

Ontology to Classify Learning Material in Software Engineering

Knowledge Domain

Joselaine Valaski,

Andreia Malucelli, Sheila Reinehr, Ricardo Santos

Programa de Pós-Graduação em Informática (PPGIa)

Pontifícia Universidade Católica do Paraná (PUCPR)

Curitiba – PR – Brasil

{jvalaski, malu}@ppgia.pucpr.br, sheila.reinehr@pucpr.br,

ricardo.c.r.santos@gmail.com

Abstract. This paper proposes an ontology to automatic classification of learning materials

to the Software Engineering knowledge domain. The Software Engineering Body of

Knowledge (SWEBOK) was used to define the hierarchical structure of the knowledge

area. The Rational Unified Process (RUP) was used to add the axioms to represent the

relationships between concepts and to enable the reasoning to SWEBOK knowledge areas.

Two testing scenarios were designed and experiments were performed. The results show

that the ontology is able to classify and locate learning materials from the Software

Engineering area, according to the desired area, role, artifact or task.

1. Introduction

The development of new web-based technologies has increased the number of learning

environments, from simple learning resources repositories to more complex learning environments.

In these environments, learner can access information, communicate among themselves and learn in

a self-learning method [Ruiz et al. 2008].

 This self-learning process can happen through many didactic materials, such as digital books,

slideshows, audio or video recordings, etc. These materials allow knowledge sharing within a

common interest domain and are available to anyone, anytime, anywhere. This can facilitate the

learning of subjects that require highly trained professionals, who need to be up-to-date with the state

of the art of technology. Software Engineering can be named as one of such subjects.

 However, the self-learning environment can present challenges that hinder the real

knowledge acquisition. The difficulty to search the learning materials according to the learning

theme is one of these challenges. This search can be more difficult to learners due to the range of

knowledge themes [Yu 2010], making the identification of desired learning materials a challenge

[Fischer 2001].

 The process of classifying learning materials according to their knowledge area can be an

alternative to facilitate their retrieval. However, these classification mechanisms must use a common

language that would allow knowledge sharing to occur effectively [Davenport and Prusak 1998].

 Most knowledge areas have terminology problems in the use of consensual terms, as an

example, the Software Engineering area. It is common that different development teams use diverse

terms for the same concepts. Even though many software engineers work with Software Engineering,

some professionals claim to never have studied the subject [Wongthongtham 2006]. Thus, it is likely

that professionals find some difficulty to search adequate learning materials due to lack of a common

terminology.

 In this context, ontologies play an important role because they can be applied to provide a

common shared understanding of an information structure among individuals or organizations, as

well as be used to enable the knowledge domain reuse and make explicit assumptions of a domain

[Noy and McGuinness 2010].

 Ontologies can describe a hierarchy of concepts related by subsumption relationships, in this

case, a taxonomy-driven concept; or a structure, where the axioms are added in order to express

relationships between concepts and to restrict their intentional interpretations [Guarino 1998].

Through ontologies, hierarchical structures of themes related to the learning materials can be defined

using a common vocabulary to the knowledge area. Furthermore, it is possible to add reasoning to

this structure in order to help the automatic classification of learning materials within the defined

hierarchy. The automated classification is relevant when people do not hold enough knowledge to

identify the theme related to the learning materials due to lack of common vocabulary of the

knowledge area. Software engineers can be mentioned as an example.

 In this context, this paper aims to propose an ontology to automatic classification of learning

materials related to the Software Engineering knowledge area. The ontology aims to facilitate the

search for learning materials within the given domain. The Software Engineering Body of

Knowledge (SWEBOK) [Abran and Moore 2004] was used to define the hierarchical structures of

knowledge. The SWEBOK is intended to reach broad consensus on the area of Software Engineering

[Sicilia 2005]. The Rational Unified Process (RUP) was used to add axioms to represent the

relationships between concepts and enable the reasoning to the SWEBOK knowledge area.

 The remainder sections of this paper are organized as follows: Section 2 presents the related

work; Section 3 describes in details the proposed ontology; in Section 4 some experiments are

discussed; Section 5 concludes the paper.

2. Related Works

There are several papers proposing ontologies for the Software Engineering area. This section

presents these researches and their approaches.

 Mendes and Abran (2005) present a prototype of an ontology to represent the domain of

Software Engineering, based on the SWEBOK guide. A literal extraction from the guide results in

approximately 4,000 concepts. In this approach, there is no intention to establish a hierarchical

structure of the Software Engineering knowledge area. Sicilia et al. [2005] also proposes a

SWEBOK based ontology with a descriptive part in order to identify artifacts and activities and a

prescriptive part, with approaches and concrete activities’rules for “commonly accepted” practical

activities. Hilera et al. (2005) propose an ontology called OntoGLOSE based on the Software

Engineering Terminology Glossary, published by IEEE. OntoGLOSE includes about 1,500 concepts,

corresponding to 1,300 glossary terms with their different meanings.

 More specific approaches are established on the Software Engineering domain as well. The

Win-Win approach represents a model created to manage the necessary collaboration and negotiation

by the people involved in the software lifecycle stage [Bose 1995]. ONTODM represents the

knowledge of requisite specification techniques of a multi-agent systems family in an application

domain. It is being used as a CASE tool to help to elicit and specify the domain models. [Girardi and

Faria 2003]. Sánchez et al. [2005] propose an ontology to represent the different meanings of the

term model, incorporating the different concepts related to the terms. Cyc [2011] presents a UML

subOntology integrated in the OpenCyc ontology containing about 100 concepts, 50 relationships

and 30 instances, including UMLModel Element, UMLClassifier, UMLClass and

UMLStateMachine, according to SWEBOK’s Software Projects Notations subarea, from the

Software Project area. The XCM ontology provides a pattern to a component definition that appears

in different component models and standardizes these differences [Tansalarak and Claypool, 2004].

Deridder [2002] presents a general ontology on concepts related to software maintenance. An

ontology organized in five subontologies to represent the knowledge related with software systems,

the necessary skills to software maintainers, with maintenance process activities, organizational

maintenance topics and tasks that constitute any application domain is proposed by Dias et al.

[2003]. Ruiz et al. [2004] propose an ontology composed by four subontologies: products, activities,

organization processes and agents. Vizcaino et al. [2005] propose an ontology composed by the

ontologies proposed by Deridder [2002], Dias et al. [2003] and Ruiz et al. [2004]. The propose of

Deridder [2002], Dias et al. [2003], Ruiz et al. [2004] and Vizcaino et al. [2005] are based on an

initial software maintenance ontology proposed by Kitchenham et al. [1999]. Boehm and In [1996]

propose an ontology with concepts related to software quality attributes and information about the

software architectures influences and development processes on these attributes Other ontology

related to software process concepts is proposed by Falbo et al. [2002]. An ontology with the

software measurement terminology, associated with fundamental concepts is proposed by Garcia et

al. [2005]. Tautz and Greese [1998] present an ontology of the GQM (Goal Question Metric)

paradigm, and an ontology with concepts related to software process, including Life Cycle Models

concepts, Software Processes, Activities, Procedures, Tasks, Roles or Artifacts is presented by Falbo

et al. [1998]. The SPOnt, an ontology that reused concepts from other ontologies related to decision

support systems, establishing relationships, is proposed by Larburu et al. [2003]. González-Pérez and

Henderson-Sellers [2006] present an ontology for software development methodology that include a

metamodel and an architecture divided into three domains. Lin et al. [2003] propose an ontology for

the IEEE 12207 and the CMMI Standards that can be applied in an organization in order to inspect

and enhance the software processes maturity. An ontology particularly focused on the Software

Engineering area was developed by Wongthongtham et al. (2007), the first Software Engineering

oriented ontology, based on the SWEBOK’s areas of knowledge. This ontology presents only a

hierarchical structure; it does not use axioms to define the concepts related to the knowledge areas.

 There are several proposals for ontologies in the Software Engineering area, however, there is

not an ontology to classify materials according to the Software Engineering knowledge area. The

next section discusses the proposal of an ontology to help solving this problem.

3. Proposed Ontology

This section presents an ontology composed by SWEBOK and RUP concepts to classify learning

materials in the Software Engineering knowledge area. The ontology was developed with the

ontology editor Protégé [Stanford 2011].

 To define the knowledge’s hierarchical structure related to Software Engineering, the

SWEBOK´s definition knowledge area was used. The SWEBOK is a guide created under the

patronage of the Institute of Electrical and Electronics Engineers (IEEE) with the objective of

serving as reference to Software Engineering related subjects [Abran and Moore 2004]. This guide

presents a hierarchical classification of the Software Engineering topics, where the higher level is the

knowledge areas.

 However, the definition of a hierarchical structure is not enough to allow the automatic

classification of learning materials according to the defined structure. The SWEBOK does not

present an approach to the definition of their knowledge areas using relationships among the

concepts or explicit properties. For this reason, RUP was also used. RUP presents well-defined

relationships among the main concepts, which are: Discipline, Artifact, Role and Task. Although

RUP is a software development process, hence, not exactly focused on knowledge areas, the concept

of disciplines can be related between some SWEBOK knowledge areas, as shown in Table 1. In this

proposal, only the areas with total correspondence were mapped.

 In the following subsections the details of the proposed ontology for RUP and the integration

of this ontology with the ontology for the classification of learning materials according to the

SWEBOK knowledge areas are presented.

Table 1 – Relationship between the SWEBOK areas and RUP disciplines

SWEBOK Area RUP Discipline

Software Engineering Management Project Management

Software Engineering Process

Software Engineering Tools and Methods

Software Configuration Management Configuration and Change Management

Software Construction Implementation

Software Design Analisys and Design

Software Maintenance

Software Quality

Software Requirements Business Modeling Requirements

Software Testing Test

 Deployment

 Environment

3.1 OntoRUP: RUP representation ontology

OntoRUP was developed according to the Artifact, Role and Task concepts and their relationships

with the Discipline concept. Through these four concepts and their relationships, classes and their

properties were created. Table 2 presents the created classes and properties.

Table 2 – Classes and properties from OntoRUP

Domain Class Range Class Property Special Property (inverse)

Artifact

Task
Discipline hasDomain isDomainOf

Discipline
Artifact

Task
isDomainOf hasDomain

Role Artifact modify isModified

Artifact Role isModified modify

Task Role hasPerformer isPerformerOf

Role Task isPerformerOf hasPerformer

The general proposed hierarchy is presented in Figure 1. The RupElements class was created

in order to group the derivative concept classes: Discipline, Artifact, Role and Task concepts.

Figure 1 – OntoRUP general hierarchy

The Discipline class was created to represent the nine disciplines that compose the RUP

model. Through this class the other relationships are established and then the integration is done with

the SWEBOK´s knowledge areas.

 The Artifact class was created to represent the software artifacts that are used within the RUP

process. The Artifact class is directly related to the Discipline class through the hasDomain property.

According to this relationship, subclasses were created, that identify the artifacts related to each of

the nine disciplines proposed in the RUP model. Figure 2 presents an example of the hasDomain

property.

Figure 2 – hasDomain property

 The Role class was created to represent the corresponding subclasses to the six groups of

roles within the RUP, namely: Analysts, Developers, General Roles, Manager, Production Support

and Testers. Furthermore, within the Role class, corresponding subclasses of the roles related to each

of the nine disciplines were also created as shown in Figure 3. To establish the relationship between

the Role and Discipline classes, it was used the property “modify” that relates the Role class to the

Artifact’s subclasses. As the subclasses of Artifact are already related to the Discipline class, the

relationship between the Role and Discipline classes is also completed.

Figure 3 – Role’s subclasses

 The Task class was created to represent the tasks of the RUP model. The Task class has direct

relationship with the Discipline class through the hasDomain property. Based on this relationship

have been created subclasses to represent the tasks corresponding to each of the nine RUP disciplines

specified in the model.

3.2 Software Engineering Learning Materials Ontology

Once established the ontology structure for representation of RUP elements, it was defined the

necessary elements to enable the classification of learning materials within the Software Engineering

domain. The LearningMaterial class was created to represent the learning materials, and its

subclasses were created based on the ten SWEBOK’s areas, as shown in Figure 4.

Figure 4 – Learning Materials according to the SWEBOK

 In order to define the ten areas of the SWEBOK using explicit and formal properties, the

defined concepts of RUP ontology was used. It is possible to identify the related discipline through

any of the Artifact, Role and Task concepts, and through mapping it is possible to know the

SWEBOK´s knowledge area. Because of that, the isRecommendedTo property was created, as

shown in Table 3, in order to be able to recommend a learning material related to any of the three

concepts presented in RUP. Thus, when adding a learning material it is possible: to recommend the

material for the use of a specific artifact, such as a Business Case; the execution of a specific task,

such as Architectural Analysis; or the execution of a specific role, such as System Analyst.

Table 3 – isRecommendedTo property

Domain Class Range Class Property Special Property (inverse)

LearningMaterial

Artifact

Task

Role

isRecommendedTo hasRecommendation

Artifact

Task

Role

LearningMaterial hasRecommendation isRecommendedTo

 Through the related recommendation it is possible to classify the material according to the

SWEBOK’s knowledge areas. For instance, a learning material will be classified as belonging to the

Test knowledge area, if it has the isRecommendedTo property related to, at least, one instance of the

Artifact, Role or Task classes, linked to the Test discipline.

 These possibilities of recommendations can help to obtain a more accurate classification of

the learning material, especially when there is no formal knowledge regarding to which knowledge

area the material belongs to.

4. Results

The ontology was proposed to be applied in a self-learning environment where people share their

knowledge related to the Software Engineering area by adding learning materials. The proposed

ontology will help in the classification of learning materials, mainly because software engineers may

not use a common vocabulary or may not have enough knowledge to classify correctly the material

within the appropriate domain. Furthermore, the ontology will facilitate the recommendation of these

learning materials.

 Two scenarios were designed to verify the proposal’s viability. The scenario 1 was used to

test the classification of learning materials and scenario 2 was used to test the recommendation of

these materials. The simulations were created using the Protégé tool.

 Scenario 1 – Learning Materials Classification

 Instances of learning materials were added using the Protégé tool, as shown in Figure 5. Also

recommendations were made through the isRecommendedTo property. Each recommendation was

associated with instances of Artifact, Role or Task classes.

Figure 5 – Learning materials instances included using Protégé

 The values assigned to the isRecommendedTo class for each one of the learning materials are

shown in Table 4.

Table 4 – Values assigned to the isRecommendedTo property

Id. Material
Recommendation for

Artifact

Recommendation for

Role

Recommendation for

Task

material001
Analisys Model

Use Case Model
System Analyst

material002 Requirements Specifier

material003 Create Baseline

material004 System Administrator

material005 Test Plan

material006 Architectural Analisys

material007 Software Architect

material008 Business Case System Analyst

material009 System Analyst

 The Pellet reasoned, version 1.5.2, was used to classify the learning materials. As shown in

Figure 6, it is possible to verify that the ontology correctly classified the learning materials according

to the defined concepts.

 However, it is important to provide mechanisms to help software engineer to make their

recommendations in order to avoid inconsistencies. For instance, the material identified as

“material008”, was recommended to be used in the Business Case artifact. In this case, it should not

be possible to recommend it for the System Analyst role, as this role has no relationship with this

artifact. As a result, the material was classified in three knowledge areas, one of them due to artifact

recommendation, and the other two due to recommendation by role. The ontology proposed can be

used to help filter consistent recommendations among Artifact, Role and Task classes.

Figure 6 – Learning Materials classification using Pellet

 Scenario 2 – Learning Materials Recommendation

 Scenario 2 was designed to present the possible recommendations of the learning materials

once these materials will be available in a learning environment. According to the simulation

described in scenario 1, after the learning materials were classified using the inference mechanisms,

it is possible to search for these materials through the knowledge areas defined in SWEBOK. For

instance, it is possible to retrieve all the learning materials related to the Software Requirement area.

However, besides retrieving the materials by Software Engineering knowledge area, the ontology

also allows to find all the materials according to recommendations, by Artifact, Role or Task.

 SPARQL was used to simulate a preview of these possibilities. The SPARQL is a language to

retrieve data from Web Ontology Language (OWL) files. Figure 7 presents a SPARQL query in

order to retrieve learning materials recommended by Roles. In this case, the learning materials are

retrieved through the Roles view; however, the queries can be executed by Artifacts and Tasks as

well.

Figure 7 – Query using SPARQL

 It is important to point out that new recommendations may be added to the learning materials

according to their use. For example, a learning material that was added with the System Analyst role

may also be recommended to the Elicit Stakeholder Requests task. So, the level of details for the

recommendation is enhanced and the retrieval of material becomes more precise.

5. Conclusion

This paper presented an ontology to automatically classify learning materials related to the Software

Engineering knowledge area, aiming to facilitate the search for these materials.

 The ontology was defined using the main structure of ten SWEBOK knowledge areas and the

concepts and relationships among Artifact, Task and Role elements from RUP model. RUP was used

to define SWEBOK knowledge areas through axioms to enable the automatic classification of

learning materials according to recommendations.

 Some experiments were performed and it was possible to conclude that the ontology

classifications were correctly, according to the Software Engineering knowledge areas. Furthermore,

the ontology provides views of the learning materials under three aspects, recommendations by

artifacts, tasks and role. This diversity can be another facilitator for retrieving the desired material.

 The proposed ontology will be integrated to a self-learning environment, and experiments

with Software Engineering students and professionals will be performed in order to evaluate the

proposal.

References

Abran, A. and Moore, J. W. (2004). “SWEBOK - Guide to the Software Engineering Body of

Knowledge”. IEEE CS Professional Practices Committee.

Boehm, B. and In, H. (1996). “Identifying Quality Requirements Conflicts”. IEEE Software, pp. 25–

35.

Bose, P. (1995). “Conceptual design model based requirements analysis in the Win-Win framework

for concurrrent requirements engineering”. In: IEEE Workshop on Software Specification and

Design (IWSSD).

Clemente, J., Ramírez, J. and Antonio, A. (2010). “A proposal for student modeling based on

ontologies and diagnosis rules”. Expert Systems with Applications, pp. 8066-8078.

Cyc (2011). Cyc: OpenCyc.org: Formalized Common Knowledge. Cycorp, USA.

http://www.opencyc.org, April.

Davenport, T.H. and Prusak, L. (1998). “Working Knowledge: How Organizations Manage What

They Know”. Harvard Business School Press.

Deridder, D. (2002). “A Concept-Oriented Approach to Support Software Maintenance and Reuse

Activities”. In: 5th Joint Conference on Knowledge-Based Software Engineering (JCKBSE),

Maribor, Slovenia.

Dias, M.G., Anquetil, N., and Oliveira, K.M. (2003). “Organizing the Knowledge Used in Software

Maintenance”. In: Journal of Universal Computer Science, pp. 641–658.

Falbo, R., Menezes, C. and Rocha, A. (1998). “Using Ontologies to Improve Knowledge Integration

in Software Engineering Environments”. In: 4th International Conference on Information Systems

Analysis and Synthesis(ISAS), Orlando, USA.

http://www.opencyc.org/

Falbo, R.A., Guizzardi, G., Duarte, K.C. (2002).”An Ontological Approach to Domain Engineering”.

In: Proceedings of 14th International Conference on Software Engineering and Knowledge

Engineering (SEKE), Ischia, Italy, pp. 351–358.

Fischer, G. (2001). “User Modeling in Human–Computer Interaction”. In: User modeling and user-

adapted interaction, pp. 65–86.

García, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M. and Genero, M. (2006).

“Towards a consistent terminology for software measurement”. Information and Software

Technology. pp. 631-644.

Girardi, R. and Faria, C. (2003). “A Generic Ontology for the Specification of Domain Models”. In:

Proceedings of 1st International Workshop on Component Engineering Methodology

(WCEM’03) at Second International Conference on Generative Programming and Component

Engineering, Erfurt, Germany.

González-Pérez, C. and Henderson-Sellers, B. (2006). “An Ontology for Software Development

Methodologies and Endeavours”. Ontologies for Software Engineering and Technology, Springer-

Verlag, Berlin.

Hilera, J.R., Sánchez-Alonso, S., García, E. and Del Molino, C.J. (2005). “OntoGLOSE: A Light-

weight Software Engineering Ontology”. In: 1st Workshop on Ontology, Conceptualizations and

Epistemology for Software and Systems Engineering (ONTOSE), Alcalá de Henares, Spain.

Kitchenham, B.A., Travassos, G.H., Mayrhauser, A., Niessink, F., Schneidewind, N.F., Singer, J.,

Takada, S., Vehvilainen, R. and Yang, H. (1999). “Towards an Ontology of Software

Maintenance”. Journal of Software Maintenance: Research and Practice, pp. 365–389.

Larburu, I.U., Pikatza, J.M., Sobrado, F.J., García, J.J. and López, D. (2003). “Hacia la

implementación de una herramienta de soporte al proceso de desarrollo de software”. In:

Workshop in Artifificial Intelligence Applications to Engineering (AIAI), San Sebastián, Spain.

Lin, S., Liu, F. and Loe, S. (2003). “Building A Knowledge Base of IEEE/EAI 12207 and CMMI

with Ontology”. In: Sixth International Protégé Workshop, Manchester, England.

Mendes, O. and Abran, A. (2005). “Issues in the development of an ontology for an emerging

engineering discipline”. In: First Workshop on Ontology, Conceptualizations and Epistemology

for Software and Systems Engineering (ONTOSE), Alcalá de Henares, Spain.

Noy, N. F. and McGuinness, D. L. (2001). “Ontology Development 101: A Guide to Creating Your

First Ontology”. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and

Stanford Medical Informatics Technical Report SMI-2001-0880.

Ruiz, F., Vizcaíno, A., Piattini, M. and García, F. (2004). “An Ontology for the Management of

Software Maintenance Projects”. International Journal of Software Engineering and Knowledge

Engineering, pp. 323–349.

Ruiz, M., Diaz, M., Soler, F. and Perez, J. (2008). “Adaptation in current e-learning systems”.

Computer Standards & Interfaces, pp. 62-70.

Sánchez, D.M., Cavero, J.M. and Marcos, E. (2005). “An ontology about ontologies and models: a

conceptual discussion.” In: First Workshop on Ontology, Conceptualizations and Epistemology

for Software and Systems Engineering (ONTOSE), Alcalá de Henares, Spain.

Sicilia, M., Cuadrado, J. J., Garcia, E., Rodriguez, D. and Hilera, J. R. (2005). “The evaluation of

ontological representation of the SWEBOK as a revision tool”. In: 29th Annual International

Computer Software and Application Conference (COMPSAC), Edinburgh, UK, pp. 26–28.

http://www.sciencedirect.com/science/journal/09505849

Stanford (2011). “The Protégé Ontology Editor and Knowledge Acquisition System”,

http://protege.stanford.edu/index.html, April.

Tansalarak, N., Claypool and K.T. (2004). “XCM: A Component Ontology.” In: Workshop on

Ontologies as Software Engineering Artifacts (OOPSLA), Vancouver, Canada.

Tautz, C. and Von Wangenheim, C.(1998). “REFSENO: A Representation Formalism for Software

Engineering Ontologies”. Fraunhofer IESEReport No. 015.98/E, version 1.1, October 20.

Vizcaíno, A., Anquetil, N., Oliveira, K., Ruiz, F. and Piattini, M. (2005). “Merging Software

Maintenance Ontologies: Our Experience”. In: First Workshop on Ontology, Conceptualizations

and Epistemology for Software and Systems Engineering (ONTOSE), Alcala de Henares, Spain.

Yu, Z., Zhou, X. and Shu, L. (2010). “Towards a semantic infrastructure for context-aware e-

learning”. Multimedia Tools and Applications, pp. 71–86.

Wongthongtham, P. (2006). “A methodology for multi-site distributed software development.” PhD

Thesis, Curtin University of Technology.

http://protege.stanford.edu/index.html

