

A Three-Ballot Based Secure Electronic
Voting System

Regivaldo G. Costa, Altair O. Santin, Carlos A. Maziero
Pontifical Catholic University of Paraná, Graduate Program in Computer Science

Curitiba – PR – Brazil
 {rcosta, santin, maziero}@ppgia.pucpr.br

Abstract — This paper presents a secure Electronic Voting System, which provides the requirements and properties needed in
voting environments, integrated in a single architecture. Our architecture mainly addresses the vote receipts, the uniqueness
and materialization of the vote, and the privacy and anonymity of the voters. The architecture is based on the scattering of the
responsibilities involved in the voting process among distinct interacting entities, to avoid possible critical security points. This
proposal applies cryptographic techniques to achieve its security requirements. A proof-of-concept prototype was built, using
web services and the Election Markup Language (EML), to show the viability of the proposal.

Index Terms — Electronic Voting System, Cryptography Based Security, Three-Ballot voting system

—————————— ——————————

INTRODUCTION

Electronic Voting Systems (EVS) are being increasingly
used, replacing traditional paper-based systems. This
tendency raises several security issues that should be
considered, as the democracy principles depend on the
integrity of the electoral processes.

The most relevant requirements of a secure EVS are
the anonymity preservation, ensuring that a vote cannot
be associated to its voter, and the voter's confidence on
the correct accounting of her vote, through the generation
of evidences or receipts of the vote assignment. Other
properties are also expected from an EVS: to prevent vote
trading and voter coercion; to produce trustworthy in-
formation about the voting procedures as a whole; to use
homologated and certified software and hardware; mate-
rialization of the vote after assigned to a candidate – to
make feasible the manual recount in the case of contesta-
tion of election results; to produce material evidences of
each vote, to allow manual recount the votes in case of
election appeals; and to use strong identification mechan-
isms, preventing voters impersonation.

Today, there is a wide understanding that the tradi-
tional voting systems should be computerized, for rea-
sons like to reduce the vote counting time, to provide
evidences that a vote is being correctly accounted, to
reduce frauds (as fake voters), to remove errors in the
ballot filling, and to improve the system usability, mainly
for people with special needs [1]. We are conscious of
concerns about the insecurity of software in general. Se-
curity incidents are very frequent, in many kinds of soft-
ware and application domains. Therefore, at same time
that some people defend the full computerization of the
voting systems, others assume an opposite position.

Providing security to computer voting systems is not
a trivial task. Beyond the classic security properties (inte-
grity, confidentiality, and availability), other properties
should also be ensured. There are some EVS require-

ments that seem contradictory, like: to ensure voter's
authenticity and at the same time vote anonymity; to
provide a vote counting proof, while preventing vote
trade; to allow voting by Internet, but avoiding voter
coercion; to guarantee the uniqueness of the vote in an
decentralized voting system (aiming voter's anonymity
and avoiding frauds), to allow voting automation while
providing vote materialization (to allow recounting); and
to ensure auditability in a software/hardware environ-
ment that may malfunction (due to malicious or uninten-
tional actions).

Already proposed systems use complex mechanisms
to ensure some EVS security requirements, like using
visual cryptography to provide voting receipts [2], using
a shared key to decrypt a vote using homomorphic en-
cryption [3], using mix networks to create anonymous
channels to ensure anonymity for the voter and the vote
[4], among others. Alternatively, our proposal is based on
classic cryptography techniques [5], using the standard
public key cryptosystem and scattering the entities and
separating their responsibilities, to avoid critical security
points.

 The proposal presented here aims go beyond the
classic security properties by considering voting receipts,
voter coercion, vote trade, vote materialization, voting
process auditability, and voter anonymity and authentici-
ty. A proof-of-concept prototype was built, using web
services and the Election Markup Language (EML) to
show the viability of the proposal. EML is a proposed
standard for election data [6]. Web services were used to
provide a standard for secure and interoperable system
deployment. However, we do not assume that the pro-
posal is an Internet based voting system.

REQUIREMENTS FOR A VOTING SYSTEM
Each country defines a set of specific laws to rule its vot-
ing system, in order to establish its organization and to
ensure its impartiality, integrity, and the democracy prin-
ciples. Elections based in an Electronic Voting System
(EVS) must comply with the laws and rules for voting
systems (as discussed in [5,7,8]) and also fulfill the fol-
lowing main requirements:
 Confidentiality: the vote should be kept confidential

from its verification and confirmation by the voter
until the counting phase. Also, partial counting
should not be possible.

 Integrity: the final vote counting must exactly
represent the number of voters (vote uniqueness) and
their intents (quality of the vote).

 Availability: an EVS should be dependable to guaran-
tee the voting service availability and the respect to
its security requirements during the entire election
process.

 Authenticity: the voter authenticity must be verified at
two distinct phases: at the voter registration, and just
before the voting procedure. Voter impersonation
should be prevented.

 Anonymity: the vote must remain anonymous during
the entire voting process and after it; there should be
no means to associate a vote to its voter, or vice-
versa.

 Vote receipts: in an EVS, vote counting is done compu-
tationally and not under scrutiny by electoral author-
ities and society monitoring. A vote receipt should al-
low the voter to check if her vote was correctly
counted, without allowing practices like voter coer-
cion and vote trading.

 No vote trading: no voter should have access to ma-
terial evidences that certify to other people the quali-
ty of her vote.

 No voter coercion: no party should have means to
impose a voter to vote against her intents.

 Uniqueness: the voter should be able to vote just once
in the same election.

 Vote materialization: the EVS must reproduce mate-
rially the quality of each vote, allowing manual vote
recounting, if requested.

 Auditability: a voting system must provide audit trail

of the entire voting process, for detecting frauds,
software/hardware malfunction, or human operation
errors. However, such information cannot keep, in no
hypothesis, information that compromises the other
security requirements.

 Usability: an EVS should be user-friendly, offering
visual, touch, and audio resources that allow the vot-
er to vote quickly and with no help from others.

The next section presents our proposal, which fulfills
such properties.

THE PROPOSED ARCHITECTURE
As fully electronic voting systems are not yet mature,
new paper-based systems are still being proposed. Such
systems introduce properties not present in conventional
ones, like vote receipts.

Our architecture is fully computerized, but adopts the
three-ballot scheme from the paper-based voting system
proposed in [9]. That scheme uses three equal ballots for
each vote, each one having a unique numeric identifier.
The voter checks off her candidates in two ballots; for all
the other candidates, she checks them off just once, on
one of the three ballots, randomly. This way, the candi-
dates she voted for will have two marks in the three bal-
lots set, while all the other candidates will have just one
mark each. Subsequently, one ballot chosen at random by
the voter is copied for her as a vote receipt. Then, the
three ballots are stored. After the election, all ballots co-
pied as receipts are published, to allow voters to verify if
their votes were taken into account.

Figure 1 presents an overview of our proposed archi-
tecture. It is built using the following entities: a Registra-

tion Agent, a Voting Console, a Voting Manager, an Elec-
tronic Ballot Box, and an Electronic Election Bulletin
Board.

In order to take part in the voting process, firstly, the
voter presents herself to the Registration Agent, to get a
credential that qualifies her to vote (event 1 in figure 1).
The Registration Agent interacts with the Voting Manag-
er to obtain the corresponding Ballot IDs (event 2), and
uses them to build the credential returned to the voter.
Later on, after the authentication (event 3) the voter uses
the Voting Console to vote (event 4) and the Voting Man-

Figure 1. Overview of the Proposed Architecture

ager stores the vote in the Electronic Ballot Box (event 5),
while the Voting Console gives a voting receipt back to
the voter (event 6). When the election finishes, the Elec-
toral Authority and the Election Representatives start the
counting phase (event 7), being votes counting and the
receipts published in the Electronic Election Bulletin
Board (event 8).

The architecture considers as actors the Voter, the Elec-
tion Representatives and an Electoral Authority. In a
general election, Election Representatives can be persons
from the civil society and political parties, which are re-
sponsible for monitoring the voting process. The Electoral
Authority manages the whole electoral process and en-
forces the voting rules and laws.

The voting process consists of three phases: the voter
registration, the voting itself, and the storage and count-
ing of votes. They are detailed in the following.

The Registration Phase
The Registration Agent is the entity responsible for vot-
ers’ admission and qualification during the registration
phase, depicted in Figure 2. Its tasks include receiving
voters at the polling station and requesting their identifi-
cations (either by biometry or another mechanism), to
verify if they are able to vote. If so, voters receive creden-
tials that enable them to the next phase (voting).

During its initialization (boot), the Registration Agent
starts a Voters/Ballots ID Repository, using data from a
repository of voters maintained by the Electoral Authori-
ty. Also, the Registration Agent requests b Ballot IDs
(BID) from the Voting Manager (events B1 and B2) and
stores them locally in the Voters/Ballots ID Repository
(event B4); b can be defined by each Electoral Authority.
The Voting Manager logs the BIDs supplied to the Regis-
tration Agent in a local repository for Ballot IDs and Bal-
lots (BIR), event B3. This initialization procedure makes
unpredictable (for the Voting Manager) the sequence of
voters accessing the Registration Agent, in order to pre-

vent voter anonymity violations.
Once the registration phase starts, a voter should

identify herself to the Registration Agent (event 1, figure
2). The Registration Agent verifies if the voter is able to
vote (event 2), querying the Voters/Ballots ID Repository
(VBR). If so, it takes three random Ballot IDs out of the b
Ballot IDs present in VBR, signs them (compounding a
credential) and returns them back to the voter (event 3).

At same time, it updates the repository of voters (event 4)
to register that the voter was qualified to vote, in order to
assure vote uniqueness.

In order to keep b Ballot IDs (BIDs) in its Vot-
ers/Ballots ID Repository, the Registration Agent re-
quires three new BIDs to the Voting Manager (event 5).
The Voting Manager chooses three new BIDs (event 6),
ciphers each one separately using the Voting Console’s
public key, sends them back to the Registration Agent
(event 7), and logs the BIDs in the local repository for
Ballot IDs and Ballots (event 8).

If the voter uses biometric authentication (event 1 in
figure 2) to authenticate against the Registration Agent, a
template of the voter's fingerprint is extracted, ciphered
using Voting Console's public key and then attached to
the credential (event 3). Such scheme guarantees the vot-
er's authenticity and prevents frauds related to imperso-
nation during the voting phase.

The random Ballot IDs sent by Registration Agent in
event 3 (figure 2) are composed by three IDs that will be
used by the voter during the entire voting process. They
are not known by the Registration Agent, because Ballot
IDs (BIDs) are ciphered using the Voting Console's pub-
lic key; therefore, the Registration Agent performs a blind
signature [10,11] on the BIDs composing the credential .

Interactions with the Public Key Infrastructure
(events I and II) include procedures for signature authen-
ticity verification, since all the transactions between enti-
ties in the entire process are digitally signed.

The Voting Phase
The Voting Console is responsible for interacting with the
Voter during the voting phase, depicted in Figure 3.
Therefore, it is assumed that all messages from the Voting
Console to the Voting Manager are resulting from inte-
ractions between the voter and the Voting Console.

If biometric authentication was adopted during the
voter registration, the Voting Console gets the voter's

biometric template, decrypts it and verifies its authentici-
ty (event I, figure 3), through Registration Agent’s digital
signature. Then, the Voting Console requests voter’s fin-
gerprint, using a Biometric Device (BD). The biometric
verification consists on comparing the template obtained
from BD with the template coming from the Registration
Agent. It is important to observe that no information
about the voter's biometric identification is sent to the

Figure 2. Interactions during the registration phase

Voting Manager, ensuring the voter's anonymity. The
biometric authentication avoids voter impersonation.

After authenticating the voter, the Voting Console va-
lidates the Registration Agent signature in the voter's
credential, through the Public Key Infrastructure. Also,
Voting Console deciphers the three Ballot IDs (BIDs) sent
by the Voting Manager through the Registration Agent.
The Voting Console always takes the first BID from the
credential, names it RID (Receipt Ballot ID), and sends it
to the Voting Manager (event 1).

The Voting Manager verifies the Voting Console’s sig-
nature (event II, figure 3) and queries its Ballot ID and
Ballots Repository (BIR) to check if the Receipt Ballot ID
(RID) is valid and was not used before (event 2), to pre-
vent a reply attack [12,13,14]. If the RID is valid and the
voter did not vote yet, the Voting Manager retrieves the
ballot with eligible candidates signed by the Electoral
Authority from BIR. Then the Voting Manager replicates
the ballot, to build a set with three equal ballots.

The Voting Manager logs the RID supplied in event 1,
to track the voter’s activity during the voting phase.
However, the Voting Manager does not know the voter
identity, which is only known by the Registration Agent,
during the registration phase; after that, the RID number
is the sole identity of an authentic voter in the system.

For each candidate, the Voting Manager puts an initial
mark in one randomly chosen ballot in the three ballots
set (Ballot 3 for Candidate A, Ballot 2 for Candidate B,
Ballot 1 for Candidate C, and Ballot 1 for Candidate D, for
instance). After that, the Voting Manager sends the
marked ballots to the Voting Console (event 3).

This initial ballot marking performed by the Voting
Manager eases the voting procedure in the Voting Con-
sole. As the Voting Manager already marked randomly
all candidates once each in the three ballots set, the voter
only needs to put an additional random mark (in an un-
marked ballot) for each candidate she intends to vote for
(e.g. Ballot 3 for Candidate D in figure 3). According to

[9], each candidate marked only once in the set of three
ballots are not voted; the vote assignment is indicated by
two marks in the three ballots set.

The Voting Console can also provide resources to ease
the voting procedure, like candidate photographs, search
for candidates, by parties, name, number, etc. It can pro-
vide a touch-screen interface, a Braille code, speech syn-
thesis of the screen contents, and so on.

After the voter ends voting, the Voting Console pro-
vides facilities to ease the vote verification (as a vote
summary), and asks the voter to choose a ballot to keep
as voting receipt. The Voting Console assigns the chosen
ballot with the Receipt Ballot ID (RID) and assigns the
two other ballots the two remaining BIDs received from
the Registration Agent with the voter's credential. Then,
the Voting Console makes a backup copy of the three
ballots.

Each one of the three ballots, in random order, is en-
crypted by the Voting Console using a distinct public
key. The Voting Console uses the public keys from Elec-
tion Representatives – each one responsible for one Ballot
Repository: BR1, BR2, and BR3. Then the Voting Console
sends the encrypted ballots to the Voting Manager (event
4), which receives them, signs them, and sends each one
to a distinct repository (event 5). Each Electronic Ballot
Box, when receiving a ciphered ballot, validates the sig-
nature of the Voting Manager (event III), stores it at ran-
dom (e.g. applying a hash function on it), and replies
with an acknowledge message, if the storage succeed
(event 6). In order to indicate that the three ballots fi-
nished the voting phase, the Voting Manager updates its

Ballot ID and Ballots repository (BIR), marking the cor-
responding Receipt Ballot ID (RID) as used (event 7). The
storage of ballots at random in three distinct repositories
avoids keeping relationships among the three ballots,
assuring the secrecy of the vote.

The Voting Manager informs the Voting Console that
the votes are stored in the electronic ballot boxes (event

Figure 3. Interaction During the voting procedure

8). The Voting Console then takes its backup copy of the
vote (3 ballots), encrypts the two ballots that are not
bound to RID (named here the unbound ballots) using the
Electoral Authority’s public key, and stores them in a
persistent storage provided by the voter (a Smart Card or
a printer, for example). A clear-text copy of the RID ballot
is also stored in that Receipt Storage Device (event 9), to
serve as a voting receipt. Alternatively, a summarized
ballot with no IDs and in a printer-friendly layout, con-
taining only the voted candidate, could be printed and
stored in a Physical Ballot Box attached to the Voting
Console (event 9). That printed ballot can be used for
manual recounting, in the case of election contestation.

Using a physical ballot box could bring problems, be-
cause printers can fail and the voter could spend time
doing the printed vote verification. Our recommendation
for vote materialization is to use a persistent storage as
suggested. To provide a vote backup, the unbound en-
crypted ballots can be encrypted using the Electoral Au-
thority public key, re-encrypted using the voter’s public
key, and sent to a repository along with the receipt ballot
in clear text.

The goal of this double encryption is to guarantee that
the vote remains inviolable, protected by the voter’s pub-
lic key, and that the voter cannot trade her vote, thanks to
the encryption in Electoral Authority’s public key. If
needed, the voter can meet the Electoral Authority and,

together, they can decrypt her vote using their respective
private keys, print a summary of the vote and to put it in
a physical ballot box. Such approach could overcome
printing problems and verification delays that could arise
during the voting day, but preserving the vote secrecy.

The Vote Storage and Counting Phase
The Electronic Ballot Box is the entity responsible for

storing the ballots sent by the Voting Manager, and for
computing the vote counting. The Electronic Ballot Box is
composed by three Ballot Repositories and a Counting
Unit. The Counting Unit manages the votes counting,
sending the results to an Electronic Election Bulletin
Board, for publication. Each Ballot Repository (BR1, BR2,
BR3) is under the responsibility of an Election Representa-
tive. This phase is depicted in Figure 4.

As ballots were encrypted using Election Representa-
tive’s public keys, the Counting Unit only starts counting
votes on a Ballot Repository when the corresponding
Election Representative provides it her private key. This
should happen only after the election finishes, under the
coordination of the Election Authority. Election Repre-

sentatives’ private keys are valid only for the current
election, and are informed to the counting unit on a se-
cured physical media, like a Smart Card (event 1, figure
4). This scheme is adopted to avoid partial counting.

After the counting phase is enabled, the Counting Unit

Figure 4. Interactions during the Counting phase

Figure 5. Prototype Architecture

sends messages requiring all ballots stored in the three
repositories (event 2), which are replied by each reposito-
ry with ballots (event 3).

The Electronic Election Bulletin Board is responsible
for receiving vote totals for each candidate from the Elec-
tronic Ballot Box. Once the counting starts, partial bulle-
tins are automatically sent to the election bulletin board
database and summary reports can be published in a web
page.

As an example, partial counting can be computed at
several levels, like polling stations, districts, cities, states,
and so on. In order to confirm that the election bulletin
board received and stored correctly the election bulletins
and the receipt list, it replies the Counting Unit with an
acknowledge message (event 5).

The list of Receipt Ballot IDs (RIDs) provided by the
Voting Manager gives the information that the Counting
Unit needs to identify the votes that should be published
on the election bulletin board. Those votes will be
checked by voters against their receipts, to ensure that
their votes were correctly counted.

Interactions with the Public Key Infrastructure
(events I and II, figure 4) include digital signature verifi-
cation, since all the transactions between entities are
signed.

IMPLEMENTATION
A proof-of-concept prototype was developed using Web
Services (WS, http://www.w3.org/TR/ws-arch) and the Elec-
tion Markup Language (EML, http://www.oasis-
open.org/committees/election). Web Services provide stan-
dard services and security, while EML provides standard
XML schemes to define voting data structures.

 EML schemes are organized according three phases:
pre-election, election, and post-election. Our prototype
uses several EML schemes for each phase. In pre-election,
it uses EML schemes 210, 220, and 230 for eligible candi-
dates, and 310 and 330 for enabled voters. The Pre-
election phase was not detailed in our proposed architec-
ture.

The prototype modules were developed using Apache
Tomcat to run Java Servlets and Java Server Pages
http://tomcat.apache.org), and Apache Axis to provide
SOAP (Simple Object Access Protocol) support, for com-
munication among system entities. The Apache Rampart
module (http://ws.apache.org/axis2) for Axis provides
support to WS security (http://www.oasis-
open.org/committees/wss). Figure 5 shows the main
modules of the prototype, developed as Apache TomCat
applications.

During the voting phase, the logging system records
all relevant actions of each entity, using the TomCat log-
ging facility. However, relevant information in the voting
system, involving the registration, voting, and counting
phases (according to the EML 480 scheme) is stored in a
database (DB). We adopted an Oracle DB
(http://www.oracle.com/database/ berkeley-db/xml) for

each repository and XML XPath/XQuery for DB opera-
tions.

The cryptography control interface uses Apache Ram-
part to send XML encrypted and signed messages to veri-
fy signatures using the XKMS WS-based PKI
(http://www.w3.org/TR/xkms). The Open XKMS
(http://sourceforge.net/projects/xkms) initiative was used
as PKI implementation in the prototype.

The trust relationship among entities is based in a lo-
cally maintained list of trusted public keys, since the
Apache Rahas (WS-Trust) and STS (Secure Token Service)
facilities are not yet available.

In figure 5, the authentication controller of Registra-
tion Agent, the fingerprint template generator, the au-
thentication controller of Voting Manager, and the fin-
gerprint template checker communicate directly with the
voter, getting and verifying her identification, which is
stored according the EML 420 and 430 schemes.

The Ballot ID (BID) manager, along with the Creden-
tial controller, provides voting credentials; the voter reg-
istration manager implements the core of the Registration
Agent. Using the scheme defined in EML 410, the BID
manager generates the BIDs and the Ballot Manager
makes the initial candidate marks in each three ballot set;
the Voting Manager Controller and the Voting Console
interaction Manager constitute the core of the Voting
Manager.

The Voting Console implementation is a web page
running a JSP voting application for the voter.

During the post-election (counting phase), the Ballot
Repository manager and the Counting Unit (the core of
Electronic Ballot Box), provide the vote counting bulletins
that are sent for publication in the Electronic Election
Bulletin board. The counting format is defined by EML
510, while publication formats are defined by EML 520.
Electronic Election Bulletin Board public access is done
through secure (HTTPS) web pages.

If voter coercion and vote trading are real risks, we
suggest the Voting Console to be placed in a kiosk under
external vigilance, during the election process. Like in
conventional elections, the voter should use the voting
console alone.

Design Diversity
We believe that the implementation of an electronic

voting system must be done using standard interfaces
and design diversity. Indeed, a well known entity must
define the requirements and the interfaces for the elec-
tronic voting system based on well-known standards. The
uses of standards enable developers to design and to
implement software components compliant to a system
specification.

A homologation process can determine which soft-
ware is compatible with the adopted standards. Thus,
one can select some of the approved software to dynami-
cally build the electronic voting system, without depen-
dency from a single vendor or specific technology.

For instance, in the Election Day, each system module

could be deployed from one component chosen at ran-
dom from a set of previously homologated components.
The same strategy can be applied to all system compo-
nents, providing better resistance against software fault
and tampering.

Several efforts have been done to define computer
election standards. For example, the IEEE P-1583 Voting
Equipment Standard focuses the development of voting
machines, like the Direct Recording Electronic (DRE); the
IEEE P-1622 Voting Systems Electronic Data Interchange
defines formats and protocols for election data exchange.

CONCLUSION
This article presents an Electronic Voting System archi-

tecture that provides the most relevant requirements and
properties expected from such systems in an integrated
environment. We found no similar architectures in the
technical literature.

The proposed architecture uses asymmetrical key
cryptography and responsibility scattering among dis-
tinct and distributed entities, in order to guarantee the
voting security requirements without creating critical
security points.

The paper-based three ballot scheme proposed by [9]
to provide vote receipts was adopted in our architecture.
The ballot pre-filling simplified the voting procedure,
improving its usability, while maintaining its security
properties.

The encrypted ballots and the voter receipt constitute a
viable alternative to the conventional vote printing, to
provide vote materialization. The proposed architecture
considers also the participation of election representa-
tives, to improve the election transparency and to ensure
the respect to democratic principles.

We built a working prototype using standard well-
known technologies and standards, like Web Services,
WS-Security, the Election Markup Language, PKI, XML,
SSL/TLS, and the Apache TomCat/Axis frameworks.
Although our architecture was explained in terms of
general elections, it could be used as well to other kinds
of elections, in corporate, academic, and other contexts.

REFERENCES

[1] M. Byrne, K. Greene and S. Everett, "Usability of Voting Sys-

tems: Baseline Data for Paper, Punch Cards, and Lever Ma-
chines", CHI 2007 Proceedings, Politics & Activism, April/May,
2007.

[2] M. Naor, A. Shamir, “Visual Cryptography”, Eurocrypt 94, p.
1–12.

[3] J. Benaloh and D. Tuinstra, "Receipt-Free Secret-Ballot Elec-
tions", In Proceedings of 26th ACM Symposium on the Theory
of Computing, pp. 544-553, 1994.

[4] D. Chaum, "Untraceable Electronic Mail, Return Addresses and
Digital Pseudonyms", Communications of the ACM - CACM
’81, Vol. 24, No. 2, pp. 84-88, 1981.

[5] B. Schneier, “Applied Cryptography”, Publisher John Wiley & Sons,
Second Edition, 1996.

[6] OASIS, "The Case for using Election Markup Language (EML)", Or-
ganization for the Advancement of Structured Information Standards,
January, 2007.

[7] R. Mercuri, “Electronic Vote Tabulation Checks & Balances”,
PhD Dissertation, University of Pennsylvania, 2001.

[8] P. Neumann, "Security Criteria for Electronic Voting", In Pro-
ceedings 16th National Computer Security Conference Balti-
more, Maryland, September 20-23, 1993.

[9] R. Rivest, W. Smith, "Three Voting Protocols: ThreeBallot, VAV,
and Twin", In USENIX/ACCURATE Electronic Voting Technol-
ogy Workshop, 16th USENIX Security Symposium, Boston,
August, 2007.

[10] David Chaum, “Blind Signatures For Untraceable Payments”,
Advances in Cryptology, CRYPTO’82, Plenum Publishing, pp.
199-204, 1982.

[11] A. Fujioka, T. Okamoto, K. Ohta, “A practical secret voting
scheme for large scale elections”, Advances in Cryptology,
AUSCRYPT ’92, in Lecture Notes in Computer Science, vol.
718, 244–251, 1993.

[12] L. Norden, “The Machinery of Democracy: Voting System
Security, Accessibility, Usability, and Cost”. Brennan Report, the
Brennan Center For Justice at NYU School of Law, 2006.

[13] D. Jefferson, A. Rubin, B. Simons, D. Wagner, "Analyzing Inter-
net Voting Security", Communications of the ACM, Vol. 47, No.
10, 2004.

[14] R. Saltman, "Accuracy, Integrity and Security in Computerized
Vote-Tallying", Communications of the ACM, Vol. 3, No. 10,
1988.

	Introduction
	Requirements for a Voting system
	The Proposed Architecture
	The Registration Phase
	The Voting Phase
	The Vote Storage and Counting Phase

	Implementation
	Design Diversity

	Conclusion
	References

