
 1

RAFAELA MANTOVANI FONTANA

MATURITY IN AGILE SOFTWARE DEVELOPMENT

Doctoral dissertation submitted in fulfillment of the
requirements for the degree of Doctor of Philosophy
in Informatics in the Graduate Program in Informatics
of the Pontifical Catholic University of Paraná, Brazil.

Curitiba
2015

 2

 3

RAFAELA MANTOVANI FONTANA

MATURITY IN AGILE SOFTWARE DEVELOPMENT

Doctoral dissertation submitted in fulfillment of the
requirements for the degree of Doctor of Philosophy
in Informatics in the Graduate Program in Informatics
of the Pontifical Catholic University of Paraná, Brazil.

Major Concentration Field: Computer Science

Supervisor: Prof. Dr. Sheila Reinehr
Co-supervisor: Prof. Dr. Andreia Malucelli

Curitiba
2015

 4

 Fontana, Rafaela Mantovani

F679m Maturity in agile software development / Rafaela Mantovani Fontana ;
2015 supervisor: Sheila Reinehr ; co-supervisor: Andreia Malucelli. – 2015.
 168 f. : il. ; 30 cm

 Tese (doutorado) – Pontifícia Universidade Católica do Paraná, Curitiba,

 2015

 Bibliografia: f. 139-154

 1. Engenharia de Software. 2. Desenvolvimento de software ágil.

 3. Software – Controle de qualidade. I. Reinehr, Sheila. II. Malucelli, Andreia.

 III. Pontifícia Universidade Católica do Paraná. Programa de Pós-Graduação

 em Informática. IV. Título.

 CDD 22. ed. – 005.1

 5

 6

 7

Mãe e Pai, esta tese é dedicada a vocês.
Obrigada por tudo, sempre.

 8

 9

ACKNOWLEDGMENTS

I cannot express enough thanks to some very special people:

To my daughter and my son, for the smiles, our conversations and the joy they

bring to my life.

To my husband, for his love and companionship.

To my sister and my brother, for the suggestions and several reviews of my

papers, presentations, figures and rationales.

To my godmother, for being a special sort of family supervisor, and for her

tireless help while reading my manuscript and making suggestions on methods, format,

and whatever she could help me with.

To my supervisors, Sheila Reinher and Andreia Malucelli for their support,

encouragement and the unmeasurable learning opportunities they offered me

throughout this journey.

To my friends and my family, who were always around, helping me one way or

another: my dear sister-in-law, my aunties and my cousin. To my friends: many thanks

for our talks and your reviews!

To Professor Victor Meyer Jr. for the theories and insights he provided me with

during his Complexity and Organizational Management course.

To the team leaders and company managers that gave me the opportunity to

talk to their employees and learn about their processes, challenges and improvements.

To the practitioners and researchers who gave me useful feedback about my

results: Alexandre Freire, Caio Cestari Silva, Daniela Cruzes, Greice Roman, Matheus

Haddad, Morten Elvang, Peng Liu, Rafael Sabbagh, Sabrina Marczak, Tore Dybå,

Torgeir Dyngsøyr and Xiaofeng Wang.

To the Pontifical Catholic University of Paraná, for awarding me the research

grants I needed to pursue my doctoral degree.

 10

 11

“L’essentiel est invisible pour les yeux.”

Antoine de Saint-Exupéry in Le Petit Prince

 12

 13

ABSTRACT

Maturity models are used on a regular basis to guide improvements in software

engineering processes. When agile software development teams rely on these models

to mature their practices, sustaining agility is hindered at the highest maturity levels by

the increasing focus placed on defining processes. A software process improvement

guide for agile teams must keep focused on people and on sustaining agility, rather

than on an extensive definition and control of processes. Current agile maturity models

address this need, but they still lack agreement on what maturity means to agile teams.

Moreover, they prescribe practices that teams should adopt, even though there is

evidence that agile teams hardly ever accomplish their jobs by following prescribed

practices. This dissertation, thus, takes the nature of agile software development

teams into account in order to characterize maturity in agile software development. To

accomplish this objective, the study had two specific goals: the first one was to define

maturity in agile software development, and the second one was to identify the

mechanisms that teams apply to mature in agility. The research was organized as a

mixed-method approach, investigating quantitative and qualitative data at three main

stages. The first stage – the exploratory one – addressed the first objective through a

survey with agile practitioners. The second stage – the explanatory one – relied on a

multiple-case study with agile teams to accomplish the second objective. The third

stage sought to evaluate how well our objectives were met. The findings have shown

that agile maturity means fostering subjective capabilities, such as collaboration,

communication, commitment, care, sharing and self-organization. In the mechanism

for maturing in agile, people play the central role. Moreover, it presents ambidexterity

as a key ability to maturity, and does not prescribe practices, but rather describes

outcomes that agile teams pursue to improve their working processes. These

outcomes are accomplished in practices learning, in team conduct, in deliveries pace,

in features disclosure, in the care with the software product, in customer relationship

and in organizational support.

Keywords: agile software development, maturity, software process improvement.

 14

 15

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... 9

ABSTRACT .. 13

LIST OF FIGURES... 17

LIST OF TABLES ... 19

CHAPTER 1. INTRODUCTION ... 21

CHAPTER 2. AGILE MATURITY MODELS ... 27

CHAPTER 3. THEORETICAL FOUNDATION.. 37

3.1 Complex adaptive systems ... 38

3.2 Organizations as complex adaptive systems .. 40

3.3 Management in complex organizations .. 42

3.4 Organizational ambidexterity .. 43

3.5 Conceptual framework ... 45

CHAPTER 4. RESEARCH APPROACH .. 47

4.1 Stage 1 – What is maturity in agile software development? 48

4.2 Stage 2 – How do agile teams get mature? .. 51

4.2.1 Phase 2.1 ... 51

4.2.2 Phase 2.2 ... 53

4.2.3 Phase 2.3 ... 57

4.2.4 Phase 2.4 ... 58

4.3 Stage 3 – Results Evaluation ... 59

CHAPTER 5. RESEARCH RESULTS .. 63

5.1 What is maturity in agile software development? .. 63

5.1.1 Quantitative data analysis .. 64

5.1.2 Qualitative data analysis ... 70

5.2 How do agile teams get mature? .. 73

5.2.1 Within-case analysis ... 77

5.2.2 Cross-case analysis ... 104

5.3 Agile Compass: the diagnosis tool .. 108

 16

5.4 Results Evaluation .. 111

CHAPTER 6. DISCUSSIONS ... 119

6.1 Definition of agile maturity... 119

6.2 Neither stages, nor prescribed practices ... 121

6.3 Management ambidexterity... 123

6.4 Outcomes and maturity ... 124

6.5 Continuous improvement .. 128

6.6 A temporary picture .. 130

6.7 Practical advice from literature .. 130

6.8 Threats to validity of research ... 133

CHAPTER 7. CONCLUSIONS ... 135

REFERENCES ... 139

APPENDIX A – QUESTIONNAIRE STATEMENTS FOR STAGE 1 SURVEY 155

APPENDIX B – QUESTIONNAIRE STATEMENTS FOR STAGE 2 – PHASE 1

SURVEY .. 157

APPENDIX C – QUESTIONNAIRE STATEMENTS FOR AMBIDEXTERITY

EVALUATION IN CASE STUDY .. 158

APPENDIX D – CODE NETWORK EXAMPLE ... 159

APPENDIX E – CASE REPORT AMBIDEXTERITY ANALYSIS 160

APPENDIX F – CROSS CASE ANALYSIS PROCEDURE 161

APPENDIX G – MULTIPLE CASES REPORT ... 162

APPENDIX H – OUTCOMES ASSESSMENT FOR EACH TEAM 163

APPENDIX I – EXAMPLE OF EVIDENCES FOR THE AGILE COMPASS 168

 17

LIST OF FIGURES

Figure 1 - Justification for maturity characterization in agile software development............... 23

Figure 2 - Research questions and objectives ... 24

Figure 3 - Thesis summary ... 25

Figure 4 - Contextualization of Chapter 2 .. 27

Figure 5 - Limitations of current agile maturity models .. 35

Figure 6 - Contextualization of Chapter 3 .. 37

Figure 7 - Conceptual framework ... 46

Figure 8 - Contextualization of Chapter 4 .. 47

Figure 9 - Research approach ... 49

Figure 10 - Choice criteria .. 54

Figure 11 - The propositions of the multiple-case study .. 54

Figure 12 - Research approach for the case studies ... 55

Figure 13 - Contextualization of Chapter 5 .. 63

Figure 14 - The concepts by frequency of occurrence (FONTANA et al., 2014b) 72

Figure 15 - The categories by frequency of occurrence (FONTANA et al, 2014b) 72

Figure 16 - The relationships among concepts that emerged in content analysis (FONTANA

et al., 2014b) .. 72

Figure 17 - The Progressive Outcomes framework for agile software development maturity 74

Figure 18 - Variety of the characteristics of the teams in the sample 77

Figure 19 - Analysis of agile practices evolvement in Company A ... 80

Figure 20 - Analysis of agile practices evolvement in Company B – Team 1 83

Figure 21 - Analysis of agile practices evolvement in Company B – Team 2 85

Figure 22 - Analysis of agile practices evolvement in Company C ... 88

Figure 23 - Analysis of agile practices evolvement in Company D ... 91

Figure 24 - Analysis of agile practices evolvement in Company E – Team 1 94

Figure 25 - Analysis of agile practices evolvement in Company E – Team 2 97

Figure 26 - Analysis of agile practices evolvement in Company F .. 99

Figure 27 - Analysis of agile practices evolvement in Company G 102

Figure 28 - Contextualization of Chapter 6 .. 119

Figure 29 - Relating the definition for maturity with the Progressive Outcomes framework . 121

Figure 30 - Outcomes on a mature team ... 125

Figure 31 - Management strategies for continuous improvement ... 128

Figure 32 - Comparison of continuous improvement in CMMI-DEV and in agile methods .. 129

Figure 33 - Thesis summary... 135

 18

 19

LIST OF TABLES

Table 1 - Analysis of the structure of agile maturity models .. 34

Table 2 - The highest maturity levels in agile maturity models .. 35

Table 3 - Statements evaluated in pre-evaluation survey ... 58

Table 4 - Questions for evaluating the research findings .. 61

Table 5 - Profile of respondents to exploratory survey (FONTANA et al., 2014b) 64

Table 6 - Clusters and maturity assignments (FONTANA et al., 2014b) 67

Table 7 - Concepts that emerged in the content analysis (FONTANA et al., 2014b) 70

Table 8 - Profile of teams in case studies .. 78

Table 9 - Evidence for the outcomes identified for the team in Company A 80

Table 10 - Ambidexterity data for Company A ... 81

Table 11 - Projects success perception in Company A ... 82

Table 12 - Evidence for the outcomes identified for Team 1 in Company B 83

Table 13 - Ambidexterity data for Team 1 in Company B.. 84

Table 14 - Projects success perception on Team 1 - Company B .. 84

Table 15 - Evidence for the outcomes identified for Team 2 in Company B 85

Table 16 - Ambidexterity data for Team 2 in Company B.. 86

Table 17 - Project success perception in Team 2 - Company B ... 86

Table 18 - Evidence for the outcomes identified for the team in Company C 88

Table 19 - Ambidexterity data for the team in Company C ... 89

Table 20 - Projects success perception in the team in Company C .. 89

Table 21 - Evidence for the outcomes identified for the team in Company D 91

Table 22 - Ambidexterity data for Company D ... 93

Table 23 - Projects success perception in Company D ... 93

Table 24 - Evidence for the outcomes identified for the team in Company E - Team 1 95

Table 25 - Ambidexterity data for Company E - Team 1 ... 96

Table 26 - Projects success perception in Company E – Team 1 .. 96

Table 27 - Evidence for the outcomes identified for the team in Company E – Team 2 97

Table 28 - Ambidexterity data for Company E – Team 2 .. 98

Table 29 - Projects success perception in Company E - Team 2 ... 98

Table 30 - Evidence for the outcomes identified for the team in Company F 100

Table 31 - Ambidexterity data for Company F ... 100

Table 32 - Projects success perception in Company F ... 101

Table 33 - Evidence for the outcomes identified for the team in Company G....................... 102

Table 34 - Ambidexterity data for Company G .. 103

Table 35 - Project success perception in Company G .. 103

 20

Table 36 - Ambidexterity data from all cases .. 105

Table 37 - The Agile Compass: a diagnosis tool to identify accomplished outcomes.......... 109

Table 38 - Respondents’ profile in the pre-evaluation .. 111

Table 39 - Opinion of all practitioners about the Progressive Outcomes Framework (pre-

evaluation) ... 112

Table 40 - Opinion of experienced practitioners about the Progressive Outcomes Framework

(pre-evaluation) ... 112

Table 41 - Feedback received in the first round of evaluations – Agile Trends 2015 114

Table 42 - Feedbacks received in the second round of evaluation – XP 2015 115

Table 43 - Comparison of the definition of maturity with the Agile Manifesto principles 120

Table 44 - Insights from recent studies on the outcomes agile teams pursue 130

 21

CHAPTER 1. INTRODUCTION

In the software engineering field, maturity models are used on a regular basis

to guide improvements in software development processes. The main models used for

this purpose are the Capability Maturity Model Integration for Development – CMMI-

DEV (CMMI Product Team, 2010), and the international standards ISO/IEC 15504

(ISO/IEC, 2004) and ISO/IEC 12207 (ISO/IEC, 2008). In Brazil, the reference model is

the MPS-SW, Brazilian Software Process Improvement Reference Model (SOFTEX,

2012b).

Each maturity model is founded on an underlying concept for maturity and the

roadmap that the element (person, object or social system) follows to mature

(KOHLEGGER; MAIER; THALMANN, 2009). In the current established maturity

models for software development teams, maturity is achieved when continuous

improvement takes place. To accomplish that, teams must define work processes, as

well as standardize and quantitatively manage them (CMMI Product Team, 2010).

The implementation of CMMI-DEV guidelines have been recognized as a

means to improve project performance and accomplish other benefits (JIANG et al.,

2004; AGRAWAL; CHARI, 2007; SUBRAMANIAN; JIANG; KLEIN, 2007), but other

approaches to help teams developing better software have arisen. One of them is agile

software development. Contrasting with CMMI-DEV endeavors, the implementation of

agile methods for software development values “individuals and interactions over

processes and tools; working software over comprehensive documentation; customer

collaboration over contract negotiation; and responding to change over following a

plan” (BECK et al., 2001).

As soon as agile software development methods spread worldwide, researchers

and practitioners started to implement both agile and CMMI-DEV simultaneously, to

have the best of both worlds: agility to deliver to customers, with disciplined processes.

Studies in the field have been reporting that CMMI-DEV, for example, should be used

to help organizations institutionalize agile methods. They also point out that agile

thinking guarantees that processes are implemented efficiently while responding to

changes, and CMMI-DEV guarantees that all relevant processes are considered with

 22

appropriate discipline (PAULK, 2001, ANDERSON, 2005; BAKER, 2006;

SUTHERLAND; JAKOBSEN; JOHNSON, 2007; CAFFERY; PIKKARAINEN;

RICHARDSON, 2008; JAKOBSEN; JOHNSON, 2008; COHAN; GLAZER, 2009;

SPOELSTRA; IACOB; VAN SINDEREN, 2011; AL-TARAWNEH; ABDULLAH; ALI,

2011; LINA; DAN, 2012; LUKASIEWICZ; MILER, 2012). The benefits of this

combination were accomplished and even recognized as a “magic potion”

(SUTHERLAND; JAKOBSEN; JOHNSON, 2007).

However, when agile teams implement a software process improvement model

to improve the way they work, such as CMMI-DEV, the extensive definition and the

control of the process hinders sustaining agility at the highest maturity levels (PAULK,

2001; LUKASIEWICZ; MILER, 2012). Having recognized this limitation, researchers

and practitioners have been proposing agile maturity models (SCHWEIGERT et al.,

2012; ÖZCAN-TOP; DEMIRÖRS, 2013; LEPPÄNEN, 2013). These models provide

improvement guidelines to agile software development teams that wish to keep focus

on people and interaction over processes and tools, as stated by the Agile Manifesto

(BECK et al., 2001). The highest maturity levels in these models are based either on

the concept of project performance, or that of highly productive teams, or that of

sustaining agility (as presented in CHAPTER 2).

We have identified two issues with these current agile maturity models. The first

is that a variety of proposals are available, with different structures, focuses and

underlying values – evidence that the field is still being defined. The second is that all

of these models prescribe the practices and stages of adoption that should be followed

by the teams – but such adoption is usually too context-dependent, and there is

evidence that agile teams struggle to follow prescribed practices (SIDKY; ARTHUR;

BOHNER, 2007; SCHWEIGERT et al., 2012; KETTUNEN, 2012; FONTANA;

REINEHR; MALUCELLI, 2014).

Benefits and limitations of agile software development methods have already

been identified (DYBÅ; DINGSØYR, 2008; MELO et al., 2013) and they seem to be

replacing traditional1 methods for software development (BUSTARD; WILKIE;

GREER, 2013). A recent survey has shown that almost every software development

organization has experienced agile practices worldwide (VERSION ONE, 2015) and

1 Here and throughout this dissertation, we refer as “traditional” to an organization or practice “typically
associated with a plan-driven approach to software development”. (as in WAARDENBURG; VLIET,
2013, p. 2154).

 23

the interest in adopting agile methods is also increasing in Brazil (MELO et al., 2013).

Although worldwide agile adoption has crossed the borders of collocated teams and

small firms (VERSION ONE, 2015), the majority (about 68%) of the Brazilian

companies that adopt agile methods have an Information Technology department

whose size ranges between 1 and 50 employees (MELO et al., 2013). Considering that

1) agile methods are mainly suitable for small enterprises (DYBÅ; DINGSØYR, 2008)

and that 2) Brazilian industrial context has around 80,000 software companies with

less than nineteen employees (SOFTEX, 2012), there is still plenty of room for the

adoption of agile methods by Brazilian companies.

In this industrial and research context, a characterization of maturity in agile

software development could help defining agility, assist companies at the beginning of

agile adoption, help organizations to recognize the implementation of agile methods,

and also serve as a guide for improvement (FONTANA; REINEHR; MALUCELLI,

2014), as highlighted in Figure 1.

Figure 1 - Justification for maturity characterization in agile software development

The objective of this dissertation is, therefore, to characterize maturity in agile

software development. Our purpose is to characterize this maturity because the nature

of the element one wishes to aid in the maturing process must be considered in order

to build useful guidelines for improvement (KOHLEGGER; MAIER; THALMANN,

 24

2009). Therefore, we wish to understand how actual agile teams mature in order to

describe this mechanism and build the basis for improvement guidelines.

Thus, to accomplish that, we defined two specific objectives: to define maturity

in agile software development; and to identify the mechanisms that teams apply to

mature in agile software development. Figure 2 shows our research questions, the

general objective and the results we expect from the accomplishment of the specific

objectives.

Figure 2 - Research questions and objectives

The findings of this study do not propose a CMMI-DEV-based model for guiding

software process improvements with agile approaches. We show that agile maturity2

means fostering subjective capabilities, such as collaboration, communication,

commitment, care, sharing and self-organization. In the mechanism for maturing in

agile, people play the central role. We show in our results that ambidexterity is as a

key ability to maturity, and that specific practices should not be prescribed when

guiding the maturing process. Rather, we present a framework that describes

outcomes that agile teams pursue to improve their working processes. These

outcomes are accomplished in practices learning, in team conduct, in deliveries pace,

in features disclosure, in the care with the software product, in customer relationship

and in organizational support.

This thesis is organized as follows. Chapter 2 presents the state-of-the-art in

agile maturity models; Chapter 3 reviews the theoretical foundation we applied to

analyze our data; and Chapter 4 shows the research approach. The results are

described in Chapter 5 and, finally, Chapters 6 and 7 present our discussions and

conclusions. Figure 3 summarizes the content of each chapter.

2 Here and throughout this dissertation, we use the term “agile” to refer to “agile methods” or “agile
approaches” for software development. Thus, “agile maturity” here means “maturity in agile software
development”.

 25

Figure 3 - Thesis summary

 26

 27

CHAPTER 2. AGILE MATURITY MODELS

Chapter 1 contextualized the research gap, the motivation and the objectives

for this study. Before presenting our theoretical foundation for the analysis of the

results, this chapter provides an overview of currently published agile maturity models.

Figure 4 contextualizes this chapter, as regards the previous and the next chapters.

Figure 4 - Contextualization of Chapter 2

A number of agile software development methods have been proposed in recent

years. Some of these methods emphasize software project management (Scrum and

Internet-speed Development (ISD)); others support practices for software development

(Agile Modeling, Extreme Programming (XP) and Pragmatic Programming), and there

are those which emphasize both software project management and software

development (Adaptive Software Development, Crystal Family, Dynamic Systems

Development Model (DSDM) and Feature-driven Development (FDD))

(ABRAHAMSSON et al., 2003).

 28

All of them share the values and principles disclosed in the Agile Manifesto

(BECK et al., 2001) and suggest practices that embed agility in software development

processes. This agility might be identified by characteristics such as being

collaborative, being cooperative, being incremental, adaptability, self-organization,

being iterative, constant testing, emergency, feedback incorporation, leanness,

modularity, people orientation, reflection and introspection, small teams, time-boxing,

and transparency (ABRANTES; TRAVASSOS, 2013).

The literature about maturity models and agile software development presents

two main lines of research. The first one focuses on the combination of agile methods

and CMMI-DEV. The second line presents models for maturing by sustaining agile

values.

Studies that describe the combination of agile methods with CMMI-DEV

respond to the needs of organizations that seek disciplined processes and agility

(LUKASIEWICZ; MILER, 2012). Silva et al. (2015) perform an extensive literature

review on these combinations. In summary, based on our analysis, such studies

present the following reasons for combining such initiatives:

• agile processes are applicable to mature organizations (BUGLIONE,

2011);

• agile methods can be formalized by CMMI-DEV (BAKER, 2006);

• agile thinking guarantees that processes are implemented efficiently

while responding to changes, and CMMI-DEV guarantees that all

relevant processes are considered with appropriate discipline

(JAKOBSEN; JOHNSON, 2008);

• CMMI-DEV should be used to help organizations institutionalize agile

methods, and agile value is only obtained through discipline

(SUTHERLAND; JAKOBSEN; JOHNSON, 2007);

• CMMI-DEV offers agile methods a systematic and quantitative approach

to conducting projects by using well-known processes (COHAN;

GLAZER, 2009);

These reasons highlight the benefits that companies may gain by combining

agile and CMMI-DEV approaches. Nevertheless, considering the agile teams that wish

to keep the characteristics of agile methods and mature in their practices, they cannot

rely on CMMI-DEV and related approaches. Studies have already shown that agility

cannot be sustained at the highest maturity levels, such as CMMI-DEV levels four and

 29

five (PAULK, 2001; LUKASIEWICZ; MILER, 2012), because of the increasing

definition of processes and control, which hinder agility.

Maturity models should consider the nature of the element they describe

(KOHLEGGER; MAIER; THALMANN, 2009) and, for this reason, the definition of

maturity in agile software development should not be based on processes, but rather

on people (FONTANA et al., 2014b). The second line of research is comprised, thus,

of studies that propose agile maturity models.

Agile maturity models have been proposed since the early years of agile

methods. In 2001, Nawrocki et al. presented a four-level maturity model for Extreme

Programming - XP (NAWROCKI; WALTER; WOJCIECHOWSKI, 2001). This model –

as most models – is based on the CMMI-DEV structure. It is called XPMM (eXtreme

Programming Maturity Model). The maturity levels are: “Not compliant at all”, “Initial”,

“Advanced” and “Mature”. The evolution path starts with none of the Extreme

Programming practices applied. It then evolves to customer relationship management

and product quality assurance. Next, the team adopts pair programming and, at the

highest maturity level, focus is placed on project performance.

Lui and Chan proposed another guide to the adoption of Extreme Programming

(LUI; CHAN, 2005). Their aim was to guide the adoption of this agile method by

inexperienced Chinese teams. The purpose is a four-stage roadmap. At each stage,

the team incrementally implements more Extreme Programming practices. At the first

stage, the team should implement testing, simple design, refactoring and coding

standard. At the next stage, focus should be placed on continuous integration. At the

third stage, the suggested practices are pair programming and collective ownership

and, at the fourth and last stage, the team should adopt metaphor, forty-hour week,

small release, on-site customer and planning game.

The proposal by Packlick (PACKLICK, 2007) is not focused specifically on

Extreme Programming, as the previous models, but on agile methods in general. His

proposal is called AGILE Roadmap and comprises five maturity levels: awareness,

transformation, breakthrough, optimizing and mentoring. These levels are based on

different stages of agile learning. The first level defines awareness of the goals; the

second means that knowledge is put into practice; at the third level, agile practices are

used to accomplish the goals and, at the fourth level, improvements are made

continuously. The highest maturity in this model is the mentoring stage, in which

 30

coaching is offered by high performance teams in order to share knowledge within the

company.

Sidky et al. (2007) proposed a framework for adoption of agile methods (SIDKY;

ARTHUR; BOHNER, 2007). The Sidky Agile Measurement Index (SAMI) defines five

levels for agile adoption: collaborative, evolutionary, effective, adaptive, and

encompassing. For each level, the author has defined which agile practices should be

adopted. At the Collaborative level, focus is on collaboration; the Evolutionary level

defines practices for continuous delivery; at the Effective level, focus is on increasing

efficiency; at the next level, Adaptive, practices focus on responding to changes and,

at the last level, Encompassing, agility is embedded into the organizational culture.

Also focusing on adoption of agile methods, the framework by Qumer and

Henderson-Sellers (2008) defines the Agile Adoption and Improvement Model (AAIM)

(QUMER; HENDERSON-SELLERS, 2008). This model defines six stages for the team

to improve in agility. The team starts in the Agile Infancy, focusing on basic agile

properties; then, it moves on to the Agile Initial stage, whose focus is to enable

communication and collaboration. The next stage, Agile Realization, is represented by

the use of executable artifacts and minimal documentation. The fourth stage, the Agile

Value, focuses on valuing people although without ignoring tools and processes. The

last two stages, Agile Smart and Agile Progress, focus on learning and on sustaining

agility, respectively.

The model presented by Patel and Ramachandran (2009) has a similar

structure to that of CMMI-DEV. They defined five stages for growing in maturity: Initial,

Explored, Defined, Improved and Sustained. The highest maturity team, at the

Sustained level, continuously improves software development process, manages

uncertainties, tunes project performance and prevents defects on the software

(PATEL; RAMACHANDRAN, 2009).

An empirical model, based on an experience in a single company, was

introduced by Benefield (2010). He identified five levels that define to which extent a

set of agile practices are adopted by the team: 1) Emergent Engineering Best

Practices; 2) Continuous Practices at Component Level; 3) Cross Component

Continuous Integration; 4) Cross Journey Continuous Integration; and 5) On Demand

Just in Time Releases. At the highest level, teams are highly productive and new

products are quickly delivered through a service-oriented architecture (BENEFIELD,

2010).

 31

The proposal by Yin et al. (2011) is the Scrum Maturity Model, whose objective

is to aid the adoption of Scrum, with a focus on customer relationship. The model has

five levels. The Initial level is characterized by the absence of goals for process

improvement. At the second level, Managed, the Scrum practices are more structured

and, at the third level, focus is placed on the relationship with customers. At the forth

level, Quantitatively Managed, the team uses metrics and manages project

performance. The highest maturity level – Optimizing – focuses on performance

management (YIN; FIGUEIREDO; SILVA, 2011).

A more recent approach for agility assessment has been proposed by Özcan-

Top and Demirörs (2014), the Software Agility Assessment Model – AgilityMOD. Their

model comprises two dimensions: Agility dimension and Aspect dimension. They

named as “aspects” a set of agile processes and practices integrated under abstract

definitions. Thus, aspects are classified into the categories Exploration (capturing

customer needs and requirements-related activities), Construction (architecture and

coding-related activities), Transition (deployment-related activities), Management

(planning and monitoring-related activities) and Culture (environmental conditions and

people behavior).

Each aspect attribute is related to agile principles and is defined as: Performing

Aspect Practices, in the first level; Simple and Iterative, in the second level; Technically

Excellent, in the third level; and Learning in the fourth level. The agility of one aspect

is evaluated in a four-point scale: Not implemented, Ad-hoc, Lean and Effective, which

are the agility levels, i.e. the Agility dimension.

Özcan-Top and Demirörs (2014)’s model is in early stages of evaluation, as the

authors presented a single assessment based on the AgilityMOD. Their conclusion

was that some improvements are needed considering that there are redundancies,

missing practices, and excess of practices (ÖZCAN-TOP; DEMIRÖRS, 2014).

We analyzed each of these models according to the directions presented by

Maier et al. (2012, p. 149) for planning and developing maturity models. The result of

our analysis is shown in Table 1. The columns of the table present the following data:

• Audience: definition of the expected users of the model;

• Aim: the model may be applied to either one of two aims – analysis or

benchmarking. The first aim helps determine the necessary

improvements, while the second presents best practices for comparison

by other organizations;

 32

• Scope: defines if the model is generic or domain-specific;

• Success criteria: Maier et al. (2012) suggest that models must have

criteria to define if the application was successful. They suggest

evaluating usability and usefulness;

• Process areas: according to Maier et al. (2012), this is one of the most

important aspects in maturity models because process areas must be

“mutually exclusive and collectively exhaustive” (MAIER; MOUTRIE;

CLARKSON, 2012, p. 150). Process areas uncover the conceptual

foundation used in the development of the model;

• Maturity levels: Maturity levels must be based on a rationale that,

according to Maier et al. (2012), may be: existence and adherence to a

structured process, modification of organizational structure, emphasis on

people, or emphasis on learning;

• Cell texts: The model must provide the characteristics at the intersection

of process areas and maturity levels;

• Administration mechanism: definition of the mechanisms used for

applying the model, that is, to conduct the assessment.

As one can realize, most of them are based on agile practices in general, and

focus mostly on analytic (rather than benchmarking) implementation, and define four

to six maturity levels mainly based on existence and adherence to a structured

process, probably because of the influence of CMMI-DEV.

To provide a view of the concept of highest maturity underlying the models, we

also performed an analysis of the highest maturity level for each model. Authors

present quite different views on maturity. Although details are very distinct, the agile

highest maturity has been defined under three main concepts: project performance,

sustaining agility and highly productive teams. The first concept was proposed by

Nawrocki et al. (2001), Patel and Ramachandran (2009) and Yin et al. (2011). The

second is supported by Sidky et al. (2007) and Qumer and Henderson-Sellers (2008).

Finally, the third was introduced by Packlick (2007) and Benefield (2010). These two

are the only benchmark models that present good experiences at a single organization.

The model proposed by Özcan-Top and Demirörs (2014) defines high-maturity as both

high-performance teams and sustaining agility. The model by Lui and Chan (2005) did

not fit into these concepts because the highest level only presents new XP practices

to be adopted. Our analysis is shown in Table 2 .

 33

The nine agile maturity models present different foundations, different aims and

different structures. Even the concept of high-maturity behavior differs among them. It

confirms conclusions presented in three published assessments of agile maturity

models (SCHWEIGERT et al., 2012; LEPPÄNEN, 2013 and ÖZCAN-TOP;

DEMIRÖRS, 2013).

In addition to that, we observed that the validation of the models is still at early

stages and, for this reason, the quality of the current agile maturity models is still not

completely ensured, as also observed by Leppänen (2013) and Özcan-top and

Demirörs (2013). There is therefore still plenty of research to be conducted in the field.

Leppänen (2013) noted that there is a clear need for more empirical studies and added

some requirements for agile maturity models: they must be established over a strong

conceptual basis, must be derived from successful agile development, and must

present a well-defined structure.

Despite the fact that the agile community demonstrates interest in agile maturity

models, some studies have shown that agilists do not feel comfortable about following

models. Sidky et al. (2007), for example, realized that practitioners did not agree with

the distribution of agile practices into levels in the adoption model they proposed.

Similarly, Schweigert (2012), surveyed practitioners and found out that they do not

believe in prescriptive models (they would prefer descriptive ones). Likewise, Kettunen

(2012), when evaluating a matrix for measuring agility, found out that some

respondents doubted the usefulness of assessing their agility in software development.

Our survey with agile practitioners came to a similar conclusion (FONTANA;

REINEHR; MALUCELLI, 2014). Figure 5 summarizes the limitations in current agile

maturity models.

 34

Table 1 - Analysis of the structure of agile maturity models

 Audience Aim Scope Success criteria Process areas Maturity levels Cell texts Administration
mechanism

NAWROCKI;
WALTER;
WOJCIECHOWSKI,
2001

Organizations
implementing XP

Analytic Only for XP No evidence Yes, based on
intersections
between XP and
CMM

4 levels, based on
existence an adherence
to a structured process

Yes, defined
through practices

Partial. Concludes
that the assessment
is subjective

LUI; CHAN, 2005 Inexperienced XP
teams

Analytic Only for XP No evidence Yes, based on
visual data mining
of XP practices

4 levels, based on
learning

No evidence No evidence

PACKLICK, 2007 Agile teams at
Sarbre Airline
Solutions

Benchmarking Agile in
general

Yes. Defined
acceptance criteria
for goals areas

Yes, based on goals 5 levels, based on
people

Yes, defined
through user
stories

Yes, presents how
they implemented
it in the company

SIDKY; ARTHUR;
BOHNER, 2007

Agile teams Analytic Agile in
general

Yes. Defined
project and
organizational
assessment

Yes, based on Agile
Principles

5 levels, based on
existence and
adherence to a
structured process

Yes, defined
through practices

Yes, defines a four-
stage process for
agile adoption

QUMER;
HENDERSON-
SELLERS, 2008

Agile teams Analytic Agile in
general

No evidence No evidence 6 levels, based on
existence and
adherence to a
structured process

No evidence Partial. Describes
two
implementation
cases

PATEL;
RAMACHANDRAN,
2009

Agile teams Analytic Agile in
general

Yes. Defined the
assessment process

Yes, based on Agile
Practices

5 levels, based on
existence and
adherence to a
structured process

No evidence Yes, exemplifies
how to perform the
assessment

BENEFIELD, 2010 XP teams at British
Telecom

Benchmarking Only for XP Yes. Defined the
assessment
method

No, but defines 7
dimensions for
assessment

5 levels, based on
existence and
adherence to a
structured process

No evidence Yes, exemplifies
how to perform the
assessment

YIN; FIGUEIREDO;
SILVA, 2011

Scrum teams Analytic Only for
Scrum

Yes. Defined
metrics to evaluate
implementation

Yes, named as
“Goals”

5 levels, based on
existence and
adherence to a
structured process

Defines practices
for each goal, but
they were not
presented in the
paper

Partial. Briefly
describes six
appraisals

ÖZCAN-TOP;
DEMIRÖRS, 2014

Organizations
implementing agile

Analytic Agile in
general

Yes. Partially
present the
assessment
method

Yes, named as
generic and aspect
practices

4 levels, based on
existence and
adherence to a process
(practices)

No evidence Yes, exemplifies
how to perform the
assessment

 35

Table 2 - The highest maturity levels in agile maturity models

Author Highest Maturity is at Main concept

NAWROCKI; WALTER;
WOJCIECHOWSKI, 2001

Level 4 – Mature. Focus at this level is placed on customer
and developer satisfaction. The results of the team are also
considered. The only Process Area is Project Performance.

Project performance

LUI; CHAN, 2005 Stage 4. The team is focused on implementation of specific
XP practices: metaphor, 40-hour week, small release, on-site
customer and planning game.

-

PACKLICK, 2007 Level 5 – Mentoring. Stimulation of learning across the
organization because high performance teams coach other
teams according to specific goals.

Highly productive teams

SIDKY; ARTHUR; BOHNER,
2007

Level 5 – Encompassing. Focus is on sustaining agility. Agile
practices at this level comprise low processes, agile project
estimation, agile physical setup, TDD, experienced teams
and frequent face-to-face communication.

Sustaining agility

QUMER; HENDERSON-
SELLERS, 2008

Level 6 – Lean Production, Keep Agile. At this level, the work
is focused on quality production, minimal possible resources
and keeping agility.

Sustaining agility

PATEL; RAMACHANDRAN,
2009

Level 5 – Mature. There is continuous improvement based
on quantitative data. The goals at this level are context
improvement, uncertainty management, tuning project
performance and defect prevention.

Project performance

BENEFIELD, 2010 Level 5 – On Demand Just in Time Release. High-level
engineering practices are spread across the teams, which are
highly productive and able to quickly assemble new
products.

Highly productive teams

YIN; FIGUEIREDO; SILVA,
2011

Level 5 – Optimizing. The teams at these levels have
experienced practitioners focused om continuous
improvement. The only goal at this level is Performance
Management.

Project performance

ÖZCAN-TOP; DEMIRÖRS,
2014

Level 4 – Effective. Agile engineering methods and tools are
used to improve productivity (technical excellence) and
there is a purpose for organizational learning and
improvement (learning).

Highly productive teams
and sustaining agility

Figure 5 - Limitations of current agile maturity models

Despite the importance of people and their interaction in agile software

development, only Packlick (2007)’s model places emphasis on people, i.e. the team.

His model explains the maturing process based on team learning, contrasting with one

of the main guidelines for team maturity in software engineering – the Team Software

Process (TSP), created by CMMI’s author, Watts Humphrey (HUMPHREY et al.,

 36

2010). The philosophy in this model is similar to that of CMMI-DEV, which considers

definition and standardization of processes as essential for maturing. According to the

TSP guide, a team starts in a forming stage, where the team comes together as a

working group and team members are highly dependent on their leader. This team

then moves on to a storming stage where members start to vie for position among

themselves and conflicts may occur. As the team evolves, it goes to a norming stage,

in which team members reach consensus and trust grows. The last stage is the

performing stage: the team works as a unit and energy is channeled into performing

tasks (HUMPHREY et al., 2010).

This evolvement path is based on Tuckman's model for team development

(TUCKMAN, 1965). This model assumes a linear path for evolvement and has

currently been considered as unsuitable for self-managing teams (KUIPERS;

STOKER, 2009), as agile teams are supposed to be. Instead, self-managed work

teams have shown evidence of non-linear evolvement through three team processes

that occur simultaneously. The first is “task management”, in which team members

develop capabilities to manage responsibilities and control. The second is “internal

relations”, in which the team deals with internal cooperative issues. Finally, the third is

“external relations and improvement”, in which the team deals with its relationship with

other teams, customers and suppliers. These teams evolve to greater self-

management and, thereby, increased performance and enhanced quality of working

life (KUIPERS; STOKER, 2009).

This particular feature of agile teams – allowing emergence and non-linearity on

the expense of processes definition and control – bring to light the relation agile teams

have with complex adaptive systems theory (HODA; NOBLE; MARSHALL, 2012;

VIDGEN; WANG, 2009). This relation provides the basis for our theoretical foundation

and the conceptual framework we used to analyze our data, presented in next chapter.

 37

CHAPTER 3. THEORETICAL FOUNDATION

We observed, in the previous chapter, that agile methods lack a consolidated

maturity model, and even a consolidated definition for maturity. For this reason, this

chapter reviews the Complex Adaptive Systems theory in order to build the foundation

required for understanding maturity in agile software development. Figure 6 shows our

main conclusions in this chapter and the conclusions from the previous and the next

chapters.

Figure 6 - Contextualization of Chapter 3

Agile software development teams are complex adaptive systems, as a number

of researchers have already reported (AUGUSTINE et al., 2005; WHITWORTH;

BIDDLE, 2007; VIDGEN; WANG, 2009; HODA; NOBLE; MARSHALL, 2012; POWER,

2014). Among other theories that could be used to explain agile teams dynamics – for

instance knowledge management, personality, organizational learning, social

facilitation and others (DINGSØYR et al., 2012) – we acknowledge that a complexity

theoretical approach is in accordance with an emergent approach in social sciences:

considering social systems as complex adaptive systems.

 38

In organizational studies, it implies that companies show emergent behaviors

that are neither static nor random – but “difficult to describe” (MAGUIRE; ALLEN;

MCKELVEY, 2011). Although some researchers see complexity more as a metaphor

or an analogy to human systems (MITLETON-KELLY, 2003), complexity theories are

now becoming a major revolution in thinking. This theory prompts us to rethink the

character of human intervention in the social and natural world (TSOUKAS, 2005).

This chapter describes the complex adaptive systems theory and the

implications that this theory brings when it comes to understanding organizations. We

also show how management strategies are changing in order to deal with complexity;

after that, we discuss organizational ambidexterity. The chapter ends with our

conceptual framework, shown in Figure 7, which consolidates the topics from theory

that will be used in this dissertation.

3.1 Complex adaptive systems

“Complex adaptive systems consist of a number of

components, or agents, that interact with each other according

to a set of rules that require them to examine and respond to

each other’s behavior in order to improve their behavior and

thus the behavior of the system they comprise.” (STACEY,

1996, p.10).

“When a system contains agents or populations that

seek to adapt, we will use the term Complex Adaptive

System.” (AXELROD; COHEN, 2000, p. 7)

These two concepts of complex adaptive systems reveal that we are essentially

referring to agents that interact to adapt. Properties and dynamics of such systems

have been observed in a number of social groups – in nature and society – and the

effects interventions generates in these systems have specific dynamics that might

enrich our understanding about organizations. Before showing how it has been applied

to organizations, we will present the underlying concepts of deterministic and adaptive

feedback networks (STACEY, 1996). Studies of these kinds of feedback networks

 39

provide useful reflections on how chemical and biological systems create complex

behavior.

Deterministic feedback networks are a group of agents whose behaviors are

determined by a common schema. A system with a pendulum or the weather are

examples cited by Stacey (1996). Key concepts that describe these systems are rooted

on the mathematical chaos theory and on the chemical dissipative structures theory.

The chaos theory states that systems, in their trajectories, are attracted to a

point, which is called attractor. “An attractor is a pattern of behavior into which a system

ultimately settles in the absence of outside disturbances” (STACEY, 1996, p. 54).

Attractors might show different types of behavior: being in stable equilibrium, being

unstable or being a strange attractor. Stable and unstable attractors present behaviors

that never change. Our interest lies in the strange attractor, which shows stability of

limits and shape, but it is impossible to predict the archetypes of such systems. They

are unstable and stable at the same time, and this is the only state where the system

is capable of novelty (STACEY, 1996).

The dissipative structures theory complements this view by explaining how

systems use disorder to generate new order. This behavior was observed in chemical

systems that are changeable only when they are pushed far from equilibrium.

Researchers in this field observed that, in a dissipative system, self-organization

happens after the system suffers a disorder by dissipating energy and information from

the environment. At the same time, the system has a structure that allows agents to

self-organize. This is a bottom-up process of change in which the pattern produced by

self-organization cannot be reduced by the agent’s behavior (STACEY, 1996). The

issue with such deterministic networks is that, although complex dynamics appear,

individual agents – e.g. the pendulum, the wind in the weather or the chemical

components – do not learn.

Another type of network, which shows similar dynamics, is the adaptive

feedback network. According to Stacey (1996), in this kind of network, the behavior of

the agents is determined by a common schema consisting of a few rules. In contrast

to deterministic networks, the purpose of these systems is to perform a particular task

and they learn it in a simple single-loop manner. It means that they simply adjust their

behavior according to changes in the environment. Because agents seek to adapt, as

shown in the concepts we presented in the beginning of the chapter, we characterize

 40

this network as a complex adaptive system. Examples of such systems are a flock of

birds and groups of ants.

Despite the difference in the behavior of individual agents, complex adaptive

systems have quite the same properties as deterministic feedback networks:

attractors, in which long-term evolution is not predictable, but short-term is; and space

for novelty in the paradoxical state of stability and instability. Such dynamics have been

simulated by computer programs, such as cellular automata and genetic algorithms

(STACEY, 1996).

Knowledge about deterministic and adaptive feedback networks properties, as

we briefly presented here, is relevant because human systems show similar structure

and dynamics to those of other complex adaptive systems. However, Stacey (1996)

emphasizes the difference: in human systems, agents’ responses are driven by

paradoxical emotions and feelings; agents share a common purpose, but also develop

their own individual purposes; some agents are more powerful and use persuasion for

others to follow them; and agents can adopt the role of observer and think

systematically. For example, humans can deliberately create situations to push the

systems to a state far from equilibrium and, in addition to that, provide support for a

new order to be established (MITLETON-KELLY, 2003).

Mitleton-Kelly (2003) explains that complex behavior in human systems

emerges, then, from the relationship, interactions and interconnectivity of the elements.

Complex adaptive systems dynamics are still observed and, in addition to that, a

decision or action of an element (or group of elements) in the system may affect other

related elements and systems. The impact will not be the same for all of them and will

depend on the history and on the structure of the system. Regardless of being aware

or not, we all intervene in complex adaptive systems (AXELROD; COHEN, 2000).

3.2 Organizations as complex adaptive systems

 According to Tsoukas (2005), many mainstream theories that explain

organizational behavior follow a “Newtonian Style” of thinking. These theories see

world as an idealized construction, an abstract model; for example, when considering

that decision-making is a rational exercise that translates managerial talk into decisions

and actions. When abstractions are put aside and complexity is brought into light, we

see that executives, when making these decisions, are subject to a limited knowledge

of the system they are part of – which is unavoidable (CILLIERS, 2002) – and decisions

 41

are made based on the purposes of the actors involved and on the relations they are

embedded in (TSOUKAS, 2005, p. 215; MARCH, 1988).

Organizations, as human systems, show two types of interactions between

agents. These interactions may be explicitly stated – the legitimate network – or

created spontaneously – the shadow network. The former consists of the links between

agents that are formally and intentionally established by management or by principles

that are widely accepted, e.g., a shared culture. The latter consists of informal social

and political links where local rules are developed. Here, there are not just flows of

information, energy and action, but also flows of emotion, friendship, trust and other

qualities (STACEY, 1996).

These informal interconnections in the shadow network imply that an agent’s

decision or action may affect related agents in ways that cannot be predicted

(MITLETON-KELLY, 2003). People in organizations “hardly ever accomplish their joint

action on an ordinary day-to-day basis in a way that is entirely determined by the

designed system they operate within” (STACEY; GRIFFIN; SHAW, 2000, p. 186). The

networks that define an organization are not those “charts […] printed down on an

organization meeting room”, but the ones that emerge from informal interactions

(HIDALGO, 2011, p. 557).

In this context, the concept of self-organization, which was first observed in

deterministic feedback networks, becomes a valuable property of complex adaptive

systems and is explicitly recognized in agile teams, as expressed in the Agile Manifesto

(BECK et al., 2001). Self-organization happens when systems decide how to

accomplish a given task. It allows the emergence of new ideas, relationships and

organizational shapes, as well as organizational learning (MITLETON-KELLY, 2003).

The actual practices the system adopts to accomplish the tasks emerge naturally from

praxis (CAMPBELL-HUNT, 2007), as long as this emergence is allowed by the

structure in the system.

Over time, complex systems evolve by combining stability and flexibility through

processes of continuous experimentation (DEROSA; MCCAUGHIN, 2007). There is

no such a linear path for growth in these systems: they evolve their structure and

dynamics in a discontinuous manner (EIJNATTEN, 2003), like the strange attractors

concept presented earlier.

Summing up, this rationale shows that organizations do have shadow networks,

self-organization is a means for creating innovation, and evolution is supported by

 42

stability and flexibility simultaneously. By acknowledging that, we understand that

managers’ perceptions are, in fact, highly inaccurate, and this suggests they need to

apply tools that do not take the existence of accuracy for granted when guiding

organizations towards achieving their goals (WEICK; SUTCLIFFE; OBSTFELD, 2005).

3.3 Management in complex organizations

When Campbell-Hunt (2007) states that order is emergent in a complex system,

management must be aware that the consequences of managerial action may be

difficult – or even impossible – to predict (AXELROD; COHEN, 2000). Axelrod and

Cohen (2000), in response to the inapplicability of controlling the system, suggest that

we should “harness complexity”. It means “living with it, and even taking advantage of

it, rather than trying to ignore or even eliminate it” (AXELROD; COHEN, 2000, p. 9).

Snowden and Boone (2007) agree by stating that “wise executives tailor their

approach to fit the complexity of the circumstances they face” (SNOWDEN; BOONE,

2007, p. 1). The authors introduced the Cynefin framework to characterize managerial

actions required for different contexts. Simple and complicated contexts have

perceptible cause-and-effect relations. Thus, right answers can be based on facts. On

the other hand, complex and chaotic contexts are unordered and the cause-and-effect

relationship is not apparent. Thus, action should be based on emerging patterns.

Most situations and decisions in organizations are complex and events can be

understood only in retrospect. This is the reason why Snowden and Boone (2007)

suggest managers should probe, sense and, then, respond – and do not fall into the

temptation of resorting to the traditional management style of command and control

(MAGUIRE; ALLEN; MCKELVEY, 2011). For this reason, these authors suggest the

following managerial tools: opening up the discussion, setting the barriers with simple

rules, stimulating attractors, encouraging dissent and diversity; and managing start

conditions and monitoring for emergence.

Likewise, McDaniel Jr. (2007) states that traditional command, control and

planning are not effective in complex settings: “Commands are subject to nonlinear

interdependencies among agents. Control is sensitive to initial conditions and self-

organization of work. Planning changes the world and by that very fact, can cause co-

evolution and cannot be predicted”. (MCDANIEL JR., 2007, p. 27). His suggestion is

that managerial tasks should, thus, be focused on sensemaking (WEICK; SUTCLIFFE;

OBSTFELD, 2005), learning and improvisation.

 43

A similar point of view is presented by Eisenhardt and Martin (2000). They

identified that management strategies vary with market dynamism. There are

organizations – those in moderately dynamic markets – that can rely on dynamic

capabilities3 based on codified and detailed routines. Tacit knowledge may be

documented and detailed tasks can be assigned to people. On the other hand, there

are organizations that must survive in high-velocity markets – such as software

development companies. Their dynamic capabilities cannot rely on existing

knowledge, as it changes continuously. Knowledge must be specifically created for

each situation (EISENHARDT; MARTIN, 2000). As we presented earlier, in complex

systems, this ability for creativity and innovation happens in a state which is called the

edge-of-chaos: “a paradoxical space of simultaneous stability and instability”

(STACEY, 1996, p. 97).

To accomplish such simultaneous stability and instability, an organization

cannot be completely unstructured. Management has to face the challenge of creating

“semi-structures” that provide enough structure to help people make sense of the

situation, and make them confident to act in highly uncertain situations (EISENHARDT;

MARTIN, 2000).

However, this managerial action is not trivial. A great deal of research has been

performed to describe and understand how managers can create space for innovation

by combining stability and instability in the organizational environment, as shown in the

next subsection.

3.4 Organizational ambidexterity

More than two decades ago, March (1991) identified that organizations, as

adaptive systems, need to combine stability and instability to survive and prosper. He

showed that the development and use of organizational knowledge must be balanced

between exploitation and exploration. Exploitation includes activities such as

“refinement, choice, production, efficiency, selection, implementation, execution”

(MARCH, 1991, p. 71); and on the other hand, exploration is characterized by “search,

variation, risk taking, experimentation, play, flexibility, discovery, innovation” (MARCH,

1991, p. 71).

3 Dynamic capabilities are the strategies that management applies to reassemble resources: physical,
human and organizational assets (EISENHARDT; MARTIN, 2000)

 44

The ability to simultaneously pursue exploitation and exploration has currently

been named “organizational ambidexterity” (TURNER; SWART; MAYLOR, 2013).

Ambidextrous organizations are recognized to be successful because they are aligned

and efficient in their management of current demands while simultaneously adaptive

to changes in the environment (RAISH; BIRKINSHAW, 2008). This ability provides the

organization with the capability to prosper for long periods (TUSHMAN; O’REILLY III,

1996). Organizational ambidexterity is currently taking shape as a research paradigm

in organizational theory (RAISH; BIRKINSHAW, 2008) and has already been

recognized as an adequate approach to the uncertainty of the software product market

(HARRIS; COLLINS; HEVNER, 2009).

Gibson and Birkinshaw (2004) state that one of the ways to achieve

ambidextrous behavior is to implement “structural ambidexterity”, in which the

organization is structured to have units dedicated to exploitation and separate units

dedicated to exploration. Another means is to achieve “contextual ambidexterity”,

which is the “behavioral capacity to simultaneously demonstrate alignment and

adaptability across an entire business unit” (GIBSON; BIRKINSHAW, 2004, p. 209).

In their point of view, alignment creates coherence among all the patterns of activities

in the business unit. It means that goals are clear to everyone. Adaptability is the

capacity to reconfigure activities in the business. Management systems are, therefore,

flexible enough to change work processes in order to meet changing demands

(GIBSON; BIRKINSHAW, 2004).

There is a challenge, though, of describing exactly how managers implement

ambidexterity. Recent research has shown that organizations have idiosyncratic

implementation strategies to be ambidextrous (GIBSON; BIRKINSHAW, 2004;

GÜTTEL; KONLECHNER, 2009). Gibson and Birkinshaw (2004), as we have shown,

have identified contextually ambidextrous behavior by analyzing the ability of a

business unit to be aligned and adaptable at the same time. Tiwana (2008), differently,

has identified ambidexterity in information flow among individuals, which can be “strong

ties” or “bridging ties”. Bridging ties lead to diversity of accessible knowledge, while

strong ties lead to knowledge integration (TIWANA, 2008).

Tiwana has also characterized ambidexterity as a combination of formal and

informal controls (TIWANA, 2010). Formal control mechanisms can be accomplished

through outcome control, in which there is a specification of the desired result; or

through behavioral control, in which there is a specification of the processes or the

 45

steps that should be followed to achieve the expected result. On the other hand,

informal controls, named as clan controls, rely on common values, beliefs and shared

goals (OUCHI, 1979; TIWANA, 2010). Other complementary views of ambidexterity

can also be seen in other studies (see GÜTTEL; KONLECHNER, 2009, DECLERCQ;

THONGPAPANL; DIMOV, 2013, BONESSO; GERLI; SCAPOLAN, 2014 and

TURNER; MAYLOR; SWART, 2015).

The diversity of ways in which research has been describing the need to

combine stability and instability – or alignment and adaptability, or bridging ties and

strong ties, or formal controls and clan controls – shows that complex adaptive systems

dynamics has been noticed in organizations. There is a need to prevent the system

from falling into chaos by using alignment and stability, in other words, by setting clear

goals; while also having the courage to allow disorder to generate the emergent

novelty, i. e., with adaptability and instability.

In addition, new management tools – as probe/sense/response or

sensemaking/learning/improvisation – put into practice strategies that deal with the

impossibility of planning work routines in the long term. There is a need to create

knowledge for specific situations instead of codifying knowledge that will soon become

obsolete.

Agile teams are inside an organizational context where self-organization is

valued and change is welcome, as stated by the Agile Manifesto (ref BECK et al).

Describing the dynamics these teams present when evolving to maturity might benefit

from concepts and theories observed in this chapter, and this is the reason we propose

our conceptual framework.

3.5 Conceptual framework

Our conceptual framework for analysis of agile software development maturity

is based, hence, on the rationale presented in this chapter. Agile software development

teams are complex adaptive systems. They are driven by a self-organized behavior,

which challenges management into using strategies that fosters experimenting and

learning. The evolution – and the maturing – of this system is a discontinuous process

of combining exploitation and exploration. If this combination is successful, it will lead

to higher performance through ambidextrous abilities. The following four statements

summarize our conceptual framework for data analysis, as shown in Figure 7.

 46

1. An agile software development team is a complex adaptive system that

evolves in a discontinuous manner, i.e., there is no such a linear path to

evolve;

2. Work processes are improved through experimentation, which is a way

to probe new solutions;

3. High performance is achieved through ambidexterity; and,

4. To accomplish that, dynamic capabilities must be developed without

codified routines; thus, the focus is on the outcomes pursued by teams.

Figure 7 - Conceptual framework

 47

CHAPTER 4. RESEARCH APPROACH

The previous chapter presented the theoretical rationale we used to analyze our

empirical data. Before describing our findings in CHAPTER 5, this chapter presents

how we organized our research in stages and describes the methods we applied, as

shown in Figure 8.

Figure 8 - Contextualization of Chapter 4

This study was guided by the objective to characterize maturity in agile software

development. To accomplish that, two research questions were used to drive the

research work: “what is maturity in agile software development?” and “how do agile

teams get mature?” (Figure 2).

According to Yin (2005), our first question is better answered by methods such

as survey and file analysis. The second question is better answered by methods such

as experiments, historical research or case studies. We chose the survey method to

answer the “what” question, and the case study method to answer the “how” question.

 48

Hence, our overall research strategy was a mixed methods research approach

(BRYMAN, 2012) because our two research questions have a different nature. The

data collected and the methods of analysis were both quantitative and qualitative.

In the field of information systems research our dissertation can be considered

as applying the behavioral-science paradigm, as it “seeks to develop […] theories that

explain […] organizational and human phenomena surrounding the analysis, design,

implementation, management, and use of information systems” (HEVNER et al., 2004,

p. 76). We have identified, however, that we have crossed the domain of the design-

science paradigm, as the final product of the dissertation is an artifact that might be

applied to aid the endeavors surrounding information systems development (HEVNER

et al., 2004).

Figure 9 shows our overall research approach. The research was divided into

three stages, guided by the research questions, as explained in the next subsections.

4.1 Stage 1 – What is maturity in agile software development?

This was the first stage of the research, in which we were searching for a

definition for agile software development maturity, given the variety of concepts we

found in the literature (as seen in CHAPTER 2). Results of this stage are published in

Fontana et al. (2014b) and presented in CHAPTER 5.

Since it was characterized as an exploratory pursuit of a concept, we used the

survey as a research method, according to the guidelines provided by Forza (2002)

and Kitchenham et al. (2002). The survey was conducted with agile practitioners,

through a questionnaire. This questionnaire had two sections: the first listed eighty-five

software development practices (based on a literature review on agile practices) to be

evaluated by respondents; and the second section had a single open-ended question

(APPENDIX A shows the statements evaluated by practitioners and reference

authors).

 49

Figure 9 - Research approach

 50

In the first section of the questionnaire, the respondents had to evaluate the

perceived maturity of each practice. Then, on a five-point Likert scale, they classified

each practice as 1 (“No maturity”), 2 (“Somewhat Mature”), 3 (“Mature”), 4 (“Very

Mature”), or 5 (“Very High Maturity”). In the second part of the questionnaire, they

answered an open-ended question: “Based on your experience, what is agile software

development maturity?”. We conducted a pilot test of the questionnaire with a group of

fifteen members of a software engineering research group. They tested both the

printed and the on-line formats. Their suggestions helped to improve the layout and

the understanding of the practices.

The questionnaires were made available online, using the Qualtrics tool and the

snowball technique; the paper format was applied in graduate programs in the

Software Engineering field. All respondents were required to have previous experience

in agile software development.

As we had two types of data: quantitative – in the classification of the practices;

and qualitative – in the definition each respondent gave to the open-ended question,

we conducted two distinct data analysis:

• The quantitative data analysis referred to the need of clustering the

practices in the questionnaire, considering the maturity classifications

they received. To accomplish that, statistical cluster analysis was

applied. This technique groups data according to the similarities among

them (HAIR et al., 2006; JOHNSON; WICHERN, 2007). In our analysis,

Ward’s clustering method was used and the clustering variable, used to

evaluate similarity, was the classification of maturity given by

respondents. Similarity was measured using squared Euclidian distance.

We achieved a twenty-cluster solution, which was validated using the

Davies-Bouding index (DAVIES; BOULDIN, 1979) and a sanity check

that verified Cronbach’s Alpha within clusters (BLAND; ALTMAN, 1997).

After the clusters had been defined, we calculated how they were related

to maturity. For each practice, we calculated the percentage of responses

corresponding to classifications 1 or 2, 3, and 4 or 5. Based on the

percentages of the practices, we calculated the mean percentages of the

cluster;

 51

• The qualitative data analysis was focused on the need to verify the

concepts that respondents used to define maturity in agile software

development. To accomplish that, we applied the content analysis

technique (BARDIN, 2011). We codified the answers and identified the

frequency of occurrence of each code using the software NVivo. A

number of categories emerged from this analysis. Then, we also

calculated the frequency of occurrence of each category. In the last step

of the content analysis, we identified how the main codes related to each

other.

Thus, by using the clusters that were classified with the highest maturity levels

and the concepts that practitioners most often cited in their responses, we proposed a

definition for maturity in agile software development (see Stage 1 in Figure 9).

4.2 Stage 2 – How do agile teams get mature?

Stage 2 was focused on answering our second research question, which

inquires how agile teams get mature. This stage comprised four phases: Phase 2.1, in

which we had a preliminary insight about the roadmap to agile maturity; Phase 2.2, in

which we performed the first round of case studies; Phase 2.3, when we pre-evaluated

our findings with agile practitioners; and Phase 2.4, in which the second round of case

studies was performed (see Figure 9).

4.2.1 Phase 2.1

The objective of this phase was to gain insight about how agile software

development practitioners see the roadmap to maturity. We conducted a survey at an

agile event – the Agile Trends 2013 – in São Paulo, Brazil. The data were collected

using printed questionnaires (APPENDIX B). This questionnaire collected the following

information:

• personal information;

• practitioners’ opinion about the usefulness of a maturity model for agile

software development; and,

• a list of practices, to which the respondents assigned a sequence. This

sequence meant the suggested roadmap that teams should follow to

mature in agile software development.

 52

To build the list of practices, we reviewed the literature on how agile practices

have been evaluated and measured (LAYMAN; WILLIAMS; CUNNINGHAM, 2004;

WILLIAMS et al., 2004; WILLIAMS; RUBIN; COHN, 2010; ABBAS; GRAVEL; WILLS,

2010; BUGLIONE, 2011; SOUNDARAJAN; ARTHUR; BALCI, 2012; KETTUNEN,

2012). We consolidated these practices using a mind mapping tool and grouped them

according to the Software Engineering Body of Knowledge (SWEBOK) areas

(BOURQUE; FAIRLEY, 2014). The different practices used by authors in the literature

were, then, translated to empirical domain and grouped in issues where an agile team

could emphasize work to develop maturity. The resulting group was a list of 13

practices (see question 2 in APPENDIX B). Respondents had, hence, to number the

practices in the ideal sequence of adoption, based on their experience. They could

leave practices in blank (meaning they are not relevant) or add other practices.

Three hypothesis tests – using the Chi-Square test – were applied to verify the

following null hypothesis:

• Hypothesis 1 – The practice is as likely to be considered relevant (to be

numbered) as not relevant (to be left blank);

• Hypothesis 2 – All numberings have the same probability to be chosen

by respondents (there is no preference for a particular classification);

o For this hypothesis test, when we identified there was a numbering

trend, we grouped the numbering gave by respondents as

“essential” (when numbered as 1, 2, or 3); “intermediate” (when

numbered as 4, 5, 6, 7, 8, or 9); and “desirable” (when numbered

as 10, 11, 12 or 13). For each classification (essential,

intermediate or desirable), the average percentage of responses

given to inner practices was calculated;

• Hypothesis 3 – There is the same distribution of numberings for

experienced practitioners and for non-experienced practitioners.

With these tests, we could: i) verify whether the practices were relevant to

maturity in agile software development; ii) identify a trend in the numbering of the

practices and place them in an essential, intermediate or desirable level of agile

maturity; and iii) verify whether the opinions of inexperienced practitioners are different

from those of experienced practitioners. In addition to that, we performed an analysis

on the usefulness of an agile software development maturity model with an open-

ended question answered by practitioners.

 53

The result of this study was practitioners’ perception of the sequence of adoption

of practices as well as some insight about the practical relevance of the theme of this

dissertation. The results were published in Fontana et al. (2014).

4.2.2 Phase 2.2

Based on the preliminary insights of Phase 2.1 and on the Conceptual

Framework, we conducted four case studies in this phase. The objective was to answer

the research question on how agile teams get mature, but based on the observation of

real cases this time, rather than on practitioners’ opinions. The findings of this phase

were published in Fontana et al. (2015).

We chose the case study method because it is the appropriate approach to

answer “how” questions (YIN, 2005) and to understand the dynamics present within

single settings (EISENHARDT, 1989). As we were seeking to replicate patterns across

different settings, we chose to study multiple cases.

The unit of analysis was the agile software development team. We chose

companies or teams with different profiles because we wished to find patterns of agile

maturing across different contexts. The definition of these contexts is based on the

classification of software services in the Brazilian industry (SOFTEX, 2012). From all

the possible activities, the ones that regard software development are 1) development

of software on demand; 2) development of customizable software; 3) development of

non-customizable software; and 4) web portals and internet information services. In

this first round of studies, we investigated the first three contexts. The company that

develops web portals was included in the second round, described in Section 4.2.4.

Hence, the teams could have any size, to apply any agile method, with any

length of experience in agile adoption. Our decision on not to choose an specific agile

method is based on evidence that agile methods are currently being highly customized,

and further scientific research should not focus on specific methods (KURAPATI;

MANYAM; PETERSEN, 2012; BUSTARD; WILKIE; GREER, 2013). The teams were

chosen, then, based on the classification of the service their companies provide, on

the acknowledgement of their companies’ practices in agile community and on the

ease of access to the field. The openness of the companies to the research procedures

was also a choice criterion, as team members would be more prone to collaboration.

Figure 10 summarizes our choice criteria.

 54

Figure 10 - Choice criteria

The propositions we defined a priori to analyze the cases (YIN, 2005) were

based on the Conceptual Framework shown in Figure 7 and on the results obtained in

Phase 2.1 (FONTANA; REINEHR; MALUCELLI, 2014), as shown in Figure 11. This

figure shows the four propositions, the conceptual framework point each proposition

relates to (see Figure 7 on page 46), and the authors that support them.

Figure 11 - The propositions of the multiple-case study

 55

The approach for the case studies was based on the stages suggested by

Eisenhardt (1989), and it is summarized in Figure 12.

Figure 12 - Research approach for the case studies

Data Collection: We collected qualitative and quantitative data from each team.

The qualitative approach comprised interviews with three team members: the team

leader, the most experienced developer and the least experienced developer. The

individuals who participated were indicated by the team leader. The interviews were

semi-structured: we asked the interviewee to tell us a story of how the adoption of the

practices evolved since the team started using agile methods. As a guide to data

collection, we used the framework suggested by Kirk and Tempero (2012), in which

the practices are classified according to their function: to define the software, to make

the software or to deliver the software. We also kept track of the practices applied in

the past, in the present and in the future. The quantitative approach comprised two

types of questionnaires applied to the whole team. The team leader provided personal

 56

information, company information, ambidexterity perception and project success

perception. The other team members provided personal information and ambidexterity

perception. The questions regarding ambidexterity information were based on

ambidexterity studies (see APPENDIX C) and the ones regarding project success

information were based on the success factors for agile methods identified by Misra et

al. (2009). They were both answered on a five-point Likert scale: from 1 (completely

disagree) to 5 (completely agree).

Within-case Analysis: Our qualitative data were analyzed using the content

analysis technique, and the quantitative data were analyzed using Chi-Square tests.

For the qualitative data analysis, all the interviews were recorded and transcribed. They

were stored on Atlas TI, which was the tool we used to perform content analysis

(BARDIN, 2011). Our content analysis comprised: i) scanning the text; ii) codifying; iii)

assigning each code to a category: define, make or deliver (KIRK; TEMPERO, 2012);

iv) assigning each code to either past, present or future; v) creating memos when

necessary; and, vi) making associations with other related codes. Three networks of

codes were created for each team: past, present and future (see an example in

APPENDIX D). The quantitative analysis consisted in applying Chi-Square tests for

each of the aspects evaluated in the questionnaire: performance, alignment,

adaptability, bridging ties and strong ties. The null hypotheses were:

• Null Hypothesis 1 - This team disagrees on performance results (same

probability of agreement, disagreement or neutral opinion regarding the

evaluation of statements);

• Null Hypothesis 2 - This team disagrees on good alignment perception;

• Null Hypothesis 3 - This team disagrees on bad alignment perception;

• Null Hypothesis 4 - This team disagrees on adaptability perception;

• Null Hypothesis 5 - This team disagrees on the perception of bridging

ties;

• Null Hypothesis 6 - This team disagrees on the perception of strong ties.

All the tests that resulted in a p-value below 0.05 were rejected. For us, it meant

that the team had a consolidated perception of the evaluated aspect. Thus, we

expected all of the null hypotheses to be rejected. That is, the whole team should agree

on the perception of performance, alignment, flexibility, strong ties and bridging ties. In

addition to that, the highest percentage of respondents should agree positively on each

of the evaluated aspects. The quantitative analysis was included in the Case Report in

 57

the form of graphs that were presented to the team leader (see an example in

APPENDIX E).

Cross-case Analysis: As suggested by Eisenhardt (1989), in the cross-case

analysis we sought for replication across cases. To accomplish that, we used a mind

mapping tool. The outcomes identified in each within-case analysis were inserted on

the map and evidence to the original team was appropriately recorded. The outcomes

that appeared in the past were listed before the ones that appeared in the present. The

ones in the present were mapped before the ones in the future. As the map was being

built, the replication of outcomes across cases was identified and the following types

of outcomes emerged: practices, team, deliveries, requirements, product and

customer4. APPENDIX F explains the procedure applied in the cross-case analysis.

The multiple-cases report was created in a consolidated mind map, partially presented

in APPENDIX G.

Validation: As the outcomes identified in the content analysis were inferred

based on the stories told by practitioners and the practices we codified, it was

necessary to validate these outcomes. Thus, we conducted one more interview with

each team leader to show the Case Report and receive feedback. In general, all

findings were positively validated with few changes. The transcriptions of the validation

interviews were also stored on Atlas TI, codified and, whenever necessary, code

networks and individual cases reports were updated.

The main result of Phase 2.2 was the Progressive Outcomes framework for

maturing in agile software development, published in Fontana et al. (2015).

4.2.3 Phase 2.3

The pre-evaluation of the results from the first four cases were performed

through surveys in agile events in Brazil. We conducted three talks in which we

presented:

 Our definition of maturity in agile software development;

 The concept of ambidexterity for managing agile teams; and

 The Progressive Outcomes framework;

4 The naming of the outcomes categories was later reviewed, based on the results evaluation performed
in Stage 3.

 58

After the talks, we collected the feedback from practitioners through a

questionnaire with two parts. The first part collected personal data: name, e-mail,

company, city, position, length of experience in software engineering and length of

experience in agile methods. The second part presented seven statements that should

be evaluated on a five-point Likert scale, ranging from completely disagree to

completely agree. The statements were based on design-science validation guidelines

(HEVNER et al., 2004), which pose that utility, quality and efficacy of the artifact should

be evaluated. Table 3 shows the statements evaluated by respondents for these

aspects. In the third event, we included and open-ended question for respondents to

make any comments, express their opinions, or give suggestions.

Table 3 - Statements evaluated in pre-evaluation survey

Aspect to be evaluated The Progressive Outcomes framework…

Utility … is useful to aid teams to evolve with agile methods
… is useful to define what maturing is in agile

Quality … is easy to understand
… comprises what I believe is necessary to evolve in agile
… includes unnecessary information

Efficacy … allows me to identify the current situation on my team/in my company
… is adaptable to different organizational contexts

The events where we collected data were Agile Tour in Curitiba (September,

2014), Agile Tour in Campinas (October, 2014) and Agile Brazil in Florianópolis

(November, 2014).

The collected data were analyzed using descriptive statistics. We identified the

percentage of respondents who agreed on each statement (adding the amount of

answers as “completely agree” to the amount of “partially agree”), the percentage of

respondents who disagreed on each statement (adding the amount of answers as

“completely disagree” to the amount of “partially disagree”), and kept the percentage

of respondents with “no opinion”.

We published the results of this pre-evaluation in Fontana et al. (2015c).

4.2.4 Phase 2.4

In this phase, we chose additional cases, following the same criteria described

in Figure 10: classification of the service companies provide, the acknowledgement of

companies’ practices in agile community and ease of access to the field. We were

invited by one of the companies to conduct the research after our talk in Agile Brazil.

Thus, we added four cases which we chose to the study, plus one by invitation.

 59

These five additional studies followed the same protocol described in Phase 2.2,

with one exception. We replaced the interview with the least experienced developer

with an interview with another experienced developer, or another experienced role in

the team. This is due to the fact that the interviews with inexperienced people

generated few codes in the content analysis and, thus, gave little contribution in the

identification of the evolvement of practices. With this change, results were improved

with interviews that generated more codes in content analysis and, thus, more

evidence.

Based on the feedback received in the pre-evaluation (Phase 2.3), we included

an evaluation of organizational support evolvement for the big companies in our

sample (Company C and Company G). For this reason, we performed a

complementary interview in Company C and asked Company G additional questions

concerning organizational support in the past, in the present and perceptions for the

future. We included, as a result, the organizational support category in the Progressive

Outcomes framework.

Also based on the feedback received in the pre-evaluation (Phase 2.3), we

summarized, for each outcome, how a team could identify whether it was accomplished

or not. The result was a tool for identifying maturity in agile software development,

which we called “Agile Compass”. The procedure to create this tool was the following:

1. Using a mind mapping tool, we grouped all evidences that led us to

conceive each outcome. To do that, all qualitative data from the within-

case analysis of the case studies was consolidated in a map. APPENDIX

I shows an example: the map with evidences we grouped for the

outcomes in “Pace of deliveries” category;

2. We summarized the group of evidences in a sentence that gives a

definition for the outcome, and two or three statements for the team to

check whether the outcome was accomplished or not;

The Agile Compass is presented in Section 5.3 and was published in Fontana

et. al. (2015d).

4.3 Stage 3 – Results Evaluation

This research sought to investigate what agile maturity is and how agile teams

evolve. Our final product is a framework that considers the findings for each of these

questions. It is a designed artifact (HEVNER et al., 2004) and, for this reason, we

 60

applied the suggestions given by Venable et al. (2012) for evaluation in design-science

research.

As a first step for a designed artifact evaluation, Venable et al. (Ibid.) state that

the researcher should characterize the context of the evaluation. In this respect, the

evaluation of our results is characterized by:

• Artifact: the description of the mechanisms for maturing in agile software

development and the underlying maturity concept;

• Purpose: to “evaluate the formalized knowledge about the utility of a

designed artifact for achieving its purpose” (VENABLE; PRIES-HEJE;

BASKERVILLE, 2012, p. 425);

• Ex-ante evaluation: it regards the evaluation of an artifact which was not

instantiated, given the infeasibility of testing the maturity framework in

real settings within the dissertation development period;

• Naturalist evaluation: we involved practitioners in the evaluation and,

thus, explored the perceived performance of a situation within the

organization;

• Method: the evaluation was performed through interviews with agile

practitioners and researchers.

Semi-structured interviews with agile practitioners and researchers were used

to investigate the utility, quality and efficacy of the artifact, based on design-science

validation guidelines by Hevner et al. (2004). We also included an evaluation of the

applicability of the findings in international context, given the limitation of the sample

with Brazilian teams. For this reason, we conducted ten interviews:

 Four interviews with Brazilian agile consultants/practitioners, conducted

during the event Agile Trends 2015, in São Paulo, Brazil;

 Six interviews with agile researchers and practitioners, from Brazil and

other countries, conducted during the XP 2015 conference, in Helsinki,

Finland;

 We presented our research method and findings (using printed slides in A3

format) and, later, argued interviewees about results utility, quality and efficacy. Table

4 shows the questions we used as a guide for the interviews. This table also presents

the questions we asked to identify locality idiosyncrasies in our results.

 61

Table 4 - Questions for evaluating the research findings

Aspect to be evaluated Questions about the aspect

Utility In which contexts do you think this framework is useful?
How would you use this framework?
Do you think a certification of agile teams would be applicable?

Quality What did you not understand in the framework?
What kind of information do you think was lacking in the framework?
Would you add any content to the framework?
Which information do you think the framework should not provide?

Efficacy How do you perceive maturity concept in this framework?
How do you think a team could implement the framework to get mature?
How do you perceive the flexibility of the framework to different organizational contexts?

Locality Which are the differences in locality that you perceive, considering your country/region?
How do you think this framework is applicable to your country/region?

We identify, therefore, that our research was a behavioral-science study, with a

characteristic of design-science research, as a designed artifact was created. Our

mixed-methods approach comprised three stages, namely: Stage 1, whose objective

was to answer our first question – what is agile maturity; Stage 2, which aimed at

answering the second research question – how is agile maturity gained; and a third

stage to evaluate the findings. The next chapter presents our findings.

 62

 63

CHAPTER 5. RESEARCH RESULTS

After the research approach has been presented, this chapter describes our

findings, as summarized in Figure 13. It first presents the data that support the answer

for the first research question and, later, the data that support the findings for the

second research question. The chapter ends by reporting how agile practitioners and

researchers evaluated the findings.

Figure 13 - Contextualization of Chapter 5

5.1 What is maturity in agile software development?

The analysis of the data we collected at the exploratory stage of this dissertation

has shown that:

Maturity in agile software development means having an experienced team that:
• collaborates on projects by communicating and being committed;
• cares about customers and software quality;
• allows requirements to change;

 64

• shares knowledge;
• manages source code and tests using tools, methods and metrics

supported by infrastructure that is appropriate for agility;
• self-organizes at a sustainable pace;
• standardizes and continuously improves agile practices; and,
• generates perceived outcomes for customers and management.

To achieve this definition (FONTANA et al., 2014b), we combined qualitative

and quantitative data analyses.

5.1.1 Quantitative data analysis

As explained in Section 4.1, we collected data through a questionnaire and

received fifty-one responses. Our sample represented thirty-three different Brazilian

companies and four multinational companies that develop software primarily for their

own use. Most of the respondents were developers and had up to three years of

experience in agile methods, mainly Scrum. Table 5 shows the respondents’ profiles.

Table 5 - Profile of respondents to exploratory survey (FONTANA et al., 2014b)

 Number of
respondents

Percentage

Role in their team Developer
System Analyst
Leader
Software Architect
Test Analyst
Others

18
12
8
5
4
4

35%
23%
16%
10%
8%
8%

Experience in agile methods From 1 to 3 years
Less than 1 year
From 4 to 6 years
More than 6 years

27
9
8
7

53%
17%
16%
14%

Agile method Scrum
XP (Extreme Programming)
Others (Kanban, customized methods)

36
8
7

70%
16%
14%

Experience in SPI Models* CMMI-DEV
MPS.BR

24
11

47%
22%

*Multiple responses allowed

We used the cluster analysis technique to group all practices, considering the

maturity classification to which they were assigned. As a result, we obtained twenty

clusters of practices and named them according to the characteristic of the inner

practices. The clusters are shown in Table 6.

 Table 6 also shows the maturity classifications each practice and each cluster

received. For example, the practice “X41 – Communicating face-to-face daily”

received 19.6% of the classifications as “No Maturity” or “Somewhat mature”, 35.3%

of the classifications as “Mature” and 45.1% as “Very Mature” or “Very High Maturity”.

In the table, they are shown respectively in the columns “Low”, “Medium” and “High”.

 65

The cluster means were calculated based on the percentages of cluster’s inner

practices. Table 6 shows highest to lowest maturity clusters.

 The lowest maturity cluster is “Traditional Analysis”, as it received 56.9% of

classifications as low-maturity. It contains just one practice that represents traditional

systems analysis. The next cluster is “Lightweight Requirements”, which contains

practices relative to using metaphors and lightweight requirements. It was classified as

low-maturity by 55.9% of respondents.

 The next cluster is “Caring about the Code”. It received a classification of

medium-maturity by 45.6% of respondents. It includes practices relative to the quality

of the code, such as technical design, inspections, reviews and tests, as well as

appropriate distribution of expertise on the team. The “Customer Presence” cluster

groups practices relative to having the customer actively participate in the projects and

physically close to the team, and was classified by 47.1% of respondents as a low-

maturity cluster.

 “Agile Coding” and “Physical Distribution” clusters had similar classifications of

low-, medium- and high-maturity, around 30% each. The former cluster groups agile

coding practices, such as refactoring, pair programming, focused work, and agile

quality assurance. The latter refers to practices that describe the physical distribution

of the team, either collocated or distributed.

 The next cluster received a medium-maturity classification by 37.3% of

respondents. We named it “Project Monitoring”. It contains practices relative to tracking

project progress, having a defined process to monitor the project, and using metrics to

ground decisions. Next, Table 6 shows the “Agile Project Management” cluster, which

was classified by 35.9% of respondents as low-maturity. They refer to agile estimation

and agile planning practices.

 Growing in perceived maturity, “Traditional Software Process” is the next

cluster, with 43.1% of classifications as medium-maturity. This cluster mostly groups

practices derived from CMMI-DEV process areas and the ones relative to dealing with

complexities in the organization. Examples of practices considered as medium-

maturity by respondents include having defined process assets, establishing and

maintaining plans, evaluating processes and product objectively, managing risks and

managing alignment between requirements and the work products.

 The next cluster is the first that was classified by the majority of respondents as

high-maturity: “Manage Requirements”. It received 44.9% of high-maturity

 66

classifications and includes practices relative to defining requirements in agile ways

(such as product backlog and user stories), but also practices relative to planning with

timeboxes, being multidisciplinary and developing peoples’ skills.

 Also classified as high-maturity practices, “Iterations” and “Meetings” clusters

are shown in Table 6. They received 45.8% and 46.1% of high-maturity classifications,

respectively. The iterations practices regard having short software releases in an

incremental development; and meetings regard holding agile-like daily meetings and

retrospective meetings.

 The “Simplicity” cluster comes next, with 47.1% of classifications as high-

maturity, grouping practices such as using simple software design and having

communication-based work. The practices relative to “Performance Analysis” have

also been classified as high-maturity by 48% of respondents.

 The next six clusters were classified by the majority of respondents (more than

50%) as high-maturity practices in agile software development. “Sustainable Self-

organization” received 50.8% of classifications as high-maturity. The practices of this

cluster comprise a number of ways for agile teams to behave, such as collective code

ownership, maintaining a sustainable pace, self-organizing, giving continuous

feedback etc. “Test-driven Development” and “Caring about the solution” had around

51% of classifications as high-maturity. They are small clusters that group practices

relative to test automation and refers to the quality of the solution, respectively.

 The top-three high-maturity practices are represented by the clusters

“Management of Code and Tests”, “Emerging Requirements” and “Collaboration”. The

first cluster received 52% of classifications as high-maturity. It comprises some

planning practices, running user acceptance tests, collecting tests metrics, and

managing source code. The “Emerging Requirements” cluster represents allowance of

requirements to evolve and emerge, with 52.9% of classification as high-maturity.

Overall, the highest maturity classification goes to the “Collaboration” cluster.

Respondents consider practices such as communicating face-to-face, collaborating,

keeping work simple, sustaining autonomy and sharing responsibility as having the

highest maturity. These practices received an average of 56.9% of classifications as

high-maturity.

 67

Table 6 - Clusters and maturity assignments (FONTANA et al., 2014b)

Cluster
Name

Practice
Number

Practice
Description

Percentage (practice)a
Total

Mean percentage (cluster)b

Low Medium High Low Medium High

Collaboration X41 Communicating face-to-face daily 19.6% 35.3% 45.1% 100%
 X42 Questioning and learning from one another 7.8% 29.4% 62.7% 100%
 X43 Collaborating with team members 7.8% 25.5% 66.7% 100%
 X44 Keeping work simple 9.8% 35.3% 54.9% 100%
 X45 Not losing autonomy when under pressure to meet deadlines 19.6% 29.4% 51.0% 100%
 X46 Sharing responsibility 17.0% 23.5% 58.8% 100%

 X62
Encouraging a culture of working together as a team rather than
individually

9.8% 31.4% 58.8% 100% 13.2% 30.0% 56.9%

Emerging Requirements X2 Allowing requirements to evolve during the project 13.7% 35.3% 51.0% 100%
 X5 Allowing the emergence of requirements 17.6% 27.5% 54.9% 100% 15.7% 31.4% 52.9%

Management of Code and
Tests

X19 Running user acceptance tests 5.9% 35.3% 58.8% 100%

 X21 Collecting test metrics 23.5% 31.4% 45.1% 100%
 X22 Managing software configuration (version control) 11.8% 33.3% 54.9% 100%
 X23 Managing source code 21.6% 31.4% 47.1% 100%
 X25 Planning releases 15.7% 33.3% 51.0% 100%
 X26 Planning before and during the project 15.7% 29.4% 54.9% 100% 15.7% 32.4% 52.0%

Caring about the Solution X15 Using code standards 13.7% 33.3% 52.9% 100%
 X16 Being concerned about database architecture 11.8% 39.2% 49.0% 100%
 X32 Defining scope according to schedule 23.5% 23.5% 52.9% 100% 16.3% 32.0% 51.6%

Test-driven Development X18 Running automated unit tests 21.6% 23.5% 54.9% 100%
 X20 Doing test-driven development 29.4% 23.5% 47.1% 100% 25.5% 23.5% 51.0%

Sustainable Self- X12 Using collective code ownership 25.5% 31.4% 43.1% 100%
organization X17 Doing continuous code integration 15.7% 25.5% 58.8% 100%
 X34 Maintaining a sustainable pace (do minimum overtime) 15.7% 25.5% 58.8% 100%

 X39
Responding to pressure by re-prioritizing or re-scoping rather than
working overtime or adding people

15.7% 31.4% 52.9% 100%

 X48 Self-organizing 21.6% 33.3% 45.1% 100%
 X49 Giving continuous feedback 17.6% 35.3% 47.1% 100%
 X55 Implementing development infrastructure that supports agility 25.5% 27.5% 47.1% 100%
 X56 Developing people’s agility skills 21.6% 35.3% 43.1% 100%
 X66 Having the customer actively participate during the project 11.8% 25.5% 62.7% 100%
 X67 Developing products that respond to business needs 9.8% 41.2% 49.0% 100% 18.0% 31.2% 50.8%

Performance Analysis X75
Getting to know strengths and weaknesses and be able to plan and
implement process improvements based on that

17.6% 35.3% 47.1% 100%

 X76
Identifying gaps in performance and selecting and deploying
improvements to close these gaps

15.7% 35.3% 49.0% 100% 16.7% 35.3% 48.0%

Simplicity X6 Eliciting requirements based on communication 11.8% 27.5% 60.8% 100%

 68

Cluster
Name

Practice
Number

Practice
Description

Percentage (practice)a
Total

Mean percentage (cluster)b

Low Medium High Low Medium High
 X10 Using simple software design 19.6% 47.1% 33.3% 100% 15.7% 37.3% 47.1%

Meetings X35 Holding daily progress tracking meetings 29.4% 23.5% 47.1% 100%
 X36 Holding retrospective meetings 23.5% 31.4% 45.1% 100% 26.5% 27.5% 46.1%

Iterations X28 Doing iterative and incremental development 15.7% 43.1% 41.2% 100%
 X29 Making short software releases 27.5% 31.4% 41.2% 100%
 X30 Delivering working software continuously 17.6% 27.5% 54.9% 100% 20.3% 34.0% 45.8%

Manage Requirements X1 Using product backlog to define requirements 21.6% 37.3% 41.2% 100%
 X3 Using stories to define requirements 27.5% 39.2% 33.3% 100%
 X11 Specifying software architecture 19.6% 35.3% 45.1% 100%
 X27 Using timeboxes in planning 25.5% 33.3% 41.2% 100%
 X33 Making estimates with the people who will do the work 17.6% 33.3% 49.0% 100%
 X61 Being multidisciplinary 13.7% 43.1% 43.1% 100%

 X70
Identifying causes of problems and taking actions to prevent them in the
future

13.7% 35.3% 51.0% 100%

 X78
Developing people’s skills and knowledge so they can perform their
roles effectively and efficiently

17.6% 27.5% 54.9% 100% 19.6% 35.5% 44.9%

Traditional Software X58 Dealing easily with organizational complexity 19.6% 41.2% 39.2% 100%
Process X59 Dealing easily with regulatory compliance 15.7% 45.1% 39.2% 100%
 X63 Dealing easily with domain complexity 13.7% 47.1% 39.2% 100%
 X64 Dealing easily with technical complexity 13.7% 43.1% 43.1% 100%
 X65 Dealing easily with enterprise discipline 9.8% 45.1% 45.1% 100%

 X74
Having defined process assets, work environment standards, and rules
and guidelines

25.5% 29.4% 45.1% 100%

 X79 Establishing and maintaining plans that define project activities 23.5% 37.3% 39.2% 100%

 X80
Evaluating processes and work products objectively and addressing non-
compliance issues

21.6% 41.2% 37.3% 100%

 X82
Formally eliciting, analyzing, and validating requirements for the product
and stakeholders

21.6% 45.1% 33.3% 100%

 X83
Planning and invoking risk handling activities as needed across the life of
the project

23.5% 45.1% 31.4% 100%

 X84 Managing the acquisition of products and services from suppliers 25.5% 47.1% 27.5% 100%

 X85
Maintaining alignment between requirements and the plans and work
products of the project

17.6% 51.0% 31.4% 100% 19.3% 43.1% 37.6%

Agile Project X24 Using the planning game 41.2% 25.5% 33.3% 100%
Management X31 Making agile project estimates 27.5% 39.2% 33.3% 100%
 X50 Writing agile documentation 39.2% 23.5% 37.3% 100% 35.9% 29.4% 34.6%

Project Monitoring X37 Tracking and reporting iteration progress 25.5% 43.1% 31.4% 100%
 X38 Integrating management activities directly into development tasks 23.5% 45.1% 31.4% 100%

 X71
Analyzing possible decisions using a formal evaluation process that
evaluates identified alternatives against established criteria

29.4% 35.3% 35.3% 100%

 X72 Managing projects according to an integrated and defined process 27.5% 29.4% 43.1% 100%

 X73
Collecting metrics that are used to support management information
needs

27.5% 41.2% 31.4% 100%

 69

Cluster
Name

Practice
Number

Practice
Description

Percentage (practice)a
Total

Mean percentage (cluster)b

Low Medium High Low Medium High
 X77 Having a quantitative understanding (metrics-based) of processes 27.5% 37.3% 35.3% 100%
 X81 Managing projects with measures and analytic techniques 41.2% 29.4% 29.4% 100% 28.9% 37.3% 33.9%

Physical Distribution X57 Being geographically distributed (different cities or countries) 39.2% 27.5% 33.3% 100%
 X60 Distributing physically so as to reflect agile philosophy 29.4% 37.3% 33.3% 100% 34.3% 32.4% 33.3%

Agile Coding X13 Doing code refactoring 23.5% 27.5% 49.0% 100%
 X14 Doing pair programming 35.3% 33.3% 31.4% 100%
 X40 Focusing on work (priorities do not change during iteration) 29.4% 45.1% 25.5% 100%
 X47 Doing things when they have to be done, not before 35.3% 37.3% 27.5% 100%
 X54 Doing agile quality assurance 37.3% 31.4% 31.4% 100% 32.2% 34.9% 32.9%

Customer Presence X68 Allowing customer to drive iterations 43.1% 25.5% 31.4% 100%
 X69 Customer being collocated 51.0% 31.4% 17.6% 100% 47.1% 28.4% 24.5%

Caring about the Code X4 Doing technical design of requirements 31.4% 49.0% 19.6% 100%
 X51 Distributing expertise on the team appropriately 17.6% 47.1% 35.3% 100%
 X52 Running lightweight tests and reviews 39.2% 52.9% 7.8% 100%
 X53 Analyzing and inspecting code 35.3% 33.3% 31.4% 100% 30.9% 45.6% 23.5%

Lightweight Requirements X7 Defining lightweight requirements 43.1% 35.3% 21.6% 100%
 X9 Using metaphors to describe requirements 68.6% 25.5% 5.9% 100% 55.9% 30.4% 13.7%

Traditional Analysis X8 Performing traditional systems analysis 56.9% 29.4% 13.7% 100% 56.9% 29.4% 13.7%
aThis column is divided into three subcolumns: “Low” shows the percentage of responses that associated this practice with level 1 (“No maturity”) or 2 (“Somewhat Mature”); “Medium” shows the percentage of responses that associated this practice with level 3
(“Mature”); and “High”, the percentage that associated the practice with level 4 (“Very Mature”) or 5 (“Very High Maturity”).
bThis column is divided into three subcolumns: “Low” shows the mean percentage of responses that associated the practices in each cluster with level 1 (“No maturity”) or 2 (“Somewhat Mature”); “Medium” shows the mean percentage of responses that associated
the practices in each cluster with level 3 (“Mature”); and “High”, the mean percentage that associated the practices in each cluster with level 4 (“Very Mature”) or 5 (“Very High Maturity”).

 70

In summary, the analysis of these clusters and practices allowed us to realize

that highest maturity in agile software is mainly associated with collaboration, emergent

requirements and managing code and tests. The practices based on process areas of

CMMI-DEV have still been classified as mature by our respondents, but less mature

than others such as collaboration and emerging requirements.

This analysis was based on a closed list of practices. Next section shows how

our respondents have freely defined maturity in agile software development: the

qualitative results.

5.1.2 Qualitative data analysis

In the content analysis, we identified fifty-two key concepts relative to agile

software development maturity, as pointed out by our respondents. These concepts

are shown in Table 7. This table also shows the categories of concepts that emerged

from the analysis: development practices, process, team, stakeholders, management

and outcomes.

Table 7 - Concepts that emerged in the content analysis (FONTANA et al., 2014b)

Category Subcategory Concept

Development Practices - Configuration Management
Continuous Delivery of Working Software
Development Standards
Sufficient Software Documentation
Pair Programming
Refactoring
Software Testing
Test-driven Development

Process - Application of Agile Practices
Continuous Improvement
Definition of Tools and Methods
Metrics-Based Improvement
Process Institutionalization
Standardization of Agile Practices
Use of Tools and Methods

Team Knowledge Keep Lessons Learned
Knowledge of the Customer’s Business
Knowledge of the Project
Knowledge of the Technology
Trained Team

Behavior Collaboration
Commitment
Making an Effort to Keep Practices in Use
Self-organization
Understand Customers

Communication Communication within the Team
Communication with Customers

Experience Expertise in Agile Practices
Time spent working with Agile

Stakeholders - Agile Process Acceptance
Definition of Business Priorities
Stakeholders Information

Management - Definition of Goals
Process Management
Process Metrics
Project Planning

 71

Category Subcategory Concept
Project Tracking

Outcomes For Management Efficiency
Fewer Defects
Less Effort
Less Rework
Less Waste
Precise Estimates
Predictability
Productivity
Repetition of Results

For Customer Delivery on Time
Effectiveness
Flexibility
Generate Value for the Customer
Product Quality
Short Delivery Time

The Development Practices category shows that practitioners see maturity in

practices as related to the way coding is performed, such as configuration

management, continuous delivery of working software, development standard, pair

programming, testing, among others. The Process category shows the concepts that

consider maturity in having continuous improvement, definition of tools and methods,

process standardization and metrics, all of which are based on agile practices.

The Team category groups concepts relative to maturity on the team’s

Knowledge, Behavior, Communication and Experience. The practices listed in this

category in Table 7 show that practitioners see maturity on a team that knows the

context where it works, has a behavior of collaboration, has commitment and

autonomy, communicates efficiently and has experience in agility.

The concepts under the Stakeholders category show the importance of the

project stakeholders engaging in the agile dynamics. The Management category

represents the importance of having practices related to planning, tracking and using

metrics.

Lastly, the Outcomes category represents the concepts that refer to generating

results either for the management, or for the customer. Respondents have pointed out

that maturity in agile software development may be perceived through the outcomes

generated by the team, such as: efficiency, productivity, generating value to customer

and product quality, among others.

By analyzing the frequency of occurrence of the concepts and categories, we

could identify that the most cited concepts in agile maturity definition are “Product

Quality” and “Use of Methods and Tools”. The categories that appeared most often in

the respondents’ definitions were “Outcomes” and “Process”, as shown in Figure 14

and Figure 15.

 72

Figure 14 - The concepts by frequency of
occurrence (FONTANA et al., 2014b)

Figure 15 - The categories by frequency of
occurrence (FONTANA et al, 2014b)

 While codifying and categorizing the responses of the survey, a number of

relationships among codes emerged, and we consolidated them on a diagram shown

in Figure 16. The team appears as a central category, which applies the processes, is

aligned with stakeholders, is directed by the management and applies the development

practices. It is the team that generates the outcomes – the concepts more closely

related to maturity – for customer and for management.

Figure 16 - The relationships among concepts that emerged in content analysis (FONTANA et
al., 2014b)

 73

By combining the results we obtained in the analysis of the highest maturity

clusters, with the concepts practitioners gave to maturity in agile software

development, we could propose the definition presented in the beginning of this

section. Next section shows our findings from the investigation on the mechanisms that

teams apply to mature in agile.

5.2 How do agile teams get mature?

To have a preliminary answer to this research question, as shown in Section

4.2.1, we surveyed agile practitioners about their perception on the agile maturing

process. We received eighty-seven responses from ten different cities in Brazil. The

average experience in software engineering of respondents was 10 years, and in agile

software development, the average experience was 3.6 years. From all questionnaires,

seventy had their practices numbered and the remaining had the practices numbered

equally, left blank, or with other comments.

Based mainly on the opinion of experienced practitioners, we could identify that

in the agile maturing process, a group of practices should be implemented as a basis:

agile values, involved customer, agile planning and agile requirements. Next, other

practices could be implemented at an intermediate stage: agile testing and agile

coding. Some other practices appeared as relevant to the maturing process, but they

could be implemented at any time, such as software architecture, agile physical

environment, agile quality assurance and agile project monitoring (FONTANA;

REINEHR; MALUCELLI, 2014). As these results are based on practitioners’

perceptions, they were used as propositions to the evaluation of evolvement of real

agile teams’ practices.

To provide an answer to our second research question, we investigated, thus,

nine agile teams (as explained in Sections 4.2.2 and 4.2.4). This study comprised

interviews, which collected qualitative data about evolvement of agile practices; and

questionnaires, which collected quantitative data about ambidexterity and perception

of project success. Results of the analysis of the first round of case studies (four first

teams) were published in Fontana et al. (2015).

By analyzing the cases, we identified that agile teams mature by pursuing

progressive outcomes, in a non-linear and dynamic manner. These outcomes may be

accomplished by using a variety of practices and processes, specific to each business

context. We represented these outcomes in a framework that we called the

 74

Progressive Outcomes framework, shown in Figure 17. Each line represents a

category of outcomes, which emerged from our data analysis: practices learning, team

conduct, deliveries pace, features disclosure, software product, customer relationship

and organizational support.

Figure 17 - The Progressive Outcomes framework for agile software development maturity

The practices learning category comprises the outcomes the teams pursue

when they decide to change the way they work. Some of the cases we analyzed,

started with an agile trial, in which the team tries adopting agile practices, usually

learning “on the fly”, but may not succeed. It evolves to initiatives for agile learning.

The teams implement the agile method “by the book” and, with the appropriate

 75

knowledge acquired in practice, it evolves to sensemaking of the work processes. This

process includes taking the method learned and tailoring it to particular needs. It is a

process based on action, i.e. experimenting, rather than on planning (WEICK;

SUTCLIFFE; OBSTFELD, 2005). Later, the teams may start investing in practices to

understand what is happening – we named it “comprehension of situation”. It includes,

for example, using tools to track the process, having the team to report work status,

understanding stories sizes and using simple metrics. This dynamics is similar to the

three levels of practice known as the Shu-Ha-Ri distinction (COCKBURN, 2007), which

describes that learning processes undergo three phases: repeating the technique “by

the book”, then getting autonomy and, later, tailoring the technique based on

experience.

The team conduct category describes how the team evolves in behavior with

the use of agile methods. They start with a responsive behavior, with practices that

demand a leadership position of command and control. This team may evolve to a

confident team, on which team members start expressing their opinions about the

decisions and, later, the assertive team is the one on which the members are active

voices in the project and in the process improvement initiatives. This team evolves to

a sparkling team: a team that is still assertive, but also characterized by technical

excellence, high performance, and motivation to continuous learning.

The deliveries pace category describes how the pursued outcomes for

deliveries evolve. Teams start investing in iterations to control the coding process: they

look forward to having a date to finish the code of a specific requirement. This code is

not delivered, it is kept for further testing and integration. The evolvement of this

outcome is to implement processes that make this code ready for delivery. On one of

the teams included in this study, for example, this initiative was related to implementing

a functional test phase that would assure that the software is ready for delivery, but

would not be delivered yet. This process of producing ready deliverables evolves, then,

to actual deliveries at the end of the iterations – usually late deliveries. The team then,

in the next outcome, starts working on practices to have a defined delivery, that is, a

delivery that is performed on time.

Features disclosure category describes outcomes teams pursue when defining

the features the software will comprise. The requirements gathering outcome

represents a process of eliciting requirements similar to those of the traditional software

process, with most of requirements being defined at the beginning of the project. It

 76

evolves to practices that allow for requirements discovery, that is, the team starts to

iterate the elicitation of requirements, to use stories and to allow requirements to

change. Another outcome they pursue is to improve the quality of the requirements to

make sure they meet customer expectations. Quite different practices appeared to

accomplish this outcome, such as using videos to record customer requirements, using

systems analysis diagrams, or involving developers in requirements definition.

The outcomes for the software product category describe what the team

pursues when it implements the practices to improve the software itself. It starts with a

focus on a high-level source code: pair programming and refactoring are examples of

practices they perform to have a good resulting source code. We named the next

outcome “awareness of failures” because it is when the team realizes that deliveries

may have bugs that have to be fixed, and that the processes to accomplish that need

to be adjusted. Then, the next step is to focus on high-level delivered software, i.e.,

ensuring a good delivery. They invest in having a functional tester, or a test team, for

example. The last outcome is efficient coding, when practices such as integration,

testing and deploy automation are implemented to increase efficiency in the coding

process, and sustain the quality that was already achieved with the outcomes that had

been previously accomplished.

The customer relationship category comprises the outcomes the team pursues

when implements practices to improve its relationship with the customer. The first

outcome represents the team gaining awareness of the customer, and understanding

the customer’s processes and needs. Then, when the relationship evolves, the

customer becomes aware of the team, and gets acquainted with the team’s capabilities

and the agile work processes. It evolves to a confident customer that knows when the

deliveries are going to happen and what is going to be delivered. The customer

becomes, then, a partner of the team as there is so much confidence that the team

helps define requirements and solutions for the customer’s business problems.

Lastly, the organizational support category describes the outcomes related to

the position of the organization when providing support for agile transformation. We

identified that organizations may start with agile motion when isolated, and small

bottom-up initiatives start for agile adoption. It evolves to agile commitment, when top

management gains awareness of agile methods and starts supporting the adoption.

Next, we identified agile priority as an outcome characterized by the organization that

changes its structures, roles and processes to enable the agile transformation. The

 77

last outcome is agile business. The company is recognized for being agile, and agile

principles go beyond software development processes.

These results emerged from the analysis performed with the data from the

teams we studied, described in the next subsection.

5.2.1 Within-case analysis

The sample of teams in this research includes teams within the four

classifications of software services in the Brazilian industry (SOFTEX, 2012): 1)

development of software on demand; 2) development of customizable software; 3)

development of non-customizable software; and 4) web portals and internet

information services. Team sizes range from five to twenty people, company sizes

range from seventeen to fifteen thousand employees, and agile adoption time from 0.4

year to six years. The majority of the companies are mid-sized, whose teams have less

than ten people, and with agile adoption time ranging from three to six years. Table 8

shows the detailed profile of the teams, and Figure 18 summarizes the variety of the

characteristics of the teams in the sample.

Figure 18 - Variety of the characteristics of the teams in the sample

 78

This section is organized, thus, to show the results of individual teams and, later,

the cross-cases analysis, in which the four propositions were evaluated (see Figure 11

on page 54). While performing the studies, we could identify the outcomes each team

accomplished according to our framework. They are presented individually in

APPENDIX H.

Table 8 - Profile of teams in case studies

Team Alias Profile

Company A Team size
Company size
Main activity
Agile adoption time
Project duration
Customers
Develops software

8 people
100 people
Documents Management
1 year and 3 months
1 year
Inside and outside the company
For its own use and software packages for external customers

Company B – Team 1 Team size
Company size
Main activity
Agile adoption time
Project duration
Customers

Develops software

5 people
200 people
Educational Technology
5 years
6 months
Inside and outside the company (Brazil and South America
customers)
On demand

Company B – Team 2 Team size
Company size
Main activity
Agile adoption time
Project duration
Customers

Develops software

7
200 people
Educational Technology
6 years
1.5 years
Inside and outside the company (Brazil, South America, Europe
and Asia customers)
Software packages and embedded systems

Company C Team size
Company size
Main activity
Agile adoption time
Project duration
Customers
Develops software

20 people
15.000 people
Telecommunications
3 years
6 months
Inside the company
Customizes or adapts existing software

Company D Team size
Company size
Main activity
Agile adoption time
Project duration
Customers
Develops software

5 people (distributed)
17 people
Web software development
6 years
6 months to 1 year
Inside and outside the company (national)
For its own use and software on demand

Company E – Team 1 Team size
Company size
Main activity
Agile adoption time
Project duration
Customers
Develops software

12 people
180 people
CRM and billing software development
5 years
3 months
Outside the company (national)
Customizes or adapts existing software

Company E – Team 2 Team size
Company size
Main activity
Agile adoption time
Project duration
Customers
Develops software

6 people
180 people
Architecture support for CRM and billing software development
6 years
1 year
Inside the company and outside the company (national)
Software for its own use, software on demand

Company F Team size
Company size
Main activity
Agile adoption time
Project duration
Customers

8 people
150 people
Consultancy and software development
5 years
1 to 2 months
Outside the company (North America)

 79

Develops software On demand and for its own use
Company G Team size

Company size
Main activity

Agile adoption time
Project duration
Customers
Develops software

11 people
10.000 people
Information and communication technology services for public
sector
4 months
4 months
Outside the company (National)
Customizes or adapts existing software, develops on demand

5.2.1.1 Company A

The team in Company A is responsible for developing and maintaining a single

software package that is sold to customers with little customization. They adopted agile

methods to help organize their processes, as they used to have an ad hoc software

development process. Their context is characterized by frequent unplanned

requirements. The work processes are currently based on the use of simple tools and,

on a daily basis, if they feel the need, they change these processes and experiment

new ways of working.

The analysis of the evolvement of agile practices on the team in Company A is

summarized in Figure 19. The left-hand box represents the outcomes the team

pursued in the past, the box in the middle represents the outcomes the team pursues

in the present, and the right-hand box represents the outcomes the team is planning

to pursue in the future. These outcomes were inferred, based on characteristics, facts

and initiatives we identified in the interviews, which we named evidence. The evidence

that led us to infer each of the outcomes is described in Table 9.

They started adopting practices to make sense of their work processes. We

called it sensemaking because it was an effort to change the current situation and the

action was the focus, not the choice (WEICK; SUTCLIFFE; OBSTFELD, 2005).

Sensemaking is a process of organizing, but people “make plausible sense

retrospectively, while enacting more or less order into […] ongoing circumstances”

(Ibid., p. 409). “Direct experience is also connected to processes of sensemaking: the

combination of a past moment, a connection, and a present moment of experience is

what creates a meaningful definition of the present situation.”(DYBÅ; MAIDEN;

GLASS, 2014, p. 33)

 80

Figure 19 - Analysis of agile practices evolvement in Company A

They also started with a confident team, as they created the team exclusively

with experienced people. In the past, they implemented practices to have expected

frequent deliveries. They planned for that, but usually delayed the delivery. With

respect to requirements, they had a process of requirements gathering, without the

concern to be certain of customer needs. Refactoring is a practice they have

implemented since the beginning of agile adoption, so we inferred that they pursued a

high-level source code. They also invested in increasing the team awareness of

customers’ needs and business, and vice-versa: the customer gets to know what the

team does and how the team works.

In the present, the confident team evolved to an assertive team that influences

decisions in the projects and in the processes. They started to perform activities that

showed they were aware of their failures, such as performing functional tests; and

activities, such as reporting work, so as to enable them to comprehend their situation.

They started to focus on requirements quality, implemented practices to have more

than a high-level source code, but high-level delivered software instead. The customer,

who knew little about team’s work (was only aware of the team) in the past, started to

become confident about team’s deliveries and decisions.

For the future, the team plans to invest in having less delay on deliveries, to

make coding more efficient with test automation and, also, to start assisting the

customer in defining requirements, creating a partnership with the customer. All the

evidence found for each of these outcomes is listed in Table 9.

Table 9 - Evidence for the outcomes identified for the team in Company A

Moment Outcome Evidence

Past Sensemaking of work processes Implementing the agile method to stop ad hoc
development; organizing development processes, and
adopting tools to support the process dynamics.

 Confident team Creating an experienced team; knowing closely each person
on the team. Assigning the tasks to the team, but having the
members define task priorities and estimates.

 Expected frequent deliveries Planning with sprints to control the coding cycle; estimating
correctly.

 81

 High-level source code Performing pair programming; refactoring; caring about the
code.

 Customer awareness of team Getting the customer to know what is delivered.
 Team awareness of customer Understanding customers’ needs and demands.

Present Assertive team Defining politics for the acceptance of unplanned
requirements; maintaining a sustainable work pace; feeling
confident to deliver the software; enabling the team to
change task assignments.

 Failures awareness Considering time in the sprint for debugging, performing
functional and unit tests; looking for improvement in
software quality.

 Comprehension of situation Drawing up thorough plans, reporting work status, planning
longer sprints, adopting simple metrics.

 Requirements quality Improving requirements definition (using recorded videos
with the requirements specification).

 High-level delivered software Including a testing phase in the sprint; assuring that
maintenance does not create new bugs; Improving code
version control.

 Confident customer Formalizing new requirements orders; feeling customer
trust; controlling requirements cycle; reducing delivered
bugs.

Future Defined frequent deliveries Not delaying deliveries.
 Efficient coding Automating unit tests.
 Partner customer Hypothesizing customer needs; defining the roles and rights

of the information technology department.

We also analyzed the perception that the team had on their ambidexterity. Table

10 shows the percentage of the team that disagreed, that were neutral, or that agreed

on the perception of performance, good alignment, bad alignment, adaptability,

bridging ties and strong ties. It also shows the p-values for the Chi-Square tests and

the rejection or not of the null hypothesis. In Company A, the team has a consolidated

view of their ambidexterity abilities, as all of the hypothesis were rejected, and the

percentages of agreement and disagreement indicate positive evaluations on

management alignment and adaptability.

Project success perception in Company A is shown in Table 11. Each of the

factors was evaluated by the team leader as (1) meaning no agreement to have

reached the benefit through (5) meaning full agreement to have reached the benefit.

The data showed that the only factor they have not realized with adoption of agile

methods was “Improved Business Processes”. Table 11 shows the results in Company

A compared with the means from the other teams and standard deviations. The means

for the other teams were calculated based on the responses given to each factor by

the other teams, without considering Company A’s responses.

Table 10 - Ambidexterity data for Company A

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 0.0% 0.0% 87.5% 0.0% 0.0% 0.0%
Neutral 12.5% 0.0% 6.3% 8.3% 0.0% 5.0%
Agree 87.5% 100.0% 6.3% 91.7% 100.0% 95.0%
p-value 0.000 0.043 0.001 0.000 0.000 0.000
Rejects H0 Yes Yes Yes Yes Yes Yes

 82

Table 11 - Projects success perception in Company A

 Company A Means for
Other Teams

Std Dev

Reduced delivery schedules 4 5.0 0.0
Increased return on investment (ROI) 5 3.3 0.6
Increased ability to meet current customer requirements 4 3.7 0.6
Increased flexibility to meet changing customer requirements 5 3.7 1.5
Improved business processes 3 4.0 1.0

 As a summary, agile evolvement in Company A was not associated with

increasing agility. In this context, Team A evolved practices for customer relationship

and the quality of the requirements, the code and the software. By associating the

ambidexterity results with project success, we see a team with ambidextrous abilities

that is satisfied with the results they achieve with their agile projects.

5.2.1.2 Company B – Team 1

This is the first team from Company B, where we performed two case studies.

This team develops software to respond to government requirements in educational

technology. Thus, each project develops a completely new product, with new

technologies, to unknown customers and unknown users. They have an

interdisciplinary team and the support to users is performed by other people. They

adopted the agile method based on a top-management decision and, before that they

had an ad hoc software development process. They use simple tools to support the

work processes. If the project demands, they change these work processes or even

abandon them in order to be faster.

In the analysis of the agile practices evolvement, shown in Figure 20, we could

realize that they started with a confident team that defined their own priorities. This

team evolved to an assertive team, which self-organized and changed processes as

needed. As they were told to use agile methods, they went through a process of agile

learning, which evolved to practices that aimed at sensemaking the work processes.

Since the beginning of agile adoption, they have been using iterations to finish the

code. We called it “Expected frequent finished coding”, as they do not have to deliver.

They just use the sprints dynamics to control the targets for finishing the source code.

In the past, they already had practices to allow for requirements discovery, that is, they

discovered the requirements iteratively. Since the beginning, they also had to

implement practices so that a third party can support the software in production.

 83

Figure 20 - Analysis of agile practices evolvement in Company B – Team 1

 In the present, they also implement practices that show their awareness of

failures and their need to comprehend their situation, as well as have high-level

delivered software. In the future, this team will abandon agile methods, due to an

organizational re-engineering. Thus, they will have a Specialist Team, on which roles

will be separated and the customer will be represented by a specific department in the

company. Table 12 shows the evidence we found for these outcomes.

Table 12 - Evidence for the outcomes identified for Team 1 in Company B

Moment Outcome Evidence

Past Confident team Creating an experienced team; knowing each person on the
team closely; having the team define tasks and priorities.

 Agile learning Following an agile method “by the book”.
 Expected frequent coding finished Not delivering at the end of the sprint; testing the software

after the sprint has finished.
 Third-people supportable software Creating documentation at the end of the process; using text

documents to define requirements.

Present Assertive team Allowing the team to self-organize; having the team define
tasks and priorities; playing to win.

 Sensemaking of work processes Tailoring the agile method, for example, increasing sprint
size.

 Awareness of failures Considering time in the sprint for debugging.
 Comprehension of situation Drawing up thorough plans; defining requirements

iteratively.
 High-level delivered software Performing unit and functional tests; applying tools to

support development.

Future Specialist team Assigning a role to each team; formalizing software
architecture definition; having a team perform functional
tests formally.

 Represented customer Having a formal structure to represent customer.

 In the ambidexterity data analysis of Team 1 in Company B (Table 13), we could

realize that the team does not have a consolidated perception of ambidextrous abilities.

Although the hypothesis for performance, bad alignment, bridging ties and strong ties

was rejected, the good alignment and adaptability perception on the team is not a

consensus. It means that the team feels that it receives conflicting objectives, wasting

resources on unproductive activities and that the work processes are not flexible

enough to engage the team into innovative solutions.

 84

Table 13 - Ambidexterity data for Team 1 in Company B

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 15.0% 40.0% 20.0% 60.0% 0.0% 0.0%
Neutral 5.0% 20.0% 0.0% 20.0% 0.0% 0.0%
Agree 80.0% 40.0% 80.0% 20.0% 100.0% 100.0%
p-value 0.001 1.000 0.030 0.223 0.000 0.000
Rejects H0 Yes No Yes No Yes Yes

 Although Team 1 in Company B has presented negative results in the

ambidexterity perception, project success perception was similar to the highest value

in all the factors. Table 14 presents the values for this team, the means of other teams

and the standard deviation.

Table 14 - Projects success perception on Team 1 - Company B

 Company B –
Team 1

Means for
Other Teams

Std Dev

Reduced delivery schedules 5 4.7 0.6
Increased return on investment (ROI) 4 3.7 1.2
Increased ability to meet current customer requirements 4 3.7 0.6
Increased flexibility to meet changing customer requirements 5 3.7 1.5
Improved business processes 5 3.3 0.6

We conclude that Company B – Team 1 does not need to deliver continuously,

but they still used and evolved agile methods to control coding and requirements. The

agile evolvement was mainly on learning and, later, sensemaking the process, as well

as evolving the team. There is a contradiction when we see that, although project

success perception is good, the team does not agree on ambidextrous abilities. In the

validation presentation, the team leader explained that this contradiction is due to the

fact that the members felt confident inside the team and about their individual results,

but lacked the support of the organization as whole.

5.2.1.3 Company B – Team 2

Team 2 in Company B has a different context from that of Team 1. They are a

team for new products development. They define their own requirements for the

software products they build, which are validated by a team of managers that represent

the customer. This is the reason why they have an interdisciplinary team. The work

processes are supported by simple tools and they have a defined process (mostly

based on Scrum) that changes eventually if needed.

Figure 21 shows the evolvement of agile practices in Team 2, Company B. This

team started with practices focusing on Agile Learning, as they adopted the agile

method based on a top-management decision. As agile practices were learned, they

 85

could implement practices aiming at the sensemaking of work processes, to tailor the

agile method and change the work processes to fit their needs. In the beginning of

agile adoption, they had a team separated by roles, which we called Specialist Team.

It soon evolved to an interdisciplinary team with responsive characteristics, that is,

which did what they were told to do. The efforts on the development of the team

(including firing people that did not have the agility skill) led the team to become a

confident team. Now, they are considered to have an Assertive Team.

Figure 21 - Analysis of agile practices evolvement in Company B – Team 2

In the present, this team also focuses on having requirements discovery,

comprehension of situation and high-level source code. Iterations, which in the past

controlled the coding process, now focus on delivering working software. They are now

investing in creating means for the team to be aware of the types of demands of the

managers who represent customer, and for these managers to be aware of the team’s

work processes. In the future, this team plans to work on requirements quality, by using

systems analysis diagrams to define the software; and on high-level delivered

software, as they plan to invest in software testing. Table 15 shows the evidence we

found in the case for each of the outcomes.

Table 15 - Evidence for the outcomes identified for Team 2 in Company B

Moment Outcome Evidence

Past Agile learning Following an agile method “by the book”.
 Expected frequent coding finished Not delivering at the end of the sprint.
 Specialist team Having the functional tests performed on a separate team;

Having the roles separated by different teams.
 Represented customer Having the top management define requirements priorities.
 Responsive Team Having responsive people who later left the team.
 Confident Team Hiring confident people.

Present Interdisciplinary team Having a team with multiple profiles; sharing knowledge
 Requirements discovery Validating requirements with customer; having the

developers become acquainted with the requirements
before starting work; formalizing architecture definition,
having sprints to deliver documentation.

 Sensemaking of work processes Organizing work processes; tailoring the agile method.
 Expected frequent deliveries Delivering (late) at the end of the sprint.
 Comprehension of situation Monitoring the project formally, with the help of a simple

tool; having a better cost estimation.
 High-level source code Integrating code daily.
 Third-people supportable software Creating and updating documentation.

 86

 Assertive team Having the team to help define requirements.
 Team awareness of customer Designing and publishing a work process.
 Customer awareness of team Designing and publishing a work process.

Future Requirements quality Improving requirements definition (using UML), performing
documentation review, prototyping before development.

 High-level delivered software Automating functional tests, implementing test driven-
development, having a team to test.

 The ambidexterity data for Team 2 in Company B presents a consolidated

perception on the team about performance, bridging ties and strong ties, but problems

with alignment and adaptability perception. The null hypothesis was not rejected for

perception of performance, but almost a third of the team reported that they did not

have a formed opinion. Table 16 shows that the null hypothesis could not be rejected

for good alignment, bad alignment and adaptability.

Table 16 - Ambidexterity data for Team 2 in Company B

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 3.6% 0.0% 35.7% 28.6% 0.0% 0.0%
Neutral 28.6% 42.9% 7.1% 9.5% 0.0% 5.7%
Agree 67.9% 57.1% 57.1% 61.9% 100.0% 94.3%
p-value 0.000 0.076 0.324 0.113 0.000 0.000
Rejects H0 Yes No No No Yes Yes

 Project success perception presents a team that perceived less return on

investment and less ability to meet customer requirements with agile adoption, in

comparison to the others. On the other hand, reduced delivery schedules had a good

rating, as well as flexibility to meet changing customer needs and improved business

processes. Table 17 shows the data for this team, as well as the means of other teams

and standard deviations.

Table 17 - Project success perception in Team 2 - Company B

 Company B –
Team 2

Means of
Other Teams

Std Dev

Reduced delivery schedules 5 4.7 0.6
Increased return on investment (ROI) 3 4.0 1.0
Increased ability to meet current customer requirements 3 4.0 0.0
Increased flexibility to meet changing customer requirements 4 4.0 1.7
Improved business processes 4 3.7 1.2

 As a summary, Team 2 in Company B started agile adoption from a top-

management initiative. They initially focused on implementing the agile method “by the

book” and on controlling their coding cycles with iterations. They evolved to have actual

deliveries at the end of the iterations and to focus on a high-level source code. The

team clearly started as a responsive one, and became confident. Currently, they are

active actors in the projects. The initiatives to have the customer (i.e. the managers

 87

who represent the customer) to understand the team and vice-versa were not

implemented at the beginning of agile adoption, but at a later stage. Ambidexterity

analysis did not perform well, but project success has been identified mainly by

reduced delivery schedules.

5.2.1.4 Company C

Company C is a big telecommunications company, with a rigid structure. The

team we investigated is responsible for developing customizations for the information

technology platform of the company. The software packages are customized to meet

customer requirements and, thus, the company’s strategies. Before agile adoption, the

company had a traditional software development process. The context of the team is

characterized by very strict delivery dates and the roles are separated into different

hierarchical structures. To develop software projects, people are temporarily placed

physically together. The work processes are defined and hard to change, so few

adaptations are performed when necessary. Both developers and managers use a

variety of tools to support their work.

Figure 22 shows the summary of the evolution of the outcomes in Company C.

They started adopting agile methods as a sensemaking of work processes; they used

the agile “by the book”, with adaptations to the rigid structure they have. Iterations, for

example, were focused on having finished code, and not on deliveries. As they had a

traditional software process, the practices that enabled comprehension of their

situation were already performed. The requirements definition process was based on

heavyweight documentation and some initiatives focused on having the customer to

be aware of the team’s processes.

From the organizational point of view, some years ago, the company went

through an agile motion, in which some isolated small initiatives happened in some

teams. Agile adoption has officially begun with agile commitment, when top

management has supported and incentivized agile transformation.

At present, this team is implementing practices that show they are working on

the awareness of their failures, such as considering time in the sprint planning to

correct bugs from previous sprints. The requirements definition activities now allow for

requirements discovery, with user stories. Iterations, which used to focus on having

the code finished, now create deliverables. The difference lies in the fact that now the

solution is tested and gets ready to go to production, but they do not deliver, given the

 88

difficulty in delivering partial customizations of the software platforms. With respect to

the team, the team leader pointed out they are now facing an issue with a responsive

team. Development staff does not engage in daily meetings, and does not see the

practices as relevant. They are also focusing on high-level delivered software and on

initiatives to make the customer confident. From the organizational point of view,

evidence shows agile is a priority, with teams’ structural changes to ease

communication and training sessions throughout the company.

Figure 22 - Analysis of agile practices evolvement in Company C

In the future, they plan to work on requirements quality, on enhancing team

confidence and on the standardization of the agile practices across the teams. Table

18 shows the evidence we found for the outcomes pursued by the team in Company

C.

Table 18 - Evidence for the outcomes identified for the team in Company C

Moment Outcome Evidence

Past Sensemaking of work processes Following an agile method “by the book”, but having each
team use agile its own way.

 Expected frequent coding finished Drawing up plans with sprints; having variable sprint sizes;
integrating code by implemented feature.

 Requirements gathering Having a heavyweight text documentation of requirements.
 Customer awareness of team Performing user acceptance test at the end of the project.
 Comprehension of situation Developing project scope using work breakdown structure

diagrams; starting project only with perceived scope
maturity; reporting work status; having people to help on
administrative tasks.

 Agile motion Isolated small initiatives
 Agile commitment Top management involvement; training with management

staff; pilot projects; resistance to agile adoption

Present Awareness of failures Considering time in the sprint for debugging and production
support.

 Requirements discovery Defining requirements based on a vague product
description; including an analysis phase in the project;
having the requirements defined as stories and versioning
stories.

 Expected frequent deliverables Including a testing phase in the sprint; identifying a
minimum releasable product, but not delivering at the end
of the sprint.

 Responsive team Having the team define personal tasks, but macro plan is
defined by the software architects; top management listens
to suggestions for improvement, but not necessarily
considers them.

 High-level delivered software Including a testing phase in the sprint, implementing tools to
automate integration of code in different environments.

 89

 Confident customer Helping customer to define business value.
 Agile priority IT structure has changed to ease communication; there is a

roadmap but not all teams work the same way; everybody
was trained (overview or specific courses); awareness that
agile methods need adaptation for big companies; dealing
with the resistance of some people

Future Requirements quality Improving product description.
 Standardization of agile practices Making agile practices similar across teams.
 Confident team Development team does not take responsibility for the

project.

Ambidexterity data for the team in Company C showed agreement on

performance perception, although almost a third of the team has a neutral opinion. For

the good alignment, bad alignment and adaptability evaluations, we could not reject

the null hypothesis, which reflects disagreement among team members. At the

validation presentation, the team leader was concerned about the 83.3% rate of neutral

opinions about good alignment and the issue was taken to the top management. They

justified it as a problem of cultural change and resistance to agile methods, different

forms of application of agile methods around the company and too many processes

that are still hard to change because of established applications and procedures. The

Chi-Square test for bridging ties and strong ties rejected the null hypothesis, showing

agreement about ties on the team. Table 19 shows the details for these data.

Table 19 - Ambidexterity data for the team in Company C

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 8.3% 0.0% 41.7% 38.9% 0.0% 3.3%
Neutral 33.3% 83.3% 16.7% 33.3% 11.1% 6.7%
Agree 58.3% 16.7% 41.7% 27.8% 88.9% 90.0%
p-value 0.006 0.131 0.959 0.320 0.000 0.000
Rejects H0 Yes No No No Yes Yes

 Projects success perception in Company C, shown in Table 20, presented three

factors evaluated as below the means of the other teams: they felt less return on

investment, less flexibility to meet changing customer requirements and fewer

improved business processes. The greatest benefit they realized with the agile

adoption was reduced delivery schedules.

Table 20 - Projects success perception in the team in Company C

 Company C Means for
Other Teams

Std Dev

Reduced delivery schedules 5 4.7 0.6
Increased return on investment (ROI) 3 4.0 1.0
Increased ability to meet current customer requirements 4 3.7 0.6
Increased flexibility to meet changing customer requirements 2 4.7 0.6
Improved business processes 3 4.0 1.0

 90

 The investigation of the team in Company C showed a scenario where a change

in culture was necessary for agile adoption. The team started pursuing the

sensemaking of work processes, with the iterations to control the coding process. The

initiatives evolved to pursue outcomes on requirements, customer confidence and

high-level deliverable software. The issue with this team was the members’ responsive

attitude, which reflected the bad results of the ambidexterity analysis. From all the

teams we analyzed, this was the one with lowest perception of project success.

5.2.1.5 Company D

This company was created with the purpose of using agile methods. They

develop software exclusively for the web and the team we analyzed customized a

software they had developed for a specific customer. The team is responsible for

developing and providing support to the software in operation. They have a distributed

team, in two different cities in Brazil. They started using agile methods trying to learn

“on the fly”, without training, but did not succeed. From this moment on, they always

endeavor high-quality training when needed and focus on learning from practice. This

team relies on tools to support communication and project monitoring.

Figure 23 shows how the outcomes evolved on this team, and Table 21 shows

evidence for each outcome. Most of them were placed in the past because, since the

company was created, the team has already improved its agile practices. As we

mentioned, the team started with an agile trial. At that time, they did not even know

how to deliver value to the customer. This outcome evolved to agile learning, when the

team received a number of high-quality training sessions in agile requirements and

agile engineering. Now, this outcome evolved to sensemaking of work processes. It is

characterized by a moment when the team knows the value of each practice. They are,

therefore, capable of abandoning practices or re-adopting them as needed. They used

to have a young, responsive team, which evolved to a confident team who knew the

process and helped customer defining requirements. Today they have an assertive

team, which stopped using estimates, and has made work processes more flexible.

 91

Figure 23 - Analysis of agile practices evolvement in Company D

 Today this team performs continuous deliveries to customer, and even delivers

before customers expect – an outcome we refer to as defined frequent deliveries. To

achieve this outcome, the team has learned from iterations that just finished code

(expected frequent finished coding), iterations that created deliverables but did not

actually deliver to customer (expected frequent deliverables), and late deliveries

(expected frequent deliveries). In the past, they had already focused on high-level

source code, by applying pair programming, for example. They faced a moment of

awareness of failures, when they realized it was not enough to deliver quality and,

then, they started focusing on high-level delivered software (see evidence in Table 21).

Now, they have an efficient coding, with a complete automated environment for

integration, testing and deploying.

 As the team has a single customer, the evolvement of this relationship was clear

in the interviews. The customer learned with the team, participating actively in meetings

and even receiving training from the Scrum Master. Table 21 shows the evidence we

found for the evolution from team awareness of customer, and vice-versa, to a

confident customer and, now to a partner customer.

 Now they are facing problems of conflicts in the team and less willingness to

learn, so we assume that, for future, they will work on practices to create a sparkling

team.

Table 21 - Evidence for the outcomes identified for the team in Company D

Moment Outcome Evidence

Past Agile trial Implementing agile on the fly, Don’t know how to deliver
value, Badly defined requirements

 Agile Learning Use agile "by the book", Got the team trained in agile
requirements/engineering

 Responsive Team Scrum Master role well-defined as a motivator and
facilitator, No policy for accepting extra demands, Delay
because of extra demands

 92

 Confident Team After training, team helped defining requirements with
customer (Customer could not fill a sprint with
requirements), Improve work environment for enhanced
communication, Team became distributed (Communication
effort, Virtual kanban to know what is happening), No rules
for branching code, Natural code standard (Collective
ownership of the code), Team performs business analysis
with customer

 Expected frequent finished coding Code was ready, but they didn’t know how to deliver value
 Expected frequent deliverables Manual and slow environment configuration and deploy,

Estimates with story points
 Expected frequent deliveries Delays because of extra demands
 Requirements gathering Badly defined requirements
 Requirements discovery Requirements based on product backlog (Short stories,

loose goals for the sprint, backlog grooming when story is
chosen, acceptance criteria to user stories)

 High-level source code Pair-programming, Cleaning-code, Refactoring during
stories build

 Awareness of failures Bugs from previous sprint to correct, Manual and slow
environment configuration and deploy

 High-level delivered software Got the team trained for engineering techniques (XP),Test-
driven development, Simple design, Informal code review,
Manual functional test, Few Bugs, eventual environment
problems

 Team awareness of customer Got the team training for agile requirements
 Customer awareness of team Get the customer trained in agile processes (requirements,

prioritization...)
 Confident Customer Physical task board and virtual Kanban, After training, team

helped defining requirements with customer, Defined
politics to accept extra demands, Meetings take customer
attention, Customer knows what fits in a sprint, Customer is
aware of his role in the process

Present Sensemaking of work processes Flexible process to define tasks, Team decides when to use
physical task board, Few metrics (Number of items in the
sprint, Number of extra items in the sprint)

 Assertive team Informally Control WIP, Defined politics to accept extra
demands, Team helps defining requirements, Loose goals
for the sprint, Stopped using estimates, Team defines tasks
(No more need to break stories into tasks, Flexible process
to define tasks), Team decides when to use physical task
board

 Defined frequent deliveries Deliver before sprint finishes, Continuous delivery, Short
stories, Loose goals for the sprint, Backlog grooming when
story is chosen, Acceptance criteria to user stories, Set
stories sizes to standards

 Requirements quality Requirements based on product backlog (Short stories,
loose goals for the sprint, backlog grooming when story is
chosen, acceptance criteria to user stories)

 Efficient coding Devops infrastructure, Automated integration (Ease work
environment developing its own tools), Fast bugs correction,
Continuous delivery (Sprints are kept for customer
awareness)

 Partner customer Release planning with business analysis (Release planning
with business analysis, Stories defined based on business
analysis), Support the customers in his/her business
(training team to customer development)

Future Sparkling team Challenges on recycling knowledge (conflicts with team
members opinions, lost team motivation for learning), re-
collocate team

 The ambidexterity analysis for this team (Table 22) shows – regarding

performance, adaptability, bridging ties and strong ties – that the team has the same

perception, and the percentages show good results. Regarding alignment, the null

hypothesis could not be rejected, which shows the team lacks a consolidated view of

management alignment with business goals. In the validation presentation we did with

 93

the team leader, he explained this result clearly shows his perception: the company is

experiencing a change in business strategy and the team may indeed feel that there is

lack of alignment.

Table 22 - Ambidexterity data for Company D

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 0.0% 0.0% 75.0% 0.0% 0.0% 0.0%
Neutral 12.5% 25.0% 12.5% 8.3% 16.7% 0.0%
Agree 87.5% 75.0% 12.5% 91.7% 83.3% 100.0%
p-value 0.000 0.238 0.123 0.001 0.005 0.000
Rejects H0 Yes No No Yes Yes Yes

 Regarding project success perception, this team shows the lowest result with

reduced delivered schedule. In the validation interview, the team leader explained that

it is because they have always had reduced delivered schedules, since they have

always been agile, so it was not a perceived benefit. Table 23 presents the values for

project success perception on this team in comparison with others means and standard

deviations.

Table 23 - Projects success perception in Company D

 Company C Means for
Other Teams

Std Dev

Reduced delivery schedules 3 4.4 0.9
Increased return on investment (ROI) 5 4.0 0.8
Increased ability to meet current customer requirements 4 4.0 0.5
Increased flexibility to meet changing customer requirements 5 4.1 1.1
Improved business processes 5 4.0 0.9

 In summary, the team in Company D has been using agile methods for six years,

i.e. longer than the Brazilian average (MELO et al., 2013). Their processes are already

established and relaxed with the experience of the team. They have a number of tools

that support a complete automated environment, which is essential to allow continuous

delivery. The challenge is now working on the team, to regain motivation to continue

improving.

5.2.1.6 Company E – Team 1

This team has been using agile methods since the company started, five years

ago. They develop and maintain a single product for a few customers. These

customers are big companies and the team we studied dealt with a customer that has

a formal process of creating demands. Thus, requirements arrive mostly defined and

they usually do not change. New tasks may arise because of requirements refinement.

Delivery schedule is fixed, every two months, with update patches every fifteen days.

 94

Over five years, this company has grown and agile practices have been adapted for

big teams, as described in our experience report published in Walter et al. (2015). The

company has a team to develop tools to support work processes, which we also

studied and described in Section 5.2.1.7.

Figure 24 shows the evolvement of the outcomes that we identified this team

pursued. As the team began using agile methods some years ago, a number of

practices have been already established since then. In the past, they focused on agile

learning and, after that, on sensemaking the work processes. Based on this tailoring

of agile practices, they later implemented practices to reach comprehension of the

situation, all of them described on the evidence in Table 24. The team, as in other

cases that we have studied, started as responsive, with inexperienced developers.

Over time, they evolved to a confident team and, in the present, we could characterize

them as an assertive team.

Figure 24 - Analysis of agile practices evolvement in Company E – Team 1

They started adopting agile planning with sprints, which we called expected

frequent deliverables. However, they soon realized that a continuous flow of tasks

would be more adequate to their needs (as described in Walter et al., 2015). We

understood it was applied to get to expected frequent deliveries and, later, to defined

frequent deliveries. Requirements have always been allowed to change, and now

practices are being implemented to focus on quality improvement, by involving

developers on stories definition. Pair programming and review, among other practices

described in Table 24, contributed to a focus on high-level source code. They have

experienced awareness of failures when they sensed problems with code integration.

The investment on tests automation (they have more than 30.000 automated tests)

shows a focus on a high-level delivered software. They have always had a confident

customer.

 95

In the future – some practices have already begun – evidence shows this team

is investing on creating a motivating environment to foster a sparkling team. They are

also planning to invest in test-driven development and other practices to accelerate

development to get to an efficient coding. Table 24 shows the evidence we found for

each of these outcomes.

Table 24 - Evidence for the outcomes identified for the team in Company E - Team 1

Moment Outcome Evidence

Past Agile learning Planning with sprints; physical task board and issue tracker
(sync problems); use pair programming; user stories;
planning poker

 Sensemaking of work processes Started pair rotation; ineffective planning (sprint planning
took too much time, estimates are used for commercial
commitment, using velocity to adjust estimates just for
customer); continuous flow of tasks

 Comprehension of situation Measuring team velocity; using T-shirt sizes for estimation
 Responsive team Developers focused exclusively on coding; team working

overtime frequently; requirements defined by the specifier
with customer (developers not involved in estimation and
requirements); code review performed only by the coach
(inexperienced people)

 Confident team Cross-pair review; stimulation of different pairing
combinations; tasks usually assigned by the team leader, but
new ones are allowed to emerge; developers define build
design with technical leader; no specific format for
requirements.

 Expected frequent deliverables Planning with sprints
 Expected frequent deliveries Continuous flow of tasks
 Defined frequent deliveries Delivery schedule defined by customer (2 months/15 days);

deliveries before deadline
 Requirements discovery No specific format for requirements; identification of

minimum releasable product; requirements are refined only
after customer approval; new tasks are allowed to emerge
during development due to requirements refinement

 High-level source code Code review by the coach; having an architecture support
team; pair programming; defining a best-practices checklist;
people are given time and are encouraged to study coding
techniques

 High-level delivered software Automated functional tests; having a team to execute
manual functional tests; caring for software quality; having
a team to control branches and releases; attention to bugs;
little recurrence of bugs

 Awareness of failures Problems with code integration (spend more time
integrating than coding); cross-pair review (coach review not
enough)

 Confident customer Project manager and specifier close to customer; hardly ever
delays deliveries; working with IT department to deploy
solution

Present Assertive team Flexible WIP size, which allows for pairing “on demand”;
change in teams structure to reduce team size
(multifunctional teams, sense of purpose to developers,
increase team autonomy); high-caliber team

 Requirements quality Involving developers in requirements elicitation (get people
to know what to do)

Future Sparkling team Using gamification to motivate team; more celebration on
accomplishments

 Efficient coding Test-driven development; manual end-to-end tests are
executed by test analyst for complex builds (find bugs
earlier); reduce the need to give first-level support to
production; involving developers in requirements elicitation

 96

Ambidexterity perception for this team seems to be aligned with all the aspects

we evaluated, as none of the null hypothesis has been rejected. Besides the

agreement of the team on the perception of performance, alignment, adaptability and

ties, the percentages are positive, as shown in Table 24. The only aspect with less

positive evaluation was adaptability.

Table 25 - Ambidexterity data for Company E - Team 1

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 0.0% 0.0% 85.0% 6.7% 3.3% 0.0%
Neutral 7.5% 10.0% 10.0% 43.3% 13.3% 8.0%
Agree 92.5% 90.0% 5.0% 50.0% 83.3% 92.0%
p-value 0.000 0.005 0.000 0.000 0.000 0.000
Rejects H0 Yes Yes Yes Yes Yes Yes

 With respect to project success perception, this team has shown lower

evaluation scores than the average of the other teams for reduced delivery schedules

and flexibility to meet with changing customer requirements, as shown in Table 26.

Table 26 - Projects success perception in Company E – Team 1

 Company C Means for
Other Teams

Std Dev

Reduced delivery schedules 3 4.4 0.9
Increased return on investment (ROI) 4 4.1 0.8
Increased ability to meet current customer requirements 4 4.0 0.5
Increased flexibility to meet changing customer requirements 3 4.4 1.1
Improved business processes 4 4.1 1.0

 Analysis of this team has shown lower projects success perception, but good

results for ambidexterity analysis. This team is characterized by having established

agile processes and a high level of tests automation, which assures continuous

delivery to a big customer company. Challenges in agile evolvement are focused on

creating and maintaining a sparkling team and a more efficient coding activity.

5.2.1.7 Company E – Team 2

This team is responsible for applications servers infrastructure and for defining

the architecture of the main software product sold by the company. Their responsibility

is also to develop tools to automate the software development work environment (build,

integration, testing, packaging and deploying). This team consists of experienced

people with a focus on applying up-to-date technology. Their projects involve a lot of

experimentation – objectives are defined during the project – and they usually lack

deadlines. It means that progress is not measured by amount of reported hours but by

results (commits or running automated tests).

 97

Figure 25 shows the evolvement of the outcomes we identified on this team.

Agile adoption started six years ago with focus on agile learning while using Scrum “by

the book”. They experienced the sensemaking of work processes by tailoring practices,

according to the different types of projects they perform. The team evolved from a

responsive team (with partial autonomy) to a confident team. They started agile

adoption drawing up sprints, with expected frequent deliverables, and soon realized

that the continuous flow of tasks would lead them to defined frequent deliveries. They

clearly have a process of requirements discovery to allow innovation during the project.

Figure 25 - Analysis of agile practices evolvement in Company E – Team 2

The software products they develop have a high-level source code, with pair

programming; but they also have a high-level on delivery, since tests automation has

been a regular practice since this team was formed. Currently, they have a culture of

always creating tools to improve – and continuously automate – work environment,

which lead to efficient coding.

 With known practices and automation culture, for the future the focus is on the

team: resolving conflicts, improving communication and providing sense of purpose

and more autonomy to the team. Table 27 shows the evidence for the outcomes

described in Figure 25.

Table 27 - Evidence for the outcomes identified for the team in Company E – Team 2

Moment Outcome Evidence

Past Agile learning Adopting Scrum by the book; Used to estimate tasks,
Manual Kanban, Mandatory pair programming

 Sensemaking of work processes Virtual kanban (not visible all the time), Demands have
customized processes, Work processes are more flexible,
less bureaucratic, No estimation, no deadlines, Using spikes
when needed

 Responsive team Team had partial autonomy to discuss design; Mandatory
pair programming; Retrospectives are done only when bad
things happen

 Expected frequent deliveries Using sprints for planning
 Defined frequent deliveries Continuous flow of tasks; Progress is measured with

commits, builds put in alpha test
 Requirements discovery New tasks are allowed to emerge during build; Demands

come from several different sources and are prioritized;
Objectives are refined during the project (use spykes)

 98

 High-level source code Deploy was not automated; Refactoring done with regular
builds; Pair programming

 High-level delivered software Functional Tests Automation culture; Tests are always
developed during the tasks; Frequent code commits (more
than once a day); Continuous automated integration

Present Confident team Free to identify opportunities for automation; Team is not
free to change work processes (BUT team suggests
improvements and conflict happen sometimes); Team has
partial autonomy to pull tasks; Lack of discipline for TDD;
Pair programming on demand

 Efficient coding Culture of automation, creating tools.

Future Assertive team Little celebration on accomplishments; Improve
communication to avoid conflicts; Giving sense of purpose
and autonomy

The ambidexterity analysis has presented good results (null hypothesis rejected

and positive percentages) for all aspects evaluated, with the exception of good

alignment, for which the null hypothesis could not be rejected. Table 28 shows the

data.

Table 28 - Ambidexterity data for Company E – Team 2

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 0.0% 0.0% 90.0% 0.0% 0.0% 0.0%
Neutral 5.0% 20.0% 10.0% 20.0% 13.3% 8.0%
Agree 95.0% 80.0% 0.0% 80.0% 86.7% 92.0%
p-value 0.000 0.135 0.005 0.002 0.000 0.000
Rejects H0 Yes No Yes Yes Yes Yes

 Projects success perception on this team shows that greater achievements

were met with increased return on investment (the only evaluation greater than means

of the other teams) and that (current and changing) customer demands are met, as

shown in Table 29.

Table 29 - Projects success perception in Company E - Team 2

 Company C Means for
Other Teams

Std Dev

Reduced delivery schedules 3 4.4 0.9
Increased return on investment (ROI) 5 4.0 0.8
Increased ability to meet current customer requirements 4 4.0 0.5
Increased flexibility to meet changing customer requirements 4 4.3 1.2
Improved business processes 3 4.3 0.9

 We can conclude, thus, that there is good ambidexterity perception on the team

and projects success perception is mostly equals to or lower than the means of the

other teams. Established agile practices and technical excellence focus summarize our

perception of this team’s current situation, in addition to the possibility of developing

team assertiveness.

 99

5.2.1.8 Company F

Company F is internationally recognized as an agile company which provides

agile consultancy services and develops software on demand, with offices in several

countries (3,000 employees in 12 countries and 30 offices). Most customers are in

foreign countries and, for this reason, teams work remotely. Projects are developed

with different customers and practices adopted to conduct the process are always

agile, but with adaptations for each customer’s context. In the project we analyzed, the

customer is also agile and aligned with the company’s values (i.e. technical excellence

and continuous delivery). The team develops the front-end application integrated with

existing Application Programming Interfaces (APIs), developed by other teams in the

project, which are located in the United States of America.

The analysis of agile practices evolvement on this team was characterized by

all practices already established in the past – since the setup of the office in Brazil –

because of the influence of other offices around the world. Thus, this team is

recognized as being notably experienced, because they run tests and deliver code in

production automatically every each hour. Current and future focus is on sustaining

outcomes with continuous improvement.

Figure 26 shows the outcomes they have already accomplished and continue

sustaining, and Table 30 shows the evidence we found. Throughout the interviews with

this team, as practitioners have wide experience in agile consulting, several comments

were made on their ability to tailor the development process according to customer

maturity. They even deal with customers that are not agile and wish to learn with them.

In this case, they emphasized the importance of investing not only in managerial

practices (i.e. Scrum), but also in technical excellence (i.e. XP practices and others) to

allow continuous delivery.

Figure 26 - Analysis of agile practices evolvement in Company F

 100

Table 30 - Evidence for the outcomes identified for the team in Company F

Moment Outcome Evidence

Past Sensemaking of work processes Company is recognized internationally for being agile;
processes are adapted according to customer context;

 Comprehension of situation Measuring velocity (number of stories per week); when
delays happen, team tries to understand why; flexibility of
work processes (leaving estimates, pairing on demand…)

 Assertive team Individuals are multifunctional (DEV + QA); tests status
visible to everyone; developers participate in stories
definition/breakdown/estimation; informally control WIP;
working to remove impediments and improve all the time

 Sparkling team Frequent job rotations; people are free to communicate and
give new ideas; flexibility of work processes (estimates,
pairing on demand)

 Defined frequent deliveries Continuous flow of tasks; task is done when deployed in
production; stories size is standardized; loose project
deadlines; operations staff are linked to development staff

 Requirements discovery Requirements are pre-defined before project starts; new
requirements emerge during development (stories are
divided/reprioritized); transparency with product owner;
implementing fast spikes to support stories definition

 Requirements quality Integration with other teams; intense communication with
Product Owner; task is done when deployed in production;
the team argues about requirements, the team participates
actively in the creation of the requirements that actually add
more value sooner

 High-level source code Pair programming; test-driven development; code review
(informal but mandatory)

 High-level delivered software Code in repository is always healthy; critical bugs are rare
and are solved quickly when they happen

 Efficient coding Tools integrate communication and automation in work
processes; continuous integration; collective ownership of
source code; bugs solved quickly; automated tests (unit,
integration and acceptance); automated deployment

 Confident customer Task is done when deployed in production; task is accepted
when PO has seen it (validates features and updates tasks
status in the board); loose project deadlines (usually finishes
before deadline, but delays happen sometimes, which is not
a problem)

Present (sustaining outcomes)

Future (sustaining outcomes)

 Only one null hypothesis for ambidexterity evaluation for this team was not

rejected, the one for good alignment. Tests for the other null hypothesis resulted in

rejection and with positive percentages. Table 31 shows these results.

Table 31 - Ambidexterity data for Company F

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Neutral 12.9% 25.0% 0.0% 4.2% 4.2% 0.0%
Agree 87.1% 75.0% 0.0% 95.8% 95.8% 100.0%
p-value 0.000 0.056 0.000 0.000 0.000 0.000
Rejects H0 Yes No Yes Yes Yes Yes

 Projects success perception on this team is positive, with greater values than

the means for other teams for all aspects we asked. Only the evaluation of increased

return on investment remains similar to the means of other teams. Table 32 shows the

values.

 101

Table 32 - Projects success perception in Company F

 Company C Means for
Other Teams

Std Dev

Reduced delivery schedules 5 4.1 1.0
Increased return on investment (ROI) 4 4.1 0.8
Increased ability to meet current customer requirements 5 3.9 0.4
Increased flexibility to meet changing customer requirements 5 4.1 1.1
Improved business processes 5 4.0 0.9

 In summary, the team in Company F has always been agile under the influence

of other more experienced offices of the company around the world. Thus, agile

practices have always been established and, currently, focus is on sustaining

outcomes. Emphasis on technical excellence is also an aspect that we realized in this

case. Projects success perception is positive, as well as ambidexterity agreement on

the team.

5.2.1.9 Company G

This case shows a situation of agile practices evolvement opposite to the one

presented in the team from Company F (Section 5.2.1.8). In this case, we evaluated a

pilot project for agile adoption, in a big state-owned company. This company has

accomplished CMMI Level 2 in the past (around eight years go) and is now going

through a top-management initiative to adopt agile methods. In this project, the team

was working on the implementation of a number of changes in an existing system, with

an estimated deadline of four months.

This situation is shown in the agile evolvement analysis: few outcomes in the

past, and a great deal of them in the present as well as planned outcomes for the future

(Figure 27). Agile motion is an outcome placed in the past, as it represents the isolated

initiatives for agile adoption in teams around the country. This agile motion evolved to

an agile commitment when top-management members placed their focus on agile

transformation, which is the current situation. During the pilot project, the team is

accomplishing expected frequent deliveries, with planned sprints. Requirements are

still gathered as the team lacks the experience to deal with user stories. High-level

delivered software is a pursued outcome with emphasis on manual testing. The

bureaucratic structure of the firm leads to the need of counting function points to

achieve comprehension of the situation. The team is still responsive, with defined and

separate roles. Regarding customer relationship, customer and team are still getting

to know each other, which we characterize as “Team awareness of customer” and

“Customer awareness of team”.

 102

Figure 27 - Analysis of agile practices evolvement in Company G

Interviewees agree with the perception that, in the future, the company may

focus on sensemaking of work processes, replacing Scrum “by the book” (which we

called “agile learning”) with practices adapted to their contexts. It is the perception that

everything might be improved (see evidence on Table 33). The focus on creating a

confident team and on enabling requirements to be discovered is also mentioned for

future projects. The company is investing in creating an environment for automated

tests and integration, as well as seeking efficient coding, which is evidence that agile

priority is a pursued outcome. The evidence for the outcomes we identified is shown

in Table 33.

Table 33 - Evidence for the outcomes identified for the team in Company G

Moment Outcome Evidence

Past Agile motion Isolated agile implementation initiatives; initiative to create
an “agile process” (still prescriptive)

Present Comprehension of situation Count function points at the end of the sprint
 Agile learning Pilot project; coaching; Difficulty to know how much is left

to finish the task; product owner is still learning;
communication in the team is very focused on the
requirements analyst; implementing Scrum “by the book”

 Responsive team Developers are still attached to their usual roles; team has
free access to Product Owner but meetings are scheduled to
talk to him; Problems with a complex story were not
negotiated with Product Owner (story was not accepted);
Scrum Master guides the team; the process tool drives
decisions in the process

 Expected frequent deliveries Sprint planning (3-week sprint, sprint backlog set to 30
points, burndown chart); could not deliver once because of
a mistake by the product owner

 Requirements gathering Update use cases during the sprint; difficulty to create small
stories; “ready” concept still needs adjustments

 Requirements quality Tests analyst helps requirements analyst defining
requirements with quality

 High-level delivered software Manual testing for each task; tester tests beyond the
acceptance criteria of the task; regression test at the end of
the sprint; having environments to test and validate; daily
commit; publication is semi-automatic

 Team awareness of customer With agile methods developers and testers get to know
about the business; team defines stories with Product
Owner

 Customer awareness of team Requirements analyst helps Product Owner in his activities;
Product Owner is participative and collaborative;
transparency with customer to implement spikes with test
automation

 103

 Agile commitment Strong top management support and coaching; deployment
is bureaucratic (accesses are limited); team was changed
during the project; people in organization still work in more
than one project at the same time; Product Owner was
assigned by top management and did not have knowledge
about the system; need more training and more coaching

Future Sensemaking of work processes Feeling that everything might be improved
 Confident team Trying to stimulate multiple roles in developers; Focus on

creating a “team value”
 Requirements discovery Sprint planning, validation is performed for each story, but

difficulty in accommodating changes in requirements and
stories size still vary a great extent

 Efficient coding Continuous integration environment not ready yet; proof of
concept to implement automated tests

 Agile priority Company is developing an agile roadmap; focus on changing
the organizational culture; starting investments in devops;
starting investments in automation (integration, test and
deployment); more people needed for working on
automation; more people need for working with agile
projects

 Ambidexterity perception data reflect the context of the company, showing the

team still lacks agreement on bad alignment aspects (null hypothesis could not be

rejected). For all the others, the Chi-Square tests rejected the null hypothesis (showing

agreement within the team). Data show percentages for adaptability evaluation that

reflect that the team does not agree on adaptability capabilities of the company, and

75% of staff preferred not to express their opinion on the good alignment of

management systems. Table 34 shows the data.

Table 34 - Ambidexterity data for Company G

 Performance Good
Alignment

Bad Alignment Adaptability Bridging Ties Strong Ties

Disagree 0.0% 12.5% 37.5% 66.7% 0.0% 0.0%
Neutral 9.4% 75.0% 31.3% 33.3% 12.5% 0.0%
Agree 90.6% 12.5% 31.3% 0.0% 87.5% 100.0%
p-value 0.000 0.001 0.511 0.000 0.000 0.000
Rejects H0 Yes Yes No Yes Yes Yes

 Project success perception on this team is positive, and that was mentioned

during the interviews. Our perception is that, in comparison with the processes that the

team adopted before the pilot project, the agile processes brought great benefits.

Quantitative data show this positive evaluation: similar or greater evaluation than other

teams’ with regard to all aspects, as shown in Table 35.

Table 35 - Project success perception in Company G

 Company C Means of
Other Teams

Std Dev

Reduced delivery schedules 5 4.1 1.0
Increased return on investment (ROI) 4 4.1 0.8
Increased ability to meet current customer requirements 5 4.0 0.5
Increased flexibility to meet changing customer requirements 5 4.1 1.1
Improved business processes 5 4.0 0.9

 104

During the validation meeting in this company, which happened two months

after the end of this project, the Scrum Master and the functional manager commented

that agile adoption in the company was still very incipient. The feeling was that top-

management decided to adopt agile methods based on external stimuli, rather than

based on the initiatives of the “agile motion” we identified in the research. They believe

it frustrates people that were – even isolated – working with agile methods because

the knowledge within the company was ignored. They also emphasized that the

outcome “agile priority” is a wishful thinking. It is something that they do not really feel

as something that is going to happen in near future.

The case presented for Company G shows a case of a team that is starting with

agile methods, still learning the practices. The context of a big and bureaucratic

company imposes some challenges and shows the importance of top-management

support. Ambidexterity data reflect lack of alignment and adaptability, although project

success perception is positive.

The individual results we presented here in each of the within-case analyses

were also presented to the team leaders, as feedback of the research and to evaluate

our interpretation. The suggestions they gave were considered in the presentation of

the data. Next section shows the findings of the cross-case analysis.

5.2.2 Cross-case analysis

The cross-case analysis forces the researcher to go beyond individual results

and search for patterns in the data (EISENHARDT, 1989). We performed this cross-

case analysis searching for evidence in the data to confirm or refute the cases study

propositions (Figure 11 on page 54).

Our first proposition stated that the team plays a central role in agile software

development maturity. To evaluate this proposition, we analyzed the team evolvement

in the maturing processes of the cases. The main evidence for this proposition are the

cases of Companies C and G, which still had responsive teams and lacked

ambidexterity perception on their teams (Table 36). It means that both teams which

still did not feel that they had adaptability to work (essential to enable agility) were also

experiencing difficulties to become confident. Conversely, one of the best results in

ambidexterity, Company F, was the only one identified as having a sparkling team.

 105

Secondary evidence to analyze this proposition is that, while our definition for

maturity in agile software development includes standardization and continuous

improvement of agile practices, our teams have matured over time by increasing

assertiveness and motivation to learn. We believe this relation shows team’s conduct

in central to the evolvement of agile work processes.

Accordingly, we lack enough data to claim that thorough definition and

standardization of processes (focus on exploitation) grow as agile practices evolve.

Instead, teams apply some practices to comprehend their situation (e.g. project

tracking, report work status, simple metrics etc.) but their evolvement is perceived in

their initiative to improve continuously. We conclude, then, that we have enough

evidence to confirm our first proposition: the team plays this central role and we

emphasize that it is supported by an ambidextrous management, as shown in the next

proposition.

Our second proposition speculated that teams get mature in agile software

development by combining exploration and exploitation activities, that is, through

ambidexterity. This proposition can be verified in our quantitative data. Considering

that maturity should be related to the success of the projects (MAIER; MOUTRIE;

CLARKSON, 2012; LEPPÄNEN, 2013), we show in Table 36 the means for project

success perception on each team and the ambidexterity data for each case. We

present in this table the percentage of agreement in each team for each aspect.

Table 36 - Ambidexterity data from all cases

Team
Projects
success

perception

Null
hypothesis

not
rejected

Good
performance on

team

Good
alignment*

Bad
alignment*

Adaptability*
Bridging

ties
Strong

ties

Company A 4.2 0 87.5% 100.0% 6.3% 91.7% 100.0% 95.0%

Company B
Team 1

4.6 2 80.0% 40.0% 80.0% 20.0% 100.0% 100.0%

Company B
Team 2

3.8 3 67.9% 57.1% 57.1% 61.9% 100.0% 94.3%

Company C 3.4 3 58.3% 16.7% 41.7% 27.8% 88.9% 90.0%

Company D 4.4 2 87.5% 75.0% 12.5% 91.7% 83.3% 100.0%

Company E
Team 1

3.6 0 92.5% 90.0% 5.0% 50.0% 83.3% 92.0%

Company E
Team 2

3.8 1 95.0% 80.0% 0.0% 80.0% 86.7% 92.0%

Company F 4.8 1 87.1% 75.0% 0.0% 95.8% 95.8% 100.0%

Company G 4.6 1 90.6% 12.5% 31.3% 0.0% 87.5% 100.0%

* Underlined data show null hypotheses which could not be rejected in Chi-Square tests; thus, they do not represent an agreement

in the team.

 106

Ambidexterity evaluation based on bridging ties and strong ties confirmed that

all agile teams successfully combine these characteristics. Regarding alignment and

adaptability, the teams with a greater number of non-rejected null hypotheses (i.e., less

agreement on the team) have the lowest perception of good performance on the team

and projects success perception mean lower than 4. The teams with none of the null

hypothesis rejected, presented high perception of good performance on the team

(close to 90%), high percentages of good alignment; and low percentages of bad

alignment. Teams with just one non-rejected null hypothesis present a similar situation.

With respect to adaptability, the teams with none or one non-rejected null hypothesis

also feel adaptability in management systems (with one exception, for team 1 in

Company E, which presents a lower percentage). We have not considered the team

from Company G in this evaluation (note the extremely low values for alignment and

adaptability) because it represents a pilot project; thus, the perception of the team

considers a recent and short experience.

In addition to that, management appeared in the cases and plays an essential

role in the evolvement of the team. Responsive teams can evolve to confident teams

when they find space for autonomy. Ambidextrous management is the one that allows

this autonomy by keeping team alignment with adaptability. A sparkling team could

only be identified in Company F, one of the best results in ambidexterity. With these

data, we consider that the second proposition was confirmed.

The conclusion for the third proposition is subjective, yet evident. This

proposition stated that the exact set of practices is not pre-defined at each maturing

stage. It has been confirmed by the lack of pattern among the contexts and practices

on each team. They started their agile adoption differently and the practices also

evolved differently. We could not identify maturity stages but we could, however,

uncover that the outcomes are similar, and a pattern could be identified in the

progression of these outcomes, as described next in the evaluation of the fourth

proposition.

The fourth proposition, which posed that teams evolve in agile development

starting with agile values, involved customer, planning and requirements; and then,

later invest in agile coding and agile testing, was not confirmed. As practices and

contexts are too different among teams, we could not identify this pattern of adoption

on the teams included in this study: there was not such a sequence of practices

adopted.

 107

However, as a pattern in the outcomes emerged from the comparison of the

cases, our cross-case analysis uncovered seven categories of pursued outcomes – or

evolvement threads – and how they evolved on actual agile teams, as shown in Figure

17 at the beginning of Section 5.2. The categories are: practices learning, team

conduct, deliveries pace, features disclosure, software product, customer relationship

and organizational support. We represented them in the Progressive Outcomes

framework for agile software development (Figure 17). Table 9, Table 12, Table 15,

Table 18, Table 21, Table 24, Table 27, Table 30 and Table 33 show the variety of

practices the teams implemented to pursue the outcomes described in this section.

One could argue that not all the outcomes identified in the cases are included in this

framework. Indeed, the outcomes Standardization of agile practices, Specialist team,

Interdisciplinary team, Represented Customer, Third-people supportable software

were specific to the context and the moment a specific team was experiencing and, for

this reason, were not included in the general framework.

This framework represents a non-linear and dynamic, i.e. discontinuous,

process of agile software development evolvement. In the validation presentation that

we made with the team leaders, we presented which of the outcomes each team had

accomplished (in a subjective assessment, presented in APPENDIX H), and it was

clear that each team evolves in the outcomes that are relevant to their business

contexts. For example, Company A did not invest in “Agile learning”, as they hired an

experienced team, and they did not implement initiatives to allow for requirements

discovery, either. In their business context, the requirements usually did not change

once they had been defined. Company C had “Comprehension of situation” before

agile adoption. Company B – Team 1 did not pursue any of the customers’ outcomes,

as they did not have this need. Company F did not accomplish the outcomes of

“responsive” and “confident team” before the “assertive team”, as it has an established

culture based on other mature offices around the world.

We did not identify stages for agile adoption, neither a predefined sequence for

pursuing the outcomes. Furthermore, we consider that these outcomes are highly

volatile and any small change in an aspect may lead the team to take a step behind.

For example, when a customer changes, outcomes need to be pursued again. When

a team changes, the same takes place. If technology changes, an efficient coding

might also be lost. Thus, any tentative assessment based on this framework will be a

 108

temporary picture of the dynamic situation teams face in agile work processes

improvement.

5.3 Agile Compass: the diagnosis tool

In Section 4.2.3, we described the pre-evaluation we performed with agile

practitioners. One of the main types of feedback we received was that the Progressive

Outcomes Framework successfully described the mechanisms agile teams apply to

mature, but it lacked clues for teams to identify where they are situated in this maturing

process (this and other feedback information is described in Section 5.4).

For this reason, we complemented our main result – the Progressive Outcomes

framework – with a diagnosis tool to allow the self-assessment of agile teams. We

name it as the Agile Compass, as the objective is to provide a simple, slack and

temporary picture of the outcomes a team has accomplished. To create it, we

consolidated all the evidences across teams for each outcome. The Agile Compass

was published in Fontana et al. (2015d).

Each outcome was thus characterized with a short sentence and with two or

three items in a checklist. Teams should, in a collective meeting (such as in a

retrospective meeting), identify which items they observe as applicable to their reality.

If all items in an outcome checklist are marked, we consider the outcome was

achieved. We suggest that the Progressive Outcomes framework should be printed

and visually available, with accomplished and desired outcomes highlighted, to

stimulate constant self-assessment and self-improvement. By being visible to the

team, the framework may provide information for software engineers to reflect and

address the need of tools that “encourage sensemaking, critiquing, and the

identification of new forms of development work” (DYBÅ; MAIDEN; GLASS, 2014, p.

32).

Recent research has shown that the stage-based models for agile maturity, as

we presented in CHAPTER 2, have not been successfully validated and even criticized

for not embracing the agility characteristics in the software process (GANDOMANI;

NAFCHI, 2015; GREN; TORKAR; FELDT, 2015). By agreeing with these authors, we

built the Agile Compass based on empirical data, i.e., reflecting actual agile teams

dynamics. Our proposal addresses, thus, the need for allowing adaptability with clear

guidance: teams identify where they are by diagnosing accomplished outcomes and

discuss their own ways to improve or pursue new outcomes.

 109

Table 37 shows the categories, their outcomes and the statements that should

be used to identify whether outcomes have been accomplished.

Table 37 - The Agile Compass: a diagnosis tool to identify accomplished outcomes

PRACTICES
LEARNING

Agile trial
The team is trying to use an agile method with empirical learning. Most of the times, not all practices were
implemented. Benefits are not fully realized.

 We are learning on the fly
 We did not realize the expected benefits of agile adoption
 We are still learning how to deliver value to our customer
 Agile learning
 The team is learning the agile method. The method is used "by the book" usually by getting training or

coaching. Practices are fully implemented, as described in books and tutorials. It is important for the team to
learn the value of each practice to be able to tailor or even abandon them later.

 We are following an agile method "by the book"
 We are getting training or coaching
 We are working with pilot projects
 Sensemaking of work processes
 The team understands agile practices and the value they add. They can now tailor the practices to their

context and feel confident to be flexible in work processes, without abandoning agility.
 We learned the agile method and understand the value of each practice
 We are currently tailoring the practices
 We feel the work processes are more flexible according to the characteristics of each project
 Comprehension of situation
 The team has information about their work processes. Information is simple and usually based on physical

visibility or simple metrics. They use this information to make decisions and implement improvements in the
process. These improvements are usually small and incremental.

 We are able to explain what happens in our work processes
 We have some metrics
 We use our understanding to make decisions

TEAM CONDUCT
 Responsive team
 The team needs close leadership to drive activities. They do not have/were given autonomy to make

decisions. The team does not have the confidence to protect their work, that is, overtime is usual because of
extra demands.

 We have partial autonomy to make decisions (about design, technology, project etc.)
 We feel the need to have the Scrum Master with us most of the time
 We have weak politics to protect team work
 Confident team
 This team still needs the Scrum Master around, but feels confident to make little decisions mainly about the

project. Their communication is fluent. Changes in work processes need to be approved by management.
 We are fluent with practices and feel autonomous to make some decisions in the project
 We know each other and are free to communicate
 We suggest improvements in the process, but they usually need approval
 Assertive team
 This team feels responsible for the project. They also have the autonomy to change the process. They make

their own decisions and inform management.
 We have the autonomy to improve our work processes
 We have the capability to drive our own work during the project
 We have politics to protect our work
 Sparkling team
 This team is focused on technical excellence. They create their work processes, supported by management.

They need a supportive environment to continue learning and, thus, keep motivated. It is possible to feel the
focus on constant improvement.

 We define our work processes and change them whenever needed
 We feel highly motivated to continue learning
 We feel leadership supporting the implementation of our ideas

DELIVERIES PACE
 Expected frequent finished coding
 Sprints are planned to finish code and integrate it into the repository. Most of times, functionality is not

tested yet. The team is learning how to deliver value at the end of the sprint.
 At the end of the sprint, we have code finished, but we do not deliver it
 Our sprint size sometimes varies
 We are not sure of what adds value to our customer
 Expected frequent deliverables
 This team identifies the value to be delivered but cannot deliver at the end of the sprint. The environment is

not fully supportive of agile build and code integration. Testing is usually manual.

 110

 We are capable of having functionalities ready to deliver in the end of the sprint, but we do
not deliver

 We can identify a minimum releasable product
 Expected frequent deliveries
 Deliveries are planned and done, but usually late. Sometimes extra demands appear and the team has to

address them. Environment is more supportive for automated build and integration
 We plan our deliveries and do them, usually late
 Our stories sizes vary
 Defined frequent deliveries
 Deliveries are planned and done within the deadline, sometimes before. Stories are usually small.

Environment supports automated build and integration.
 We plan our deliveries and do them, sometimes before deadline.
 Our stories sizes are similar, usually small

FEATURES
DISCLOSURE

 Requirements gathering
 Requirements are defined at the beginning of the project, usually with texts or diagrams. The team does not

feel comfortable about changes or emerging requirements during the project.
 We define most of the requirements at the beginning of the project
 We do not exactly know how to deal with changes in requirements during the project
 Requirements discovery
 Requirements are vaguely defined at the beginning of the project; they are detailed as sprints are initiated.

Changes and emergent requirements are welcome. Spykes might be used for requirements elicitation.
 We define, in detail, the requirements for the next sprint
 We are comfortable about changes or emergent requirements
 We can identify a minimum releasable product in our stories
 Requirements quality
 There are clear initiatives to guarantee the quality of the requirements, for them to be in accordance to

customer needs.
 We are concerned with whether what we deliver to our customer is exactly what the customer

needs
 We endeavor initiatives to improve the quality of the requirements

SOFTWARE
PRODUCT

 High-level source code
 Coding is an important activity and there are initiatives to guarantee the code is clear and robust, using best

practices available.
 We care about our code
 We endeavor initiatives to guarantee our code is fine, such as reviews, refactoring, pair

programming or others
 Awareness of failures
 There are failures in deliveries that need to be treated as soon as possible, and failures happen because of

problems in development process
 We spend some time in the sprint correcting bugs from the previous sprint
 We spend some time in the sprint with issues in code building and integration
 High-level delivered software
 There is a concern with the quality of the feature being delivered. For this reason, testing is a priority, either

automated or not. Also, there is a concern with the integrity of the code in the repository.
 We see testing as a priority
 Code is integrated as soon as possible
 Our code repository is always healthy
 Efficient coding
 Coding, integration and testing are performed with an infrastructure that allows agility. The team is

concerned with removing unnecessary delays in work processes. Devops is a common infrastructure to allow
efficient coding.

 We have automated tests, either unit or functional tests
 Our build and integration are automated
 We are concerned with removing delays in work processes by automating manual tasks

CUSTOMER
RELATIONSHIP

 Team awareness of customer
 The team is learning how the customer business is and the dynamics of the customer demands. This is the

reason why their contribution to customer requirements is still incipient.
 We are getting to know our customer and his/her demands
 We have partial ability to help customer defining requirements
 Customer awareness of team
 It is the learning process of the customer about the team. The customer is getting to know the processes, but

is not fully used to that. Sometimes it seems there is a lack of trust on the team.
 Our customer is learning how we work
 The customer knows what we are going to deliver
 The customer is not fully comfortable about reprioritizing requirements

 111

 Confident customer
 The customer is confident about the team's work. He believes that the team is concerned about delivering

what he needs. The customer is usually more flexible about deliveries and is more comfortable about
reprioritizing requirements. There is transparency between the team and the customer.

 We assist customer in requirements definition
 Customer is aware of his role in the process
 We feel the customer trusts our work
 Partner customer
 The customer recognizes the partnership with the team: while he feels the team is committed with his

business, the team feels the customer as being part of the team.
 We identify and suggest improvements to our customer’s business
 Our customer feels as if he is part of our team, with shared responsibility about deliveries

ORGANIZATIONAL
SUPPORT

 Agile motion
 Some isolated teams are starting to work with agile. The company is aware but not concerned about

acknowledging the process or the results.
 We see isolated agile initiatives in our company
 We feel weak acknowledgment of top management about these initiatives
 Agile commitment
 Top management decided to implement agile in the company and initiatives are official. There are

investments with training, coaching, communication and infrastructure for agile transformation
 There are official agile pilot projects in the company
 We feel company support (training, coaching or infrastructure) for agile transformation
 Agile priority
 There is full support from top management to agile transformation. Departments, roles, teams change to

support agility. As it is a top-bottom initiative, resistance still appears on some teams.
 We see that the company' structure (physical and departmental) has changed to support agile

transformation
 We feel there is some resistance to change in some teams
 Agile business
 Software development companies that are created with agile methods are, usually, agile businesses. The

company management strategies are focused on people and leanness, not just on software development,
but on the whole company.

 Our whole company is recognized as being agile
 Our teams adopt an agile foundation, but customize the way they work according to the

characteristics of projects

5.4 Results Evaluation

The results of this thesis were evaluated at two different moments. The first was

the pre-evaluation based on preliminary results, through a survey with agile

practitioners, described in Section 4.2.3. The second was the evaluation of final results

performed with individual interviews with agile researchers and practitioners, as

described in Section 4.3.

In the pre-evaluation phase, we obtained feedback about the Progressive

Outcomes framework from 231 agile practitioners. The results of this survey was

published in Fontana et al. (2015c). The profile of the respondents is presented in

Table 38. It shows the percentage of respondents for each range of experience in

software engineering in general and particularly in agile methods.

Table 38 - Respondents’ profile in the pre-evaluation

Experience in software engineering (years)

0 to 3 years 26%
4 to 10 years 27%
> 10 years 37%
Not informed 115

Experience in agile software development (years)

 112

0 to 1 year 40%
2 to 4 years 38%
> 4 years 19%
Not informed 3%

Considering the perception of all respondents, Table 39 shows the percentage

of agreement, neutral opinion and disagreement with each of the statements evaluated

by respondents. As the perception of experienced practitioners is relevant when

evaluating maturity, Table 40 filters responses with the opinion of the ninety-three

practitioners with three or more years of experience in agile. Highest percentages are

highlighted in boldface.

Table 39 - Opinion of all practitioners about the Progressive Outcomes Framework (pre-
evaluation)

The Progressive Outcomes framework… Opinion Percentage

…is useful to aid teams to evolve with agile methods Disagree 3%
 No opinion 4%
 Agree 94%
…is useful to define what maturing is in agile Disagree 1%
 No opinion 3%
 Agree 95%
… is easy to understand Disagree 5%
 No opinion 6%
 Agree 88%
… comprises what I believe is required to evolve in agile Disagree 6%
 No opinion 11%
 Agree 84%
… includes unnecessary information Disagree 56%
 No opinion 29%
 Agree 15%
… allows me to identify the current situation on my team/company Disagree 8%
 No opinion 7%
 Agree 85%
… is adaptable to different organizational contexts Disagree 5%
 No opinion 17%
 Agree 77%

Table 40 - Opinion of experienced practitioners about the Progressive Outcomes Framework
(pre-evaluation)

The Progressive Outcomes framework… Opinion Percentage

… is useful to aid teams to evolve with agile methods Disagree 4%
 No opinion 3%
 Agree 92%
… is useful to define what maturing is in agile Disagree 1%
 No opinion 3%
 Agree 96%
… is easy to understand Disagree 5%
 No opinion 5%
 Agree 89%
… comprises what I believe is required to evolve in agile Disagree 12%
 No opinion 8%
 Agree 80%
… includes unnecessary information Disagree 58%
 No opinion 26%
 Agree 16%
… allows me to identify the current situation on my team/company Disagree 16%
 No opinion 2%
 Agree 82%
… is adaptable to different organizational contexts Disagree 9%
 No opinion 17%
 Agree 74%

 113

 Percentages of responses with agreement, neutral opinion and disagreement

show accordance when comparing all responses with responses of experienced

practitioners only. The majority of respondents agreed that the preliminary version of

the Progressive Outcomes framework was useful to aid teams to evolve with agile

methods, comprised what they believed was required to evolve in agility, allowed them

to identify their current situation and seemed to be adaptable to different organizational

contexts. There was least agreement on the statement which evaluated if the

framework included unnecessary information. Even though, nearly half of practitioners

disagreed.

 In one of the events where we collected data, the questionnaire also had an

open-ended question asking for comments or suggestions. The consolidation of these

responses and feedback received after our talks showed that 1) practitioners felt that

the evolution of organizational context should have been represented in the

framework5; 2) more evidence was necessary for a team to identify whether an

outcome was accomplished; and 3) they lacked a clear description of management

initiatives in the maturing process.

 Suggestions were included in the second round of case studies: we added an

analysis of organizational position in agile adoption, for the teams in our sample that

were within big companies. We also built a diagnosis tool to provide clues based on

the evidence on how the teams in this study accomplished the outcomes. Finally, we

included, in the discussion of results, the evidence we found from management in

mature teams.

 The second evaluation was performed over the final results, with in-depth

presentations and interviews with agile practitioners and researchers. Our first round

of interviews took place during the Agile Trends 2015 conference in São Paulo. We

performed four presentations followed by semi-structured questions to collect the

feedback of interviewees. The conversations took forty minutes on average and the

feedback we received is summarized in Table 41. The interviewees’ comments refer

to the previous version of the framework in which categories were respectively called:

practices, team, deliveries, requirements, product, customer and organization.

5 The Progressive Outcomes framework version presented in the pre-evaluation was based in the four
first case studies and, thus, did not include the analysis of the organizational support evolvement.

 114

Table 41 - Feedback received in the first round of evaluations – Agile Trends 2015

Respondent 1 – Director of Product Safety – 17 years of experience in agile methods

Utility He agreed on the utility of the framework to situate agile teams, and also agreed on the dynamics we represent. He
commented he would call our result a “competence” – instead of “maturity” – framework. In his company, they use a similar
tool to evaluate customers’ readiness to adopt agile methods. It helps agile coaches to understand which value could be
delivered to which customer. He also mentioned our framework represents the complexity of agile teams and would call it a
tool for “comprehension” and not “evaluation”. To be applicable in practice, the framework should give hints on the “sensors”
or “metrics” to identify the outcomes. Regarding certification of agile teams, he said it is possible, but he would not recommend
it.

Quality He would add two outcomes in the “deliveries” category. One before the ones we proposed, when teams cannot even finish
code. Another after the ones we proposed, which he called “Scaled delivery”, when teams implement continuous deployment.
In the “requirements” category, he included the idea of defining hypothesis, instead of requirements, to get to “requirements
quality”. He made additional comments with respect to naming in categories: the product category could be called
"technique"; "product" category is more related to "requirements", in his opinion, and the term "practices" seems to be
confusing. Regarding the figure of the framework, he commented that it does not reflect the complexity of agile evolvement,
and suggested a format that would not relate outcomes to a sequence (“more art and less power point”).

Efficacy For him, our results seem to be closer to reality than other models, such as the Agile Fluency6. He understood management
ambidexterity and recognized it is a concept that makes clear that agile teams, although self-organized, need guidance. He
agreed the framework seems to be applicable to different contexts.

Locality He has experience with teams worldwide and recognizes the framework is applicable in other countries.

Respondent 2 – Scrum Master – 7 years of experience in agile methods

Utility His opinion is that the framework addresses a government need to choose software suppliers. As government in Brazil is widely
adopting agile methods, our results would be useful to aid in the assessment of a company to supply software to government
projects. He emphasized it would not be done with a certification – certification is not applicable to agility – it would not be a
ranking, but an assessment of the current situation, to meet a specific need. He also saw utility for the self-evaluation of the
team. A Scrum Master could use it to show teams where they are, how they evolved, where they could go, as an essential
movement towards continuous improvement. He also recognized our results as providing a basis for the awareness of the
transformations in organizational structures and leadership styles. He sees that future studies could use our framework as a
basis to deepen the organizational mechanisms for agile transformation.

Quality He commented that maybe we could make improvements on a few terms. In his company, for example, they do not work with
requirements, but with hypotheses, and it does not appear clearly in the "requirements" category.

Efficacy For him, the framework represents the complexity of an agile team, mainly when we make clear that is a temporary picture,
such as the financial situation of a company. He understands that our result is a set of principles, and not a model. These
principles might be followed with different models (which define the shape). Thus, he considers that our purpose fits different
organizational contexts.

Locality He commented he has experience in South America and, in such context, the framework seems to be applicable.

Respondent 3 - Agile Coach and Trainer – 9 years of experience in agile methods

Utility He found it interesting that we have formalized a concept of maturity specific to agile methods, in opposition to current
established reference models. He also added that the framework would allow each individual (from team members to
managers) to look at the “map” and identify how one sees a team's outcomes. It would be excellent for an agile coach to
understand the situation of the company, and identify the outcomes where work should be focused on. He commented the
framework is big for a team to be able to self-evaluate, it is a job that could be done with a coach, using a team exercise. For
him, the sequence in which we placed the outcomes may aid teams to identify the next steps. Regarding certification, he
commented that a maturity tag would be interesting, but he thinks it is impossible, given the complexity of the dynamic of
agile teams. He also sees that an interesting future study could identify the paths that different companies – in their specific
contexts – take in agile evolvement.

Quality He commented that the framework does not clearly show software product metrics. For him, these metrics are input to
requirements discovery. He also commented that the term “requirements” should be changed. Based on his experience, in
agile methods, people do not define requirements, but hypotheses. However, he also added that it is hard to change, because
people in the field are used to this term. He mentioned that naming the “practices” may be confusing with respect to what
they mean and also suggested that we could make clarify the continuous improvement dynamics in the framework. He said
that a low-maturity team would not continuously improve their own work, because it is a characteristic of more mature teams.
He thinks it could somehow appear in the framework.

Efficacy He agreed that our results effectively represent what and how maturity is in agile software development. He also commented
that he agrees that the framework suits different contexts.

Locality Based on his experience, the framework seems to be applicable to contexts in other countries, even different cultures, e.g.
India.

Respondent 4 – Agile Coach – 4 years of experience in agile methods; and
Respondent 5 – Researcher – 2 years of experience in agile methods

Utility Respondent 4 commented on the utility for the company – considering its own context (restrictions and wishes) – to draw a
target of where to go in agile transformation and experiment a diversity of practices. Then, the company could identify whether
the outcomes were accomplished. Besides, he believes that our results would make agility and its adoption tangible for
inexperienced teams. For him, the framework brings to light the dimensions involved in agile transformation. Respondent 4
and Respondent 5 agreed on the utility of the framework to evaluate a team. He said it is great to give feedback to the team
with respect to where they stand. It allows them to know what the next step is, and what the team needs to achieve it. He
commented he tried to create a similar tool for evaluation of teams. Regarding certification, Respondent 4 mentioned that it

6 Agile Fluency is a four-stage model for agile adoption, proposed by Diana Larsen and James Shore:
http://martinfowler.com/articles/agileFluency.html

 115

would be bad: it leads to stagnation; he also mentioned the commercial purpose of selling certificates and the search people
do for the tag rather than for the improvement itself. Respondent 5 saw the framework as the beginning of a theory for
evolvement in agile transformation.

Quality Respondent 4 commented that our framework requires experience in knowing the meaning of each outcome to be used.
Inexperienced individuals would not be able to understand it. Respondent 4 commented that, at first sight, the "Practices"
category was a little confusing because practices should be spread all over the other outcomes. Besides, the "requirements"
category does not make it clear what the difference is between "quality" and "discovery". Still as regards understanding of
outcomes, Respondent 5 commented that the teams' category lacked "high performance". The layout of the outcomes gave
Respondent 4 and Respondent 5 a sense of sequence, of levels in accomplishing the outcomes. Respondent 5 understood that
it is a sequence, but not necessarily a linear one.

Efficacy Respondent 4 commented that the framework is adaptable to different contexts. Teams of different companies could see the
map and identify where they are and how to get to outcomes in their contexts.

Locality Not evaluated.

The second round of interviews was performed during the XP 2015 conference, in

Helsinki. By applying the same method we used in the first round, we performed six

presentations, followed by an interview with semi-structured questions. Each

discussion took one hour on average, and their perceptions are summarized in Table

42. Similarly to the comments in Table 41, the interviewees’ comments from XP 2015

refer to the previous version of the framework in which categories were respectively

called: practices, team, deliveries, requirements, product, customer and organization.

Table 42 - Feedbacks received in the second round of evaluation – XP 2015

Respondent 6 – Norway – Researcher – 3 years of experience in agile methods
Respondent 7 – Brazil – Researcher – no experience in agile methods
Respondent 8 – Brazil – Functional Test Lead – 2 years of experience in agile methods

Utility Respondent 6 finds the results help systematize some ad-hoc perceptions researchers have when studying agile teams. She
told a story about a company in Europe where she and her colleagues went for evaluation of the process. She identified, in
this case, all of the categories we presented in the framework. However, at the time of their study, they did not have a
systematic procedure to organize their observations. The framework could help on that. Respondent 6 also added the
framework is a useful tool for consultants to make an initial assessment of the company. They could identify categories where
attention should be focused on for agile improvement. Respondent 7 agreed with her opinion, saying that the framework
brings “awareness” of what will be faced in agile evolvement. Respondent 7 also added that the framework could help teams
to identify their current situation.
From the research point of view, they commented that our results do not deepen the analysis of each category. Thus, the
framework provides room for future research. For each category, theories from other fields and more empirical data could be
collected. Some questions that remained open were about the utility of the framework to different roles, such as project
managers, Scrum Masters, low-maturity teams, high-maturity teams, developers, etc. In addition, the questions we asked led
to a discussion on how the result could be used by a company that is about to start agile transformation.

Quality According to Respondent 6, the name of the thesis, “maturity in agile software development”, does not attract people’s
attention. The software community in Europe does not appreciate maturity models. Certifications, for example, are not their
interest. Respondent 7 suggested it is an “evolvement” model, instead of a “maturity” model. Regarding the content of the
framework, they said they wished they had clearly seen in our outcomes: autonomy, individual knowledge, commitment and
self-managing in the team category; quality and tests issues; measurements and definition of done. Sabrina also added that
the framework could also have provided more clues on which outcomes should be pursued. Regarding the completeness of
the model, they suggested that the influence of practices in outcomes could more deeply analyzed.

Efficacy Respondent 6 identified in the framework one of the teams she studied in Poland. Respondent 8 could also map a team she
worked with in Brazil. Respondent 6 and Respondent 7 commented they appreciate our proposal for fast and small cycles of
improvement. Respondent 7 added that she is working on an agile transformation in a company in the south of Brazil and they
were looking for a step-by-step to implement agile. They arrived to the same conclusion as we did in our study: there is no
such a thing as a unique path of implementation.

Locality Respondent 6 identified the team she studied in Poland, evidence that maybe the framework is applicable in other countries.
Their main comment with regard to locality was that the importance of the framework as a support for agile transformation is
more intense in Brazil, as it is a country that is beginning agile adoption. Europe has another reality and, for consultants there,
maybe the framework does not add anything new. Besides, maturity certification in Europe is not a topic of common interest.

Respondent 9 – China – Agile Coach – 5 years of experience in agile methods

Utility His first comment was on the possibility of using the framework with a team to evaluate their situation. He commented that
in his company they have a real need. They have no idea of the maturity level of their 41 Scrum teams. He would like to have
a quick scan to understand how many teams are immature, mid-level or mature.

Quality He said the framework has observable results, helps see the gaps but does not show how to improve. “Seeing is ok, but so
what?”, he said. He understands it is a challenge, because a prescription for one team may not apply to another. But managers
always ask: “can you help me move to the next level?” He said that consultants cannot tell managers they have to experiment

 116

endlessly. Regarding the understanding of the dynamics, he agrees with the temporary picture the framework provides to
maturity. He had difficulty in understanding the difference between delivery and product. He said he wished the framework
had addressed team culture and team dynamics more clearly. He also suggested we should provide links between the
outcomes, showing the dependences among them.

Efficacy He identified one of the teams he was working with, confirming the suitability of the framework to different contexts.
Locality He told us that the framework seems to be suitable to a Chinese team he evaluated.

Respondent 10 – Denmark – Agile Coach – 15 years of experience in agile methods

Utility He thinks that the framework is useful for teams to find out where they stand. For the team, the value lies in the discussion
that could be fostered by a diagnosis using the framework. His opinion is that discussion is more important than the framework
people are discussing over. Maybe by using our framework the team would think and discuss about things they would not
otherwise.

Quality In general, he said the framework reminds him of TPI - Test Process Improvement7 and also tried to compare team category
with Tuckman's stages of team evolvement (TUCKMAN, 1965). He likes the idea of not having a ranking and the outcomes
made sense to him. He believes that using the framework in practice would lead to discovering other outcomes. He also added
a comment on the ambidexterity concept. He said that he identifies it in a context where you make it more flexible sometimes
by constraining a situation. Continuous integration, for him, is a good example of defining rigid rules on how the code is handled
and released. However, it leads to more flexibility and doing things faster. “The magic lies in the balance”, he said.

Efficacy He thinks the framework shows good empirical results and one good way to improve it is by starting to use it. He thinks one
organization could add a few outcomes, another could add different ones. He thinks that maybe there might be differences in
the product category if the team work with different products, such as UX (User Experience) software.

Locality He said that the framework should be open in order to be tailored to each organizational context.

Respondent 11 – Norway – Researcher – 9 years of experience in agile methods

Utility He kindly asked to refer to our conversation as a discussion on the research work, instead of an evaluation. He found value in
our results as empirical work that would be useful to compare with similar work in other countries. On the other hand, he
considered the framework as huge. He suggested we should consider, in future work, focusing on in each dimension as a
research topic. More mature research fields provide theories and evidence that could be compared to our result.

Quality His opinion is that the framework is quite broad. Each of the categories could be treated as a whole research study. For
example, in the team category, there are plenty of theories that explain team evolvement. Also for organizational evolvement,
he mentioned the Enterprise Agile studies. He added that, for a large-scale scope, it seems that some extra challenges could
be added to the framework.

Efficacy He finds the list of categories relevant for agile maturing. He said it is easy to recognize key challenges and main topics. He also
commented that we did not find stages of evolution perhaps because we do not have enough data. He mentioned
organizational ambidexterity as a relevant topic, which he and his colleagues are interested in relating to scaling agile methods.
He added that in his research he recognizes some of the descriptions we made of the framework, such as losing outcomes
when a team member leaves the team, for example.

Locality He sees agile maturity in his context similarly to some of my conclusions; for example, mature teams customize and leave
some agile practices. However, he did not provide clear evidence of their applicability to the Norwegian context.

Respondent 12 – Norway – Researcher – 20 years of experience in agile methods

Utility His opinion is that the results we presented are broad and analysis of each of the categories could be deepened. For example,
just for team and organization, there would be research work for a whole lifetime. There are a number of future research
studies that could be drawn up from these results.

Quality His first comment was that we should be careful about the terms “maturity” and “process improvement” because they have
been contaminated by CMMI concepts. It might create some communication problems. He also commented that the word
“agile” seems to be contaminated. People think that to be agile one has to implement a list of practices. Then, he prefers to
use, for example, the term “flexibility”. He also said there is nothing wrong with the framework but there is the challenge of
going further with enough detail. For example, sensemaking, ambidexterity, team and organizational theories could be used
as lens to explain maturing in agile. He added that, in general, the framework is good. However, he thinks that if he analyzed
each of the outcomes in detail, he might disagree on some points.

Efficacy His opinion is that we covered a lot of ground in the framework, maybe too much. Each of the categories, according to him,
could be a field of study. Nevertheless, he said he sees connections among outcomes and also cannot see maturity levels, as
our purpose.

Locality He has been studying ambidexterity for a long time and he recognizes it in agile teams. However, he did not provide clear
evidence of the applicability of the framework to the Norwegian context.

Respondent 13 – Italy – Researcher – 12 years of experience in agile methods

Utility From the practical perspective, she thinks our results help teams to understand where they stand. For her, somehow the way
we presented the categories gives teams an idea of where to go. She thinks that it would be useful to identify profiles of the
cases and the paths they took for improvement. She said that maybe we could suggest, for specific contexts, paths of
improvement (a list of practices, for example), based even on one case. It provides a starting point for other comparative
studies.

Quality She said that, based on our empirical result, we could suggest potential levels for improvement, so that teams know where to
go next. Academically, she would like to know the logic behind the categories. “Aren’t there other important dimensions that
are not covered in your results?”, she asked. It is fine that dimensions are emergent from data, but she would like to see a
level above and what these dimensions suggest selecting, for example, a higher level of abstraction. Maybe in a higher level of
abstraction influences among categories could emerge. She also mentioned that the “organization” category seems to be at
another level of analysis. It seems to be something that influences maturity but is not directed related to it, as the other
categories. It would keep the analysis level consistent.

7 Andersin, J. 2004. TPI – a model for Test Process Improvement. Seminar on Quality Models for
Software Engineering, Helsinki. Available at http://goo.gl/9JSFUQ

 117

Efficacy She agrees that maturity in agile is a temporary picture, in the sense that changes in environment make maturity change. She
said it is a “realistic picture of reality”.

Locality She said the results look familiar to her, considering the teams she studies in Europe. She said we are talking about culture,
national culture. However, many times, company culture, team culture and professional culture – especially developers’
culture – influence more than national culture. Therefore, she said that, based on her experience, it does not seem that a
Brazilian agile developer is so different from an Italian agile developer.

The discussions on the results of this study provided us with a grounded perception

of our contributions and limitations. To sum up, the answers we described in Table 41

and Table 42 showed us that our research work:

 Regarding utility in practical perspective: it is useful for teams to situate

themselves through guided discussions and for consultants to understand the

teams they are working with. Certification seems to be an interesting topic in

Brazil, but it does not seem possible, given the dynamic of agile maturity;

 Regarding utility in research perspective: it is useful to systematize observation

of agile teams. Future work should consider identifying paths of accomplishment

of outcomes in different organizational contexts;

 Regarding quality in practical perspective: it should consider refining naming

and clarifying the meaning of categories and outcomes. We have actually

reviewed categories’ names in the framework, and results presented in this

section already consider reviewed naming;

 Regarding quality in research perspective: it should suggest future studies with

1) more empirical research to confirm the outcomes; 2) more empirical work to

map influence among practices and outcomes; and 3) in-depth description of

the categories with theoretical foundation from other fields of study;

 Regarding efficacy: the concepts and dynamics we proposed seem to suit

reality;

 Regarding locality: we do not have enough evidence to confirm it is applicable

in other countries. However, our results are clearly suitable to Brazilian and

similar contexts.

Next section presents our discussions on the findings.

 118

 119

CHAPTER 6. DISCUSSIONS

We had two specific objectives in this thesis. The first was to define maturity in

agile software development; and the second was to investigate the mechanisms that

teams apply to mature in agile software development. This section discusses the

results, as well as presents the concerns about the validity of the research. Figure 28

summarizes the contents of this chapter and contextualizes it with the previous and

the next ones.

Figure 28 - Contextualization of Chapter 6

6.1 Definition of agile maturity

Our first research question aimed to investigate what maturity is in agile software

development, and we have proposed such a definition based on practitioners’

perceptions. As the Agile Manifesto (BECK et al., 2001) is an established reference for

 120

agile values and practices, a comparison of the principles presented in the agile

manifesto and the elements of our definition of maturity is shown in Table 43.

Some of the principles of the Agile Manifesto were not addressed by our definition

of maturity, such as delivering working software frequently, integrating business people

into the project, having working software as a measure of progress and simplicity at

work. On the other hand, our definition adds two elements to the issues previously

addressed in the Agile Manifesto: standardization of agile practices and management

of source code and tests by using tools, methods and metrics. It seems that

practitioners perceive the importance of having an alignment of agile practices when

scaling adoption and having tools, methods and metrics to manage development to be

not just agile, but also mature in agile software development.

Table 43 - Comparison of the definition of maturity with the Agile Manifesto principles

Principles of the Agile Manifesto (BECK et al., 2001) Elements of the definition for agile software development maturity

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

The team generates perceived outcomes for customer and cares
about customer and software quality.

Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive
advantage.

The team allows requirements to change.

Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

-

Business people and developers must work together daily
throughout the project.

-

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

The team collaborates on projects by being committed and
supported by an infrastructure for agility.

The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

The team collaborates on projects by communicating and sharing
knowledge

Working software is the primary measure of progress. -
Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

The team self-organizes at a sustainable pace.

Continuous attention to technical excellence and good design
enhance agility.

The team cares about software quality.

Simplicity - the art of maximizing the amount of work not done - is
essential.

-

The best architectures, requirements, and designs emerge from
self-organizing teams.

The team self-organizes at a sustainable pace.

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

The team continuously improves agile practices

Although we have proposed our definition of maturity before we discovered the

outcomes in the case studies, we are able to relate the definition elements to the

categories of outcomes, as described in Figure 29. For example, in the second line of

Figure 29: to have a team that collaborates on projects by communicating and being

committed, that shares knowledge and self organizes at a sustainable pace, our

investigation has shown that teams evolve from being responsive to a sparkling

outcome. This evolution experiences intermediate outcomes, such as being confident

 121

and assertive at work. Similarly, for the other elements of the definition, we show how

the progressive outcomes provide support in Figure 29.

Figure 29 - Relating the definition for maturity with the Progressive Outcomes framework

6.2 Neither stages, nor prescribed practices

Our definition, as well as the framework we proposed, places an emphasis on the

importance of people. This central role people play in software development is

reinforced by studies which show that increasing processes definition is hard to sustain

and, as time goes by, people end up working with a minimum process (COLEMAN;

O’CONNOR, 2008), as software development staff focus on having the job done

(ADOLPH; KRUTCHEN; HALL et al., 2012). There is plenty of evidence that, with agile

methods, teams tailor their practices according to their contexts (CESARE et al., 2010;

ARMBRUST; ROMBACH, 2011; SHEFFIELD; LEMÉTAYER, 2012; KIRK;

TEMPERO, 2012; BUSTARD; WILKIE; GREER, 2013) and processes definition,

therefore, is secondary.

 122

For this reason, our results run counter initiatives that invest in maturing agile

teams and organizations with the implementation of the CMMI-DEV reference model

(as shown in CHAPTER 2). We consider these initiatives valuable if there is no concern

about sustaining agility and agile values such as self-organization, simplicity and

adaptability. On the other hand, if teams wish to maintain agility, they cannot rely on

these reference models. Currently published agile maturity models presented in

CHAPTER 2 already address this issue by proposing other means to mature in agility.

What our study adds to the current body-of-knowledge in agile maturity is that

context dependence hinders the possibility of prescribing practices. Our theoretical

foundation has shown that agile software development teams are complex adaptive

systems. In this kind of systems, potential, creative, novel solutions emerge when the

system is left to self-organize. That is, detailed codified routines hinder the emergence

of optimal results. Our investigation of agile teams confirmed this lack of pattern in the

adoption of the practices.

There is evidence in previous studies in the agile software development maturity

field regarding the inapplicability of prescribed practices. In the model proposed by

Sidky et al. (2007), for example, a set of practices was defined for each maturity level

but, on the validation of the framework, practitioners have pointed out that there is a

need for tailoring and considering the experiences of organizations. Kettunen (2012)

had a similar conclusion, and so did the survey performed by Schweigert et al. (2012).

Our survey has also indicated that agile practitioners believe that following a maturity

model is valuable only if space is left for tailoring (FONTANA; REINEHR; MALUCELLI,

2014).

Accordingly, we could not identify a standardized sequence of adoption of the

practices, i.e., a team implemented a practice such as “test driven development” in the

beginning of agile adoption, and another team did that at a later moment. Figure 29

does not show stages or processes to be implemented. The evolvement of the

practices in an agile team is a non-linear and dynamic process, in which we could

identify a pattern in the outcomes pursued by the team, but not in the exact practices

they endeavor to accomplish each outcome.

Indeed, complex adaptive systems work within boundaries, which constitute their

attractors, but the exact form the system presents inside these boundaries cannot be

predicted (STACEY, 1996). The outcomes in our framework represent the boundaries,

and the practices to accomplish them should not be prescribed. It complies with the

 123

equifinality for the development of dynamic capabilities, that is, although there are

commonalities across firms, there are multiple paths to the same dynamic capability

(EISENHARDT; MARTIN, 2000).

The Progressive Outcomes framework we present here (see right-hand side in

Figure 29) proposes, therefore, a “semi-structure” for the maturing process, contrasting

with the current agile maturity models (NAWROCKI; WALTER; WOJCIECHOWSKI,

2001; LUI; CHAN, 2005; SIDKY; ARTHUR; BOHNER, 2007; QUMER; HENDERSON-

SELLERS, 2008; PATEL; RAMACHANDRAN, 2009; BENEFIELD, 2010; YIN;

FIGUEIREDO; SILVA, 2011; ÖZCAN-TOP; DEMIRÖRS, 2014): there are neither

stages, nor prescribed practices. It considers that software process improvement is

indeed a process of emergent change, enabled and constrained by the context

(ALLISON; MERALI, 2007). The emergence of the practices “is not simply a random

process, but something that occurs to achieve an intended vision where the detail of

that designed future is not fully understood at the time of the action” (Ibid., p. 678). This

intended vision is what we named as pursued outcomes.

6.3 Management ambidexterity

 When evolving to accomplish the outcomes, using whichever practices they feel

like, teams also develop ambidextrous abilities. Ambidexterity – capacity to be

simultaneously aligned and flexible (GIBSON; BIRKINSHAW, 2004) – reflects maturity

in agile software development. Even before Agile Manifesto, Dybå (2000) already

identified that some of the key factors for successful software process improvement

were “exploitation of existing knowledge, and exploration of new knowledge” (DYBÅ,

2000, p. 259). In a study in small software development companies he warned “we

should pay more attention to the inherent tensions between discipline and creativity,

diversity and consensus, and knowing and doing, to mention just a few” (DYBÅ, 2000b,

p. 87). At that time, he identified this ability in combining a strong skill base with

experimentations as “improvisation”.

Studies in the agile software development field have responded to this claim by

showing benefits in combining these dual forces of exploration and exploitation

(MARCH, 1991). For example, the importance of preserving the disciplined practices

when adopting agile methods (BOEHM; TURNER, 2004), as well as the established

trend to combine plan-driven and agile characteristics in a single project

(BASKERVILLE; PRIES-HEJE; MADSEN, 2011). The synchronization of exploration

 124

and exploitation has already been observed in agile teams dynamics (VIDGEN;

WANG, 2009), and ambidexterity, likewise (RAMESH; MOHAN; CAO, 2012;

FONTANA et al., 2015b). Even on the behavior of agile practitioners, a duality has

been realized: serious professionals with a free-spirit and joking behavior (HAZZAN;

LERON, 2010).

Our findings provided evidence that mature teams are also ambidextrous. In

accordance with the fact that there is not such a unique recipe for ambidexterity

(GIBSON; BIRKINSHAW, 2004), our Progressive Outcomes framework considers this

need to allow for ambidexterity development by defining the outcomes the team may

pursue – the alignment – simultaneously making room for the team to implement the

practices according to their contexts – the adaptability. Experimentation is essential

and failure should be seen as “a natural part of process improvement"

(ABRAHAMSOON; BABAR; KRUTCHEN, 2010. p. 22).

Our complementary study on ambidexterity (FONTANA et al., 2015b) has

provided insights on how to accomplish it and evidenced the importance of

management action to guide the team throughout the maturing process. We identified

two main management strategies 1) exploiting enough to add value to the customer

and the team; and 2) processes automation and results visibility. “Exploiting enough”,

in the first strategy, means defining a minimum alignment on the team and leaving

space for action. For example, roles are established, but the atmosphere is friendly;

customer has expected and defined outcomes, but also has a relationship with the

team based on trust. For the second initiative, we observed that automating processes

– exploitation – generates data. These data, visible to everyone in team, foster informal

and close communication – exploration. One of the worries companies have when

adopting agile methods is the lack of managerial control (MELO et al., 2013b). We

believe that what they fear to lose is their exploitative control. Our studies provide

evidence that mature agile management is exploitative and also exploratory, keeping

alignment but also fostering the adaptability that agile teams need.

6.4 Outcomes and maturity

Based on our definition of maturity in agile software development (FONTANA et

al., 2014b) and on the observations made in the case studies (FONTANA et al., 2015),

we propose that the outcomes accomplished by mature agile teams are the ones

illustrated by Figure 30.

 125

Figure 30 - Outcomes on a mature team

 As for practices learning, the team has the ability to make sense of work

processes, focusing continuous action in tailoring and improvement. This

is performed through a comprehension of the situation based on

observations and metrics, as shown in Walter et al. (2015). Teams lack

the need to follow predefined processes, but management plays an

essential role here in enabling the collective perception of purpose and

allowing collective decision-making. We have described some of these

strategies when studying ambidextrous management in Fontana et al.

(2015b).

 126

 In team conduct there is assertiveness. The improvements made in the

process are mostly proposed by the team. This team also sparks in the

sense that motivation is sustained and perceived by a continuous focus

on learning and technical excellence. Reflective practice is essential in

this evolvement. According to Dybå, Maiden and Glass (2014), software

engineers must engage in reflections about the effectiveness of the

process, tools and issues involved in software engineering experience.

This seems to be essential in agile maturity, since stable processes do

not mean stable motivation (WALTER et al., 2015).

 Regarding deliveries pace, the team is able to deliver frequently, on time.

The frequency of delivery does not matter. We had in our study teams

that delivered on an hourly basis and teams that delivered on a monthly

basis. They were both mature in the sense that they planned frequent

deliveries and could actually do them. It should be noted that some teams

adopt a lean-way to deliver, leaving sprints and adopting a continuous

flow of tasks (WANG; CONBOY; CAWLEY, 2012). Even with a defined

delivery date to the customer, tasks assume a continuous flow in the

system.

 Features disclosure is performed with discovery of requirements during

the project. Teams that accomplished this outcome have the ability to

define stories (or pieces of requirements) to be delivered without change.

However, if new issues emerge during development – and are

recognized as priority – they are accommodated in the current sprint. It

seems to be associated with the outcome of Confident Customer. The

dynamics of allowing requirements to emerge and the changes new

requirements trigger in prioritization of deliveries are supported and

endorsed by a confident customer.

 A high-level software product is the value added to the team, an essential

stakeholder in agile projects (ABRAHAMSSON; BABAR; KRUTCHEN,

2010). Mature agile teams emphasize technical excellence. They have –

and “sparkle” for – high-level source code, high-level delivered software

and efficient coding. They have informal and disciplined processes to

assure software quality. The infrastructure for development is essential

 127

to accomplish this outcome, and it is closely associated with the

outcomes in the Organizational support category.

 In the relationship with the team, the customer must be confident. The

customer provides support for frequent deliveries and requirements

discovery. It became clear in the research that a team achieves a

confident customer after a process of getting to know each other. The

outcome in this category only applies to cases where the customer

remains the same in different projects. Otherwise, there is always a new

customer, and always a new acknowledgement process to start.

 Organizational support is essential for the agile evolvement process.

Particularly in traditional companies, the evolution of the engagement of

the organization is essential to provide the infrastructure the team needs

to evolve their outcomes; thus, agile must be a priority. Although we have

not explicitly investigated the organizational aspects on the teams in

small companies, some of them are clearly in the "agile business"

situation, because these companies were created to be agile. Here, there

is a subtle intersection with the known extensions of agile values to

management and Information Technology in general, as expressed in

Dening (2010) – the Radical Management, and Bell and Orzen (2011) –

the Lean IT. In big companies, when extending agile to business is not

possible, we believe maturity is also possible when the outcome Agile

priority was accomplished and strategies for coexistence with traditional

management have been adopted (as described in WAARDENBURG;

VLIET, 2013).

None of these outcomes can be pursued and accomplished without effective

management (MELO et al., 2013b). Such management has the ability to keep a team

aligned and at the same time flexible enough to reach outcomes. This ability is present

in day-to-day decision-making and it seems to be strongly founded on concrete visibility

of the current situation. This visibility allows the emergence of emotions that make

people make sense of this situation. The use of simple metrics is essential to quickly

understand the real situation and avoid making decisions based on assumptions.

Simple metrics provide fast data to take simple actions that create visibility. The cycle

then restarts. Figure 31 shows this management strategy, which has shown to be

 128

effective in ambidextrously managed agile teams. The case described in Walter et al.

(2015) shows examples of management actions in each of the steps in this cycle.

This cycle empirically applies Daniel Kolb's cycle of experiential learning,

presented by Dybå, Maiden and Glass (2014) as a tool for reflective practice. His cycle

comprises four stages: the first – concrete experience – is the actual experience to

deal with situations; next comes the reflection and observation of the experiences from

different point of views – the reflective observation; the third stage is abstract

conceptualization, in which individuals make sense of the experiences, explaining what

has been observed; and the last stage – active experimentation – is when individuals

test their ideas trying something new.

What happens after all outcomes have been accomplished? If the team is in a

stable context (no changes in team, customer, organization), focus is on specific

improvements, on technical excellence and on sustaining outcomes through

continuous improvement.

Figure 31 - Management strategies for continuous improvement

6.5 Continuous improvement

Continuous improvement is also the aim of high-maturity teams which have

adhered to CMMI-DEV. The difference from the context of agile teams is that

continuous improvement is not founded on extensive processes definition and

measurement. They do not necessarily have to define work, then control it, then

improve it, in this order. As we described earlier in the management strategy, the

continuous improvement cycle is quick (look, make sense and give simple responses)

and performed since the very beginning of the work on the team (CLARKE;

 129

O’CONNOR, 2011). Our study confirmed early conclusions from Dybå (2000) in the

sense that, to accomplish improvements in software processes, commitment to

learning is more important than to “best practice” models. We understand that this

visibility-based continuous improvement leads to an ambidextrous behavior, which

characterizes maturity in agile software development. Figure 32 represents how we

place continuous improvement in the maturing process with agile methods, in

comparison with continuous improvement in a CMMI-DEV maturing process.

Mature teams in agile software development are therefore different from mature

teams which follow CMMI-DEV guidelines. It reflects the fact that our research is

founded on a theoretical basis different from that of CMMI-DEV. CMMI-DEV guidelines

for maturity are founded on lessons learned from manufacturing. This is the context

where stability and repeatable processes are desirable (DYBÅ, 2000b). The example

given by Poppendieck and Poppendieck (2003) is valuable here. They differ the

process of creating a new recipe from making the dish. Creating a recipe is a creative

process that does not benefit from repeatability. It benefits from allowing

experimentation and change. However, when a recipe is created, making the dish is

actually a process where repeatability and reduction of variation are necessary to reach

efficiency and quality. As we consider to be working with complex adaptive systems,

our findings best fit maturity for creating new recipes. We agree with the learning

perspective from Dybå, Maiden and Glass (2014): “the conventional way of thinking

about software process improvement puts [...] in a sequential order - first

understanding, then action. [...] From a learning perspective, however, actions and

understandings often need to be reversed” (DYBÅ; MAIDEN; GLASS, 2014, p. 34).

Figure 32 - Comparison of continuous improvement in CMMI-DEV and in agile methods

 130

6.6 A temporary picture

The outcomes a team accomplished during the maturing process may change

as long as the environment changes: outcomes on a team recede if members are

replaced, outcomes in a product recede if technology changes, outcomes in a

customer recede if customer changes, outcomes in an organization recede with

changes in business strategy.

This situation confirms our theoretical foundation of complex adaptive systems:

there is no stability – but edge-of-chaos, instead. It highlights two important issues: 1)

the management strategies that will sustain improvement even with instability and 2)

the impossibility to label maturity with a tag. How can we label a team with alleged agile

maturity, if, in the case of team member change, the team will lose maturity?

Nevertheless, the diagnosis of agile maturity seems useful for its primary purpose

(KOHLEGGER; MAIER; THALMANN, 2009): situate the team and give clues for

improvement. Our framework, complemented by the Agile Compass, does not provide

a maturity tag; thus, it does not instigate ranking. The contribution is allowing teams to

situate themselves and glimpse where new improvements should take place, with a

clear view that there is a learning process and management strategies to be followed.

It addresses a need Dybå, Maiden and Glass (2014) identified when they say that

developers and software projects lack information that lead to a reflective practice: “Not

only to software developers lack the tools to capture, analyze and present information

upon which to reflect, most software projects don't actively support reflection, or budget

or schedule for it”. (DYBÅ; MAIDEN; GLASS, 2014, p. 32).

6.7 Practical advice from literature

Current research in agile methods provides practical evidence that aids teams in

finding guidance to pursue outcomes in agile practices learning, team conduct,

deliveries pace, features disclosure, software products, customer relationship and

organizational support, as shown in Table 44.

Table 44 - Insights from recent studies on the outcomes agile teams pursue

Category of
Outcome

Insights from recent studies

PRACTICES
LEARNING

• Power and Conboy (2014) studied the impediments to flow in agile methods. These impediments are "anything
that obstructs the smooth flow of work through the system and/or interferes with the system achieving its
goals" (p. 206). Four out of the nine impediments they identified are related to practices: delays (people waiting
for things to happen); failure demand; work in progress; and extra processes.

• Gandomani et al. (2014) found that training is not only a significant driver in the agile transformation process
but it is also, in many cases, inadequate and dysfunctional. The main reasons they identified for inadequate

 131

and dysfunctional training are: partial training, inappropriate contents and non-practical training, time-boxed
training, lack of time commitment (to the training), and human aspects (resistance to change).

• One of the worries companies have when adopting agile methods is the lack of management control (MELO et
al., 2013). Our study has shown that it is addressed in practice by exploitative behavior.

• The more experienced the company, the more agile practices it adopts, and they sometimes give up practices
because of context variables of the project, not because practices are useless (MELO et al., 2013).

• The iteration retrospective is an important moment in the projects, as short-term improvements in processes
are usually discussed in this meeting (DRURY; CONBOY; POWER, 2012).

TEAM CONDUCT • According to Melo et al. (2013) 91% of the companies in Brazil that adopted agile methods did so to increase
team productivity. On the other hand, one of the main reasons for agile adoption failure is lack of experience
in agile methods (MELO et al., 2013), which is evidence of the importance of the team in agile methods
evolvement.

• Four out of the nine impediments to flow that Power and Conboy (2014) identified are related to people issues,
such as, handovers, context switching, unnecessary motion, unmet human potential.

• Kettunen (2014) says that agile enterprises can be improved by fostering teams gauging their performance
accordingly towards the desired states: "since software work processes are actually performed by teams (and
their individuals), the transformations are ultimately realized by addressing them." (p. 291).

• Adolph et al. (2012) identified that agile teams focus on having the job done, and it includes satisfying the
software team members' needs to reach the end and achieve a feeling of accomplishment. The team also needs
to see technical debt minimized.

• Drury-Grogan (2014) identified that satisfying teams is one of the objectives that teams pursue during
iterations.

• Developers being pulled to deal with customer support issues during iteration may negatively affect decision-
making in agile projects (DRURY; CONBOY; POWER, 2012).

• Choices of the team design are an important factor that impacts team productivity. Melo et.al. (2013b)
identified that full time team members contribute to the team focus; in mixed team members, novice members
contribute flexibility and experienced ones contribute knowledge; small teams lead to better communication,
conflict management, commitment and sense of responsibility; and team collocation helps in negotiation and
planning of requirements.

• The study by Moe et al. (2010) provides valuable insights on the importance of communication, feedback and
trust.

• The experience of the team contributes to the emergence of practices in shadow networks (STACEY, 1996), as
more experienced individuals usually create an increased number of informal social networks and focus their
energy on productive discussions (ADOLPH; KRUTCHEN; HALL et al., 2012).

• Moe, Dingsøyr and Dybå (2009) suggest, to foster self-managing teams, building redundancy and team-level
by: organizing cross-training, collocating the team at the same room, appreciating generalists practitioners,
building trust and commitment, assigning people to one project at a time.

DELIVERIES PACE • Melo et al. (2013) identified that 73% of Brazilian companies that adopted agile methods sought to accelerate
time to market, that is, speed-up deliveries.

• Olsson and Bosh (2014) say that the final stage of agile adoption is when deliveries are “experiment systems”
because feedback from the customer is collected real-time, instead of “being frozen early as part of
requirements prioritization” (p. 329). They also see continuous deployment as the “heaven” of adoption of
agile methods practices.

• Drury-Grogan (2014) identified that meeting schedule is one of the objectives that teams pursue during
iterations.

• Bellomo (2013) emphasizes the importance of architecture definitions and prototyping for rapid delivery.
Successful teams weave architecture and requirements during prototyping and develop flexible architectures.

• Tonelli et al. (2013) identified that some factors affect accelerating deliveries, such as planning sprints with
bug correction, and better product development guided by test/test-driven development with instant
feedback, among other factors.

FEATURES
DISCLOSURE

• Melo et al (2013) identified that managing changing priorities is the reason for adopting agile methods in 86%
of agile companies in Brazil.

• One impediment to flow identified by Power and Conboy (2014) is related to requirements: including extra
features in requirements.

• Drury-Grogan (2014) identified that meeting functionality is one of the objectives that teams pursue during
iterations. She also identified that accepting iterations amendments after sign-off (adding additional work to
the sprint) is one issue that affects project management success.

• The main physical artifacts in agile software development are story cards and the wall and, when teams
substitute these artifacts by other means, the notational and social perspectives may be harmed (SHARP;
ROBINSON; PETRE, 2009).

• The need to balance between the need for progress (user requirements) and for quality (team requirements)
may lead to problems in software quality and code disorganization (MOE; AURUM; DYBÅ, 2012).

• Wnuk et al. (2013) verified that requirements identified by domain experts are less likely to become obsolete
during the project and, thus, show the importance of team expertise about the customer business.

 132

SOFTWARE
PRODUCT

• Melo et al. (2013) identified that one of the main reasons why companies adopted agile methods was to
enhance software quality.

• Architecture definition in agile software is an essential activity because it seeks to provide product quality and
deliver value to a key class of stakeholders. i.e., developers. The architectural issues must be defined as soon
as possible in the project life cycle, and documentation must be used as needed: in most cases, an architectural
prototype will suffice, but in others, more explicit documentation is needed (ABRAHAMSSON; BABAR;
KRUTCHEN, 2010).

• Drury-Grogan (2014) identified that delivering quality products is one of the objectives teams pursue during
iterations.

• In the dynamic environment of agile approaches, the continuous modification of software can cause risks for
software developers, as code may become fault-prone or difficult to maintain. Thus, Antinyan et al. (2013)
suggest that risk in modifying code should be assessed through metrics, such as number of revisions in the code
and cyclomatic complexity.

• Technical debt is one of the problems created with frequent and timeless coding changes, and Krishna and
Basu (2012) suggested a number of practices to reduce technical debt, e. g. developers should smell their own
codes and take help from others.

• Collins and Lucena (2012) investigated the adoption of automated tests in agile teams and identified that
experimenting is a key ability: teams should experiment new practices and technologies and abandon them
when they do not feel they are useful. Some of their findings was that test automation must be simple and
address tests that add value to the product.

CUSTOMER
RELATIONSHIP

• According to Melo et al. (2013), 72% of agile Brazilian companies adopted agile methods to improve alignment
between IT and business.

• Adolph et al. (2012) identified that agile teams focus on having the job done, and it includes creating software
that appeases the customer.

• Customer focus on agile projects may be characterized by customer knowledge, customer involvement,
customer identity, customer characteristics, customer location and team experience with the customer
(LOHAN; LANG; CONBOY, 2011).

• Customer involvement is critical to agile projects. Hoda et al. (2011) identified that inadequate customer
involvement leads to adverse consequences for self-organizing agile teams. These consequences were pressure
to over-commit, problems with gathering and clarifying requirements, problems with prioritizing requirements,
problems with securing feedback, loss of productivity, and in extreme cases, business loss.

ORGANIZATIONAL
SUPPORT

• Dybå (2000) emphasizes organizational role in software process improvement initiatives in general affirming
that “process improvement cannot be managed, but only enabled through the space in which the software
organization creates the possibilities for sensemaking, knowledge creation, and purposeful action” (DYBÅ,
2000, p. v).

• Manen and Vliet (2014) identified that the “agile mindset” is crucial for the expansion of agile methods across
the organization. They identified the issues that are related to enabling agile mindset: collaboration, trust and
continuous improvement. For each of these factors, they show the factors that influence each of these issues,
either positively or negatively.

• Communities of practice play a significant role in successful agile transformation. Communities of practice is a
group of practitioners who wish to deepen their knowledge in a common topic. Paasivaara and Lassenius (2014)
presented a case in a large organization where communities of practice were used and recognized as essential
for agile transformation and, also, after the method was established, for continuous improvement.

• Waandenburg and Vliet (2013) studied the challenges of co-existence of agile methods with plan-driven
approaches in an organization. They identified that these challenges are classified in two categories: increased
IT landscape complexity and lack of business involvement. They presented the conditions, causes,
consequences and contingences for the challenges.

• Paasivaara et al. (2014) describe how “value workshops” helped Ericsson to align different sites and teams in
agile transformation. The company decided to create workshops, which were held by agile coaches and a few
managers, to create a vision of where the organization was heading for. Five core values were transmitted
during the workshops: one organization, step-by-step, customer collaboration, passion to win and fun. The
workshops also had the objective to create collaboration among sites and a “we” spirit.

• Santos et al. (2014) presented a model for effective knowledge sharing among teams when agile has scaled to
the whole organization. Their model emphasizes that inter-team knowledge sharing is only effective when the
process is completely implemented, rather than only specific practices. Those practices are mainly related to
socializing knowledge and their effectiveness is influenced by organizational context and stimuli.

• Moe, Dingsøyr and Dybå (2009) identified that the barriers to a self-managing are not just in the team itself,
but also in the organizational context. Team-level barriers they identified were individual commitment,
individual leadership and failure to learn. On the organizational level, the barriers to self-managing software
teams were shared resources, organizational control and specialist culture.

 133

6.8 Threats to validity of research

The first threat to the validity of this study is the sample size in the survey in

which we investigated the definition for maturity in agile software development. The

sample size is a problem of statistical significance. The data were collected from a

sample of fifty-one individuals in a population from which we cannot estimate the size

and, thus, our results may be valid only for our sample, and not for the whole population

(LEE; MOHAREJI, 2012).

There is, however, a need to differentiate statistical significance from practical

relevance (KITCHENHAM et al., 2002). Practical relevance concerns generating

findings that matter to practitioners, which is especially important if one considers that

software engineering is an applied discipline and that the results of any research must

be of interest to the software industry (SJØBERG et al., 2008).

We have not confirmed the statistical significance of the survey, but we consider

that our findings have “conceptual relevance”, as it is scientific knowledge that affects

how we perceive a decision situation or modifies our understanding of a decision

situation (NICOLAI; SEIDL, 2010). One way to identify practical relevance in a study is

to conduct further empirical studies on the same subject, which was performed in this

dissertation.

Regarding the case studies, construct validity and external validity are the main

concerns. Construct validity consists in verifying the operational measurements for the

concepts that are being studied (YIN, 2005). One threat to the construct validity in our

study was the use of narratives to identify agile practices evolvement. We recognize

that the narrative approach for research is compatible with the need to appreciate the

complexity of organizations (TSOUKAS; HATCH, 2005). However, we had to rely on

interviewees’ memories to trace the agile practices adoption and there might be gaps

in their stories. This is the reason why we conducted more than one interview in each

team, so that one story could complement the others.

With respect to external validity, which is the ability to generalize results, we

sought for analytical generalization, instead of statistical generalization (YIN, 2005;

SJØBERG et al., 2008). We used the replication logic in our multiple-cases study (YIN,

2005) and grounded our data analysis on a conceptual framework to reinforce

evidence for external validity. Moreover, evaluations were conducted with members of

the agile community in Brazil and in Europe to evaluate the validity of the findings (see

 134

Figure 9). Nevertheless, we consider our findings to be subject to validation or

refutation by further studies.

 135

CHAPTER 7. CONCLUSIONS

This manuscript described the results we obtained in our study to characterize

maturity in agile software development. Based on the theoretical foundation of the

complex adaptive systems theory, our research was organized into three main stages:

Stage 1 – in which we defined maturity in agile software development; Stage 2 – in

which we could understand the mechanisms to mature with agile methods; and Stage

3 – in which the findings were evaluated. Figure 33 summarizes how the rationale has

been developed throughout the thesis.

Figure 33 - Thesis summary

It is been fifteen years since the publication of the Agile Manifesto (BECK et al.,

2001). We are, therefore, currently experiencing the maturing of the agile software

development movement in a way that is has been considered to be the main stream in

some parts of the world (BUSTARD; WILKIE; GREER, 2013). In Brazil, the adoption

of such methods is emerging (MELO et al., 2013). The practical relevance in our

research is that, while the agile adoption has grown and continues to grow, teams that

have implemented these methods are maturing their practices. It is the moment to

 136

investigate how they are accomplishing their results and create guidelines to help other

teams to evolve in agility.

The academic relevance of the study lies in the evidence that we have

demonstrated on the variety of existing agile maturity models, and the variety of

underlying concepts. “Agile maturity” is still being defined and, as such, it was

considered one of the trend areas in agile research at the 15th International Conference

in Agile Software Development (FALESSI et al., 2014).

Our contributions with this study are: a definition for agile software development

maturity that considers the nature of the agile teams, and a framework that describes

agile software development evolvement, complemented with a diagnosis tool. The

Progressive Outcomes framework that we proposed considers people as the central

role in the maturing process, sees ambidexterity as a key ability to maturity, and does

not prescribe practices, but outcomes that teams actually pursue. Agile maturity comes

from a non-linear and dynamic process of pursuit of progressive outcomes in the

practices learning, on the team conduct, in the deliveries pace, in the way features are

disclosed, in the quality of the software product, in customer relationship and in

organizational support.

We cannot assume that these findings would speed up agile transformation or

make the evolvement path easier. The feedback we have received from practitioners

showed us that our main contributions are 1) showing that agile improvement is beyond

learning of practices; instead, it involves a number of issues (our categories of

outcomes) that need to be addressed; 2) showing that learning is the focus, as

evolvement is dynamic and based on continuous improvement since the beginning;

and 3) emphasizing the importance of ambidextrous management to guide an adaptive

maturing process.

Our results are limited to the contexts where data were collected. Firstly, to the

Brazilian agile adoption context and, secondly, to the specific teams we have

investigated. The Brazilian context of agile adoption is that of inexperienced

practitioners. To mitigate this limitation, we have conducted validations with

researchers from other countries. Although to some of them our results seemed

familiar, we cannot assure applicability abroad. The limitation to the context of the

teams we analyzed is a known limitation of case studies (EISENHARDT, 1989), which

deepen the analysis, but do not provide an extensive sample. We have worked to

create a sample of companies with different profiles but, still, our findings are subject

 137

to replication in other contexts. Our findings are also limited to the evolution of agile

practices within teams and, therefore, they do not address scaling of agile practices

across team boundaries (WAARDENBURG; VLIET, 2013).

Further work of this study might include action research to implement and test

the diagnosis tool we proposed in multiple environments. Moreover, our evaluation of

the results of this dissertaion emphasized the need for: 1) more empirical research to

confirm our outcomes in different contexts; 2) more empirical work to identify

evolvement paths of outcomes accomplishment in different contexts; 3) more empirical

work to map influence among practices and outcomes; and 4) studies that deepen the

description of the categories with theoretical foundation from other fields of study.

 138

 139

REFERENCES

ABBAS; GRAVEL;
WILLS, 2010

ABBAS, N., GRAVELL, A. M., WILLS, G. B. 2010. Using
Factor Analysis to Generate Clusters of Agile Practices - A
guide for agile process improvement. In: Proceedings of the
Agile Conference (2010), pp. 9-13. DOI:
10.1109/AGILE.2010.15

ABRAHAMSSON;
BABAR;
KRUTCHEN, 2010

ABRAHAMSSON, P.; BABAR, M. A.; KRUTCHEN, P. 2010.
Agility and Architecture: Can They Coexist? IEEE Software.
Vol. 27. No. 2. pp. 16 - 22. DOI: 10.1109/MS.2010.36

ABRAHAMSSON
et al., 2003

ABRAHAMSSON, P; WARSTA, J.; SIPONEN, M.;
RONJAINEN, J., 2003. New directions on agile methods: a
comparative analysis. ICSE '03: Proceedings of the 25th
International Conference on Software Engineering. 3-10 May.
pp. 244-254. DOI 10.1109/ICSE.2003.1201204.

ABRANTES;
TRAVASSOS,
2013

ABRANTES, J. F.; TRAVASSOS, G. H. 2014. Towards
Pertinent Characteristics of Agility and Agile Practices for
Software Processes. CLEI Eletronic Journal. Vol. 16. No. 1,
Available in http://www.scielo.edu.uy/scielo.php?script=
sci_arttext&pid=S0717-
50002013000100006&lng=es&nrm=iso

ADOLPH;
KRUTCHEN; HALL
et al., 2012

ADOLPH, S.; KRUTCHEN, P.; HALL, W. 2012. Reconciling
perspectives: A grounded theory of how people manage the
process of software development. The Journal of Systems and
Software, 85, 1269-1286. DOI: 10.1016/j.jss.2012.01.059

AGRAWAL;
CHARI, 2007

AGRAWAL, M.; CHARI, K. 2007. Software Effort, Quality, and
Cycle Time: A Study of CMM Level 5 Projects. IEEE
Transaction on Software Engineering, vol. 33, no. 3, pp. 145-
156. DOI: 10.1109/TSE.2007.29

ALLISON;
MERALI, 2007

ALLISON, I.; MERALI, Y. 2007. Software process
improvement as an emergent change: A structurational
analysis. Information and Software Technology. Vol. 49. pp.
668-681. DOI: 10.1016/j.infsof.2007.02.003

AL-TARAWNEH;
ABDULLAH; ALI,
2011

AL-TARAWNEH, M. Y., ABDULLAH, M. S., ALI, A. B. 2011. A
proposed methodology for establishing software process
development improvement for small software development
firms. Procedia Computer Science, 3, pp. 893-897. DOI: A
proposed methodology for establishing software process
development improvement

ANDERSON, 2005 ANDERSON, D. J., 2005. Stretching Agile to fit CMMI Level 3
– the story of creating MSF for CMMI Process Improvement at
Microsoft Corporation. Proceedings of the Agile Conference

 140

(ADC’05). 24-29 July. pp. 193-201. DOI
10.1109/ADC.2005.42.

ANTINYAN et al.,
2014

ANTINYAN, V.; STARON, M. ; MEDING, W. ; OSTERSTROM,
P. ; WIKSTROM, E. ; WRANKET, J. ; HENRIKSSON, A. ;
HANSSON, J. 2014. Identifying risky areas of software code
in Agile/Lean software development: An industrial experience
report. Proceedings of the IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering.
Antwerp. 3-6 Feb. pp. 154 - 163. DOI: 10.1109/CSMR-
WCRE.2014.6747165

ARMBRUST;
ROMBACH, 2011

ARMBRUST, O.; ROMBACH, D. 2011. The right process for
each context: objective evidence needed. ICSSP
'11: Proceedings of the 2011 International Conference on
Software and Systems Process. May. pp. 237-241. DOI:
10.1145/1987875.1987920

AUGUSTINE et al.,
2005

AUGUSTINE, S., PAYNE, B., SENCINDIVER, F.,
WOODCOCK, S. 2005. Agile Project Management: Steering
from the edges. Communications of the ACM, Vol. 48, No. 12,
pp. 85-89. DOI: 10.1145/1101779.1101781

AXELROD;
COHEN, 2000

AXELROD, R., COHEN, M. D. 2000. Harnessing Complexity:
Organizational Implications of a Scientific Frontier. New York:
The Free Press.

BAKER, 2006 BAKER, S. W., 2006. Formalizing Agility, Part 2: How an Agile
Organization Embraced the CMMI. Proceedings of the AGILE
2006 Conference. 23-28 July. pp. 146-154. DOI
10.1109/AGILE.2006.30.

BARDIN, 2011 BARDIN, L. 2011. Análise de Conteúdo. São Paulo: Edições
70.

BASKERVILLE;
PRIES-HEJE;
MADSEN, 2011

BASKERVILLE, R.; PRIES-HEJE, J.; MADSEN, S. 2011.
Post-agility: What follows a decade of agility? Information and
Software Technology, Vol. 53, No. 5, pp. 543-555, DOI:
10.1016/j.infsof.2010.10.010

BECK et al., 2001 BECK, K. et al., 2001. Agile Manifesto. Available in
http://agilemanifesto.org/. Accessed in 2013, May.

BELL; ORZEN,
2011

BELL, S.; ORZEN, M. 2011. Lean IT: Enabling and Sustaining
Your Lean Transformation. Flórida: CRC Press.

BELLOMO, 2013 BELLOMO, S. 2013. Elaboration on an integrated architecture
and requirement practice: Prototyping with quality attribute
focus. Proceedings of the 2nd International Workshop on the
Twin Peaks of Requirements and Architecture (TwinPeaks).
San Francisco, CA. 21-21 May 2013. pp. 8-13. DOI:
10.1109/TwinPeaks.2013.6614717

BENEFIELD, 2010 BENEFIELD, R. 2010. Seven Dimensions of Agile Maturity in
the Global Enterprise: A Case Study. Proceedings of the 43rd

 141

Hawaii International Conference on System Sciences. pp. 1-7.
Honolulu, HI. DOI 10.1109/HICSS.2010.337.

BLAND; ALTMAN,
1997

BLAND, J. M.; ALTMAN, D. G. 1997. Statistics notes:
Cronbach’s alpha. BMJ. Vol. 314. pp. 572. DOI
10.1136/bmj.314.7080.572.

BOEHM; TURNER,
2004

BOEHM, B., TURNER, R. 2004. Balancing Agility and
Discipline: Evaluating and Integrating Agile and Plan-Driven
Methods. Proceedings of the 26th International Conference on
Software Engineering. 23-28 May. pp. 718-719. DOI:
10.1109/ICSE.2004.1317503

BONESSO; GERLI;
SCAPOLAN, 2014

BONESSO, S.; GERLI, F.; SCAPOLAN, A. 2014. The
individual side of ambidexterity: Do individual’s perceptions
match actual behaviors in reconciling the exploration and
exploitation trade-off? European Management Journal. Vol.
32. No. 4. pp. 392-405. DOI: 10.1016/j.emj.2013.07.003. 2014.

BOURQUE;
FAIRLEY, 2014

BOURQUE, P.; FAIRLEY, R. E. (Eds.) 2014. Guide to the
Software Engineering Body of Knowledge, Version 3.0, IEEE
Computer Society. Available at www.swebok.org.

BRYMAN, 2012 BRYMAN, A. 2012. Social research methods. 4th edition. New
York: Oxford University Press.

BUGLIONE, 2011 BUGLIONE, L. 2011, June. Light Maturity Models (LMM): an
Agile application. Profes '11: Proceedings of the 12th
International Conference on Product Focused Software
Development and Process Improvement. pp. 57-62. DOI:
10.1145/2181101.2181115

BUSTARD;
WILKIE; GREER,
2013

BUSTARD, D.; WILKIE, G.; GREER, D. 2013. The Maturation
of Agile Software Development Principles and Practice:
Observations on Successive Industrial Studies in 2010 and
2012. 20th Annual IEEE International Conference and
Workshops on the Engineering of Computer Based Systems
(EBCS). Apr 22-24. pp. 139-146. DOI 10.1109/ECBS.2013.11.

CAFFERY;
PIKKARAINEN;
RICHARDSON,
2008

CAFFERY, F. M., PIKKARAINEN, M., RICHARDSON, I. 2008.
AHAA – Agile, Hybrid Assessment Method for Automotive,
Safety Critical SMEs. ICSE '08: Proceedings of the 30th
international conference on Software engineering. pp. 551-
560. DOI: 10.1145/1368088.1368164

CAMPBELL-HUNT,
2007

CAMPBELL-HUNT, C. 2007. Complexity in practice. Human
Relations, Vol. 60, No. 5, pp. 793-823.
doi:10.1177/0018726707079202

CESARE et al.,
2010

CESARE, S.; LYCETT, M.; MACREDIE, R. D.; PATEL, C.;
PAUL, R. 2010. Examining Perceptions of Agility in Software
Development Practice. Communications of the ACM, Vol. 53,
No. 6, pp. 126-130, DOI: 10.1145/1743546.1743580

 142

CILLIERS, 2002 CILLIERS, P. 2002. Why we cannot know complex things
completely. Emergence. Vol 4. No. 1-2. pp. 77-84. DOI:
10.1080/15213250.2002.9687736

CLARKE;
O’CONNOR, 2011

CLARKE, P.; O'CONNOR, R. V. 2011. An Approach to
Evaluating Software process Adaptation. In: R. V. O'Connor
(Eds.), Proceedings of the 11th International Conference,
SPICE 2011, Dublin, Ireland, May 30 – June 1, pp. 28-41, DOI:
10.1007/978-3-642-21233-8_3

CMMI Product
Team, 2010

CMMI Product Team. 2010. CMMI for Development, Version
1.3 (CMU/SEI-2010-TR-033). Software Engineering Institute,
Carnegie Mellon University. Available at
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

COCKBURN, 2007 COCKBURN, A. 2007. Agile Software Development: The
Cooperative Game. Second Edition. Boston: Addison-Wesley.

COHAN; GLAZER,
2009

COHAN, S; GLAZER, H. 2009. An Agile Development Team’s
Quest for CMMI Maturity Level 5. Agile Conference 2009. 24-
29 Aug. pp. 201-206. DOI: 10.1109/AGILE.2009.24.

COLEMAN;
O’CONNOR, 2008

COLEMAN, G.; O’CONNOR, R. 2008. Investigating software
process in practice: A grounded theory perspective. The
Journal of Systems and Software, Vol. 81, No. 5, pp. 772-784.
DOI: 10.1016/j.jss.2007.07.027

COLLINS;
LUCENA, 2012

COLLINS, E. F.; LUCENA, V. F. Software Test Automation
practices in agile development environment: An industry
experience report. 2012. Proceedings of the 7th International
Workshop on Automation of Software Test (AST). Zurich. 2-3
June. pp. 57 - 63. DOI: 10.1109/IWAST.2012.6228991.

CONBOY et al.,
2011

CONBOY, K., COYLE, S., WANG, X., PIKKARAINEN, M.
2011. People over process: key challenges in agile
development. IEEE Software, Vol. 28, No. 4, pp. 48-57, DOI:
10.1109/MS.2010.132

DAVIES;
BOULDIN, 1979

DAVIES, D. L.; BOULDIN, D. W. 1979. A Cluster Separation
Measure. IEEE T Patter Anal, vol PAMI-1, Issue. 2. pp. 224 -
227. DOI 10.1109/TPAMI.1979.4766909.

DECLERCQ;
THONGPAPANL;
DIMOV, 2013

DE CLERCQ, D.; THONGPAPAN, N.; DIMOV, D. 2013.
Shedding new light on the relationship between contextual
ambidexterity and firm performance: An investigation of
internal contingences. Technovation. Vol. 33. pp. 119-132.
DOI: 10.1016/j.technovation.2012.12.002.

DENNING, 2010 DENNING, S. 2010. The leader’s guide to radical
management: reinventing the workplace for the 21st century.
San Francisco: John Wiley & Sons.

DEROSA;
MCCAUGHIN,
2007

DEROSA, J. K., MCCAUGHIN, L. K. 2007. Combined
Systems Engineering and Management in the Evolution of
Complex Adaptive Systems. Proceedings of the 1st Annual

 143

IEEE Systems Conference, pp. 1-8, DOI:
10.1109/SYSTEMS.2007.374653

DINGSØYR et al.,
2012

DINGSØYR, T., NERUR, S., BALIJEPALLY, V., MOE, N. B.,
2012. A decade of agile methodologies: Towards explaining
agile software development. Journal of Systems and Software.
Vol. 85. Nol. 6. pp. 1213–1221. DOI:
10.1016/j.jss.2012.02.033.

DRURY; CONBOY;
POWER, 2012

DRURY, M.; CONBOY, K.; POWER, K. 2012. Obstacles to
decision making in Agile software development teams. Journal
of Systems and Software. Vol. 85. No. 6. pp. 1239-1254. DOI:
10.1016/j.jss.2012.01.058

DRURY-GROGAN,
2014

DRURY-GROGAN, M. L. 2014. Performance on agile teams:
Relating iteration objectives and critical decisions of project
management success factors. Information and Software
Technology. Vol. 56. No. 5. pp. 506-515. DOI:
10.1016/j.infsof.2013.11.003

DYBÅ, 2000 DYBÅ, T. 2000. Enabling Software Process Improvement: An
Investigation of the Importance of Organizational Issues.
Doctoral Dissertation presented to the Department of
Computer and Information Science of the Norwegian
University of Science and Technology. Accessed through
personal communication, in June, 2015.

DYBÅ, 2000b DYBÅ, T. Improvisation in Small Software Organizations.
2000. IEEE Software. Vol. 15. No. 5. pp 82-87. DOI
10.1109/52.877872

DYBÅ;
DINGSØYR, 2008

DYBÅ, T.; DINGSØYR, T. 2008. Empirical studies of agile
software development: A systematic review. Information and
Software Technology. Vol. 50. No 9-10. pp. 833–859. DOI
10.1016/j.infsof.2008.01.006.

DYBÅ; MAIDEN;
GLASS, 2014

DYBÅ, T.; MAIDEN, N.; GLASS, R. 2014. The Reflective
Software Engineer: Reflective Practice. IEEE Software. Vol
31. No 4. Pp. 32-36. DOI 10.1109/MS.2014.97

EIJNATTEN, 2003 EIJNATTEN, F. M. 2003. Chaordic Systems Thinking: Chaos
and complexity to explain human performance management.
In G. D. Putnik, & A. Gunasekaran, Business Excellence 1:
Performance measures, benchmarking and best practices in
new economy (pp. 3-18). Portugal: University of Minho Press.

EISENHARDT,
1989

EISENHARDT, K. 1989. Building Theories from Case Study
Research. Academy of Management Review. Vol. 14. No. 4.
pp. 532-550. DOI: 10.5465/AMR.1989.4308385

EISENHARDT;
MARTIN, 2000

EISENHARDT, K. M.; MARTIN, J. A. 2000. Dynamic
Capabilities: What are they? Strategic Management Journal,
21, pp. 1105-1121.

 144

FALESSI et al.,
2014

FALESSI, D.; FONTANA, R. M.; GIARDINO, C.; OLIVEIRA,
R.; POWER K.; REJAB, M. M.; TAYLOR, K.; VALLON, R.;
WANG, X. 2014. Trends and Emerging Areas of Agile
Research: the report on XP2014 PhD Symposium. ACM
SIGSOFT Software Engineering Notes. Vol. 39. No. 5. pp. 26-
29. DOI: 10.1145/2659118.2659138

FONTANA;
REINEHR;
MALUCELLI, 2014

FONTANA, R. M.; REINEHR, S.; MALUCELLI, A. 2014.
Maturing in Agile: What Is It About? In: Proceedings of the 15th
International Conference on Agile Software Development, XP
2014, Rome, Italy, May 26-30, pp. 94-109, DOI 10.1007/978-
3-319-06862-6_7

FONTANA et al.,
2014b

FONTANA, R. M.; FONTANA, I. M.; GARBUIO, P. A. R.;
REINEHR, S.; MALUCELLI, A. 2014. Processes versus
people: How should agile software development maturity be
defined? The Journal of Systems and Software. Vol. 97.
pp.140-155. DOI: 10.1016/j.jss.2014.07.030

FONTANA et al.,
2015

FONTANA, R. M.; MEYER Jr., V.; REINEHR, S.; MALUCELLI,
A. 2015. Progressive outcomes: A framework for maturing in
agile software development. The Journal of Systems and
Software. Vol. 102. pp. 88-108. DOI:
10.1016/j.jss.2014.12.032

FONTANA et al.,
2015b

FONTANA, R. M.; MEYER Jr., V.; REINEHR, S.; MALUCELLI,
A. 2015. Management Ambidexterity: A Clue for Maturing in
Agile Software Development. In: Casper Lassenius; Torgeir
Dingsøyr; Maria Paasivaara. (Org.). Lecture Notes in Business
Information Processing. 1ed. Switzerland: Springer
International Publishing, 2015, v. 212, p. 199-204. DOI
10.1007/978-3-319-18612-2_17

FONTANA et al.,
2015c

FONTANA, R. M.; REINEHR, S.; MALUCELLI, A. 2015.
Progressive Outcomes: is it a handy approach to support agile
methods process improvement? In: Proceedings of the XIV
Simpósio Brasileiro de Qualidade de Software. Manaus, Aug.
17-21. pp. 94-106.

FONTANA et al.,
2015d

FONTANA, R. M.; REINEHR, S.; MALUCELLI, A. 2015. Agile
Compass: A Tool for Identifying Maturity in Agile Software-
Development Teams. IEEE Software. Vol. 32. No. 6. pp. 20-
23. DOI 10.1109/MS.2015.135

FORZA, 2002 FORZA, C. 2002. Survey research in operations management:
a process-based perspective. Int J Oper Prod Man. Vol. 22.
No. 2, pp 152-194. DOI 10.1108/01443570210414310.

GANDOMANI et
al., 2014

GANDOMANI, T. J.; ZULZALIL, H.; GHANI, A. A. A.; SULTAN,
A. B. Md.; PARIZI, R. M. 2014 The impact of inadequate and
dysfunctional training on Agile transformation process: A
Grounded Theory study, Inform. Softw. Technol. DOI:
10.1016/j.infsof.2014.05.011

 145

GANDOMANI;
NAFCHI, 2015

GANDOMANI, T. J.; NAFCHI, M. Z. 2015. An empirically-
developed framework for Agile transition and adoption: A
Grounded Theory approach. The Journal of Systems and
Software. vol. 107. pp. 204-219. DOI:
10.1016/j.jss.2015.06.006

GIBSON;
BIRKINSHAW,
2004

GIBSON, C., BIRKINSHAW, J. 2004. The antecedents,
consequences, and mediating role of organizational
ambidexterity. Academy of Management Journal, Vol. 47, No.
2, pp. 209-226.DOI: 10.2307/20159573

GREN; TORKAR;
FELDT, 2015

GREN, L.; TORKAR, R.; FELDT, R. 2015. The prospects of a
quantitative measurement of agility: A validation study on an
agile maturity model. The Journal of Systems and Software.
vol. 107. pp. 38-49. DOI: 10.1016/j.jss.2015.05.008

GÜTTEL;
KONLECHNER,
2009

GÜTTEL, W. H.; KONLECHNER, S. W. 2009. Continuously
Hanging By a Thread: Managing Contextually Ambidextrous
Organizations. Schmalenbach Business Review. Vol. 61. pp.
150-171. Available at SSRN:
http://ssrn.com/abstract=1406948

HAIR et al., 2006 HAIR, J.; BLACK, B.; BABIN, B.; ANDERSON, R. E.;
TATHAN, R. L., 2006. Multivariate Data Analysis. Sixth
Edition. Prentice Hall.

HARRIS;
COLLINS;
HEVNER, 2009

HARRIS, M. L.; COLLINS, R. W.; HEVNER, A. R. 2009.
Control of Flexible Software Development Under Uncertainty.
Information Systems Research. Vol. 20. No.3. pp. 400-419.
DOI: 10.1287/isre.1090.0240.

HAZZAN; LERON,
2010

HAZZAN, O.; LERON, U. 2010. Disciplined and free-spirited:
‘Time-out behaviour’ at the Agile conference. The Journal of
Systems and Software. Vol. 83. No. 11. 2010, pp. 2363-2365.
DOI: 10.1016/j.jss.2010.06.018

HEVNER et al.,
2004

HEVNER, A. R; MARCH, S. T.; PARK, J.; RAM, S. 2004.
Design Science in Information Systems Research. MIS
Quarterly. Vol. 28. No. 1. pp. 75-105.

HIDALGO, 2011 HIDALGO, C. 2011. The Value in Between: Organizations as
Adapting and Evolving Networks. In P. Allen, S. Maguire, & B.
McKelvey, The SAGE Handbook of Complexity and
Management. London: SAGE Publications.

HODA; NOBLE;
MARSHALL, 2012

HODA, R., NOBLE, J., MARSHALL, S. 2012. Self-Organizing
Roles on Agile Software Development Teams. IEEE
Transactions on Software Engineering, PP, p. 1.
doi:10.1109/TSE.2012.30

HODA; NOBLE;
MARSHALL, 2011

HODA, R.; NOBLE, J.; MARSHALL, S. 2011. The impact of
inadequate customer collaboration on self-organizing Agile
teams. Information and Software Technology. Vol. 53. No. 5.
pp. 521–534. DOI: 10.1016/j.infsof.2010.10.009

 146

HUMPHREY et al.,
2010

HUMPHREY, W., CHICK, T., NICHOLS, W., POMEROY-
HUFF, M. 2010. Team Software Process (TSP) Body of
Knowledge (BOK), Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, Technical Report
CMU/SEI-2010-TR-020. Available at http://goo.gl/x8frdu.

ISO/IEC, 2004 ISO/IEC: 15504-1. 2004. Information technology - Process
assessment - Part 1: Concepts and vocabulary. ISO/IEC,
Geneva, Switzerland. Available at http://goo.gl/DZJfuS

ISO/IEC, 2008 ISO/IEC: 12207. 2008. Systems and software engineering -
Software life cycle processes, ISO/IEC, Geneva, Switzerland.
Available at http://goo.gl/nRYgrI

JAKOBSEN;
JOHNSON, 2008

JAKOBSEN, C. R.; JOHNSON, K. A. 2008. Mature Agile with
a Twist of CMMI. In: Proceedings of the Agile Conference
2008. 4-8 Aug. pp. 212-217. DOI 10.1109/Agile.2008.10.

JIANG et al., 2004 JIANG, J. J.; KLEIN, G.; HWANG, H.; HUANG, J.; HUNG, S..
An exploration of the relationship between software
development process maturity and project performance.
Information & Management. 41. pp. 279-288. 2004. DOI:
10.1016/S0378-7206(03)00052-1

JOHNSON;
WICHERN, 2007

JOHNSON, Richard A.; WICHERN, Dean W. 2007. Applied
Multivariate Statistical Analysis. 6th ed. New Jersey: Person
Prentice Hall.

KETTUNEN, 2012 KETTUNEN, P. 2012. Systematizing Software Development
Agility: Towards an Enterprise Capability Improvement
Framework. J Enterp Transform, Vol. 2, No. 2. pp. 81-104. DOI
10.1080/19488289.2012.664610.

KETTUNEN, 2014 KETTUNEN, P. 2014. Realizing Agile Software Enterprise
Transformations by Team Performance Development. In:
Cantone, G.; Marchesi, M. (eds.): XP 2014. LNBIP 179. pp.
285-293. DOI: 10.1007/978-3-319-06862-6_22

KIRK; TEMPERO,
2012

KIRK, D; TEMPERO, E. 2012. A lightweight framework for
describing software practices. The Journal of Systems and
Software, Vol. 85, No. 3, pp. 582-595. DOI:
10.1016/j.jss.2011.09.024

KITCHENHAM et
al., 2002

KITCHENHAM, B. A.; PFLEEGER, S. L.; PICKARD, L. M.;
JONES, P. W.; HOAGLIN, D. C.; EMAM, K. E.; ROSENBERG,
J. 2002. Preliminary Guidelines for Empirical Research in
Software Engineering. IEEE T Softw Eng. Vol. 28. No. 8. Aug.
pp. 721-734. DOI 10.1109/TSE.2002.1027796.

KOHLEGGER;
MAIER;
THALMANN, 2009

KOHLEGGER, M.; MAIER, R.; THALMANN, S. 2009.
Understanding Maturity Models Results of a Structured
Content Analysis. Proceedings of the I-KNOW ’09 and I-
SEMANTICS ’09. 2-4 September 2009. Available at
http://goo.gl/hnw7uh

 147

KRISHNA; BASU,
2012

KRISHNA, V.; BASU, A. 2012. Minimizing technical debt:
developer's viewpoint. Proceedings of the International
Conference on Software Engineering and Mobile Application
Modelling and Development (ICSEMA 2012).Chennai, India.
19-21 Dec. pp. 14-18. DOI: 10.1049/ic.2012.0147

KUIPERS;
STOKER, 2009

KUIPERS, B.S., STOKER, J.I. 2009. Development and
performance of self-managing work teams: a theoretical and
empirical examination. Int. J. Hum. Resour. Manage, Vol. 20,
No. 2, pp. 399–419. doi:10.1080/09585190802670797

KURAPATI;
MANYAM;
PETERSEN, 2012

KURAPATI, N.; MANYAM, V. S.; PETERSEN, K. 2012. Agile
Software Development Practice Adoption Survey. In: Wohlin,
C. Proceedings of the 13th International Conference on Agile
Software Development, XP 2012, Malmö, Sweden, May 21-
25. pp. 16-30. DOI: 10.1007/978-3-642-30350-0_2

LAYMAN;
WILLIAMS;
CUNNINGHAM,
2004

LAYMAN, L., WILLIAMS, L., CUNNINGHAM, L. 2004.
Motivations and Measurements in an Agile Case Study.
Proceedings of the 2004 Workshop on Quantitative techniques
for software agile process, pp. 14-24, DOI:
10.1145/1151433.1151436

LEE; MOHAREJI,
2012

LEE, A. S.; MOHAREJI, K. 2012. Linking Relevance to
Practical Significance. Proceedings of the 45th Hawaii
International Conference on System Sciences. 4-7 Jan. Maui,
HI. pp. 5234-5240. DOI 10.1109/HICSS.2012.416

LEPPÄNEN, 2013 LEPPÄNEN, M. 2013. A Comparative Analysis of Agile
Maturity Models. In: R. Pooley et al. (eds.), Information
Systems Development: Reflections, Challenges and New
Directions. Springer Science+Business Media. New York. pp
329-343. DOI: 10.1007/978-1-4614-1951-5_27

LINA; DAN, 2012 LINA, Z.; DAN, S. 2012. Research on Combining Scrum with
CMMI in Small and Medium Organizations. International
Conference on Computer Science and Electronics
Engineering. Hangzhou, 23-25 March, pp. 554-557. DOI:
10.1109/ICCSEE.2012.477

LOHAN; LANG;
CONBOY, 2011

LOHAN, G.; LANG, M.; CONBOY, K.. 2011. Having a
Customer Focus in Agile Software Development. In.: Pokorny
et al. (eds). Information Systems Development: Business
Systems and Services: Modeling and Development. pp 441-
453. DOI: 10.1007/978-1-4419-9790-6_35

LUI; CHAN, 2005 LUI, K. M.; CHAN, K. C. C. 2005. A Road Map for
Implementing eXtreme Programming. In: M.Li, B. Boehm, and
L. J. Osterweil (eds.): SPW 2005, LNCS 3840, pp. 474-481.
DOI 10.1007/11608035_38.

LUKASIEWICZ;
MILER, 2012

LUKASIEWICZ, K.; MILER, J., 2012. Improving agility and
discipline of software development with the Scrum and CMMI.

 148

IET Software, Vol 6, No. 5, pp. 416-422. DOI: 10.1049/iet-
sen.2011.0193.

MAGUIRE; ALLEN;
MCKELVEY, 2011

MAGUIRE, S., ALLEN, P., MCKELVEY, B. 2011. Complexity
and Management: Introducing SAGE Handbook. In: S.
Maguire, P. Allen, & B. McKelvey, The SAGE Handbook of
Complexity and Management. pp. 1-26. Thousand Oaks:
SAGE Publications.

MAIER; MOUTRIE;
CLARKSON, 2012

MAIER, A. M.; MOUTRIE, J.; CLARKSON, J. 2012. Assessing
Organizational Capabilities: Reviewing and Guiding the
Development of Maturity Grids. IEEE Transactions on
Engineering Management, Vol. 59, No. 1, Feb. pp. 138-159.
DOI 10.1109/TEM.2010.2077289.

MANEN; VLIET,
2014

MANEN, H.; VLIET, H. 2014. Organization-Wide Agile
Expansion Requires an Organization-Wide Agile Mindset. In:
Jedlitschka, A. et al. (orgs). 15th International Conference,
PROFES 2014, Helsinki, Finland, December 10-12, 2014.
Proceedings. Pp.48-62. DOI: 10.1007/978-3-319-13835-0_4

MARCH, 1988 MARCH, J. 1988. The technology of foolishness. In: MARCH,
J. (ed.) Decisions and organizations. Oxford: Blackwell, pp.
253-265.

MARCH, 1991 MARCH, J. G. 1991. Exploration and Exploitation in
Organizational Learning. Organization Science, 2.

MCDANIEL JR.,
2007

MCDANIEL JR., R. R. 2007. Management Strategies for
Complex Adaptive Systems. Performance Improvement
Quarterly, Vol. 20, No. 2, pp. 21-42. DOI: 10.1111/j.1937-
8327.2007.tb00438.x

MCHUGH,
CONBOY, LANG,
2012

MCHUGH, O.; CONBOY, K.; LANG, M. 2012. Agile Practices:
The Impact on Trust in Software Project Teams. IEEE
Software, Vol. 29, No. 3, pp. 71-76, DOI:
10.1109/MS.2011.118

MELO et al., 2013 MELO, C. O., SANTOS, V., KATAYAMA, E., CORBUCCI, H.,
PRIKLADNICKI, R., GOLDMAN, A., Kon, F. 2013. The
evolution of agile software development in Brazil. Journal of
the Brazilian Computer Society, Vol. 19, No. 4, pp. 523-552,
DOI: 10.1007/s13173-013-0114-x. Available at
http://goo.gl/843M3O

MELO et al., 2013b MELO, C. O.; CRUZES, D.; KON, Fábio; CONRADI, Reidar.
2013. Interpretative case studies on agile team productivity
and management. Information and Software Technology. Vol.
55. No. 2. pp. 412-427. DOI: 10.1016/j.infsof.2012.09.004

MIDDLETON;
JOYCE, 2012

MIDDLETON, P.; JOYCE, D. 2012. Lean Software
Management: BBC Worldwide Case Study. IEEE Transactions
on Engineering Management, Vol. 59, No. 1, pp. 20-32. DOI:
10.1109/TEM.2010.2081675

 149

MISRA; KUMAR;
KUMAR, 2009

MISRA, S. C.; KUMAR, V.; KUMAR, U. 2009. Identifying some
important success factors in adopting agile software
development practices. Journal of Systems and Software, Vol.
82, No. 11, pp. 1869-1890, DOI: 10.1016/j.jss.2009.05.052

MITLETON-
KELLY, 2003

MITLETON-KELLY, E. 2003. Ten Principles of Complexity &
Enabling Infrastructures. In: E. Mitleton-Kelly, Complex
Systems and Evolutionary Perspectives of Organisations: the
application of complexity theory to organizations. Oxford:
Elsevier Science Ltd.

MOE; AURUM;
DYBÅ, 2012

MOE, N. B.; AURUM, A., DYBÅ, T. 2012. Challenges of
shared decision-making: A multiple case study of agile
software development. Information and Software Technology,
Vol. 54, No. 8, pp. 853-865, DOI: 10.1016/j.infsof.2011.11.006

MOE; DINGSØYR;
DYBÅ, 2009

MOE, N. B.; DINGSØYR, T.; DYBÅ, T. 2009. Overcoming
barriers to self-management in software teams. IEEE
Software, Vol. 26, No. 6, pp. 20-26, DOI 10.1109/MS.2009.182

MOE; DINGSØYR;
DYBÅ, 2010

MOE, N. B.; DINGSØYR, T.; DYBÅ, T. 2010. A teamwork
model for understanding an agile team: A case study of a
Scrum project. Information and Software Technology, Vol 52,
No. 5, pp. 480-491, DOI: 10.1016/j.infsof.2009.11.004

NAWROCKI;
WALTER;
WOJCIECHOWSKI
, 2001

NAWROCKI, J.; WALTER, B.; WOJCIECHOWSKI, A. 2001.
Toward Maturity Model for eXtreme Programming. In:
Proceedings of the 17th Euromicro Conference., 04-06 Sep,
Warsaw, pp. 233-239, DOI 10.1109/EURMIC.2001.952459.

NICOLAI; SEIDL,
2010

NICOLAI, A.; SEIDL, D.. 2010. That’s Relevant! Different
Forms of Practical Relevance in Management Science.
Organization Studies, Vol. 31, No. 9-10, pp. 1257-1285, DOI
10.1177/0170840610374401.

OLSSON; BOSCH,
2014

OLSSON, H. H.; BOSCH, J. 2014. Towards Agile and Beyond:
An Empirical Account on the Challenges Involved When
Advancing Software Development Practices. In: Cantone, G.;
Marchesi, M. (eds.): XP 2014, LNBIP 179, pp. 327-335. DOI:
10.1007/978-3-319-06862-6_27

OUCHI, 1979 OUCHI, W. G. 1979. A Conceptual Framework for the Design
of Organizational Control Mechanisms. Management Science.
Vol. 25. No. 9. pp. 833-848. DOI: 10.1287/mnsc.25.9.833

ÖZCAN-TOP;
DEMIRÖRS, 2013

ÖZCAN-TOP, Ö.; DEMIRÖRS, O. 2013. Assessment of Agile
Maturity Models: A Multiple Case Study. In: Software Process
Improvement and Capability Determination, 13th International
Conference, SPICE 2013, Bremen, Germany, June 4-6.
Proceedings. pp 130-141. DOI: 10.1007/978-3-642-38833-
0_12. 2013.

ÖZCAN-TOP;
DEMIRÖRS, 2014

ÖZCAN-TOP, Ö; DEMIRÖRS, O. 2014. Assessing Software
Agility: An Exploratory Case Study. In: Mitasiunas et al. (Orgs),
Software Process Improvement and Capability Determination:

 150

14th International Conference, SPICE 2014, Vilnius, Lithuania,
November 4-6, 2014, Proceedings. pp. 202-213. DOI
10.1007/978-3-319-13036-1_18

PAASIVAARA;
LASSENIUS, 2014

PAASIVAARA, M.; LASSENIUS, C. 2014. Communities of
practice in large distributed agile software development
organization – Case Ericsson. Information and Software
Technology, Vol. 56, No. 12, pp. 1556-1577, DOI:
10.1016/j.infsof.2014.06.008

PAASIVAARA et
al., 2014

PAASIVAARA, M.; VÄÄTTÄNEN, O., HALLIKAINEN, M.;
LASSENIUS, C. Supporting a Large-Scale Lean and Agile
Transformation by Defining Common Values. 2014. In:
Dingsoyr, T. et al. (orgs). XP 2014 International Workshops,
Rome, Italy, May 26-30, 2014, Revised Selected Papers. pp.
73-82. DOI: 10.1007/978-3-319-14358-3_7

PACKLICK, 2007 PACKLICK, J. 2007. The Agility Maturity Map – a Goal
Oriented Approach to Agile Improvement. In: Proceedings of
the Agile Conference 2007. 13-17 Aug, pp. 266-271, DOI
10.1109/AGILE.2007.55

PATEL;
RAMACHANDRAN
, 2009

PATEL, C.; RAMACHANDRAN, M. 2009. Agile Maturity Model
(AMM): A Software Process Improvement framework for Agile
Software Development Practices. International Journal of
Software Engineering, Vol. 2, No. 1, pp. 3-28. Available at
http://goo.gl/FGe0eE

PAULK, 2001 PAULK, M., 2001. Extreme Programming from a CMM
Perspective. IEEE Software, Vol. 18, No. 6, pp. 19-26, DOI
10.1109/52.965798.

PERROW, 1981 PERROW, C. 1981, July-August. Normal Accident at Three
Mile Island. Society.

POPPENDIECK;
POPPENDIECK,
2003

POPPENDIECK, M.; POPPENDIECK, T. Lean Software
Development: An Agile Toolkit. Addison Wesley, 2003.

POWER, 2014 POWER, K. 2014. Social Contracts, Simple Rules and Self-
organization: A Perspective on Agile Development. In:
Cantone, G; Marchesi, M. (eds.) Lecture Notes in Business
Information Processing. vol 179. pp. 277-284. DOI:
10.1007/978-3-319-06862-6_21

POWER;
CONBOY, 2014

POWER, K.; CONBOY, K. 2014. Impediments to Flow:
Rethinking the Lean Concept of "Waste" in Modern Software
Development. In: Cantone, G.; Marchesi, M. (eds.): XP 2014.
LNBIP 179, pp. 2013-217. DOI: 10.1007/978-3-319-06862-
6_14

QUMER;
HENDERSON-
SELLERS, 2008

QUMER, A.; HENDERSON-SELLERS, B. 2008. A framework
to support the evaluation, adoption and improvement of agile
methods in practice. Journal of Systems and Software, Vol. 81,
No. 11, pp. 1899-1919, DOI 10.1016/j.jss.2007.12.806

 151

RAISH;
BIRKINSHAW,
2008

RAISH, S., BIRKINSHAW, J. 2008. Organizational
Ambidexterity: Antecedents, Outcomes and Moderators.
Journal of Management. Vol. 34, No. 3, pp. 375-409, DOI:
10.1177/0149206308316058

RAMESH;
MOHAN; CAO,
2012

RAMESH, B.; MOHAN, K.; CAO, L. 2012. Ambidexterity in
Agile Distributed Development: An Empirical Investigation.
Information Systems Research, Vol. 23, No. 2, pp. 323-339,
DOI: 10.1287/isre.1110.0351

SANTOS;
GOLDMAN;
SOUZA, 2014

SANTOS, V.; GOLDMAN, A.; SOUZA, C. R. B. S. 2014.
Fostering effective inter-team knowledge sharing in agile
software development. Empirical Software Engineering, Vol.
20, No. 4, pp. 1006-1051, DOI: 10.1007/s10664-014-9307-y

SCHWEIGERT et
al., 2012

SCHWEIGERT, T.; NEVALAINEN, R.; VOHWINKEL, D.;
KORSAA, M.; BIRO, M., 2012. Agile Maturity Model:
Oxymoron or the Next Level of Understanding. A. Mas. Et al.
(Eds). : SPICE 2012, May 29-31, pp. 289-294. DOI
10.1007/978-3-642-30439-2_34.

SHARP;
ROBINSON;
PETRE, 2009

SHARP, H.; ROBINSON, H.; PETRE, M. 2009. The role of
physical artefacts in agile software development: Two
complementary perspectives. Interacting with computers, Vol.
21, No. 1, pp. 108-116, DOI: 10.1016/j.intcom.2008.10.006

SHEFFIELD;
LEMÉTAYER,
2012

SHEFFIELD, J.; LEMÉTAYER, J. 2012. Factor associated
with the software development agility of successful projects.
International Journal of Project Management, Vol. 31, No. 3,
pp. 459-472, DOI: http://dx.doi.org/10.1016/j.ijproman.2012.
09.011

SIDKY; ARTHUR;
BOHNER, 2007

SIDKY, A.; ARTHUR, J.; BOHNER, S. 2007. A disciplined
approach to adopting agile practices: the agile adoption
framework. Innovation in Systems and Software Engineering,
Vol. 3, No. 3, pp. 203-216, DOI: 10.1007/s11334-007-0026-z.

SILVA et al., 2015 SILVA, F. S.; SOARES, F. S. F.; PERES, A. L.; AZEVEDO, I.
M.; VASCONCELOS, A. P. L. F.; KAMEI, F. K.; MEIRA, S. R.
L. 2015. Using CMMI together with agile software
development: A systematic review. Information and Software
Technology, Vol. 58, pp. 20-43, DOI: 10.1016/j.infsof.2014.
09.012

SJØBERG et al.,
2008

SJØBERG, D. I. K.; DYBÅ, T.; ANDA, B. C. D.; HANNAY, J.
E. 2008. Building Theories in Software Engineering. In: Shull,
F. et al. (eds). Guide to Advanced Empirical Software
Engineering. pp 312-336. DOI 10.1007/978-1-84800-044-
5_12

SNOWDEN;
BOONE, 2007

SNOWDEN, D. J.; BOONE, M. E. 2007. A leader's framework
for decision-making. Harvard Business Review, pp. 68–76

SOFTEX, 2012 SOFTEX. 2012. Software e Serviços de TI: A Indústria
Brasileira em Perspectiva. Year 2012. Vol. 2. Available in

 152

http://publicacao.observatorio.softex.br/_publicacoes/index.p
hp

SOFTEX, 2012b SOFTEX. 2012. MPS.BR - Melhoria de Processo do Software
Brasileiro – Guia Geral MPS de Software. December 2012.
Available in http://www.softex.br/mpsbr/guias/

SOUNDARAJAN;
ARTHUR; BALCI,
2012

SOUDARAJAN, S., ARTHUR, J. D., BALCI, O. 2012. A
Methodology for Assessing Agile Software Development
Methods. In: Proceedings of the Agile Conference 2012, pp.
51-54, DOI: 10.1109/Agile.2012.24

SPOELSTRA;
IACOB; VAN
SINDEREN, 2011

SPOELSTRA, W.; IACOB, M.; VAN SINDEREN, M. 2011.
Software Reuse in Agile Development Organizations – A
Conceptual Management Tool. Proceedings of the 2011 ACM
Symposium on Applied Computing, pp. 315-322, DOI:
10.1145/1982185.1982255

STACEY, 1996 STACEY, R. 1996. Complexity and Creativity in Organizations.
San Francisco: Berret-Koehler Publishers.

STACEY;
GRIFFIN; SHAW,
2000

STACEY, R., GRIFFIN, D., SHAW, P. 2000. Complexity and
Management: Fad or radical challenge to systems thinking?
London: Routledge.

STAPLES et al.,
2007

STAPLES, M.; NIAZI, M.; JEFFERY, R.; ABRAHAMS, A.;
BYATT, P.; MURPHY, R. 2007. An exploratory study of why
organizations do not adopt CMMI. Journal of Systems and
Software, Vol. 80, No. 6, pp. 883-895, DOI:
10.1016/j.jss.2006.09.008

SUBRAMANIAN;
JIANG; KLEIN,
2007

SUBRAMANIAN, G. H.; JIANG, J. J.; KLEIN, G. 2007.
Software quality and IS project performance improvements
from software development process maturity and IS
implementation strategies. Journal of Systems and Software.
Vol. 80, No. 4, pp. 616-627. DOI: 10.1016/j.jss.2006.06.014

SUOMINEN;
MÄKINEN, 2013

SUOMINEN, M.; MÄKINEN, T. 2013. On the applicability of
capability models for small software organizations: does the
use of standard processes lead to a better achievement of
business goals? Software Quality Journal, Vol. 22, No. 4, pp.
579-591, DOI: 10.1007/s11219-013-9201-7. 2013

SUTHERLAND;
JAKOBSEN;
JOHNSON, 2007

SUTHERLAND, J.; JAKOBSEN, C. R.; JOHNSON, K., 2007.
Scrum and CMMI Level 5: The Magic Potion for Code
Warriors. In: Proceedings of the Agile Conference 2007, 13-17
Aug. pp. 272-278. DOI 10.1109/AGILE.2007.52.

TIWANA, 2008 TIWANA, A. 2008. Do bridging ties complement strong ties?
An empirical examination of alliance ambidexterity. Strategic
Management Journal, Vol. 29, pp. 251-272, DOI:
10.1002/smj.666.

TIWANA, 2010 TIWANA, A. 2010. Systems Development Ambidexterity:
Explaining the Complementary and Substitutive Roles of
Formal and Informal Controls. Journal of Management

 153

Information Systems. Vol. 27. No. 2. pp. 87-126. DOI:
10.2753/MIS0742-1222270203.

TSOUKAS, 2005 TSOUKAS, H. 2005. Complex knowledge: studies in
organizational epistemology. New York: Oxford University
Press.

TSOUKAS;
HATCH, 2005

TSOUKAS, H.; HATCH, M. J. Complex Thinking, Complex
Practice: The Case for a Narrative Approach to Organizational
Complexity. In: Tsoukas, H. Complex Knowledge: Studies in
Organizational Epistemology. Oxford: Oxford University
Press, 2005.

TUCKMAN, 1965 TUCKMAN, B. W., 1965. Developmental sequence in small
groups. Psychol. Bul, Vol. 63, No. 6, pp. 384–399 DOI:
http://dx.doi.org/10.1037/h0022100.

TURNER; SWART;
MAYLOR, 2013

TURNER, N.; SWART, J.; MAYLOR, H. 2013. Mechanisms for
Managing Ambidexterity: A Review and Research Agenda.
International Journal of Management Reviews, Vol. 15, No. 3,
pp. 317-332. DOI: 10.1111/j.1468-2370.2012.00343.x

TURNER;
MAYLOR; SWART,
2015

TURNER, N.; MAYLOR, H.; SWART, J. 2015. Ambidexterity
in projects: An intellectual capital perspective. International
Journal of Project Management. Vol. 33. No. 1. pp. 177-188.
DOI: 10.1016/j.ijproman.2014.05.002. 2014.

TUSHMAN;
O’REILLY III, 1996

TUSHMAN, M. L.; O’REILLY III, C. A. 1996. Ambidextrous
organizations: Managing evolutionary and revolutionary
change. California Management Review, Vol. 38, No. 4, pp. 8-
30.

VENABLE; PRIES-
HEJE;
BASKERVILLE,
2012

VENABLE, J.; PRIES-HEJE, J.; BASKERVILLE, R. 2012. A
Comprehensive Framework for Evaluation in Design Science
Research. In: Peffers, K.; Rothenberger, M; Kuechler, B.
(Eds.): DESRIST 2012, LNCS 7286, pp. 423-438, DOI:
10.1007/978-3-642-29863-9_31

VERSION ONE,
2015

VERSION ONE. 2015. 9th Annual State of Agile Survey.
Available at http://www.versionone.com/pdf/state-of-agile-
development-survey-ninth.pdf. Accessed in Aug, 2015.

VIDGEN; WANG,
2009

VIDGEN, R.; WANG, X. 2009. Coevolving Systems and the
Organization of Agile Software Development. Information
Systems Research, Vol. 20, n. 3, pp. 355–376, DOI
10.1287/isre.1090.0237

VINEKAR;
SLINKMAN;
NERUR, 2006

VINEJAR, V.; SLINKMAN, C. W.; NERUR, S. 2006. Can agile
and traditional systems development approaches coexist? An
ambidextrous view. Information Systems Management, Vol.
23, No. 3, pp. 31-42, DOI: 10.1201/1078.10580530/46108.
23.3.20060601/93705.4

 154

WAARDENBURG;
VLIET, 2013

WAARDENBURG, G.; VLIET, H. 2013. When agile meets the
enterprise. Information and Software Technology, Vol. 55, No.
12, pp. 2154-2171, DOI: 10.1016/j.infsof.2013.07.012

WALTER et al.,
2015

WALTER, M.; TRAMONTINI, R.; FONTANA, R. M.;
REINEHR, S.; MALUCELLI, A. From Sprints to Lean Flow:
Management Strategies for Agile Improvement. In: Casper
Lassenius; Torgeir Dingsøyr; Maria Paasivaara. (Org.).
Lecture Notes in Business Information Processing. 1ed.
Switzerland: Springer International Publishing, 2015, v. 212, p.
310-318. DOI 10.1007/978-3-319-18612-2_32

WANG; CONBOY;
CAWLEY, 2012

WANG, X.; CONBOY, K.; CAWLEY, O. 2012. “Leagile”
software development: An experience report analysis of the
application of lean approaches in agile software development.
Journal of Systems and Software, Vol. 85, No. 6, pp. 1287-
1299, DOI: 10.1016/j.jss.2012.01.061

WEICK;
SUTCLIFFE;
OBSTFELD, 2005

WEICK, K. E.; SUTCLIFFE, K. M.; OBSTFELD, D. 2005.
Organizing and the Process of Sensemaking. Organization
Science, Vol. 26, No. 14, pp. 409-421, DOI: 10.1287/
orsc.1050.0133

WHITWORTH;
BIDDLE, 2007

WHITWORTH, E.; BIDDLE, R. 2007. The Social Nature of
Agile Teams. In: Proceedings of the Agile Conference 2007,
pp. 26-36, DOI: 10.1109/AGILE.2007.60

WILLIAMS et al.,
2004

WILLIAMS, L., KREBS, W., LAYMAN, L., ANTÓN, A. 2004.
Toward a Framework for Evaluating Extreme Programming.
In: Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering, pp. 11-20.

WILLIAMS; RUBIN;
COHN, 2010

WILLIAMS, L., RUBIN, K., COHN, M. 2010. Driving Process
Improvement Via Comparative Agility Assessment. In:
Proceedings of the Agile Conference, pp. 3-10,
10.1109/AGILE.2010.12

WNUK;
GORSCHEK;
ZAHDA, 2013

WNUK, K.; GORSCHEK, T.; ZAHDA, S. 2013. Obsolete
software requirements. Information and Software Technology,
Vol. 55, No. 6, pp. 921–940, DOI: 10.1016/j.infsof.2012.12.001

WOOD;
MICHAELIDES;
THOMSON, 2012

WOOD, S.; MICHAELIDES, G.; THOMSON, C. 2012.
Successful extreme programming: Fidelity to the methodology
or good teamworking?, Information and Software Technology,
Vol. 55, No. 4, pp. 660-672, DOI: 10.1016/j.infsof.2012.10.002

YIN; FIGUEIREDO;
SILVA, 2011

YIN, A.; FIGUEIREDO, S.; SILVA, M. M. 2011. Scrum Maturity
Model: Validation for IT organizations’ roadmap to develop
software centered on the client role. In: Proceedings of the
ICSEA 2011, The Sixth International Conference on Software
Engineering Advances, pp 20-29, 23-29 Oct, Barcelona.
Available at http://goo.gl/SklUZr

YIN, 2005 YIN, Robert K. Estudo de Caso: Planejamento e Métodos. 3ª
Ed. Porto Alegre: Bookman, 2005

 155

APPENDIX A – QUESTIONNAIRE STATEMENTS FOR STAGE
1 SURVEY

Author Number Related survey statement

Soundararajan et
al. (2012)

X2 Allowing requirements to evolve during the project
X13 Doing code refactoring
X14 Doing pair programming
X47 Doing things when they have to be done, not before
X48 Self-organizing
X60 Distributing physically so as to reflect agile philosophy
X30 Delivering working software continuously
X49 Giving continuous feedback
X1 Using product backlog to define requirements

X50 Writing agile documentation
X31 Making agile project estimates
X36 Holding retrospective meetings
X68 Allowing customer to drive iterations
X51 Distributing expertise on the team appropriately
X37 Tracking and reporting iteration progress

Buglione (2011) X43 Collaborating with team members
X38 Integrating management activities directly into development tasks
X44 Keeping work simple
X23 Managing source code
X67 Developing products that respond to business needs
X3 Using stories to define requirements

X46 Sharing responsibility
X22 Managing software configuration (version control)
X57 Being geographically distributed (different cities or countries)
X59 Dealing easily with regulatory compliance
X63 Dealing easily with domain complexity
X64 Dealing easily with technical complexity
X58 Dealing easily with organizational complexity
X65 Dealing easily with enterprise discipline

Abbas et al. (2010) X8 Performing traditional systems analysis
X16 Being concerned about database architecture
X54 Doing agile quality assurance
X41 Communicating face-to-face daily
X53 Analyzing and inspecting code
X52 Running lightweight tests and reviews
X11 Specifying software architecture
X15 Using code standards
X7 Defining lightweight requirements

X28 Doing iterative and incremental development
X66 Having the customer actively participate during the project

Williams et al.
(2010)

X61 Being multidisciplinary
X40 Focusing on work (priorities do not change during iteration)
X6 Eliciting requirements based on communication
X5 Allowing the emergence of requirements
X4 Doing technical design of requirements

X25 Planning releases
X32 Defining scope according to schedule

 156

Author Number Related survey statement
X35 Holding daily progress tracking meetings
X33 Making estimates with the people who will do the work
X26 Planning before and during the project
X20 Doing test-driven development
X17 Doing continuous code integration
X12 Using collective code ownership
X45 Not losing autonomy when under pressure to meet deadlines
X39 Responding to pressure by re-prioritizing or re-scoping instead of

working overtime or adding people
X62 Encouraging a culture of working together as a team rather than

individually
X55 Implementing development infrastructure that supports agility
X56 Developing people’s agility skills
X27 Using timeboxes in planning
X42 Questioning and learning from one another

Layman et al.
(2004)

X29 Making short software releases
X69 Customer being collocated
X24 Using the planning game
X21 Collecting test metrics
X18 Running automated unit tests
X19 Running user acceptance tests
X10 Using simple software design
X34 Maintaining a sustainable pace (do minimum overtime)
X9 Using metaphors to describe requirements

CMMI-DEV (CMMI
Product Team,
2010)

X71 Analyzing possible decisions using a formal evaluation process that
evaluates identified alternatives against established criteria

X72 Managing projects according to an integrated and defined process

X73 Collecting metrics that are used to support management
information needs

X74 Having defined process assets, work environment standards, and
rules and guidelines

X75 Getting to know strengths and weaknesses and be able to plan and
implement process improvements based on that

X76 Identifying gaps in performance and selecting and deploying
improvements to close these gaps

X77 Having a quantitative (metrics-based) understanding of processes

X78 Developing people’s skills and knowledge so they can perform their
roles effectively and efficiently

X79 Establishing and maintaining plans that define project activities

X80 Evaluating processes and work products objectively and addressing
non-compliance issues

X81 Managing projects with measures and analytic techniques

X82
Formally eliciting, analyzing, and validating requirements for the
product and stakeholders

X83
Planning and invoking risk handling activities as needed across the
life of the project

X84 Managing the acquisition of products and services from suppliers

X85
Maintaining alignment between requirements and the project’s
plans and work products

 157

APPENDIX B – QUESTIONNAIRE STATEMENTS FOR STAGE
2 – PHASE 1 SURVEY

1. Do you believe a model that aids teams to become mature in agile software

development would be useful? () Yes () No. Why?

2. Based on your personal opinion, what would the road map to mature in agile

methods be like? Please, number the practices bellow in a maturity growing

sequence. Please add any comments you find necessary.

_______ Focus on agile requirements;

_______ Focus on software architecture;

_______ Focus on agile coding;

_______ Focus on agile testing;

_______ Focus on agile planning;

_______ Focus on agile project monitoring;

_______ Focus on agile values in the team;

_______ Focus on agile quality assurance;

_______ Focus on defining an agile physical environment;

_______ Focus on involved customer;

_______ Focus on metrics;

_______ Focus on defining processes;

_______ Focus on controlling processes;

_______ - ___________________________________;

 158

APPENDIX C – QUESTIONNAIRE STATEMENTS FOR
AMBIDEXTERITY EVALUATION IN CASE STUDY

Reference Author Aspect Question

Gibson & Birkinshaw (2004) Performance This team is achieving its full potential

People at my level are satisfied with the level of
team performance

This team does a good job of satisfying our
customers

This team gives me the opportunity and
encouragement to do the best work I am capable
of

Good
Alignment

The management systems in this organization
work coherently to support the overall objectives
of this organization

Bad Alignment The management systems in this organization
cause us to waste resources on unproductive
activities

People in this organization often end up working at
cross-purposes because our management systems
give them conflicting objectives

Adaptability The management systems in this organization
encourage people to challenge outmoded
traditions/practices/sacred cows

The management systems in this organization is
flexible enough to allow us to respond quickly to
changes in our markets

The management system in this organization
evolves rapidly in response to shifts in our business
priorities

Tiwana (2008) Bridging Ties Members of this team vary widely in their areas of
expertise

Members of this team have a variety of different
backgrounds and experiences

Members of this team have skills and abilities that
complement those of one another

Strong Ties There is close, personal interaction among team
members at multiple levels

This project team is characterized by high
reciprocity among members

This project team is characterized by mutual trust
among members

This project team is characterized by mutual
respect among members

This project team is characterized by personal
friendship among members

 159

APPENDIX D – CODE NETWORK EXAMPLE

Code network for Company D – Past

 160

APPENDIX E – CASE REPORT AMBIDEXTERITY ANALYSIS

Ambidexterity analysis presented in Company C

 161

APPENDIX F – CROSS CASE ANALYSIS PROCEDURE

1. We identified that, in Company A’s
team, a Confident Team was an
outcome in the PAST, based on the
codes linked to this node on the map.
At PRESENT, it evolved to an
Assertive Team;

2. For Company B – Team 2, evidence
from the PAST shows a Specialist
and a Responsive Team (the codes
that evidence them are respectively
attached to the node). At PRESENT,
the outcomes Inter-disciplinary Team,
Confident and Assertive Team were
identified.

3. For Company B – Team 1, evidence
in the PAST led to the inference of a
Confident Team, at PRESENT to an
Assertive Team and, in the FUTURE,
to an Specialist Team.

4. For Company C’s team, note that in
the past there is no evidence for
outcomes on the team, but they
appear at PRESENT as a
Responsive Team and, in the
FUTURE, as a Confident Team.

To build our cross-case map, we identified that,
although a Responsive Team appeared at
present for Company C, it is an outcome
pursued before the Confident Team, which
appeared at different moments in the cases. As
Assertive Team was an outcome pursued after
the Confident Team in the other cases, we
inferred the sequence Responsive-Confident-
Assertive Team. Note that the Specialist Team
and Interdisciplinary team were not considered
in the cross-case results, because of their
context-specific evidence. This example also
shows that the Team category of outcome
emerged in the cross-case analysis; it was not
pre-defined in the maps of individual teams.

 162

APPENDIX G – MULTIPLE CASES REPORT

 163

APPENDIX H – OUTCOMES ASSESSMENT FOR EACH TEAM

 164

 165

 166

 167

 168

APPENDIX I – EXAMPLE OF EVIDENCES FOR THE AGILE COMPASS

