
Marcus Vińıcius Mazega Figueredo

A Learning Algorithm for Constructive
Neural Networks Inspired on Decision

Trees and Evolutionary Algorithms

A thesis submitted for the degree of Doc-
tor of Philosophy at the Pontif́ıcia Universi-
dade Católica do Paraná of Curitiba, Paraná,
Brazil.

Curitiba
2013
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Tecnologia. Programa de Pós-Graduação em Informática.
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Abstract

Inspired on decision trees and evolutionary algorithms, this thesis proposes a learning

algorithm of constructive neural networks that relies on three statements: to layout the

neurons in a tree-like structure; to train each neuron individually; and, to optimizate

all the weights using an evolutionary approach. This way, it is expected to advance in

two main questions concerning multilayer perceptrons (MLPs): how to determine the net-

work architecure and how to build more comprehensible models. Based on the normalized

information gain of each attribute, the constructive algorithm builds the network archi-

tecture. In the process, the algorithm automatically creates a set of training examples for

each individual neuron and executes single-cell learning. Once the network is complete

and trained, particle swarm optimization is utilized to evolve the connections of the net-

work. Six metrics are utilized to validate the method when compared to decision trees

and MLPs: accuracy, sensitivity, specificity, precision, computational cost and compre-

hensibility. The method was tested in 13 different data sets and proved to create neural

networks that are more comprehensible than traditional MLPs, without degradation in

the classification performance.

Keywords: Constructive algorithms, neural trees, neural networks, easy learning

problems, comprehensibility.
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Chapter 1

Introduction

Among the several machine learning methods, artificial neural networks are one of the

most popular approaches. They are succesfully utilized in a large sort of applications, such

as pattern classification, optimization, function aproximation, and many others. However,

what are neural networks? And, most important, why are they so interesting?

Artificial neural networks have their inspiration on biological neurons, composed of

dendrites, cell body and axons. The main idea is summarized by the reductionist ap-

proach: if you can reproduce with sufficient detail a biological “machine” that conducts

an intelligent behavior (like the brain), then your system will exhibit an intelligent be-

havior (ALMEIDA, 2006).

The natural neurons are generalized in mathematical models based on the following

statements (FAUSSET, 1994):

• Information is processed by simple units called neurons.

• Signals are transmitted between neurons through connections.

• Each connection has an associated weight, that is multiplied by the transmitted

signal.

• Each neuron utilizes an activation function to calculate the output signal.

This way, a neural network can be defined as a connectionist model, with intercon-

nected neurons in many possible topologies. They can be applied in problems where:

resolution rules are unknow or hard to formalize; there is a large amount of examples and

solutions; great speed is needed in the problem solving; or, there are not current tecno-
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logical solutions. The application domains involve shape recognition, signal processing,

view, speech, prediction, modelling, decision support and robotics (GURNEY, 1997).

One of the most important steps during neural networks utilization is the training,

when the network “learns” how to solve a problem. This learning can be supervised

(with previously solved examples) or unsupervised. Supervised training are mostly uti-

lized in classification problems, while the unsupervised methods are preffered to grouping

problems.

Despite the fact that there are many possible topologies and learning algorithms,

multilayer feedforward networks trained by backpropagation algorithm are probably one

of the most utilized strategies. Indeed, this technique, that utilizes mean squared error

and gradient descent, became the most important and most widely used algorithm for

connectionist learning (GALLANT, 1994). Much of this success and popularity probably

came from the good results that this approach often presents.

It is relevant to remind that this algorithm searchs for a solution in a priori fixed

network topology. During the search, only the weights are changed. This situation forces

the user to select an adequate topology as a requirement for a good network behavior.

Nevertheless, there are no efficient method for determining the optimal network topology

for a given problem (PAREKH; YANG; HONAVAR, 2000). This is very significative,

because a too small network may not learn the domain and a too large network can mask

an overfitting problem.

1.1 Motivations and Challenges

The topology paradox stimulated many authors to develop constructive neural-network

learning algorithms. The motivation for these algorithms is to transform the hard task of

building a network into the easier problem of single-cell learning (GALLANT, 1994). Usu-

ally, they start with a single neuron and, as necessary, grow the network through the ad-

dition and training of new neurons. According to Parekh, Yang and Honavar (PAREKH;

YANG; HONAVAR, 2000), the key motivations for studying constructive neural-network

learning algorithms are:

1. They overcome the limitation of searching in a priori fixed topology.

2. They usually produce smaller networks, which are more efficient 1.

1Honavar believes that a network is more efficient if it can achieve a similar classification rate with
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3. You can determine the complexity of a problem by measuring the size of the con-

structed network. More complex problems need extra neurons.

4. You can choose some variables to optimize, such as learning time or network size.

5. You can use prior knowledge to start the network architecture.

6. They present lifelong learning.

A particular case of constructive learning algorithms involves the easy learning prob-

lems. These are problems where it is given a network, and where the training examples

specify input values and correct activations for all output and intermediate cells (GAL-

LANT, 1994). They are called “easy” because it is possible to decompose the problem

and train each single cell. Theoretically, an easy learning algorithm may provide a faster

solution, since training each cell separately is an easier task than synchronously training

interconnected cells. However, practical work shows that is very hard to determine correct

activations of the intermediate cells. Indeed, it was proven that this is a NP-complete

problem (BLUM; RIVEST, 1992).

Thus, it is possible to say that the main problem concerning easy learning algorithms

involves the discovery of correct activations of the intermediate cells. Three solutions may

be considered:

1. To utilize a database with training examples that specifies the input and output

values for all cells.

2. A specialist may define the topology of network and establish the input and output

values for all cells.

3. To find an automatic way (an algorithm) to define the topology of network and

establish the input and output values for all cells.

The two first hypotheses are easily discarded, because they are not feasible. It is very

hard to find a database with the inputs and outputs of the intermediate cells. This way,

this option could not be considered to a generic method. On the other hand, it is not

convenient to ask a specialist to define these values. Indeed, if you have a specialist, there

are better artificial intelligence methods instead of easy learning algorithms.

So, finding an heuristic should be the better hypothesis to follow. This heuristic must

comply with the following statements:

less neurons and connections
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• It should learn automatically from a database with examples.

• It should define automatically the network’s topology.

• It should establish automatically the input and output values of all cells, including

the intermediate ones. Each neuron should be trained alone, in a single-cell learning

approach.

Decision tree algorithms learn from examples and create topologies of if-then clauses.

Theses clauses can be utilized to create inputs and outputs for each cell. In other words,

it is possible to train each neuron separately, according to single-cell training method.

Therefore, it is legitimate to suppose that one can derive a decision tree construction

algorithm in a easy learning algorithm for constructive neural networks.

Hybrid systems involving neural networks and decision trees are not something new.

In fact, these two methods have been combined in several ways over the years. Indeed,

neural networks with tree-based structures were introduced since 1989 (UTGOFF, 1989).

Moreover, these hybrid models are usually called neural trees. This approach involves the

creation of a decision tree and the conversion into a matching neural network. Nonethe-

less, there is no method in the literature that proposes an unique algorithm (inspired in

decision trees) that directly creates the network from the examples. Such method would

be classified as a constructive learning algorithm of neural networks, which is conceptually

the opposite of usual neural trees.

Another question that arises from the creation of neural trees is the post-training

approach. The post-training is very important, because a newborn network has the same

accuracy of the original decision tree. This way, it is necessary to train this tree so it

can overcome the primal perfomance. It is clear that a conventional algorithm, such

as backpropagation, could do this training. However, backpropagation is the complete

opposite of the concept of constructive networks. Then, it is very important to search for

another way in this training, in order to keep its consistency.

Evolutionary algorithms may fit very well in this training. In truth, there are many

papers that describe the good results of different techniques, like genetic algorithms or

particle swarm optimization, in neural networks training. Considering that this work is

about constructive techniques and reminding that evolutionary algorithms are conceptu-

ally parallel methods, it is reasonable to propose their utilization as post-training method.
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1.2 Research Contributions

Inspired on decision trees and evolutionary algorithms, this thesis aims to propose

a learning algorithm of constructive neural networks for classification applications. The

algorithm relys on the following statements:

1. To layout the neurons in a tree structure.

2. To train each neuron individually.

3. To optimizate all the weights using an evolutionary approach.

Following this scheme, it is expected to find a feasible solution to the implementation

of automatic easy learning algorithms. Also, it should reduce the computational cost of

initialising and training multilayer perceptrons, since the construction of the network is

guided with a very clear heuristic. Additionaly, evolutionary algorithms may considerably

refine the accuracy of the model, providing good results. And, finally, there is the interest

in analyzing the consequences of mixing white-box (decision trees) and black-box (neural

networks) models, mainly in the context of knowledge representation.

1.3 Thesis Structure

This document is organized as follows.

In chapter 2, important definitions about artificial neural networks are introduced,

mainly the representation issues and basic learning algorithms for single-neurons systems

(perceptrons). Multilayer perceptrons are also presented, including the backpropagation

learning algorithm.

Chapter 3 is based on the constructive neural networks and their advantages compared

to MLPs. Several constructive learning algorithms are described in this chapter.

Then, the chapter 4 reviews the various hybrid models that involve neural networks,

decision trees and evolutionary algorithms. The methods are classified according to their

characteristic and the most significant algorithms are described.

Chapter 5 describes the problem and the assumed hypothesis. The proposal is also

explained in this chapter, in details. The three main aspects of the theory (topology

construction, single-cell learning and weights optimization) are described separately.
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The methodology of the project is defined in chapter 6 as so the chosen databases

and the reasons that motivated these choices. Also, the chapter defines the ML (machine

learning) techniques that will be compared to the proposed method. Additionaly, the

utilized metrics are explained as well as the structure of each experiment.

Chapter 7 reveals the results of this work, which are deeply analyzed and compared

to traditional methods.

Finally, chapter 8 brings the conclusion of this thesis.
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Chapter 2

Foundations of Neural Networks

The brain is composed by billions of interconnected neurons, where each neuron is

a cell that receives, processes and transmits signals using electrochemical reactions. As

shown in figure 2.1, a typical neuron is composed by three parts: dendrites, cell body (or

soma) and axon.

Dendrites are the several filaments that branch from the cell body. They conduct the

electrochemical signals that came from the neighbor neural cells to the soma. On the

other hand, the axon is the single projection that outputs electrochemical signals from

the cell body to neighbor neurons.

This way, the brain can be defined as a network of neurons, where the axon of each

neural cell is connected to the dendrites of many others. The signals are transmitted

electrochemically via synapses, which are the functional connections between neural cells.

Actually, a synapse is a small gap that exists between the axon of a neuron and the

dendrite of other cell. The axon launchs neurotransmitters in the synapse that excite

the dendrites, transmitting the information. The strength of the transmitted signal is

determinated by physical and chemical characteristics of each synapse.

The brain can be viewed as a massive parallel processor. The input signals from many

sensors (sight, hearing, taste, smell, touch, and others) are transmitted and processed

through billions of synapses, resulting in output actions. Any change in the synapses

circuit affects the output. In a trial and error process, the synapses are updated, improving

the output. In other words, the brain “learns”.

“Indeed, learning occurs as a result of changing the effectiveness of synapses

so that their influence on other neurons also changes. Learning is a function

of the effectiveness of synapses to propagate signals and initiate new signals
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Figure 2.1: Biological neuron.
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along connecting neurons. Learning and experience change the structure of the

neural networks.”(HINTON, 1992)

2.1 Artificial Neurons

Artificial neural networks are biologically inspired on the brain, which is composed

by billions of interconnected neurons. So, to reproduce the intelligent behavior of the

brain, one can reproduce the behavior of the biological neurons and their connections. It

is a reductionist approach, where an intelligent behavior is achieved by mimetizing the

behavior of the components of an intelligent system.

The first mathematical model of a neuron was introduced by Mcculloch and Pitts in

1943 (MCCULLOCH; PITTS, 1943). In that paper, they described a neural unit that

sums the inputs of several sources and, if the total value overcomes a defined threshold,

transmits an output of 1.0 (active). If not, it produces an output of 0.0 (inactive). Each

input (or synapse) can be weighted, where the weight multiplies the respective input

during the sum. Although being a very simple model, it reproduces the behavior of a

biological neuron with sufficient detail. Indeed, their artificial neuron is a tunable linear

threshold unit that can compute any logical expression, when it is arranged in a network

with many interconnected units and tuned weights. However, they did not describe how

to tune the weights, which means that there was no training algorithm for those initial

networks.

In 1949, Donald Hebb proposed that the activation (or not) of neural synapses make

them stronger (or weaker). In this hypothesis, the utilized synapses during the execution

of a task are reinforced. Actually, it is stated that synapses could be created or destroyed

depending of the frequency that the respective neurons are activated or not:

“Let us assume that the persistence or repetition of a reverberatory activity

(or ’trace’) tends to induce lasting cellular changes that add to its stability.

The assumption can be precisely stated as follows: When an axon of cell A is

near enough to excite a cell B and repeatedly or persistently takes part in firing

it, some growth process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cells firing B, is increased.” (HEBB,

1949)

This neurophysiological postulated originated the “Hebb’s rule”, that was used as
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Figure 2.2: The perceptron.

the heuristic of several learning algorithms. This principle is utilized to alter the weights

between artificial neurons. Basically, when two connected neurons are activated at the

same time, the weight of their connection is increased. If just one of them is active, the

same weight is reduced.

2.2 Perceptron

The “Hebb’s rule” was succesfuly implemented in 1958 by Frank Rosenblatt, when he

invented the perceptron (ROSENBLATT, 1958). As seen in the figure 2.2, it is a binary

classifier that maps its inputs to a single binary value.

The classification function of perceptron is defined by:

f(x) =

{
1 if w · x+ b > 0

−1 else

where w is a vector of real-valued weights, x is a vector of real input values and b is

the “bias”, a constant real value that does not vary according the inputs.

Given an instance represented by its input values, the perceptron will classify it as 1

or −1. So, it acts as a linear classifier that separates several instances with a hyperplane,

as seen in the figure 2.3.
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Figure 2.3: Perceptron uses a hyperplane to separate instances.



12

The intelligent behavior of a perceptron is determined by its weights and bias. Indeed,

one can tell that the “knowledge” of a perceptron is stored in these values. Actually, the

perceptron “learns” by updating its weights and bias. One of the great advances of

Rosenblatt’s work was to present the algorithm for perceptron learning, which made it

possible to automatically train perceptrons with examples and solve several problems.

The perceptron learning algorithm is given as pseudocode in algorithm 1:

Algorithm 1 Perceptron learning algorithm

Require: A group of training examples and corresponding classifications.
Ensure: A vector of weights w that correctly classifies all training examples if they are

linearly separable.
w ← 0
while w does not correctly classifies all examples do
x← training example
c← correct classification
if (w · x >= 0 and c = +1) or (w · x < 0 and c = −1) then

do nothing
else
w ← w + c · x

end if
end while

The perceptron learning algorithm can be geometrically interpreted (figure 2.4), as

did Stephen Gallant:

“Each training example corresponds to a vector with ‘tail’ at the origin and

‘head’ at x. The set of weights is also a vector, with head at w. The algorithm

seeks a vector w that has positive projection (inner product) with all training

examples labeled ‘1’ and negative projection with all training examples labeled

‘-1’.”(GALLANT, 1994)

For example, consider a single-cell problem proposed by Gallant (GALLANT, 1994).

His training examples are given in table 2.1. Note that the bias are added to the examples

as a fixed input (“1”). This way, the algorithm can update the weights and the bias at the

same time. Applying the perceptron learning algorithm to these examples, it produces

the interactions sequence listed in table 2.2.

After 12 iterations, the algorithms finds an array of weights that solves the problem.

It is relevant to observe that the algorithm randomly chose the order of the training

examples, during learning process. A different order will result in more or less iterations.



13

Figure 2.4: Geometrical interpretation of perceptron learning algorithm.

Table 2.1: Training examples of “AND” logical operation.

Training Example (Bias, x1, x2) c
X1 (+1, -1, -1) -1
X2 (+1, +1, -1) -1
X3 (+1, +1, +1) +1

Table 2.2: Perceptron learning interactions over training examples of “AND” logical op-
eration.

Interation Current Example Current Weights OK? Action
1 (1 -1 -1 -1) (0 0 0 0) No Update weights
2 (1 1 -1 -1) (1 -1 -1 -1) No Update weights
3 (1 -1 -1 -1) (0 -2 0 0) Yes Do nothing
4 (1 1 1 1) (0 -2 0 0) No Update weights
5 (1 -1 -1 -1) (1 -1 1 1) No Update weights
6 (1 1 1 1) (2 -2 0 0) No Update weights
7 (1 -1 -1 -1) (3 -1 1 1) Yes Do nothing
8 (1 1 -1 -1) (3 -1 1 1) No Update weights
9 (1 -1 -1 -1) (2 -2 2 2) No Update weights
10 (1 -1 -1 -1) (3 -3 1 1) Yes Do nothing
11 (1 1 -1 -1) (3 -3 1 1) Yes Do nothing
12 (1 -1 -1 -1) (3 -3 1 1) Yes End algorithm
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Figure 2.5: A set with three linearly separable classes.

Anyway, the algorithm will always find a solution for a finite set of linearly separable

training examples. The statement that perceptron learning algorithm always converges

when a solution exists is called “Perceptron Convergence Theorem” and was proposed by

Frank Rosenblatt (ROSENBLATT, 1962).

The previous example is a 2-classes problem (-1 and +1), which could be solved with a

single neuron. However, any number of classes is possible, provided that they are linearly

separable (like the training examples of figure 2.5). In these cases, more than one neuron

is necessary, as the single layer perceptron shown in figure 2.6. Basically, each perceptron

is trained separately and divides the instances with a hyperplane (figure 2.7).

2.3 Pocket Algorithm

It is relevant to notice that the perceptron learning algorithm only uses the nega-

tive reinforcement to adjust the weights. In other words, it fully ignores the correct

classifications. Aware of this situation, Stephen Gallant proposed the Pocket algorithm

(GALLANT, 1990), which also utilizes positive reinforcement during the training. To do

this, it keeps a separate set of weights named wpocket “in the pocket”, where wpocket has
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Figure 2.6: A single layer perceptron.

Figure 2.7: Each perceptron divides the instances with a hyperplane.
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the largest number of consecutive correct classifications.

The Pocket algorithm is presented as pseudocode in algorithm 2:

Algorithm 2 Pocket algorithm

Require: A group of training examples and corresponding classifications.
Ensure: A vector of weights w that correctly classifies all training examples if they are

linearly separable.
w ← 0
wpocket ← 0
while w does not correctly classifies all examples do
x← training example
c← correct classification
if (w · x >= 0 and c = +1) or (w · x < 0 and c = −1) then

if w has more consecutive correct classifications than wpocket then
wpocket ← w

end if
else
w ← w + c · x

end if
end while

Despite being a very interesting optimization, this algorithm introduces another weak-

ness. It is possible to exist a set of weights with the best count of consecutive correct

classifications, but without the largest total of correct classifications. Stephen Gallant

called this situation as a “lucky run”. To avoid that, it proposed another optimization

called “ratchet”. Basically, it consists in checking if the new set of weights has the largest

total of correct classifications before adding it to the pocket. This way, the algorithm

will always choose the best set. However, this kind of approach can only be applied in

situations with a limited number of training examples, once it demands that all examples

must be tested before a change in the pocket.

This algorithm, which is called the Pocket algorithm with ratchet, is presented as

pseudocode in algorithm 3.

2.4 Multilayer Perceptron

Although the initial success of perceptrons, they increasily lost attractiveness after

Marvin Minsky and Seymour Papert (MINSKY; PAPERT, 1969) showed that a single

layer perceptron cannot learn the “XOR” logical function. Indeed, they proved that

perceptrons could only deal with linearly separable problems.
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Algorithm 3 Pocket algorithm with ratchet

Require: A group of training examples and corresponding classifications.
Ensure: A vector of weights w that correctly classifies all training examples if they are

linearly separable.
w ← 0
wpocket ← 0
while w does not correctly classifies all examples do
x← training example
c← correct classification
if (w · x >= 0 and c = +1) or (w · x < 0 and c = −1) then

if w correctly classifies more training examples than wpocket then
wpocket ← w

end if
else
w ← w + c · x

end if
end while

This dramatically slowed down the work with perceptrons and other connectionist

models. In fact, the research of AI (artificial intelligence) in the 1970s and early 1980s

was dominated by symbolic models. Stephen Gallant (GALLANT, 1994) reminds a com-

ment (from an anonymous referee who was analyzing a paper about neural networks on

March 1985) that captures the general feeling about then: “perceptron learning has quite

correctly been discarded as a technique worthy of study”.

Despite of that, some authors achieved significant advances during these “dark ages”,

like Grossberg, Anderson, Kohonen, Fukushima and Hopfield. The resumption of neural

networks was incremently done by several works that could deal with non linearity. For

example, in 1973, Stephen Grossberg proposed new arranges of perceptrons that could

solve the “XOR” problem and other non linear problems (GROSSBERG, 1937).

However it was in the mid-1980s that neural networks “reborn” when Hinton, Se-

jnowski and Ackley (HINTON; SEJNOWSKI; ACKLEY, 1984) came up with the back-

propagation algorithm. Actually, they “rediscovered” this algorithm, since it was firstly

described in 1969 by Arthur E. Bryson and Yu-Chi Ho (BRYSON-JR; HO, 1969). Cu-

riously, the backpropagation algorithm was also “reinvented” by P.J. Werbos on 1974

(WERBOS, 1974) and D.B. Parker on 1982 (PARKER, 1982).

Initially, the main problem of the backpropagation learning was the speed. This was

solved when Rumelhart, Hinton and Williams (RUMELHART; HINTON; WILLIAMS,

1986) popularized a much faster algorithm, that was utilized by several researchers in

many problems. Since then, multilayers perceptrons trained with backpropagation algo-
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Figure 2.8: A typical multilayer perceptron.

rithm became the symbol of the “ressurection” of neural networks.

A MLP (multilayer perceptron) is a feedforward neural network that, differently from

a single layer perceptron, has two or more layers with nonlinear activation functions.

Because of that, it is able to map nonlinear models, which means that is able to solve

problems that linear perceptrons cannot.

It consists of one input and one output layer (as single layer perceptrons) plus one

or more “hidden” layers. Each layer is fully connected to the next, as exemplified in

figure 2.8. Every connection between neurons is balanced with a weight wij. The number

of input neurons is defined by the number of parameters whereas the output neurons

quantity is the same of the mapped classes.

The activation function defines the output of a neuron from the sum of inputs multi-

plied by their weights, as previously shown in the figure 2.2. Unlike the linear perceptrons
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Figure 2.9: Some sigmoid functions.

that were described earlier, a MLP uses nonlinear activation functions, mainly sigmoids.

A sigmoid function is defined as a strictly increasing function that exhibits a graceful

balance between linear and nonlinear behavior (HAYKIN, 1994). There are several sig-

moid functions: logistic, arctangent, hyperbolic tangent, and others. Some of them are

displayed in the figure 2.9. They all share three important characteristics:

• They are real-valued, which means that they assume a continuous range of values

from -1 to 1 or 0 to 1 (depending of the adopted mathematical model).

• They are differentiable and the first derivative must be non-negative or non-positive.

• They have one inflection point, that can be seen in the “s-shaped” graph.

2.5 Backpropagation Learning Algorithm

The backpropagation learning algorithm is the most used method of training MLPs.

It is composed by two phases. In the first phase, the training examples are presented to

the network that tries to predict results. In the second phase, these predicted results are

compared to the correct values and an error value is calculated. This error is propagated
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backwards through the network, from the output neurons to the inner ones. The weights

are adjusted according to the propagated error. The two phases are iteratively repeated

until the network correctly matches all training examples or another stopping criterion is

satisfied.

Jeff Heaton (HEATON, 2005) describes the algorithm as follows:

1. Initialization: Randomly set the weights (including bias) between −1 and 1;

2. Training examples are presented to the network:

a) On-line training: Execute steps 3 and 4 for each training example of the data

set.

b) Batch training: Execute steps 3 and 4 for each training epoch.

3. Propagation: After presenting the training example t = x(n), d(n), where x(n) is

the network input and d(n) is the desired network output, calculate the activation

value vj and the outputs of the neurons, as follows:

a) vj =m
i=1

∑
wjixi + b, to calculate the activation value;

b) f(v) = 1
1+e−av , to calculate the output y of the neuron k, using the sigmoid

function or another, if necessary.

c) Use the output units of a layer as inputs to the next, until the last layer. The

output of the units of the last layer is the network response.

4. Calculate the error signal: Considering that yj = Oj(n) is the network response,

calculate the error signal as follows:

a) ej(n) = dj(n)−Oj(n), where dj(n) is the desired output on the nth iteration.

b) This error signal is used to compute the values of the errors of the previous

layers and make the necessary corrections of synaptic weights.

5. Retropropagation: Calculate the local errors δ for each unit on the network. The

local gradient is defined as follows:

a) δj(n) = ej(n)Oj(n)(1−Oj(n)), for the output units.

b) δj(n) = Oj(n)(1−Oj(n))
∑
δkwjk, for the other units. Where:

i) Oj(1 − Oj) is the activation function derived according the argument, i.e.,

the activation value;

ii) δk is the error of the previous layer units that are connected to the unit j;
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iii) wjk are the weights of the connections with the previous layer.

c) After the errors calculation, adjust the weights of the connections following

the generalized delta rule:

i) ∆wkj(n+ 1) = αwkj(n) + ηδjyj to adjust the weights.

d) Do:

i) w(n+ 1) = w(n) + ∆wkj(n+ 1), where: α is the momentun constant (when

α = 0, this function acts as a normal delta rule); η is the learning rate; δj is the

error of this unit; yjj is the output of the jth unit.

6. Iteration: Repeat the steps 3, 4 and 5 (propagation, error calculation and retroprop-

agation), presenting new training examples until the stop conditions are satisfied:

a) The network error is low and is not changing during the training;

b) The maximum number of iterations was reached.

The backpropagation learning algorithm is given as pseudocode in algorithm 4:

Algorithm 4 Backpropagation learning algorithm

Require: A group of training examples and corresponding classifications.
Ensure: A vector of weights w that correctly classifies all training examples.
w ← randomvalues
while w does not correctly classifies all examples or a stopping criterion is satisfied do

for all training example e in the set do
o← output(w, e)
c← correct ouput from the training set
error ← c− o
w ← w + calculate delta(error)

end for
end while

2.6 Chapter Review

This chapter presented the foundations of neural networks. Initially, it presented

the biological inspiration and the way the first neurons were implemented. Then, the

chapter focused on the perceptron and its most famous evolution, the MLP trained with

backpropagation algorithm.

The Pocket learning algorithm with ratchet (developed for training perceptrons) will

be further utilized in this work to train the neurons in a single-cell learning approach.
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Also, the backpropagation learning algorithm will train some MLPs that will be utilized as

control group during the experiments. Other kinds of neural networks were intentionally

left away in this chapter since they are not utilized in the project.

The next chapter will present the constructive algorithms as an attractive option to

the MLP/backpropagation approach. This is why these algorithms were excluded from

the foundations chapter.
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Chapter 3

Constructive Neural Networks

One of the main limitations of MLPs trained with backpropagation is the search area.

This learning algorithm only searches for an appropriate set of weights in an a priori fixed

topology. In other words, a specialist must define the network architecture, including the

number of hidden layers and neurons. Because there is no definitive method, nobody can

assure that a chosen topology is optimal. Extra neurons can overfit data while scarcity

may compromise the model accuracy. To overcome this shortage, most researchers adopt

the trial-and-error strategy.

However, testing many options does not guarantee an optimum solution. Because of

that, constructive algorithms are so appealing. They iteratively create the topology, so

the generated networks tend to use less neurons as possible. Parekh, Yang and Honavar

(PAREKH; YANG; HONAVAR, 2000) listed some of the main attractives of this approach:

• Flexibility of exploring the space of neural network topologies;

• Potential for matching the intrinsic complexity of the learning task;

• Estimation of the case complexity of the learning task;

• Tradeoffs among performance measures;

• Incorporation of prior knowledge;

• Lifelong learning.

There are several constructive algorithms in the literature. In this chapter, some of

them are described:
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• Tower;

• MTower;

• Pyramid;

• MPyramid;

• Cascade-correlation;

• Tiling;

• MTiling-real.

• Upstart;

• Easy learning problems.

3.1 Tower Algorithm

The Tower algorithm was independently discovered by Stephen Gallant (GALLANT,

1985) (GALLANT, 1990), Jean-Pierre Nadal (NADAL, 1989) and Marcus Roland Frean

(FREAN, 1990). It employs single-cell learning to build a tower of cells, where each cell

sees the original inputs and the single cell immediately below it (GALLANT, 1990). An

example of network generated with this algorithm can be seen in figure 3.1. Each cell

is trained separately using the Pocket algorithm with ratchet. After the training, the

weights of a neuron do not change. Then, its output becomes one of the inputs of the

next neuron. It is interesting to observe that the same algorithm can be applied with

linear machines instead of single neurons.

The algorithm was proposed by Gallant as follows (GALLANT, 1994):

1. Use the Pocket algorithm to generate a single-cell model and freeze these weights.

2. Create a new cell that sees the p inputs to the network and the activation from the

cell that was most recently trained. Run the Pocket algorithm with ratchet to train

the p+ 2 weights (including bias) for this cell.

3. If the network with this added cell gives improved performance, then freeze its

coefficients and go to step 2; otherwise remove this last added cell and output that

network.
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Figure 3.1: A network generated with the Tower algorithm.
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The Tower algorithm tends to converge, provided there is a training set with noncon-

tradictory examples and enough iterations. Its proof of convergence is based on the fact

that Pocket algorithm also converges. Basically, if a n-cell model cannot classify a new

training example, one can separately train a new cell with Pocket algorithm and insert

it into the model. This way, it will have a n + 1 cell model that correctly classifies this

example and leaves others unchanged.

Nevertheless, the practice shows that the algorithm may not deal well with large

amounts of data. It mainly happens because not enough iterations can be made to ensure

an optimal solution at each step (GALLANT, 1990).

3.2 MTower Algorithm

The Tower algorithm is only suitable for two-class problems. However, Parekh, Yang

and Honavar (PAREKH; YANG; HONAVAR, 1997) proposed an extended version called

MTower that can deal with multiclass problems. While the Tower algorithm adds a single

neuron per layer, its multiclass version adds M neurons per layer, where M is the number

of classes (NICOLETTI; BERTINI-JR., 2007). Figure 3.2 shows an example of a network

that was generated by MTower algorithm.

Parekh, Yang and Honavar proposed the MTower algorithm as follows (PAREKH;

YANG; HONAVAR, 1997):

1. Set the current output layer index L = 0.

2. Repeat the following steps until the desired training accuracy is achieved or the

maximum number of hidden layers is exceeded:

(a) L = L+ 1. Add M output neurons to the network layer at layer L. This forms

the new output layer of the network. Connect each neuron in layer L to the

N + 1 input neurons and to each neuron in the preceding layer, L − 1, if one

exists.

(b) Train the weights associated with neurons in layer L (the rest of the weights

in the network are left unchanged).
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Figure 3.2: A network generated with the MTower algorithm.
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3.3 Pyramid Algorithm

As the Tower algorithm, the Pyramid algorithm was proposed by Stephen Gallant

(GALLANT, 1985). They are very similar and their only difference lies in the connections

between hidden neurons. In Pyramid algorithm, each new neuron is connected to all other

previous neurons, not just the neuron below. Thus the algorithm generates networks like

the one that is displayed in the figure 3.3.

The Pyramid algorithm is:

1. Use the Pocket algorithm to generate a single-cell model and freeze these weights.

2. Create a new cell that sees the p inputs to the network and the activations from all

previously trained cells. Run the Pocket algorithm with ratchet to train the weights

for this cell.

3. If the network with this added cell gives improved performance, then freeze its

coefficients and go to step 2; otherwise remove this last added cell and output that

network.

3.4 MPyramid Algorithm

As the MTower, the MPyramid algorithm is the extended version of the Pyramid

algorithm for multiclass problems. Each newly added layer of M neurons receives inputs

from the N + 1 input neurons and the outputs of each neuron in each of the previously

added layers (PAREKH; YANG; HONAVAR, 1997). The algorithm produces a net as the

one displayed in figure 3.4.

The MPyramid algorithm is proposed by Parekh, Yang and Honavar (PAREKH;

YANG; HONAVAR, 1997) as follows:

1. Set the current output layer index L = 0.

2. Repeat the following steps until the desired training accuracy is achieved or the

maximum number of hidden layers allowed exceeded:

(a) L = L + 1. Add M neurons to the network at layer L. This forms the new

output layer of the network. Connect each neuron in the layer L to the N + 1

input neurons and each neuron in each of the previous layers if they exist.
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Figure 3.3: A network generated with the Pyramid algorithm.
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Figure 3.4: A network generated with the MPyramid algorithm.

(b) Train the weights associated with the neurons in layer L (the rest of the weights

in the network are left unchanged).

3.5 Cascade-Correlation Algorithm

Scott Fahlman and Christina Lebiere proposed the Cascade-Correlation algorithm in

1990 during a research sponsored by the National Science Foundation (USA) and the

Defense Advanced Research Projects Agency (USA) (FAHLMAN; LEBIERE, 1990). The

main objective of the study was to find out why the backpropagation learning algorithm

was so slow and then propose a faster alternative. The authors suggested that the speed

problems of the backpropagation algorithm where mainly caused by two factors:

• The step-size problem: it is hard to determine the size of the update steps,

during the learning. Small steps implicate on slower learning while larger steps can

overpass the best solution.

• The moving target problem: each hidden neuron is trying to evolve as part of

the classifier, but its connected neurons are evolving too. This constant and parallel

mutation makes harder the training of hidden neurons.
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Figure 3.5: A network generated with the Cascade-Correlation algorithm.

The utilized network model is similar to the pyramid’s one, as seen in figure 3.5. The

key difference is that, in the Cascade-Correlation method, new hidden layers are added

instead of output layers. In other words, the new neurons are always between the input

neurons and the last added neurons.

3.6 Tiling Algorithm

In 1989, Marc Mézard and Jean-Pierre Nadal proposed the Tiling algorithm, a con-

structive method that builds layered networks (MÉZARD; NADAL, 1989). The neurons

in a layer only see the activations of the neurons at immediately below layer.

This algorithm generates a network like exemplified in figure 3.6 and was described

by Stephen Galland (GALLANT, 1994) as follows:

1. Set layer L = 2 (layer 1 is the input layer).

2. Use the pocket algorithm with ratchet to create the master cell for layer L using all
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activations from layer L− 1.

3. If the master cell for layer L correctly classifies all training examples, then quit.

4. Otherwise,continue to add ancillary cells (“tile”) until layer L becomes faithful:

(a) Find a maximum-sized subset of training examples with more than one classi-

fication that produces the same activations for all cells in layer L.

(b) Use the pocket algorithm with ratchet to train a new ancillary cell for layer L

using only the subset of training examples from step 4a.

5. Layer L is now faithful. Set L = L+ 1 and go to step 2.

3.7 MTiling-Real Algorithm

An extended version of Tiling algorithm was proposed to learn real to M-ary mappings,

which are problems that involve real inputs and multiple classes. It is called MTiling-

Real and was proposed in 2000 by Rajesh Parekh, Jihoon Yang and Vasant Honavar

(PAREKH; YANG; HONAVAR, 2000).

Unlike the Tiling algorithm that adds one master neuron per layer, it adds M master

neurons where M is the number of classes. This way, it generates nets like the one

displayed in figure 3.7.

3.8 Upstart Algorithm

Marcus Roland Frean proposed the Upstart algorithm on 1990, which uses a simple

recursive rule to build the net’s structure by adding units as they are needed (FREAN,

1990). The algorithm only works with binary inputs and activations:

1. Train a neuron Z with the perceptron algorithm to correctly classify the examples.

The outputs should be +1 or -1.

2. Fix the weights of Z.

3. If the neuron Z wrongly classifies a +1:

(a) Build a neuron X that will be an input from Z.
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Figure 3.6: A network generated with the Tiling algorithm.
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Figure 3.7: A network generated with the MTiling-real algorithm.
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Figure 3.8: A network generated with the Upstart algorithm.

(b) Train the neuron X to correctly classifies the wrong examples.

4. If the neuron Z wrongly classifies a -1:

(a) Build a neuron Y that will be an input of Z.

(b) Train the neuron Y to correctly classifies the wrong examples.

5. Repeat the steps for the neurons X and Y recursively until the network correctly

classifies all examples.

The Upstart algorithm generates a network like the one in the figure 3.8.
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3.9 Easy Learning Problems

Stephen Gallant describes a very particular group of constructive algorithms where

there is no freedom to choose the network topology (GALLANT, 1994). He called them

“easy learning problems” and listed their two main characteristics:

• The network topology is previously defined.

• The training examples specify, besides the input and output values, the correct

activations for all intermediate neurons.

• Each neuron can be separately trained (single-cell learning).

As an example, Gallant describes an easy learning version of XOR problem. As

cited before, the XOR logical operation is probably the most classic example of linearly

inseparable pattern. It can not be mapped by a single neuron. However, the XOR function

can be decomposed as follows:

p⊕ q
(p ∧ ¬q) ∨ (¬p ∧ q)
(p ∨ q) ∧ (¬p ∨ ¬q)
(p ∨ q) ∧ ¬(p ∧ q)

This decomposition is interesting because (p ∨ q), (p ∧ q) and (p ∧ ¬q) are linearly

separable patterns. This way, three neurons can be separately trained to solve the XOR

logical problem, as described in figure 3.9.

Nevertheless, some problems cannot be decomposed on linearly separable subprob-

lems. In this case, Gallant considers the use of other constructive methods to solve the

remaining nonseparable subproblems. He calls them “expandable network problems”.

Besides the fact that easy-learning algorithms are theoretically an attractive way to

solve problems, Gallant reinforces the existence of a very significant problem. In many

situations it is very hard to find the correct activations of the intermediate neurons. In

fact, Blum and Rivest proved that it is a NP-complete problem (BLUM; RIVEST, 1992).

This way, easy-learning algorithms were relegated to the rare cases when the intermediate

activations are previously known.
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Figure 3.9: An easy learning version of XOR problem

3.10 Chapter Review

The most traditional constructive algorithms were presented in this chapter. They

offer an attractive option instead of the MLP/backpropagation solution. In common, all

these algorithms are able to build the network topology together with the weights learn-

ing. The older constructive algorithms were only able to deal with two-classes problems.

However, authors had improved them to solve n-classes applications. For example, the

MTower is the extended version of the classic Tower algorithm.

Additionaly, this chapter presented the easy learning problems, a very interesting type

of context where the training examples include the correct activations for all intermediate

neurons. This way, it is possible to separately train each neuron (single-cell learning).

Unfortunately, there are no many data sets that include so much information. Another

weak point of these special algorithms is that they demand a previously defined topology,

differently from the majority of constructive algorithms.

This work proposes a new kind of constructive algorithm that is able to produce

the network topology and also execute the single-cell learning approach. For this, it

utilizes concepts that are utilized in decision trees and evolutionary algorithms. So, before
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presenting this new algorithm, the next chapter will describe the hybrid methods that

join neural networks, decision trees and evolutionary algorithms. Many of these hybrid

algorithms could be classified as constructive algorithms since they build the network

architecture.



39

Chapter 4

Hybrid Models

The present work proposes a new constructive learning algorithm for neural networks

inspired on decision trees and evolutionary algorithms. Mixing these three concepts,

however, is not an original idea. Indeed, many authors investigated several methods that

combined some of these concepts. To understand the originallity of this research, it is

necessary to analyze these previous works. So, this chapter lists the most relevant au-

thors and their theories about hybrid models with neural networks, decision trees and/or

evolutionary algorithms.

Qiangfu Zhao detected five main types of integration between neural networks and

decision trees (ZHAO, 2001):

• Derivation of a neural network from a previously induced decision tree;

• Derivation of a decision tree from a previously trained neural network;

• Design of a tree structured neural network using genetic programming;

• Derivation of a modular neural network by softening the nodes of a decision tree;

• Design of decision trees with embedded neural networks.

4.1 Derivation of a neural network from a previously in-

duced decision tree

In 1994, Arunava Banerjee proposed a method that initializes neural networks from

decision trees (BANERJEE, 1994). The described algorithm proved to be faster than
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Figure 4.1: (a) Original decision tree. (b) Converted neural network using Banerjee’s
method.

backpropagation and matched its accuracy. It was done in three steps: construction of a

decision tree from the data set, conversion into an equivalent neural network and network

tuning using the same data set. The converted networks are 4-layers MLPs, with 1 input

layer, 2 hidden layers and 1 output layer. The hidden layers are called “literal” and

“conjunction” layers. On the other hand, the output layer is called “disjunction” layer.

Figure 4.1 shows an original decision tree and the converted MLP.

Banerjee presents his algorithm as follows (BANERJEE, 1994):

1. Initialize parameters σ and β to 5.0 and 0.025 respectively.

2. Run C4.5 on the training dataset to generate a decision tree.

3. Traverse the decision tree to create a disjunctive normal form formula for each class.
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4. Eliminate all redundant literals from each disjunct.

5. For each distinct literal of the form (attrib) > (value), create a hidden unit in the

literal layer with a bias of −σ ∗ (value). Connect it to the input unit corresponding

to (attrib) with a weight of σ. Connect it to all other input units with weights +β

or −β with equal probabilities.

6. For each literal of the form (attrib) < (value), repeat step 5 with the signs for the

bias and weights inverted.

7. For each disjunct in a class, create a new hidden unit in the conjuction layer. Con-

nect it to all relevant hidden units in the literal layer with weight σ. Connect it to

the rest of the hidden units in the literal layer with weights +β or −β with equal

probabilities. Set the bias to −σ ∗ (2n − 1)/2, where n stands for the number of

relevant hidden units in the literal layer. (In effect, each node represents an AND.)

8. For each class, create an output unit and connect it to the relevant hidden units in

the conjuction layer with weights σ. Connect it to the rest of the hidden units in

the conjuction layer with weights +β or −β with equal probabilities. Set the bias

to −σ ∗ 1/2. (Each node is effectively an OR.)

The main motivations about deriving a neural network from a decision tree are:

• Obtain a more accurate classifier;

• Train faster the neural network.

Nevertheless, for a long time, no author had proved that these statements are true for

every case. To answer this, Nathan Rountree investigated a new initialisation method of

neural networks from previously induced decision trees (ROUNTREE, 2006). Similarly

to Bannerje’s method, his algorithm always creates 4-layers networks independently of

the size of the original tree, as shown in figure 4.2.

After testing the technique against six different databases, the author concluded that

the statements are true, at least for several situations. Indeed, his work brings three main

contributions:

• Often, there is a MLP that is more accurate than the original decision tree.

• His algorithm creates MLPs with an efficient quantity of neurons.
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Figure 4.2: Initialisation of a neural network from a decision tree using Nathan Rountree’s
approach.

• He tried to be “fair” during the experiments, which means that the MLPs were

compared to optimized decision trees.

An adapted version of the Banerjee’s method was utilized on 2004 by Nerijus Re-

meikis, Ignas Skucas and Vida Melninkaite to categorize texts (REMEIKIS; SKUcAS;

MELNINKAITė, 2004). One of the harder problems involving text categorization appli-

cations is that they generate too large trees, because of the large amount of data. The

authors found out that changes in the certainty factor of the pruning algorithm signifi-

cantly affect the tree size. The technique was tested on the Reuters-21578 corpus, one

of the standard benchmarks for text categorization tasks. The adapted method achieved

better results when compared to original Banerjee’s method, MLPs and decision trees.
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4.2 Derivation of a decision tree from a previously trained

neural network

Neural networks are famous to be superior in performance to many other AI tech-

niques. Nevertheless, they are also famous as “black-box” methods, because of their poor

interpretability. This weakness stimulated several authors to find ways to extract more

understandable models from them, such as the decision trees. Indeed, the extraction

of decision trees from previously trained neural networks is probably the most common

integration of these two techniques.

Darren Dancey, Dave McLean and Zuhair Bandar relate two main approaches for

extracting decision trees from ANNs (DANCEY; MCLEAN; BANDAR, 2004): decompo-

sitional and pedagogical. Decompositional methods, like the KT algorithm (FU, 1991),

analyze individually each connection and its respective weight. On the other hand, the

pedagogical methods utilize the trained ANN to generate artificial training examples for

the decision tree learning algorithm.

The pedagogical approach can usually be illustrated as follows:

1. Learn an ANN using the training examples from the data set.

2. Use the ANN to generate artificial training examples and increase the size of the

data set.

3. Learn the decision tree using the new data set.

In 1996, the PhD thesis of Mark W. Craven presented a pedagogical algorithm called

TREPAN (CRAVEN, 1996). It utilizes the ANN as an “oracle” that can “answer” ques-

tions made by the decision tree learning algorithm. The TREPAN algorithm constructs

the decision tree by recursively partitioning the instances space, like other conventional

algorithms (e.g., CART and C4.5). However, it differs from other techniques in many

ways:

• It constructs the tree in a “best-first” manner, while other algorithms utilize the

“depth-first” principle.

• When there is a lack of training examples, the algorithm can produce new instances

and ask the “oracle” to classify them. This resource is very interesting because the

algorithm can make “better” choices having more training examples.
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• It uses “m-of-n” expressions for the splitting tests whereas other algorithms prefer

single-feature tests.

• It uses global stopping criteria in addition to local stopping criteria.

• Its prunning method detects the subtrees that predict the same class and tries to

merge them into a single leaf.

Inspired on the TREPAN algorithm, Vijaya Hari improved the efficiency of CART

algorithm by using an ANN to generate extra training examples (HARI, 2009). Basically,

the method provides an “oracle” to the CART algorithm. This way, it is possible to

generate extra training instances (and classify them with the ANN) when there is no

enough examples during the creation of a tree node.

The TREPAN also inspired the creation of ExTree algorithm, which was proposed

by Darren Dancey, Dave McLean and Zuhair Bandar (DANCEY; MCLEAN; BANDAR,

2004). The ExTree differs from the TREPAN because it uses single-feature tests, like

C4.5 and CART algorithms. Additionally, it uses a different prunning method based on

the replacement of subtrees. It aims to create a smaller tree with better generalization.

4.3 Design of a Tree Structured Neural Network using

Genetic Programming

In 1997, Byoung Tak Zhang, Peter Ohm and Heinz Mühlenbein introduced the term

“neural trees” to describe an evolutionary method that induces networks using both ge-

netic programming and genetic algorithms (ZHANG; OHM; MÜHLENBEIN, 1997). The

technique evolves the weights and the topology of the network, always following the min-

imum description length principle. To guarantee the generalization, it creates high-order

nets with sparse structures, as displayed in figure 4.3. The method was succesfully utilized

to predict two chaotic time-series data sets.

A FNT (flexible neural tree) can be defined as a multilayer feedforward neural network

with the following characteristics:

• It has connections over layers;

• The different nodes have variable activation functions;
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Figure 4.3: An example of a neural tree.

• There are sparse connections between the nodes.

A typical FNT is represented on figure 4.4. Each node of the tree can be described

as a flexible neuron operator such as shown on figure 4.5. The activation function is

variable because it calculates, besides the neuron inputs (xi) and the weights (wi), some

additional parameters (ai and bi) that are unique to each neuron. For example, Yuehui

Chen, Bo Yang, Jiwen Dong and Ajith Abraham utilized f(ai, bi, x) = e−((x−ai)/bi)
2
, where

x is defined as x =
∑n

i xi ∗wi. They utilized it to forecast time-seris using FNTs (CHEN

et al., 2005).

Yuehui Chen, Bo Yang and Ajith Abraham utilized GP (genetic programming) and

PSO (particle swarm optimization) to train FNTs for stock market predictions (CHEN;

YANG; ABRAHAM, 2007). Their method interleaves both methods: the GP utilizes

special genetic operators to create the topology while the PSO optimizates the weights.

The steps are repeated until a reasonable model is created.

The authors utilized the standard “crossover” and “selection” operators in the GP.

Additionaly, they created four specific “mutation” operators, as follows (CHEN; YANG;

ABRAHAM, 2007):



46

Figure 4.4: A typical flexible neural tree.

Figure 4.5: A flexible neuron operator.
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• Changing one terminal node: randomly select one terminal node in the neural

tree and replace it with another terminal node.

• Changing all the terminal nodes: select each and every terminal node in the

neural tree and replace it with another terminal node.

• Growing: select a random leaf in hidden layer of the neural tree and replace it

with a newly generated subtree.

• Pruning: randomly select a function node in the neural tree and replace it with a

terminal node.

The learning method was described by the authors in this way:

1. Create an initial population of FNTs randomly.

2. Repeat until a satisfactory result is found:

(a) Optimize the topology of the FNTs using the GP.

(b) Select the FNT with the best topology.

(c) Fix its structure.

(d) Optimize its weights using PSO.

This hybrid method was also utilized to forecast exchange rates (CHEN; PENG;

ABRAHAM, 2006a). Their paper proposed a FNT trained with GP and PSO that was

able to predict the exchange rates of three major currencies: euros, British pounds and

Japanese yen. The results suggested that FNTs can overcome conventional MLPs in this

kind of problem.

In like manner, Chen, Peng and Abraham utilized FNTs to classify gene expression

profiles (CHEN; PENG; ABRAHAM, 2006b). The FNTs were created and evolved using

GP and PSO. The method was utilized to classify two cancer databases (leukemia and

colon cancer) and presented very attractive results.

The same authors successfully utilized a similar strategy to detect network intrusions

(CHEN; ABRAHAM; YANG, 2007)(CHEN; ABRAHAM, 2005). However, in this par-

ticular paper, they preferred using EP (evolutionary programming) instead of GP. The

other steps of the process remained unchanged. Still in the same approach, Chen, Yang

and Jiwen Dong tested “ant programming” as an alternative to GP on some time series
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prediction problems (CHEN; YANG; DONG, 2004). Again, the method proved to work

nicely.

An ensemble of FNTs were successfully utilized to detect breast cancer (CHEN;

ABRAHAM; ZHANG, 2006). Six different FNTs were trained with PIPE (probabilis-

tic incremental program evolution) and PSO algorithms. The PIPE algorithm created

the topology of the trees, while the PSO optimized their weights. Each training utilized

different sets of input variables to learn the different FNTs. This way, they could be

combined in a global classifier with better accuracy. This approach proved to be correct

and the combined FNTs achieved higher classification rates.

Several techniques were utilized to evolve FNTs, such as GP, PIPE and ant program-

ming. Peng Wu and Yuehui Chen investigated a new hybrid learning method with GGGP

(Grammar Guided Genetic Programming) and PSO (WU; CHEN, 2007). Using a prede-

fined grammar, the GGGP is able to evolve the topology of a FNT, which weights can

be optimized by PSO. The method was empirically tested to predict stock indexes and

overcame other approaches based on genetic algorithms or neural networks.

Yuehui Chen, Feng Chen and Jack Y. Yang also proposed a different kind of FNT

with multiple inputs and multiple outputs, which they called MIMO-FNT (multiple-input

and multiple-output flexible neural tree) (CHEN; CHEN; YANG, 2007). To deal with the

MIMO problem, the authors added some “dummy” neurons (Out1, Out2, ..., Outm) as

shown in figure 4.6. Their method utilizes a hybrid approach to learn the MIMO-FNTs,

using IP (immune programming) and PSO as follows:

1. Define the IP and PSO parameters.

2. Create an initial population of MIMO-FNTs limited by the given parameters.

3. Optimize the weights of each MIMO-FNT using the PSO algorithm.

4. Optimize the structure of each MIMO-FNT using the IP algorithm.

5. Repeat the optimization steps until a stopping criteria is met.

In 2009, Qu Shou-ning, Liu Zhao-lian,Cui Guang-qiang and Fuai-fang trained FNTs

using PIPE (probabilistic incremental program evolution) and SA (simulation annealing)

(SHOU-NING et al., 2009). The general dynamics of their method resembles the Chen’s

approach, but with different techniques (PIPE and SA instead of evolutionary methods).

The strategy was successfully utilized to control fluids in industry.
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Figure 4.6: A typical MIMO-FNT.

The FNT model was also applied by Chen and others to predict TCP traffic data from

a website (CHEN; YANG; MENG, 2012). In this application, the topology of the FNT

was developed using genetic programming while PSO was utilized to otimize its weights.

In 2012, Yina Guo, Qinghua Wang, Shuhua Huang and Ajith Abraham successfully

applied to recognize hand gestures (GUO et al., 2012). In this work, the FNTs were

trained to interpret surface electromyography signals recorded of superficial muscles from

the skin surface. The model was able to classify six different hand gestures in real time,

with 97.46% of accuracy.

In 2013, Souhir Bouaziz, Habib Dhahri, Adel M. Alimi and Ajith Abraham proposed a

different type of FNT that utilizes flexible neuron beta operators (BOUAZIZ et al., 2013).

They called their method as “Flexible Beta Basis Function Neural Tree” (FBBFNT). The

method utilizes extended genetic programming to evolve the structure whereas opposite-

based PSO optimizes the weights.

4.4 Derivation of a modular neural network by softening

the nodes of a decision tree

In 1998, Cezary Janikow investigated the softening of the nodes of a decision tree

using fuzzy functions (JANIKOW, 1998). This way, he tried to achieve a fuzzy decision

tree that could deal better with inexact and uncertain information and keep the usual
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advantages of decision trees. After several tests, he proved that his fuzzy decision trees

could even produce real-valued outputs (with gradual shifts), as seen in the figure 4.7.

Fuzzy decision trees were also investigated by Alberto Suárez and James F. Lutsko

(SUÁREZ; LUTSKO, 1999). They superimposed a fuzzy structure over the skeleton of

a decision tree that was built with the CART algorithm. Then, the authors proposed a

learning algorithm to fix the parameters of the fuzzy nodes. The method proved to be

useful on regression and classification problems.

Ö. Ciftcioglu, M.S. Bittermann and I.S. Sariyildiz proposed a fuzzy logic system

that mixes Gaussian membership functions and neural trees, as seen in the figure 4.8.

The Gaussian functions utilize the weights of the connections as parameters. Once the

learning algorithm updates these weights, the format of each Gaussian function is changed.

Two possible formats are shown in the figure 4.9. These “Gaussian neurons” transform

the neural tree on a complete fuzzy system, where the top of the tree plays the role of

defuzzification unit.

4.5 Design of Decision Trees with Embedded Neural Net-

works

Decision trees, neural networks and genetic algorithms were combined by Qiangfu

Zhao to create what he called “neural network tree” (NNTree). Basically, a NNTree is a

decision tree with each node being an expert neural network (ZHAO, 2001). The global

structure of the tree is created using the traditional C4.5 algorithm. Each node is a fixed-

topology neural network, that is trained with a genetic algorithm. The method generates

a network like the one in figure 4.10. In the paper, the NNTree was tested against a

conventional decision tree in a digit recognition problem. The results suggested that

NNTrees may be more efficient than normal decision trees, since they can achieve higher

accuracy with less nodes. However, the work cannot be considered totally conclusive,

once its scope is limited to only two techniques and one data set.

As explained before, each node in a NNTree is an embedded neural network that

deal with binary inputs. The node (actually, a neural network) produces an output value

between 0 and 1. If the value is less than the threshold (fixed on 0.5), the decision

algorithm visits the left child node. Otherwise, it goes to the right child node. The

threshold is usually fixed on 0.5 because the algorithm expects that the embedded MLP
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Figure 4.7: A original function (a) and the responses of two different fuzzy decision trees
(b)(c).
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Figure 4.8: A neural tree with Gaussian membership functions.

Figure 4.9: Two possible Gaussian membership functions.
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Figure 4.10: An example of a NNTree.

will project the data to the neighborhood of 0 or 1, as shown in case 1 of figure 4.11.

However, the MLP can project outputs like case 2 or case 3. Hirotomo Hayashi and

Qiangfu Zhao observed that if they tune this threshold value, it would be possible to

obtain better classification rates. Their fine-tuning algorithm was described as follows

(HAYASHI; ZHAO, 2009):

1. Obtain the output values y1, y2, ..., yn of the neural network for all data assigned to

the current node.

2. Sort the data according to the output values y1, y2, ..., yn.

3. Calculate the average values ak = (yk + yk+1)/2, for k = 1, 2, ..., n− 1.

4. Calculate IGR(ak), which is the information gain ratio corresponding to ak, for

k = 1, 2, ..., n− 1.

5. The desired threshold is given by T = arg maxk IGR(ak).

One of the great advantages of NNTrees in comparison to neural networks is their

interpretability. The experiments suggested that NNTrees could be easily interpreted

since each embedded neural network had a limited quantity of neurons. Takeda Takaharu

and Qiangfu Zhao considered a two-stage training approach that could reduce the NNTrees

size (TAKAHARU; ZHAO, 2002). Firstly, they trained the NNTree with, for example,

only 10% of the entire data set. This first training generates the topology of the NNTree.
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Figure 4.11: Fine tuning of threshold.

Once the size of the tree is approximately proportional to the quantity of examples, the

algorithm creates a smaller model. Then, the entire data set is utilized to optimize only

the weights of the NNTree. The method worked well for situations where the database is

highly redundant. In other situations, the retraining of the small NNTree did not generate

a good classifier.

Another way to deal with the NNTree size problem was proposed by Hirotomo Hayashi

and Qiangfu Zhao (HAYASHI; ZHAO, 2009a). They investigated the dimensionality re-

duction using two different methods: PCA (principal component analysis) and LDA (lin-

ear discriminant analysis). The experiments confirmed that, in most cases, the LDA

approach can succesfuly reduce the parameters and produce smaller NNTrees (less nodes)

without degrading the performance. Nevertheless, the LDA has a high computational cost

when applied to large databases. To solve, the same authors studied centroid based ap-

proaches for NNTrees induction (HAYASHI; ZHAO, 2009b). Their experiments indicated

that these techniques are usually comparable to LDA approach.

However, when the input features are continuous, the quantity of neurons tends to

grow up easily. It happens because NNTrees only deal with binary values. For example,

if each continuous input is represented by a 16-bit binary number, the quantity of input

neurons is multiplied by 16. Since the quantity of hidden neurons is directly proportional
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to the quantity of input neurons, the network size easily grows up.

To deal with it, Qinzhen Xu, Qiangfu Zhao, Wenjiang Pei, Luxi Yang and Zhenya

He proposed the quantization of the continuous inputs as a way to reduce the size of

the embedded neural networks (XU et al., 2004). The main principle was to obtain the

same performance with less neurons, which would increase the network interpretability

since it is easier to interpret smaller nets. Their research indicated that usually less than

10 quantization points are necessary to map a continuous feature. This way, it can be

represented with 3 or 4 binary inputs, representing a great reduction against the initial 16

bits. The NNTrees that were obtained with this process proved to be more interpretable,

besides conserving the original performance.

Takeda Takaharu, Qiangfu Zhao and Yong Liu proposed two on-line learning algo-

rithms for NNTrees (TAKAHARU; ZHAO; LIU, 2003), which they called as GUWL

(growing up with learning) and SGU (simple growing up). With these modifications, the

NNTree is updated if it cannot classify a pattern. The SGU creates an additional node to

tree, while the GUWL tries to retrain the network before creating new nodes. Despite of

the interesting motivation, these algorithms are not very useful since they are not faster

than just recreating the entire NNTree with the updated database.

NNTrees were also used by Xu Qinzhen, Yang Luxi, Zhao Qiangfu, He Zhenya and

Wenjiang Pei in intrusion detection systems (XU et al., 2006a)(XU et al., 2006b). Inden-

tifying unauthorized access to a computer has become extremely important, because of

the expansion of distributed systems. Once it is a NP-complete problem, many authors

were stimulated to test several AI techniques to solve it, like hidden Markov models,

neural networks, statical techniques and expert systems. In this specific domain, the au-

thors verified that NNTrees could overcome a MLP trained with backpropagation, both

on accuracy and learning time.

In 2002, Gian Luca Foresti and Christian Micheloni presented a new training rule

that reevaluates the whole tree each time a new level is created, which they called as

GNT (generalized neural tree) (FORESTI; MICHELONI, 2002). The weights correction

strategy considers the entire tree. Each tree node is a local neural network. This way,

the connected nets create a global neural network, with tree structure. It is interesting to

observe that the authors implemented a normalization rule that fixes the output of each

local network, as shown in figure 4.12. It guarantees that the sum of the outputs of a

local network will be always equals to 1. In this way, the outputs can be interpreted as

probabilities, which are used during weights updating. The GNT had a good classification
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performance and was tested against training sets with complex distribution, as seen in

figure 4.13.

Gentili, Bragato and Michelini applied neural trees in the automatic detection of

earthquakes in Italy (GENTILI; BRAGATO, 2006) (GENTILI; MICHELINI, 2006). They

utilized a tree where each node is a MLP, as shown in figure 4.14. This formalism was ini-

tially proposed by Stefania Gentili and called IUANT2 (GENTILI, 2003). This technique

automatically generates the topology of the network.

In 2012, Micheloni, Rani, Kumar and Foresti proposed a new model that they called

“balanced neural tree” (BNT) (MICHELONI et al., 2012). The BNTs follow the concept

a decision tree structure where each node is, in fact, a perceptron. However, this method

introduces two differences: perceptron substitution and pattern removal. The perceptron

substitution involves the replacement of nodes that are not efficient with the objective to

balance the structure of tree. On the other hand, the pattern removal intends to avoid

overfitting by removing outliers from the training set.

Biswal, Jalaja and others have utilized the BNTs to classify different power signal

disturbances (JALAJA; BISWAL, 2013) (BISWAL et al., 2014).

4.6 Other Methods

In 1989, Paul E. Utgoff proposed the perceptron trees, which are a hybrid combina-

tion of decision trees and LTU (linear threshold units) (UTGOFF, 1989). Basically, a

perceptron tree can be defined as a tree where each node is a Rosenblatt’s perceptron.

An example is showed in figure 4.15. Utgoff’s trees were one of the first attempts to mix

neural networks and decision trees in most robust models. The perceptron trees proved

to be smaller than decision trees, mainly because of the classification power of the LTUs.

In other words, as LTU is a better model than a IF clause, they need less nodes. However,

once a perceptron tree was still based on linear models, its classification performance was

limited when compared to several non-linear approaches.

Wilson Wen, Andrew Jennings and Huan Li proposed a hierarchical clustering algo-

rithm that creates the topology of a neural network using a decision tree algorithm (WEN;

JENNINGS; LIU, 1992). They called it SGNT (Self-Generating Neural Tree) algorithm,

as defined in algorithm 5. The method executes three steps: generation, optimization and

prunning. These steps are shown in the figure 4.16.
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Figure 4.12: An example of a generalized neural tree.
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Figure 4.13: (a) Double spiral database. (b) Classification obtained by a GNT.
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Figure 4.14: A simplified schematics of the neural trees that were utilized by Gentili,
Bragato and Michelini to detect earthquakes.

Figure 4.15: An example of an Utgoff’s perceptron tree.
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Figure 4.16: Steps involved in the creation of a Self-Generation Neural Tree.
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Algorithm 5 Self-Generating Neural Tree algorithm

Require: A group of training examples E = ei, i = 1, ..., N .
Require: A threshold ξ ≥ 0.
Require: A distance measure for each attribute/weight in instances/neurons.
Ensure: An SGNT created from E.

Create a root neuron and copy the attributes/weights in the instance/neuron e0 to root.
i← 1
j ← 1
while i ≤ N do
winner ← root
minimumDistance← distance between instance e and winner neuron
if minimumDistance ≥ ξ then

if neuronhas no children then
Create a nj neuron and copy the attributes/weights in the instance/neuron nj

to winner.
Connect neuron nj to winner neuron.
j ← j + 1

end if
Create a nj neuron and copy the attributes/weights in the instance/neuron nj to
ei.
Connect neuron nj to winner neuron.
j ← j + 1

end if
Update the weights vector of neuron ni.
i← i+ 1

end while

In a related paper, the authors pointed some attractive features of SGNTs in com-

parison to another AI techniques (WEN et al., 1992):

• The structure is adaptively determined.

• There is an efficient use of neurons and connections.

• There is no delay in the learning process once there are no redundant neurons.

• They can be used on supervised, unsupervised and hybrid learning tasks.

Shu-Hsun Lo proposed a new kind of neural tree, which was called QUANT (quadratic-

neuron-based neural tree) (LO, 2007). The QUANT method utilizes a batch learning

algorithm to grow a tree structured neural network formed by quadratic neurons. These

neurons recursively split the features space into hyper-ellipsoidal regions, so the QUANT

can be utilized on classification problems. An interesting characteristic of the method is

its plasticity. Basically, the QUANT can be partially retrained, receiving new quadratic
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neurons. This way, there is no need to rebuild the entire network. The success of QUANT

in spam detection stimulated further studies (SU; LO; HSU, 2010).

In 2013, Jarmila Skrinárová, Ladislav Huraj and Vladimı́r Siládi proposed a neu-

ral tree architecture with probabilistic neurons (SKRINáROVá; HURAJ; SILáDI, 2013).

These trees were utilized for classification of a large amount of computer grid resources.

The tests demonstrated that the neural trees improved the performance of the classifica-

tion in this task when compared to other methods.

4.7 Chapter Review

This chapter presented the most utilized methods involving neural networks, decision

trees and/or evolutionary algorithms. The state of art was described in details. This

analysis is essential, once the proposed method is a hybrid method by itself. By studying

the past works, it is possible to detect the innovations that are being proposed here.

Using the taxonomy suggested by Quiangu Zhao (ZHAO, 2001), the proposed method

would be classified as a mix of three classes:

• Derivation of a neural network from a previously induced decision tree:

Technically, the proposed algorithm does not derive the network, since it does

not create the decision tree. However, it is fully inspired on the C4.5 learning

algorithm principles. So, it is reasonable to assume that it, at least, partially part

of this class.

• Design of a tree structured neural network using genetic programming:

Although Zhao uses the term “genetic programming”, this class groups all hybrid

methods that utilize some kind of evolutionary algorithm. The proposed method

uses PSO to optimize the connections weights, so it is part of this class.

• Design of decision trees with embedded neural networks:

The proposed method generates a complete neural network by incrementally

adding perceptrons that performs different operations: “AND”, “OR”, “greater

than”, and others. Initially, each perceptron is separately trained. Thus, the final

network can be also described as several connected perceptrons that perform each

one a separated function. However, this is a partial phase of the process, once the
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PSO evolves the weights and the perceptrons may “lose” their local functions in

favor of the global network.

Based on the theory that was described, the next chapter will present the proposed

algorithm. All the principles that lead to the method are fully described. By seeing the

topology of the created network, it is possible to see its differences from the methods in

the state of art.
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Chapter 5

Proposal

The main theme of the present thesis is the creation of a constructive learning algo-

rithm for artificial neural networks. On this purpose, three challenges must be faced:

1. Generally, easy learning techniques expect a fixed-topology neural network. How-

ever, one of the premisses of this research is not utilize a human-defined topology.

This way, it is necessary to find some algorithm that automatically builds the net-

work architecture.

2. By definition, easy learning techniques are based on the single-cell learning. To ac-

complish that, the learning algorithm demands inputs and outputs for each neuron.

As the data sets do not have this information, an automatic creation method must

be developed.

3. Finally, beyond the single-cell learning, this proposal aims to optimize the entire

network. Normally, the backpropagation algorithm could solve that. However, as

this project involves the creation of a constructive learning algorithm, it is preferable

to find a parallel training solution.

Firstly, this chapter presents how to deal with each of the above challenges. Further,

an algorithm that meets all these statements is described, as the experiments that may

confirm its validity.
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5.1 Network Topology

How could one automatically establish the topology of a neural network? Considering

that there is no efficient method for determining an optimal network topology(PAREKH;

YANG; HONAVAR, 2000), some kind of heuristic should be found. But what are heuris-

tics?

“Heuristics are criteria, methods, or principles for deciding which among

several alternative courses of action promises to be the most effective in order

to achieve some goal. They represent compromises between two requirements:

the need to make such criteria simple and, at the same time, the desire to see

them discriminate correctly between good and bad choices.” (PEARL, 1984)

So, it is necessary to find a simple principle to guide the algorithm in the creation and

interconnection of the neurons. Once this project aims to achieve a generic method, it is

very important that this same principle could be utilized in many domains of application.

To find a good heuristic, one has to detect an aspect of the context that could base it.

It is very interesting to observe that, despite the fact that artificial neural networks

have their inspiration on biological neurons, the common topologies are not very “bio-

logical”. For example, MLPs are usually composed by three or more single-row layers,

where each neuron of a layer is interconnected to all the neurons of near layers. This

“geometric” positioning cannot easily be seen in natural world. And it definitely does not

look like a human brain. The same finding could be done regarding other methods, like

self-organizing maps or adaptive resonance theory neural networks.

Based on this observation, it is reasonable to affirm that a more “biological” topology

may be quite relevant. In nature, there are many structures that could provide inspiration

to the topology, such as spider webs, trees, rivers, and others. The present study is

particularly interested in the use of trees as inspiration in the construction of the network

architecture. This preference is based on the following reasons:

• The “tree” structure is very organic and exists in many biologic organisms.

• A tree can be defined as a graph model, so it is well suited to be a knowledge model.

• Tree-like models are very easy to understand and interpret.

• Many authors developed several learning algorithms for decision trees. So, there are

many heuristics to choose as the base of the topology-constructor algorithm.
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Indeed, the existence of many tree learning algorithms is a great incentive to this

choice. These algorithms are able to build a model that predicts an attribute based on

other attributes. In other words, they create classification models. Once they build these

models automatically from a collection of examples, one can say that they are a good

solution for the problem of creating a network topology.

The literature describes several algorithms, such as ID3, C4.5, random forests, MARS,

and others. This study will prefer the C4.5 (QUINLAN, 1993), which is an extension

of ID3 algorithm (QUINLAN, 1986). The C4.5 was chosen because it can handle both

categorical and numerical attributes. The heuristic is based on the concept of information

entropy. It constructs the topology by iteratively choosing the attributes with better

normalized information gain. In each interation, the algorithm chooses the attribute that

better splits the data. The pseudocode of the C4.5 algorithm is (KOTSIANTIS, 2007):

• Check for base cases;

• For each attribute a:

– Find the normalized information gain from splitting on a;

• Let a-best be the attribute with the highest normalized information gain;

• Create a decision node that splits on a-best;

• Recurse on the sublists obtained by splitting on a-best, and add those nodes as

children of node.

The pseudocode algorithm could be the base of the proposed topology creator algo-

rithm. However, it should be changed to create a neural network instead of a decision

tree. The classical “golf” problem can be utilized to illustrate this nee. The “golf” prob-

lem is about the creation of a model that rules whether to play a game of golf or not.

Considering that the table 5.1 contains the training data of the problem, the application

of C4.5 algorithm creates the decision tree showed in the figure 5.1.

As seen in the created model, the C4.5 generates a perfect tree-like model that starts

with one root that splits in two branches, and so successively. The tree stops at the leaves

(that contain the classes), and you can have many leaves representing the same class.

This architecture represents well a decision tree, but not a neural network. Basically, a

neural network cannot start with just one root node. Indeed, all the attributes have to be
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Table 5.1: “Golf” problem: training data.

Outlook Temperature Humidity Windy Play (positive) / Don’t Play (negative)
sunny 85 85 false Don’t Play
sunny 80 90 true Don’t Play

overcast 83 78 false Play
rain 70 96 false Play
rain 68 80 false Play
rain 65 70 true Don’t Play

overcast 64 65 true Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play
rain 75 80 false Play

sunny 75 70 true Play
overcast 72 90 true Play
overcast 81 75 false Play

rain 71 80 true Don’t Play

Figure 5.1: “Golf” problem: decision tree.
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input neurons. Also, each class must be mapped to just one output neuron. These two

differences affect completely the topology of the tree (mainly, the start and the end).

Based on that perception, the algorithm should be slightly changed so it can build an

adequate network topology. On this purpose, four crucial questions may be answered:

• How to deal with numerical inputs?

• How to deal with categorical inputs?

• How to deal with logical inputs?

• How to guarantee that each class is mapped to just one output neuron?

The main concern about numerical inputs is how to present them to the network.

Basically, an input is processed in a “if” clause, where the node checks if it is greater,

equal or lesser than a reference value. For example, in the “golf” example, the model

checks if the humidity is greater than 75%. This operation can be accomplished by a

single neuron. However, the scale must be observed. Normally, a neuron is a processing

unit that is modelled to work in a unitary scale (for example, -1 to 1). Then, it is

mandatory to normalize the numerical attribute before presenting it to the network.

Categorical inputs are more complicated. It is not possible to map all the possible

values of a categorical attribute to a single input neuron. The better option is to create

as many input neurons as existent categories. Using the “outlook” attribute of the “golf”

as example, three input neurons would be created: “sunny”, “overcast” and “rain”. This

way, one would activate just the respective input neuron to determine the value of that

attribute.

The logical inputs can assume two values: true or false. Initially, a single neuron could

represent it. However, it is important to reflect about how decision trees concatenate the

clauses. It can be illustrated by a complete logical rule from the “golf” problem, which

is “IF outlook = sunny AND humidity > 75 THEN do not play”. These “AND” logical

operations can be performed with additional neurons, positioned between the numerical

and categorical clauses.

Finally, each class must be mapped to a single output neuron. To do this, the algo-

rithm needs to remember the class of each created output neuron, so it can create a new

connection instead of a new neuron. It is important to observe that the output neurons

will perform an “OR” logical operation. In other words, an output neuron will be active

if one or more of its connections are active.
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Because of this, it is better to use two input neurons to represent a logical input. This

way, it is possible to have the input attribute and its negative version, standardizing the

“AND” and “OR” logical operations.

This way, the new topology-builder algorithm will be (in pseudocode):

1. Create one output neuron for each class.

2. For each attribute a:

(a) Find the normalized information gain from splitting on a.

3. Let abest be the attribute with the highest normalized information gain.

4. If abest is a categorical attribute:

(a) For each category of abest:

i. If there is no input neuron for this category, create it.

ii. Else:

A. Create an “AND” neuron.

B. Connect the “AND” neuron to the input neuron of this category.

C. Connect the “AND” neuron to the neuron that invoked this recursion.

iii. Remove the training examples where abest is equal to this category.

iv. If possible, recurse on the subsets.

v. Else, connect the created neuron to the respective output neuron.

vi. Put back the removed training examples.

5. If abest is a logical attribute:

(a) If there is no input neuron when abest is true, create one input neuron.

(b) Else:

i. Create an “AND” neuron.

ii. Connect the “AND” neuron to the input neuron of this logical attribute.

iii. Connect the “AND” neuron to the neuron that invoked this recursion.

(c) Remove the training examples where abest is true.

(d) If possible, recurse on the subsets.

(e) Else, connect the created neuron to the respective output neuron.



71

(f) Put back the removed training examples.

(g) Repeat the same steps, considering abest as false.

6. If abest is a numerical attribute:

(a) If there is no input neuron when abest is true, create one input neuron.

(b) Find a threshold value to split the data set.

(c) Create a hidden neuron and connect it to the input neuron.

(d) Remove the training examples where abest <= threshold.

(e) If possible, recurse on the subsets.

(f) Else, connect the created neuron to the respective output neuron.

(g) Put back the removed training examples.

(h) Repeat the same steps, considering abest > threshold.

5.2 Single-Cell Learning

Another topic point in this thesis lies in the single-cell learning, which is a main

characteristic of easy learning algorithms. Essentialy, it is mandatory to find a way to

automatically create the inputs and outputs of each cell in the network.

To achieve that, the same C4.5 algorithm may be useful as inspiration. Indeed, the

decision tree learning method generates the architecture of the model and the “IF-THEN”

clauses of each node. So, each “IF-THEN” clause can be utilized to generate a small set of

training examples to its respective neuron. Thus, it will be possible to apply, for example,

the Pocket learning algorithm to train that single unit.

Previously, it was described that the network must deal with categorical, logical and

numerical parameters. Because of that, there are two categories of neurons:

• Comparational: a neuron that compares the input value against a threshold value,

doing a “greater than or equal to” or a “less than” operation.

• Logical: a neuron that performs “AND” or “OR” logical operations.

A generator of examples (inputs and outputs) should be specified for the training of

comparational neurons. The algorithm (in pseudocode) would be:
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Table 5.2: “AND” truth table.

Input 1 Input 2 Output
Inactive Inactive Inactive
Inactive Active Inactive
Active Inactive Inactive
Active Active Active

• threshold := reference value

• mode := “greater than or equal to” or “lower than”

• activeState := 1

• inactiveState := -1

• range := absoluteValue(activeState) - absoluteValue(inactiveState)

• examplesGroup := a desirable quantity of examples

• examplesCount := the quantity of examples

• step := range / examplesCount

• input := inactiveState

• For each example in examplesGroup:

– If mode is “greater than or equal to”, then:

∗ If input is greater than or equal to threshold, then the output is active

∗ Else, the output is inactive

– Else, if mode is “lower than”, then:

∗ If input is lower than threshold, then the output is active

∗ Else, the output is inactive

On the other hand, logical neurons do not need a specific algorithm, since the truth

table of “AND” and “OR” logical operations are very known, being showed in tables 5.2

and 5.3.
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Table 5.3: “OR” truth table.

Input 1 Input 2 Output
Inactive Inactive Inactive
Inactive Active Active
Active Inactive Active
Active Active Active

5.3 Weights Optimization

After the previous two steps (topology construction and single-cell learning), the net-

work is ready to be utilized. At this point, its accuracy may be similar to an equivalent

decision tree. However, it is not enough to make the proposed method an attractive choice.

So, ways to improve the final accuracy of the generated network should be considered. In

other words, an optimization method is necessary.

A first choice would be the backpropagation learning algorithm. It has already proved

its efficiency in the training of MLPs. Nevertheless, backpropagation does not fit the con-

cept of this project. Indeed, it is the complete opposite of the proposed constructive

method. The proposed algorithm builds the network in the reverse orientation of back-

progation method.

A parallel approach may be more compatible to these needs, since it is not against

the adopted heuristic. In previous chapters, it was described that many evolutionary

algorithms could perform parallel optimization. This work is particularly interested in

particle swarm optimization (PSO), once it can easily perform the optimization of neural

network weights.

James Kennedy and Russel Eberhart had proposed the PSO in 1995 (KENNEDY;

EBERHART, 1995). The technique was created as a simplified social model of flocks or

fish shoals looking for food (VESTERSTROEM; RIGET, 2002). Although the method

was first intended for simulating social behaviour, it was discovered that it could perform

optimization.

By having a population of candidate solutions (or particles) that are moving around

the search-space, the PSO can optimize a problem. The particle movement is based on a

simple mathematical formulae which guide them using the best local and global positions.

Differently from classical optimization algorithms, PSO can be applied to any kind of

problem. It happens because it does not use gradients during the process, so the optimized
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problem does not need to be differentiable. This way, PSO can be defined as an efficient,

robust and simple non-deterministic optimization algorithm (BISCAIA-JR.; SCHWAAB;

PINTO, 2004).

As commented before, PSO concept can be explained using a “flock metaphor”:

1. Let be a flock looking for food.

2. Initially, the birds do not know where the food is.

3. So, each bird starts flying without any pattern.

4. Eventually, they start to follow those birds that are near to food, which creates

several small flocks.

5. Finally, one bird finds the food and attracts the others, creating an unique large

flock.

This “flock metaphor” can be translated to an algorithm like this:

1. Let be a fitness function f(x) that must be minimized and xi a candidate solution in

the form of a vector of real numbers. So, f(xi) will output a real number that is the

fitness of xi. The best global particle (the one with the lowest fitness) is represented

as g.

2. Produce a population of n particles (candidate solutions) with positions xi and

velocities vi, where 0 <= i < n.

3. Initialize the position of each particle as a uniformly distributed random vector.

4. Initialize the velocity of each particle as a uniformly distributed random vector.

5. Repeat until a termination criterion is met1:

(a) Update the velocity of each particle.

(b) Use each velocity to update its respective particle’s position.

(c) If f(xi) < f(g), then g → xi.

6. The best solution is g.

1Normally, a maximum number of iterations or a fitness threshold.
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Previous works already proved that PSO can optimize the weights of a neural network

(BECKERT-NETO et al., 2010). Indeed, these studies suggested that it can surpass the

backpropagation algorithm in many cases. In this kind of application, random network

weights are arranged as vectors, which are optimized. The fitness function calculates the

total error of a candidate classifying the training examples of a data set. A disadvantage

of the method is that it requires a previous defined network topology.

Particularly in this project, the network architecture will be defined by the early de-

scribed topology-builder algorithm. Additionaly, the single-cell learning process provides

an already trained neural network. Thus, instead of creating random candidates, the

method will mutate the trained neural network to produce the initial population. The

process will be:

1. To arrange the trained network weights as an array.

2. To clone the arrays, creating a population.

3. To mutate randomly some arrays.

4. To apply the PSO algorithm.

After this process, it is expected that the network can overcome the initial accuracy

of the equivalent decision tree.

5.4 Pruning

The trained network can be optimized with a pruning routine. Basically, the neurons

that present a constant activation can be interpreted as bias neurons. This way, their

input connections could be removed from the network, since they do not affect the outputs.

Additionally, the neurons could be also removed, because their activations can be added

to the bias of the output neurons. This pruning routine can be designed as the algorithm

6.

5.5 An Example

In this section, the proposed learning algorithm is manually executed to produce a

neural network that models the “golf” database, that was previously described. This



76

Algorithm 6 Pruning algorithm

Require: A neural network NN = ni, i = 1, ..., T , where ni is a neuron, T is the total of
neurons, cij is a connection from neuron ni to neuron nj, ai is the medium activation
of neuron ni, sdi is the the standard deviation of the activations of neuron ni and bi is
the bias of the neuron ni.

Require: A threshold t.
Ensure: A prunned neural network created from NN .
i← 1
while i ≤ T do

if sdi ≤ t then
Remove all input connections from ni.
j ← 1
while j ≤ T do

if existscij then
bj ← bj + ai
Remove cij.

end if
end while

end if
i← i+ 1

end while
Remove all neurons without any output connection.

Figure 5.2: Creation of the output neurons.

execution still considers the 14 training examples listed on the table 5.1.

Based on the number of classes, the algorithm creates two output nodes (“play” and

“don’t play”) as shown in the figure 5.2. So, it checks all base cases and calculates the

normalized information gain from splitting the database on each attribute. The results

are:

• Outlook: 0.2467;

• Temperature: 0.0000;

• Humidity: 0.0000;

• Windy: 0.0481.
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The algorithm selects the “outlook” attribute, because it has the highest normalized

information gain (0.2467). Since it is a categorical attribute, three input neurons are

created (“sunny”, “overcast” and “rainy”), as showed in the figure 5.3.

The “outlook” attribute splits the data set on three subsets. Thus, the algorithm

has to be executed for each subset. The first subset is composed by 5 training examples

where outlook is “sunny”. The normalized information gain is calculated for the remaining

attributes, as follows:

• Temperature: 0.0000;

• Humidity: 0.9710;

• Windy: 0.0200;

The “humidity” attribute is selected (0.9710). Because it is a numerical attribute, just

one input neuron is created, as showed in the figure 5.4. The algorithm utilizes the C4.5

formula to establish a threshold for the attribute, which is 75% in this case2. Then, the

algorithm creates two hidden neurons that are activated by the “humidity” input neuron.

These hidden neurons represent the threshold. One neuron represents “humidity ≤ 75”

and the other represents “humidity > 75”, as displayed on the figure 5.5.

Using the threshold, the algorithm creates a database to train the first neuron. The

training examples are shown in the table 5.43. The Pocket algorithm with ratchet is

utilized to train the neuron.

Then, the algorithm creates another data set to train the second hidden neuron, as

listed in the table 5.5. The Pocket algorithm with ratchet is utilized again.

The algorithm concatenates the “outlook” and “humidity” attributes with two addi-

tional hidden neurons, as showed in the figure 5.6. These neurons represent the “AND”

logical operation. They are trained with the Pocket algorithm with ratchet. A simplified

version of the utilized training examples is presented on the table 5.6.

Considering the “humidity ≤ 75” neuron, the algorithm calculates the normalized

information gain for the remaining attributes:

• Temperature: 0.0000;

2To facilitate the understanding, the normalization step will be ignored in this explanation. However,
it is relevant to observe that all numerical values must be normalized in the unary range, so they can be
calculated by the neural network.

3The size of the data set is limited to facilitate the demonstration.
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Figure 5.3: Creation of “outlook” input neurons.



79

Figure 5.4: Creation of “humidity” input neuron.
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Figure 5.5: Creation of threshold neurons of “humidity” input neuron.
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Table 5.4: Training examples for the “humidity ≤ 75” neuron.

Training Example (Bias, x1) c
X1 (+1, 55) +1
X2 (+1, 60) +1
X3 (+1, 65) +1
X4 (+1, 70) +1
X5 (+1, 75) +1
X6 (+1, 80) -1
X7 (+1, 85) -1
X8 (+1, 90) -1
X9 (+1, 95) -1
X10 (+1, 100) -1

Table 5.5: Training examples for the “humidity > 75” neuron.

Training Example (Bias, x1) c
X1 (+1, 55) -1
X2 (+1, 60) -1
X3 (+1, 65) -1
X4 (+1, 70) -1
X5 (+1, 75) -1
X6 (+1, 80) +1
X7 (+1, 85) +1
X8 (+1, 90) +1
X9 (+1, 95) +1
X10 (+1, 100) +1

Table 5.6: Training examples of “AND” logical operation (simplified version).

Training Example (Bias, x1, x2) c
X1 (+1, -1, -1) -1
X2 (+1, -1, +1) -1
X3 (+1, +1, -1) -1
X4 (+1, +1, +1) +1
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Figure 5.6: Concatenation of “outlook” and “humidity” neurons.
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• Windy: 0.0000.

Because the result is zero for the both attributes, the algorithm stops the recursive

execution on this node. It connects the “humidity ≤ 75” neuron to its respective output

neuron (“play” class), as shown in the figure 5.7.

Then, the algorithm calculates the normalized information gain for the resting at-

tributes of the “humidity > 75” neuron:

• Temperature: 0.0000;

• Windy: 0.0000.

These values describe a final node, so this neuron is connected to its output neuron

(“don’t play” class), as shown in the figure 5.8.

The algorithm goes to the “overcast” neuron, which has 4 training examples. It

calculates the normalized information gain for the remaining attributes, as follows:

• Temperature: 0.0000;

• Humidity: 0.0000;

• Windy: 0.0000.

Since there is no way to keep splitting the subset, the “overcast” neuron is connected

to its output neuron (“play” class), as shown in the figure 5.9.

After, the algorithm calculates the normalized information gain considering the 5

resting training examples:

• Temperature: 0.0000;

• Humidity: 0.0000;

• Windy: 0.9710.

Based on these results, the algorithm selects “windy” as the best attribute. Since it is a

logical attribute, two input neurons are created: “windy is TRUE” and “windy is FALSE”.

They are presented in figure 5.10. Two “AND” neurons are utilized to concatenate these

inputs to the “rainy” neuron, as shown in figure 5.11.
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Figure 5.7: Connection of the “humidity” and “play” output neurons.
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Figure 5.8: Connection of the “humidity” and “don’t play” output neurons.
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Figure 5.9: Connection of the “overcast” and “play” output neurons.
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Figure 5.10: Creation of the “windy” input nodes.
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Figure 5.11: Concatenation of the “rainy” and “windy” neurons.
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Figure 5.12: Connection of the “windy” and “don’t play” output neurons.

Considering the “windy is TRUE” neuron, the algorithm calculates the normalized

information gain for the resting attributes:

• Temperature: 0.0000;

• Humidity: 0.0000;

These results ends the recursive mode, so the “outlook = rainy AND windy is TRUE”

neuron is connected to the “don’t play” output neuron, as displayed in the figure 5.12.

Next, the algorithm tries the resting attributes of the “windy is FALSE” neuron:

• Temperature: 0.0000;

• Humidity: 0.0000;

In a similar way, it connects the “overcast = rainy AND windy is FALSE” neuron to

the “play” output neuron, as presented on the figure 5.13.
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Figure 5.13: Connection of the “windy” and “play” output neurons.
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Figure 5.14: Training of the output nodes.

This way, the topology of the neural network is complete. It is relevant to cite that the

“temperature” was excluded from the network inputs, since it did not present significant

normalized information gains. In a certain way, it is possible to say that the algorithm

tries to customize the number of attributes and, consequently, the network size.

The next step is to individually train each output neuron to perform the “OR” logical

operation, as shown in the figure 5.14. Again, they are trained with the Pocket algorithm

with ratchet. A simplified version of the utilized training examples is presented on the

table 5.7.

At this stage, the network is already a fully-functional classifier, with a classification

rate equivalent to a similar decision tree. The algorithm orders the network weights in an

array. Then, this array is mutated to generate an initial population of related arrays. This

population is optimized with the PSO algorithm. The fitness function tries to maximize

the accuracy and minimize the error rate. During the execution of the PSO algorithm,

new training examples are presented to the potential networks. The best classifier is
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Table 5.7: Training examples of “OR” logical operation (simplified version).

Training Example (Bias, x1, x2) c
X1 (+1, -1, -1) -1
X2 (+1, -1, +1) +1
X3 (+1, +1, -1) +1
X4 (+1, +1, +1) +1

selected and the training is complete.

The final network conserves the topology, but it is not possible to determine the logical

operations or the numeric thresholds, as shown in the figure 5.15. It happens because the

weights are changed during the optimization process.

5.6 Chapter Review

The proposed algorithm was described in this chapter. It is based on three main

principles:

• It automatically builds the network topology, inspired on a tree structure.

• It trains each neuron individually.

• It optimizates all the weights using PSO.

The algorithm was manually executed on the “golf” database, a restricted data set

that is much utilized on examples involving decision trees. The generated network is very

different from a usual MLP and also differs from a decision tree. It can be described as a

sparsely connected neural network, where the hidden neurons are not disposed in layers.

Nevertheless, this single example is not solid enough to validate the algorithm. There-

fore, the next chapter will describe the methodology that may fully test the raised hy-

pothesis. It describes the experiments, the data sets and the control groups. Additionaly,

it presents the metrics that will be utilized to measure the behaviour of the method.
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Figure 5.15: Optimized network.
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Chapter 6

Experiments

Galileo Galilei established the experimenting as the basis of the scientific method. To

prove a hypothesis or a theory, one must establish experiments that reveal the necessary

evidences. This “rule” applies to the several domains of science. Particularly, in a machine

learning thesis (mainly in classification algorithms), the experiments should answer some

questions:

• Does the method work?

• How well does it work?

• When it works?

• How better (or worser) is it when compared to other methods?

To have these answers, it is necessary to:

• Select some data sets to be utilized in the experiments.

• Choose some other ML techniques that will be compared to the proposed method.

• Define a experimenting procedure that will be followed during the tests, in the same

way for the proposed method and for the compared techniques.

• Establish some metrics that will measure the performance of the technique during

the tests.

The following sections will answer all these questions and establish the experiments

that will validate the hypothesis.
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6.1 Data Sets

Thirteen (13) databases were selected from the UCI Machine Learning Repository

(FRANK; ASUNCION, 2010) to be utilized in the experiments. This process tried to:

• Select data sets with few instances.

• Select data sets with many instances.

• Select data sets with few attributes.

• Select data sets with many attributes.

• Select data sets with only categorical attributes.

• Select data sets with only numerical attributes.

• Select data sets with both categorical and numerical attributes.

The main criterion was to try the proposed method against many types of databases

and verify its performance in these situations. The selected data sets are compared in the

table 6.1 and listed below:

• Balance Scale;

• Breast Cancer;

• Breast Cancer - Wisconsin;

• Horse Colic;

• Pima Indians Diabetes;

• Heart Disease - Cleveland;

• Heart Disease - Hungarian;

• Hepatitis Domain;

• Iris;

• Mushroom;

• Postoperative Patient Data;
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Table 6.1: Data sets.

Name Attribute Types # Instances # Attributes
Balance Scale Categorical 625 4
Breast Cancer Categorical 286 9

Breast Cancer - Wisconsin Categorical 699 10
Horse Colic Categorical and Numerical 368 27

Pima Indians Diabetes Numerical 768 8
Heart Disease - Cleveland Categorical and Numerical 303 14
Heart Disease - Hungarian Categorical and Numerical 294 14

Hepatitis Domain Categorical and Numerical 155 19
Iris Numerical 150 4

Mushroom Categorical 8,124 22
Post-Operative Patient Categorical and Numerical 90 8

Lymphography Categorical 148 18
Lung Cancer Categorical 32 56

• Lymphography;

• Lung Cancer.

6.1.1 Balance Scale Database

The Balance Scale database was generated to model results obtained from psycholog-

ical experiments, reported by R.S. Siegler in 1976. The examples are classified as having

the balance scale tip to the right, tip to the left, or be balanced.

6.1.2 Breast Cancer Database

The Breast Cancer database was created on the Institute of Oncology of the University

Medical Centre (Ljubljana, Yugoslavia) and provided by the physicians Matjaz Zwitter

and Milan Soklic. The task involves predicting whether the patients will have recurrence

events or not. The data set has 286 instances composed by 9 categorical attributes:

• Age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89 or 90-99;

• Menopause: less than 40 years, greater than 40 years or pre-menopause;

• Tumor size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54 or

55-59;
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• Inv nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35

or 36-39;

• Node caps: yes or no;

• Degree of malignancy: 1, 2 or 3;

• Breast: left or right;

• Breast quadrant: left-up, left-low, right-up, right-low or central;

• Irradiation: yes or no.

6.1.3 Breast Cancer Wisconsin Database

The Breast Cancer Wisconsin database compiles several samples reported by Dr.

William H. Wolberg, from University of Wisconsin Hospitals. There are 699 instances

composed by 10 categorical atributes:

• Sample code number: id number;

• Clump Thickness: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Uniformity of Cell Size: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Uniformity of Cell Shape: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Marginal Adhesion: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Single Epithelial Cell Size: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Bare Nuclei: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Bland Chromatin: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Normal Nucleoli: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Mitoses: 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;

• Class: “2” for benign and “4” for malignant.
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6.1.4 Horse Colic Database

The Horse Colic database has 27 attributes and 368 instances. It contains both

categorical and numerical attributes. It is relevant to remember that 30% of values are

missing, which represents a great challenge for the proposed algorithm.

6.1.5 Pima Indians Diabetes Database

The Pima Indians Diabetes Database contains only numerical attributes. There are

some missing values, which are encoded as “0” and may represent a challenge during

training. All 768 instances come from female patients at least 21 years old of Pima Indian

heritage. The attributes are:

• Number of times pregnant;

• Plasma glucose concentration a 2 hours in an oral glucose tolerance test;

• Diastolic blood pressure;

• Triceps skin fold thickness;

• 2-Hour serum insulin;

• Body mass index;

• Diabetes pedigree function;

• Age;

• Class variable.

6.1.6 Heart Disease Databases

Two databases regarding heart disease are utilized in this thesis: Cleveland and Hun-

garian. Both contains 14 numerical and categorical attributes. The “class” attribute

refers to the presence or not of angiographic disease in the patient.
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6.1.7 Hepatitis Domain Database

The Hepatitis Domain database has 155 instances and 19 attributes. There are nu-

merical and categorical attributes, with missing values. The “class” attribute refers to

the survival or not of the patient with hepatitis disease. The attributes are:

• Class: “die” or “live”;

• Age: continuous;

• Sex: “male” or “female”;

• Steroid: “yes” or “no”;

• Antivirals: “yes” or “no”;

• Fatigue: “yes” or “no”;

• Malaise: “yes” or “no”;

• Anorexia: “yes” or “no”;

• Liver big: “yes” or “no”;

• Liver firm: “yes” or “no”;

• Spleen palpable: “yes” or “no”;

• Spiders: “yes” or “no”;

• Ascites: “yes” or “no”;

• Varices: “yes” or “no”;

• Bilirubin: continuous;

• Alk phosphate: continuous;

• Sgot: continuous;

• Albumin: continuous;

• Protime: continuous;

• Histology: “yes” or “no”;
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6.1.8 Iris Database

The Iris database is one of the most present databases in the machine learning litera-

ture. It contains 3 classes (50 instances each), where each class is a type of iris plant. Only

one class may be linearly separated from other two. All the 4 attributes are numerical.

6.1.9 Mushroom Database

The Mushroom Database includes 8,124 descriptions of hypothetical samples of 23

gilled mushrooms species in the Agaricus and Lepiota Family. The samples are classified

as poisonous or edible. This data set was based on records from The Audubon Society

Field Guide to North American Mushrooms (LINCOFF, 1981). It is relevant to notice

that the guide affirms there is no simple rule to determine the edibility of a mushroom,

what reinforces the difficulty of this task. The data set has 22 categorical attributes, as

follows:

• Cap shape: bell, conical, convex, flat, knobbed or sunken;

• Cap surface: fibrous, grooves, scaly or smooth;

• Cap color: brown, buff, cinnamon, gray, green, pink, purple, red, white or yellow;

• Bruises: yes or not;

• Odor: almond, anise, creosote, fishy, foul, musty, none, pungent or spicy;

• Gill attachment: attached, descending, free or notched;

• Gill spacing: close, crowded or distant;

• Gill size: broad or narrow;

• Gill color: black, brown, buff, chocolate, gray, green, orange, pink, purple, red,

white or yellow;

• Stalk shape: enlarging or tapering;

• Stalk root: bulbous, club, cup, equal, rhizomorphs, rooted or missing;

• Stalk surface above ring: fibrous, scaly, silky or smooth;

• Stalk surface below ring: fibrous, scaly, silky or smooth;
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• Stalk color above ring: brown, buff, cinnamon, gray, orange, pink, red, white or

yellow;

• Stalk color below ring: brown, buff, cinnamon, gray, orange, pink, red, white or

yellow;

• Veil type: partial or universal;

• Veil color: brown, orange, white or yellow;

• Ring number: none, one or two;

• Ring type: cobwebby, evanescent, flaring, large, none, pendant, sheathing or zone;

• Spore print color: black, brown, buff, chocolate, green, orange, purple, white or

yellow;

• Population: abundant, clustered, numerous, scattered, several or solitary;

• Habitat: grasses, leaves, meadows, paths, urban, waste or woods;

6.1.10 Post-Operative Patient Database

The Post-Operative Patient Database was created by Sharon Summers (School of

Nursing, University of Kansas) and Linda Woolery (School of Nursing, University of

Missouri). It is a small data set that contains only 90 instances describing 8 vital signals

of each patient:

• Patient’s internal temperature (oC): high (higher than 37oC), mid (between 36oC

and 37oC) or low (below 36oC).

• Patient’s surface temperature (oC): high (higher than 36.5oC), mid (between 35oC

and 36.5oC) or low (below 35oC).

• Oxygen saturation (%): excellent (higher than 98%), good (between 90% and 98%),

fair (between 80% and 90%) or poor (below 80%).

• Last measurement of blood pressure (mmHg): high (higher than 130/90 mmHg),

mid (between 90/70 mmHg and 130/90 mmHg) or poor (below 90/70 mmHg).

• Stability of patient’s surface temperature: stable, mod-stable or unstable.
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• Stability of patient’s core temperature: stable, mod-stable or unstable.

• Stability of patient’s blood pressure: stable, mod-stable or unstable.

• Patient’s perceived comfort at discharge: an integer between 0 and 20.

The task is to determine where patients in a post-operative recovery area should be

sent: intensive care unit (2 instances), general hospital floor (64 instances) or home (24

instances). It is important to cite that 3 instances have a missing attribute (patient’s

perceived comfort at discharge).

6.1.11 Lymphography Database

The Lymphography database has 18 categorical attributes and 148 instances. There

are no missing values. The “class” attributes refers to the diagnosis of lymph cancer:

normal find, metastases, malign lymph or fibrosis.

6.1.12 Lung Cancer Database

The Lung Cancer database describes 3 types of pathological lung cancers. All 56

attributes are categorical and there are missing values. It is a very small data set with

only 32 instances. The small size of data set and the absence of some values may provide

a great challenge to the proposed method.

6.2 Compared Techniques

It is very important to compare a new machine learning method with other approaches

in order to verify its viability. In this thesis, the proposed method is contrasted with two

classic AI approaches: decision trees and multilayer perceptrons. It is an ontological

choice, since this work proposes a constructive algorithm for creation of neural networks

that is heavily inspired in decision trees.

An open-source Java implementation of C4.5 algorithm, called J48 algorithn, was

selected to represent decision trees. It is part of the Weka package (GROUP, 2010),

which is a collection of machine learning algorithms for data mining tasks. The Weka’s

implementation was prefered because it also implements the backpropagation learning
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algorithm for MLPs. This way, the same application can be utilized to run the tests with

both techniques.

6.3 Metrics

6.3.1 Statistical Metrics

Four statistical metrics are utilized in this work to compare the performance of the

algorithm against decision trees and MLPs. They are: accuracy, sensitivity, specificity

and precision. To define these metrics, a confusion matrix will be utilized as example.

Essentialy, it is a matrix that presents the predicted classifications against the actual

classifications. The size of matrix is defined by the quantity of possible classes. For

example, for a 2-classes problem, that is the confusion matrix:
Actual/Predicted ClassI ClassII

ClassI a b

ClassII c d


Accuracy may be defined as the rate of correct predictions made by the model over the

validation data set. On the above example, it would be accuracy = (a+d)/(a+b+c+d).

Sensitivity is also called recall or true positive rate. This metric must be measured

for each class. It measures the rate of correct predictions of a class. For example, the

sensitivity of the class II can be calculated by sensitivity = d/(c+ d).

Specificity, also known as true negative rate, is also a specific class metric. It measures

the proportion of negatives that are correctly predicted. The specificity of class II, for

example, would be defined by specificity = a/(a+ b).

Precision has to be calculated for each class, too. It measures the number of true

positives against the total elements of that class. For example, the precision of class II

would be precision = d/(b+ d).

6.3.2 Computational Cost

As the first four metrics are statistical tools, they can be easily described by mathe-

matical formulas. On the other hand, computational cost is harder to describe. Indeed,

what is computational cost? And, more important, how to measure it? Many answers
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are correct, but in the context of the present project, computational cost is defined as the

“effort” that a computer must take to solve a problem.

In other words, it establishes how “fast” an algorithm creates the model from the

training data set. This way, computational cost could be categorized as a temporal metric.

However, this “duration time” cannot be considered as an absolute measure, since it will

change according to many variables, such as hardware, software, and others. To overcome

this problem, the “computational cost” must be turned in a relative metric:

1. Considering a fix platform:

(a) Hardware:

i. Processor: Intel Core 2 Duo T5550 (1.83 GHz, 667 Mhz FSB, 2 MB L2

cache);

ii. Memory: 2 GB DDR2;

iii. Hard drive: 320 GB 7.200 RPM;

(b) Software:

i. Operational System: Ubuntu Linux 10.04 64 bits (kernel: 2.6.32-23-generic);

ii. Software: Weka (version 3.6.0).

2. Measure (in milliseconds) how much time each classifier takes to create a model

from the same training data set.

3. Scale the results in 0-100% range, considering that the larger delay is 100%.

4. Computational cost is the scaled value. Smaller values are better.

Computational cost is a relative metric that is only useful to compare classifiers under

a fixed platform. If you change anything in the platform (the processor, for example)

all the tests must be executed again. Also, the values may slightly vary, in different

executions. Therefore, it is very important to run the same test more times and use the

average value. Despite of the fact that computational cost does not provide exact values,

it may be very useful to contrast the differences in “speed” among the classifiers under

consideration.

6.3.3 Comprehensibility

One of the key motivations of this thesis is to generate more comprehensible neural

networks. Indeed, the proposed methodology tries to blend the principles of a “white-
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box” technique (decision trees) with the “black-box” neural networks. This way, it is

expected to obtain “gray-box” neural networks. However, main questions rise over these

assumptions:

• What is comprehensibility?

• How could one measure the comprehensibility of a neural network?

• How more comprehensible the proposed neural networks are?

• How to compare the comprehensibility of different models (decision trees, neural

networks and the proposed method)?

Zhi-Hua Zhou defines comprehensibility as the ability of a data mining algorithm to

produce patterns understandable to human beings (ZHOU, 2005). It is a very interesting

definition, because it highlights a crucial aspect of comprehensible models: human beings

may understand the knowledge that is embedded in the model. Without this under-

standing, the model is just a “black-box”, which only provides answers without further

explanations.

Comprehensibility is an essential feature in ML algorithms. In fact, Ryszard S. Michal-

ski reinforces its importance on his comprehensibility principle:

“The results of computer induction should be symbolic descriptions of given

entities, semantically and structurally similar to those a human expert might

produce observing the same entities. Components of these descriptions should

be comprehensible as single ‘chunks’ of information, directly interpretable in

natural language, and should relate quantitative and qualitative concepts in an

integrated fashion.” (MICHALSKI, 1983)

Additionaly, Mark William Craven and Jude W. Shavlik listed several reasons that

justify the importance of this criterion (CRAVEN; SHAVLIK, 1995):

• Validation: The designers and end-users must know how a system arrives at its

decisions, so they can rely on its performance.

• Discovery: If the representations created by the system are comprehensible, then

human beings can review it to make new scientific discoveries.
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• Explanation: In some domains, it is desirable to explain the classifications of indi-

vidual input patterns.

• Improving generalization: Representations that can be understood and analyzed

may provide ideas to the creation of better models.

• Refinement: Intelligent systems can be used by researchers to refine approximately-

correct domain theories, so it is important that these models can be expressed in a

comprehensible manner.

Despite its importance, comprehensibility is a subjective criterion. No author has

established a definitive way to quantify how comprehensible an intelligent system is. A

shortcut approach was proposed by Tuve Löfström, Ulf Johansson and Lars Niklasson

(LÖFSTRÖM; JOHANSSON; NIKLASSON, 2004). Based on the sense that comprehen-

sibility tries to capture if a model is easy enough to understand, they suggested that the

complexity can be seen as its opposite. This way, it is possible to indirectly quantify the

comprehensibility of a system by quantifying its complexity. In other words, less complex

systems tend to be more comprehensible.

This is a very interesting observation, because complexity is easier to measure. For

example, the complexity of a decision tree can be determined by the number of internal

nodes and utilized symbols (LÖFSTRÖM; JOHANSSON; NIKLASSON, 2004). In a

similar way, the complexity of a neural network could be calculated from the number of

hidden neurons and connections.

Nevertheless, even if it is possible to measure the complexity of a model, how to

compare measurements between differente models? The complexity of decision trees,

traditional MLPs and the proposed neural networks is measured with different parameters

and formulas. So, they cannot be utilized as a comparation standard. It is necessary to

obtain a more generic formula.

Andrey Nikolaevich Kolmogorov, a notorious russian mathematician, developed a

theory about how to measure the computational complexity of objects (Kolmogorov,

A. N., 1965) 1. Indeed, the so-called “Kolgomorov complexity” (a.k.a. “algorithmic

complexity”) offers the theoric bases to measure the computational resources needed to

specify an object, such as a piece of text or a string. Volker Nannen has summarized

1Besides Andrey Kolmogorov, the concept was individually developed (with different motivations)
by Ray Solomonoff (SOLOMONOFF, 1964)(SOLOMONOFF, 1964b) and Gregory Chaitin (CHAITIN,
1966)(CHAITIN, 1969). However, Kolmogorov was the main responsible by the consolidation of the
theory and by the study of computational complexity.
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the Kolgomorov complexity C(s) of any binary string s ∈ {0, 1}n as the length of the

shortest computer program s∗ that can produce this string on the UTM (Universal Turing

Machine) and then halt (NANNEN, 2010). It means that C(s) bits are necessary to

encode the string s on UTM 2.

Lance Fortnow presented a very interesting example of use of Kolgomorov complexity

(FORTNOW, 2001). Consider three strings:

010101010101010101010101

110100110010110100101100

100111011101011100100110

Despite all being 24-bit binary strings, their complexities are very different. The first

string can be described as a 24-bit binary string with a 1 in position n if n is odd. On the

other hand, the second string can be defined as a 24-bit binary string with a 1 in position

n if the binary representation of n has an odd quantity of 1’s. However, the third string

cannot be described succinctly, so it is necessary to list its contents verbatim.

This simple example illustrates well the power of the theory. Any object that can be

digitally represented (e.g. strings, images, programs) could have its complexity measured

in an absolute units (bits). Nonetheless, the Kolgomorov complexity is just theorical and

cannot be computed. It happens because no algorithm can predict if every program will

halt or not, what causes that it is impossible to predict the output of every program

(TURING, 1936). Even if there is a known short program that produces the string, there

are always another shorter and unknown programs which are impossible to predict the

output of if they will even halt.

Although it is not computable, the theory provides the foundations for practical met-

rics. This way, it is possible to establish some heuristic and estimate the complexity of a

program. The results are not absolute, because of the above explanation. Anyway, they

are useful because they provide hints about the complexity criterion.

In this thesis, the complexity of decision trees and neural networks will be measured

in the following way. A common grammar was defined to represent both models:

model := rule [else rule]

rule := if expression then output

2It is important to comment that the UTM is a theoric computer, that does not need to be defined.
Once any UTM can be implemented on another UTM, the size of a program would only change by the
addition of the implementation of the host UTM (a constant).
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expression := relational expression [logical operator expression]

relational expression := term relational operator {number|logical state}∗

relational operator := =|<=|>
logical operator := and|or

term := input|activation function
activation function := act(sum)

sum := product[+ sum]

product := value * value

value := input|number|activation function
input := letter{letter|digit|punctuation}
number := {digit}∗[.{digit}∗]
logical state := true|false

output := class is class name

class name := letter{letter|digit|punctuation}
letter := {a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|x|y|z}∗

digit := {0|1|2|3|4|5|6|7|8|9}∗

punctuation := { }∗

Using the above grammar, the decision tree previously created for the “golf” database

would be:

if outlook = sunny and humidity <= 75 or outlook = overcast or

outlook = rainy and windy = false then class is play else if outlook

= sunny and humidity > 75 or outlook = rainy and windy = true

then class is dont play

And the neural network previously created for the same database would be3:

if act(act(act(humidity * W) * W + sunny * W) * W + overcast

* W + act(rainy * W + windy false * W) * W) > 0.5 then class is

play else if act(act(act(humidity * W) * W + sunny * W) * W +

act(rainy * W + windy true * W) * W) > 0.5 then class is dont play

A normal 3-layers MLP, like the one in figure 6.1, would be:

3In these examples, W means the numerical value of a connection weight.
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Figure 6.1: A multilayer perceptron that can solve the “golf” problem.

if act(act(sunny * W + overcast * W + rainy * W + temperature

* W + humidity * W + windy * W) + act(sunny * W + overcast

* W + rainy * W + temperature * W + humidity * W + windy *

W) + act(sunny * W + overcast * W + rainy * W + temperature

* W + humidity * W + windy * W) + act(sunny * W + overcast

* W + rainy * W + temperature * W + humidity * W + windy *

W)) > 0.5 then class is play else if act(act(sunny * W + overcast *

W + rainy * W + temperature * W + humidity * W + windy *

W) + act(sunny * W + overcast * W + rainy * W + temperature

* W + humidity * W + windy * W) + act(sunny * W + overcast

* W + rainy * W + temperature * W + humidity * W + windy *

W) + act(sunny * W + overcast * W + rainy * W + temperature

* W + humidity * W + windy * W)) > 0.5 then class is dont play
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The complexity of a model will be defined by the absolute number of elements that

are utilized to describe it. This way, the complexities of the above models are:

• Decision tree: 45;

• Proposed neural network: 69;

• Traditional MLP: 215.

However, the complexity is not the final objective of this measure. The key point is

to establish the comprehensibility of the models. In this thesis, it is considered that the

comprehensibility is inversely proportional to the complexity:

comprehensibility = −10 ∗ ln complexity + 110.986122887

Thus, the comprehensibility of a model it is a fraction of 100. A very simple model (e.g.

a rule with an unique class4) will be 100% comprehensible. More complicated models will

have less comprehensibility. This metric follows the lex parsimoniae and favors simpler

models.

Using the above formula, the comprehensibility of the previously cited models would

be:

• Decision tree: 73%;

• Proposed neural network: 69%;

• Traditional MLP: 57%.

6.4 Experiments

The basic structure for each experiment is:

1. Let D be a database under consideration.

2. Split D in 2 random stratified subsets named Ktrain and Ktest, where Ktrain has

66.67% of all instances and |Ki ∩Kj| = ∅.

3. For each classifier under consideration, repeat 10 times:

4A rule with an unique class is represented by 3 elements: “class is X ”.
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(a) Build a different instance of the classifier using Ktrain as the training set.

(b) Test the classifier in the Ktest set, using the established metrics.

6.5 Chapter Review

This chapter described the methodology that will be conducted to confirm the raised

hypothesis and the validity of the proposed algorithm. It described the experiments that

will be executed in several databases to check the behaviour of this new learning algorithm

in different contexts.

The results will be always compared to decision trees and MLPs, once these both

techniques are extremely involved to the present work. The performance of the method

will be measured by six metrics, consisting of four statistical tools (accuracy, sensitiv-

ity, specificity and precision) and two relative metrics that were created for this project

(computational cost and comprehensibility).
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Chapter 7

Results and Discussion

The present chapter presents the results of this work. All the results are analyzed in

quantitative and qualitative ways. Section 1 presents how the proposed algorithm was

implemented and the main aspects of the final software, including how to use it in further

experiments.

Section 2 lists statistical results of the classifier in several data sets. As control, the

same data sets were classified with other traditional techniques. These values are then

compared in both quantitative and qualitative ways.

Section 3 benchmarks the performance of the final software in a controlled environ-

ment. Again, the values are compared to traditional algorithms under the same general

conditions.

Section 4 analyzes the comprehensibility of the generated models and how better (or

worser) they are when compared to other methods.

7.1 Implementation

The algorithm proposed in the previous chapters was implemented as a module of the

Weka platform, using the Java programming language. The source code is freely available

in the appendix A, under the terms of the Apache Commons license.

Figure 7.1 shows the Weka data mining tool running a test with the proposed classifier.

As the algorithm was developed as a normal module of this platform, it can be utilized

in the same way of other common tools (as J48, for example).



114

Figure 7.1: User interface of the implemented classifier during a test.
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Figure 7.2: Accuracy of the proposed method compared to other techniques.

7.2 Statistical Results

Four statistical metrics were utilized in this work: accuracy, sensitivity, specificity and

precision. They were utilized to quantify the classification performance of the proposed

algorithm. As control, the same metrics were calculated with two traditional classifiers.

The compared results are listed in the table 7.1. Furthermore, the same information is

presented as a comparative chart in the figures 7.2, 7.3, 7.4 and 7.5.

The obtained results indicate that the proposed algorithm is an effective classifier, as

shown in table 7.2. The T-test was applied over the results to confirm if the performance of

the proposed classifier is statistically similar to those obtained with the control classifiers.
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Table 7.1: Statistical results of the proposed method compared to traditional classifiers.

Classifier Database Accuracy Sensitivity Specificity Precision
Balance Scale 90.56% 90.60% 91.70% 84.60%
Breast Cancer 78.35% 42.30% 78.40% 75.60%

Breast Cancer - Wisconsin 95.38% 92.70% 95.40% 95.50%
Horse Colic 84.00% 78.00% 84.00% 84.00%

Pima Indians Diabetes 69.73% 51.80% 69.70% 67.60%
Heart Disease - Cleveland 84.47% 84.70% 84.50% 84.70%
Heart Disease - Hungarian 78.00% 71.30% 78.00% 79.40%

Hepatitis Domain 77.36% 50.70% 77.40% 75.40%
Iris 96.08% 97.90% 96.10% 96.50%

Mushroom 99.78% 99.80% 99.80% 99.80%
Postoperative Patient Data 67.74% 34.30% 67.70% 60.40%

Lymphography 78.00% 79.10% 78.00% 74.90%
Method

Lung Cancer 81.82% 51.50% 81.80% 85.50%
Balance Scale 74.06% 83.90% 74.10% 73.80%
Breast Cancer 71.13% 37.10% 71.10% 67.40%

Breast Cancer - Wisconsin 95.38% 95.40% 95.40% 95.40%
Horse Colic 84.00% 78.00% 84.00% 84.00%

Pima Indians Diabetes 76.25% 65.80% 76.20% 75.60%
Heart Disease - Cleveland 76.70% 76.80% 76.70% 77.10%
Heart Disease - Hungarian 78.00% 72.80% 78.00% 78.00%

Hepatitis Domain 79.25% 42.70% 79.20% 78.30%
Iris 96.00% 98.00% 96.00% 96.00%

Mushroom 100.00% 0.00% 100.00% 100.00%
Postoperative Patient Data 70.97% 29.00% 71.00% 50.40%

Lymphography 78.00% 83.40% 78.00% 80.00%
J48

Lung Cancer 81.82% 51.50% 81.80% 85.50%
Balance Scale 89.62% 92.40% 89.60% 89.00%
Breast Cancer 58.76% 42.20% 58.80% 64.20%

Breast Cancer - Wisconsin 95.38% 94.90% 95.40% 95.40%
Horse Colic 77.60% 72.40% 77.60% 77.30%

Pima Indians Diabetes 74.33% 70.70% 74.30% 75.60%
Heart Disease - Cleveland 82.52% 82.60% 82.50% 83.00%
Heart Disease - Hungarian 77.00% 70.50% 77.00% 77.40%

Hepatitis Domain 81.13% 69.60% 81.10% 84.60%
Iris 98.04% 98.80% 98.00% 98.10%

Mushroom 100.00% 0.00% 100.00% 100.00%
Postoperative Patient Data 48.39% 36.90% 48.40% 51.50%

Lymphography 76.00% 80.30% 76.00% 75.10%
MLP

Lung Cancer 63.64% 44.70% 63.60% 63.60%
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Figure 7.3: Sensitivity of the proposed method compared to other techniques.
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Figure 7.4: Specificity of the proposed method compared to other techniques.
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Figure 7.5: Precision of the proposed method compared to other techniques.
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Table 7.2: Average results of the compared methods.

Metric Proposed Method J48 MLP
Accuracy 83.17% 81.66% 78.65%
Sensitivity 71.13% 70.34% 73.54%
Specificity 82.95% 81.65% 78.64%
Precision 81.84% 80.12% 79.60%

Table 7.3: Application of T-test over the statistical results.

Metric T-test for J48 and Proposed Method T-test for MLP and Proposed Method
Accuracy 0.396 0.894
Sensitivity 0.088 0.280
Specificity 0.332 0.843
Precision 0.359 0.441

The results of this test are shown in table 7.3. Considering that the test was done with 24

degrees of freedom and with 95% of confidence, it is possible to assume that the results

are statistically similar. It happens because all values are inferior to 1.711, which is the

default T-value for these conditions.

This is a very important observation, because it demonstrates that the proposed ap-

proach can generate effective classifiers, reinforcing the importance of the raised hypoth-

esis. The great majority of learning algorithms for neural networks are based in evolving

weights (e.g. backpropagation, self-organizing maps, Hebbian networks, and others). The

neural networks generated by these approaches are fully connected, so each neuron is

connected to several nodes. The main topology of the networks is usually replicated in

several cases and is not considered a strong aspect of the model.

The results demonstrate that sparse neural networks can present the same perfor-

mance with less complexity. These results reinforce the importance of topology construc-

tion in neural networks. It proves that refined topologies designed over the data instances

can compensate fewer connections.

7.3 Computational Cost

An important aspect of any classifier is its computational performance. In other

words, can the classifier be applied in a feasible time window? Naturally, this is a very

tricky question, since this kind of benchmark depends on several factors, such as hardware,
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operational system, programming language, implementation strategy, and others.

In this work, a simple strategy is applied to solve this question. All the experiments

were conducted in the same environment: hardware, operational system, programming

language and platform (Weka). With this approach, the duration of each test could

be measured in a fair way. Thus, it is possible to compare the results of the proposed

algorithm against those of the control classifiers. The duration (in seconds) of each test

is listed in the table 7.4.

It is important to reinforce that these results depend of the environment, which means

that they will change with different hardware or software. However, when the results are

observed inside a same context, it is possible to determine if the analyzed algorithm

presents a reasonable computational performance.

The results demonstrate that the proposed algorithm performed worser than the other

classifiers. This kind of result was expected, since the implementation of the algorithm

was not done aiming this kind of performance. Also, this is the first implementation,

without optimization of the code or its performance. On the other hand, the control

classifiers were implemented in a more sophisticated way, since they are usually utilized

in the field.

Anyway, despite of that, the results prove that the proposed classifier can generate a

model in a feasible time, which is very important. The implemented code can be strongly

optimized in future, generating even better performance.

7.4 Comprehensibility

One of the main motivations of this work was to generate more comprehensible neu-

ral networks. To achieve that, the proposed algorithm aimed the creation of sparse nets,

where each neuron has few connections to other nodes. It was expected that less connec-

tions could simplify the models.

As stated in previous chapters, the comprehensibility is a subjective criterion, which

makes more difficult to compare different approachs or models. To overcome that, a new

metric was proposed. It is based in the assumption that compreensibility is inversely

proportional to complexity, which means that less complex models are generally more

comprehensible.

Table 7.5 lists the comprehensibility analysis of each generated model. The proposed
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Table 7.4: Computational cost of the proposed method compared to traditional classifiers.

Classifier Database Computational Cost
Balance Scale 528.71s
Breast Cancer 762.96s

Breast Cancer - Wisconsin 981.34s
Horse Colic 954.71s

Pima Indians Diabetes 7061.52s
Heart Disease - Cleveland 954.98s
Heart Disease - Hungarian 760.11s

Hepatitis Domain 1480.55s
Iris 623.83s

Mushroom 7065.94s
Postoperative Patient Data 627.14s

Lymphography 255.64s
Method

Lung Cancer 10.3s
Balance Scale 0,04s
Breast Cancer 0,01s

Breast Cancer - Wisconsin 0,01s
Horse Colic 0,01s

Pima Indians Diabetes 0,02s
Heart Disease - Cleveland 0,01s
Heart Disease - Hungarian 0,01s

Hepatitis Domain 0,01s
Iris 0,00s

Mushroom 0,12s
Postoperative Patient Data 0,17s

Lymphography 0,01s
J48

Lung Cancer 0,00s
Balance Scale 0,46s
Breast Cancer 4,49s

Breast Cancer - Wisconsin 0,73s
Horse Colic 8,57s

Pima Indians Diabetes 0,85s
Heart Disease - Cleveland 1,50s
Heart Disease - Hungarian 1,28s

Hepatitis Domain 0,43s
Iris 0,12s

Mushroom 421,95s
Postoperative Patient Data 0,34s

Lymphography 1,22s
MLP

Lung Cancer 2,56s
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Figure 7.6: Comprehensibility of the proposed method compared to other techniques.

algorithm is compared to the control classifiers. Thus, it is possible to check its perfor-

mance in this particular aspect. The same results are showed as a comparative chart in

the figure 7.6.

The results indicate that the proposed algorithm achieved the expected goal. It gen-

erates more comprehensible neural networks, when compared to the traditional multilayer

perceptrons.

The analysis of the measures demonstrates that the proposed method generates mod-

els with intermediate comprehensibility, when compared to decision trees and multilayer

perceptrons. This characteristic was expected, because of the hybrid nature of this ap-

proach. The average comprehensibility for each classifier is:
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Table 7.5: Comprehensibility of the proposed method compared to traditional classifiers.

Classifier Database Comprehensibility
Balance Scale 39,84%
Breast Cancer 61,01%

Breast Cancer - Wisconsin 37,68%
Horse Colic 61,01%

Pima Indians Diabetes 42,20%
Heart Disease - Cleveland 25,12%
Heart Disease - Hungarian 27,81%

Hepatitis Domain 40,97%
Iris 52,70%

Mushroom 49,46%
Postoperative Patient Data 46,75%

Lymphography 32,51%
Method

Lung Cancer 60,24%
Balance Scale 38,34%
Breast Cancer 75,15%

Breast Cancer - Wisconsin 55,11%
Horse Colic 75,15%

Pima Indians Diabetes 49,57%
Heart Disease - Cleveland 48,62%
Heart Disease - Hungarian 67,42%

Hepatitis Domain 58,41%
Iris 69,24%

Mushroom 51,64%
Postoperative Patient Data 89,01%

Lymphography 52,41%
J48

Lung Cancer 73,14%
Balance Scale 50,87%
Breast Cancer 18,25%

Breast Cancer - Wisconsin 47,12%
Horse Colic 14,07%

Pima Indians Diabetes 48,11%
Heart Disease - Cleveland 20,60%
Heart Disease - Hungarian 20,60%

Hepatitis Domain 35,16%
Iris 50,87%

Mushroom 0,70%
Postoperative Patient Data 27,96%

Lymphography 14,35%
MLP

Lung Cancer 0,00%
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Figure 7.7: The neural network created by the proposed method for the Breast Cancer
database.

• Proposed method: 44.41%;

• J48: 61.79%;

• MLP: 26.82%.

The T-test was applied to verify if the comprehensibility of proposed method is sta-

tistically superior to MLP and inferior to J48. The results (3.346 and 2.900 for J48 and

MLP, respectively) indicate that this inference is correct, with 99.5% of confidence.

Figure 7.7 shows a neural network created by the proposed algorithm for the “Breast

Cancer” dataset. This network has 12 neurons and 15 neural connections. On the other

hand, a traditional multilayer perceptron with 3 layers would have 55 input neurons, 26

hidden neurons and 2 output neurons. It means that this network would have 1,404 neural

connections to represent the same database model.

It is possible to observe that the sparse neural network is a simpler model, i.e. it is a

more comprehensible net. Because there are fewer connections, it becomes clear how each

neuron affects (or not) other nodes. Indeed, if a grayscale gradient is utilized to “paint”

each node according to its activation (where “0” is white and “1” is black), it becomes

possible to visualize the internal processing of the network with more plainness. This way,

one could say that this kind of neural network is a “gray-box” model unlike the traditonal

nets, which are “black-box” models. This interesting aspect can be observed in figure 7.8,

which shows a neural network identifying different instances of “Breast Cancer” dataset.
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Figure 7.8: The internal activations of a neural network during the classification of dif-
ferent instances of “Breast Cancer” dataset.
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Figure 7.9: A neural network generated for the “Iris” database, before the pruning process.

7.4.1 Pruning

Figure 7.10 presents the effect of the pruning algorithm over the neural network pre-

sented in figure 7.9. It is possible to observe that several neurons and connections where

removed, simplifying the complete model. Obviously, the pruning also affects the compre-

hensibility of the network. The same experiments were reproduced with this algorithm

and the results are presented in table 7.6.

The results indicate that the pruning process had a positive effect over the comprehen-

sibility of the generated models. This kind of effect was expected, since pruning removes

complexity by definition. It is relevant to notice that the upgrade was stronger in complex

models, e.g. post-operative patient database. The figure 7.11 highlights the differences.

A reasonable explanation for that could be find as an intrinsic deffect in the pro-

posed algorithm. Apparently, the algorithm generates some unnecessary nodes during

the creation of topology. These nodes are removed by the pruning process. Probably,

the quantity of “extra” nodes is proportional to the size of the network. In other words,
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Figure 7.10: A neural network generated for the “Iris” database, after the pruning process.

Table 7.6: Comprehensibility of the proposed method after the pruning process.

Database Before Pruning After Pruning
Balance Scale 39.84% 63.98%
Breast Cancer 61.01% 69.24%

Breast Cancer - Wisconsin 37.68% 41.63%
Horse Colic 61.01% 64.54%

Pima Indians Diabetes 42.20% 61.64%
Heart Disease - Cleveland 25.12% 64.26%
Heart Disease - Hungarian 27.81% 69.56%

Hepatitis Domain 40.97% 46.00%
Iris 52.70% 71.10%

Mushroom 49.46% 49.46%
Postoperative Patient Data 46.75% 86.14%

Lymphography 32.51% 59.06%
Lung Cancer 60.24% 68.08%
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Figure 7.11: Pruning effects on comprehensibility of the generated models.
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the larger networks, which are more complex and less comprehensible, tend to have more

unnecessary neurons. This way, the pruning process is more radical in these models.

Another interesting point about the proposed learning algorithm appeared during the

analysis of the network activations. Normally, a neural network is a “black-box” model,

which means that it is not clear to understand the internal processes that determine its

outputs. However, the networks created with the proposed algorithm are sparsed, with

few connections between the neurons. This characteristic allows a better understading of

the internal processing of the networks, once it is possible to visualize which neurons and

connections are activated during each iteration.

It is important to reinforce that the pruning process does not affect the accuracy of the

model. The pruning only affects the topology of the model, once the unnecessary nodes

and connections are replaced by changes in the bias. This way, only the representation is

affected, without any change in the mathematical model.
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Chapter 8

Conclusion

This work investigated a new approach in neural networks field. It was proposed that

the topology of a neural network is so important than the quantity of neurons, connections

and weights. It is a very important point, because most neural algorithms do not focus

this aspect during the learning process. In fact, it is possible to say that most methods

are based in weights optimization.

Unlike traditional methods that focus mainly updating the weights, the proposed

algorithm tries to create neural topologies according to the nature of the analyzed data.

To achieve that, it uses the information gain to select the most important attributes and

create the neural architecture. Because the information gain varies according data set

examples, each neural network has a different structure.

Created neural networks share an important characteristic: they are sparsely con-

nected. It means that each neuron has few connections. This is a key difference to

conventional multilayer perceptrons, which are fully connected. This aspect is very im-

portant when comprehensibility is analyzed. The results showed that the sparse neural

networks are sistematically more comprehensible thant the fully connected nets.

This can be observed in both quantitative and qualitative ways. The sparse neural

networks tend to have less neurons and connections, which means they can be represented

with less symbols, resulting in simpler models. In this work, a metric was proposed to

measure the comprehensibility as a numeric value. The results reinforce this analysis.

Furthermore, the subjective review of networks also supports this conclusion. Because

there are less connections between nodes, it is more feasible to notice which neurons are

activated during each iteration. Thereby, it becomes possible to observe the internal

behaviour of the network during the classification. In other words, one could visualize the
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different activation patterns that are generated by the network when classifying different

instances.

The statistical results showed that the proposed classifier had a good performance.

This means that it achieved good classification rates in feasible time frames. Different

databases were utilized during the tests to ensure the method validity. Also, all the

results were compared to multilayer perceptrons and decision trees. These two traditional

methods were utilized as control standards. The tests proved that the proposed method

is statiscally similar to those obtained by decision trees and multilayer perceptrons.
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Appendix A

Source Code

A.1 File: Mcz.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import java . i o . F i l e ;

4 import java . i o . Pr intWriter ;

5 import java . i o . S e r i a l i z a b l e ;

6 import java . u t i l . ArrayList ;

7 import java . u t i l . HashMap ;

8 import java . u t i l . I t e r a t o r ;

9 import java . u t i l . L i s t ;

10 import java . u t i l .Map;

11 import java . u t i l . S t r ingToken i ze r ;

12 import net . s o u r c e f o r g e . jswarm pso . F i tnessFunct ion ;

13 import net . s o u r c e f o r g e . jswarm pso . Neighborhood ;

14 import net . s o u r c e f o r g e . jswarm pso . Neighborhood1D ;

15 import net . s o u r c e f o r g e . jswarm pso . Swarm ;

16 import weka . a t t r i b u t e S e l e c t i o n . ASEvaluation ;

17 import weka . a t t r i b u t e S e l e c t i o n . Att r ibuteEva luator ;

18 import weka . a t t r i b u t e S e l e c t i o n . GainRatioAttr ibuteEval ;

19 import weka . c l a s s i f i e r s . C l a s s i f i e r ;

20 import weka . c l a s s i f i e r s . mcz . s i n g l e l e a r n i n g . Perceptron ;

21 import weka . c l a s s i f i e r s . mcz . s i n g l e l e a r n i n g . S ing l eLearne r ;
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22 import weka . c l a s s i f i e r s . t r e e s . j 48 . C45Spl i t ;

23 import weka . core . Att r ibute ;

24 import weka . core . C a p a b i l i t i e s ;

25 import weka . core . Capab i l i t i e sHand l e r ;

26 import weka . core . Ins tance ;

27 import weka . core . In s t ance s ;

28 import weka . core . Summarizable ;

29 import weka . core . U t i l s ;

30

31 pub l i c c l a s s Mcz extends Fi tnessFunct ion implements

32 C l a s s i f i e r , Capab i l i t i e sHand l e r , Summarizable ,

S e r i a l i z a b l e , Cloneable {
33

34 p r i v a t e Attr ibuteEva luator in foGain ;

35 p r i v a t e Map<Str ing , Neuron> net ;

36 p r i v a t e Lis t<Str ing> neuronsOrder ;

37 p r i v a t e Act ivat ionFunct ion func t i on ;

38 p r i v a t e Lis t<Str ing> axons ;

39 p r i v a t e Lis t<Str ing> de n dr i t e s ;

40 p r i v a t e In s tance s data ;

41 p r i v a t e Lis t<Str ing> inputLayer ;

42 p r i v a t e double [ ] b e s t P o s i t i o n ;

43 p r i v a t e boolean i sPrun ingAct ivated ;

44

45 pub l i c Mcz ( ) {
46 in foGain = new GainRatioAttr ibuteEval ( ) ;

47 net = new HashMap<Str ing , Neuron>() ;

48 neuronsOrder = new ArrayList<Str ing >() ;

49 axons = new ArrayList<Str ing >() ;

50 de n dr i t e s = new ArrayList<Str ing >() ;

51 f unc t i on = new SigmoidFunction ( ) ;

52 inputLayer = new ArrayList<Str ing >() ;

53 }
54

55 @Override

56 pub l i c void b u i l d C l a s s i f i e r ( In s tance s data ) throws
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Exception {
57 t h i s . data = data ;

58 // c a l c u l a t e s the i n f o gain f o r each a t t r i b u t e

59 ( ( ASEvaluation ) in foGain ) . bu i ldEva luator ( data ) ;

60

61 // c r e a t e s the output l a y e r

62 f o r ( i n t i = 0 ; i < data . numClasses ( ) ; i++) {
63 Neuron output = new Neuron ( ) ;

64 output . setName ( data . c l a s s A t t r i b u t e ( ) . va lue ( i ) ) ;

65 output . s e tB ia s (−0.56047) ;

66 output . se tFunct ion ( func t i on ) ;

67 output . s e t I d ( net . s i z e ( ) ) ;

68 net . put ( output . getName ( ) , output ) ;

69 neuronsOrder . add ( output . getName ( ) ) ;

70 }
71

72 // c r e a t e s the output l a y e r

73 f o r ( i n t i = 0 ; i < data . numClasses ( ) ; i++) {
74 Neuron output = new Neuron ( ) ;

75 output . setName ( data . c l a s s A t t r i b u t e ( ) . va lue ( i ) +

” e x t r a ”) ;

76 output . s e tB ia s (0 ) ;

77 output . se tFunct ion ( func t i on ) ;

78 output . s e t I d ( net . s i z e ( ) ) ;

79 f o r ( i n t j = 0 ; j < data . numClasses ( ) ; j++) {
80 output . s e t Input ( net . get ( data . c l a s s A t t r i b u t e ( ) . va lue ( j ) ) ,

0) ;

81 }
82 net . put ( output . getName ( ) , output ) ;

83 neuronsOrder . add ( output . getName ( ) ) ;

84 }
85

86 // c r e a t e s the output l a y e r

87 f o r ( i n t i = 0 ; i < data . numClasses ( ) ; i++) {
88 Neuron output = new Neuron ( ) ;

89 output . setName ( data . c l a s s A t t r i b u t e ( ) . va lue ( i ) +
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” ex t ra2 ”) ;

90 output . s e tB ia s (0 ) ;

91 output . se tFunct ion ( func t i on ) ;

92 output . s e t I d ( net . s i z e ( ) ) ;

93 f o r ( i n t j = 0 ; j < data . numClasses ( ) ; j++) {
94 output . s e t Input (

95 net . get ( data . c l a s s A t t r i b u t e ( ) . va lue ( j )

+ ” e x t r a ”) , 0) ;

96 }
97 net . put ( output . getName ( ) , output ) ;

98 neuronsOrder . add ( output . getName ( ) ) ;

99 }
100

101 // b u i l d s the network topology , in a r e c u r s i v e way

102 bui ldTopology ( data , nu l l , 0 , new

ArrayList<Attr ibute >() ) ;

103

104 // adds some ” j o c k e r ” neurons , to i n c r e a s e complexity

o f model

105 f o r ( i n t i = 0 ; i < data . numClasses ( ) ; i++) {
106 Neuron output =

net . get ( data . c l a s s A t t r i b u t e ( ) . va lue ( i ) ) ;

107

108 f o r ( i n t k = 0 ; k < 1 ; k++) {
109 Neuron j o c k e r = new Neuron ( ) ;

110 j o c k e r . setName (” j o c k e r ” + k + ” ” +

111 data . c l a s s A t t r i b u t e ( ) . va lue ( i ) ) ;

112 j o c k e r . s e t I d ( net . s i z e ( ) ) ;

113 j o c k e r . s e tB ia s (0 ) ;

114 j o c k e r . setFunct ion ( func t i on ) ;

115

116 f o r ( i n t j = 0 ; j < inputLayer . s i z e ( ) ; j++) {
117 Neuron input = net . get ( inputLayer . get ( j ) ) ;

118 j o c k e r . s e t Input ( input , 0) ;

119 }
120
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121 output . s e t Input ( jocker , 0) ;

122

123 net . put ( j o c k e r . getName ( ) , j o c k e r ) ;

124 neuronsOrder . add ( j o c k e r . getName ( ) ) ;

125 }
126

127 // s e t s the OR neurons

128 Map<Neuron , Double> connect ions =

output . ge t Inputs ( ) ;

129 double [ ] orWeights =

S ing l eLearne r . learnOr ( connec t ions . s i z e ( ) ) ;

130 Object [ ] neurons = connect ions . keySet ( ) . toArray ( ) ;

131 f o r ( i n t j = 0 ; j < neurons . l ength ; j++) {
132 output . s e t Input ( ( Neuron ) neurons [ j ] ,

orWeights [ 0 ] ) ;

133 }
134 output . s e tB ia s ( orWeights [ orWeights . l ength − 1 ] ) ;

135 }
136

137 I t e r a t o r<Neuron> neurons = net . va lue s ( ) . i t e r a t o r ( ) ;

138 whi le ( neurons . hasNext ( ) ) {
139 Neuron n = neurons . next ( ) ;

140 axons . add (n . getName ( ) ) ;

141 d en dr i t e s . add (n . getName ( ) ) ;

142 I t e r a t o r<Neuron> inputNeurons =

n . get Inputs ( ) . keySet ( ) . i t e r a t o r ( ) ;

143 whi le ( inputNeurons . hasNext ( ) ) {
144 Neuron input = inputNeurons . next ( ) ;

145 i f ( input == n u l l ) {
146 cont inue ;

147 }
148 axons . add ( input . getName ( ) ) ;

149 d en dr i t e s . add (n . getName ( ) ) ;

150 }
151

152 n . f i x ( ) ;
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153 }
154

155 Swarm swarm = n u l l ;

156 setMaximize ( f a l s e ) ;

157

158 double l a s t B e s t F i t n e s s = Double .MAX VALUE;

159 double maxPosition = 2 1 . 0 ;

160 double minPos it ion = −21.0;

161 double minMaxVelocity = 0 . 1 ;

162 double i n e r t i a = 1 . 2 ;

163 double pa r t i c l e In c r e ment = 3 ;

164 double g loba l Increment = 0 . 9 ;

165

166 f o r ( i n t i = 0 ; i < 1 ; i++) {
167 System . out . p r i n t l n (” I t e r a t i o n ” + i ) ;

168

169 swarm = new Swarm(70 ,

170 new NetworkPart ic l e ( axons . s i z e ( ) ) , t h i s ) ;

171 Neighborhood neigh = new Neighborhood1D (

172 Swarm .DEFAULT NUMBER OF PARTICLES / 5 ,

t rue ) ;

173 swarm . setNeighborhood ( neigh ) ;

174 swarm . setMaxPosit ion ( maxPosition ) ;

175 swarm . setMinPos i t ion ( minPos it ion ) ;

176 swarm . setMaxMinVelocity ( minMaxVelocity ) ;

177 swarm . s e t I n e r t i a ( i n e r t i a ) ;

178 swarm . s e t P a r t i c l e I n c r e m e n t ( p a r t i c l e In c r em ent ) ;

179 swarm . setGloba l Increment ( g loba l Increment ) ;

180

181 swarm . i n i t ( ) ;

182 f o r ( i n t j = 0 ; j < 1000 ; j++) {
183 swarm . evo lve ( ) ;

184 System . out . p r i n t l n (” Evolut ion ” + i + ” :” + j +

” − ”

185 + swarm . ge tBes tF i tne s s ( ) ) ;

186
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187 i f ( j > 0 && j % 200 == 0) {
188 i n e r t i a −= 0 . 1 ;

189 i f ( i n e r t i a < 0 . 6 ) {
190 i n e r t i a = 0 . 6 ;

191 }
192 swarm . s e t I n e r t i a ( i n e r t i a ) ;

193 }
194 }
195

196 i f ( swarm . ge tBes tF i tne s s ( ) < l a s t B e s t F i t n e s s ) {
197 l a s t B e s t F i t n e s s = swarm . ge tBes tF i tne s s ( ) ;

198 b e s t P o s i t i o n = swarm . ge tBes tPos i t i on ( ) ;

199 setWeights ( b e s t P o s i t i o n ) ;

200 }
201 }
202

203 neurons = net . va lue s ( ) . i t e r a t o r ( ) ;

204 whi le ( neurons . hasNext ( ) ) {
205 neurons . next ( ) . r e s t o r e ( ) ;

206 }
207

208 i f ( i sPrun ingAct ivated ) {
209 prune ( data , 0 . 1 ) ;

210 }
211 }
212

213 pub l i c boolean bui ldTopology ( In s tance s data , Neuron

inputNeuron ,

214 i n t depth , L i s t<Attr ibute> a t t r i b u t e s ) throws

Exception {
215 i f ( data . numInstances ( ) == 0) {
216 r e turn f a l s e ;

217 }
218

219 ( ( ASEvaluation ) in foGain ) . bu i ldEva luator ( data ) ;

220
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221 double tempGain = 0 ;

222 double maxGain = 0 ;

223 i n t maxIndex = 0 ;

224 f o r ( i n t i = 0 ; i < data . numAttributes ( ) ; i++) {
225 i f ( data . c l a s s I n d e x ( ) == i | |
226 a t t r i b u t e s . conta in s ( data . a t t r i b u t e ( i ) ) ) {
227 cont inue ;

228 }
229

230 C45Spl i t s p l i t = new C45Spl i t ( i , 0 ,

data . sumOfWeights ( ) , t rue ) ;

231 s p l i t . b u i l d C l a s s i f i e r ( data ) ;

232 i f ( s p l i t . ga inRat io ( ) > maxGain ) {
233 tempGain = s p l i t . ga inRat io ( ) ;

234 maxGain = tempGain ;

235 maxIndex = i ;

236 }
237 }
238

239 i f (maxGain == 0) {
240 i n t [ ] d i s t r i b u t i o n = new

i n t [ data . c l a s s A t t r i b u t e ( ) . numValues ( ) ] ;

241 f o r ( i n t i = 0 ; i < data . numInstances ( ) ; i++) {
242 d i s t r i b u t i o n [ ( i n t ) data . i n s t anc e ( i ) . va lue (

243 data . c l a s s A t t r i b u t e ( ) ) ]++;

244 }
245 i n t c l a s s I n d e x = 0 ;

246 i n t maxDistr ibut ion = −1;

247 f o r ( i n t i = 0 ; i < d i s t r i b u t i o n . l ength ; i++) {
248 i f ( d i s t r i b u t i o n [ i ] > maxDistr ibut ion ) {
249 c l a s s I n d e x = i ;

250 maxDistr ibut ion = d i s t r i b u t i o n [ i ] ;

251 }
252 }
253

254 Neuron outputNeuron = net . get (
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255 data . c l a s s A t t r i b u t e ( ) . va lue ( c l a s s I n d e x ) ) ;

256 double weight = 1 . 68228 ;

257 outputNeuron . s e t Input ( inputNeuron , weight ) ;

258 r e turn true ;

259 }
260

261 Attr ibute a t t r i b u t e = data . a t t r i b u t e ( maxIndex ) ;

262 i f ( a t t r i b u t e . equa l s ( data . c l a s s A t t r i b u t e ( ) ) ) {
263 r e turn f a l s e ;

264 }
265

266 a t t r i b u t e s . add ( a t t r i b u t e ) ;

267

268 i f ( a t t r i b u t e . isNominal ( ) ) {
269 i n t c a t e g o r i e s = a t t r i b u t e . numValues ( ) ;

270 f o r ( i n t i = 0 ; i < c a t e g o r i e s ; i++) {
271 St r ing nodeName = a t t r i b u t e . name ( ) + ”=” +

a t t r i b u t e . va lue ( i ) ;

272

273 // checks i f t h i s category i s r e p r e s e n t a t i v e

274 boolean i s R e p r e s e n t a t i v e = f a l s e ;

275 f o r ( i n t j = 0 ; j < data . numInstances ( ) ; j++) {
276 i f

( data . i n s t anc e ( j ) . s t r ingVa lue ( a t t r i b u t e ) . equa l s (

277 a t t r i b u t e . va lue ( i ) ) ) {
278 i s R e p r e s e n t a t i v e = true ;

279 }
280 }
281 i f ( ! i s R e p r e s e n t a t i v e ) {
282 cont inue ;

283 }
284

285

286 Neuron neuron = n u l l ;

287 i f ( net . containsKey (nodeName) ) {
288 neuron = net . get (nodeName) ;
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289 } e l s e {
290 neuron = new Neuron ( ) ;

291 neuron . setName (nodeName) ;

292 neuron . s e t I d ( net . s i z e ( ) ) ;

293 neuron . s e tB ia s (0 ) ;

294 neuron . setFunct ion ( func t i on ) ;

295 net . put (nodeName , neuron ) ;

296 neuronsOrder . add (nodeName) ;

297 inputLayer . add (nodeName) ;

298 }
299 i f ( inputNeuron != n u l l ) {
300 double [ ] andWeights = Perceptron . learnAnd ( ) ;

301

302 Neuron andNeuron = new Neuron ( ) ;

303 andNeuron . s e t I d ( net . s i z e ( ) ) ;

304 andNeuron . setName (”AND” +

andNeuron . ge t Id ( ) ) ;

305 andNeuron . s e tB ia s (0 ) ;

306 andNeuron . setFunct ion ( func t i on ) ;

307 net . put ( andNeuron . getName ( ) , andNeuron ) ;

308 neuronsOrder . add ( andNeuron . getName ( ) ) ;

309

310 andNeuron . s e t Input ( inputNeuron ,

andWeights [ 0 ] ) ;

311 andNeuron . s e t Input ( neuron , andWeights [ 1 ] ) ;

312 andNeuron . s e tB ia s ( andWeights [ andWeights . l ength

− 1 ] ) ;

313 neuron = andNeuron ;

314 }
315 In s tance s dataSubset = new Ins tance s ( data ) ;

316 f o r ( i n t j = 0 ; j < dataSubset . numInstances ( ) ;

j++) {
317 i f

( ! dataSubset . i n s t anc e ( j ) . s t r ingVa lue ( a t t r i b u t e ) . equa l s (

318 a t t r i b u t e . va lue ( i ) ) ) {
319 dataSubset . remove ( j ) ;
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320 j−−;

321 }
322 }
323 i f ( ! bui ldTopology ( dataSubset , neuron , depth +

1 , a t t r i b u t e s ) ) {
324 Neuron outputNeuron = net . get (

325 data . c l a s s A t t r i b u t e ( ) . va lue (

326 ( i n t )

data . i n s t ance (0 ) . c l a s sVa lue ( ) ) ) ;

327 double weight = 1 . 68228 ;

328 outputNeuron . s e t Input ( neuron , weight ) ;

329 }
330 }
331

332 a t t r i b u t e s . remove ( a t t r i b u t e ) ;

333 r e turn true ;

334 } e l s e i f ( a t t r i b u t e . isNumeric ( ) ) {
335 St r ing nodeName = a t t r i b u t e . name ( ) ;

336 Neuron neuron = n u l l ;

337 i f ( net . containsKey (nodeName) ) {
338 neuron = net . get (nodeName) ;

339 } e l s e {
340 neuron = new Neuron ( ) ;

341 neuron . setName (nodeName) ;

342 neuron . s e t I d ( net . s i z e ( ) ) ;

343 neuron . s e tB ia s (0 ) ;

344 neuron . setFunct ion ( func t i on ) ;

345 net . put (nodeName , neuron ) ;

346 neuronsOrder . add (nodeName) ;

347 inputLayer . add (nodeName) ;

348 }
349

350 C45Spl i t s p l i t = new C45Spl i t (

351 a t t r i b u t e . index ( ) , 0 , data . sumOfWeights ( ) ,

t rue ) ;

352 s p l i t . b u i l d C l a s s i f i e r ( data ) ;
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353 double th r e sho ld = s p l i t . s p l i t P o i n t ( ) ;

354

355 Neuron lowerNeuron1 = new Neuron ( ) ;

356 lowerNeuron1 . setName (nodeName + ”<=” + thre sho ld +

” 1 ”) ;

357 lowerNeuron1 . s e t I d ( net . s i z e ( ) ) ;

358 lowerNeuron1 . setFunct ion (new SigmoidFunction ( ) ) ;

359 lowerNeuron1 . s e tB ia s (

360 0.20884620618871286 + (−47.169443613047356

∗ th r e sho ld ) ) ;

361 lowerNeuron1 . s e t Input ( neuron , 47.447919015473474) ;

362 net . put ( lowerNeuron1 . getName ( ) , lowerNeuron1 ) ;

363 neuronsOrder . add ( lowerNeuron1 . getName ( ) ) ;

364

365 Neuron lowerNeuron = new Neuron ( ) ;

366 lowerNeuron . setName (nodeName + ”<=” + thre sho ld ) ;

367 lowerNeuron . s e t I d ( net . s i z e ( ) ) ;

368 lowerNeuron . setFunct ion (new LinearFunct ion ( ) ) ;

369 lowerNeuron . s e tB ia s (0 .9954430924071158) ;

370 lowerNeuron . s e t Input ( lowerNeuron1 ,

−1.987600737950668) ;

371 net . put ( lowerNeuron . getName ( ) , lowerNeuron ) ;

372 neuronsOrder . add ( lowerNeuron . getName ( ) ) ;

373

374 i f ( inputNeuron != n u l l ) {
375 double [ ] andWeights = Perceptron . learnAnd ( ) ;

376

377 Neuron andNeuron = new Neuron ( ) ;

378 andNeuron . s e t I d ( net . s i z e ( ) ) ;

379 andNeuron . setName (”AND” + andNeuron . get Id ( ) ) ;

380 andNeuron . s e tB ia s (0 ) ;

381 andNeuron . setFunct ion ( func t i on ) ;

382 net . put ( andNeuron . getName ( ) , andNeuron ) ;

383 neuronsOrder . add ( andNeuron . getName ( ) ) ;

384

385 andNeuron . s e t Input ( inputNeuron , andWeights [ 0 ] ) ;
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386 andNeuron . s e t Input ( lowerNeuron , andWeights [ 1 ] ) ;

387 andNeuron . s e tB ia s ( andWeights [ andWeights . l ength

− 1 ] ) ;

388 lowerNeuron = andNeuron ;

389 }
390

391 In s tance s dataSubset = new Ins tance s ( data ) ;

392 f o r ( i n t j = 0 ; j < dataSubset . numInstances ( ) ; j++)

{
393 i f ( dataSubset . i n s t anc e ( j ) . va lue ( a t t r i b u t e ) >

th r e sho ld ) {
394 dataSubset . remove ( j ) ;

395 j−−;

396 }
397 }
398 i f ( ! bui ldTopology (

399 dataSubset , lowerNeuron , depth + 1 ,

a t t r i b u t e s ) ) {
400 Neuron outputNeuron = net . get (

401 data . c l a s s A t t r i b u t e ( ) . va lue (

402 ( i n t ) data . i n s t anc e (0 ) . c l a s sVa lue ( ) ) ) ;

403 double weight = 1 . 68228 ;

404 outputNeuron . s e t Input ( lowerNeuron , weight ) ;

405 }
406

407 Neuron higherNeuron1 = new Neuron ( ) ;

408 higherNeuron1 . setName (nodeName + ”>” + thre sho ld +

” 1 ”) ;

409 higherNeuron1 . s e t I d ( net . s i z e ( ) ) ;

410 higherNeuron1 . setFunct ion (new SigmoidFunction ( ) ) ;

411 higherNeuron1 . s e tB ia s (

412 −0.09314142234358645 + (−44.149995579850916

∗ th r e sho ld ) ) ;

413 higherNeuron1 . s e t Input ( neuron , 44.826409240030856) ;

414 net . put ( higherNeuron1 . getName ( ) , higherNeuron1 ) ;

415 neuronsOrder . add ( higherNeuron1 . getName ( ) ) ;
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416

417 Neuron higherNeuron = new Neuron ( ) ;

418 higherNeuron . setName (nodeName + ”>” + thre sho ld ) ;

419 higherNeuron . s e t I d ( net . s i z e ( ) ) ;

420 higherNeuron . setFunct ion (new LinearFunct ion ( ) ) ;

421 higherNeuron . s e tB ia s (−1.0060884523270537) ;

422 higherNeuron . s e t Input ( higherNeuron1 ,

2 .006073420423026) ;

423 net . put ( higherNeuron . getName ( ) , higherNeuron ) ;

424 neuronsOrder . add ( higherNeuron . getName ( ) ) ;

425

426 i f ( inputNeuron != n u l l ) {
427 double [ ] andWeights = Perceptron . learnAnd ( ) ;

428

429 Neuron andNeuron = new Neuron ( ) ;

430 andNeuron . s e t I d ( net . s i z e ( ) ) ;

431 andNeuron . setName (”AND” + andNeuron . get Id ( ) ) ;

432 andNeuron . s e tB ia s (0 ) ;

433 andNeuron . setFunct ion ( func t i on ) ;

434 net . put ( andNeuron . getName ( ) , andNeuron ) ;

435 neuronsOrder . add ( andNeuron . getName ( ) ) ;

436

437 andNeuron . s e t Input ( inputNeuron , andWeights [ 0 ] ) ;

438 andNeuron . s e t Input ( higherNeuron , andWeights [ 1 ] ) ;

439 andNeuron . s e tB ia s ( andWeights [ andWeights . l ength

− 1 ] ) ;

440 higherNeuron = andNeuron ;

441 }
442

443 dataSubset = new Ins tance s ( data ) ;

444 f o r ( i n t j = 0 ; j < dataSubset . numInstances ( ) ; j++)

{
445 i f ( dataSubset . i n s t anc e ( j ) . va lue ( a t t r i b u t e ) <=

thre sho ld ) {
446 dataSubset . remove ( j ) ;

447 j−−;
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448 }
449 }
450 i f ( ! bui ldTopology (

451 dataSubset , higherNeuron , depth + 1 ,

a t t r i b u t e s ) ) {
452 Neuron outputNeuron = net . get (

453 data . c l a s s A t t r i b u t e ( ) . va lue (

454 ( i n t ) data . i n s t anc e (0 ) . c l a s sVa lue ( ) ) ) ;

455 double weight = 1 . 68228 ;

456 outputNeuron . s e t Input ( higherNeuron , weight ) ;

457 }
458

459 a t t r i b u t e s . remove ( a t t r i b u t e ) ;

460 r e turn true ;

461 }
462

463 a t t r i b u t e s . remove ( a t t r i b u t e ) ;

464 r e turn f a l s e ;

465 }
466

467 @Override

468 pub l i c double c l a s s i f y I n s t a n c e ( Ins tance in s t ance ) throws

Exception {
469 I t e r a t o r<Neuron> neurons = net . va lue s ( ) . i t e r a t o r ( ) ;

470 whi le ( neurons . hasNext ( ) ) {
471 neurons . next ( ) . r e s e t ( ) ;

472 }
473

474 Neuron input = n u l l ;

475 Attr ibute a t t r i b u t e = n u l l ;

476 f o r ( i n t i = 0 ; i < i n s t ance . numAttributes ( ) ; i++) {
477 a t t r i b u t e = in s tance . a t t r i b u t e ( i ) ;

478 i f ( a t t r i b u t e . index ( ) == in s tance . c l a s s I n d e x ( ) ) {
479 cont inue ;

480 }
481 i f ( a t t r i b u t e . isNumeric ( ) ) {
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482 input = net . get ( a t t r i b u t e . name ( ) ) ;

483 i f ( input == n u l l ) {
484 cont inue ;

485 }
486 input . setOutput (

487 SigmoidFunction . c a l c ( i n s t anc e . va lue ( a t t r i b u t e ) ) ) ;

488 } e l s e {
489 input = net . get ( a t t r i b u t e . name ( ) + ”=”

490 + a t t r i b u t e . va lue ( ( i n t )

i n s t ance . va lue ( a t t r i b u t e ) ) ) ;

491 i f ( input == n u l l ) {
492 cont inue ;

493 }
494 input . setOutput ( SigmoidFunction . c a l c (1 ) ) ;

495 }
496 }
497

498 Neuron output = n u l l ;

499 i n t winner = 0 ;

500 double winnerOutput = Double .MIN VALUE;

501 f o r ( i n t i = 0 ; i < i n s t ance . numClasses ( ) ; i++) {
502 output = net . get ( i n s t anc e . c l a s s A t t r i b u t e ( ) . va lue ( i )

+ ” ex t ra2 ”) ;

503 i f ( output . a c t i v a t e ( ) > winnerOutput ) {
504 winnerOutput = output . getOutput ( ) ;

505 winner = i ;

506 }
507 }
508

509 r e turn winner ;

510 }
511

512 @Override

513 pub l i c S t r ing toSummaryString ( ) {
514 r e turn ” C l a s s i f i e r ” ;

515 }
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516

517 pub l i c void setWeights ( double [ ] we igths ) {
518 I t e r a t o r<Neuron> neurons = net . va lue s ( ) . i t e r a t o r ( ) ;

519 whi le ( neurons . hasNext ( ) ) {
520 neurons . next ( ) . r e s t o r e ( ) ;

521 }
522

523 f o r ( i n t i = 0 ; i < weigths . l ength ; i++) {
524 Neuron input = net . get ( axons . get ( i ) ) ;

525 Neuron output = net . get ( d e nd r i t e s . get ( i ) ) ;

526 i f ( input . equa l s ( output ) ) {
527 output . s e tB ia s ( output . getBias ( ) + weigths [ i ] ) ;

528 } e l s e {
529 t ry {
530 output . s e t Input ( input ,

output . ge t Inputs ( ) . get ( input )

531 + weigths [ i ] ) ;

532 } catch ( Exception e ) {
533 }
534 }
535 }
536 }
537

538 pub l i c double [ ] d i s t r i b u t i o n F o r I n s t a n c e ( Ins tance in s t ance )

539 throws Exception {
540 double [ ] d i s t = new double [ i n s t anc e . numClasses ( ) ] ;

541 switch ( i n s t anc e . c l a s s A t t r i b u t e ( ) . type ( ) ) {
542 case Att r ibute .NOMINAL:

543 double c l a s s i f i c a t i o n =

c l a s s i f y I n s t a n c e ( i n s t anc e ) ;

544 i f ( U t i l s . i sMis s ingVa lue ( c l a s s i f i c a t i o n ) ) {
545 r e turn d i s t ;

546 } e l s e {
547 d i s t [ ( i n t ) c l a s s i f i c a t i o n ] = 1 . 0 ;

548 }
549 r e turn d i s t ;
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550 case Att r ibute .NUMERIC:

551 d i s t [ 0 ] = c l a s s i f y I n s t a n c e ( i n s t anc e ) ;

552 r e turn d i s t ;

553 d e f a u l t :

554 r e turn d i s t ;

555 }
556 }
557

558 pub l i c C a p a b i l i t i e s g e t C a p a b i l i t i e s ( ) {
559 C a p a b i l i t i e s r e s u l t = new C a p a b i l i t i e s ( t h i s ) ;

560 r e s u l t . enab l eA l l ( ) ;

561 r e turn r e s u l t ;

562 }
563

564 @Override

565 pub l i c double eva luate ( double [ ] p o s i t i o n ) {
566 setWeights ( p o s i t i o n ) ;

567

568 double f i t n e s s = 0 ;

569

570 f o r ( i n t i = 0 ; i < data . numInstances ( ) ; i++) {
571 t ry {
572 f i t n e s s +=

Math . abs ( l e a r n I n s t a n c e ( data . i n s t anc e ( i ) ) ) ;

573 } catch ( Exception e ) {
574 e . pr intStackTrace ( ) ;

575 }
576 }
577

578 r e turn f i t n e s s ;

579 }
580

581 pub l i c double l e a r n I n s t a n c e ( Ins tance in s t ance ) throws

Exception {
582 I t e r a t o r<Neuron> neurons = net . va lue s ( ) . i t e r a t o r ( ) ;

583 whi le ( neurons . hasNext ( ) ) {
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584 neurons . next ( ) . r e s e t ( ) ;

585 }
586

587 Neuron input = n u l l ;

588 Attr ibute a t t r i b u t e = n u l l ;

589 f o r ( i n t i = 0 ; i < i n s t ance . numAttributes ( ) ; i++) {
590 a t t r i b u t e = in s tance . a t t r i b u t e ( i ) ;

591 i f ( a t t r i b u t e . index ( ) == in s tance . c l a s s I n d e x ( ) ) {
592 cont inue ;

593 }
594 i f ( a t t r i b u t e . isNumeric ( ) ) {
595 input = net . get ( a t t r i b u t e . name ( ) ) ;

596 i f ( input == n u l l ) {
597 cont inue ;

598 }
599 input . setOutput (

600 SigmoidFunction . c a l c ( i n s t anc e . va lue ( a t t r i b u t e ) ) ) ;

601 } e l s e {
602 input = net . get ( a t t r i b u t e . name ( ) + ”=” +

603 a t t r i b u t e . va lue ( ( i n t )

i n s t ance . va lue ( a t t r i b u t e ) ) ) ;

604 i f ( input == n u l l ) {
605 cont inue ;

606 }
607 input . setOutput ( SigmoidFunction . c a l c (1 ) ) ;

608 }
609 }
610

611 i n t r e a l C l a s s = ( i n t )

i n s t ance . va lue ( data . c l a s s A t t r i b u t e ( ) ) ;

612 double [ ] rea lOutputs = new

double [ i n s t ance . numClasses ( ) ] ;

613 rea lOutputs [ r e a l C l a s s ] = 1 . 0 ;

614

615 double [ ] e r r o r s = new double [ i n s t anc e . numClasses ( ) ] ;

616
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617 Neuron output = n u l l ;

618 f o r ( i n t i = 0 ; i < i n s t ance . numClasses ( ) ; i++) {
619 output = net . get ( i n s t anc e . c l a s s A t t r i b u t e ( ) . va lue ( i )

+ ” ex t ra2 ”) ;

620 output . a c t i v a t e ( ) ;

621 e r r o r s [ i ] += Math . abs (Math . abs ( output . getOutput ( ) ) −
622 Math . abs ( rea lOutputs [ i ] ) ) ;

623 }
624

625 double averageError = 0 ;

626 f o r ( i n t j = 0 ; j < e r r o r s . l ength ; j++) {
627 averageError += e r r o r s [ j ] ;

628 }
629 r e turn ( double ) ( averageError / e r r o r s . l ength ) ;

630 }
631

632 pub l i c double ge tComprehens ib i l i ty ( In s tance s data ) {
633 double comprehen s i b i l i t y = 0 ;

634

635 i f ( data == n u l l ) {
636 r e turn comprehen s i b i l i t y ;

637 }
638

639 S t r i n g B u f f e r network = new S t r i n g B u f f e r ( ) ;

640 f o r ( i n t i = 0 ; i < data . numClasses ( ) ; i++) {
641 i f ( i > 0) {
642 network . append (” e l s e ”) ;

643 }
644 network . append (” i f act ( ”) ;

645 Neuron output =

net . get ( data . c l a s s A t t r i b u t e ( ) . va lue ( i ) ) ;

646 i f ( output == n u l l ) {
647 cont inue ;

648 }
649 System . out . p r i n t l n (” hey : ” +

data . c l a s s A t t r i b u t e ( ) . va lue ( i ) ) ;
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650 r e c cu r ( network , output ) ;

651 network . append (

652 ”) > 0 .5 then c l a s s i s ” +

data . c l a s s A t t r i b u t e ( ) . va lue ( i )

653 + ” ”) ;

654 }
655

656 Str ingToken ize r tok = new

Str ingToken ize r ( network . t oS t r i ng ( ) ) ;

657 i n t tokens = tok . countTokens ( ) ;

658 comprehen s i b i l i t y = −10 ∗ Math . log1p ( tokens ) +

110 .986122887 ;

659

660 System . out . p r i n t l n(”=======================”);

661 System . out . p r i n t l n (” Comprehens ib i l i ty : ” +

comprehen s i b i l i t y ) ;

662 System . out . p r i n t l n(”=======================”);

663 System . out . p r i n t l n ( network . t oS t r i ng ( ) ) ;

664 System . out . p r i n t l n(”=======================”);

665

666 r e turn comprehen s i b i l i t y ;

667 }
668

669 pub l i c void r e c cu r ( S t r i n g B u f f e r network , Neuron neuron ) {
670 Map<Neuron , Double> inputs = neuron . ge t Inputs ( ) ;

671 i n t i = 0 ;

672 f o r ( I t e r a t o r<Neuron> i t = inputs . keySet ( ) . i t e r a t o r ( ) ;

673 i t . hasNext ( ) ; i++) {
674 i f ( i > 0) {
675 network . append(”+ ”) ;

676 }
677 Neuron aNeuron = i t . next ( ) ;

678 i f ( aNeuron . ge t Inputs ( ) . s i z e ( ) > 0) {
679 network . append (” act ( ”) ;

680 r e c cu r ( network , aNeuron ) ;

681 network . append (” ) ∗ W ”) ;
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682 } e l s e {
683 network . append ( aNeuron . getName ( ) + ” ∗ W ”) ;

684 }
685 }
686 }
687

688 @Override

689 pub l i c S t r ing toS t r i ng ( ) {
690 double comprehen s i b i l i t y = getComprehens ib i l i ty ( data ) ;

691 r e turn ”\n\nComprehens ib i l i ty : ” + comprehen s i b i l i t y +

” %\n\n ” ;

692 }
693

694 void prune ( In s tance s data , double th r e sho ld ) throws

Exception {
695 S t a t i s t i c U t i l s s t a t = new S t a t i s t i c U t i l s ( ) ;

696 I t e r a t o r<Neuron> a l lNeurons = n u l l ;

697 f o r ( i n t i = 0 ; i < data . s i z e ( ) ; i++) {
698 c l a s s i f y I n s t a n c e ( data . i n s t anc e ( i ) ) ;

699 a l lNeurons = net . va lue s ( ) . i t e r a t o r ( ) ;

700 whi le ( a l lNeurons . hasNext ( ) ) {
701 Neuron aNeuron = al lNeurons . next ( ) ;

702 s t a t . add ( aNeuron . get Id ( ) , aNeuron . getOutput ( ) ) ;

703 }
704 }
705

706 List<Str ing> prunedNeurons = new ArrayList<Str ing >() ;

707 a l lNeurons = net . va lue s ( ) . i t e r a t o r ( ) ;

708 whi le ( a l lNeurons . hasNext ( ) ) {
709 Neuron aNeuron = al lNeurons . next ( ) ;

710 double standardDeviat ion =

711 s t a t . ca l cu la t eStandardDev ia t i on ( aNeuron . get Id ( ) ) ;

712 i f ( s tandardDeviat ion < th r e sho ld &&

713 ! aNeuron . getName ( ) . conta in s (” ex t ra2 ”) ) {
714 prunedNeurons . add ( aNeuron . getName ( ) ) ;

715 }
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716 }
717

718 f o r ( i n t i = 0 ; i < axons . s i z e ( ) ; i++) {
719 i f ( prunedNeurons . conta in s ( axons . get ( i ) )

720 | |
prunedNeurons . conta in s ( d en d r i t e s . get ( i ) ) )

{
721 axons . remove ( i ) ;

722 d en dr i t e s . remove ( i ) ;

723 i−−;

724 }
725 }
726

727 f o r ( i n t i = 0 ; i < prunedNeurons . s i z e ( ) ; i++) {
728 net . remove ( prunedNeurons . get ( i ) ) ;

729 }
730

731 a l lNeurons = net . va lue s ( ) . i t e r a t o r ( ) ;

732 whi le ( a l lNeurons . hasNext ( ) ) {
733 Neuron aNeuron = al lNeurons . next ( ) ;

734 f o r ( i n t i = 0 ; i < prunedNeurons . s i z e ( ) ; i++) {
735 aNeuron . ge t Inputs ( ) . remove ( prunedNeurons . get ( i ) ) ;

736 }
737 }
738 }
739

740 pub l i c void pr intNets ( In s t ance s data , S t r ing d i r ) throws

Exception {
741 f o r ( i n t i = 0 ; i < data . s i z e ( ) ; i++) {
742 c l a s s i f y I n s t a n c e ( data . i n s t anc e ( i ) ) ;

743 F i l e f i l e = new F i l e ( d i r + i + ” . dot ”) ;

744 PrintWriter w r i t e r = new PrintWriter ( f i l e ) ;

745 w r i t e r . p r i n t l n (” digraph G {”) ;

746 w r i t e r . p r i n t l n (” node [ s t y l e=f i l l e d ] ; ” ) ;

747 w r i t e r . f l u s h ( ) ;

748 I t e r a t o r<Neuron> a l lNeurons =
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net . va lue s ( ) . i t e r a t o r ( ) ;

749 whi le ( a l lNeurons . hasNext ( ) ) {
750 Neuron aNeuron = al lNeurons . next ( ) ;

751 double a c t i v a t i o n = aNeuron . getOutput ( ) ;

752 i n t i n t A c t i v a t i o n = ( i n t ) (0xFF ∗ a c t i v a t i o n ) ;

753 i f ( i n t A c t i v a t i o n > 0xFF) {
754 i n t A c t i v a t i o n = 0xFF ;

755 }
756 i f ( i n t A c t i v a t i o n < 0) {
757 i n t A c t i v a t i o n = 0 ;

758 }
759 i n t A c t i v a t i o n = 0xFF − i n t A c t i v a t i o n ;

760 St r ing c o l o r L e v e l =

I n t e g e r . toHexStr ing ( i n t A c t i v a t i o n ) ;

761 i f ( i n t A c t i v a t i o n <= 0xF) {
762 c o l o r L e v e l = ”0” + c o l o r L e v e l ;

763 }
764 w r i t e r . p r i n t l n ( aNeuron . get Id ( ) + ” [ f i l l c o l o r =

\”#” +

765 c o l o r L e v e l + c o l o r L e v e l + c o l o r L e v e l +

” \ ” ] ; ” ) ;

766 }
767 f o r ( i n t j = 0 ; j < axons . s i z e ( ) ; j++) {
768 i f ( ! axons . get ( j ) . equa l s ( d e nd r i t e s . get ( j ) ) ) {
769 w r i t e r . p r i n t l n ( net . get ( axons . get ( j ) ) . ge t Id ( )

+ ” −> ” +

770 net . get ( d e nd r i t e s . get ( j ) ) . ge t Id ( ) +

” ; ” ) ;

771 w r i t e r . f l u s h ( ) ;

772 }
773 }
774 w r i t e r . p r i n t l n (”}”) ;

775 w r i t e r . f l u s h ( ) ;

776 w r i t e r . c l o s e ( ) ;

777 }
778 }
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779 }

A.2 File: Neuron.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import java . i o . S e r i a l i z a b l e ;

4 import java . u t i l . HashMap ;

5 import java . u t i l .Map;

6

7 pub l i c c l a s s Neuron implements S e r i a l i z a b l e {
8

9 p r i v a t e i n t id ;

10 p r i v a t e St r ing name ;

11 p r i v a t e double b i a s ;

12 p r i v a t e Map<Neuron , Double> inputs ;

13 p r i v a t e double output ;

14 p r i v a t e Act ivat ionFunct ion func t i on ;

15 p r i v a t e boolean wasActivated ;

16

17

18 p r i v a t e double f i x e d B i a s ;

19 p r i v a t e Map<Neuron , Double> f i x e d I np u t s ;

20

21 pub l i c Neuron ( ) {
22 inputs = new HashMap<Neuron , Double>() ;

23 wasActivated = f a l s e ;

24 }
25

26 pub l i c double getBias ( ) {
27 r e turn b ia s ;

28 }
29

30 pub l i c Act ivat ionFunct ion getFunct ion ( ) {
31 r e turn func t i on ;

32 }
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33

34 pub l i c i n t get Id ( ) {
35 r e turn id ;

36 }
37

38 pub l i c S t r ing getName ( ) {
39 r e turn name ;

40 }
41

42 pub l i c double getOutput ( ) {
43 i f ( ! wasActivated ) {
44 a c t i v a t e ( ) ;

45 }
46 r e turn output ;

47 }
48

49 pub l i c Map<Neuron , Double> get Inputs ( ) {
50 r e turn inputs ;

51 }
52

53 pub l i c void s e tB ia s ( double b i a s ) {
54 t h i s . b i a s = b ia s ;

55 }
56

57 pub l i c void setFunct ion ( Act ivat ionFunct ion func t i on ) {
58 t h i s . f unc t i on = func t i on ;

59 }
60

61 pub l i c void s e t I d ( i n t id ) {
62 t h i s . id = id ;

63 }
64

65 pub l i c void setName ( St r ing name) {
66 t h i s . name = name ;

67 }
68
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69 pub l i c void setOutput ( double output ) {
70 t h i s . output = output ;

71 wasActivated = true ;

72 }
73

74 pub l i c void se t Input ( Neuron inputNeuron , double weight ) {
75 i f ( inputNeuron == n u l l ) {
76 r e turn ;

77 }
78 i f ( inputs . containsKey ( inputNeuron ) ) {
79 inputs . remove ( inputNeuron ) ;

80 }
81 inputs . put ( inputNeuron , weight ) ;

82 }
83

84 pub l i c double a c t i v a t e ( ) {
85 wasActivated = true ;

86 output = func t i on . a c t i v a t e ( t h i s ) ;

87 r e turn output ;

88 }
89

90 pub l i c void r e s e t ( ) {
91 wasActivated = f a l s e ;

92 output = 0 ;

93 }
94

95 @Override

96 pub l i c boolean equa l s ( Object obj ) {
97 i f ( obj == n u l l ) {
98 r e turn f a l s e ;

99 }
100 i f ( obj i n s t a n c e o f S t r ing && name != n u l l ) {
101 r e turn name . equa l s ( obj ) ;

102 }
103 i f ( g e tC la s s ( ) != obj . g e tC la s s ( ) ) {
104 r e turn f a l s e ;
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105 }
106 f i n a l Neuron other = ( Neuron ) obj ;

107 i f ( t h i s . id != other . id ) {
108 r e turn f a l s e ;

109 }
110 i f ( ( t h i s . name == n u l l ) ? ( other . name != n u l l ) :

! t h i s . name . equa l s ( other . name) ) {
111 r e turn f a l s e ;

112 }
113 r e turn true ;

114 }
115

116 @Override

117 pub l i c i n t hashCode ( ) {
118 r e turn ( t h i s . name != n u l l ? t h i s . name . hashCode ( ) : 0) ;

119 }
120

121 pub l i c void f i x ( ) {
122 f i x e d B i a s = b ia s ;

123 f i x e d I np u t s = new HashMap<Neuron , Double>() ;

124 f i x e d I np u t s . putAl l ( inputs ) ;

125 }
126

127 pub l i c void r e s t o r e ( ) {
128 b ia s = f i x e d B i a s ;

129 inputs . c l e a r ( ) ;

130 inputs . putAl l ( f i x e d I n p u t s ) ;

131 }
132

133 }

A.3 File: ActivationFunction.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import java . i o . S e r i a l i z a b l e ;
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4

5 pub l i c i n t e r f a c e Act ivat ionFunct ion extends S e r i a l i z a b l e {
6

7 double a c t i v a t e ( Neuron neuron ) ;

8

9 }

A.4 File: LinearFunction.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l .Map;

5

6 pub l i c c l a s s LinearFunct ion implements Act ivat ionFunct ion {
7

8 pub l i c double a c t i v a t e ( Neuron neuron ) {
9 Map<Neuron , Double> inputs = neuron . ge t Inputs ( ) ;

10 I t e r a t o r<Neuron> inputNeurons =

inputs . keySet ( ) . i t e r a t o r ( ) ;

11 double sum = neuron . getBias ( ) ;

12 whi le ( inputNeurons . hasNext ( ) ) {
13 Neuron input = inputNeurons . next ( ) ;

14 sum += input . getOutput ( ) ∗ inputs . get ( input ) ;

15 }
16

17 i f ( Double . isNaN (sum) ) {
18 sum = 0 ;

19 }
20

21 i f (sum>0) {
22 r e turn sum ;

23 }
24

25 r e turn 0 ;

26 }



172

27

28 s t a t i c pub l i c double c a l c ( double input ) {
29 i f ( input>0) {
30 r e turn input ;

31 }
32 r e turn 0 ;

33 }
34 }

A.5 File: SigmoidFunction.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import java . u t i l . I t e r a t o r ;

4 import java . u t i l .Map;

5

6 pub l i c c l a s s SigmoidFunction implements Act ivat ionFunct ion {
7

8 pub l i c double a c t i v a t e ( Neuron neuron ) {
9 Map<Neuron , Double> inputs = neuron . ge t Inputs ( ) ;

10 I t e r a t o r<Neuron> inputNeurons =

inputs . keySet ( ) . i t e r a t o r ( ) ;

11 double sum = neuron . getBias ( ) ;

12 whi le ( inputNeurons . hasNext ( ) ) {
13 Neuron input = inputNeurons . next ( ) ;

14 sum += input . getOutput ( ) ∗ inputs . get ( input ) ;

15 }
16

17 i f ( Double . isNaN (sum) ) {
18 sum = 0 ;

19 }
20

21 i f (sum<−45) {
22 r e turn 0 ;

23 } e l s e i f (sum>45) {
24 r e turn 1 ;
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25 }
26 double r e s u l t = 1 / (1 + Math . exp(−sum) ) ;

27 r e turn r e s u l t ;

28 }
29

30 s t a t i c pub l i c double c a l c ( double input ) {
31 i f ( input<−45) {
32 r e turn 0 ;

33 } e l s e i f ( input >45) {
34 r e turn 1 ;

35 }
36 r e turn 1 / (1 + Math . exp(− input ) ) ;

37 }
38 }

A.6 File: NetworkParticle.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import net . s o u r c e f o r g e . jswarm pso . P a r t i c l e ;

4

5 pub l i c c l a s s NetworkPart ic l e extends P a r t i c l e {
6

7 s t a t i c p r i v a t e i n t dimension = 10 ;

8

9 pub l i c NetworkPart ic l e ( ) {
10 super ( dimension ) ;

11 }
12

13 pub l i c NetworkPart ic l e ( i n t dimension ) {
14 super ( dimension ) ;

15 NetworkPart ic l e . dimension = dimension ;

16 }
17

18 }
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A.7 File: StatisticUtils.java

1 package weka . c l a s s i f i e r s . mcz ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . HashMap ;

5 import java . u t i l . L i s t ;

6

7 pub l i c c l a s s S t a t i s t i c U t i l s {
8

9 p r i v a t e HashMap<Integer , L i s t<Double>> a c t i v a t i o n s ;

10

11 pub l i c S t a t i s t i c U t i l s ( ) {
12 a c t i v a t i o n s = new HashMap<Integer , L i s t<Double>>() ;

13 }
14

15 pub l i c void add ( i n t id , double output ) {
16 i f ( a c t i v a t i o n s . containsKey ( id ) ) {
17 List<Double> aL i s t = a c t i v a t i o n s . get ( id ) ;

18 aL i s t . add ( output ) ;

19 } e l s e {
20 List<Double> aL i s t = new ArrayList<Double>() ;

21 aL i s t . add ( output ) ;

22 a c t i v a t i o n s . put ( id , aL i s t ) ;

23 }
24 }
25

26 pub l i c double ca l cu la t eStandardDev ia t i on ( i n t id ) {
27 List<Double> aL i s t = a c t i v a t i o n s . get ( id ) ;

28 double average = 0 ;

29 f o r ( i n t i =0; i<aL i s t . s i z e ( ) ; i++) {
30 average += aL i s t . get ( i ) ;

31 }
32 average = ( double ) ( average / aL i s t . s i z e ( ) ) ;

33 double standardDeviat ion = 0 ;

34 f o r ( i n t i =0; i<aL i s t . s i z e ( ) ; i++) {
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35 s tandardDeviat ion += Math . pow( average−aL i s t . get ( i ) ,

2) ;

36 }
37 s tandardDeviat ion = Math . s q r t ( standardDeviat ion ) ;

38 r e turn standardDeviat ion ;

39 }
40 }


