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Reminders

» Today we will discuss dimensionality reduction
* Next week we will have our test!
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Dimensionality reduction

* In opposition to feature selection, dimensionality
reduction techniques decrease the dimensionality of a

problem by combining features
* There are different techniques to achieve this goal

* The most famous is Principal Component Analysis
(PCA)
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Variance and covariance

* Variance and covariance measure how “spread” a set
of points are around their mean

* Variance is used for analyzing a single dimension

* Covariance measures how much each of the

dimensions vary from the mean with respect to each
other

* Covariance is measures between 2 dimensions to see if
there is a relationship between them

Covariance

* The covariance between 2 variables is computed by:

X=X -Y)

Cov(X,Y) = @D

* If you have more than 2 variables, you need to
compute a covariance matrix
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Covariance

* The exact value is not as important as its sign

* A positive value indicates both variables increase or
decrease together

* A negative value indicates that while one variable
increases, the other decreases, or vice-versa

* If covariance is zero, the two variables are independent
from each other

But what about correlation?

e Correlation allowed us to infere the same thing
* Why do we need covariance?
e Covariance is used to find relationships between

variables in high-dimensional scenarios, where
visualization is difficult
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Principal component analysis (PCA)

* PCAis a technique used to simplify a dataset

* Itis a linear transformation that chooses a new coordinate
system for the dataset such that:

— the greatest variance by any projection lies on the first axis:
the 1st principal component (eigenvector with the largest
eigenvalue)

— the second greatest variance lies on the y axis (2nd PC), and
so forth (eigenvector with the second largest eigenvalue, etc)

* PCA can be used for reducing dimensionality by eliminating
later principal components
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Steps to use PCA

* Normalize the data

* Calculate the covariance matrix

* Calculate the eigenvalues and eigenvectors
* Choosing principal components

* Forming a feature vector

* Forming principal components

* All but the first of these steps are covered in scikit-learn’s
PCA implementation
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PCA Limitations

* |f the data does not follow a multidimensional normal
(gaussian) distribution, the principal components
extracted will be distorted
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Activity

e Let’s run PCA on a dataset representing customers

e Each customer represents either a restaurant, a retail
store, etc

* Let’s analyze its principal components

14
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t-Stochastic Neighbor Embedding

Technique tailored for visualizing high-dimensional
datasets

How do we visualize data in 2D or 3D?
Two goals:

— Distance preservation
— Neighbor preservation

Unsupervised, but it helps uncovering interesting
aspects of the data

16
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t-SNE overall idea

* Let’s say we have a 2D problem we wish to visualize in 1D
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Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: data set X = {xy,x2,...,X,},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation () = {1,200t
begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
0 j1it+Dilj
set pyj = Hig
sample initial solution 9(®) = {y},y,,...,y,} from AL(0,10741)
for 1=/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient g—; (using Equation 5)
set (1) = oy (=1) +n% 0] (9/071) — =)
end
end
18



t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

|l)ata: data set X = {x,x2, ‘..,x,,},l

cost function parameters: perplexity Perp,

Random Sampling of MNIST

O
 fanch Ferp, . — )]
optimization parameters: number of iterations 7', learning rate 1, momentum o(7). “
Result: low-dimensional data representation () = {1,200t
e REEBR
compute pairwise affinities p ;; with perplexity Perp (using Equation
et pyy = LT 8|
in
sample initial solution 9(®) = {y},y,,...,y,} from AL(0,1074/)
for 1=/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient g—; (using Equation 5)
set 9/‘(’) — D/L’*l) +n% Jra([) (9/(’*') _ 9/(’*2J)
end
end
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Random Sampling of MNIST
Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
|l)ata: data set X = {x,x2,....x,} | E
cost function parameters: perplexity Perp, S E
optimization parameters: number of iterations 7', learning rate 1, momentum o(7). b
Result: low-dimensional data representation 9 () = V1.2, Vn}- . “
g e i . with nersexity Forp usine Feaion) NEEBH
compute pairwise affinities p ;; with perplexity Perp (using Equation
o B
in
sample initial solution 9 = {yy,y2,....y,} from AL(0,107*])
for =/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient g—; (using Equation 5)
a0 ) (3 0-0) |
end -
end :
20
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t-SNE

Random Sampling of MNIST

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: data set X = {xy,x2,...,X,},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation () = V1.2, Vn}-
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begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
jlitPi
set p;; = 2P ‘2,,“'

sample initial solution 9(®) = {y},y,,...,y,} from AL(0,1074/)
for 1=/ to T do
compute low-dimensional affinities ¢;; (using Equation 4)

compute gradient & (using Equation 5)

set 9/‘(’) — D/L’*l) +n% Jra([) (9/(’*') ,9/(1*2))
end

end
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Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding. fencom semplng of ST
Data: data set X = {xy,x2,...,X,}, E
cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum o(7). E
Result: low-dimensional data representation (") = {y1,y2,....y,}. “
begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1) E E
set Pij = p,\,;r% E
sample initial solution 9 = {y,y2,...,y, } from A(0,10~%7)
for 1=/ to T do
compute low-dimcngional affinities ¢;; (using Equation 4)
compute gradient g(, (using Equation 5)
set 9/‘(’) — D/L’*l) +n% Jra([) (9/(’*') _ 9/(’*2))
end
end
\ 4
Perplexity is the number Compute probabilities P that xi
of instances that we want and xj are neighbors
to present the distances (based on Euclidian distance in high-d space)
22
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t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {xy,x2,...,X,},
cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).

Result: low-dimensional data representation 9’(” ={V1,y2,-sVn}-

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
Pjlitpi
set pij = ‘217 .

sample initial solution 9(®) = {y},y,,...,y,} from AL(0,1074/)
for=/to " do
compute low-dimensional affinities ¢;; (using Equation 4) |
compute gradient g—; (using Equation 5)

set 9/‘(’) — D/L’*l) +n% Jra([) (9/(’*') ,y(f*zl)
end

end

neighbors (corresponding to xi, xj)
(based on Euclidian distance in low-d space)

Compute probabilities Q that yi and yj are </ % M%
MEDR YR

Random Sampling of MNIST
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t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {xy,x2,...,X,},
cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).

Result: low-dimensional data representation () = {1,200t
begin
compute pairwise affinities|p ;; }Nith perplexity Perp (using Equation 1)

o _ Piitpi;
set Pij = 2n

sample initial solution 9®) = {y},y2,...,y,} from AL(0,10741)

for t=1 to 7T do
compute low-dimensiona afﬁnitie using Equation 4)
compute gradient g—; (usipg Equatio

set (1) = oy (=1) JHT% A N0) (9/(! D g=2))

end

end

v
Key assumption is that the high-d P and the
low-d Q probability distributions should be the

same

Random Sampling of MNIST
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t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {xy,x2,...,X,},

cost function parameters: perplexity Perp,

optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation () = {1,200t

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
Pjlitpi
set pij = /‘217 .

sample initial solution 9(®) = {y},y,,...,y,} from AL(0,1074/)
for t=/to 7 do
compute low-dimensional affinities ¢;; (using Equation 4)
ompute gradient g—; (using Equation 5)

set 9”” — D/Lr—lj + ]6021 +(l([) (9/(1—” — y(r—zj)

end

end

the P (high-d) and Q (low-d) distributions

(if xi,xj has high probability of being neighbors in high-d,

then yi,yj should have high probability in low-d)

Find a low-d map that minimizes the difference between

25

t-SNE

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {xy,x2,...,X,},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum o(7).
Result: low-dimensional data representation () = {1,200t
begin
compute pairwise affinities Pjli with perplexity Perp (using Equation 1)
set pij = Lo
sample initial solution (%) = {y|. 5. ....v,} from A(0,10~*/
for t=1/ to 7 do
compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient g—; (using Equation 5)
set (1) = oy (=1) +n% +o(r) (9/071) _ 9/0*2))
end

end

We will minimize the difference between the
high-d and low-d maps using gradient descent

26
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t-SNE details

* Details on t-SNE can be found at the original paper
* https://imlr.org/papers/volume9/vandermaaten08a/va

ndermaaten08a.pdf

Journal of Machine Learning Research 9 (2008) 2579-2605 Subenitted S/US: Revised 9/U8; Published 11108

Visualizing Data using t-SNE
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HINTON @ CS.TORONTO.EDU

J nto
6 King's College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio
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t-SNE

* In opposition to PCA, t-SNE is not parametric
* This means that we cannot learn a manifold representation from a
dataset and apply it to another dataset

— Therefore, this cannot be used as a dimensionality reduction technique
between training and test data

* There is, however, a parametric version available at:

Learning a Parametric Embedding by Preserving Local Structure

Laurens van der Maaten
TiCC, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands
lvdmaaten@gmail.com
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