identificação do domínio de colisão com a menor capacidade disponível por fluxo. Para isso, a capacidade efetiva de todos os domínios de colisão é identificada através de *n* iterações até que o menor domínio de colisão seja identificado.

$$\min_{s \in C} \frac{W_{C_s}}{\sum_{e \in C_s} \sum_{f \in F} A_{f,e} \times f_f}$$

$$4.4$$

Na etapa seguinte, a capacidade da camada MAC, calculada conforme a Equação 4.2, é compartilhada entre todos os fluxos do domínio de colisão, determinando a quantidade máxima de tráfego que pode ser enviada por enlace pertencente ao domínio de colisão.

4.7. Conclusão

Com base nos trabalhos de Jun e Sichitiu [09], Aoun e Boutaba [10] e Jun et al. [11], podemos identificar um método para o cálculo da capacidade de redes sem fio baseado na teoria de grafos, domínios de colisão, reuso espacial e capacidade teórica do canal. O método permite que a capacidade da rede possa ser obtida através de poucos parâmetros como: disposição e número de nós, capacidade total do canal e carga dos enlaces. Por outro lado, o método não considera possíveis mudanças quanto aos esquemas de modulação e codificação utilizados pelo transmissor e a relação sinal ruído.

Trabalhos como Max *et al.* [48] propõem melhorias sobre Jun e Sichitiu [09], Aoun e Boutaba [10], porém necessitam de um poder computacional maior, conhecimento detalhado das características da rede e adaptações no padrão IEEE 802.11, invalidando o uso do método na proposta apresentada no Capítulo 5.

Capítulo 5

Algoritmo para Engenharia de Tráfego em Redes Mesh sem Fio

5.1. Introdução

O algoritmo proposto neste trabalho utiliza os conceitos de engenharia de tráfego para escolher as rotas por onde os fluxos (demanda de tráfego) serão transmitidos, dos métodos de otimização (Capítulo 2) para busca de um resultado satisfatório para o problema de alocação de recursos da rede, e do cálculo da capacidade da rede (Capítulo 4) para evitar que as demandas de tráfego excedam a capacidade dos enlaces sem fio.

Dada uma determinada demanda, ou um grupo de demandas, com os endereços de origem e destino (*gateway*), o algoritmo proposto, denominado AtenderDemanda - AD, é capaz de identificar se a demanda pode ou não ser admitida na rede, propondo os melhores caminhos e a carga que pode ser admitida em cada caminho, e se for o caso, identificar a porção da demanda que não pode ser admitida.

Outra característica do método proposto é a capacidade de identificar a carga máxima que pode ser admitida na rede, denominado MaximizarCapacidade - MC, que dado um grupo de fontes de tráfego com os respectivos destinos, em vez de receber as demandas como entrada do problema, irá maximizar a utilização dos recursos da rede informando a demanda máxima que pode ser admitida em cada caminho até o destino informado.

As próximas seções apresentam a estrutura do algoritmo proposto com a explicação detalhada de cada etapa executada, os resultados esperados e o processo de validação utilizado.

5.2. Descrição da Estrutura do Algoritmo

O algoritmo proposto neste trabalho está estruturado em dez etapas principais, divididas da seguinte forma:

- 1. Definição dos Parâmetros de Entrada
- 2. Construção do Grafo de Conectividade
- 3. Identificação dos Caminhos
- 4. Identificação dos Domínios de Colisão
- 5. Identificação dos Domínios de Reuso Espacial
- 6. Cálculo da Carga das Arestas
- 7. Cálculo da Carga dos Domínios de Colisão
- 8. Cálculo da Capacidade Teórica do Canal
- 9. Algoritmo de Otimização
 - 01. Identificação da Função Custo
 - 02. Identificação das Restrições / Variáveis
 - 03. Execução do Método Heurístico (DE, AS ou NM)
- 10. Análise dos Resultados

As etapas propostas para a execução do algoritmo foram especificadas segundo a notação formal Z, e são apresentadas nas próximas seções deste trabalho.

5.2.1. Definição dos Parâmetros de Entrada

Os parâmetros de entrada para o algoritmo proposto são:

- Identificação do conjunto de vértices (V), com a posição dos vértices no plano cartesiano bidimensional:
- Número de vértices (N), gateway (GW), distância de interferência (DI) e distância de transmissão (DT), em metros;
- Definição do conjunto de nós ativos (CNA) que estão transmitindo em direção ao gateway GW, que pode ser diferente para cada nó ativo;
- Identificação do tamanho dos pacotes (bytes), taxa de transmissão (Mbps), esquema de modulação e codificação (FHSS, OFDM, DSSS, HR-DSSS) e o padrão (802.11a, 802.11b, 802.11g, etc) para o cálculo da capacidade teórica do canal (TMT Theoretical Maximum Throughput);

- Número máximo de caminhos permitidos por nó ativo (NMC), pois o tráfego enviado por um nó pode ser distribuído por um ou mais caminhos simultaneamente, e o número máximo de saltos permitido (NMS) por caminho;
- Definição das demandas d_i de cada nó ativo $v_i \in CNA$.

5.2.2. Construção do Grafo de Conectividade

O grafo de conectividade G(V, A) é representado por um conjunto de vértices V e um conjunto de arestas A, que podem ser representados pelas seguintes relações:

$$V = \{ v_i \in \mathbb{N} \mid i = 1, 2, \dots N \}$$
 5.1

$$A = \{ a_k \in \mathbb{N} \mid k = 1, 2, \dots M \}$$
 5.2

Onde N é o número de nós (vértices) e M o número de arestas (enlaces). O vértice $v_i \in V$ representa a posição do vértice i no plano cartesiano bidimensional, conforme a Expressão 5.3.

$$v_i = (x_{v_i}, y_{v_i}) \tag{5.3}$$

A aresta a_k representa a conectividade entre os vértices v_i e v_j , através do padrão IEEE 802.11, e é representada pela tupla contendo o vértice transmissor i e o vértice receptor j, conforme a Expressão 5.4.

$$a_k = \left(v_{i_{ak}}, v_{j_{ak}}\right) \tag{5.4}$$

O conjunto de arestas A é composto por todos os pares de vértices, formados por um transmissor e um receptor, que apresentam valor da distância euclidiana bidimensional (ED – *Euclidean Distance*) menor ou igual ao valor da distância de transmissão DT, assim, o conjunto de arestas do grafo pode ser definido conforme a Expressão 5.5.

$$A = \left\{ \forall v_i, v_j \in V \mid \sqrt{\left| \left(x_{v_i} - x_{v_j} \right)^2 + \left| \left(y_{v_i} - y_{v_j} \right)^2 \right|} \le DT \bullet \left\{ v_i, v_j \right\} \right\}$$
 5.5

5.2.3. Identificação dos Caminhos

A diversidade de caminhos é um ponto importante para o algoritmo uma vez que constitui os elementos individuais das combinações do universo de respostas possíveis. Se este cálculo fornecer poucas opções de caminhos para uma determinada demanda, o tráfego desta demanda ficará atrelado obrigatoriamente a um determinado conjunto de arestas.

Os múltiplos caminhos computados para cada demanda são obtidos através do uso de um método de n caminhos mais curtos, adaptado do algoritmo de Dijkstra. O processo inicia com a identificação do conjunto de vértices na área de transmissão CVAT de todos os vértices do grafo. Considerando o vértice $v_i \in V$, temos que $CVAT_{v_i}$ é composto pela lista de vértices receptores cujo vértice transmissor seja igual a v_i , conforme a Expressão 5.6.

$$CVAT_{v_i} = \left\{ \forall v_j \in V \mid \left(\sqrt{\left| \left(x_{v_i} - x_{v_j} \right)^2 + \left| \left(y_{v_i} - y_{v_j} \right)^2 \right|} \leq DI \right) \land \left(v_i \neq v_j \right) \bullet v_j \right\}$$
5.6

Em seguida, os n caminhos mais curtos são identificados para cada elemento do conjunto de nós ativos CNA, definido nos parâmetros de entrada conforme a Expressão 5.7.

$$CNA = \{v_1 \dots v_r \dots v_R\}, \text{ onde } v_r \in V$$
5.7

Inicialmente o algoritmo altera o peso das arestas formadas pelo produto cartesiano dos vértices $v_i \in CNA$ com seus vértices adjacentes $CVAT_{v_i}$, e das arestas formadas pelo produto cartesiano de GW com seus vértices adjacentes $CVAT_{GW}$, conforme as Expressões 5.8 e 5.9, respectivamente.

$$\left\{ \forall v_i \in CNA \mid v_i \times CVAT_{v_i} \right\}$$
 5.8

$$\{GW \times CVAT_{GW}\}$$
 5.9

Assim que o peso das arestas é modificado para evitar que a aresta seja utilizada como opção de um caminho válido, o algoritmo de Dijkstra, modificado para encontrar os n caminhos mais curtos, é executado para todas as combinações formadas pelo produto cartesiano dos vértices adjacentes à origem com os vértices adjacentes ao destino, $CVAT_{v_i} \times CVAT_{GW}$. Após a primeira execução (quando localiza o caminho mais curto), o algoritmo é executado novamente alterando-se o peso das arestas intermediárias do caminho localizado, visando encontrar caminhos alternativos. Este processo é repetido até que o peso de todas as arestas do caminho mais curto sejam modificados. Um caminho é considerado válido apenas se o número de saltos for menor ou igual ao número máximo de saltos NMS, definido nos parâmetros de entrada.

Os n caminhos encontrados para cada nó ativo são representados por uma lista bidimensional de vértices. Considerando o nó ativo $v_i \in CNA$ e o caminho k_{v_i} , pertencente ao grupo de caminhos encontrados, temos que $P_{v_i,k_{v_i}}$ identifica o caminho k_{v_i} do nó ativo v_i , conforme a Expressão 5.10.

$$P_{v_i, k_{v_i}} = (v_i, \dots, v_n), \text{ onde } v_n \in V$$
 5.10

Um vetor binário bidimensional VBD de tamanho $N \times M$, onde M representa o número de arestas do grafo (colunas) e N os caminhos de cada nó ativo (linhas), também é definido durante a localização dos caminhos para identificar todas as arestas que pertencem a um determinado caminho. Assim, cada posição do vetor, que representa uma aresta do grafo, é setada (1) sempre que pertencer a um determinado caminho. Os n caminhos de cada nó ativo são identificados através do índice do vetor, onde $v_i \in CNA$ representa o nó ativo e k_{v_i} um dos n caminhos de v_i , conforme demonstrado na Expressão 5.11.

$$VBD_{v_i,k_{v_i}} = [a_{w1},...,a_{wm},...,a_{wM}], \text{ onde } a_w \in \{0,1\}$$
 5.11

5.2.4. Identificação dos Domínios de Colisão

Devido à natureza compartilhada do meio de comunicação das redes sem fio, devemos evitar transmissões simultâneas dento da área compreendida pela distância de interferência e consequentemente pela distância de transmissão, mitigando a possibilidade de colisões, retransmissões e interferências, conforme descrito no Capítulo 3 seção 3.5.

De forma semelhante ao que foi definido na Expressão 5.6 para a identificação do conjunto de vértices na área de transmissão CVAT, é necessário identificar o conjunto de arestas na área de transmissão CAAT que identifica as possíveis transmissões de um vértice. Considerando o vértice $v_i \in V$, temos que o $CAAT_{v_i}$ é composto pela lista de vértices transmissores (v_i) e receptores (v_j) cujo vértice transmissor seja igual a v_i , conforme a Expressão 5.12.

$$CAAT_{v_i} = \{ \forall a_k \in A \mid v_{i_{a_k}} == v_i \bullet \{v_{i_{a_k}}, v_{j_{a_k}} \} \}$$
 5.12

Após identificar o CAAT, é necessário definir o conjunto de vértices na área de interferência CVAI, que é feito de forma similar à identificação do conjunto de arestas A, conforme a Expressão 5.5. O CVAI é composto por todos os vértices que apresentam valor da distância euclidiana menor ou igual ao valor da distância de interferência DI, incluindo o próprio vértice em análise e os vértices compreendidos na distância de transmissão DT, conforme a Expressão 5.13.

$$CVAI_{v_i} = \left\{ \forall v_j \in V \mid \sqrt{\left(x_{v_i} - x_{v_j}\right)^2 + \left|\left(y_{v_i} - y_{v_j}\right)^2\right|} \le DI \bullet v_j \right\}$$
5.13

Uma vez que o CVAI foi identificado, o conjunto de domínio de colisão CDC de todas as arestas do grafo pode ser formado. Podemos considerar que o CDC de uma aresta $a_k \in A$, representado por CDC_{a_k} e formado pela tupla $\left(v_{i_{a_k}}, v_{j_{a_k}}\right)$, é composto pelo conjunto de arestas na área de transmissão CAAT de todos os vértices que compõem a união (\bigcup) do conjunto de vértices na área de interferência CVAI do vértice transmissor com o vértice receptor, conforme a Expressão 5.14.

$$CDC_{a_k} = \left\{ \forall v_n \in \left\{ CVAI_{v_{i_{a_k}}} \cup CVAI_{v_{j_{a_k}}} \right\} \mid CAAT_{v_n} \right\}$$
5.14

5.2.5. Identificação dos Domínios de Reuso Espacial

A identificação dos reusos espaciais é uma etapa muito importante para a correta estimativa da capacidade das redes sem fio, principalmente em redes *mesh* onde os dispositivos muitas vezes se comportam como roteadores, comunicando-se entre si via múltiplos saltos encaminhando o tráfego em direção a um *gateway*. Devido a esta característica de encaminhamento por múltiplos saltos, podemos identificar situações onde as transmissões dos vértices dentro do mesmo domínio de colisão podem ser feitas de forma simultânea. Nestes casos, a carga da aresta menos congestionada do par de transmissões simultâneas deve ser removida para evitar contagens duplicadas, tornando o cálculo da capacidade das redes sem fio mais precisa, conforme demonstrado na seção 4.5.1 do Capítulo 4.

Para formar do conjunto de reusos espaciais CRE, primeiramente devemos identificar o conjunto de vértices de transmissões simultâneas CVTS. O CVTS de uma aresta é definido através do complemento (\) do conjunto de vértices do grafo (V) com a união (\bigcup) do CVAI do vértice transmissor com o CVAI do vértice receptor desta aresta. Considerando a aresta $a_k \in A$, podemos representar o conjunto de vértices que podem transmitir simultaneamente a a_k , $CVTS_{a_k}$, conforme a Expressão 5.15.

$$CVTS_{a_k} = \left\{ V \setminus \left\{ CVAI_{v_{lok}} \cup CVAI_{v_{lok}} \right\} \right\}$$
5.15

Assim que o CVTS é definido, podemos identificar o conjunto de arestas de transmissões simultâneas CATS para todas as arestas do grafo. Considerando a aresta $a_k \in A$, formada pelo vértice transmissor $v_{i_{a_k}}$ e pelo vértice receptor $v_{j_{a_k}}$, temos que o $CATS_{a_k}$ é formado pelo conjunto de arestas na área de transmissão CAAT de todos os vértices do conjunto de transmissões simultâneas de a_k , $CVTS_{a_k}$, excluindo-se as arestas cujo vértice receptor pertença à união do CVAI do vértice transmissor com o CVAI do vértice receptor da aresta a_k , conforme a Expressão 5.16.

$$CATS_{a_k} = \left\langle \forall v_i \in CVTS_{a_k} \mid \left\langle \forall a_i \in CAAT_{v_i} \mid v_{j_{a_i}} \notin \left\langle CVAI_{v_{i_{a_k}}} \cup CVAI_{v_{j_{a_k}}} \right\rangle \right\rangle \bullet a_i \right\rangle$$

$$5.16$$

Uma vez que o *CATS* foi definido, é possível identificar o conjunto de reusos espaciais *CRE* composto pelo par de arestas que podem transmitir simultaneamente dentro do mesmo domínio de colisão. Os pares de arestas do *CRE* são utilizados na etapa do cálculo da carga dos domínios de colisão para se evitar contagens duplicadas, melhorando a estimativa da capacidade da rede.

Considerando uma aresta $a_k \in A$, temos que o CRE_{a_k} é definido da seguinte forma: para todas as arestas a_i pertencentes ao conjunto de domínio de colisão de a_k , $\forall a_i \in CDC_{a_k}$, verificamos se existe alguma aresta que pertença a interseção (\cap) do conjunto de domínio de colisão CDC_{a_k} com o conjunto de arestas de transmissões simultâneas $CATS_{a_i}$, identificando desta forma os pares de arestas que podem transmitir simultaneamente dentro do mesmo conjunto do domínio de colisão CDC_{a_k} . Os pares de transmissões simultâneas são representados pelo produto cartesiano da aresta a_i com a interseção $CATS_{a_i} \cap CDC_{a_k}$, conforme demonstrado na Expressão 5.17.

$$CRE_{a_k} = \left\{ \forall a_i \in CDC_{a_k} \mid \left\{ CATS_{a_i} \cap CDC_{a_k} \right\} \neq \left\{ \right. \right\} \bullet \left\{ a_i \times \left\{ CATS_{a_i} \cap CDC_{a_k} \right\} \right\} \right\}$$

$$5.17$$

5.2.6. Cálculo da Carga das Arestas

Com o objetivo de identificar o domínio de colisão com a maior carga da rede, a carga de todas as arestas do grafo deve ser definida. Como a carga das arestas é altamente dinâmica e muda sempre que o caminho utilizado é modificado ou a carga associada a este caminho é alterada pelos algoritmos de otimização, deve ser deixada em forma de expressão literal para que os métodos de otimização alterem esses valores durante a minimização / maximização da função custo.

A carga das arestas é representada por uma expressão $p_i c_n$ que identifica os n caminhos de todos os nós ativos $v_i \in CNA$, conforme a Expressão 5.18, onde K_{v_i} representa o

número de caminhos encontrados para o nó ativo v_i . Assim $p_i c_n$ representa o nó ativo de índice i seguindo o caminho n.

$$p_i c_n, \ \forall v_i \in CNA; n \le K_{v_i}$$
 5.18

A soma das cargas de cada aresta do grafo é obtida através da análise do vetor binário bidimensional *VBD*, definido na Expressão 5.11. Todas as arestas de cada *VBD* são analisadas e formam uma nova lista com a soma das cargas das arestas *SCA*.

Considerando a aresta $a_k \in A$, analisa-se todos os vetores binários VBD, e sempre que o valor da posição que representa a aresta a_k em $VBD_{v_i,n}[k]$ estiver setada (1), soma-se à carga da aresta a_k o valor da expressão $p_i c_n$ que representa a carga atribuída ao caminho n do nó ativo v_i , conforme a Expressão 5.19.

$$SCA_{a_k} = (p_{i_1}c_{n_1} + ... + p_{i_x}c_{n_y})$$
 5.19

5.2.7. Cálculo da Carga dos Domínios de Colisão

Assim que a soma das cargas de todas as arestas SCA foi definida, é possível calcular a carga de todos os domínios de colisão. A soma das cargas dos domínios de colisão SCDC de uma aresta qualquer é formada pela soma das cargas de todas as arestas SCA que fazem parte do domínio de colisão da aresta analisada menos o valor da menor carga (Min) do par de arestas do conjunto de transmissões simultâneas CATS, sendo assim, podemos representar a carga do domínio de colisão de uma aresta $a_k \in A$ conforme a Expressão 5.20.

$$SCDC_{a_k} = \left(\sum_{\forall a_i \in CDC_{a_k}} SCA_{a_i}\right) - \left(\sum_{\forall a_j \in CATS_{a_k}} - Min\left[SCA_{i_{a_j}}, SCA_{j_{a_j}}\right]\right)$$
5.20

Como os valores das cargas são expressos em forma de expressão literal, não é possível determinar a priori qual carga é a maior ou a menor, pois o valor das cargas é definido durante o processo de otimização.

5.2.8. Cálculo da Capacidade Teórica do Canal

Conforme apresentado na seção 4.4 do Capítulo 4, temos que a capacidade teórica do canal (TMT - *Theoretical Maximum Throughput*) pode ser obtida através da divisão do número de bits do MSDU (MAC *Service Data Unit*) pelo atraso total para se enviar um MSDU, conforme a Equação 5.21.

O atraso total para se enviar um MSDU é uma simplificação de todas as suas componentes de atraso: $T_{DIFS} + T_{SIFS} + T_{BO} + T_{CTS} + T_{RTS} + T_{ACK} + T_{DATA}$, onde T_{DIFS} é o tempo gasto por um DIFS, T_{SIFS} é o tempo de um SIFS e assim sucessivamente. Estas componentes de atraso são representadas pelos parâmetros α e β , cujos valores são apresentados na Tabela 4.1.

$$TMT(Nb_{pkt}) = \frac{8 \times Nb_{pkt}}{\alpha \times Nb_{pkt} + \beta} \times 10^6 bps$$
 5.21

Os parâmetros α e β são mapeados na Tabela 4.1 através dos seguintes parâmetros de entrada do algoritmo: padrão utilizado (802.11a, 802.11b, etc); esquema de modulação e codificação (FHSS, DSSS, HR-DSSS ou OFDM); taxa em *Mbps*, e número de *bytes* do pacote.

5.2.9. Algoritmo de Otimização

Antes de iniciar o processo de otimização é necessário definir a função custo a ser minimizada (AtenderDemanda) ou maximizada (MaximizarCapacidade), as restrições que devem ser respeitadas para que uma solução seja considerada válida, e as variáveis que constituem o universo das soluções possíveis.

Identificação da Função Custo

Duas funções custo distintas são definidas, uma para minimizar a demanda não atendida, denominada AtenderDemanda, e outra para maximizar o uso dos recursos da rede, denominada MaximizarCapacidade.

A função custo para minimizar a demanda não atendida (fc_{\min}), ou AtenderDemanda, é composta pela soma de todas as demandas não atendidas dna_i . Para cada vértice $v_i \in CNA$ existe um $gateway \ GW_i$ e uma demanda d_i , para cada demanda, que representa a carga que um vértice deseja transmitir, existe uma variável denominada dna_i , que identifica a quantidade de tráfego que não pode ser admitida. Desta forma, pode-se definir a fc_{\min} conforme a Expressão 5.22.

$$fc_{\min} = dna_1 + ... + dna_i + ... + dna_I$$
, onde $i \in [1, |CNA|]$ 5.22

A função custo para se maximizar o uso dos recursos da rede (fc_{max}) , ou MaximizarCapacidade, é composta pela soma de todas as demandas d_i , que diferente da fc_{min} , não faz parte dos parâmetros de entrada do algoritmo. Neste caso, para cada vértice $v_i \in CNA$, temos uma demanda d_i que representa a carga máxima que pode ser admitida na rede. Sendo assim, podemos definir a fc_{max} conforme a Expressão 5.23.

$$fc_{\text{max}} = d_1 + \dots + d_i + \dots + d_I$$
, onde $i \in [1, |CNA|]$ 5.23

Identificação das Restrições e Variáveis

Como restrições impostas aos métodos de otimização temos:

Restrição do Número de Caminhos: garante que somente um número máximo de caminhos NMC, definido nos parâmetros de entrada, seja utilizado por um nó ativo v_i ∈ CNA, considerando que cada nó ativo v_i possui n caminhos possíveis até o destino. Como qualquer grupo de caminhos composto por no máximo NMC pode ser utilizado pelo vértice v_i, temos que os caminhos resultantes da permutação dos n caminhos encontrados para v_i (Perm), contendo exatamente NMC elementos, formam as combinações de caminhos possíveis para o vértice v_i. Considerando o processo de otimização para AtenderDemanda, temos que a demanda não atendida dna_i, mais a soma das cargas admitidas (Total) no

subgrupo de n caminhos com a maior carga (Max) deve ser igual a demanda d_i solicitada para o vértice v_i , conforme demonstrado na Expressão 5.24.

$$dna_i + Max[Total[Perm[\{p_1c_1, ..., p_ic_n, ..., p_lc_N\}, NMC]]] == d_i, \text{ onde}$$

$$i \in [1, |CNA|] \text{ e } n \in [1, |K_i|]$$
5.24

No processo de otimização para MaximizarCapacidade, tem-se que a soma das cargas admitidas (Total) no subgrupo de n caminhos com a maior carga (Max) deve ser igual a demanda d_i a ser maximizada, conforme demonstra a Expressão 5.25.

$$Max[Total[Perm[\{p_1c_1,...,p_ic_n,...,p_Ic_N\},NMC]]] == d_i, \text{ onde}$$

$$i \in [1,|CNA|] \text{ e } n \in [1,|K_i|]$$
5.25

Restrição Positiva: garante que o valor das variáveis, definido durante a otimização, seja um número positivo. Desta forma, temos uma lista composta por todos os caminhos dos nó ativos v_i ∈ CNA, e por todas as demandas não atendidas dna_i, conforme a Expressão 5.26, utilizada como restrição no processo de otimização para AtenderDemanda. No caso da otimização para MaximizarCapacidade, substituí-se a demanda não atendida dna_i pela demanda d_i a ser maximizada, conforme a Expressão 5.27.

$$p_1c_1 \ge 0 \dots p_ic_n \ge 0 \dots p_Ic_N \ge 0 \dots dna_1 \ge 0 \dots dna_i \ge 0 \dots dna_I \ge 0$$
, onde $i \in [1, |CNA|] \in n \in [1, |K_i|]$ 5.26

$$p_1 c_1 \ge 0 \dots p_i c_n \ge 0 \dots p_I c_N \ge 0 \dots d_1 \ge 0 \dots d_i \ge 0 \dots d_I \ge 0$$
, onde $i \in [1, |CNA|] \in n \in [1, |K_i|]$

Restrição da Carga Máxima dos Domínios de Colisão: esta restrição visa garantir que a carga dos domínios de colisão SCDC não ultrapasse a capacidade máxima do canal TMT, definida conforme a Expressão 5.21. Portanto, o domínio de colisão com a maior carga, identificado através da função Max, deve ser menor ou igual ao valor do TMT, conforme a Expressão 5.28.

$$Max | SCDC_{a_i}, ..., SCDC_{a_i}, ..., SCDC_{a_i} | \leq TMT, \forall a_i \in A$$
 5.28

 Restrição do Número de Iterações: o número de iterações atua como critério de parada para o algoritmo, uma vez que determina o número máximo de gerações sem melhoria.

A lista de variáveis do algoritmo é composta por todas as variáveis utilizadas durante o processo de otimização. A lista contém os valores máximos e mínimos das cargas de cada caminho visando limitar a quantidade de valores possíveis, melhorando o tempo de convergência do algoritmo. A lista de variáveis para o processo de otimização denominado AtenderDemanda pode ser descrita conforme a Expressão 5.29.

$$\{\{p_1c_1, 0, TMT\}, \dots, \{p_ic_n, 0, TMT\}, \dots, \{p_ic_N, 0, TMT\}, \dots dna_1 \dots dna_i \dots dna_i\}, \text{ onde}$$

$$i \in [1, |CNA|] \text{ e } n \in [1, |K_i|]$$
5.29

Para definição das variáveis do processo de otimização denominado Maximizar Capacidade, substituí-se a demanda não atendida dna_i pela demanda d_i a ser maximizada, conforme a Expressão 5.30.

$$\{\{p_{1}c_{1},0,TMT\},...,\{p_{i}c_{n},0,TMT\},...,\{p_{I}c_{N},0,TMT\},...d_{1}...d_{i}...d_{i}\}, \text{ onde}$$

$$i \in [1,|CNA|] \text{ e } n \in [1,|K_{i}|]$$
5.30

Execução do Algoritmo de Otimização

Assim que as etapas de 1 a 8 foram realizadas, o algoritmo de otimização pode ser executado quantas vezes forem necessárias, alterando-se parâmetros como número máximo de

caminhos utilizados por nó ativo, número máximo de gerações sem melhoria (iterações), método de otimização utilizado (*Simulated Annealing* - SA, *Differential Evolution* - DE, *Random Search* - RS e *Nelder-Mead* - NM) e o tipo de otimização (AtenderDemanda ou MaximizarCapacidade), sem que seja necessário repetir as etapas anteriores. Modificações nos demais parâmetros do algoritmo forçam a execução de todas as etapas novamente.

5.2.10. Resultados do Algoritmo

Como resultados esperados da execução do algoritmo, temos uma lista de caminhos, limitada pelo número máximo de caminhos e saltos por nó ativo, com a carga associada a cada caminho.

Os resultados podem ser classificados, conforme o método de otimização utilizado:

- AtenderDemanda:
 - Demanda n\u00e3o atendida diferente de zero. Significa que as demandas solicitadas podem ser parcialmente admitidas na rede;
 - Demanda não atendida igual a zero. Significa que todas as demandas solicitadas podem ser admitidas na rede com a carga solicitada;
- MaximizarCapacidade:
 - Retorna a carga máxima que pode ser admitida na rede e os caminhos que devem ser utilizados, respeitando as restrições impostas pelo número de caminhos e a capacidade máxima do canal.

5.3. Validação

A validação do algoritmo foi realizada em diferentes topologias, muitas geradas de forma aleatória, onde os resultados obtidos pelo algoritmo foram comparados com os resultados obtidos através de uma análise manual. Os resultados apresentados por Jun e Sichitiu [09] e Aoun e Boutaba [10] também foram comparados com os resultados do algoritmo proposto conforme descrito a seguir.

A dificuldade para comparar os resultados apresentados por Jun e Sichitiu [09], conforme a topologia da Figura 5.1, foi aproximar os valores das posições dos vértices do grafo para um modelo equivalente / equidistante ao modelo proposto, contudo, apesar das

aproximações feitas, e das adaptações no algoritmo para que este não considerasse os nós escondidos, o reuso espacial e levasse em conta somente o domínio de colisão com a maior carga da rede, conforme proposto por Jun e Sichitiu [09], obtivemos resultados idênticos aos apresentados no artigo para as três simulações feitas, com um único nó ativo (25), três nós ativos (7, 25 e 29) e seis nós ativos (7, 12, 16, 20, 25, e 28), comprovando que a metodologia utilizada para o cálculo dos domínios de colisão e carga das arestas é confiável.

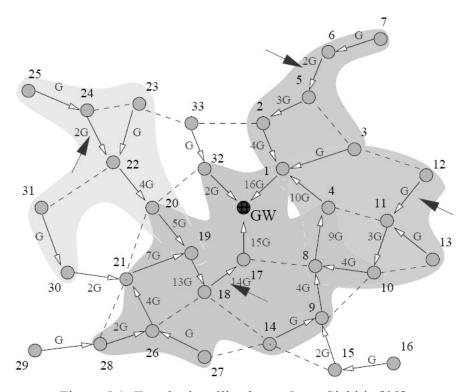


Figura 5.1: Topologia utilizada por Jun e Sichitiu [09]

Algumas adaptações também foram necessárias para comparar os resultados apresentados por Aoun e Boutaba [10], conforme topologia da Figura 5.2, com o método proposto. A primeira modificação no algoritmo foi considerar sempre os fluxos "V" menores que os fluxos "U" durante o cálculo dos reusos espaciais, pois os autores subtraem sempre os fluxos "V" em casos de reusos espacial, o que consideramos um erro, pois no momento da subtração não temos os valores das cargas "U" e "V", uma das razões para manter as cargas em forma de expressão literal e deixar que a menor carga seja subtraída somente durante a otimização. Outra modificação necessária foi realizar primeiro o cálculo da carga dos fluxos "U" e depois calcular a carga dos fluxos "V", como é realizada no artigo.

Com as adaptações realizadas no método proposto para adequar à metodologia empregada por Aoun e Boutaba, obtivemos uma única diferença relacionada a um reuso espacial do domínio de colisão da aresta $\{7,G\}$ entre o par de arestas $\{8,7\}$ e $\{2,1\}$ que não foi considerado por Aoun e Boutaba, porém consideramos este reuso válido pois as transmissões entre os vértices $\{8,7\}$ e $\{2,1\}$ podem ser realizadas simultaneamente caracterizando o reuso.

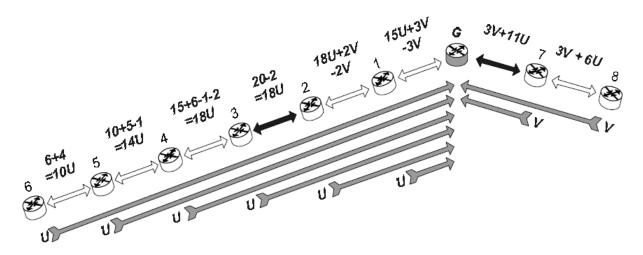


Figura 5.2: Topologia utilizada por Aoun e Boutaba [10]

5.4. Conclusão

Este capítulo apresentou de forma detalhada a estrutura do algoritmo proposto para realizar engenharia de tráfego em redes *mesh* sem fio, padrão IEEE 802.11. O capítulo descreve de forma genérica e formal os parâmetros de entrada utilizados, assim como as etapas executadas pelo algoritmo, e os resultados esperados após a otimização da função custo. Comparando os resultados obtidos pelo algoritmo com os resultados apresentados por outros dois métodos, comprovamos que a metodologia utilizada para identificar os domínios de colisão, nós escondidos, reuso espacial, carga das arestas e capacidade teórica do canal está de acordo com o reportado por outros autores.

Capítulo 6

Simulação e Resultados Obtidos

6.1. Introdução

Este capítulo apresenta os resultados da simulação realizada com o algoritmo proposto no Capítulo 5. Cada etapa proposta para a execução do algoritmo é demonstrada através de um exemplo com um cenário típico, onde é possível demonstrar os benefícios da engenharia de tráfico nas redes *mesh* sem fio para melhorar a distribuição das cargas na rede.

Os resultados obtidos pelos métodos de otimização baseados em *Simulated Annealing*, *Differential Evolution*, *Random Search* e *Nelder-Mead* foram comparados visando identificar o método com os melhores tempos de convergência e resultados para se minimizar ou maximizar a função custo, respeitando as restrições impostas.

Na sequência, os resultados obtidos pelo algoritmo proposto, para atender uma determinada demanda (AtenderDemanda) e maximizar o uso dos recursos da rede (MaximizarCapacidade), foram comparados com os métodos descritos por Jun e Sichitiu [09] e Aoun e Boutaba [10].

A implementação e a simulação do algoritmo foi realizada com o auxílio do software Wolfram Mathematica [49], originalmente concebido por Stephen Wolfram, que disponibiliza diversas bibliotecas prontas, auxiliando na redução dos tempos de implementação. As simulações foram realizadas em uma máquina com Windows XP SP3, 1GB de RAM e processador Intel Core 2 Duo de 1.66GHz.

6.2. Simulação

6.2.1. Parâmetros de Entrada

Nas simulações apresentadas neste capítulo, os seguintes parâmetros de entrada foram utilizados, conforme Tabela 6.1.

Parâmetro Valor {10, 10} Gateway - GW $\{2, 15\}$ Nós Ativos - CNA Número máximo de saltos - NMS {2.576, 2.576} Mbps Demandas 18 Número de Vértices - NDistância de Interferência - DI 550 metros 250 metros Distância de Transmissão - DTPadrão: 802.11b / com RTS / CTS Componentes TMT Tamanho dos Pacotes: 1500 bytes (igual para todos os enlaces) Taxa: 11Mbps Esquema de Modulação: HR-DSSS {{435, 845}, {406, 598}, {539, 390}, {779, 322}, {630, 1000}, {855, 900}, {1000, 1090}, {1000, 750}, {1200, Vértices (posição em metros) - ${\it V}$ 1100}, {1200, 700}, {1300, 900}, {1440, 1000}, {1545, 820}, {1425, 610}, {870, 552}, {1029, 366}, {1272, 310}, {1490, 410}}

Tabela 6.1: Parâmetros de Entrada

6.2.2. Grafo de Conectividade

Com base nos dados de entrada como o conjunto de vértices V e a distância de transmissão DT, é possível identificar o conjunto com todas as arestas A do grafo conforme a Expressão 5.5. A Tabela 6.2 apresenta os pares de vértices do grafo que podem se comunicar diretamente através do padrão IEEE 802.11.

Tabela 6.2: Identificação dos Pares de Vértices do Conjunto de Arestas

Arestas	Possíveis Transmissões
\overline{A}	$\{\{1,2\}, \{1,5\}, \{2,1\}, \{2,3\}, \{3,2\}, \{3,4\}, \{4,3\}, \{4,15\}, \{5,1\}, \{5,6\}, \{6,5\}, \{6,7\},$
	$\{6,8\},\ \{7,6\},\ \{7,9\},\ \{8,6\},\ \{8,10\},\ \{8,15\},\ \{9,7\},\ \{9,11\},\ \{10,8\},\ \{10,11\},\ \{10,14\},$
	$\{11,9\},\ \{11,10\},\ \{11,12\},\ \{12,11\},\ \{12,13\},\ \{13,12\},\ \{13,14\},\ \{14,10\},\ \{14,13\},$
	$\{14,18\},\ \{15,4\},\ \{15,8\},\ \{15,16\},\ \{16,15\},\ \{16,17\},\ \{17,16\},\ \{17,18\},\ \{18,14\},$
	{18,17}}

Com o conjunto de vértices V e o conjunto de arestas A definidos, o grafo de conectividade é construído conforme o exemplo da Figura 6.1.

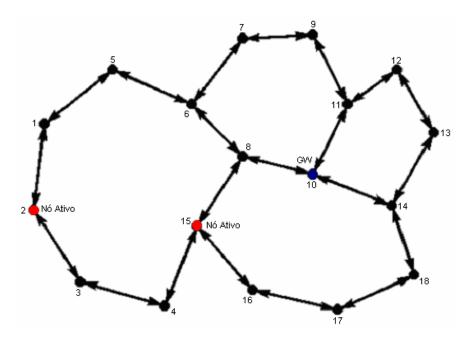


Figura 6.1: Topologia usada na simulação

6.2.3. Identificação dos Caminhos

Todos os caminhos possíveis entre os nós ativos $v_i \in CNA$ e seus respectivos destinos GW_{v_i} são identificados conforme as etapas descritas na seção 5.2.3. O processo inicia com a identificação do conjunto de vértices na área de transmissão CVAT de todos os vértices do grafo, conforme a Expressão 5.6 e a Tabela 6.3.

Tabela 6.3: Conjunto de Vértices na Área de Transmissão - CVAT

Vértice	Vértices na Área de Transmissão
$CVRT_1$	{2, 5}
$CVRT_2$	{1, 3}
$CVRT_3$	{2, 4}
$CVRT_4$	{3, 15}
$CVRT_5$	{1, 6}
$CVRT_6$	{5, 7, 8}
$CVRT_7$	{6, 9}

Vértice	Vértices na Área de Transmissão
$CVRT_{10}$	{8, 11, 14}
$CVRT_{11}$	{9, 10, 12}
$CVRT_{12}$	{11, 13}
$CVRT_{13}$	{12, 14}
$CVRT_{14}$	{13, 10, 18}
$CVRT_{15}$	{4, 8, 16}
$CVRT_{16}$	{15, 17}

$CVRT_8$	{6, 10, 15}	$CVRT_{17}$	{16, 18}
$CVRT_9$	{7, 11}	$CVRT_{18}$	{17, 14}

Após identificar o CVAT, o algoritmo de Dijkstra modificado é executado para identificar todos os n caminhos entre os nós ativos e um determinado gateway. Considerando o grafo da Figura 6.1, nós ativos 2 e 15, nó de destino 10 e número máximo de saltos igual a 10, é possível identificar os caminhos, conforme a Tabela 6.4, onde $p_x c_y$ representa o nó ativo de índice x seguindo o caminho y.

Tabela 6.4: Identificação dos Caminhos

	Nó Ativo 2			Nó Ativo 15
Caminhos	Vértices do Caminho	Ca	aminhos	Vértices do Caminho
p_1c_1	{2,1,5,6,8,10}		p_2c_1	{15,4,3,2,1,5,6,8,10}
p_1c_2	{2,1,5,6,7,9,11,10}		p_2c_2	{15,4,3,2,1,5,6,7,9,11,10}
p_1c_3	{2,1,5,6,7,9,11,12,13,14,10}		$p_{2}c_{3}$	{15,8,10}
p_1c_4	{2,1,5,6,8,15,16,17,18,14,10}		$p_{2}c_{4}$	{15,8,6,7,9,11,10}
p_1c_5	{2,3,4,15,8,10}		$p_{2}c_{5}$	{15,8,6,7,9,11,12,13,14,10}
p_1c_6	{2,3,4,15,8,6,7,9,11,10}		$p_{2}c_{6}$	{15,16,17,18,14,13,12,11,10}
$p_{1}c_{7}$	{2,3,4,15,16,17,18,14,10}		$p_{2}c_{7}$	{15,16,17,18,14,10}

6.2.4. Domínios de Colisão

Conforme definido na seção 5.2.4, para se identificar o conjunto de domínio de colisão *CDC* de uma aresta, primeiro é necessário formar o conjunto com as arestas na área de transmissão *CAAT*, conforme a Expressão 5.12, e depois o conjunto com os vértices na área de interferência *CVAI*, conforme a Expressão 5.13.

Considerando a Expressão 5.12, temos que o conjunto de arestas na área de transmissão de um determinado vértice pode ser definido conforme a Tabela 6.5.

Tabela 6.5: Conjunto de Arestas na Área de Transmissão - CAAT

Vértice	Possíveis Transmissões do Vértice
$CAAT_1$	{{1, 2}, {1, 5}}
$CAAT_2$	{{2, 1}, {2, 3}}
$CAAT_3$	{{3, 2}, {3, 4}}

Vértice	Possíveis Transmissões do Vértice
$CAAT_{10}$	{{10, 8}, {10, 11}, {10, 14}}
$CAAT_{11}$	{{11, 9}, {11, 10}, {11, 12}}
$CAAT_{12}$	{{12, 11}, {12, 13}}

$CAAT_4$	{{4, 3}, {4, 15}}	$CAAT_{13} = \{\{13, 12\}, \{13, 14\}\}$	
$CAAT_5$	{{5, 1}, {5, 6}}	$CAAT_{14} = \{\{14, 13\}, \{14, 10\}, \{$	18}}
$CAAT_6$	{{6, 5}, {6, 7}, {6, 8}}	$CAAT_{15} = \{\{15, 4\}, \{15, 8\}, \{15, 16\}\}$	}}
$CAAT_7$	{{7, 6}, {7, 9}}	$CAAT_{16} = \{\{16, 15\}, \{16, 17\}\}$	
$CAAT_8$	{{8, 6}, {8, 10}, {8, 15}}	$CAAT_{17} = \{\{17, 16\}, \{17, 18\}\}$	
$CAAT_9$	{{9,7}, {9, 11}}	$CAAT_{18} = \{\{18, 17\}, \{18, 14\}\}$	

Da Expressão 5.13, temos que o conjunto de vértices na área de interferência é expresso conforme a Tabela 6.6.

Tabela 6.6: Conjunto de Vértices no Área de Interferência - CVAI

Vértice	Vértices na Área de Interferência	Vértice	Vértices na Área de Interferência
CVAI ₁	{1, 2, 3, 5, 6, 15}	CVAI ₁₀	{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
$CVAI_2$	{1, 2, 3, 4, 5, 6, 15}	$CVAI_{11}$	{6, 7, 8, 9, 10, 11, 12, 13, 14, 18}
$CVAI_3$	{1, 2, 3, 4, 15, 16}	$CVAI_{12}$	{7, 8, 9, 10, 11, 12, 13, 14}
$CVAI_4$	{2, 3, 4, 8, 15, 16, 17}	$CVAI_{13}$	{8, 9, 10, 11, 12, 13, 14, 18}
$CVAI_5$	{1, 2, 5, 6, 7, 8, 15}	$CVAI_{14}$	$\{8, 9, 10, 11, 12, 13, 14, 16, 17, 18\}$
$CVAI_6$	{1, 2, 5, 6, 7, 8, 9, 10, 11, 15}	$CVAI_{15}$	$\{1, 2, 3, 4, 5, 6, 8, 10, 15, 16, 17\}$
$CVAI_7$	{5, 6, 7, 8, 9, 10, 11, 12}	$CVAI_{16}$	$\{3, 4, 8, 10, 14, 15, 16, 17, 18\}$
$CVAI_8$	{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}	$CVAI_{17}$	{4, 8, 10, 14, 15, 16, 17, 18}
$CVAI_9$	{6, 7, 8, 9, 10, 11, 12, 13, 14}	$CVAI_{18}$	{10, 11, 13, 14, 16, 17, 18}

Assim que o *CAAT* e o *CVAI* foram definidos para todos os vértices do grafo da Figura 6.1, o conjunto de domínio de colisão *CDC* de todas as arestas do grafo é formado conforme a Expressão 5.14. A Tabela 6.7 apresenta uma lista com o domínio de colisão de algumas arestas do grafo, a tabela completa é apresentada no Apêndice A, Tabela A.1.

Tabela 6.7: Conjunto de Domínios de Colisão - CDC

Arestas	Domínios de Colisão
$CDC_{\{1,2\}}$	{{1, 2}, {1, 5}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {4, 3}, {4, 15}}
$CDC_{\{1,5\}}$	{{1, 2}, {1, 5}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {7, 6}, {7, 9}, {8, 6}, {8, 10}, {8, 15}}
$CDC_{\{2,1\}}$	{{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}}
$CDC_{\{2,3\}}$	{{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}

```
\{\{3, 2\}, \{3, 4\}, \{1, 2\}, \{1, 5\}, \{2, 1\}, \{2, 3\}, \{4, 3\}, \{4, 15\}, \{15, 4\}, \{15, 8\}, \{15, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, 
     CDC_{\{3,2\}}
                                                                                                                                                                                                 15}, {16, 17}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}}
                                                                                                                                                                                                 \{\{3, 2\}, \{3, 4\}, \{1, 2\}, \{1, 5\}, \{2, 1\}, \{2, 3\}, \{4, 3\}, \{4, 15\}, \{15, 4\}, \{15, 8\}, \{15, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, \{16, 16\}, 
     CDC_{\{3,4\}}
                                                                                                                                                                                               15}, {16, 17}, {8, 6}, {8, 10}, {8, 15}, {17, 16}, {17, 18}}
                                                                                                                                                                                                    \{\{4,3\}, \{4,15\}, \{2,1\}, \{2,3\}, \{3,2\}, \{3,4\}, \{8,6\}, \{8,10\}, \{8,15\}, \{15,4\}, \{15,8\}, \{15,6\}, \{15,4\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{15,15\}, \{
     CDC_{\{4,3\}}
                                                                                                                                                                                                 16}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {1, 2}, {1, 5}}
                                                                                                                                                                                                 \{\{4,3\},\{4,15\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{8,6\},\{8,10\},\{8,15\},\{15,4\},\{15,8\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6\},\{15,6
CDC_{\{4,15\}}
                                                                                                                                                                                                 16}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {1, 2}, {1, 5}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8},
                                                                                                                                                                                                 \{10, 8\}, \{10, 11\}, \{10, 14\}\}
     CDC_{\{5,1\}}
                                                                                                                                                                                                    \{\{5, 1\}, \{5, 6\}, \{1, 2\}, \{1, 5\}, \{2, 1\}, \{2, 3\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9,
                                                                                                                                                                                                 10}, {8, 15}, {15, 4}, {15, 8}, {15, 16}, {3, 2}, {3, 4}}
     CDC_{\{5,6\}}
                                                                                                                                                                                                    \{\{5, 1\}, \{5, 6\}, \{1, 2\}, \{1, 5\}, \{2, 1\}, \{2, 3\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9\}, \{9,
                                                                                                                                                                                                    10}, {8, 15}, {15, 4}, {15, 8}, {15, 16}, {9, 7}, {9, 11}, {10, 8}, {10, 11}, {10, 14}, {11, 9},
                                                                                                                                                                                                    {11, 10}, {11, 12}}
```

6.2.5. Domínios de Reuso Espacial

Conforme apresentado na seção 5.2.5, antes de formar o conjunto de reusos espaciais é necessário identificar o conjunto com os vértices que podem transmitir simultaneamente *CVTS*, conforme a Expressão 5.15. A Tabela 6.8 apresenta o *CVTS* para todas as arestas do grafo da Figura 6.1.

Tabela 6.8: Conjunto de Vértices de Transmissões Simultâneas - CVTS

Arestas	Vértices que podem Transmitir Simultaneamente
$CVTS_{\{1,2\}}$	{7,8,9,10,11,12,13,14,16,17,18}
$CVTS_{\{1,5\}}$	{4,9,10,11,12,13,14,16,17,18}
$CVTS_{\{2,1\}}$	{7,8,9,10,11,12,13,14,16,17,18}
$CVTS_{\{2,3\}}$	{7,8,9,10,11,12,13,14,17,18}
$CVTS_{\{3,2\}}$	{7,8,9,10,11,12,13,14,17,18}
$CVTS_{\{3,4\}}$	{5,6,7,9,10,11,12,13,14,18}
$CVTS_{\{4,3\}}$	{5,6,7,9,10,11,12,13,14,18}
$CVTS_{\{4,15\}}$	{7,9,11,12,13,14,18}
$CVTS_{\{5,1\}}$	{4,9,10,11,12,13,14,16,17,18}
$CVTS_{\{5,6\}}$	{3,4,12,13,14,16,17,18}
$CVTS_{\{6,5\}}$	{3,4,12,13,14,16,17,18}
$CVTS_{\{6,7\}}$	{3,4,13,14,16,17,18}
$CVTS_{\{6,8\}}$	{3,18}
$CVTS_{\{7,6\}}$	{3,4,13,14,16,17,18}
$CVTS_{\{7,9\}}$	{1,2,3,4,15,16,17,18}

Arestas	Vértices que podem Transmitir Simultaneamente
$CVTS_{\{10,11\}}$	{1,2,3,4,5}
$CVTS_{\{10,14\}}$	{1,2,3,4,5}
$CVTS_{\{11,9\}}$	{1,2,3,4,5,15,16,17}
$CVTS_{\{11,10\}}$	{1,2,3,4,5}
$CVTS_{\{11,12\}}$	{1,2,3,4,5,15,16,17}
$CVTS_{\{12,11\}}$	{1,2,3,4,5,15,16,17}
$CVTS_{\{12,13\}}$	{1,2,3,4,5,6,15,16,17}
$CVTS_{\{13,12\}}$	{1,2,3,4,5,6,15,16,17}
$\mathit{CVTS}_{\{13,14\}}$	{1,2,3,4,5,6,7,15}
$CVTS_{\{14,10\}}$	{1,2,3,4,5}
$CVTS_{\{14,13\}}$	{1,2,3,4,5,6,7,15}
$CVTS_{\{14,18\}}$	{1,2,3,4,5,6,7,15}
$CVTS_{\{15,4\}}$	{7,9,11,12,13,14,18}
$CVTS_{\{15,8\}}$	{18}
$CVTS_{\{15,16\}}$	{7,9,11,12,13}

$CVTS_{\{8,6\}}$	{3,18}
$CVTS_{\{8,10\}}$	{1,2,3}
$CVTS_{\{8,15\}}$	{18}
$CVTS_{\{9,7\}}$	{1,2,3,4,15,16,17,18}
$CVTS_{\{9,11\}}$	{1,2,3,4,5,15,16,17}
$CVTS_{\{10,8\}}$	{1,2,3}

$CVTS_{\{16,15\}}$	{7,9,11,12,13}
$CVTS_{\{16,17\}}$	{1,2,5,6,7,9,11,12,13}
$CVTS_{\{17,16\}}$	{1,2,5,6,7,9,11,12,13}
$CVTS_{\{17,18\}}$	{1,2,3,5,6,7,9,12}
$CVTS_{\{18,14\}}$	{1,2,3,4,5,6,7,15}
$CVTS$ _{18,17}	{1,2,3,5,6,7,9,12}

Assim que o *CVTS* foi definido, é possível identificar o conjunto de reuso espacial *CRE* de todas as arestas do grafo segundo a Expressão 5.16. A Tabela 6.9 apresenta uma lista com o domínio de reuso espacial de algumas arestas do grafo, a tabela completa é apresentada no Apêndice A, Tabela A.2.

Tabela 6.9: Conjunto de Reuso Espacial - CRE

Arestas	Domínios de Reuso Espacial
$CRE_{\{1,2\}}$	{{7,9}, {8,10}, {9,7}, {9,11}, {10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {16,17}, {17,16}, {17,18}, {18,14}, {18,17}}
$CRE_{\{1,5\}}$	{{9,7}, {9,11}, {10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {16,17}, {17,16}, {17,18}, {18,14}, {18,17}}
$CRE_{\{2,1\}}$	{{7,9}, {8,10}, {9,7}, {9,11}, {10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {16,17}, {17,16}, {17,18}, {18,14}, {18,17}}
$CRE_{\{2,3\}}$	{{7,9}, {8,10}, {9,7}, {9,11}, {10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {17,16}, {17,18}, {18,14}, {18,17}}
$CRE_{\{3,2\}}$	{{7,6}, {7,9}, {8,6}, {8,10}, {9,7}, {9,11}, {10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {17,18}, {18,14}, {18,17}}
$CRE_{\{3,4\}}$	{{5,6}, {6,5}, {6,7}, {6,8}, {7,6}, {7,9}, {9,7}, {9,11}, {10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {18,14}, {18,17}}
$CRE_{\{4,3\}}$	{{5,1}, {5,6}, {6,5}, {6,7}, {7,6}, {7,9}, {9,7}, {9,11}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {18,14}}
$CRE_{\{4,15\}}$	{{7,6}, {7,9}, {9,7}, {9,11}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {18,14}}
$CRE_{\{5,1\}}$	{{4,3}, {9,11}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {16,17}, {17,16}, {17,18}, {18,14}, {18,17}}
$CRE_{\{5,6\}}$	{{3,4}, {4,3}, {12,11}, {12,13}, {13,12}, {13,14}, {14,10}, {14,13}, {14,18}, {16,17}, {17,16}, {17,18}, {18,14}, {18,17}}

A partir do conjunto de reusos espaciais *CRE* e do conjunto de domínio de colisão *CDC*, é possível identificar o conjunto de arestas que podem transmitir simultaneamente *CATS* dentro do mesmo domínio de colisão, conforme a Expressão 5.17. A Tabela 6.10 apresenta uma lista com as arestas que podem transmitir simultaneamente para alguns

domínios de colisão, a tabela com todas as arestas que realizam transmissões (tem alguma carga para transmitir) é apresentada no Apêndice A, Tabela A.3.

Tabela 6.10: Conjunto de Arestas de Transmissões Simultâneas - CATS

Arestas	Transmissões Simultâneas no mesmo Domínio de Colisão
$CATS_{\{1,5\}}$	{{{2,1}, {7,9}}, {{2,1}, {8,10}}, {{2,3}, {7,9}}, {{2,3}, {8,10}}, {{3,2}, {7,9}}, {{3,2}, {8,6}}, {{3,2}, {8,10}}, {{3,4}, {5,6}}, {{3,4}, {6,7}}, {{3,4}, {6,8}}, {{3,4}, {7,9}}, {{15,4}, {7,9}}, {{15,16}, {7,9}}}
$CATS_{\{2,1\}}$	$\{\{\{3,4\},\ \{5,6\}\},\ \{\{3,4\},\ \{6,7\}\},\ \{\{3,4\},\ \{6,8\}\},\ \{\{4,3\},\ \{5,6\}\},\ \{\{4,3\},\ \{6,7\}\}\}\}$
$CATS_{\{2,3\}}$	{{{2,1}, {16,17}}, {{1,5}, {16,17}}, {{3,4}, {5,6}}, {{3,4}, {6,7}}, {{3,4}, {6,8}}, {{4,3}, {5,6}}, {{4,3}, {6,7}}, {{5,6}}, {{4,3}, {6,7}}, {{5,6}}, {{6,7}}, {{6,7}}}
$CATS_{\{3,2\}}$	{{{3,4}, {5,6}}, {{3,4}, {6,7}}, {{3,4}, {6,8}}, {{1,5}, {16,17}}, {{2,1}, {16,17}}, {{4,3}, {5,6}}, {{4,3}, {6,7}}, {{16,17}, {5,6}}, {{16,17}, {6,7}}}
$CATS_{\{3,4\}}$	$\{\{\{3,2\}, \{8,6\}\}, \{\{3,2\}, \{8,10\}\}, \{\{3,2\}, \{17,18\}\}, \{\{1,5\}, \{16,17\}\}, \{\{1,5\}, \{17,18\}\}, \{\{2,1\}, \{8,10\}\}, \{\{2,1\}, \{16,17\}\}, \{\{2,1\}, \{17,18\}\}, \{\{2,3\}, \{8,10\}\}, \{\{2,3\}, \{17,18\}\}\}$
$CATS_{\{4,3\}}$	$\{\{\{2,1\}, \{8,10\}\}, \{\{2,1\}, \{16,17\}\}, \{\{2,1\}, \{17,18\}\}, \{\{2,3\}, \{8,10\}\}, \{\{2,3\}, \{17,18\}\}, \{\{3,2\}, \{8,6\}\}, \{\{3,2\}, \{8,10\}\}, \{\{3,2\}, \{17,18\}\}, \{\{16,17\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}\}$
$CATS_{\{4,15\}}$	{{4,3}, {5,6}}, {{4,3},{6,7}}, {{2,1}, {8,10}}, {{2,1}, {16,17}}, {{2,1}, {17,18}}, {{2,3}, {8,10}}, {{2,3}, {17,18}}, {{3,2}, {8,6}}, {{3,2}, {8,10}}, {{3,2}, {17,18}}, {{3,4}, {5,6}}, {{3,4}, {6,7}}, {{3,4}, {6,8}}, {{16,17}, {1,5}}, {{16,17}, {5,6}}, {{16,17}, {6,7}}, {{17,18}, {1,5}}, {{17,18}, {5,6}}, {{17,18}, {6,7}}}
$CATS_{\{5,6\}}$	{{1,5}, {9,11}}, {{1,5}, {11,10}}, {{1,5}, {11,12}}, {{2,1}, {7,9}}, {{2,1}, {8,10}}, {{2,1}, {9,11}}, {{2,1}, {11,10}}, {{2,1}, {11,12}}, {{2,3}, {7,9}}, {{2,3}, {8,10}}, {{2,3}, {9,11}}, {{2,3}, {11,10}}, {{2,3}, {11,12}}, {{7,9}, {15,4}}, {{7,9}, {15,16}}, {{15,4}, {9,11}}, {{15,4}, {11,12}}, {{15,16}, {9,11}}, {{15,4}, {11,12}}, {{15,16}, {9,11}}, {{15,16}, {11,12}}}

6.2.6. Carga das Arestas

A carga de cada aresta do grafo é definida com o auxílio de um vetor binário bidimensional *VBD*, ordenado segundo a Tabela 6.2 e definido conforme a Expressão 5.11. O *VBD* para os *n* caminhos dos nós ativos do conjunto *CNA*, definidos na Tabela 6.4, são apresentados na Tabela 6.11.

Tabela 6.11: Vetor Binário Bidimensional - VBD

Arestas	Transmissões Simultâneas no mesmo Domínio de Colisão
p_1c_1	$\{0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0$
p_1c_2	$\{0,1,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0$
p_1c_3	$\{0,1,1,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,0$
p_1c_4	$\{0,1,1,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,1,0\}$
$p_{1}c_{5}$	$\{0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0$
p_1c_6	$\{0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,1,0$
$p_{1}c_{7}$	$\{0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0$

p_2c_1	$\{0,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,1,0$
p_2c_2	$\{0,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0$
$p_{2}c_{3}$	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0$
$p_{2}c_{4}$	$\{0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,1,0$
$p_{2}c_{5}$	$\{0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,1,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0\}$
$p_{2}c_{6}$	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
$p_{2}c_{7}$	$\{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$

Analisando cada elemento do vetor binário bidimensional é possível definir a soma das cargas de todas as arestas do grafo conforme a Expressão 5.19. Cada posição do VBD que estiver setada (1) indica a presença da carga de um determinado caminho ($p_x c_y$) em uma aresta, conforme a Tabela 6.12.

Tabela 6.12: Soma das Cargas de cada Aresta - SCA

Arestas	Carga das Arestas	Arestas	Carga das Arestas
$SCA_{\{1,2\}}$	0	$SCA_{\{10,11\}}$	0
$SCA_{\{1,5\}}$	p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2	$SCA_{\{10,14\}}$	0
$SCA_{\{2,1\}}$	p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2	$SCA_{\{11,9\}}$	0
$SCA_{\{2,3\}}$	p1c5 + p1c6 + p1c7	$SCA_{\{11,10\}}$	p1c2 + p1c6 + p2c2 + p2c4 + p2c6
$SCA_{\{3,2\}}$	p2c1+ p2c2	$SCA_{\{11,12\}}$	p1c3 + p2c5
$SCA_{\{3,4\}}$	p1c5 + p1c6 + p1c7	$SCA_{\{12,11\}}$	p2c6
$SCA_{\{4,3\}}$	p2c1 + p2c2	$SCA_{\{12,13\}}$	p1c3 + p2c5
$SCA_{\{4,15\}}$	p1c5 + p1c6 + p1c7	$SCA_{\{13,12\}}$	p2c6
$SCA_{\{5,1\}}$	0	$SCA_{\{13,14\}}$	p1c3 + p2c5
$SCA_{\{5,6\}}$	p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2	$SCA_{\{14,10\}}$	p1c3 + p1c4 + p1c7 + p2c5 + p2c7
$SCA_{\{6,5\}}$	0	$SCA_{\{14,13\}}$	p2c6
$SCA_{\{6,7\}}$	p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5	$SCA_{\{14,18\}}$	0
$SCA_{\{6,8\}}$	p1c1 + p1c4 + p2c1	$SCA_{\{15,4\}}$	p2c1 + p2c2
$SCA_{\{7,6\}}$	0	$SCA_{\{15,8\}}$	p1c5 + p1c6 + p2c3 + p2c4 + p2c5
$SCA_{\{7,9\}}$	p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5	$SCA_{\{15,16\}}$	p1c4 + p1c7 + p2c6 + p2c7
$SCA_{\{8,6\}}$	p1c6 + p2c4 + p2c5	$SCA_{\{16,15\}}$	0
$SCA_{\{8,10\}}$	p1c1 + p1c5 + p2c1 + p2c3	$SCA_{\{16,17\}}$	p1c4 + p1c7 + p2c6 + p2c7
$SCA_{\{8,15\}}$	p1c4	$SCA_{\{17,16\}}$	0
$SCA_{\{9,7\}}$	0	$SCA_{\{17,18\}}$	p1c4 + p1c7 + p2c6 + p2c7

$SCA_{\{9,11\}}$	p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5	$SCA_{\{18,14\}}$	p1c4 + p1c7 + p2c6 + p2c7
$SCA_{\{10,8\}}$	0	$SCA_{\{18,17\}}$	0

6.2.7. Carga dos Domínios de Colisão

Assim que a carga de cada aresta do grafo foi definida, é possível identificar o carga total dos domínios de colisão *SCDC*, conforme as Expressão 5.20. A carga de alguns domínios de colisão é apresentada na Tabela 6.13, a lista com todas as arestas é apresentada no Apêndice A, Tabela A.4.

Tabela 6.13: Carga dos Domínios de Colisão - SCDC

Arestas	Carga do Domínio de Colisão
$SCDC_{\{1,5\}}$	$\begin{array}{c} 5p1c1 + 5p1c2 + 5p1c3 + 6p1c4 + 4p1c5 + 6p1c6 + 3p1c7 + 7p2c1 + 7p2c2 + 2p2c3 + 4p2c4 + \\ 4p2c5 + p2c6 + p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 \\ + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + \\ p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p2c1 + \\ p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c6 + p2c4 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + \\ p2c4 + p2c5]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + \\ p2c3, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c1 + p1c5 + p2c1 + \\ p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - \\ Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + \\ p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] \end{array}$
$SCDC_{\{2,1\}}$	$ \begin{array}{l} 4p1c1 + 4p1c2 + 4p1c3 + 5p1c4 + 4p1c5 + 5p1c6 + 4p1c7 + 7p2c1 + 7p2c2 + p2c3 + 2p2c4 + \\ 2p2c5 + p2c6 + p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 \\ + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2]] \end{array} $
$SCDC_{\{2,3\}}$	3p1c1 + 5p1c2 + 8p1c3 + 4p1c4 + p1c5 + 5p1c6 + p1c7 + 3p2c1 + 5p2c2 + p2c3 + 5p2c4 + 8p2c5 + 4p2c6 + p2c7 - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c3 + p2c5, p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7]] - Min[p1c3 + p2c5, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]]

6.2.8. Cálculo da Capacidade Teórica do Canal

O cálculo da capacidade teórica do canal é definido conforme a Expressão 5.21, os parâmetros da Tabela 6.1 foram utilizados, resultando na capacidade teórica do canal igual a:

$$TMT = \frac{8 \times 1.500}{0,72727 \times 1.500 + 1.566,73} \times 10^6 \, bps = 4.5153 \, Mbps$$
 6.1

6.3. Análise dos Métodos de Otimização

Os métodos de otimização disponíveis no Wolfram Mathematica [49] foram comparados visando identificar qual apresenta melhor tempo de convergência e respostas para se minimizar (AtenderDemanda - AD) ou maximizar (MaximizarCapacidade - MC) a função custo (fc_{\min} ou fc_{\max}).

Os métodos de otimização baseados em *Simulated Annealing* (SA), *Differential Evolution* (DE), *Random Search* (RS) e *Nelder-Mead* (NM) foram comparados para os dois métodos propostos neste trabalho: AtenderDemanda e MaximizarCapacidade.

6.3.1. Atender Demanda - Comparação dos Métodos de Otimização

A Tabela 6.14, Tabela 6.15, Tabela 6.16 e Tabela 6.17 apresentam a distribuição das cargas nos caminhos disponíveis para cada nó ativo e a demanda não atendida (DNA) em cada caso. Os métodos de otimização foram comparados entre si utilizando-se dois nós ativos (2 e 15) com 1, 2, 3 e 4 caminhos por nó ativo, como critério de parada utilizou-se o número de iterações sem melhoria (100 e 1000). As tabelas também apresentam os resultados com balanceamento de carga (LB – *Load Balance*), outra opção disponível no método proposto.

Testes realizados com o método *Random Search* demonstraram que seus resultados são muito inferiores quando comparados aos métodos NM, SA e DE, além de apresentar tempos de convergência elevados, chegando a várias horas de otimização, por estes motivos o RS não consta nas tabelas comparativas (Tabela 6.14 a Tabela 6.21).

Analisando a Tabela 6.14, observa-se que o melhor resultado da otimização para se atender a demanda solicitada (AD) foi de 2.895Mbps, ou seja, dada uma determinada demanda, ou um grupo de demandas, não foi possível atender (DNA) 2.895Mbps dos 5.152Mbps solicitados, sendo 2.576Mbps da demanda do nó ativo 2 mais 2.576Mbps da demanda do nó ativo 15.

Nota-se também que para se obter o melhor resultado, a demanda do nó ativo 2 não foi atendida (não tem nenhuma carga associada aos caminhos disponíveis). Para estes casos, pode-se optar pelo balanceamento de carga (LB), porém os resultados não são ótimos (3.346Mbps contra 2.895Mbps).

Tabela 6.14: AD-Comparativo entres os Métodos de Otimização-1 Caminho

Método		NM			DE			SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl			752			903			903
p1c2	877								
plc3									
plc4									
plc5									
plc6									
plc7							978		
p2c1									
p2c2									
p2c3		2.257		2.257	2.257	903		2.257	903
p2c4									
p2c5							376		
p2c6			752						
p2c7	744								
DNA_1	1.699	2.576	1.824	2.576	2.576	1.673	1.598	2.576	1.673
DNA_2	1.832	319	1.824	319	319	1.673	2.200	319	1.673
$DNA_1 + DNA_2$	3.531	2.895	3.648	2.895	2.895	3.346	3.798	2.895	3.346

Analisando a Tabela 6.15, observa-se que o método *Simulated Annealing* apresentou valores inferiores, chegando a um mínimo local que não é o ótimo global quando comparado aos outros dois métodos, o mesmo ocorre com a Tabela 6.16.

Tabela 6.15: AD-Comparativo entres os Métodos de Otimização-2 Caminhos

Método	-	NM			DE			SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl				63					
p1c2	736	645	645		645	645	622	271	381
p1c3									
p1c4									
p1c5	643		645					104	
p1c6									
p1c7		645		206	645	645	542		458
p2c1									
p2c2				111					
p2c3		1.290	645	1.891	1.290	1.290	1.321	1.773	
p2c4									353
p2c5									
p2c6	108						80	216	
p2c7	815		645						486
DNA_1	1.197	1.286	1.286	2.307	1.286	1.286	1.412	2.201	1.737
DNA_2	1.653	1.286	1.286	574	1.286	1.286	1.175	587	1.737
$DNA_1 + DNA_2$	2.850	2.572	2.572	2.881	2.572	2.572	2.587	2.788	3.474

Tabela 6.16: AD-Com	parativo entres os	Métodos de	Otimização-3	Caminhos

Método		NM			DE			SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl									551
p1c2	254	544	645	571	645		488		
p1c3	63	55				282	88	395	13
p1c4									
p1c5		561		470			340	199	564
p1c6						282			
p1c7			645	59	645	564		357	
p2c1	422								
p2c2								40	
p2c3		795	1.290	929	1.290	1.128	1.101	1.423	574
p2c4	295								
p2c5									
p2c6		100		257			29		543
p2c7	856	500		254			449		11
DNA_1	2.259	1.416	1.286	1.476	1.286	1.448	1.660	1.625	1.448
DNA_2	1.003	1.181	1.286	1.136	1.286	1.448	997	1.113	1.448
$DNA_1 + DNA_2$	3.262	2.597	2.572	2.612	2.572	2.896	2.657	2.738	2.896

Na Tabela 6.17, nota-se que o método *Nelder-Mead* chegou ao mínimo local e não convergiu para o resultado ótimo, como o *Differential Evolution* e o *Simulated Annealing*.

Tabela 6.17: AD-Comparativo entres os Métodos de Otimização-4 Caminhos

Método		NM		-	DE		<u>-</u>	SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl	268	60	37						
p1c2			558	584	645	645	622	644	645
p1c3	302	405	60				4		
p1c4									
p1c5		281		324			522		506
plc6	55								
p1c7	538	394	618	46	645	645	109	645	139
p2c1									
p2c2	41								
p2c3	1.136	1.279	1.261	1.056	1.290	1.290	789	1.291	784
p2c4							4		
p2c5									
p2c6			12	213			0		
p2c7				324			518		506
$DNA_{_1}$	1.413	1.436	1.303	1.622	1.286	1.286	1.319	1.287	1.286
DNA_2	1.399	1.297	1.303	983	1.286	1.286	1.265	1.285	1.286
$DNA_1 + DNA_2$	2.812	2.733	2.606	2.605	2.572	2.572	2.584	2.572	2.572

Após a análise comparativa percebe-se que nem todos os métodos foram capazes de obter resultados satisfatórios com 100 iterações, sendo assim, o número de iterações utilizada

nos testes foi igual 1000. Testes realizados com um número maior de iterações não resultaram em melhora dos resultados, porém aumentaram de forma considerável os tempos de convergência.

Observou-se também que o método de *Differential Evolution* foi o método que apresentou os resultados mais consistentes durante os testes realizados, porém nada garante que este método obtenha sempre mínimos ou máximos globais.

6.3.2. Atender Demanda - Tempo de Convergência

Os tempos de convergência foram medidos durante os testes de comparação dos três métodos (NM, DE, SA) com 1000 iterações, para 1, 2 e 3 nós ativos com 1, 2, 3 e 4 caminhos por nó ativo, conforme demonstrado pela Figura 6.2, Figura 6.3 e Figura 6.4.

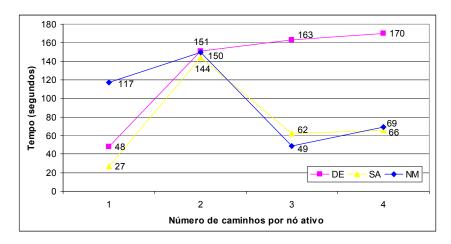


Figura 6.2: AD - Tempo de convergência para 1 nó ativo

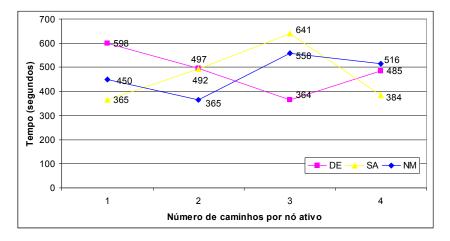


Figura 6.3: AD - Tempo de convergência para 2 nós ativos

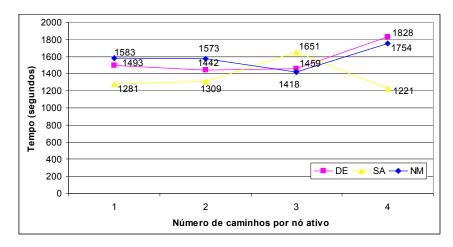


Figura 6.4: AD - Tempo de convergência para 3 nós ativos

Analisando a Figura 6.2, Figura 6.3 e Figura 6.4 pode-se concluir que não existe um método que se destaque quanto ao tempo de otimização, porém nota-se que o aumento do número de nós ativos influencia bastante o tempo de convergência, assim como o tamanho do grafo utilizado. Observa-se também que o aumento do número de caminhos por nó ativo não influencia muito no tempo de convergência.

Como os métodos de otimização se equivalem quanto ao tempo de otimização, optouse por considerar apenas os resultados das comparações para escolha do método utilizado, sendo assim, o *Differential Evolution* foi utilizado nas simulações com o método AtenderDemanda.

6.3.3. MaximizarCapacidade - Comparação dos Métodos de Otimização

Assim como no método AtenderDemanda, os resultados da otimização para dois nós ativos (2 e 15) com 1, 2, 3 e 4 caminhos foram comparados para o método MaximizarCapacidade, conforme apresentado na Tabela 6.18, Tabela 6.19, Tabela 6.20 e Tabela 6.21.

Analisando a Tabela 6.18, pode-se observar que o melhor resultado da otimização para se maximizar a carga admitida na rede (MC) foi de 2.257Mbps, ou seja, a carga máxima que pode ser admitida na rede utilizando-se um único caminho é de 2.257Mbps.

Nota-se também que para obter a carga máxima, o nó ativo 2 não deve transmitir. Para estes casos, podemos optar pelo balanceamento de carga (LB), porém os resultados não são ótimos (1.592Mbps contra 2.257Mbps).

Tabela 6.18: MC-Comparativo entres os Métodos de Otimização-1 Caminho

Método		NM		_	DE		-	SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl						796			
p1c2									
p1c3									
p1c4		250							
p1c5									
p1c6									376
p1c7			564						
p2c1									
p2c2		752							
p2c3				2.257	2.257		2.257	2.257	
p2c4									376
p2c5									
p2c6									
p2c7			564			796			
MC_1		250	564			796			376
MC_2		752	564	2.257	2.257	796	2.257	2.257	376
$MC_1 + MC_2$		1.002	1.128	2.257	2.257	1.592	2.257	2.257	752

Assim como foi constatado na análise do método AtenderDemanda, podemos observar a mesma instabilidade relacionada aos resultados da otimização para o método MaximizarCapacidade com os algoritmos SA e NM, pois quando comparados ao DE, não conseguiram convergir para os resultados considerados ótimos globais. Na Tabela 6.18 e Tabela 6.20, observar-se que o NM convergiu para um mínimo local, enquanto na Tabela 6.19, o AS convergiu para o mínimo local.

Tabela 6.19: MC-Comparativo entres os Métodos de Otimização-2 Caminhos

Método	-	NM			DE			SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl			553					816	497
p1c2		645	320		645	645	440		
p1c3	14			411					
plc4									
p1c5		645		690	641	645			
p1c6									427
p1c7	32							327	
p2c1							441		
p2c2	16								144

p2c3	2.203	646		972	652	645			
p2c4								29	
p2c5			145						
p2c6								569	
p2c7		644	728	367	642	645	991		780
MC_1	46	1.290	873	1.101	1.286	1.290	440	1.143	924
MC_2	2.219	1.290	873	1.339	1.294	1.290	1.432	598	924
$MC_1 + MC_2$	2.265	2.580	1.746	2.440	2.580	2.580	1.872	1.741	1.848

Tabela 6.20: MC-Comparativo entres os Métodos de Otimização-3 Caminhos

Método		NM		-	DE		-	SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl	579								
p1c2		713	424	634	644	645	644	440	645
p1c3									
p1c4									
p1c5	540	674	676	510	488	339	642		
p1c6	83								
p1c7				87	153	306		411	645
p2c1									
p2c2			116						
p2c3				796	808	951	649	148	1.290
p2c4	99	12					643	1.192	
p2c5	194	6	135						
p2c6				38				265	
p2c7	569	890	849	509	487	339			
MC_1	1.202	1.387	1.100	1.231	1.285	1.290	1.286	851	1.290
MC_2	862	908	1.100	1.343	1.295	1.290	1.292	1.605	1.290
$MC_1 + MC_2$	2.064	2.295	2.200	2.574	2.580	2.580	2.578	2.456	2.580

Tabela 6.21: MC-Comparativo entres os Métodos de Otimização-4 Caminhos

Método		NM			DE			SA	
Num.	100	1000	1000	100	1000	1000	100	1000	1000
Iterações			(LB)			(LB)			(LB)
plcl	22	31				198			
p1c2	160	616	645	633	645		645	613	645
p1c3						355			
p1c4									
p1c5		624		640		627		474	642
p1c6									
p1c7			645		645	15	645	31	3
p2c1	69								
p2c2	576								
p2c3		646	1.290	652	1.290	746	1.290	864	648
p2c4									
p2c5	45								
p2c6		71		3				111	
p2c7	1.116	577		640		449		471	642
MC_1	182	1.271	1.290	1.273	1.290	1.195	1.290	1.118	1.290
MC_2	1.806	1.294	1.290	1.295	1.290	1.195	1.290	1.446	1.290
$MC_1 + MC_2$	1.988	2.565	2.580	2.568	2.580	2.390	2.580	2.564	2.580

Com relação ao número de iterações e ao algoritmo de otimização escolhido para as simulações, chegamos às mesmas conclusões do método AtenderDemanda. Ou seja, 100 iterações são insuficientes para se obter um resultado satisfatório, e os métodos NM e SA nem sempre convergem para resultados considerados ótimos globais quando comparados ao DE. Sendo assim, para as simulações com o método MaximizarCapacidade utilizou-se a *Differential Evolution* com 1000 iterações.

6.3.4. MaximizarCapacidade - Tempo de Convergência

Os tempos de convergência do método MaximizarCapacidade foram obtidos durante a comparação dos três métodos (NM, DE, SA) com 1000 iterações, para 1, 2 e 3 nós ativos com 1, 2, 3 e 4 caminhos por nó ativo, conforme demonstrado pela Figura 6.5, Figura 6.6 e Figura 6.7.

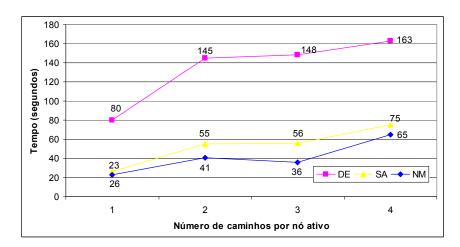


Figura 6.5: MC - Tempo de convergência para 1 nó ativo

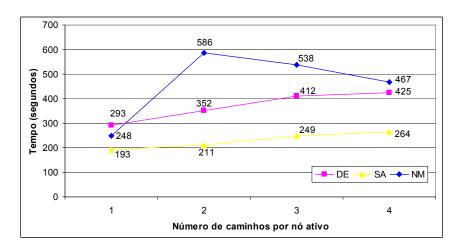


Figura 6.6: MC - Tempo de convergência para 2 nós ativos

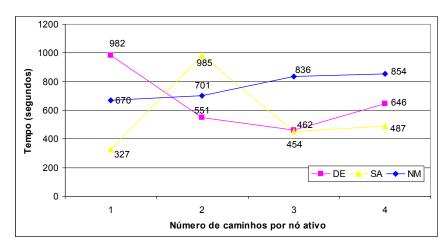


Figura 6.7: MC - Tempo de convergência para 3 nós ativos

Analisando a Figura 6.5, Figura 6.6 e a Figura 6.7 pode-se concluir que não existe um método que se destaque quanto ao tempo de otimização no MC, com exceção os tempos de otimização para um nó ativo, como observado na Figura 6.5, onde o método de DE apresentou valores superiores aos encontrados por NM e SA.

Percebe-se também que o aumento do número de nós ativos influencia bastante no tempo de convergência, o que é justificado, pois o aumento do número de nós ativos acrescenta um número razoável de variáveis ao problema de otimização, conforme demonstra a Figura 6.8, onde foi considerado o método DE com 2 caminhos por nó ativo e 1000 iterações.

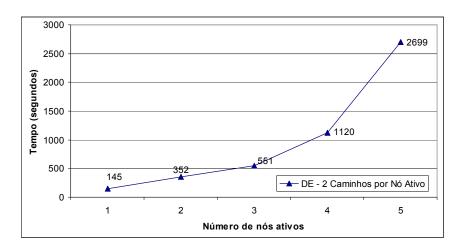


Figura 6.8: MC – Tempo de Convergência x Número de Nós Ativos

Quando a média dos tempos de convergência dos métodos AD e MC é comparado, percebe-se que o MC possui tempos de convergência menores, o que já era esperado pois o MC apresenta um conjunto de restrições menos elaborado que o AD, conforme demonstra a Figura 6.9. No gráfico da Figura 6.9 foram comparados os tempos médios de convergência dos métodos DE, SA e NM para 2 (Média-MC-2 e Média-AD-2) e 3 (Média-MC-3 e Média-AD-3) nós ativos com 1, 2, 3, e 4 caminhos por nó ativo.

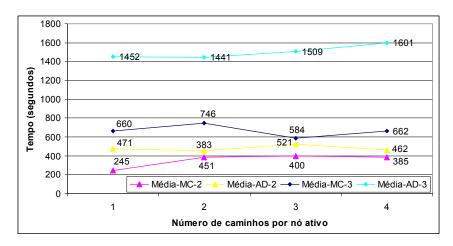


Figura 6.9: Comparação dos Tempos de Convergência: AD x MC

6.4. Análise dos Resultados

6.4.1. AtenderDemanda - AD

Visando comprovar a viabilidade da proposta, os resultados obtidos foram comparados com os métodos apresentados por Jun e Sichitiu (*Nominal Capacity* - NC) [09] e Aoun e Boutaba (*Max Min Fair Capacity* - MMFC) [10].

É importante observar que os métodos NC e MMFC não são capazes de distribuir a demanda de um nó por múltiplos caminhos, uma vez que o número de variáveis resultantes dessa abordagem não é tratável analiticamente. Igualmente, esses métodos utilizam sempre a estratégia de escolher o melhor caminho pelo critério do Dijkstra, o que pode levar a uma subutilização dos recursos da rede.

Após a execução do algoritmo de otimização, considerando a demanda solicitada de 2.576 Mbps (conforme a Tabela 6.1) e o nó ativo 2, observa-se que o método proposto para atender a demanda solicitada (AD – AtenderDemanda), e consequentemente minimizar a

demanda não atendida, quando comparado ao MMFC, é capaz de aceitar a mesma demanda de tráfego para um único caminho por nó ativo. Por outro lado, quando o número de caminhos disponíveis por nó ativo aumenta, é possível identificar quais caminhos podem ser utilizados para minimizar a demanda não atendida, indicando a carga associada a cada caminho, conforme demonstrado na Tabela 6.22.

Tabela 6.22: Demanda não atendida por método - nó ativo 2

Número de Caminhos	Método Utilizado	Demanda Não Atendida	Caminho Utilizado e Carga (Mbps)
1	NominalCapacity	1.673 Mbps	p1c5 (0.903)
1	MaxMinFairCapacity	1.448 Mbps	p1c5 (1.128)
1	AtenderDemanda	1.448 Mbps	p1c5 (1.128)
2	AtenderDemanda	1.286 Mbps	p1c2 (0.645) p1c5 (0.645)
3	AtenderDemanda	1.286 Mbps	p1c1 (0.257) p1c3 (0.388) p1c7 (0.645)
4	AtenderDemanda	1.286 Mbps	p1c2 (0.645) p1c5 (0.645)

Conforme o número de caminhos aumenta, a demanda não atendida diminui até o limite da rede (2 caminhos por nó ativo). Na Tabela 6.22, nota-se também que o método NC apresenta os piores resultados porque não utiliza o reuso espacial, ao contrário dos métodos AD e MMFC.

Quando um novo nó ativo é inserido na simulação, nó 15, observa-se que os benefícios do método proposto são ainda mais evidentes. De acordo com a Tabela 6.23, percebe-se que através da adição de novos nós ativos na simulação, os métodos NC e MMFC não são capazes de escolher os melhores caminhos para as demandas de tráfego por utilizar o algoritmo de Dijkstra, que muitas vezes indica sempre os mesmos caminhos, que não são capazes de aceitar mais cargas (demandas de tráfego), gerando concorrência às demandas existentes.

No trabalho proposto os caminhos são escolhidos de forma dinâmica, baseado nos resultados dos métodos de otimização que encolhem os caminhos em que a interferência entre

os nós (contenção) e a carga nas arestas é a menor possível, minimizando a demanda não atendida, conforme apresentado na Tabela 6.23.

Tabela 6.23: Demanda não atendida por método - nó ativo 2 e 15

Número de Caminhos	Método Utilizado	Demanda Não Atendida	Caminho Utilizado e Carga (Mbps)
1	NaminalCanasita	2.254 Mbps	
1	NominalCapacity -	2.254 Mbps	p2c3 (0.322)
1	MayMinFairCanasity	2.200 Mbps	p1c5 (0.376)
1	MaxMinFairCapacity -	2.200 Mbps	p2c3 (0.376)
1	A tan dar Daman da	2.576 Mbps	
1	AtenderDemanda –	0.319 Mbps	p2c3 (2.257)
2	4. 1. 5. 1	1.286 Mbps	p1c2 (0.645) p1c7 (0.645)
2	AtenderDemanda –	1.286 Mbps	p2c3 (1.290)
		1.286 Mbps	p1c2 (0.645) p1c7 (0.645)
3	AtenderDemanda –	1.286 Mbps	p2c3 (1.290)
		1.286 Mbps	p1c2 (0.645)
4	AtenderDemanda -	1.286 Mbps	p1c7 (0.645) p2c3 (1.290)

Na Tabela 6.23, observa-se que conforme o número de caminhos aumenta, a demanda não atendida diminui até estabilizar com 2 caminhos por nó ativo. Nota-se também que utilizando o AD com 1 caminho, somente uma demanda é atendida (nó ativo 15). No algoritmo podemos considerar o uso de balanceamento de carga, assim as duas demandas são atendidas de forma justa, conforme a Tabela 6.14.

Também é possível observar que nem sempre todos os caminhos disponíveis são utilizados, isso ocorre porque a adição de novos caminhos não melhora o resultado da otimização, que estabiliza a partir do uso de 2 caminhos.

O gráfico da Figura 6.10 apresenta a soma das demandas não atendidas para 1 e 2 nós ativos, conforme os resultados da Tabela 6.22 e Tabela 6.23, respectivamente. É Possível constatar que através da engenharia de tráfego para as WMN é possível maximizar o uso dos recursos da rede através da distribuição do tráfego (balanceamento de carga) entre diferentes caminhos da rede sem exceder a capacidade máxima do canal, ou seja, conforme o número de caminhos aumenta, mais carga pode ser admitida na rede (estabilizando em 2 caminhos por nó

ativo), ao contrário dos métodos NC e MMFC que utilizam os mesmos caminhos que já estão sobrecarregados.

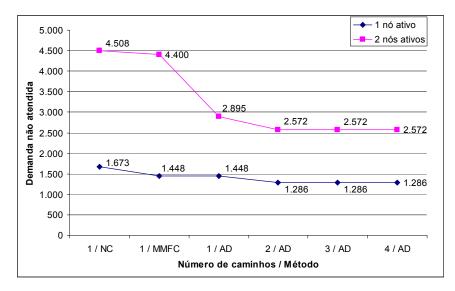


Figura 6.10: Demanda não Atendida x Método de Otimização

6.4.2. MaximizarCapacidade - MC

Considerando o método MC, utilizado para maximizar as cargas que podem ser admitidas na rede sem exceder a capacidade do canal, temos ao final da execução a carga máxima permitida e os caminhos que devem ser utilizados. Como exemplo de aplicação para o método MC, consideramos dois nós ativos com 1, 2, 3 e 4 caminhos por nó ativo, os resultados são apresentados na Tabela 6.24.

Tabela 6.24: Carga Máxima Admitida na Rede e os Caminhos Utilizados

Número de Caminhos	Método Utilizado	Caminho Utilizado e Carga (Mbps)	Carga Total (Mbps)
1	MaximizeCapacidade	p2c3 (2.257)	2.257
2	MaximizeCapacidade	p1c2 (0.645) p1c5 (0.641) p2c3 (0.652) p2c7 (0.642)	2.580
3	MaximizeCapacidade	p1c2 (0.644) p1c5 (0.488) p1c7 (0.153) p2c3 (0.808) p2c7 (0.487)	2.580
4	MaximizeCapacidade	p1c2 (0.645) p1c7 (0.645) p2c3 (1.290)	2.580

Assim como no método AD, o MC também estabilizou com dois caminhos por nó ativo e obteve os mesmos resultados, porém apresentados em forma de carga total e não em forma de demanda não atendida. A equivalência dos resultados é comprovada através da comparação da soma das carga de todos os caminhos da Tabela 6.23 com os resultados apresentados na Tabela 6.24, conforme apresentado na Tabela 6.25.

Tabela 6.25: AD x MC

Número de Caminhos	Carga Total (MC)	Soma das Cargas (AD)
1	2.257 Mbps	p2c3 (2.257) = 2.257 Mbps
2	2.580 Mbps	p1c2 (0.645) + p1c7 (0.645) + p2c3 (1.290) = 2.580 Mbps
3	2.580 Mbps	p1c2 (0.645) + p1c7 (0.645) + p2c3 (1.290) = 2.580 Mbps
4	2.580 Mbps	p1c2 (0.645) + p1c7 (0.645) + p2c3 (1.290) = 2.580 Mbps

Capítulo 7

Conclusão e Trabalhos Futuros

Neste estudo apresentamos um método para maximizar o uso dos recursos de uma rede *mesh* sem fio de um único canal, baseada no padrão IEEE 802.11. O algoritmo proposto visa identificar os caminhos que permitem a transmissão da maior quantidade de tráfego possível, para isso utiliza os conceitos de domínio de colisão, nós escondidos e reuso espacial para identificação da carga da rede, e de métodos de otimização baseados em heurísticas, para resolver o problema de alocação de recursos da rede.

Demonstramos através de simulações e comparações que o método é capaz de realizar engenharia de tráfego para as WMN respeitando a capacidade máxima do canal, informando ao final da otimização, se a demanda solicitada pode ou não ser admitida na rede, os caminhos que devem ser utilizados e a carga máxima permitida em cada caminho.

Dentre as topologias analisadas, podemos concluir que conforme o número de caminhos alternativos entre a origem e o destino aumenta, os resultados do algoritmo proposto também melhoram quando comparados aos métodos NC (Nominal Capacity) e MMFC (Max Min Fair Capacity). Porém, para redes menores, com número reduzido de caminhos alternativos, não há melhora no uso dos recursos da rede, assim como, quando a origem e o destino estão muito próximos, pois isso faz com que a maioria dos nós responsáveis pelo encaminhamento do tráfego pertença aos mesmos domínios de colisão, o que limita a capacidade da rede.

Como trabalhos futuros, pretendemos estender o método adicionando suporte à tolerância a falhas através da identificação dos caminhos principais, por onde os fluxos agregados (demandas de tráfego) devem seguir, e dos caminhos de recuperação que devem ser utilizados em caso de falhas. As falhas podem ser classificadas em: falhas de enlace (perda

completa de sinal), falhas de nós e deterioração do enlace (perda parcial da capacidade da rede / enlace devido a interferências) muito comum nas redes sem fio.

A adição de mais interfaces de rádio (canais) nos nós do domínio de colisão com a maior carga da rede também pode ser considerada, conforme apresentado por Aoun *et al*. [50]. Nesta abordagem, os domínios de colisão com a maior carga da rede seriam divididos em dois subdomínios operando em canais não sobrepostos, reduzindo a carga dos domínios de colisão.

A proposta de Aoun *et al.* [50], quando aplicada diretamente à metodologia descrita neste trabalho, implica em considerável aumento de complexidade ao algoritmo de otimização, uma vez que a carga dos domínios de colisão é alterada a cada iteração. Uma alternativa à proposta, seria identificar todos os nós da rede e os canais de operação a priori, modificando somente as etapas de identificação dos domínios de colisão e reusos espaciais.

Diferentes esquemas de modulação e codificação (MCS - *Modulation and Coding Schemes*), relação sinal ruído (SINR - *Signal to Interference plus Noise Ratio*) e força do sinal recebido (RSS - *Received Signal Strength*) também podem ser considerados, conforme proposto por Max *et al.* [48]. Nesta abordagem, cada enlace da rede deve ser analisado individualmente, sendo possível determinar com maior precisão as distâncias de transmissão e interferência e a relação sinal ruído de cada nó da rede.

Referências Bibliográficas

- [01] INTEL. "Understanding Wi-Fi and Wi-Max as Metro-Access Solutions", White Paper, 2004.
- [02] BICKET, J.; AGUAYO, D.; BISWAS, S.; MORRIS, R. "Architecture and Evaluation of an Unplanned 802.11b Mesh Network", Mobicom 2005, Aug 2005.
- [03] ROOFNET. Disponível em: http://pdos.csail.mit.edu/roofnet. Acesso em 07/12/2009.
- [04] DRAVES, R.; PADHYE, J.; ZILL, B. "Routing in Multi-Radio, Multi-Hop Wireless Mesh Networks", ACM MobiCom, Philadelphia, PA, September 2004.
- [05] R. DRAVES, J. PADHYE, AND B. ZILL. "Comparison of Routing Metrics for Static Multi-Hop Wireless Networks", ACM SIGCOMM, Portland, OR, August 2004.
- [06] GUPTA, P.; KUMAR, P. R. "The Capacity of Wireless Networks" IEEE Transactions on Information Theory, Vol. 46, march 2000.
- [07] JAIN, K.; PADHYE, J.; PADMANABHAN, V.; QIU, L. "Impact of Interference on Multi-Hop Wireless Network Performance" MobiCom, 2003.
- [08] LI, J.; BLAKE, C.; COUTO, D. S. J.; LEE, H. I.; MORRIS, R. "Capacity of Ad Hoc Wireless Networks" ACM MobiCom, 2001.
- [09] JUN, J.; SICHITIU, M. L. "The Nominal Capacity of Wireless Mesh Networks" IEEE Wireless Communications 2003.

- [10] AOUN, B.; BOUTABA, R. "Max-Min Fair Capacity of Wireless Mesh Networks" IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS). June 2006.
- [11] JUN, J.; PEDDABACHAGARI, P.; SICHITIU, M. "Theoretical Maximum Throughput of IEEE 802.11 and its Applications", Second IEEE International Symposium on Network Computing and Applications (NCA 2003), (Cambridge, MA), pp. 249–256, April 2003.
- [12] PIÓRO, M.; MEDHI, D. "Routing, flow, and capacity design in communication and computer networks". Elsevier publishing, 2004.
- [13] PRICE, K. V., STORN, R. M., LAMPINEN, J. A. "Differential evolution: a practical approach to global optimization", Natural Computing Series, 2005.
- [14] KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. "Optimization by Simulated Annealing". Science, volume 220, number 4598, 13 may 1983.
- [15] METROPOLIS, N.; ROSENBLUTH, A. W.; ROSENBLUTH, M. N.; TELLER, A. H. "Equations of state calculations by fast computing machines", Journal of Chemical Physics. Volume 21, number 6, June 1953.
- [16] CORANA, A.; MARCHESI, M.; MARTINI, C.; RIDELLA, S. "Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm". ACM Transactions on Mathematical Software, volume. 13, number 3, p. 262-280, 1987.
- [17] SARAMAGO, S. F. P.; FARIA, E. D. "Constraint Optimization Problems Using Simulated Annealing". Pontificia Universidade Católica de Minas Gerais, Centro de Ciências Exatas e Tecnologia, Janeiro 2001.

- [18] MASTERS, T. "Practical neural network recipes in C++", Morgan Kaufmann publishers, 1993.
- [19] NELDER, J. A; MEAD, R. "A Simplex method for function minimization". Computer Journal, 1965.
- [20] FEOKTISTOV, V. "Differential evolution: in search of solutions". Springer 2006, Optimization and its Applications, volume 5.
- [21] ROBINSON, J. A. "Software design for engineers and scientists". Elsevier, 2004.
- [22] STORN, R.; PRICE, K. "Differential Evolution A Simple and efficient adaptive scheme for global optimization over continuous spaces". Technical Report 95-012, International Computer Science Institute, Berkeley, March 1995.
- [23] OVIVEIRA, G. T. S. "Estudo e Aplicações da Evolução Diferencial". Universidade Federal de Uberlândia, Programa de Pós Graduação em Engenharia Mecânica, 2006.
- [24] STORN, R.; PRICE, K. "Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces". Journal of Global Optimization, volume 11, page 341-359, 1997.
- [25] ANSI/IEEE 802.11. "Local and metropolitan area networks Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Computer Society, 2007.
- [26] AKYILDIZ, I. F.; WANG, X.; WANG, W. "Wireless mesh networks: A survey". Computer Networks, 2005.
- [27] ABELÉM, A. J. G.; ALBUQUERQUE, C. V. N.; SAADE, D. C. M.; AGUIAR, E. S.; DUARTE, J. L.; FONSECA, J. E. M.; MAGALHÃES, L. C. S. "Redes Mesh:

- Mobilidade, Qualidade de Serviço e Comunicação em Grupo". Minicursos: 25º Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.
- [28] FARIAS, M. M. "Protocolo de roteamento para redes wireless mesh". Pontificia Universidade Católica do Rio Grande do Sul, Pós-Graduação em Ciência da Computação, 2008.
- [29] PERKINS, C. E.; BHAGWAT, P. "Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers". ACM SIGCOMM, 1994.
- [30] CLAUSEN, T.; JACQUET, P. "RFC3626 Optimized Link State Routing Protocol (OLSR)". IETF Working Group, October 2003.
- [31] MURTHY, S.; ACEVES, G. L. "An efficient routing protocol for wireless networks". Mobile Networks and Applications, 1996.
- [32] JOHNSON, D.; HU, Y.; MALTZ, D. "RFC4728 The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4". IETF Working Group, February 2007.
- [33] PERKINS, C.; ROYER, E. B.; DAS, S. "RFC3561 Ad hoc On-Demand Distance Vector (AODV) Routing". IETF Working Group, July 2003
- [34] PARK, V.; CORSON, S. "Temporally-Ordered Routing Algorithm (TORA) Version 1 Functional Specification". IETF Working Group Draft Version, July 2001.
- [35] BEIJAR, N. "Zone Routing Protocol (ZRP)". Networking Laboratory, Helsinki University of Technology.
- [36] WIKIPIDIA. "List of ad-hoc routing protocols". Disponível em: http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols. Acesso em 06/01/2010.

- [37] BROCH, J.; MALTZ, D. A.; JOHNSON, D. B.; HU, Y. C.; JETCHEVA, J. "A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols". ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom'98), October 25–30, 1998.
- [38] FOROUZAN, B. A. "Data Communications and Networking". McGraw-Hill, Fourth Edition, February 2006.
- [39] WIKIPIDIA. "Hidden node problem". Disponível em: http://en.wikipedia.org/wiki/Hidden node problem. Acesso em 08/01/2010.
- [40] XU, K.; GERLA, M.; BAE, S. "How Effective is the IEEE 802.11 RTS/CTS Handshake in Ad Hoc Networks?" IEEE Global Telecommunications Conference (GLOBECOM), November 2002.
- [41] WIKIPIDIA. "Exposed terminal problem". Disponível em: http://en.wikipedia.org/wiki/Exposed terminal problem. Acesso em 08/01/2010.
- [42] AGUAYO, D.; BICKET, J.; BISWAS, S.; JUDD, G.; MORRIS, R. "Link-level Measurements from an 802.11b Mesh Network", ACM SIGCOMM Conference, September 2004.
- [43] REMESH. "Rede Mesh de Acesso Universitário Faixa Larga Sem Fio". Disponível em: http://mesh.ic.uff.br/. Acesso em 13/12/2009.
- [44] MESHNET. "UCSB University of California, Santa Barbara Mesh Networks". Disponível em: http://moment.cs.ucsb.edu/meshnet/. Acesso em: 12/12/2009.
- [45] ROCH, S. "Nortel's Wireless Mesh Network solution: Pushing the boundaries of traditional WLAN technology", Nortel Technical Journal, October 2005.

- [46] CISCO. "Cisco Outdoor Wireless Networking Solution". Disponível em: http://www.cisco.com/go/wirelessmesh. Acesso em: 13/12/2009.
- [47] WIKIPIDIA. "Municipal Wireless Network". Disponível em: http://en.wikipedia.org/wiki/Municipal_wireless_network. Acesso em 12/12/2009.
- [48] MAX, S.; WEISS, E.; HIERTZ, G. R. "Benefits and Limitations of Spatial Reuse in Wireless Mesh Networks". ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems, October 2007.
- [49] WOLFRAM. "Wolfram Mathematica 6.0" Disponível em: http://www.wolfram.com/. Acesso em 13/01/2010.
- [50] AOUN, B.; BOUTABA, R.; KENWARD, G. "Analysis of Capacity Improvements in Multi-Radio Wireless Mesh Networks". IEEE Vehicular Technology Conference (VTC), May 2006.

Apêndice A

Tabelas de Domínios de Colisão e Reuso Espacial

Tabela A.1: Conjunto de Domínios de Colisão

{1, 2} {{1, 2}, {1, 5}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {4, 3}, {4, 15}} {1, 5} {{1, 2}, {1, 5}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {7, 6}, {7, 9}, {8, 6}, {8, 10}, {8, 15}} {2, 1} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}} {2, 3} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}} {3, 2} {{3, 2}, {3, 4}, {1, 2}, {1, 5}, {2, 1}, {2, 3}, {4, 3}, {4, 15}, {15, 4}, {15, 8}, {15, 16}, {16, 15}}
{1, 5} {{1, 2}, {1, 5}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 6}, {15, 16}, {7, 6}, {7, 9}, {8, 6}, {8, 10}, {8, 15}} {2, 1} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}} {2, 3} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
{15, 16}, {7, 6}, {7, 9}, {8, 6}, {8, 10}, {8, 15}} {2, 1} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}} {2, 3} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
{2, 1} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}} {2, 3} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
{15, 4}, {15, 8}, {15, 16}} {2, 3} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 6}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
{2, 3} {{2, 1}, {2, 3}, {1, 2}, {1, 5}, {3, 2}, {3, 4}, {4, 3}, {4, 15}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
{15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
{15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}}
$ \frac{\{16, 17\}, \{5, 1\}, \{5, 6\}, \{6, 5\}, \{6, 7\}, \{6, 8\}\}}{\{(2, 4), (4, 15), ($
{3, 4} {{3, 2}, {3, 4}, {1, 2}, {1, 5}, {2, 1}, {2, 3}, {4, 3}, {4, 15}, {15, 4}, {15, 8}, {15, 16}, {16, 15}
{16, 17}, {8, 6}, {8, 10}, {8, 15}, {17, 16}, {17, 18}}
{4, 3} {{4, 15}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {8, 6}, {8, 10}, {8, 15}, {15, 4}, {15, 8}, {15, 10}
{4, 15} {{4, 3}, {4, 15}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {8, 6}, {8, 10}, {8, 15}, {15, 4}, {15, 8}, {15, 16, 15}, {16, 17}, {17, 16}, {17, 18}, {1, 2}, {1, 5}, {5, 1}, {5, 6}, {6, 5}, {6, 7}, {6, 8}, {10, 8}
$\{10, 13\}, \{10, 17\}, \{17, 10\}, \{17, 10\}, \{1, 2\}, \{1, 3\}, \{3, 1\}, \{3, 0\}, \{0, 3\}, \{0, 7\}, \{0, 6\}, \{10, 6\}, \{10, 11\}, \{10, 14\}\}$
15}, {15, 4}, {15, 8}, {15, 16}, {3, 2}, {3, 4}}
$\{5,6\} \{\{5,1\},\{5,6\},\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{6,5\},\{6,7\},\{6,8\},\{7,6\},\{7,9\},\{8,6\},\{8,10\},$
15}, {15, 4}, {15, 8}, {15, 16}, {9, 7}, {9, 11}, {10, 8}, {10, 11}, {10, 14}, {11, 9}, {11, 10},
12}}
$\{6,5\}$ $\{\{6,5\},\{6,7\},\{6,8\},\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{5,1\},\{5,6\},\{7,6\},\{7,9\},\{8,6\},\{8,10\},$
15}, {9, 7}, {9, 11}, {10, 8}, {10, 11}, {10, 14}, {11, 9}, {11, 10}, {11, 12}, {15, 4}, {15, 8}, {11, 10}, {11, 12}, {11, 12}, {11, 12}, {11, 12}, {12, 4}, {11, 12}, {12, 4}, {12, 4}, {13, 8}, {11, 12}, {13, 4}, {13, 8}
16}}
$\{6,7\}$ $\{\{6,5\},\{6,7\},\{6,8\},\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{5,1\},\{5,6\},\{7,6\},\{7,9\},\{8,6\},\{8,10\},$
15}, {9, 7}, {9, 11}, {10, 8}, {10, 11}, {10, 14}, {11, 9}, {11, 10}, {11, 12}, {15, 4}, {15, 8}, {11, 10}
16}, {12, 11}, {12, 13}}
$\{6,8\} \{\{6,5\},\{6,7\},\{6,8\},\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{5,1\},\{5,6\},\{7,6\},\{7,9\},\{8,6\},\{8,10\},$
15},{9,7},{9,11},{10,8}, {10,11}, {10,14}, {11,9}, {11,10}, {11,12}, {15,4}, {15,8}, {15,10}
{4, 3}, {4, 15}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18}, {16, 15}, {17, 16}, (17, 16),
17}, {17, 16}, {17, 18}}
$\{7,6\}$ $\{\{7,6\},\{7,9\},\{5,1\},\{5,6\},\{6,5\},\{6,7\},\{6,8\},\{8,6\},\{8,10\},\{8,15\},\{9,7\},\{9,11\},\{10,11\},\{10,11\},\{10,11\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{1,12\},\{1,13\},\{1,1$
{10, 11}, {10, 14}, {11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {1, 2}, {1, 5}, {2, 1}, {2, 3}, {4}, {15, 8}, {15, 16}}
{10, 11}, {10, 14}, {11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {

	13}, {14, 18}}
$\{8, 6\}$	$\{\{8, 6\}, \{8, 10\}, \{8, 15\}, \{4, 3\}, \{4, 15\}, \{5, 1\}, \{5, 6\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{9, 7\}, $
	11 , $\{10, 8\}$, $\{10, 11\}$, $\{10, 14\}$, $\{11, 9\}$, $\{11, 10\}$, $\{11, 10\}$
	12},{12,11},{12,13},{13,12},{13,14},{14,10},{14,13},{14,18},{15,4},{15,8},{15, 16},{16, 15},{16,
	17}, {17, 16}, {17, 18}, {1, 2}, {1, 5}, {2, 1}, {2, 3}}
{8, 10}	$\{\{8,6\},\{8,10\},\{8,15\},\{4,3\},\{4,15\},\{5,1\},\{5,6\},\{6,5\},\{6,7\},\{6,8\},\{7,6\},\{7,9\},\{9,7\},$
	11}, {10, 8}, {10, 11}, {10, 14}, {11, 9}, {11, 10}, {11, 12},{12,11},{12, 13}, {13, 12}, {13, 14},
	$\{14, 10\}, \{14, 13\}, \{14, 18\}, \{15, 4\}, \{15, 8\}, \{15, 16\}, \{16, 15\}, \{16, 17\}, \{17, 16\}, \{17, 18\}, \{18, 19\}, \{18, 1$
	14}, {18, 17}}
{8, 15}	$\{\{8, 6\}, \{8, 10\}, \{8, 15\}, \{4, 3\}, \{4, 15\}, \{5, 1\}, \{5, 6\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{9, 7\}, \{9, 9, 9\}, \{9, 9\}, \{9, 9\}, \{9, 9$
	11},{10, 8},{10, 11},{10, 14},{11, 9},{11, 10},{11, 12},{12, 11},{12, 13},{13, 12},{13, 14},{14,
	10},{14, 13},{14, 18},{15, 4},{15, 8},{15, 16},{16, 15},{16, 17},{17, 16},{17, 18},{1, 2},{1, 5},{2,
	1},{2,3},{3,2}, {3,4}}
$\{9, 7\}$	$\{\{9,7\}, \{9,11\}, \{6,5\}, \{6,7\}, \{6,8\}, \{7,6\}, \{7,9\}, \{8,6\}, \{8,10\}, \{8,15\}, \{10,8\}, \{10,11\}, $
	14}, {11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
	$\{5,1\},\{5,6\}\}$
{9, 11}	$\{\{9,7\}, \{9,11\}, \{6,5\}, \{6,7\}, \{6,8\}, \{7,6\}, \{7,9\}, \{8,6\}, \{8,10\}, \{8,15\}, \{10,8\}, \{10,11\}, $
	14}, {11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
	{18, 14}, {18, 17}}
{10, 8}	$\{\{10,8\},\{10,11\},\{10,14\},\{6,5\},\{6,7\},\ \{6,8\},\ \{7,6\},\ \{7,9\},\ \{8,6\},\ \{8,10\},\ \{8,15\},\ \{9,7\},\ \{9,11\},\ \{9,1$
	$\{11, 9\}, \{11, 10\}, \{11, 12\}, \{12, 11\}, \{12, 13\}, \{13, 12\}, \{13, 14\}, \{14, 10\}, \{14, 13\}, \{14, 18\}, \{15, 12\}, \{13, 14\}, \{14, 16\}, \{14, $
	4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {18, 14}, {18, 17}, {4, 3}, {4, 15}, {5,
(10, 11)	1}, {5, 6}}
{10, 11}	$\{\{10, 8\}, \{10, 11\}, \{10, 14\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 10, 11\}, \{10, 11\}, \{10, 12$
	11}, {11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
(10, 14)	{15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {18, 14}, {18, 17}}
$\{10, 14\}$	$\{\{10, 8\}, \{10, 11\}, \{10, 14\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{11, 12\}, \{$
	11}, {11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
(11.0)	{15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {18, 14}, {18, 17}}
{11, 9}	{{11, 9}, {11, 10}, {11, 12}, {6, 5}, {6, 7}, {6, 8}, {7, 6}, {7, 9}, {8, 6}, {8, 10}, {8, 15}, {9, 7}, {9, 11}, {10, 8}, {10, 11}, {10, 14}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
	{18, 14}, {18, 17}}
{11, 10}	$\{\{11, 9\}, \{11, 10\}, \{11, 12\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 9, 9\}, \{9, 9\}$
(11, 10)	11}, {10, 8}, {10, 11}, {10, 14}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
	{18, 14}, {18, 17}, {15, 4}, {15, 8}, {15, 16}, {16, 15}, {16, 17}, {17, 16}, {17, 18}}
{11, 12}	$\{\{11, 9\}, \{11, 10\}, \{11, 12\}, \{6, 5\}, \{6, 7\}, \{6, 8\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 9, 9\}, \{9, 9\}, \{9, 9, 9\}, \{9,$
, ,	11}, {10, 8}, {10, 11}, {10, 14}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18},
	{18, 14}, {18, 17}}
{12, 11}	$\{\{12, 11\}, \{12, 13\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{10, 8\}, \{10, 11\}, \{10, $
	14}, {11, 9}, {11, 10}, {11, 12}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18}, {6, 5}, {6, 7}, {6,
	8}, {18, 14}, {18, 17}}
{12, 13}	$\{\{12, 11\}, \{12, 13\}, \{7, 6\}, \{7, 9\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{10, 8\}, \{10, 11\}, \{10, $
	14}, {11, 9}, {11, 10}, {11, 12}, {13, 12}, {13, 14}, {14, 10}, {14, 13}, {14, 18}, {18, 14}, {18, 17}}
{13, 12}	$\{\{13, 12\}, \{13, 14\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{11, 9\}, \{10, 11\}, \{10, 14\}, \{11, 9\}, \{11, 12\}, \{11$
	$\{11, 10\}, \{11, 12\}, \{12, 11\}, \{12, 13\}, \{14, 10\}, \{14, 13\}, \{14, 18\}, \{18, 14\}, \{18, 17\}, \{7, 6\}, \{7, 11\}, \{11, 12\}, \{12, 11\}, \{12, 13\}, \{14, 10\}, \{14, 13\}, \{14, 18\}, \{18, 14\}, \{18, 17\}, \{18, 17\}, \{18, 18$
	9}}
$\{13, 14\}$	$\{\{13, 12\}, \{13, 14\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{11, 9\}, \{10, 11\}, \{10, 14\}, \{11, 9\}, \{11, 12\}, \{11$
	$\{11, 10\}, \{11, 12\}, \{12, 11\}, \{12, 13\}, \{14, 10\}, \{14, 13\}, \{14, 18\}, \{18, 14\}, \{18, 17\}, \{16, 15\}, \{17, 17\}, \{17, 17\}, \{18, 17\}, \{19,$
(14 10)	{16, 17}, {17, 16}, {17, 18}}
{14, 10}	$\{\{14, 10\}, \{14, 13\}, \{14, 18\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{11, 10\}, \{11, 10\}, \{12, 14\}, \{12, 12\}, \{12, 14\}, \{13, 14\}, \{14, 15\}, \{14, 17\}, \{17, 16\}, \{$
	{11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {18, 14}, {18, 17}, {6, 5}, {6, 7}, {6, 8}, {7, 6}, {7, 9}, {15, 4}, {15, 8}, {15, 16},
(14 12)	18}, {18, 14}, {18, 17}, {6, 5}, {6, 7}, {6, 8}, {7, 6}, {7, 9}, {15, 4}, {15, 8}, {15, 16}}
{14, 13}	$\{\{14, 10\}, \{14, 13\}, \{14, 18\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{9, 7\}, \{9, 11\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{11, 10\}, \{11, 12\}, \{12, 11\}, \{12, 12\}, \{13, 12\}, \{13, 14\}, \{16, 15\}, \{16, 17\}, \{17, 16\}, \{17, 16\}, \{17, 16\}, \{17, 16\}, \{18, 12\}, \{$
	{11, 9}, {11, 10}, {11, 12}, {12, 11}, {12, 13}, {13, 12}, {13, 14}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {18, 14}, {18, 17}
{14, 18}	18}, {18, 14}, {18, 17}} {{14, 10}, {14, 13}, {14, 18}, {8, 6}, {8, 10}, {8, 15}, {9, 7}, {9, 11}, {10, 8}, {10, 11}, {10, 14},
(14, 10)	
	$\{11, 9\}, \{11, 10\}, \{11, 12\}, \{12, 11\}, \{12, 13\}, \{13, 12\}, \{13, 14\}, \{16, 15\}, \{16, 17\}, \{17, 16\}, \{17, $

-	18}, {18, 14}, {18, 17}}
{15, 4}	$\{\{15,4\},\{15,8\},\{15,16\},\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{5,1\},\{5,1\},\{6,15\},\{$
	6 }, $\{6, 5\}$, $\{6, 7\}$, $\{6, 8\}$, $\{8, 6\}$, $\{8, 10\}$, $\{8, 15\}$, $\{10, 8\}$, $\{10, 11\}$, $\{10, 14\}$, $\{16, 15\}$, $\{16, 17\}$,
	{17, 16}, {17, 18}}
{15, 8}	$\{\{15, 4\}, \{15, 8\}, \{15, 16\}, \{1, 2\}, \{1, 5\}, \{2, 1\}, \{2, 3\}, \{3, 2\}, \{3, 4\}, \{4, 3\}, \{4, 15\}, \{5, 1\}, \{5, 6\}, \{6, 4\}, \{15, 4\}, $
	5},{6, 7},{6, 8},{8, 6},{8, 10},{8, 15},{10, 8},{10, 11},{10, 14},{16, 15},{16, 17},{17, 16},{17,
	18},{7, 6},{7, 9},{9, 7},{9, 11},{11, 9},{11, 10},{11, 12},{12, 11},{12, 13},{13, 12},{13, 14},{14,
-	10},{14, 13},{14, 18}}
$\{15, 16\}$	$\{\{15, 4\}, \{15, 8\}, \{15, 16\}, \{1, 2\}, \{1, 5\}, \{2, 1\}, \{2, 3\}, \{3, 2\}, \{3, 4\}, \{4, 3\}, \{4, 15\}, \{5, 1\}, \{5, 6\}, \{6, 4\}, \{15, 4\}, $
	5},{6, 7},{6, 8},{8, 6},{8, 10},{8, 15},{10, 8},{10, 11},{10,
	14},{16,15},{16,17},{17,16},{17,18},{14,10},{14,13},{14, 18},{18, 14},{18,17}}
$\{16, 15\}$	$\{\{16, 15\}, \{16, 17\}, \{3, 2\}, \{3, 4\}, \{4, 3\}, \{4, 15\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{14, 15\}, \{10, 14\}, \{14, 15\}, \{10, 14\}, \{14, 15\}, \{14, $
	10},{14, 13},{14, 18},{15, 4},{15, 8},{15, 16}, {17, 16},{17, 18},{18, 14},{18, 17},{1, 2},{1, 5},{2,
	1},{2,3},{5,1}, {5,6}, {6,5},{6,7},{6,8}}
$\{16, 17\}$	$\{\{16, 15\}, \{16, 17\}, \{3, 2\}, \{3, 4\}, \{4, 3\}, \{4, 15\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{10, 8\}, \{10, 11\}, \{10, 10\}, \{10, 11\}, \{10, $
	14}, {14, 10}, {14, 13}, {14, 18}, {15, 4}, {15, 8}, {15, 16}, {17, 16}, {17, 18}, {18, 14}, {18, 17}}
$\{17, 16\}$	$\{\{17, 16\}, \{17, 18\}, \{4, 3\}, \{4, 15\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{14, 10\},$
	$\{14, 13\}, \{14, 18\}, \{15, 4\}, \{15, 8\}, \{15, 16\}, \{16, 15\}, \{16, 17\}, \{18, 14\}, \{18, 17\}, \{3, 2\}, \{3, 4\}\}$
$\{17, 18\}$	$\{\{17, 16\}, \{17, 18\}, \{4, 3\}, \{4, 15\}, \{8, 6\}, \{8, 10\}, \{8, 15\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{14, 10\},$
	$\{14, 13\}, \{14, 18\}, \{15, 4\}, \{15, 8\}, \{15, 16\}, \{16, 15\}, \{16, 17\}, \{18, 14\}, \{18, 17\}, \{11, 9\}, \{11, 12$
	10}, {11, 12}, {13, 12}, {13, 14}}
$\{18, 14\}$	$\{\{18, 14\}, \{18, 17\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{11, 9\}, \{11, 10\}, \{11, 12\}, \{13, 12\}, \{13, 14\}, \{14, 12\}, \{13, 14\}, \{14, 12\}, \{14, 12\}, \{14, 14\}, \{14, $
	10}, {14, 13}, {14, 18}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {8, 6}, {8, 10}, {8, 15}, {9, 7}, {9,
	11}, {12, 11}, {12, 13}}
$\{18, 17\}$	$\{\{18, 14\}, \{18, 17\}, \{10, 8\}, \{10, 11\}, \{10, 14\}, \{11, 9\}, \{11, 10\}, \{11, 12\}, \{13, 12\}, \{13, 14\}, \{14, 12\}, \{13, 12\}, \{13, 12\}, \{13, 14\}, \{14, 12\}, \{13, 12\}, \{13, 12\}, \{13, 14\}, \{14, 12\}, \{13, $
	10}, {14, 13}, {14, 18}, {16, 15}, {16, 17}, {17, 16}, {17, 18}, {4, 3}, {4, 15}, {8, 6}, {8, 10}, {8,
	15}, {15, 4}, {15, 8}, {15, 16}}

Tabela A.2: Conjunto de Reuso Espacial

Arestas	Domínios de Reuso Espacial
{1,2}	$\{\{7,9\},\{8,10\},\{9,7\},\{9,11\},\{10,8\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{13,12\},$
	{13,14},{14,10},{14,13},{14,18},{16,17},{17,16},{17,18},{18,14},{18,17}}
{1,5}	$\{\{9,7\},\{9,11\},\{10,8\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{13,12\},\{13,14\},\{14,14\},$
	10},{14,13},{14,18},{16,17},{17,16},{17,18},{18,14},{18,17}}
{2,1}	$\{\{7,9\},\{8,10\},\{9,7\},\{9,11\},\{10,8\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{13,12\},$
	{13,14},{14,10},{14,13},{14,18},{16,17},{17,16},{17,18},{18,14},{18,17}}
{2,3}	$\{\{7,9\},\{8,10\},\{9,7\},\{9,11\},\{10,8\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{13,12\},$
	{13,14},{14,10},{14,13},{14,18},{17,16},{17,18},{18,14},{18,17}}
{3,2}	$\{\{7,6\},\{7,9\},\{8,6\},\{8,10\},\{9,7\},\{9,11\},\{10,8\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,12\},\{13,12\},\{13,13\}$
	13},{13,12},{13,14},{14,10},{14,13},{14,18},{17,18},{18,14},{18,17}}
{3,4}	$\{\{5,6\},\{6,5\},\{6,7\},\{6,8\},\{7,6\},\{7,9\},\{9,7\},\{9,11\},\{10,8\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{11,$
	2,11},{12,13},{13,12},{13,14},{14,10},{14,13},{14,18},{18,14},{18,17}}
{4,3}	$\{\{5,1\},\{5,6\},\{6,5\},\{6,7\},\{7,6\},\{7,9\},\{9,7\},\{9,11\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{11,12\},\{11,12\},\{11,13\},\{11,$
	12,13},{13,12},{13,14},{14,10},{14,13},{14,18},{18,14}}
{4,15}	$\{\{7,6\},\{7,9\},\{9,7\},\{9,11\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{13,12\},\{13,14\},\{14,10\},\{14,13\},$
	{14,18},{18,14}}
{5,1}	$\{\{4,3\},\{9,11\},\{10,11\},\{10,14\},\{11,9\},\{11,10\},\{11,12\},\{12,11\},\{12,13\},\{13,12\},\{13,14\},\{14,10\}$
	,13},{14,18},{16,17},{17,16},{17,18},{18,14},{18,17}}
{5,6}	$\{\{3,4\},\{4,3\},\{12,11\},\{12,13\},\{13,12\},\{13,14\},\{14,10\},\{14,13\},\{14,18\},\{16,17\},\{17,16\},\{17,18\},\{18,18\},\{16,17\},\{17,16\},\{17,18\},\{18,18\}$
	,14},{18,17}}
{6,5}	$\{\{3,4\},\{4,3\},\{12,13\},\{13,12\},\{13,14\},\{14,13\},\{14,18\},\{16,17\},\{17,16\},\{17,18\},\{18,14\},\{18,17\}\}$
{6,7}	$\{\{3,4\},\{4,3\},\{13,12\},\{13,14\},\{14,13\},\{14,18\},\{16,17\},\{17,16\},\{17,18\},\{18,14\},\{18,17\}\}$
{6,8}	{{3,4},{18,14},{18,17}}
{7,6}	$\{\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{13,14\},\{14,13\},\{14,18\},\{16,15\},\{16,17\},\{17,16\},\{17,18\},\{18,14\},\{18,17\},\{18,17\},\{18,18\},\{1$
	}}

{7,9}	{{1,2},{2,1},{2,3},{3,2},{3,4},{4,3},{4,15},{15,4},{15,16},{16,15},{16,17},{17,16},{17,18},{18,14}
(,,,,)	},{18,17}}
{8,6}	{{3,2}}
{8,10}	{{1,2},{2,1},{2,3},{3,2}}
{8,15}	{{}}
{9,7}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{15,4\},\{15,16\},\{16,15\},\{16,17\},\{17,16\},\{17,18\},\{17$
	18,17}}
{9,11}	$ = \{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{15,4\},\{15,16\},\{16,15\},\{16,17\},\{17,16\},\{1$
	,18}}
{10,8}	{{1,2},{1,5},{2,1},{2,3},{3,2},{3,4}}
{10,11}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{5,1\}\}$
{10,14}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{5,1\}\}$
{11,9}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{15,4\},\{15,16\},\{16,15\},\{16,17\},\{17,16\}\}$
{11,10}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\}\}$
{11,12}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{15,4\},\{15,16\},\{16,15\},\{16,17\},\{17,16\}\}$
{12,11}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{5,6\},\{15,4\},\{15,16\},\{16,15\},\{16,17\},\{17,16\}$
	6},{17,18}}
{12,13}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{5,6\},\{6,5\},\{15,4\},\{15,16\},\{16,15\},\{16,17\},$
	{17,16},{17,18}}
{13,12}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{5,6\},\{6,5\},\{6,7\},\{15,4\},\{15,16\},\{16,15\},\{15,16\},\{16,15\},\{16,16\},\{16$
(12.14)	6,17},{17,16}}
{13,14}	{{1,2},{1,5},{2,1},{2,3},{3,2},{3,4},{4,3},{4,15},{5,1},{5,6},{6,5},{6,7},{7,6},{15,4},{15,16}}
{14,10}	{{1,2},{1,5},{2,1},{2,3},{3,2},{3,4},{4,3},{4,15},{5,1},{5,6}}
{14,13}	{{1,2},{1,5},{2,1},{2,3},{3,2},{3,4},{4,3},{4,15},{5,1},{5,6},{6,5},{6,7},{7,6},{15,4}}
{14,18}	{{1,2},{1,5},{2,1},{2,3},{3,2},{3,4},{4,3},{4,15},{5,1},{5,6},{6,5},{6,7},{7,6},{15,4}}
{15,4}	{{7,9},{9,7},{9,11},{11,9},{11,12},{12,11},{12,13},{13,12},{13,14},{14,13},{14,18},{18,14}}
{15,8}	{{18,14}}
{15,16}	{{7,9},{9,7},{9,11},{11,9},{11,12},{12,11},{12,13},{13,12},{13,14}}
{16,15}	$ \frac{\{\{7,6\},\{7,9\},\{9,7\},\{9,11\},\{11,9\},\{11,12\},\{12,11\},\{12,13\},\{13,12\}\} }{\{(1,2),(1,5),(5,6),(6,5),(6,7),(7,6),(7,9),(9,7),(9,11),(11,12),(12,11),(12,12),(12,12),(12,13),(12,1$
{16,17}	{{1,2},{1,5},{2,1},{5,1},{5,6},{6,5},{6,7},{7,6},{7,9},{9,7},{9,11},{11,9},{11,12},{12,11},{12,13}, {13,12}}
{17,16}	{\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(17,10)	{\{1,2\},\{1,3\},\{2,1\},\{2,3\},\{3,1\},\{3,0\},\{0,3\},\{0,7\},\{7,0\},\{7,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
{17,18}	$ \{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{5,1\},\{5,6\},\{6,5\},\{6,7\},\{7,6\},\{7,9\},\{9,7\},\{9,11\},\{12,11\},\{12,13\}\} \} $
{18,14}	{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{4,3\},\{4,15\},\{5,1\},\{5,6\},\{6,7\},\{6,8\},\{7,6\},\{7,9\},\{1,54\},\{
(10,11)	15,8}}
{18,17}	$\{\{1,2\},\{1,5\},\{2,1\},\{2,3\},\{3,2\},\{3,4\},\{5,1\},\{5,6\},\{6,5\},\{6,7\},\{6,8\},\{7,6\},\{7,9\},\{9,7\}\}\}$

Tabela A.3: Conjunto de Arestas de Transmissões Simultâneas

Arestas	Transmissões Simultâneas no mesmo Domínio de Colisão
{1,5}	{{2,1},{7,9}},{{2,1},{8,10}},{{2,3},{7,9}},{{2,3},{8,10}},{{3,2},{7,9}},{{3,2},{8,6}},{{3,2},{8,1}}
	0}},{{3,4},{5,6}},{{3,4},{6,7}},{{3,4},{6,8}},{{3,4},{7,9}},{{15,4},{7,9}}},
{2,1}	{{{3,4},{5,6}},{{3,4},{6,7}},{{3,4},{6,8}},{{4,3},{5,6}},{{4,3},{6,7}}}
{2,3}	$\{\{\{2,1\},\{16,17\}\},\{\{1,5\},\{16,17\}\},\{\{3,4\},\{5,6\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,8\}\},\{\{4,3\},\{5,6\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6$
	6,7}},{{5,6},{16,17}},{{6,7},{16,17}}}
{3,2}	$\{\{\{3,4\},\{5,6\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,8\}\},\{\{1,5\},\{16,17\}\},\{\{2,1\},\{16,17\}\},\{\{4,3\},\{5,6\}\},\{\{4,3\},\{6,7\}\},\{4,3\},\{6,7\}\},\{1,5\},\{1$
	6,7}},{{16,17},{5,6}},{{16,17},{6,7}}}
{3,4}	$\{\{\{3,2\},\{8,6\}\},\{\{3,2\},\{8,10\}\},\{\{3,2\},\{17,18\}\},\{\{1,5\},\{16,17\}\},\{\{1,5\},\{17,18\}\},\{\{2,1\},\{8,10\}\},\{\{2,1\},\{1,1,1,1\}\},\{\{1,1,1,1,1\}\},\{\{1,1,1,1,1$
	1},{16,17}},{{2,1},{17,18}},{{2,3},{8,10}},{{2,3},{17,18}}}
{4,3}	$\{\{\{2,1\},\{8,10\}\},\{\{2,1\},\{16,17\}\},\{\{2,1\},\{17,18\}\},\{\{2,3\},\{8,10\}\},\{\{2,3\},\{17,18\}\},\{\{3,2\},\{8,6\}\},\{\{3,10\}\},\{\{3,10\}\},\{\{1,1,10\}\},\{1,1,10\}\},\{1,1,10\}\},\{1,1,10\}\}$
	2},{8,10}},{{3,2},{17,18}},{{16,17},{1,5}},{{17,18},{1,5}}}
{4,15}	$\{\{\{4,3\},\{5,6\}\},\{\{4,3\},\{6,7\}\},\{\{2,1\},\{8,10\}\},\{\{2,1\},\{16,17\}\},\{\{2,1\},\{17,18\}\},\{\{2,3\},\{8,10\}\},\{\{2,3\}\}\},\{\{2,3\},\{17,18\}\},\{\{17,18\}\},\{17,18\}\},\{\{17,18\}\},\{17,18\}\},\{17,18\}\},\{17,18\}\}$
	$,\{17,18\}\},\{\{3,2\},\{8,6\}\},\{\{3,2\},\{8,10\}\},\{\{3,2\},\{17,18\}\},\{\{3,4\},\{5,6\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,8\}\},\{17,18\}\},\{\{3,2\},\{17,18\}\},\{\{3,2\},\{17,18\}\},\{\{3,4\},\{5,6\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,8\}\},\{17,18\}\},\{\{3,4\},\{17,18\}\},$
	$\{16,17\},\{1,5\}\},\{\{16,17\},\{5,6\}\},\{\{16,17\},\{6,7\}\},\{\{17,18\},\{1,5\}\},\{\{17,18\},\{5,6\}\},\{\{17,18\},\{6,7\}\}\}$

-	
{5,6}	$\{\{\{1,5\},\{9,11\}\},\{\{1,5\},\{11,10\}\},\{\{1,5\},\{11,12\}\},\{\{2,1\},\{7,9\}\},\{\{2,1\},\{8,10\}\},\{\{2,1\},\{9,11\}\},\{\{2,1\},\{9,11\}\},\{\{2,1\},\{9,11\}\},\{\{1,1,1,1\}\},\{1,1,1\},\{1,1,1\}\},\{\{1,1,1,1\}\},\{1,1,1\},\{1,1,1\}\},\{1,1,1,1\},\{1,1,1\}\},\{1,1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\}\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1,1\},\{1,1\},\{1,1,1\},\{1,1,1\},$
	$\{11,10\},\{\{2,1\},\{11,12\}\},\{\{2,3\},\{7,9\}\},\{\{2,3\},\{8,10\}\},\{\{2,3\},\{9,11\}\},\{\{2,3\},\{11,10\}\},\{\{2,3\},\{11$
	,12}},{{7,9},{15,4}},{{7,9},{15,16}},{{15,4},{9,11}},{{15,4},{11,12}},{{15,16},{9,11}},{{15,16}},
	{11,12}}}
{6,7}	{{1,5},{9,11}},{{1,5},{11,10}},{{1,5},{11,12}},{{1,5},{12,11}},{{1,5},{12,13}},{{2,1},{7,9}},{{
(0,7)	2,1},{8,10}},{{2,1},{9,11}},{{2,1},{11,10}},{{2,1},{11,12}},{{2,1},{12,11}},{{2,1},{12,13}},{{2
	3},{7,9}},{{2,3},{8,10}},{{2,3},{9,11}},{{2,3},{11,10}},{{2,3},{11,12}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{12,11}},{{2,3},{2,
	2,13}},{{5,6},{12,11}},{{5,6},{12,13}},{{7,9},{15,4}},{{7,9},{15,16}},{{9,11},{15,4}},{{9,11},{15,4}},{
	5,16}},{{11,12},{15,4}},{{11,12},{15,16}},{{15,4},{12,11}},{{15,4},{12,13}},{{15,16},{12,11}},{
	{15,16},{12,13}}}
$\{6,8\}$	$\{\{\{6,7\},\{4,3\}\},\{\{6,7\},\{13,12\}\},\{\{6,7\},\{13,14\}\},\{\{6,7\},\{14,13\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{16,17\}\},\{\{6,7\},\{17,18\}\},\{\{6,7\},\{16,17\}\},\{\{6,17\},\{16,17\}\},\{\{6,17\},\{16,17\}\},\{\{6,17\},\{16,17\}\},\{16,17\},\{16,17\}\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{$
	$\{1,5\},\{9,11\}\},\{\{1,5\},\{11,10\}\},\{\{1,5\},\{11,12\}\},\{\{1,5\},\{12,11\}\},\{\{1,5\},\{12,13\}\},\{\{1,5\},\{13,12\}\},\{1,5\},\{13,12\}\},\{1,5\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{$
	1,5},{13,14}},{{1,5},{14,10}},{{1,5},{14,13}},{{1,5},{16,17}},{{1,5},{17,18}},{{2,1},{7,9}},{{2,1},{1,5},{1,5}},{{1
	1},{8,10}},{{2,1},{9,11}},{{2,1},{11,10}},{{2,1},{11,12}},{{2,1},{12,11}},{{2,1},{12,13}},{{2,1}},
	$\{13,12\}\},\{\{2,1\},\{13,14\}\},\{\{2,1\},\{14,10\}\},\{\{2,1\},\{14,13\}\},\{\{2,1\},\{16,17\}\},\{\{2,1\},\{17,18\}\},\{\{2,3\},\{13,14\}\},\{\{2,1\},\{14,10\}\},\{\{2,1\},\{14,13\}\},\{\{2,1\},\{16,17\}\},\{\{2,1\},\{17,18\}\},\{\{2,3\},\{14,10\}\},\{\{2,1\},\{14,13\}\},\{\{2,1\},\{16,17\}\},\{\{2,1\},\{17,18\}\},\{\{2,3\},\{14,10\}\},\{\{2,1\},\{14,10\}\},\{14,10\}\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{14,10\},\{1$
	$\{7,9\}\},\{\{2,3\},\{8,10\}\},\{\{2,3\},\{9,11\}\},\{\{2,3\},\{11,10\}\},\{\{2,3\},\{11,12\}\},\{\{2,3\},\{12,11\}\},\{12,11\},\{12,11\}\},\{12,11$
	3}},{{2,3},{13,12}},{{2,3},{13,14}},{{2,3},{14,10}},,{{2,3},{14,13}},,{{2,3},{17,18}},,{{5,6},{4,3}}
	},{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{13,14}},{{5,6},{14,10}},{{5,6},{14,13}}
	} ,{{5,6},{16,17}},{{5,6},{17,18}},{{7,9},{4,3}},{{7,9},{4,15}},{{7,9},{15,4}},{{7,9},{15,16}
	,9},{16,17}},{{7,9},{17,18}},{{9,11},{4,3}},{{9,11},{4,15}},{{9,11},{15,4}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{9,11},{15,16}},{{15,1
	,11},{16,17}},{{9,11},{17,18}},{{11,10},{4,3}},{{11,10},{4,15}},{{11,12},{4,3}},{{11,12},{4,15}}
	},{{11,12},{15,4}},{{11,12},{15,16}},{{11,12},{16,17}},{{15,4},{12,11}},{{15,4}},{{12,13}},{{15,4}}
	},{\{\bar{15,4}\},\{\bar{15,4}\},\{\bar{15,4}\},\{\bar{15,4}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\{\bar{15,16}\},\bar{15,16}\},\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	2}},{{15,16},{13,14}},{{4,3},{12,11}},{{4,3},{12,13}},{{4,3},{13,12}},{{4,3},{13,14}},{{4,3},{12,13}},{{4,3},{13,14}},{{4,3},{1
	4,10}},{{4,3},{14,13}},{{4,15},{12,11}},{{4,15},{12,13}},{{4,15},{13,12}},{{4,15},{13,14}},{{4,15},{14,10}},{{14,10}}
	15},{14,10}},{{4,15},{14,13}},{{12,11},{16,17}},{{12,11},{17,18}},{{12,13},{16,17}},{{12,13},{
(7.0)	17,18}},{{13,12},{16,17}}}
{7,9}	{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{13,14}},{{5,6},{14,10}},{{5,6},{14,13}}
	,{{6,7},{13,12}},{{6,7},{13,14}},{{6,7},{14,13}}}
$\{8,6\}$	$\{\{\{8,10\},\{2,1\}\},\{\{8,10\},\{2,3\}\},\{\{4,3\},\{5,6\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{7,9\}\},\{\{4,3\},\{9,11\}\},\{\{4,3\},\{1,4\}\},\{1,4\}\},\{1,4\}\},\{1,4\}\},\{1,4\}\},\{1,4\}\}$
	1,10}},{{4,3},{11,12}},{{4,3},{12,11}},{{4,3},{12,13}},{{4,3},{13,12}},{{4,3},{13,14}},{{4,3},{1
	$4,10\}\},\{\{4,3\},\{14,13\}\},\{\{4,15\},\{7,9\}\},\{\{4,15\},\{9,11\}\},\{\{4,15\},\{11,10\}\},\{\{4,15\},\{11,12\}\},\{11,12\}\},\{11,12\}\},\{11,12\},\{11,12\}\},\{11,12\},\{1$
	$\{12,11\}\},\{\{4,15\},\{12,13\}\},\{\{4,15\},\{13,12\}\},\{\{4,15\},\{13,14\}\},\{\{4,15\},\{14,10\}\},\{\{4,15\},\{14,13\}\},\{\{4,15\},\{14,15\}\}$
	$\{5,6\},\{12,11\}\},\{\{5,6\},\{12,13\}\},\{\{5,6\},\{13,12\}\},\{\{5,6\},\{13,14\}\},\{\{5,6\},\{14,10\}\},\{\{5,6\},\{14,13\}\},\{\{5,6\},\{14,13\}\},\{\{5,6\},\{14,13\}\},\{\{5,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{\{6,6\},\{14,14\}\},\{14,14\}\},\{14,14\}\},\{14,14\},\{14,14\}\},\{14,14\},\{14,14\}\},\{14,14\},\{14,14\}\},\{14,14\},\{14,14\}\},\{14,14\}$
	$\{5,6\},\{16,17\}\},\{\{5,6\},\{17,18\}\},\{\{6,7\},\{13,12\}\},\{\{6,7\},\{13,14\}\},\{\{6,7\},\{14,13\}\},\{\{6,7\},\{16,17\}\},\{16,17\},\{16,17\}\},\{16,17\},\{16,$
	$\{6,7\},\{17,18\}\},\{\{7,9\},\{2,1\}\},\{\{7,9\},\{2,3\}\},\{\{7,9\},\{15,4\}\},\{\{7,9\},\{15,16\}\},\{\{7,9\},\{16,17\}\},\{\{7,9\},\{16,17\}\},\{16,17\}\},\{16,17\}\}$
	$\{17,18\}\},\{\{9,11\},\{1,5\}\},\{\{9,11\},\{2,1\}\},\{\{9,11\},\{2,3\}\},\{\{9,11\},\{15,4\}\},\{\{9,11\},\{15,16\}\},\{\{9,11\},\{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$
	16,17}},{{9,11},{17,18}},{{11,10},{1,5}},{{11,10},{2,1}},{{11,10},{2,3}},{{11,12},{1,5}},{{11,1}
	2},{2,1}},{{11,12},{2,3}},{{11,12},{15,4}},{{11,12},{15,16}},{{11,12},{16,17}},{{12,11},{1,5}},
	{{12,11},{2,1}},{{12,11},{2,3}},{{12,11},{15,4}},{{12,11},{15,16}},{{12,11},{16,17}},{{12,11},{
	17,18}},{{12,13},{1,5}},{{12,13},{2,1}},{{12,13},{2,3}},{{12,13},{15,4}},{{12,13},{15,16}},{{12}
	,13},{16,17}},{{12,13},{17,18}},{{13,12},{1,5}},{{13,12},{2,1}},{{13,12},{2,3}},{{13,12},{15,4}}
	},{{13,12},{15,16}},{{13,12},{16,17}},{{13,14},{1,5}},{{13,14},{2,1}},{{13,14},{2,3}},{{13,14}},
	{15,4}},{{13,14},{15,16}},{{14,10},{1,5}},{{14,10},{2,1}},{{14,10},{2,3}},{{14,13},{1,5}},{{14,10},{2,1}},{{14,
	13, {2,1}, {{14,13}, {2,3}}, {{14,13}, {15,4}}, {{16,17}, {1,5}}, {{16,17}, {2,1}}, {{17,18}, {1,5}}, {{1
	7,18},{2,1}},{{17,18},{2,3}}}
{8,10}	{{4,3},{5,6}},{{4,3},{6,7}},{{4,3},{7,9}},{{4,3},{9,11}},{{4,3},{11,10}},{{4,3},{11,12}},{{4,3},
(0,10)	{12,11}},{{4,3},{12,13}},{{4,3},{13,12}},{{4,3},{13,14}},{{4,3},{14,10}},{{4,3},{14,13}},{{4,3},
	{18,14}},{{4,15},{7,9}},{{4,15},{9,11}},{{4,15},{11,10}},{{4,15},{11,12}},{{4,15},{12,11}},{{4,15},{11,10}},{{4,15},{11,12}},{
	15},{12,13}},{{4,15},{13,12}},{{4,15},{13,14}},{{4,15},{14,10}},{{4,15},{14,13}},{{4,15},{18,14}}
	15},{12,13}},{{4,15},{13,12}},{{4,15},{13,14}},{{4,15},{14,10}},{{4,15},{14,13}},{{4,15},{18,14}}},{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{13,14}},{{5,6},{14,10}},{{5,6},{14,10}},
	15},{12,13}},{{4,15},{13,12}},{{4,15},{13,14}},{{4,15},{14,10}},{{4,15},{14,13}},{{4,15},{18,14}}},{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{13,14}},{{5,6},{14,10}},{{5,6},{14,13}},{{5,6},{17,18}},{{5,6},{18,14}},{{6,7},{13,12}},,{{6,7},{13,14}},,{{6,7},{14,13}},
	15},{12,13}},{4,15},{13,12}},{4,15},{13,14}},{4,15},{14,10}},{4,15},{14,13}},{4,15},{18,14}},{5,6},{12,11}},{5,6},{12,13}},{5,6},{13,12}},{5,6},{13,14}},{5,6},{14,10}},{5,6},{14,13}},{5,6},{17,18}},{5,6},{18,14}},{6,7},{13,12}},{6,7},{13,14}},{6,7},{14,13}},{6,7},{16,17}},{6,7},{17,18}},{6,7},{18,14}},{6,8},{18,14}},{7,9},{15,4}},{7,9},{15,16}}
	15},{12,13}},{4,15},{13,12}},{4,15},{13,14}},{4,15},{14,10}},{4,15},{14,13}},{4,15},{18,14}},{5,6},{12,11}},{5,6},{12,13}},{5,6},{13,12}},{5,6},{13,14}},{5,6},{14,10}},{5,6},{14,13}},{5,6},{16,17}},{5,6},{17,18}},{5,6},{18,14}},{6,7},{13,12}},{6,7},{13,14}},{6,7},{14,13}},{6,7},{16,17}},{6,7},{17,18}},{6,7},{18,14}},{6,8},{18,14}},{7,9},{15,4}},{7,9},{15,16}},{7,9},{16,17}},{7,9},{17,18}},{7,9},{18,14}},{9,11},{15,4}},{9,11},{15,16}},{16,17}},{16,17}},{16,17}},{16,17}},{16,17}},{16,17}},{17,18
	15},{12,13}},{4,15},{13,12}},{4,15},{13,14}},{4,15},{14,10}},{4,15},{14,13}},{4,15},{18,14}},{5,6},{12,11}},{5,6},{12,13}},{5,6},{13,12}},{5,6},{13,14}},{5,6},{14,10}},{5,6},{14,13}},{5,6},{16,17}},{5,6},{17,18}},{5,6},{18,14}},{6,7},{13,12}},{6,7},{13,14}},{6,7},{14,13}},{6,7},{16,17}},{6,7},{17,18}},{6,7},{18,14}},{6,8},{18,14}},{7,9},{15,4}},{7,9},{15,16}},{7,9},{16,17}},{7,9},{17,18}},{7,9},{18,14}},{9,11},{15,4}},{9,11},{15,16}},{9,11},{15,16}},{9,11},{15,16}},{11,12},{11,12},{11
	15},{12,13}},{4,15},{13,12}},{4,15},{13,14}},{4,15},{14,10}},{4,15},{14,13}},{4,15},{18,14}},{5,6},{12,11}},{5,6},{12,13}},{5,6},{13,12}},{5,6},{13,14}},{5,6},{14,10}},{5,6},{14,13}},{5,6},{16,17}},{5,6},{17,18}},{5,6},{18,14}},{6,7},{13,12}},{6,7},{13,14}},{6,7},{14,13}},{6,7},{16,17}},{6,7},{17,18}},{6,7},{18,14}},{6,8},{18,14}},{7,9},{15,4}},{7,9},{15,16}},{7,9},{16,17}},{7,9},{17,18}},{7,9},{18,14}},{9,11},{15,4}},{9,11},{15,16}},{9,11},{15,16}},{11,12},{15,16}},{11,12},{15,16}},{11,12},{15,16}},{11,12},{15,16}},{11,12},{15,16}},{12,11},{15,16}},{12,11},{15,16}},{12,13},{12,13}
	15},{12,13}},{4,15},{13,12}},{4,15},{13,14}},{4,15},{14,10}},{4,15},{14,13}},{4,15},{18,14}},{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{13,14}},{{5,6},{14,10}},{{5,6},{14,13}},{{5,6},{16,17}},{{5,6},{17,18}},{{5,6},{18,14}},{{6,7},{13,12}},{{6,7},{13,14}},{{6,7},{14,13}},{{6,7},{16,17}},{{6,7},{17,18}},{{6,7},{18,14}},{{6,8},{18,14}},{{7,9},{15,16}},{{7,9},{16,17}},{{7,9},{17,18}},{{7,9},{18,14}},{{9,11},{15,4}},{{9,11},{15,16}},{{9,11},{15,4}},{{12,11},{15,4}},{{12,11},{15,4}},{{12,11},{15,4}},{{12,11},{15,4}},{{12,11},{13,12},{16,17}},{{12,11},{15,16}},{{12,13},{15,16}},{{12,13},{15,16}},{{12,13},{15,16}},{{12,13},{15,16}},{{12,13},{15,16}},{{12,13},{15,16}},{{13,12},{16,17}},{{13,14},{15,4}},{{15,44}},{{13,12},{16,17}},{{13,14},{15,44}}},{{13,14},{15,44}},{{13,14},{15,44}},{{13,14},{15,44}}},{{13,14},{15,44}},{{13,14},{15,44}},{{13,14},{15,44}},{{13,14},{13,14}},{{1
	15},{12,13}},{4,15},{13,12}},{4,15},{13,14}},{4,15},{14,10}},{4,15},{14,13}},{4,15},{18,14}},{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{13,14}},{{5,6},{14,10}},{{5,6},{14,13}}},{{5,6},{16,17}},{{5,6},{17,18}},{{5,6},{18,14}},{{6,7},{13,12}},{{6,7},{13,14}},{{6,7},{14,13}}},{{6,7},{16,17}},{{6,7},{17,18}},{{6,7},{18,14}},{{6,8},{18,14}},{{7,9},{15,4}},{{7,9},{15,16}}},{{7,9},{16,17}},{{7,9},{17,18}},{{7,9},{18,14}},{{9,11},{15,4}},{{9,11},{15,16}},{{9,11},{15,16}},{{11,12},{15,4}},{{11,12},{15,16}},{{11,12},{15,16}},{{11,12},{15,16}},{{12,11},{15,16}},{{12,13},{15,16}},{{12,13},{15,16}},{{12,13},{12,13}

```
{8,15}
                                                                        \{\{\{8,6\},\{3,2\}\},\{\{8,10\},\{2,1\}\},\{\{8,10\},\{2,3\}\},\{\{8,10\},\{3,2\}\},\{\{4,3\},\{5,6\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{7,1\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{4,3\},\{6,7\}\},\{\{4,3\},\{6,7\}\},\{4,3\},\{4,3\},\{4,3\},\{4,3\},\{4,3\},\{4,3\},\{4,
                                                                       9}},{{4,3},{9,11}},{{4,3},{11,10}},{{4,3},{11,12}},{{4,3},{12,11}},{{4,3},{12,13}},{{4,3},{13,12}}
                                                                       }},{{4,3},{13,14}},{{4,3},{14,10}},{{4,3},{14,13}},{{4,15},{7,9}},{{4,15},{9,11}},{{4,15},{11,10}}
                                                                       }},{{4,15},{11,12}},{{4,15},{12,11}},{{4,15},{12,13}},{{4,15},{13,12}},{{4,15},{13,14}},{{4,15}}
                                                                       ,{14,10}},{{4,15},{14,13}},{{5,6},{3,4}},{{5,6},{12,11}},{{5,6},{12,13}},{{5,6},{13,12}},{{5,6},{12,13}},
                                                                       13,14}},{{5,6},{14,10}},{{5,6},{14,13}},{{5,6},{16,17}},{{5,6},{17,18}},{{6,7},{3,4}},{{6,7},{13}}
                                                                       ,12}},{{6,7},{13,14}},{{6,7},{14,13}},{{6,7},{16,17}},{{6,7},{17,18}},{{6,8},{3,4}},{{7,9},{2,1}}
                                                                       ,{{7,9},{2,3}},,{{7,9},,{3,2}},,{{7,9},,{3,4}},,{{7,9},,{15,4}},,{{7,9},,{15,16}},,{{7,9},,{16,17}},,{{7,9},,{15,16}}
                                                                       17,18\},\{\{9,11\},\{1,5\}\},\{\{9,11\},\{2,1\}\},\{\{9,11\},\{2,3\}\},\{\{9,11\},\{3,2\}\},\{\{9,11\},\{3,4\}\},\{\{9,11\},\{15,4\}\},\{15,4\}\},\{15,4\}\}
                                                                       },{{9,11},{15,16}},,{{9,11},,{16,17}},,{{9,11},,{17,18}},,{{11,10},,{1,5}},,{{11,10},,{2,1}},,{{11,10},,{
                                                                       2,3}},{{11,10},{3,2}},{{11,10},{3,4}},{{11,12},{1,5}},{{11,12},{2,1}},{{11,12},{2,3}},{{11,12},{2,3}},
                                                                       3,2}},{{11,12},{3,4}},{{11,12},{15,4}},{{11,12},{15,16}},{{11,12},{16,17}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{1,5}},{{12,11},{12,11},{12,11},{{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{12,11},{1
                                                                       ,11},{2,1}},{{12,11},{2,3}},{{12,11},{3,2}},{{12,11},{3,4}},{{12,11},{15,4}},{{12,11},{15,16}},{
                                                                       \{12,11\},\{16,17\}\},\{\{12,11\},\{17,18\}\},\{\{12,13\},\{1,5\}\},\{\{12,13\},\{2,1\}\},\{\{12,13\},\{2,3\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{2,1\}\},\{\{12,13\},\{2,3\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{3,1,5\}\},\{\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13\},\{12,13
                                                                       2}},{{12,13},{3,4}},{{12,13},{15,4}},{{12,13},{15,16}},{{12,13},{16,17}},{{12,13},{17,18}},{{1
                                                                       3,12},{1,5}},{{13,12},{2,1}},{{13,12},{2,3}},{{13,12},{3,2}},{{13,12},{3,4}},{{13,12},{15,4}},{{
                                                                       13,12},{15,16}},{{13,12},{16,17}},{{13,14},{1,5}},{{13,14},{2,1}},{{13,14},{2,3}},{{13,14},{3,2}}
                                                                       }},{{13,14},{3,4}},{{13,14},{15,4}},{{13,14},{15,16}},{{14,10},{1,5}},{{14,10},{2,1}},{{14,10},
                                                                       \{2,3\},\{\{14,10\},\{3,2\}\},\{\{14,10\},\{3,4\}\},\{\{14,13\},\{1,5\}\},\{\{14,13\},\{2,1\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{2,3\}\},\{\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,13\},\{14,1
                                                                       \{3,2\}\}, \{\{14,13\}, \{3,4\}\}, \{\{14,13\}, \{15,4\}\}, \{\{16,17\}, \{1,5\}\}, \{\{16,17\}, \{2,1\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{1,5\}\}, \{\{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, \{17,18\}, 
                                                                       },{2,1}},{{17,18},{2,3}},{{17,18},{3,2}}}
         {9,11}
                                                                       {{6,7},{13,12}},{{6,7},{13,14}},{{6,7},{14,13}},{{6,7},{18,14}},{{6,8},{18,14}},{{7,9},{18,14}}
 {11,10}
                                                                       {{{11,12},{15,4}},{{11,12},{15,16}},{{11,12},{16,17}},{{6,7},{13,12}},{{6,7},{13,14}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{11,12}},{{6,7},{1
                                                                       4,13}},{{6,7},{16,17}},{{6,7},{17,18}},{{6,7},{18,14}},{{6,8},{18,14}},{{7,9},{15,4}},{{7,9},{15,4}},
                                                                       ,16}},{{7,9},{16,17}},{{7,9},{17,18}},,{{7,9},{18,14}},,{{9,11},{15,4}},,{{9,11},{15,16}},,{{9,11},
                                                                       16,17},\{9,11\},\{17,18\}},\{12,11\},\{15,4\}},\{12,11\},\{15,16\}},\{12,11\},\{16,17\}},\{12,11\},\{17,18\}
                                                                       },{{12,13},{15,4}},{{12,13},{15,16}},{{12,13},{16,17}},{{12,13},{17,18}},{{13,12},{15,4}},{{13,
                                                                       12},{15,16}},{{13,12},{16,17}},{{13,14},{15,4}},{{13,14},{15,16}},{{14,13},{15,4}},{{18,14},{1
                                                                       5,4}},{{18,14},{15,8}}}
   {11,12}
                                                                        {{{6,7},{13,12}},{{6,7},{13,14}},{{6,7},{14,13}},{{6,7},{18,14}},,{{6,8},{18,14}},,{{7,9},,18,14}}
  {12,11}
                                                                         {{{7,9},{18,14}},{{13,12},{6,7}},{{13,14},{6,7}},{{14,13},{6,7}},{{6,7},{18,14}},{{6,8},{18,14}}}
    {12,13}
                                                                       {{{7,9},{18,14}}}
    {13,12}
                                                                       {{{18,14},{7,9}}}
     {13,14}
                                                                        \{\{\{13,12\},\{16,17\}\},\{\{9,11\},\{16,17\}\},\{\{9,11\},\{17,18\}\},\{\{11,12\},\{16,17\}\},\{\{12,11\},\{16,17\}\},\{\{12,11\},\{16,17\}\},\{12,11\},\{16,17\}\},\{12,11\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},
                                                                       11},{17,18}},{{12,13},{16,17}},{{12,13},{17,18}}}
{14,10}
                                                                       {{{14,13},{6,7}},{{14,13},{15,4}},{{9,11},{15,4}},{{9,11},{15,16}},{{9,11},{16,17}},{{9,11},{17}}
                                                                       ,18}},{{11,12},{15,4}},{{11,12},{15,16}},{{11,12},{16,17}},{{12,11},{15,4}},{{12,11},{15,16}},{
                                                                       \{12,11\},\{16,17\}\},\{\{12,11\},\{17,18\}\},\{\{12,13\},\{15,4\}\},\{\{12,13\},\{15,16\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{\{12,13\},\{16,17\}\},\{16,17\}\},\{16,17\},\{16,17\}\},\{16,17\},\{16,17\}\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{16,17\},\{
                                                                       3},{17,18}},{{13,12},{6,7}},{{13,12},{15,4}},{{13,12},{15,16}},{{13,12},{16,17}},{{13,14},{6,7}}
                                                                       },{{13,14},{15,4}},{{13,14},{15,16}},{{16,17},{6,7}},{{16,17},{7,9}},,{{17,18},{6,7}},,{{17,18},{6,7}},
                                                                       7,9}},{{18,14},{6,7}},{{18,14},{6,8}},,{{18,14},{7,9}},,{{18,14},{15,4}},,{{18,14},{15,8}},,{{7,9}},
                                                                       15,4}},{{7,9},{15,16}}}
  {14,13}
                                                                       \{\{\{9,11\},\{16,17\}\},\{\{9,11\},\{17,18\}\},\{\{11,12\},\{16,17\}\},\{\{12,11\},\{16,17\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{17,18\}\},\{\{12,11\},\{17,18\}\},\{17,18\}\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\},\{17,18\},\{17,18\}\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{17,18\},\{1
                                                                       13},{16,17}},{{12,13},{17,18}},{{13,12},{16,17}}}
   {15,14}
                                                                       {{{1,5},{16,17}},{{1,5},{17,18}},{{2,1},{8,10}},{{2,1},{16,17}},{{2,1},{17,18}},{{2,3},{8,10}},
                                                                       \{2,3\},\{17,18\}\},\{\{3,2\},\{8,6\}\},\{\{3,2\},\{8,10\}\},\{\{3,2\},\{17,18\}\},\{\{3,4\},\{5,6\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,7\}\},\{1,4\},\{1,4\}\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,4\},\{1,
                                                                       8}},{{4,3},{5,6}},{{4,3},{6,7}},{{5,6}},{17,18}},{{6,7},{16,17}},{{6,7},{17,18}}}
        {15,8}
                                                                        \{\{\{15,4\},\{7,9\}\},\{\{15,4\},\{9,11\}\},\{\{15,4\},\{11,12\}\},\{\{15,4\},\{12,11\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{12,13\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{\{15,4\},\{13,12\}\},\{13,12\}\},\{13,12\}\},\{13,12\},\{13,12\}\},\{13,12\},\{13,12\}\},\{13,12\},\{13,12\}\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12\},\{13,12
                                                                       12}},{{15,4},{13,14}},{{15,4},{14,13}},{{15,16},{7,9}},{{15,16},{9,11}},{{15,16},{11,12}},{{15,
                                                                       16},{12,11}},{{15,16},{12,13}},{{15,16},{13,12}},{{15,16},{13,14}},{{1,5},{9,11}},{{1,5},{11,10}}
                                                                       }},{{1,5},{11,12}},{{1,5},{12,11}},{{1,5},{12,13}},{{1,5},{13,12}},{{1,5},{13,14}},{{1,5},{14,10}}
                                                                       }},{{1,5},{14,13}},,{{1,5},{16,17}},,{{1,5},{17,18}},,{{2,1},{7,9}},,{{2,1},{8,10}},,{{2,1},{9,11}},,{{
                                                                       2,1},{11,10}},{{2,1},{11,12}},{{2,1},{12,11}},{{2,1},{12,13}},{{2,1},{13,12}},{{2,1},{13,14}},{{
                                                                       2,1},{14,10}},{{2,1},{14,13}},{{2,1},{16,17}},{{2,1},{17,18}},{{2,3},{7,9}},{{2,3},{8,10}},{{2,3}}
```

```
,{9,11}},{{2,3},{11,10}},{{2,3},{11,12}},{{2,3},{12,11}},{{2,3},{12,13}},{{2,3},{13,12}},{{2,3},{12,13}},
                                                                            13,14},\{2,3\},\{14,10\}},\{2,3\},\{14,13\}},\{2,3\},\{17,18\}},\{3,2\},\{7,9\}},\{3,2\},\{8,6\}},\{3,2\},\{8,10\}
                                                                              },{{3,2},{9,11}},{{3,2},{11,10}},{{3,2},{11,12}},{{3,2},{12,11}},{{3,2},{12,13}},{{3,2},{13,12}},
                                                                               {{3,2},{13,14}},{{3,2},{14,10}},{{3,2},{14,13}},{{3,2},{17,18}},{{3,4},{5,6}},{{3,4},{6,7}},{{3,4}},{6,7}},
                                                                              },{6,8}},{{3,4},{7,9}},{{3,4},{9,11}},{{3,4},{11,10}},{{3,4},{11,12}},{{3,4},{12,11}},{{3,4},{12,12}},{{3,4},{12,11}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4},{12,12}},{{3,4}
                                                                            13}},{{3,4},{13,12}},{{3,4},{13,14}},{{3,4},{14,10}},{{3,4},{14,13}},{{4,3},{5,6}},{{4,3},{6,7}},
                                                                               {{4,3},{7,9}},{{4,3},{9,11}},{{4,3},{11,10}},{{4,3},{11,12}},{{4,3},{12,11}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,3},{12,13}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}},{{4,4,4}
                                                                            3},{13,12}},{4,3},{13,14}},{4,3},{14,10}},{4,4,3},{14,13}},{4,15},{7,9}},{4,15},{9,11}},{4,1}
                                                                            5},{11,10}},{{4,15},{11,12}},{{4,15},{12,11}},{{4,15},{12,13}},{{4,15},{13,12}},{{4,15},{13,14}}
                                                                            },{{4,15},{14,10}},,{{4,15},{14,13}},,{{5,6},{12,11}},,{{5,6},{12,13}},,{{5,6},{13,12}},,{{5,6},{13,12}},,
                                                                            4}},{{5,6},{14,10}},{{5,6},{14,13}},{{5,6},{16,17}},,{{5,6},{17,18}},,{{6,7},{13,12}},,{{6,7},{13,12}},
                                                                            4}},{{6,7},{14,13}},{{6,7},{16,17}},{{6,7},{17,18}},{{16,17},{7,9}},{{16,17},{9,11}},{{16,17},{
                                                                            11,12},\{\{16,17\},\{12,11\}\},\{\{16,17\},\{12,13\}\},\{\{16,17\},\{13,12\}\},\{\{17,18\},\{7,9\}\},\{\{17,18\},\{9,11\}\},
                                                                               {{17,18},{12,11}},{{17,18},{12,13}}}
                                                                            \{\{\{15,4\},\{14,13\}\},\{\{15,4\},\{18,14\}\},\{\{15,8\},\{18,14\}\},\{\{1,5\},\{14,10\}\},\{\{1,5\},\{14,13\}\},\{\{1,5\},\{16,12\}\},\{1,12\}\},\{1,12\},\{1,13\}\},\{1,13\}\},\{1,13\}\}
                                                                               17}},{{1,5},{17,18}},,{{1,5},{18,14}},,{{2,1},{8,10}},,{{2,1},{14,10}},,{{2,1},{14,13}},,{{2,1},{16,1
                                                                            7}},{{2,1},{17,18}},{{2,1},{18,14}},{{2,3},{8,10}},{{2,3},{14,10}},{{2,3},{14,13}},{{2,3},{17,18}}
                                                                            }},{{2,3},{18,14}},{{3,2},{8,6}},{{3,2},{8,10}},{{3,2},{14,10}},{{3,2},{14,13}},{{3,2},{17,18}},{
                                                                               \{3,2\},\{18,14\}\},\{\{3,4\},\{5,6\}\},\{\{3,4\},\{6,7\}\},\{\{3,4\},\{6,8\}\},\{\{3,4\},\{14,10\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{\{3,4\},\{14,13\}\},\{14,14\},\{14,14\}\},\{14,14\},\{14,14\}\},\{14,14\},\{14,14\},\{14,14\},\{14,14\},\{14,14\},\{14,14\}\},\{14,14\},\{14,14\},
                                                                               18,14}},{{4,3},{5,6}},{{4,3},{6,7}},{{4,3},{14,10}},{{4,3},{14,13}},{{4,3},{18,14}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{{4,15},{14,16}},{4,15},{4,15},{4,15}},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{4,15},{
                                                                               10}},{{4,15},{14,13}},{{4,15},{18,14}},{{5,6},{14,10}},{{5,6},{14,13}},{{5,6},{16,17}},{{5,6},{
                                                                               17,18}},{{5,6},{18,14}},{{6,7},{14,13}},{{6,7},{16,17}},{{6,7},{17,18}},{{6,7},{18,14}},{{6,8},{
                                                                              18,14}}}
                                                                            \{\{\{3,2\},\{8,6\}\},\{\{3,2\},\{8,10\}\},\{\{3,2\},\overline{\{14,10\}}\},\{\{3,2\},\overline{\{14,13\}}\},\{\{3,2\},\{17,18\}\},\{\{3,2\},\{18,14\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},\{\{1,10\}\},
                                                                            3,4},{14,10}},{{3,4},{14,13}},{{3,4},{18,14}},{{4,3},{14,10}},{{4,3},{14,13}},{{4,3},{18,14}},{{4,3},{14,10}},{{4,3},{14,13}},{{4,3},{18,14}},{{4,3},{14,10}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{{4,3},{14,13}},{
                                                                            4,15},{14,10}},{{4,15},{14,13}},{{4,15},{18,14}},{{14,13},{15,4}},{{15,4},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{18,14}},{{15,8},{
                                                                            14}}}
{17,18}
                                                                            {{4,3},{11,10}},{{4,3},{11,12}},{{4,3},{13,12}},{{4,3},{13,14}},{{4,3},{14,10}},{{4,3},{14,13}}
                                                                              ,{{4,15},{11,10}},,{{4,15},{11,10}},,{{4,15},{11,12}},,{{4,15},{13,12}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}},,{{4,15},,{13,14}}
                                                                            4,10}},{{4,15},{14,13}},{{4,15},{18,14}},{{14,13},{15,4}},{{15,4}},{{11,12}},{{15,4}},{{13,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{{11,12}},{
                                                                            5,4},{13,14}},{{15,4},{18,14}},{{15,8},{18,14}},{{15,16},{11,12}},{{15,16},{13,12}},{{15,16},{1
                                                                            3,14}},{{16,17},{11,12}},{{16,17},{13,12}}}
                                                                              \{\{\{11,12\},\{16,17\}\},\{\{13,12\},\{16,17\}\},\{\{16,17\},\{9,11\}\},\{\{16,17\},\{12,11\}\},\{\{16,17\},\{12,13\}\},\{\{17,17\}\},\{17,17\}\},\{17,17\}\},\{17,17\}\},\{17,17\}\},\{17,17\}\},\{17,17\}\},\{17,17\}\}
 {18,14}
                                                                               ,18},{9,11}},{{17,18},{12,11}},{{17,18},{12,13}}}
```

Tabela A.4: Conjunto com a Carga dos Domínios de Colisão

Arestas	Carga do Domínio de Colisão
{1,5}	5p1c1 + 5p1c2 + 5p1c3 + 6p1c4 + 4p1c5 + 6p1c6 + 3p1c7 + 7p2c1 + 7p2c2 + 2p2c3 + 4p2c4 + 4p2c5
	+ p2c6 + p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p1c3 + p1c6
	p2c2 + p2c4 + p2c5] - $Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p1$
	+ p2c1 + p2c2, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5$] - $Min[p2c1 + p2c2$, $Max[p1c1 + p1c5 + p2c2]$
	p2c1 + p2c3, $p1c6 + p2c4 + p2c5$, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5$] - $Min[p1c1 + p1c2 + p1c3 + p1c6 + p2c4 + p2c5]$
	p1c3 + p1c4 + p2c1 + p2c2, $Max[p1c1 + p1c5 + p2c1 + p2c3, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p1c4 + p1c$
	[p2c5] - Min $[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3]$
	+ p1c4 + p2c1 + p2c2]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7,
	p2c1 + p2c2, $p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2$, $p1c4 + p1c7 + p2c6 + p2c7$]
{2,1}	4p1c1 + 4p1c2 + 4p1c3 + 5p1c4 + 4p1c5 + 5p1c6 + 4p1c7 + 7p2c1 + 7p2c2 + p2c3 + 2p2c4 + 2p2c5
	p2c6 + p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p2c1]
	+ p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] - $Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c4 + p2c5]]$
	p1c4 + p2c1 + p2c2, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5$] - $Min[p1c1 + p1c2 + p1c3 + p1c4 +$
	p2c1 + p2c2, $Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c2]$
	p2c5, $Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2]]$
{2,3}	4p1c1 + 4p1c2 + 4p1c3 + 6p1c4 + 4p1c5 + 5p1c6 + 5p1c7 + 7p2c1 + 7p2c2 + p2c3 + 2p2c4 + 2p2c5
	2p2c6 + 2p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 +
	p2c1 + p2c2, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5$] - $Min[p2c1 + p2c2$, $Max[p1c1 + p1c2 + p1c3 + p1c3 + p1c4 + p$
	+ p1c4 + p2c1 + p2c2, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5$] - $Min[p1c1 + p1c2 + p1c3 + p1c4$

	+ p2c1 + p2c2, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3
	+ p1c6 + p2c2 + p2c4 + p2c5
{3,2}	4p1c1 + 4p1c2 + 4p1c3 + 6p1c4 + 4p1c5 + 5p1c6 + 5p1c7 + 7p2c1 + 7p2c2 + p2c3 + 2p2c4 + 2p2c5 + 2p2c6 + 2p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3
	+ p1c4 + p2c1, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c1 + p1c2 + p1c3 + p1c4
	+ p2c1 + p2c2, $Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c7 + p2c6 + p2c7]$
	p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3
	+ p1c6 + p2c2 + p2c4 + p2c5
{3,4}	3p1c1 + 2p1c2 + 2p1c3 + 6p1c4 + 5p1c5 + 5p1c6 + 6p1c7 + 6p2c1 + 5p2c2 + 2p2c3 + 2p2c4 + 2p2c5
	+ 3p2c6 + 3p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 +
	p2c7]] - Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c6 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 +
	p1c2 + p1c3 + p1c4 + p2c1 + p2c2, $Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p2c7]$
	Min[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 +
	p2c1 + p2c2]] - $Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2]$
{4,3}	+ p1c3 + p1c4 + p2c1 + p2c2]] 3p1c1 + 2p1c2 + 2p1c3 + 6p1c4 + 5p1c5 + 5p1c6 + 6p1c7 + 6p2c1 + 5p2c2 + 2p2c3 + 2p2c4 + 2p2c5
(1,5)	+3p2c6 + 3p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 +
	p2c7]] - $Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c6 + p2c4 + p2c5, p1c4 + p1c7 + p2c6]$
	+ p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 +
	p1c2 + p1c3 + p1c4 + p2c1 + p2c2, $Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p1c5 + p1c6 + p1c7, p2c1 + p1c6 + p1c7, p2c1 + p1c6 + p1c7 + p1c7 + p1c6 + p1c7 + p1c7 + p1c6 + p1c7 + p1$
	p2c1 + p2c2] - $Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c2 + p1c2 + p1c2 + p1c2 + p1c3 + p1c4 + p1c7 + p2c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p1c7 + p1c8 + p$
	+ p1c3 + p1c4 + p2c1 + p2c2]]
{4,15}	5p1c1 + 4p1c2 + 4p1c3 + 8p1c4 + 5p1c5 + 6p1c6 + 6p1c7 + 8p2c1 + 7p2c2 + 2p2c3 + 3p2c4 + 3p2c5 + 3p2c6 + 3p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 +
	p2c7] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c7]
	p2c2, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c2]$
	+ p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]]
	p2c1 + p2c3, p1c6 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1
	+ p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p2c1 + p2c2,
	Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c5 + p2c1 + p2c7]
	p2c3, $Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c2]$
	+ p1c3 + p1c6 + p2c2 + p2c4 + p2c5, $Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3]$
	+ p1c6 + p2c2 + p2c4 + p2c5] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7 + p2c6 + p2c7, Max[p1c5 + p2c6 + p2c7 + p2c7 + p2c6 + p2c7 +
	p2c2, $p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2$, $p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5$]
{5,6}	5p1c1 + 7p1c2 + 7p1c3 + 6p1c4 + 3p1c5 + 7p1c6 + 2p1c7 + 6p2c1 + 8p2c2 + 2p2c3 + 6p2c4 + 6p2c5
	+2p2c6 + p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c2 + p1c6 + p2c2 + p2c4 + p2c6]] - Min[p2c1 + p2c2, Max[p1c3 + p1c6 + p2c2 + p2c4 + p2c6]]
	+ p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p2c5, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p2c5, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p2c5, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p2c5, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p2c5, p1c2 + p1c6 + p2c2 + p2c4 + p2c6]]
	Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c2 + p1c6 + p2c2 + p2c4 + p2c6]] -
	Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c4 + p1c4 + p1c4 + p1c4 + p1c5 + p2c4 + p1c4 + p1c5 + p1c4 + p1
	p1c3 + p1c6 + p2c2 + p2c4 + p2c5, $p1c2 + p1c6 + p2c2 + p2c4 + p2c6$] - $Min[p1c1 + p1c5 + p2c1 + p2c3$, $Max[p1c5 + p1c6 + p1c7, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]$] - $Min[p1c3 + p2c5$,
	Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6]
	+ p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2,
	p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, $p1c4 + p1c7 + p2c6 + p2c7$] - $Min[p1c2 + p1c6 + p2c2 + p1c4 + p2c4 + p2c4]$
	p2c4 + p2c6, $Max[p1c5 + p1c6 + p1c7, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]]$
{6,7}	$\frac{1}{5p1c1 + 7p1c2 + 8p1c3 + 6p1c4 + 3p1c5 + 7p1c6 + 2p1c7 + 6p2c1 + 8p2c2 + 2p2c3 + 6p2c4 + 7p2c5}{5p1c1 + 7p1c2 + 8p1c3 + 6p1c4 + 3p1c5 + 7p1c6 + 2p1c7 + 6p2c1 + 8p2c2 + 2p2c3 + 6p2c4 + 7p2c5}$
. , ,	+3p2c6 + p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p2c7]
	p1c3 + p1c6 + p2c2 + p2c4 + p2c5, $p2c6$, $p1c2 + p1c6 + p2c2 + p2c4 + p2c6$]] - $Min[p2c1 + p2c2$,

 $\begin{aligned} &\text{Max}[\text{p1c3} + \text{p2c5}, \text{p1c2} + \text{p1c3} + \text{p1c6} + \text{p2c2} + \text{p2c4} + \text{p2c5}, \text{p2c6}]] - \text{Min}[\text{p1c1} + \text{p1c2} + \text{p1c3} + \text{p1c4} \\ &+ \text{p2c1} + \text{p2c2}, \text{Max}[\text{p1c3} + \text{p2c5}, \text{p2c6}]] - \text{Min}[\text{p1c1} + \text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{Max}[\text{p1c3} + \text{p2c5}, \text{p1c2} + \text{p1c3} + \text{p1c6} + \text{p2c2} + \text{p2c4} + \text{p2c6}]] - \text{Min}[\text{p1c1} + \text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{Max}[\text{p1c1} + \text{p1c5} + \text{p2c1} + \text{p2c3}, \text{p1c3} + \text{p2c5}, \text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{p2c6}, \text{p1c2} + \text{p1c3} + \text{p1c6} + \text{p2c2} + \text{p2c4} + \text{p2c5}, \text{p2c6}, \text{p1c2} + \text{p1c6} + \text{p2c2} + \text{p2c4} + \text{p2c6}]] - \text{Min}[\text{p1c1} + \text{p1c5} + \text{p1c3} + \text{p1c6} + \text{p2c2} + \text{p2c4} + \text{p2c6}]] - \text{Min}[\text{p1c1} + \text{p1c5} + \text{p2c1} + \text{p2c3}, \text{Max}[\text{p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}]] - \text{Min}[\text{p1c3} + \text{p2c5}, \text{Max}[\text{p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}, \text{p1c1} + \text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] - \text{Min}[\text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] - \text{Min}[\text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] - \text{Min}[\text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] - \text{Min}[\text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] - \text{Min}[\text{p1c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c6} + \text{p2c7}]] - \text{Min}[\text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max}[\text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}]] - \text{Min}[\text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max}[\text{p1c3} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2} + \text{p1c3} + \text{p1c4} + \text{p2c1} + \text{p2c2}]] - \text{Min}[\text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max}[\text{p1c3} + \text{p2c5}, \text{p1c2} + \text{p1c3} + \text{p1c6} + \text{p2c2} + \text{p2c4} + \text{p2c1} + \text{p2c2}]] - \text{Min}[\text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max}[\text{p1c3} + \text{p2c5}, \text{p1c2} + \text{p1c3} + \text{$

- 5p1c1 + 7p1c2 + 10p1c3 + 9p1c4 + 4p1c5 + 8p1c6 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 6p1c7 + 7p2c1 + 6p1c7 + 6p1{6,8} 9p2c5 + 7p2c6 + 4p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p1c4 + p1c6 + p1c6p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7] -Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p1c3 + p1c6 + p1p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c7 + p2p1c7 + p2c6 + p2c7] - Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p2c4, p1c4 + p2c4, p1c4, p1c4 + p2c4, p1c4 + p2c4, p1c4, p1c4 + p2c4, p1c4 + p2c4, p1c4, p1c4 + p2c4, p1c4, p1c4,p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p1c7 + p1c8 + p1c8p2c5 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p2c1 + p2c2, p1c3 + p2c5, p2c6, p2c6]p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 +p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2]+ p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c4 + p1c7 + p2c6 + p2c7]p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2+ p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c5 + p2c7p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p1c1 + p1c2 + p1c3]+ p1c4 + p2c1 + p2c2]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7 + p2c6 + p2c7]]p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c2p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c7]] - Min[p1c2 + p1c6]]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] -Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p2c1 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 +p2c6 + p2c7]] - Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1]+ p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - <math>Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p1c7, p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p1c7, p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p1c7, p2c1 +p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, Max[p1c5]]+ p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c6 + p2c2 + p2c4 + p2c6, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c6 + p2c7]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c3 + p1c4 + p1c7 + p2c5 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - <math>Min[p1c4]+ p1c7 + p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] -Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 +p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7, Max[p1c5 + p2c7, Max[p1c5 + p1c6 + p2c7, Max[p1c5 + p2c7, Max[p1c5 + p1c6 + p2c7, Max[p1c5 + p2p1c7, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5p2c5, p2c6]]
- $\begin{array}{lll} \{7,9\} & 3p1c1 + 5p1c2 + 8p1c3 + 4p1c4 + p1c5 + 5p1c6 + p1c7 + 3p2c1 + 5p2c2 + p2c3 + 5p2c4 + 8p2c5 + \\ & 4p2c6 + p2c7 Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c3 + p2c5, p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7]] Min[p1c3 + p2c5, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + \\ & p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c3 + \\ & p2c5, p2c6]] Min[p2c6, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] \end{array}$
- $\{8,6\} \qquad 5p1c1 + 7p1c2 + 10p1c3 + 9p1c4 + 4p1c5 + 8p1c6 + 6p1c7 + 7p2c1 + 9p2c2 + 2p2c3 + 6p2c4 + 9p2c5 + 7p2c6 + 4p2c7 Min[p1c5 + p1c6 + p1c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7]] Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c7, p1c4 + p1c7 + p2c6, p1c4 +$

p2c5, p2c6] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p2c4, p1c4 + p2c4, p1c5]p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p1c7 + p1c8 + p1c8p2c5 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p2c1 + p2c2, p1c3 + p2c5, p2c6, p2c6]p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p1c7 + p2c6 + p2c7]] p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2]+ p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c4 + p1c7 + p2c6 + p2c7]p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2]+ p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c5 + p2c7p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p1c1 + p1c2 + p1c3]+ p1c4 + p2c1 + p2c2]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p2c7]]p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c2p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c6 + p2c7]] - Min[p1c2 + p1c6 + p2c7] - Min[p1c2 + p1c6 + p2c7] - Min[p1c2 + p1c6 + p2c7]] - Min[p1c2 + p1c6 + p2c7] - Min[+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] -Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p2c1 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p2c7, p1c3 + p2c7, p1c4 + p2c7, p1p2c6 + p2c7]] - Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1]+ p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + pp2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p2c6, Max[p1c5]]+ p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c2 + p1c6 + p2c2 + p2c4 + p2c6, Max[p1c5 + p1c6 + p2c7]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c3 + p1c4 + p1c7 + p2c5 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - <math>Min[p1c4]+ p1c7 + p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] -Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c4 + p1c4 + p1c7 + p1c4 + p1p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p2c7]p1c7, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c3p2c5, p2c6]]

- {8,10} 3p1c1 + 5p1c2 + 8p1c3 + 8p1c4 + 3p1c5 + 7p1c6 + 6p1c7 + 5p2c1 + 7p2c2 + 2p2c3 + 6p2c4 + 9p2c5+8p2c6 + 5p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p1c6 + p2c2 + p2c4 + p1c6 + p2c2 + p2c4 + p2c4 + p2c6 + p2c6p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c5p2c6 + p2c7]] - Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p2c6]p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3]+ p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 +p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p1c4 + p1c7]p2c2, Max[p2c1 + p2c2, p1c3 + p2c5, p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] -Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c1 + p2c2, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c4 +p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2]+ p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7]+ p2c6 + p2c7] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p2c1 + p2c2, p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c4]p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] - Min[p2c6, Max[p1c5 + p1c6]]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c4 + p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c4 + p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c4 + p2c1 + p1c3 + p1c4 + p2c1 + p1c3 + p1c4 + p2c1 + p1c3 + p1c4 + p1p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c2 + p1c6 + p2c2 + p2c4 +p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2]] - <math>Min[p1c3 + p1c4 + p1c7 + p2c5 + p2c7, Max[p1c5 + p2c7, Map1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2] - Min[p1c4 + p1c7 + p2c6 + p1c7 + p2c6]p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] - <math>Min[p1c4 + p1c7 + p2c6]+ p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p1c1 + p1c4 + p2c1, p1c4 + p2c1, p1c4 + p2c5, p2c6]p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c5 + p1c6 + p2c3 + p2c4 + p2c5]
- $\begin{array}{lll} \{8,15\} & 5p1c1+7p1c2+10p1c3+9p1c4+5p1c5+9p1c6+7p1c7+8p2c1+10p2c2+2p2c3+6p2c4+9p2c5+7p2c6+4p2c7-Min[p1c5+p1c6+p1c7,Max[p1c3+p2c5,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,p2c6,p1c2+p1c6+p2c2+p2c4+p2c6,p1c3+p1c4+p1c7+p2c5+p2c7]]-\\ & & Min[p1c5+p1c6+p1c7,Max[p1c1+p1c4+p2c1,p1c1+p1c2+p1c3+p1c4+p2c1+p2c2,p1c3+p2c5,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,p2c6,p1c2+p1c6+p2c2+p2c4+p2c6,p1c3+p2c5,p1c2+p1c3+p1c6+p2c2+p2c4+p2c6,p1c3+p2c5+p2c6+p2c2+p2c4+p2c6,p1c3+p2c5+p2c6+p2c2+p2c4+p2c6,p1c3+p2c6+p2c2+p2c4+p2c6,p1c3+p2c6+p2c2+p2c4+p2$

p1c4 + p1c7 + p2c5 + p2c7] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p1c4 + p1c7]p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c7p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2]+ p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c6p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7] - Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3]p2c3, p1c3 + p2c5, p1c6 + p2c4 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6+ p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c7 + p2c6 + p2c7]p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c3 + p2c5, p2c6, p1c3 + p1c4 + p2c2]p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p1c4 + p1c7 + p2c6 + p2c7]p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4+ p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + $p1c4 + p2c1 + p2c2, \\ Max[p1c1 + p1c5 + p2c1 + p2c3, \\ p1c3 + p2c5, \\ p1c2 + p1c3 + p1c6 + p2c2 + p2c4]$ + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2]+ p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6]]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 +p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c7]] - Min[p1c2 + p1c7]]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] -Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c3 + p2c2p2c6, p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c4]p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] - Min[p2c6, Max[p1c5 + p1c6]]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] -Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p2c3, p1c4 + p2c4, p1c4 +p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c6 + p2c2 + p2c4 + p2c4 + p2c5]p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - <math>Min[p1c3]+ p1c4 + p1c7 + p2c5 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4]] - p2c4 + p2c4 + p2c4 + p2c4 + p2c5 + p2c4 + p2c5 + p2c4 + p2c6 + p2c6+ p2c5, p2c6]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2]+ p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6

- $\begin{array}{ll} \{9,11\} & 2p1c1+4p1c2+7p1c3+4p1c4+p1c5+5p1c6+2p1c7+\overline{2p2c1+4p2c2+p2c3+5p2c4+8p2c5+5p2c4+8p2c5+5p2c6+2p2c7-Min[p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,Max[p1c3+p2c5,p2c6,p1c4+p1c7+p2c6+p2c7]]-Min[p1c4+p1c7+p2c6+p2c7,Max[p1c1+p1c4+p2c1,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5]] \end{array}$
- $\begin{array}{ll} \{11,10\} & 2p1c1+4p1c2+7p1c3+7p1c4+2p1c5+6p1c6+5p1c7+3p2c1+5p2c2+2p2c3+6p2c4+9p2c5+8p2c6+5p2c7-Min[p2c1+p2c2,Max[p1c3+p2c5,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,p2c6,p1c4+p1c7+p2c6+p2c7]]-Min[p1c3+p2c5,Max[p2c1+p2c2,p1c4+p1c7+p2c6+p2c7]]-Min[p1c3+p2c5,Max[p2c1+p2c2,p1c4+p1c7+p2c6+p2c7]]-Min[p1c3+p2c5,Max[p2c1+p2c2,p1c4+p1c7+p2c6+p2c7]]-Min[p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,Max[p2c1+p2c2,p1c4+p1c7+p2c6+p2c7]]-Min[p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,Max[p1c3+p2c5,p2c6,p1c4+p1c7+p2c6+p2c7]]-Min[p2c6,Max[p2c1+p2c2,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5]]-Min[p2c6,Max[p2c1+p2c2,p1c4+p1c7+p2c6+p2c7]]-Min[p2c6,Max[p2c1+p2c2,p1c4+p1c7+p2c6+p2c7]]-Min[p2c6,Max[p2c1+p2c2,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5]]-Min[p1c4+p1c7+p2c6+p2c7]]-Min[p1c4+p1c7+p2c6+p2c7,Max[p1c3+p2c5,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,p1c4+p1c7+p2c6+p2c7]]-Min[p1c4+p1c7+p2c6+p2c7,Max[p1c1+p1c4+p1c3+p1c6+p2c2+p2c4+p2c5,p1c3+p1c6+p2c2+p2c4+p2c5,p1c5+p1c6+p2c3+p2c4+p2c5]]-Min[p1c4+p1c7+p2c6+p2c7,Max[p1c1+p1c4+p1c7+p2c1+p2c2,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,p1c5+p1c6+p2c3+p2c4+p2c5]] \end{array}$
- $\{11,12\} \quad 2p1c1 + 4p1c2 + 7p1c3 + 4p1c4 + p1c5 + 5p1c6 + 2p1c7 + 2p2c1 + 4p2c2 + p2c3 + 5p2c4 + 8p2c5 + 5p2c6 + 2p2c7 Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c3 + p2c5, p2c6, p1c4 + p1c7 + p2c6 + p2c7]] Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c4 + p2c1, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]]$
- $\begin{array}{lll} \{12,11\} & 2p1c1+4p1c2+7p1c3+4p1c4+p1c5+5p1c6+2p1c7+2p2c1+4p2c2+p2c3+5p2c4+8p2c5+5p2c6+2p2c7-Min[p1c2+p1c3+p1c6+p2c2+p2c4+p2c5,Max[p1c3+p2c5,p2c6,p1c4+p1c7+p2c6+p2c7]]-Min[p1c4+p1c7+p2c6+p2c7,Max[p1c1+p1c4+p2c1,p1c2+p1c3+p1c6+p2c2+p2c4+p2c5]] \end{array}$
- $\{12,13\}$ p1c1 + 3p1c2 + 6p1c3 + 3p1c4 + p1c5 + 4p1c6 + 2p1c7 + p2c1 + 3p2c2 + p2c3 + 4p2c4 + 7p2c5 + p2c4 + 3p2c2 + p2c3 + 4p2c4 + 7p2c5 + p2c4 + 7p2c5 + p2c4 + 7p2c5 + p2c4 + p2c4 + p2c5 + p2c4 + p2c5 + p2c4 + p2c5 + p2c5 + p2c6 + p2c6

5p2c6 + 2p2c7 - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]p1c1 + 3p1c2 + 6p1c3 + 3p1c4 + p1c5 + 4p1c6 + 2p1c7 + p2c1 + 3p2c2 + p2c3 + 4p2c4 + 7p2c5 +{13,12} 5p2c6 + 2p2c7 - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]{13,14} p1c1 + 2p1c2 + 5p1c3 + 5p1c4 + p1c5 + 3p1c6 + 4p1c7 + p2c1 + 2p2c2 + p2c3 + 3p2c4 + 6p2c5 + p2c4 + p1c5 + p1c4 + p1c5 + p1c4 + p1c5 + p1c6 + p1c7 + p2c1 + p1c6 + p1c6 + p1c6 + p1c6 + p1c6 + p1c7 + p1c6 + p1c7 + p1c6 + p1c7 + p1c6 + p1c7 +7p2c6 + 4p2c7 - Min[p1c3 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p1c3 + p1c6 + p2c7]p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c4 + p1c7 + p2c6 + p2c7]+ p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] {14,10} 2p1c1 + 4p1c2 + 7p1c3 + 7p1c4 + 2p1c5 + 6p1c6 + 5p1c7 + 3p2c1 + 5p2c2 + 2p2c3 + 6p2c4 + 9p2c5+8p2c6 + 5p2c7 - Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5,p2c6, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c3 + p2c5, Max[p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7p2c7]] - Min[p1c3 + p2c5, Max[p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7]+ p2c6 + p2c7] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c3 + p2c5, p2c6, p1c4 + p1c7]+ p2c6 + p2c7]] - Min[p2c6, Max[p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] -Min[p2c6, Max[p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p2c6, Max[p2c1 + p2c2, p1c2 + p2c7]]p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c4 + p1c7 + p2c6 + p2c7]Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] - Min[p1c4 + p1c7 + p2c6 + p2c6]p2c7, Max[p1c1 + p1c4 + p2c1, p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c5 + p1c6+ p2c3 + p2c4 + p2c5] {14,13} p1c1 + 2p1c2 + 5p1c3 + 5p1c4 + p1c5 + 3p1c6 + 4p1c7 + p2c1 + 2p2c2 + p2c3 + 3p2c4 + 6p2c5 + p2c3 + p2c4 + p2c5 + p2c3 + p2c4 + p2c5 + p2c3 + p2c4 + p2c5 +7p2c6 + 4p2c7 - Min[p1c3 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p1c3 + p1c6 + p2c7]p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c4 + p1c7]+ p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] {15,14} 5p1c1 + 4p1c2 + 4p1c3 + 8p1c4 + 5p1c5 + 6p1c6 + 6p1c7 + 8p2c1 + 7p2c2 + 2p2c3 + 3p2c4 + 3p2c5+3p2c6 + 3p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p1c7]p2c7]] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - <math>Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c2]+ p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] - Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c2]p2c1 + p2c3, p1c6 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p1c4p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]+ p1c5 + p2c1 + p2c3, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c5 + p2c1 + p2c1 + p2c2]p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - <math>Min[p1c2]+ p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c4 + p1c7 + p2c6 +p2c7]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3+ p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] 5p1c1 + 7p1c2 + 10p1c3 + 9p1c4 + 5p1c5 + 9p1c6 + 7p1c7 + 8p2c1 + 10p2c2 + 2p2c3 + 6p2c4 + 10p2c2 +{15,8} 9p2c5 + 7p2c6 + 4p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p1c3 + p1c6 + p1c6p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7] -Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 +p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p1c6p1c4 + p1c7 + p2c5 + p2c7] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p1c4 + p1c7 + p2c5 + p2c7]p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c6 + p2c2 + p2c4 + p2c6p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p2c1 + p2c2, Max[p1c3 + p2c5, p1c2]+ p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p1c4 + p1c3 + p1c4 + p1c4p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7] - Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c4]p2c3, p1c3 + p2c5, p1c6 + p2c4 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6+ p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c7 + p2c6 + p2c7]p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c3 + p2c5, p2c6, p1c3 + p1c4 + p2c2]p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p1c4 + p2c1]p2c2, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4+ p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p1c7 + p2c6]p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4]+ p2c5, p2c6, p1c2 + p1c6 + p2c2 + p2c4 + p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2]] - p1c6 + p1c7, p2c1 + p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2]+ p1c3 + p1c4 + p2c1 + p2c2]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 +

p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c3 + p2c5, Max[p1c5 + p1c6]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p2c7]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] -Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c3 + p2c5,p2c6, p1c4 + p1c7 + p2c6 + p2c7]] - Min[<math>p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p2c3]p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] - Min[p2c6, Max[p1c5 + p1c6]]+ p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c4 + p1c7 + p2c6 + p2c7] -Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c4 +p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c2 + p1c6 + p2c2 + p2c4 + p2c4 + p2c4 + p2c5]p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]] - <math>Min[p1c3]+ p1c4 + p1c7 + p2c5 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p1c4 + p1c5]p2c1 + p2c2]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4]] - p2c4 + p2c4 + p2c4 + p2c4 + p2c5 + p2c4 + p2c5 + p2c4 + p2c6 + p2c6+ p2c5, p2c6] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c3 + p2c5, p1c2]+ p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]

- {15,16} 5p1c1 + 4p1c2 + 5p1c3 + 10p1c4 + 5p1c5 + 6p1c6 + 8p1c7 + 8p2c1 + 7p2c2 + 2p2c3 + 3p2c4 + 3p24p2c5 + 5p2c6 + 5p2c7 - Min[p1c5 + p1c6 + p1c7, Max[p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7,p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c5 + p2c1 + p2c3, p2c6, p1c3]+ p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c5 + p1c6 + p1c7, Max[p1c1 + p1c7]]p1c4 + p2c1, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c1 + p1c4 + p2c1, Max[p1c5 + p1c6 + p1c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p2c1 + p2c2, Max[p2c6, p1c4 + p1c7 + p1cp2c6 + p2c7]] - Min[p2c1 + p2c2, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6] $+\,p2c2+p2c4+p2c5,\,p2c6,\,p1c3+p1c4+p1c7+p2c5+p2c7,\,p1c4+p1c7+p2c6+p2c7]]-$ Min[p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p1c6 + p2c4 + p2c5, p2c6, p1c3 + p1c4 + p1c7 +p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p1c7 + p2c6 + p2c7]]+ p1c4 + p2c1 + p2c2, Max[p1c1 + p1c5 + p2c1 + p2c3, p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7,p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, Max[p1c5 + p1c6 + p2c7]]p1c7, p2c1 + p2c2, p2c6, p1c3 + p1c4 + p1c7 + p2c5 + p2c7, p1c4 + p1c7 + p2c6 + p2c7]] - Min[p1c1]+ p1c5 + p2c1 + p2c3, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2]]-Min[p1c2+p1c3+p1c6+p2c2+p2c4+p2c5, Max[p1c5+p1c6+p1c7, p2c1+p2c2, p2c6, max[p1c5+p1c6+p1c7, p2c1+p2c2, p2c6+p1c6+p1c7, p2c1+p2c2, p2c6+p1c6+p1c7, p2c1+p2c2, p2c6+p1c6+p1c7, p2c1+p2c2, p2c6+p1c6+p1c7, p2c1+p2c2, p2c6+p1c6+p1c7, p2c1+p2c2, p2c6+p1c6+p1c7, p2c1+p2c2+p1c6+p1c7, p2c1+p1c6+p1c7, p2c1+p1c7, p2c1+pp1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3]+ p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5] - Min[p1c3 + p1c4 + p1c7 + p2c5]+ p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2] -Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6]+ p2c2 + p2c4 + p2c5] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2, p1c1 + p1c2 + p1c3 + p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5]] - Min[p1c4 + p2c2 + p2c4 + p2c5]]p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p1c1 + p1c4 + p2c1, p2c1 + p2c2, p1c1 + p1c2 + p1c3]+ p1c4 + p2c1 + p2c2, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c5 + p1c6 + p2c3 + p2c4 + p2c5]
- $\begin{cases} 16,17 \} & \text{p1c1} + \text{p1c3} + 6\text{p1c4} + 4\text{p1c5} + 4\text{p1c6} + 7\text{p1c7} + 4\text{p2c1} + 3\text{p2c2} + 2\text{p2c3} + 2\text{p2c4} + 3\text{p2c5} + 5\text{p2c6} + 5\text{p2c7} \text{Min[p1c5} + \text{p1c6} + \text{p1c7}, \text{Max[p2c6}, \text{p1c3} + \text{p1c4} + \text{p1c7} + \text{p2c5} + \text{p2c7}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] \text{Min[p2c1} + \text{p2c2}, \text{Max[p2c6}, \text{p1c3} + \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] \text{Min[p2c1} + \text{p2c2}, \text{Max[p2c6}, \text{p1c3} + \text{p1c4} + \text{p1c7} + \text{p2c5} + \text{p2c7}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] \text{Min[p2c1} + \text{p2c2}, \text{Max[p1c1} + \text{p1c5} + \text{p2c1} + \text{p2c3}, \text{p1c6} + \text{p2c4} + \text{p2c5}, \text{p2c6}, \text{p1c3} + \text{p1c4} + \text{p1c7} + \text{p2c5} + \text{p2c7}, \text{p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}]] \text{Min[p2c6}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]] \text{Min[p1c3} + \text{p1c4} + \text{p1c7} + \text{p2c5} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]] \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]] \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]] \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]] \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p2c3}]]} \text{Min[p1c4} + \text{p1c7} + \text{p2c6} + \text{p2c7}, \text{Max[p1c5} + \text{p1c6} + \text{p1c7}, \text{p2c1} + \text{p2c2}]]} \text$

+ p1c4 + p1c7 +	p2c5 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 + p2c2]] - Min[p1c4 + p1c7 + p2c6 +	
p2c7, Max[p1c3	+ p2c5, p2c6]] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c5 + p1c6 + p1c7, p2c1 +	
p2c2, p1c5 + p1c	p6 + p2c3 + p2c4 + p2c5	

{18,14} p1c1 + 2p1c2 + 5p1c3 + 5p1c4 + p1c5 + 3p1c6 + 4p1c7 + p2c1 + 2p2c2 + p2c3 + 3p2c4 + 6p2c5 + 7p2c6 + 4p2c7 - Min[p1c3 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p1c4 + p1c7 + p2c6 + p2c7] - Min[p2c6, p1c4 + p1c7 + p2c6 + p2c7] - Min[p1c4 + p1c7 + p2c6 + p2c7, Max[p1c3 + p2c5, p1c2 + p1c3 + p1c6 + p2c2 + p2c4 + p2c5, p2c6]]