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Abstract. In this paper we study Distributed Data Mining from a Distributed 
Artificial Intelligence perspective. Very often, databases are very large to be 
mined. Then Distributed Data Mining can be used for discovering knowledge 
(rule sets) generated from parts of the entire training data set. This process 
requires cooperation and coordination between the processors because 
inconsistent, incomplete and useless knowledge can be generated, since each 
processor uses partial data. Cooperation and coordination are important issues 
in Distributed Artificial Intelligence and can be accomplished with different 
techniques: planning (centralized, partially distributed and distributed), 
negotiation, reaction, etc. In this work we discuss a coordination protocol for 
cooperative learning agents of a MAS developed previously, comparing it 
conceptually with other learning systems. This cooperative process is 
hierarchical and works under the coordination of a manager agent. The 
proposed model aims to select the best rules for integration into the global 
model without, however, decreasing its accuracy rate. We have also done 
experiments comparing accuracy and complexity of the knowledge generated 
by the cooperative agents.   

Keywords: Distributed Data Mining, Distributed Artificial Intelligence, 
Cooperative Agents, Learning Agents. 

1   Introduction 

Data Mining [1] [3] permits efficient discovery of valid, non-obvious information in 
large collections of data, and it is used in information management and decision 
making, enabling an increase in business opportunities. 

Despite the augmentation of computer processing power, much attention is given 
to speeding up the data mining process. Basically, speeding up approaches can be 
either (i) data-oriented or (ii) algorithm-oriented. In (i) the dataset is processed and 
the learning instances space is reduced by discretization, attribute selection or 
sampling. In (ii) new search strategies are studied or data are mined in a distributed or 
parallel fashion. According to Freitas and Lavigton [12], Distributed Data Mining 



(DDM) [4] [5] consists of partitioning the data being mined among multiple 
processors, applying the same or different data mining algorithms to each local subset 
and then combining the local knowledge discovered by the algorithms into a global 
knowledge. The authors also discuss that such global knowledge is usually different 
(less accurate as the number of subsets increases) from the knowledge discovered by 
applying the mining algorithm on the entire dataset formed from the union of the 
individual local datasets. Unfortunately, subsets are often too large to be merged into 
a single dataset and then, some distributed learning approach must be used. 

DDM can deal with public datasets available on the Internet, corporate databases 
within an Intranet, environments for mobile computation, collections of distributed 
sensor data for monitoring, etc. Distributed Data Mining offers better scalability, 
possibility of increase in data security and better response time when compared with a 
centralized model. 

Techniques from Distributed Artificial Intelligence [6] [7], related to Multi-Agent 
Systems (MAS), can be applied to Distributed Data Mining with the objective of 
reducing the necessary complexity of the training task while ensuring high quality 
results. 

Multi-Agent Systems [8] [9] are ideal for the representation of problems which 
include several problem solving methods, multiple points of view and multiple 
entities. In such domains, Multi-Agent systems offer the advantages of concurrent and 
distributed problem solving, along with the advantages of sophisticated schemes of 
interaction. Examples of interaction include cooperative work towards the 
achievement of a shared goal. 

This paper discuss about the use of Multi-Agent Systems [10] [11] in Distributed 
Data Mining technique taking as example a previous work developed for knowledge 
integration [26]. Model integration consists in the amalgamation of local models into 
a global, consistent one. Agents perform learning tasks on subsets of data and, 
afterwards, results are combined into a unique model. In order to achieve that, agents 
cooperate so that the process of knowledge discovery can be accelerated. The 
proposed model previously aims to select the best rules for integration into the global 
model without, however, causing a decrease in its accuracy rate. 

This paper is organized as follows: section 2 discusses the relationship between 
Distributed Data Mining and Distributed Artificial Intelligence. The knowledge 
integration protocol approach is discussed in section 3 and its results are displayed 
and discussed in section 4. In section 5 we include some related work and conclusions 
are exposed in section 6. 

2. Distributed Data Mining and Distributed Artificial Intelligence  

Distributed Data Mining (DDM) resulted from the evolution of Data Mining as it 
incorporated concepts from the field of Distributed Systems. DDM deals with data 
which is remotely distributed in different, interconnected locations. 

According to Freitas [12], distributed mining is a 3-phase process: 
��Split the data to be mined into p subsets, where p is the number of processors 
available, and send each subset to a distinct processor; 



��Each processor must apply a mining algorithm to the local dataset. Processors 
may run the same mining algorithm or different ones; 
��Merge the local knowledge discovered by each mining algorithm into a 
consistent, global knowledge. 

DDM systems handle different components: mining algorithms, subsystems of 
communication, resource management, task planning, user interfaces and others. They 
provide efficient access to data and distributed computational resources, while they 
still permit monitoring the mining procedure and properly presenting results to users. 
A successful DDM system must be flexible enough to fit a variety of situations. It 
must also dynamically identify the best mining strategy according to the resources at 
hand and provide a straightforward manner of updating its components. 

Client-server and agent-based architectures are examples of solutions which have 
been proposed in the literature. All agent-based DDM systems contain one or more 
agents in charge of each dataset. Such agents are responsible for analyzing local data 
and deliberately communicate with others during the mining stage, exchanging local 
knowledge until a global, coherent knowledge is reached. Due to the complexities 
involved in maintaining complete control over remote resources, many agent-based 
systems utilize a supervisor agent, called facilitator, which controls the behavior of 
local agents. Java Agents for Meta-learning (JAM) [13] and the BODHI system [14] 
follow this approach. 

As previously mentioned, some of the techniques proposed in Distributed Artificial 
Intelligence, such as Multi-Agent systems, can be applied to Distributed Data Mining 
as to reduce the complexity needed for training while ensuring high quality results. 

Distributed Artificial Intelligence (DAI) is the union of Artificial Intelligence (AI) 
and techniques from Distributed Systems. A definition for DAI which is more suitable 
to the concept of agency is given by Jennings [15], who declared that the object of 
investigation for DAI lies on knowledge models and techniques for communication 
and reasoning, necessary for computational agents to be able to integrate societies 
composed of computers and people. Jennings also splits DAI into two main research 
areas: 

Distributed Problem Solving (DPS) – divides the solution of a particular problem 
amongst a number a modules which cooperate by sharing knowledge about the 
problem and the solutions involved.  

Multi-Agent Systems (MAS) – studies the behavior of a set of (possibly pre-
existing) autonomous agents whose shared goal is the solution of an arbitrary 
problem. 

A Multi-Agent System, according to works by Jennings, Sycara and Wooldridge 
[16] and Wooldridge [17], is a computer program with problem solvers located in 
interactive environments, which are capable of flexible, autonomous, socially 
organized actions which can, although not necessarily, be directed towards 
predetermined goals or targets. Multi-Agent systems are ideal for the representation 
of problems which include several problem solving methods, multiple points of view 
and multiple entities. In such domains, Multi-Agent Systems offer the advantages of 
concurrent and distributed problem solving, along with the advantages of 
sophisticated schemes of interaction. Examples of interaction include cooperation 
towards the achievement of a shared goal, coordination when organizing activities for 
problem solving, avoidance of harmful interactions and exploitation of beneficial 



opportunities, and negotiation of constraints in sub-problems, so that a satisfactory 
performance be achieved. On the flexibility of these social interactions lies the 
distinction between Multi-Agent systems and traditional programs, providing power 
and attractiveness to the paradigm of agents. 

There are a number of application domains where Multi-Agent-based problem 
solving is appropriate, such as: manufacture, automated control, telecommunications, 
public transport, information management, e-commerce and games. 

3. A Multi-Agent System for Distributed Data Mining 

This section discuss a Distributed Data Mining technique based on a Multi-Agent 
environment, called SMAMDD (Multi-Agent System for Distributed Data Mining) 
presented previously in [26]. In this work, a group of agents is responsible for 
applying a machine learning algorithm to subsets of data. 

Basically, the process involves the following steps: (1) preparation of data, (2) 
generation of individual models, where each agent applies the same machine learning 
algorithm to different subsets of data for acquiring rules, (3) cooperation with the 
exchange of messages, and (4) construction of an integrated model, based on results 
obtained from the agents’ cooperative work. 

The agents cooperate by exchanging messages about the rules generated by each 
other, searching for the best rules for each subset of data.  The assessment of rules in 
each agent is based on accuracy, coverage and intersection factors. The proposed 
model aims to select the best rules to integrate the global model, attempting to 
increase quality and coverage while reducing intersection of rules. 

3.1 The SMAMDD architecture 

In the distributed learning system proposed, the agents use the same machine learning 
algorithm in all the subsets of data to be mined. Afterwards, the individual models are 
merged so that a global model is produced. In this approach, each agent is responsible 
for a subset of data whose size is reduced, focusing on improving the performance of 
the algorithm and considering also the physical distribution of data. Thus, each 
dataset is managed by an autonomous agent whose learning skills make it capable of 
generating a set of classification rules of type if-then. Each agent’s competence is 
implemented with the environment WEKA (Waikato Environment for Knowledge 
Analysis), using the machine learning algorithm RIPPER [18]. The agents also make 
use of a validation dataset. Training and validation percentages can be parameterized 
and their default values are 90 and 10%, respectively. Fig. 1 presents the general 
architecture of the system. 
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Fig. 1.� System architecture: Analysers and Manager communicating. Communication can 
occur through the Manager or not.  

In order to compare rules and rulesets, some measurements are made on the 
validation dataset. Support, Error, Confidence and Quality are specific measures to a 
rule depicted formally as the following way to a rule R predicting class Class:  

� Support: number of examples covered by R; 
� Error: number of examples covered by R but with class != Class; 
� Confidence = 1 – (Error / Support); 
� Quality = Support * Confidence; 

 
Coverage and Intersection are specific measures to a ruleset depicted formally as 
the following way to a ruleset RS = {R1

E1, R2
E2, … , Rr

Er}, where Ei is the set of 
examples covered by rule Ri: 

� Coverage = |E1| + |E2| + … + |Er|; 
� Intersection = |E’  �(�_���_(¶� �(�_�������+ |E’  �(�_��to a Rule RE’ . 

 
The two last measures are computed ignoring the default rule1. Otherwise the 
coverage of a ruleset RS’  is always |DB| for any dataset DB. 
 
Support and confidence factors are assigned to each rule, yielding the rule quality 

factor. In this work, the quality factor is being proposed as an evaluation metric for 
rules. Each Analyzer Agent will still maintain intersection and coverage factors, 
representing the intersection level among rules and the amount of examples covered 
by rules in the agent, respectively. At the end of the process, rules are maintained in 
the following format: 

 
rule(Premises, Class,  

                  [Support, Error, Confidence, Coverage, Intersection, Quality, 
self_rule]). 

 

                                                           
1 A default rule has not conditions and covers all the examples not covered previously by the 

other rules. 



The term self_rule indicates whether the rule has been generated in the agent or 
incorporated from another, in which case it is named external_rule. There is no need 
to test rules with the parameter value external_rule. After rules are generated and the 
factors mentioned are found, the process of cooperation for discovery of best rules 
starts. This cooperative process occurs by means of exchange of messages and is 
hierarchically coordinated due to the existence of a manager agent. 

Agents hold restricted previous knowledge about each other, namely agent’ s 
competences and information for communication. An interface for communication 
with users is also embedded in the Manager agent. In addition to that, it is responsible 
for coordinating the process of interaction among agents. 

The interaction process arises from the need to test the rules generated by an 
arbitrary agent against the validation set of others, where rule quality on their datasets 
and intersection and coverage factors obtained with the insertion of rules in their 
datasets are verified. Such factors are used to quantify the degree of agent satisfaction, 
represented by the scalar state_value, obtained with Equation 1. 

 
))033,0()17,0(cov)33,0((_ ×+×+×= %�&' &)( *�+#,"*�-�( '*�+#.�/0*1)2 .)3 ' ( 45 .)3 2 *,�( .)( *                                 (1) 

 
Based on weights assigned to each factor in the formula above, the algorithm 

searches for rules with high quality and coverage factors and whose intersection 
factor is minimal. Weights used in this work have been determined after experiments 
in an attempt to obtain the highest accuracy level. Future work may approach a deeper 
study on values to be defined for each factor. 

 
Table 1a. Exchange of messages among the agents. 

Message ID Sender Receiver 
load Analyzer Self 
manageEvaluation Manager Self 
waitRulesToTest Analyzeri Analyzerj 
testRules Manager Analyzer 
evaluateRules Manager Analyzer 
startEvaluation Analyzer Self 
test Analyseri Analyserj 
add Analyzeri Self or Analyzerj 
remove Analyzeri Self or Analyzerj 
evaluate Analyser Self 
finishEvaluation Analyser Manager 
calculateRightnessTax Manager Self 
calculateRightnessTax Manager Analyser 
getRules Manager Analyseri 
generateReport Manager Self 

 



Table 1b. Description of Messages. 
Message ID Action 

load Generate rules 
manageEvaluation Start the process to coordinate cooperation 
waitRulesToTest Await delivery of rules 
testRules Start the process of analysis of external rules. 

For each rule, calculate the following factors: 
support, confidence, quality, intersection and 
coverage. Such factors allow the generation of a 
StateValue for each rule in the agent. Each 
StateValue is stored in NewState and sent to the 
source agent in a message of type 
response_test[NewState:Rule]). The procedure 
testRules continues until all rules in the agent 
are tested. 

evaluateRules Request that the process of analysis of self 
rules not yet analyzed be started 

startEvaluation Start the analysis of local rules 
test Calculate confidence, error, support, rule 

quality and intersection and coverage for the 
rule received. 

add Add a rule to the set of selected rules 
remove Delete a rule from the set of selected rules 
evaluate Calculate confidence, coverage and 

intersection for the set of rules 
finishEvaluation Return to the process manageEvaluation to 

verify whether there exists another rule in the 
agent yet to be tested or if another agent can 
start the evaluation of its rules. 

calculateRightnessTax Request accuracy rate for remaining local 
rules 

getRules Request the agent’ s rules with best accuracy 
rate 

generateReport Calculate final accuracy rates, quantity and 
complexity of rules, and present them to the 
user 

 
Thus, one must find the agent which holds the highest degree of satisfaction 

(state_value) for a given rule. For any given rule, the agent whose state_value is the 
highest must incorporate that rule into its rules set; it must also inform the agent 
where it came from as well as the other agents which also hold it to exclude it from 
their rules set. After all rules in all agents have been analyzed, they must be tested 
against each agent’ s validation set (10%). The agent’ s rules whose accuracy against 
its validation set is the highest will integrate the global model. In addition to the rules 
obtained at the end of that process, the accuracy of rules against the test set, the 
number of rules generated and their average complexity are calculated. 



 
Fig. 2.� Sequence Diagram for cooperation among agents. 



3.2 Cooperation model 

As seen in the previous section, there are N analyzer agents and one manager agent in 
SMAMDD. Their main components are: an individual knowledge base and a 
communication module which permits the exchange of asynchronous messages with 
each other. The Manager agent possesses also a module which eases the coordination 
tasks amongst the analyzer agents. 

The human operator uses a graphical interface to start the system and visualize 
intermediate results generated by agents, as shown in Fig. 2. Fig. 2 partially illustrates 
the exchange of messages among agents in the form of a UML 2.0 diagram. Both 
messages and respective actions executed by each agent along the process of 
interaction are detailed in Tables 1a and 1b. Whenever an analyzer agent receives a 
start message it generates its ruleset based on local data running a rule-based 
algorithm. Then the manager chooses one analyzer A1 to start evaluating the local 
rules (evaluateRules) and warns any other analyzer on it (waitRulesToTest). Then, A1 

chooses a rule ri and asks the other analyzers for evaluation of ri (test). The agent 
answering with the higher stateValue receives a confirmation to keep the rule (add) 
and the other agents must remove the rule from the local ruleset (remove). Agent A1 
continues the process sequentially with the next rules. When the evaluation of A1 is 
over, it warns the manager (finishedEvaluation). Afterwards, manager starts a new 
evaluation process with A2, A3 and so on.  

4. Results 

In this section we complete the initial results presented in [26] with results regarding 
the complexity of the knowledge discovered with SMAMDD. With the intention of 
evaluating the work proposed, the following public datasets from the UCI Repository 
[1] have been utilized: Breast, Cancer, Vote, Zoo, Lymph, Soybean, Balance-scale, 
Audiology, Splice, Kr-ys-kp and Mushroom. Some combination techniques are not 
commonly used for learning in distributed data sets but are useful to improve the 
performance of the base classifiers on a centralized training data set. Such techniques 
generally use some heuristic for selecting instances or partitioning data. Since in 
distributed data mining we do not have control on the data organization and 
distribution, the performance of these methods are not foreseen. However, studies 
show that the combination of classifiers generated from several samples of a 
centralized data set can significantly improve the accuracy of the predictions [23] [24] 
[25]. We briefly discuss in the next paragraphs two well-known approaches (bagging 
and boosting) used in the experiments. 

4.1  Bagging 

Quite often, training sets are not good enough to describe a given problem. In this 
case, the available data represent a partial view of the entire problem. Consequently, a 



learning algorithm will not be able to generate a good classifier because it is based on 
a local model. Breiman [23] discusses a procedure able to improve the performance of 
any algorithm by combining several classifiers: bagging. Bagging solves the problem 
of local models by selecting equal sized samples of training subsets and generating 
classifiers for such subsets based on a learning algorithm. Each training subset is 
made up of instances selected randomly but with replacement. This means a given 
instance may repeatedly appear or not at all in any training subset. Finally, the 
classification of a test instance is given by a vote strategy [23]. According to Breiman, 
bagging works very well for unstable learning algorithms like decision trees or neural 
networks. In such methods small changes into the training set will produce very 
different classifiers. However, bagging is not so efficient for stable algorithms as 
nearest neighbor. Spite of this, Ting and Witten contested such ideas showing that 
Bagging can generate also good results for stable algorithms like Naïve Bayes in large 
databases [25]. 

4.2  Boosting 

We have said in the former paragraph that bagging generally works for unstable 
learning algorithms. This happens because learning algorithms generate very different 
models that are possibly complementary, even for similar inputs. Thus, the more 
different the data models, the larger the covered space of training instances is. 
However, with bagging, we do not guarantee complementary models because the 
instances are selected randomly. Boosting exploits this problem by providing a hill-
climbing-like algorithm, guaranteeing the models to be as complementary as possible 
[25] [24]. There are many versions of boosting and here we discuss the general idea. 
To guide the generation of models, instances are initially weighed with an initial 
value. The weights are used for the classifier error estimation. The error is given by 
the sum of the weights of the misclassified instances divided by the sum of the weight 
of all instances. The weighing strategy forces the algorithm to pay more attention to 
misclassified instances (high weight). First, an equal error is assigned to all training 
instances. Then the learning algorithm generates the classifier and weights in all 
training instances are updated, increasing the weights of misclassified instances and 
decreasing the weights of well-classified instances. The global error of the classifier is 
also computed and stored. The process is repeated interactively until the generation of 
a small error. This procedure generates the classifiers and the weight of the training 
instances, where the weights represent the frequency the instances have been 
misclassified by the classifiers. To classify a new instance, the decision of a classifier 
is taken into account by assigning the weight of the classifier to the predicted class. 
Finally, the class with the largest weight (sum of the weights) is returned. 



4.3 Empirical Results 
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1 Breast C. 9 2 286 
2 Vote 16 2 435 
3 Zoo 17 7 101 
4 Lymph 18 4 148 
5 Soybean 35 19 683 
6 Balance 4 3 625 
7 Audiology 69 24 226 
8 Splice 61 3 3190 
9 Kr-vs-kp 36 2 3196 
10 Mushroom 22 2 8124 

Table 2: Statistics on datasets. 
 

Datasets were randomly split into n subsets each for cross-validation, yielding a total 
of 10 steps, iteratively, for each dataset. In SMAMDD, every partition is divided into 
training and validation, where the former constitutes 90 and the latter 10%. 
SMAMDD generates rules using only the Ripper algorithm. At the end of each step, 
accuracy rates, quantity of rules and complexity of rules are calculated. Table 2 
presents some statistics about the datasets used in the experiments. 

Table 3 presents the accuracy rates obtained by the SMAMDD and the techniques 
Bagging, Boosting and the RIPPER algorithm. The best results are displayed in bold.  

 
Datasets SMAMDD Ripper Bagging Boosting 

Breast C. 80,23 ±4,4 71,74 ±3,8 71,39 ±3,3 72,55 ±4,8 
Vote 97,56 ±1,83 94,88 ±2,50 95,41 ±1,12 93,99 ±1,39 
Zôo 91,29 ±6,28 88,71 ±4,87 89,03 ±5,09 94,84 ±4,36 
Lymph 84,22 ±11,01 74,67 ±5,36 80,44 ±7,16 83,78 ±2,78 
Soybean 95,36 ±2,14 91,12 ±2,17 92,19 ±1,89 92,24 ±1,72 
Balance 85,37 ±4,53 73,62 ±4,45 79,41 ±3,56 79,15 ±4,15 
Audiology 81,32 ±6,44 73,97 ±5,53 73,23 ±7,03 75,59 ±7,54 
Splice 98,12 ±1,85 93,31 ±0,74 95,08 ±0,66 94,67 ±0,23 
Kr-vs-kp 97,04 ±2,51 98,99 ±0,32 99,21 ±0,24 99,37 ±0,41 
Mushroom 100,00 ±0,00 99,93 ±0,16 100,00 ±0,00 99,93 ±0,16 

Tabela 3: Average accuracy rates2. 
 
Results from Table 3 are quite encouraging, as the SMAMDD system has achieved 

high accuracy rates in the majority of the datasets. The best results were obtained with 
the Balance-scale dataset, where the number of attributes is reduced. 

By comparison with the boosting technique, the SMAMDD system experienced a 
reasonably lower accuracy performance in the Zoo dataset only. We believe that such 
performance loss was due to a reduced number of examples combined with a 
proportionally large number of attributes. Such characteristic often affects 

                                                           
2 Extracted from [26]. 



significantly the performance of non-stable algorithms such as RIPPER, producing 
quite different models for each subset. Consequently, concepts discovered locally 
rarely improve the satisfaction of neighbors and are doomed to remain limited to their 
original agents, having a negative impact on the agents’  cooperative potential. 

Even having obtained an accuracy performance higher than those of the other 
algorithms, the SMAMDD produced a high standard deviation in the dataset Lymph. 
Such distortion is due again to the large number of attributes in comparison with the 
number of examples. 

It can be observed that some datasets presented a high standard deviation, 
revealing the instability of the algorithm upon the proportion of number of attributes 
to number of examples. With these results, it can be noticed that the SMAMDD 
system presents better accuracy performances when the number of attributes is small 
in comparison with the number of examples, i.e., the tuples space is densely populated 
(large volumes of data). 

Table 4 compares the amount of rules generated by the SMAMDD system in 
comparison with the techniques bagging and boosting and the RIPPER algorithm. 

 
Datasets SMAMDD Ripper Bagging Boosting 

Breast C. 3,9 ±1,20 2,7 ±1,03 4,3 ±0,90 2,3 ±1,40 
Vote 3,2 ±1,03 3,2 ±1,03 2,7 ±0,48 4,0 ±2,36 
Zoo 5,7 ±0,48 5,7 ±0,48 6,4 ±0,84 6,2 ±1,40 
Lymph 5,2 ±2,30 5,2 ±1,87 5,4 ±1,26 5,0 ±2,11 
Soybean 49,3 ±18,86 25,1 ±1,29 26 ±2,54 22,1 ±7,11 
Balance 17,2 ±7,61 11,6 ±3,24 12,4 ±3,75 10,1 ±3,97 
Audiology 17,7 ±5,19 13,3 ±1,64 13,6 ±1,17 16,10 ±3,25 
Splice 29,67 ±10,07 13,67 ±5,51 17,67 ±4,51 29,0 ±3,46 
Kr-vs-kp 38,5 ±7,94 14,5 ±1,38 14,5 ±2,26 10,0 ±4,82 
Mushroom 12,8 ±2,68 8,6 ±0,55 8,8 ±0,84 8,6 ±0,55 

Table 4: Average number of rules. 

 

From the statistics presented in Table 4, it can be noticed that the system 
SMAMDD has an inclination of producing a more complex model (high number of 
rules) when compared to the other techniques. It is also noticeable that the increase in 
the size of datasets, in general, causes a considerable increase in the number of rules 
along with higher standard deviations. 

 
Datasets SMAMDD Ripper Bagging Boosting 

Breast C. 1,84 ±0,14 1,10 ±0,16 1,49 ±0,12 1,41 ±0,16 
Vote 1,31 ±0,60 1,31 ±0,60 1,22 ±0,56 1,36 ±0,65 
Zoo 1,08 ±0,17 1,08 ±0,17 1,00 ±0,16 1,03 ±0,14 
Lymph 1,24 ±0,24 1,18 ±0,23 1,44 ±0,23 1,27 ±0,55 
Soybean 1,86 ±0,21 1,59 ±0,06 1,72 ±0,07 1,89 ±0,32 
Balance 1,76 ±0,16 1,71 ±0,20 1,85 ±0,19 1,84 ±0,42 
Audiology 1,61 ±0,11 1,50 ±0,12 1,57 ±0,14 1,66 ±0,21 
Splice 3,95 ±0,16 3,52 ±0,44 3,36 ±0,37 3,75 ±0,31 
Kr-vs-kp 3,39 ±0,24 2,78 ±0,10 2,89 ±0,24 3,53 ±1,86 
Mushroom 1,51 ±0,11 1,37 ±0,10 1,36 ±0,10 1,41 ±0,11 

Table 5: Average complexity of rules 



 
 Table 5 presents the complexity of rules generated by the SMAMDD system, by 

the techniques bagging and boosting and by the RIPPER algorithm. The complexity 
of a rule is proportional to the number of conditions it has. Simple rules (few 
conditions) are preferable in relation to complex rules. 

According to the statistics presented in Table 5, the complexity of the rules 
generated by the SMAMDD system is similar to those obtained with the other 
techniques. Even the largest datasets have not resulted in more complex models, 
demonstrating that number of attributes and volume of data have both been unable to 
significantly affect the complexity of rules. 

5. Discussion and Related Work 

From the collection of agent-based DDM systems which have been developed, 
BODHI, PADMA, JAM and Papyrus figure in the list of the most prominent and 
representative. BODHI [14], a Java implementation, was designed as a framework for 
collective DM tasks upon sites with heterogeneous data. Its mining process is 
distributed among local and mobile agents, the latter of which move along stations on 
demand. A central agent is responsible for both starting and coordinating data mining 
tasks. PADMA [20] deals with DDM problems where sites contain homogeneous data 
only. Partial cluster models are generated locally by agents in distinct sites. All local 
models are amalgamated into a central one which runs a second level clustering 
algorithm to create a global model. JAM [13] is a Java-based Multi-Agent system 
which was designed to be used for meta-learning in DDM. Different classification 
algorithms such as RIPPER, CART, ID3, C4.5, Baves and WEPBLS can be applied 
on heterogeneous datasets by JAM agents, which either reside in a site or are 
imported from others. Agents build up classification models using different 
techniques. Models are properly combined to classify new data. Papyrus [21] is a 
Java-based system for DDM over clusters from sites with heterogeneous data and 
meta-clusters. 

In [22], an agent-based DDM system where agents possess individual models, 
which are built up into a global one by means of cooperative negotiation, is proposed. 
Only rules with confidence greater than a predetermined threshold are selected along 
the generation stage; the negotiation process starts just afterwards. 
The SMAMDD system proposed has been designed to perform classification. An 
important characteristic of the system is the degree of independence, for it does not 
require configuration parameters and thresholds as do most of the ones 
aforementioned. Moreover, local models are completely analyzed, as opposed to 
being pruned as in [22]. Although it demands more processing time, the risk of 
removing a concept important for the global model is reduced. 



6. Conclusion 

Distributed Data Mining and Distributed Artificial Intelligence have many shared and 
complementary issues involving the generation of global points-of-view based on 
local ones. Coordination, collaboration, cooperation and specific evaluation measures 
are important challenges in both the areas. This paper has discussed some works that 
use such concepts in different ways for the accomplishment of different tasks. 
SMAMDD, for instance, performs model integration and yields results comparable to 
the ones obtained with other machine learning techniques; besides, it exhibited 
superior performance in some cases. The system permits discovering knowledge in 
subsets of data, located in a larger database. High quality accuracy rates were 
obtained in the tests presented, corroborating the proposal and demonstrating its 
efficiency. 

Although promising, the use of Distributed Artificial Intelligence in Distributed 
Data Mining and vice-versa is a quite recent area. Particularly, some questions have 
yet to be better studied in future work: consolidation of the techniques developed with 
evaluations in databases with different characteristics and from different domains; the 
use of distinct classification algorithms in the generation of local models and studies 
concerning alternative knowledge quality evaluation metrics are yet to be done. An 
important issue consists in developing new strategies which permit reducing the 
number of interactions. Techniques of game theory and coalition formation can be 
useful for the detection of groups and hierarchies between learning agents. Such 
information can often improve the coordination, reducing the number of messages, 
the amount of processing and the general quality of the interaction.  
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