

Applying Pattern Structures to Document and Reuse Components in Component-
Based Software Engineering Environments

Marco Paludo1,2, Sheila Reinehr1, Andreia Malucelli1, Lucas Bruzon2, Pamela Pinho2
1PUCPR Pontifical Catholic University of Parana; 2FESPPR Higher Education College of Parana

1R. Imaculada Conceição, 1155, Curitba-PR,Brazil; 2R. Dr. Faivre, 141, Curitba-PR,Brazil
{marco.paludo, sheila.reinehr, andreia.malucelli}@pucpr.br; lucasbarke@hotmail.com,

pamela.m.pinho@hsbc.com.br

Abstract

One of the challenges for software development
organizations that try to apply software reuse programs is
to make the specification, persistence and easy access to
the component repository feasible, mainly considering the
elaboration phase, but also addressing the construction
phase of the software product. This paper uses some
component documentation initiatives based on analysis
and design patterns, and proposes a component
specification structure, presenting a tool to support this
process. The general purpose of patterns is to document,
retrieve and, mainly, capture composition and
functionalities of the components in order to achieve
software reuse. The objective of integrating patterns and
components approaches is to leverage the software reuse
process by creating a documentation structure and
applying a component repository able of supporting the
software developers.

Keywords: Software Reuse; Components, Analysis and
Design Patterns; Specification

1. Introduction

Software reuse is the process of creating software
systems from existing software, instead of constructing
software from scratch [1], and it has been extensively
addressed by researchers and practitioners, however a
more systematic approach applying reuse in all life-cycle
phases and iterations has to be part of the process [2].

Reuse initiatives have the main objective of using
intermediate or final products conceived in other projects
that have already been successfully tested (certified) and
implemented before, aiming to reduce time-to-market and
getting better general quality, testability and debugging
procedures. Even considering that reuse of classes and
components libraries are useful, it does not improve
fundamentally the software development process, so

concepts and tools of a higher level are necessary to
leverage the development process [3].

Even when there is a component repository available to
developers, it is very important to consider that the
components have to be easily discoverable, otherwise it
could be easier to develop a new component rather than
spending much effort trying to reuse it. Up to now, the
activity of “finding reusable components remains a
significant barrier for exploiting systematic software
reuse” [4].

Another aspect to consider when implementing reuse
initiatives is software architecture, which is also
considered as the basis for achieving reuse, and when
combined with component-based software development,
the result is the notion of software product lines [5].
Clements et al., in [6], consider that architecture is a
reusable model that can become the basis for an entire
family of systems, built using common assets. Also states
that “Software architecture is an asset an organization
creates at considerable expense. This expense can and
should be reused”.

2.1. A. Motivation and Objective

This project started by investigating previous patterns

and components literature, identifying the patterns
methods adherent to Component-Based Software
Engineering (CBSE), with special attention to
specification structures. One of the main objectives was to
help software engineers when creating or searching
components to be incorporated to their software products
development projects, aiming component reuse.

The subsequent steps resulted in the proposition of a
specification structure (template) for documenting
components, presented in Section IV, conceived to
become a part of the software development process, in
order to avoid rework in the elaboration and construction
phases of the software development life-cycle.

Another subsidy for the project was the ISO/IEC
25.010 (formerly ISO/IEC 9.126) series of International

378
IEEE IRI 2011, August 3-5, 2011, Las Vegas, Nevada, USA
978-1-4577-0966-1/11/$26.00 ©2011 IEEE

Standards of software product quality, that has provided
the quality characteristics and subcharacteristics concepts,
which have been incorporated to the specification
template, in order to call the attention earlier in the
development process for quality attributes and metrics of
components [7].

Hence, the objective of this paper is to initially present
some patterns and components methods considered by this
project, and especially to propose a component
specification template that incorporates some
characteristics of patterns approaches, component
documentations and software product quality models. The
Section II of this work presents a brief introduction to
patterns approaches and Section III details some
structures of patterns that are used along with component
methods. Section IV discusses the rational used to apply
patterns documentation to specify components, as well as
proposes the specification structure (template), supported
by a tool adherent to this work. This section also presents
some characteristics of the tool and a partial class
diagram, showing the classes and relationships, as well as
some of the core methods and attributes. Section V
concludes the paper and presents some future works.

2. Patterns

A well-known definition of patterns is provided by
Erich Gamma et al. [8], stating that design patterns
capture solutions that were developed and evolved, with a
succinct and easily applicable way. Each design pattern
systematically nominates, explains and evaluates an
important subsystem, and occurs many times in object-
oriented projects. Patterns, along with frameworks, have
played an important role reusing software artifacts and
code, but the efforts are gradually migrating toward the
intermediate products used in earlier phases, i.e. analysis
and even requirements assets. Some example of these
target assets are use cases, requirements, sequence
diagrams etc.

An earlier study [3] has analyzed some patterns
initiatives and presented them categorized by the emphasis
on analysis or emphasis on design (implementation), as
well as categorized as process-driven or example-driven.
Among the methods considered, the ones that are more
adherent to this work are those with special emphasis on
analysis, considering that components, depending on their
granularity, tend to represent higher structures than
objects and classes.

So, it is possible to infer that components have more
chance to leverage reuse in a higher level of abstraction.
The process adopted by each method is not relevant to this
work, considering that the main contributions obtained
from the methods are the documentation structures of

patterns, to be used to document components, not the
phases, tasks, and roles from the processes.

3. Patterns approaches and CBSE

Erich Gamma et al. [8] state that ideally, new
components should not be created in order to achieve the
specified level of reuse, but all the required functionalities
should be obtained just putting together existent
components using composition. On the other hand, at that
time, affirmed that it was not common because the number
of components available was almost never sufficient to
fulfill the requirements in the real world. This situation
has changed and, sometimes, the number of components
available in an organizational repository is so big that the
searching task can hinder the reuse of components.

Another classical reference presented by Graig
Larman, in [9], proposes to apply reuse by integrating
classes and objects with patterns and frameworks. When
introducing the GRASP Patterns (General Responsibility
Assignment Software Patterns), the method defines that
the patterns describe the fundamental principles for
assigning responsibilities to the objects. This method
makes use of component concepts just when addressing
the Implementation Diagrams, referring to the Component
Diagram and Distribution Diagram.

One previous work [3] have analyzed how adherent
patterns methods are to components, especially addressing
the way components are defined in the context of
Component-Based Software Engineering (CBSE) [10].
The result is that patterns mainly consider objects (from
the object paradigm), not components. Among other
methods, it is possible to identify that three have a clear
focus on objects, rather than on components, each of them
with a particular emphasis, notation and process [3].
Nevertheless, they also could contribute to the component
specification template proposed by this work. The
following subsection identifies some component methods
and the relationship with patterns, with special attention to
the structure of documentation and specification.

3.1. Component approaches

The efforts to conceive reusable and scalable structures

have changed from objects to components, as addressed
by CBSE. Some methods presented below demonstrate
such evolution, where components are treated as a native
element for composing the patterns and frameworks. This
initiative is, sometimes, referenced as componentware, but
the objective is the same: make components available and
follow a process to obtain reuse of higher level assets,
rather than just addressing the object level.

379

The Catalysis Method [11] [12], considering CBSE
and patterns/frameworks approaches, strongly emphasizes
the need for an architecture that supports components and
states that development projects that try to apply patterns
and components without an established architecture tend
to fail. Also considers natively the relation of patterns and
components, all making use of the architecture.

Another method, the UML Components [13], states
that components extend the object-orientation principles
of data and function union, encapsulation, and identity, by
specifying an object with its explicit interfaces
representation. Some characteristics, such as inter-
component dependency, turns to be restrict to the
individual interfaces and that future implementations in
components will not cause great impacts to the
intermediate or final software products. The specification
of interfaces is considered an essential task when dealing
with components and reuse.

The last method, presented by Alan Brow, Large-Scale
Component-based Development [2], considers
components and patterns integrated, not with the same
depth of [11], however the use of patterns is simple once
the patterns concepts can be implemented in the original
structure proposed by the method. It states that the
software construction is largely done by component
selection, evaluation, and assembly process. When
analyzing the persistence requirements of components in
this approach of CBSE, it is possible to make a
comparison with patterns catalogs. The patterns catalogs
usually have a well-defined structure, what helps to
retrieve them with efficiency and making the reuse
process feasible. Following the patterns specification
structure, with some complementation, it is possible to
save components in a way to have the component
retrieving easier and standardized, also aiming the reuse.

Assuming that object-oriented approaches have
evolved toward CBSE, it is considered that this change
also may, and should, be applied to the patterns methods,
in order to get reuse of a larger set of assets in all stages of
the software development life-cycle.

4. Using patterns structures to specify
components

Before discussing the specification structure, it is
important to present some elements that are addressed by
this section and also considered by patterns approaches.
The essence of patterns definitions can be stated as: a
recurring solution to a problem in a context [14].

It is important to present the concepts of solution,
problem and context. The Context information represents
the environment, surroundings, or interrelated conditions
within which something exists. The Problem information
is an unsettled question, something that needs to be

investigated, analyzed and solved. Typically, the problem
is constrained by the context in which it occurs. The
Solution information refers to the answer to the problem
in a context that helps resolve the issues.

So, a solution to a problem in a context, by itself, is not
considered a pattern or a component due to a common
aspect, the recurrence. To be worthy to be incorporate in a
framework or in a reuse repository, a component has to be
useful in a context and likely to be applied repeatedly in
other contexts. When the interfaces provided by a
component are not well-known and well-defined, the
overheads involved in searching the particular solutions
into a component repository may not be justified [15]

It is known that one of the pitfalls when considering
reuse within a software development process is the effort
of the software engineer to find the right pattern or
component, and also the effectiveness of the information
available for this activity. Sometimes, even due to cultural
issues, the developer prefers to conceive a solution or
component rather than reusing one.

These are some of the issues considered by this work
when conceiving the specification structure, trying to go
beyond the problem-solution-context aspects of CBSE.

A more complete component specification structure
aims to improve the cataloging process and persistence of
components created by a developer or team, as well as to
assist others who will make use of that previous solution
addressed by a component.

Heineman [10] states that this structure may express
the specification, implementation, and the expected
execution and deployment, representing types of
components. It is important to consider that each of these
components shall have a particular level of abstraction
when following a specification structure. Hence, besides
the types of components, one should also consider the
granularity and scope of the component.

A mistake that is commonly made in many software
development organizations is to treat the architecture of a
set of related systems and the architecture of all systems
across the enterprise at the same level of abstraction [16].
The architecture is not the focus of this work but it is
essential to succeed when trying to implement reuse
initiatives.

In general, higher level components are conceived after
one specific solution has been implemented. Sometimes
even during maintenance some of them are also
considered eligible to be incorporated in the repository. It
demands, then, that the detailed and standardized
documentation has to be created or complemented during
the elaboration phase, and before the transition.

4.1. Software life cycle processes – Maintenance

380

Some activities of the ISO/IEC Software Life-cycle
Processes – Maintenance [17] International Standard are
presented, analyzing the influences on the proposed
component specification template presented in Table I.
Three activities have been used, and are following
presented, as well as the corresponding items (with item
number) of the specification template proposed by this
work, that are directly affected by the activities:

a) Understand the problem domain (the type of
application), using the existent documentation (if
available), discussing the software product with
developers (if available), and operating the software
product. This inspection activity should raise information
that could help filling in the Context (item 4 of the
template), Introduction (item 4), Problem (item 5), and
Applicability (Purpose) (item 6) fields in the component
specification proposed by this work.

b) Learn the structure and organization of the software
product, including control and data flow. Inventory the
software product, placing the product under configuration
management, and analyze the structure of the software
product. These activities address the Description (item 7
of the template), Implementation (item 7.3), Solution
(item 7.2), Variants (item 12), and Relationship (item 13)
fields of the specification template.

c) Determine what the software product is doing.
Review specifications (if available) and overall structure,
read and provide comments to the code. This should help
filling up the Purpose (item 4 of the template), Example
(item 11), Interfaces (item 8), and Forces (item 9).

These activities were used as subsidy to conceive the
specification template and are strongly suggested to be
executed when creating, updating or retrieving
components to/from the repository.

4.2. Quality model and component specification

When considering software requirements specifications

(SRS), all methods address functional and non-functional
requirements, and some make use of a quality model as a
check-list, helping the software engineer to find essential
non-functional requirements, like usability, efficiency,
time behavior, among others.

The International Standard ISO/IEC 25.010 Quality
Model present characteristics (functionality, reliability,
usability, efficiency, maintainability, and portability), with
associated subcharacteristics.

The Quality model for internal and external quality [7],
categorizes software quality attributes into six
characteristics, and each of them are further subdivided
into subcharacteristics, that strongly influences the quality
of the software product. This categorization, originally
used to determine the software product quality, was
considered in this work to compose a section of the

proposed component specification template (item 10 of
the specification template).

Some examples of quality characteristics that a
component usually have and can be easily specified are
Functionality, Usability, Efficiency, and Maintainability.
As subcharacteristics represent the breakdown of a
characteristic, one possible example is the Security
subcharacteristic, from the group of Functionality
characteristic, with the associated metric of Access
Auditability, where the number of access types that the
component is logging correctly can be assessed to
determine its compliance to the specified in the metric. A
large number of metrics can be specified and the context
of use will determine the quantity and granularity of the
metrics and quality characteristics.

4.3. Component specification template

Some patterns structures that are able to document

components are present in the methods of Gamma et al.
[8] and Buschmann et al. [18], and were considered as a
subsidy when conceiving the proposed specification
template. Other two methods also considered, and even
more adherent to the objective of this work, were
proposed by Stelting et al. [19] and Szypersky [15]. These
methods form the basis for conceiving the following
component specification template proposition, presented
in Table I.

The use of most parts of the component specification
template has been described in subsection A of this
section (IV), when considering the Software Engineering
International Standards [17], [7]. In addition, the items 1,
2 and 3 of the template are well-known and largely used
by many patterns documentation structures.

Considering that this proposed specification structure
have many similarities to the originally presented in [8], it
is possible to conclude that the component specification
based on the original patterns structure is adequate. Most
of the original items of patterns and components were
partially (adapted) or totally used.

Another method addressed by this project is presented
by Alur et al. [14], that consider patterns, components and
particularly the Java language, and has points in common
with [17], emphasizing the Java language and Sun
Microsystems, but using a particular structure to
document the component patterns J2EE.

When analyzing the variety of patterns and components
structures, it is possible to observe the similarities among
them, even considering that there are significant
differences concerning the abstraction level of the
patterns. And when comparing these approaches with the
one presented by Cheesman et al. [13], it becomes evident
the need to explicitly determine the interfaces of the
components.

381

TABLE I. COMPONENT SPECIFICATION STRUCTURE

Component Specification
1. Component Name: A descriptive name of the component.
2. As known as: Alternate name or names.
3. Properties: Classification considering the type, subtype and

level.
3.1 Type: Creational, Behavioral, Structural and System.
3.2 Subtype: Specification, Implementation, Execution and

Deployment.
3.3 Level: Unit, Component or Architectural.
4. Purpose and Context: Explanation of the scope and the

environment under which the component exists.
5. Problem: A brief description of the problem to be treated by

the component, presenting the design issues faced by the
developer. It is recommended including an example to
illustrate.

6. Applicability: The pros and cons when using this component.
The benefits and drawbacks, representing the consequences
and difficulties when using the component. Emphasize the
result of the component use.

7. Description: detailed discussion of the component, what it
does and how is the behavior.

7.1 Structure Solution – Class diagram with the basic solution
Structure and sequence diagram representing the dynamic
model.

7.2 Solution – strategy: Presents the ways that a component can
be implemented.

7.3 Implementation: Describe what has to be done to
implement the component.

8. Interfaces: The way the component makes its service
available. Commonly multiple interfaces are provided
corresponding to different access points.

9. Forces: Lists the rational and motivations that affect the
problem and the solution. The list of forces highlights the
reasons why one might choose to use the component and
provide a justification for using it.

10. Quality Characteristics and Subcharacteristics
addressed: present the quality model attributes that are
addressed by the component. Whenever possible, provide
validated or widely accepted software product quality
metrics.

11. Example code: implementation examples or source code of
the component, when applicable.

12. Component variants: possible alternate implementations.
13. Related Components: a set of other components associated

or related, internal or externally, from the perspective of the
repository.

Without even taking into account which patterns

structure and method is used, it is important to consider
that component specification requirements should be fully
satisfied in order to make the component reuse process
successful.

4.4. Component repository tool

Based on the component specification template
presented in Table I, a tool was modeled and built

implementing the component cataloging and
searching/retrieving features.

The queries to the repository are made considering the
textual fields as Purpose, Problem, Applicability etc., and
can also consider the source code of the software
component, whenever available. In order to make the
component search and retrieve procedures more precise,
the result can be sorted by the number of times the
component was retrieved, indicating that the first
components in the list were more times used and probably
will be more times reused.

Some configuration management principles are
implemented by controlling the version of the component,
as an internal functionality. Also, there are two
distinguished roles for the users. The first role is played
generally by the software engineer or system analyst, who
proposes and retrieves (uses) components from the
repository. The software development team usually has
just this privilege to access the tool.

 All the updates proposed to a component has to be
approved by a second role, the manager user, who is
responsible for verifying if the component is pertinent,
follows the organization's standards and if the
documentation form is complete and correct. This role is
usually found in the architecture team of organizations.

There is, also, a message control feature that puts
together the consumer and the producer of the component,
in order to report bugs, improvements, and corrections in
the documentation or even in the source code, whenever
available and pertinent.

All the artifacts, models and source code can be
downloaded from the project's web page 1 . Among the
artifact develop in the inception and elaboration phases,
are the Sequence Diagrams, including the ones treating
CRUD (Create, Retrieve, Update and Delete)
functionalities, Print Component, Generate Report, and
Validate Component. The Use Cases diagrams developed
are: Issue Managerial Report, Issue Operational Report,
Create Components Statistics, Create Form, Manage
Components (CRUD), Print Components, and Validate
Components. Other diagrams as the State Machine and
Activities are also part of the project documentation and
available at the projects web page.

One of the most important functionality is the Insert
Component, and it has a main focus on textual fields, as it
includes all the sections of the component specification
template, previously presented in Table I. The searching
functionality will be as effective as the quality of
descriptions made for each component, so the process of
creating and validating the components with as much
relevant information as possible is so important.

1 All artifacts of the software product can be found at
www.ppgia.pucpr.br/pesquisa/engsoft/comp_repository

382

5. Conclusions

This paper has presented the analysis of patterns and
components methods, in order to conceive a component
specification structure, in the form of a template that can
be applied to promote reuse of components. Considering
the similarities between both documentation structures, it
is possible to conclude that the component specification
based on the original patterns structure is adequate.

Therefore, it is proposed that CBSE should make use
of the patterns methods to leverage reuse in all stages of
the life-cycle, considering the granularity of the
component. The template proposed by this work is one
step toward improving the actual patterns documentation,
to be effective when addressing components.

The scope of this project also included modeling and
developing a tool that persists software components,
applying the proposed documentation structure, able of
creating, retrieving and managing the content of the
component repository, where regular users can conceive
and retrieve components, and manager users validate and
approve all the component updates in the catalog.

The next step planned is to deploy the repository tool
as-is in a Software Product Line environment aiming to
evaluate the quality in use results and the integration with
the software development process institutionalized.

Alnusair et al., in [4], propose a comparison of some
query approaches, considering semantic, key-words and
signature based queries. One future work could be
implementing semantic-based representation and
annotation of library components, in order to get the
searching and retrieving effectiveness improved.

Other extension to this work could consider exceptions
to be part of the component specification structure,
defining the expected behavior when some abnormal, but
anticipated, condition occurs to a component [20].

Some component properties and characteristics
(identification, use, maturity, documentation, among
others) have generated a Component Reference Model in
[21], and also could be used as a basis for mapping the
specification structure of this work into a maturity
software component classification and reference model.

10. References

[1] C. Krueger, Software reuse. ACM Computing
Surveys, 24(2), 1992, pp.131-183.
[2] A. Brown, Large-scale component-based development,
Upper Saddle River: Prentice-Hall, 2000.
[3] M. Paludo, R. Burnett, and S. Reinehr, Applying
pattern techniques to leverage component-based
development, In: Proceedings of the IASTED
International Conference on Advances in Computer
Science and Technology. Puerto Vallarta: 2006.

[4] A. Alnusair, and T. Zhao, Component search and
reuse: a ontology-based approach, In Proceedings of the
IEEE International Conference on Information Reuse and
Integration (IRI 2010), pp. 258-261, 2010.
[5] J. Bosch, Design and use of software architectures,
England: Addison-Wesley, 2000.
[6] P. Clements, R. Kazman, and M. Klein, Evaluating
software architectures: methods and case studies. Boston:
Addison-Wesley. 2002.
[7] ISO/IEC FDIS (Final Draft International Standard)
25.010:Software engineering - software product quality
requirements and evaluation (SQuaRE), 2010.
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design patterns: elements of reusable object-oriented
software. Reading: Addison-Wesley, 1994.
 [9] C. Larman, Applying UML and patterns – an
introduction to object-oriented analysis and design and the
Unified Process (2nd Edition). Upper Saddle River:
Prentice Hall PTR, 2001.
[10] G. Heineman, and W. Councill, Component-based
software engineering: Putting the pieces together, Boston:
Addison-Wesley, 2001
[11] D. D’souza, and A. Wills, Objects and frameworks
with UML: the Catalysis approach,Addison Wesley, 1998.
[12] D. D’souza, Catalysis – systematic components and
frameworks with UML.
http://catalysis.org/publications/papers/2000-components-
frameworks.pdf, 2000
[13] J. Cheesman, and J. Daniels, UML components: a
simple process for specifying component-based software.
Boston: Addison-Wesley, 2001.
[14] D. Alur, J. Crupi, and D. Malks, Core J2EE™
patterns: best practices and design strategies. Upper
Saddle River; Prentice Hall PTR, 2001.
[15] C. Szyperski, Component software: beyond object-
oriented programming; Harlow: Addison-Wesley, 1998.
[16] C. Allen. Realizing e-business with components,
Harlow; Boston: Addison-Wesley, 2001.
[17] ISO/IEC JTC1/SC7 FDIS 14764 – Ssoftware life
cycle processes – maintenance, 2005
[18] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-oriented software
architecture: a system of patterns, John Wiley, 1996.
[19] S. Stelting, and O. Maassen, Applied java patterns,
Upper Saddle River; Prentice Hall PTR, 2002.
[20] F. Castor Filho, P. Guerra, V. Pagano, and C.
Rubira, A systematic approach for structuring exception
handling in robust component-based software, Journal of
the Brazilian Computer Society. Number 3, Vol. 10, April
2005. SBC, 2005.
[21] G. Redolfi, L. Spagnoli, P. Hemesath, R. Bastos, R.
Ribeiro, M. Cristal, and A. Espindola, A reference model
of reusabel components description, In Proceedings of the
38th Hawaii International Conference on System
Sciences, 2005.

383

