
Maicon Stihler

Decentralized UCONABC with Cooperative
Attribute Management for Cloud Computing

Curitiba

2016

Maicon Stihler

Decentralized UCONABC with Cooperative
Attribute Management for Cloud Computing

Submitted to the Graduate Program in Computer
Science in partial fulfillment of the requirements
for the degree of Doctor of Informatics at the
Pontifical Catholic University of Paraná

Pontifical Catholic University of Paraná – PUCPR

Graduate Program in Computer Science – PPGIa

Advisor: Altair Olivo Santin

Curitiba

2016

Reservado para a ficha catalográfica.

Reservado para a folha de aprovação.

Dedicated to Luiz, Maria, Scheila and Alice.

Acknowledgements

It is impossible to acknowledge all the people that contributed to making this work
possible. However, some persons were decisive to its outcome. I would like to thank my advisor,
Prof. Dsc. Altair Olivo Santin, who is one of these persons. He gave me constant encouragement
and insight. He helped me to keep working while I was struggling to make progress and losing
hope. I would also like to thank my parents, Luiz Carlos Stihler and Maria Laurete Stihler, for
their support during all my academic journey. My better half, Alice — thank you — always tried
to make the burden feel lighter by remembering me where I was headed to and that I was not
alone. Without her, I would not have come this far. Last, but not least, I would like to thank all
professors that contributed to my work, all my friends, colleagues, and coworkers, for helping
me with insights, ideas, constructive criticisms or for simply cheering me up when I needed.

“Perfection is finally attained not when there is no longer anything to add,

but when there is no longer anything to take away”

Antoine de Saint Exupéry

Resumo

Há muitas evidências de que UCONABC é um modelo de controle de acesso mais adequado para
ambientes de computação em nuvem. Ele oferece avaliação contínua das regras de política e foi
concebido desde o princípio com a mutabilidade de atributos em mente. Suas implementações
para o mundo real devem lidar com o fato de que a reavaliação das regras de política deve
ocorrer em intervalos discretos, ou seja, não é possível oferecer um processo de reavaliação
realmente contínuo. Propostas anteriores de arquiteturas de UCONABC para ambientes de nuvem
optaram por abordagens baseadas em outsourcing (terceirização), que apresenta uma deficiência
importante: a imprevisibilidade dos custos de comunicação em rede. Cada requisição de acesso
deve ser enviada através da rede e, assim, está sujeita a um custo que pode mudar ao longo do
tempo de maneira imprevisível. Deste modo, a freqüência de reavaliação das políticas deve ser
ajustada de acordo com os custos do ambiente específico, o que se torna um processo contínuo
em um ambiente que pode aumentar ou diminuir de tamanho conforme a demanda. Isto se torna
ainda mais complicado pela necessidade de se sincronizar a reavaliação de políticas com um
mecanismo de contabilidade distribuído e intrinsecamente assíncrono, usado para descobrir
quanto recurso se está utilizando nos servidores remotos (onde a decisão de política deverá ser
aplicada). Esta Tese de Doutorado descreve uma arquitetura descentralizada de UCONABC com
características mais apropriadas para ambientes de computação em nuvem. A descentralização
é alcançada através de uma abordagem baseada em provisioning (configuração) modificada,
sendo que avaliação de políticas e aplicação de decisões acontecem localmente, reduzindo o
efeito da imprevisibilidade dos custos da rede. A complexidade no gerenciamento de políticas
é evitada através do uso de uma combinação de credenciais do usuário e gabaritos de políticas
locais, para derivar a política aplicável quando uma requisição de usuário é recebida. Portanto, a
gerente não precisa controlar políticas individuais (ela apenas escreve os gabaritos de políticas
que se aplicam a todos os servidores). Os atributos utilizados na avaliação de políticas são locais,
tornando cada domínio local (servidor) independente dos demais (não há a necessidade de se
compartilhar estado através da rede). A probabilidade da quota de usuário se tornar fragmentada
entre vários sistemas (à medida que a quota está sendo configurada) é reduzida por um modelo
cooperativo de gerenciamento de atributos, que permite que os domínios locais transfiram quotas
não utilizadas entre aplicativos e entre os domínios locais. Isto é, quando o sistema detecta um
situação próxima do esgotamento, um processo de transferência de quota é iniciado, localmente
ou remotamente, para resolver o problema. A abordagem proposta apresenta um desempenho
melhor quando comparada ao modelo de outsourcing, além de reduzir a maioria das deficiências
do modelo de provisioning puro. Nós Implementamos o protótipo de alguns componentes e
realizamos alguns testes de avaliação. Os resultados mostram que a proposta é viável e mais
apropriada para a computação em nuvem do que abordagens anteriores descritas na literatura.

Palavras-chave: Controle de Uso, UCONABC, Sistemas Distribuídos, Computação em Nuvem,
Gerenciamento Cooperativo de Atributos.

Abstract

There is plenty of evidence that UCONABC is a better access control model for cloud computing
environments. It offers a continuous evaluation of policy rules and is designed from the start with
attribute mutability in mind. Real world implementations must deal with the fact that policy rules
reevaluation must happen in discrete intervals, that is, it is not possible to offer a real continuous
reevaluation process. Earlier proposals for UCONABC architectures for cloud environments opted
for outsourcing-based approaches, which has an important shortcoming: the unpredictability
of network communication costs. Every access request must be sent over the network and,
thus, is subject to a cost that can change over time in unpredictable ways. Therefore, policy
reevaluation frequency must be adjusted for the specific environment costs, which becomes
an ongoing process in an environment that can grow its size or shrink it on demand. This
is further complicated by the need of synchronizing policy reevaluation with a distributed
and intrinsically asynchronous accounting mechanism, used to discover how much resource
is being used on the remote servers (where policy decision must be enforced). This doctoral
thesis describes a decentralized architecture for UCONABC with better characteristics for cloud
computing environments. Decentralization is achieved by employing a modified provisioning
approach, thus policy evaluation and decision enforcement happen locally, reducing the effects of
unpredictable network costs. Policy management complexity is avoided by using a combination
of user credentials and local policy templates, to derive the applicable policy upon receiving a
user request. Therefore, the manager does not need to keep track of individual policies (she only
writes policy templates that apply to all servers). The attributes used for the policy evaluation
are local, making each local domain (server) independent from the others (there is no need for
sharing state over the network). The probability of user quota being fragmented over the systems
(as quota is being provisioned) is reduced by a cooperative attribute management model, that
enables the local domains to transfer unused quota between applications and between local
domains. That is, when the system detects a near starvation situation, it triggers a process to
transfer unused user quota, locally or remotely, to solve the problem. The proposed approach
shows better performance in comparison to the outsourcing model, besides reducing most of the
shortcomings of the pure provisioning model. We implemented a prototype of some components
and performed some evaluation tests. The results show that the proposal is feasible and better
suited for cloud computing than earlier approaches described in the literature.

Keywords: Usage Control, UCONABC, Distributed Systems, Cloud Computing, Cooperative
Attribute Management.

List of Figures

Figure 1 – Overview of UCONABC model components, based on the original from (1) . 30
Figure 2 – An example of quota hierarchy . 43
Figure 3 – General organization of the proposed architecture 48
Figure 4 – Local Domain Components . 50
Figure 5 – Sample template rule . 52
Figure 6 – Overview of application quota configuration 56
Figure 7 – Overview of quota reconfiguration process 58
Figure 8 – MID–AM mechanism . 64
Figure 9 – PDP evaluation: response time versus number of policies in the repository . 66
Figure 10 – PDP evaluation: message size in pure provisioning versus the proposed approach 67
Figure 11 – Influence of writing concurrency and message size on response time 67
Figure 12 – Influence of writing concurrency on reading time for 100 byte messages . . 68
Figure 13 – Influence of message size on reading time for 8 concurrent writers 68

List of Tables

Table 1 – The 16 basic ABC models ((1)). 31

List of abbreviations and acronyms

LOW-AM Low level accounting module

LPAP Local Policy Administration Point

MID-AM Mid level accounting module

PAP Policy Administration Point

PEP Policy Enforcement Point

PIP Policy Information Point

PDP Policy Decision Point

SAML Security Assertion Markup Language

SG Security Gateway

SLA Service Level Agreement

TOP-AM Top level accounting module

STS Security Token Service

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

Contents

1 INTRODUCTION . 23
1.1 Objectives and Challenges . 24
1.2 Contributions . 25
1.3 Text Organization . 26

2 FUNDAMENTALS AND RELATED WORK 27
2.1 Fundamentals . 27
2.1.1 Cloud Computing . 27

2.1.2 Policy Architectures . 28

2.1.3 Usage Control Model . 29

2.2 Related Work . 32
2.2.1 A UCONABC Resilient Authorization Evaluation for Cloud Computing . . . 32

2.2.2 Usage Control in Cloud Systems . 33

2.2.3 A Usage Control Based Architecture for Cloud Environments 33

2.2.4 Access Control of Cloud Service Based on UCON 34

2.2.5 An Administrative Model for UCONABC 34

2.3 Conclusion . 35

3 PROPOSED SOLUTION . 37
3.1 Model . 38
3.1.1 Operational Model . 40

3.1.2 UCONABC Administrative Model . 44

3.2 Architecture . 46
3.2.1 Organization . 46

3.2.2 Local Domain . 48

3.2.2.1 Templates and Policy Derivation . 52

3.2.3 Administrative Domain . 53

3.2.3.1 Top–Level Accounting . 53

3.2.3.2 Intermediary Accounting . 54

3.2.3.3 Application Quota Configuration Process . 55

3.2.3.4 Avoiding double-spending . 56

3.2.4 LOW–AM and Application Quota Reconfiguration 57

3.3 Conclusions . 60

4 IMPLEMENTATION AND EVALUATION 63
4.1 Implementation . 63

4.2 Evaluation . 65
4.3 Local Domain Performance . 65
4.4 MID–AM Performance . 66
4.5 Conclusions . 67

5 DISCUSSION, CONCLUSION AND FUTURE WORK 69

References . 73

APPENDIX 77

APPENDIX A – INTEGRAL FEDERATED IDENTITY MANAGEMENT
FOR CLOUD COMPUTING 79

APPENDIX B – MANAGING DISTRIBUTED UCONABC POLICIES
WITH AUTHORIZATION ASSERTIONS AND POL-
ICY TEMPLATES . 85

23

1 Introduction

Cloud computing is revolutionizing the way organizations implement their information
and communication technology. It creates the possibility of acquiring any amount of compu-
tational resources, such as storage space, network bandwidth, and processing power without
bothering with how those resources are deployed. The consumer can redefine the amounts of
contracted resources as the need arises, and all operations can be made through convenient
service interfaces available on the Internet. These features provide great flexibility and ease of
use for the consumer organizations (2).

However, as a recent study observed, better access control and accounting methods are
essential to provide a trustworthy cloud computing environment (3). Some of the challenges are
the creation of access control mechanisms that can dynamically adapt themselves to the cloud
environment, meanwhile providing fine-grained policies and accurate accounting. Traditional
access control methods are not appropriate for the dynamic and potentially large scale cloud
computing environments, they lack the dynamism required to reflect the changes that may take
place in the cloud (e.g., they cannot revoke an access authorization or change a user quota in a
distributed environment after it was granted).

The usage control model (UCONABC, (1)) is one of the most advanced access control
models found in the literature. Its ability to express fine-grained access control policies that are
evaluated in a continuous fashion makes it a better match for cloud computing. Policy decisions
can be modified in response to changes to user attributes, resource attributes, or other information
used in the policy rules.

Even though the UCONABC model shows great potential for the cloud computing envi-
ronment, it presents some implementation challenges. The usage control model does not deal
with the practical aspects of distributed systems; the system’s designer must define how to deal
with all the implementation complexities, such as attribute consolidation, quota management and
policy management, evaluation and enforcement.

Earlier attempts at implementing UCONABC for the cloud opted for centralized ap-
proaches (4, 5, 6, 7, 8). In these architectures, a central authorization facility receives authoriza-
tion requests from enforcement facilities in the remote servers and the accounting data must be
collected on these remote servers before a decision is taken.

Such works follow the well-known outsourcing model, which provides an easy to
understand architecture with centralized management. On the other hand, that model can be
hindered by network overhead and the risk of inconsistency in the attribute consolidation. Two
major concerns arise from that model: the scalability of the central components and the possible
degradation of the policy reevaluation frequency (due to increased costs required for gathering

24 Chapter 1. Introduction

accounting information from a large number of servers). As the number of entities increase,
the central facility must be prepared to handle increasing numbers of requests. An overloaded
authorization facility can degrade the response times seen on the enforcement facilities and, in
the worst case: the central facility can become unresponsive and bring all dependent enforcement
facilities to an undesirable halt.

Cloud computing resources cannot be controlled in the way it was done in traditional
computing systems. An increase in the number of servers allocated to a company may require
an increase in the accounting facilities as well. A centralized access control model requires
the system’s designer to take into account the asynchronous interactions between the cloud
services. The authorization facility needs consistent consolidated accounting data to take adequate
authorization decisions. The accounting consolidation process must be aware that each remote
server may work at a different speed. Thus, it must implement measures to deal with servers
sending accounting data too late or not sending accounting data at all (e.g., due to failure on the
server or on the network link). Although the outsourcing approach provides a conceptual model
that is easy to grasp, implementing UCONABC with it on a distributed environment forces the
designer to deal with many challenges due to concurrency and shared state, as the UCONABC

policy evaluation model is not inherently concurrent.

The implementation of policy reevaluation frequency is highly dependent on the envi-
ronment at hand, the cost of network communication and accounting consolidation must be
taken into account (4). It is hard to predict how these costs will behave when trying to scale up a
cloud computing system. The asynchrony between the accounting and authorization mechanisms
can lead to exceptional conditions, where some user exceeds the allowed resource quota due
to the authorization facility’s use of stale accounting data. That is, it is possible for the central
facility to authorize a request based on outdated accounting information. This is a challenging
problem, if the designer decides to force a synchronized operation on the decision facilities
and the accounting mechanisms, the policy enforcement facilities may be blocked for a long
time waiting for a reply from the decision facilities. On the other hand, if the designer chooses
an asynchronous approach, she will have to design some method to deal with the possible
inaccuracies in the accounting data.

1.1 Objectives and Challenges

The main objective of this work is to design an approach to decentralize the implementa-
tion of UCONABC in cloud computing environments. The proposed solution must enable subjects
(users) to execute applications on any participating server, potentially using all the resources
allocated to the user (i.e., her quota), without creating a strong coupling between the participating
servers.

Specifically, each server must function as an independent entity, evaluating usage control

1.2. Contributions 25

rules and enforcing its decisions. Users might preallocate different quota configurations (i.e.
usable resource limits) on each server, when a near starving situation is detected the servers
must collaborate to rebalance (i.e., reconfigure) the user quota to avoid the premature end of the
application in need.

This thesis’ hypothesis is that by decentralizing policy evaluation and enforcement, com-
bined with a cooperative attribute management model, we can promote a predictable UCONABC

implementation for cloud computing, while eliminating the shortcomings of the pure provisioning
and outsourcing approaches.

Bellow, there is a list of the specific objectives of this proposal:

• To design a usage control system that reduces the network overhead present in central-
ized approaches to produce a predictable behavior, despite the number of hosts in the
environment.

• To design a cooperative attribute management model enabling the automatic reconfigura-
tion of application quotas in a distributed system, to avoid process starvation when there is
available quota elsewhere.

• Reduce the fragmentation of the user quota and improve the efficiency of global quota
usage in relation to pure provisioning approaches.

• To design an administrative model for UCONABC model to enable decentralization of
policy evaluation.

• To design a policy management approach to reduce the complexity common to pure
provisioning approaches.

• To enable the cloud manager to obtain a consolidated view of the resource usage based on
attribute consolidation.

• To integrate the UCONABC system with the attribute management.

• To evaluate the feasibility of the proposal by prototyping components and performing
experiments.

1.2 Contributions

The main contribution of this work is the description of an UCONABC administrative
model based on this thesis’ hypothesis, so that we can achieve a better usage control system by
using decentralization with a self-configuring approach (i.e., the cooperative attribute manage-
ment). Our proposal achieves that by creating a model with many policy evaluation facilities, all
of them working over the same user attributes, but avoiding the need of synchronization between

26 Chapter 1. Introduction

servers. Our proposal’s model allows the servers to evaluate user attributes in a decoupled fashion
while ensuring that attributes remain consistent throughout the environment. We also provide
an easier to manage policy architecture by letting users manage their own application resource
quotas. This is important because cloud computing systems can grow to large numbers, possibly
making it unfeasible to centralize this task on a few individuals. Policy synchronization is also
improved, as synchronizing individual policies in large environments can become challenging
using traditional approaches. Finally, the proposal ensures that, even though the servers are
decoupled from each other, the user is able to take advantage of her full quota on any server,
even though her quota might be spread over several servers.

1.3 Text Organization

This thesis is organized in the following chapters:

• Chapter 2 presents the fundamental concepts to understand the rest of this work, and
follows with a discussion of the works related to this proposal;

• Chapter 3 details the proposed solution to realize this thesis’ hypothesis. It includes an
informal description of the proposed approach, followed by an UCONABC administrative
model description to enable the proposal. It finishes with the design of an architecture to
implement the model;

• Chapter 4 shows details of the prototyped components. Afterward, it discusses the experi-
ments performed with the prototype and the results obtained;

• Chapter 5 contains our concluding remarks, discussing the results achieved, limitations
and future works.

27

2 Fundamentals and Related Work

This chapter presents a general overview of cloud computing, as well as about policy
architectures and the usage control model. These concepts are essential to understanding the rest
of this work. It also discusses some of the research works that bear affinity with our proposal.
Most proposals found in the literature are based on the outsourcing model, and as we will see in
the next sections, they suffer more or less of the same problems: the unpredictability of network
communications and lack of scalability from the central facilities.

2.1 Fundamentals

2.1.1 Cloud Computing

The cloud computing paradigm can be traced back to the 1960s, when John McCarthy
envisioned the idea of computer utility (9) — general computing facilities that would be provided
to end users as general utility services (e.g., electricity). A similar concept emerged in the 2000s
under the name of cloud computing, though it meant different things to different people (10).
Since then, there has been research efforts to avoid misunderstandings in this area. In this paper,
we adopt the NIST definition for cloud computing (11), as we believe it covers all the essential
aspects of cloud computing:

“NIST definition of cloud computing: Cloud computing is a model for enabling
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction.”

Under this definition, each cloud computing solution can implement one out of three
service models:

• Infrastructure as a service (IaaS): clouds provide virtual hardware resources, such as pro-
cessing power, storage, and networking. It presents a very low-level abstraction, allowing
the user to deploy software such as operating systems and applications. The consumer does
not have control over the underlying infrastructure, though she can control the operating
systems and applications deployed over these virtual resources.

• Platform as a service (PaaS): providers hide the low-level resources with support services
(e.g., security and user management), programming languages, libraries and other tools

28 Chapter 2. Fundamentals and Related Work

that help the customer to develop and deploy applications on the cloud. The consumer’s
control is limited to her own applications and some configuration settings.

• Software as a Service (SaaS): clouds provide complete applications to the end user, who
can only modify some of the application’s settings. The applications can be accessed in
different ways, such as through a web browser or a web service.

There is no obligatory coupling between these three service models. However, it is
possible to use less abstract models, such as IaaS, to create clouds of more abstract models, like
PaaS or SaaS. These models can be deployed and operated by private organizations, groups of
organizations (i.e., communities), the general public or a mix of these situations.

2.1.2 Policy Architectures

In distributed system environments, the access control policies can be managed and
evaluated in a variety of ways. The two most popular approaches are described below:

• Outsourcing: operates under a client and server model. It contains a central authorization
facility (also called the reference monitor) that responds to policy evaluation requests from
all the enforcement facilities (i.e., the resource guardians). Every access attempt made
by a subject is captured by the resource guardian and triggers a policy evaluation request
that is sent to the (remote) reference monitor. The guardian waits for a policy evaluation
decision and, upon receiving it, performs the actions required to enforce it (12). The
main advantage of the outsourcing model is the simplicity of the policy management and
guardian implementation. However, it has the disadvantages of communication overhead
and its fragility, as the reference monitor can become a single point of failure. In a cloud
computing environment, its centralized approach can make it hard to achieve the scalability
expected of cloud computing environments.

• Provisioning: its operation is based on the configuration of policies at the place where
the controls will be enforced, the resource guardians. The policies are written on a central
policy administration point, however, the enforcement mechanisms receive the policies to
be used during initialization. These policies are stored in a local repository and the resource
guardian requests policy decisions to a local reference monitor (13). The provisioning
model presents the advantages of being robust, as it has no external dependencies, and of
having a reduced number of requests going through the network. On the other hand, it
is harder to keep policies synchronized on a distributed environment because the central
policy administration point must keep track of every policy in the system.

2.1. Fundamentals 29

2.1.3 Usage Control Model

The usage control model was initially described on (14) and further detailed on (1). The
motivation for its development was the need for unifying modern access control techniques
under a coherent formal model. The key differences from earlier access control models are the
emphasis on continuous decision evaluation, policy rules based on predicates over attributes,
and the possibility of describing modifications to those attributes in the policy itself (i.e., the
so-called attribute mutability).

The conceptual model became known as the UCONABC model, where A stands for
Authorizations, B for Obligations, and C for Conditions. These are the main types of predicates
that may be used to create usage control policies. To evaluate these predicates, UCONABC uses
attributes related to subjects (e.g., the user or application requesting some action), objects (i.e.,
the resource being protected), and the environment in which the usage takes place. Predicates are
categorized according to the type of attributes used on its evaluation, and on the logical function
it plays inside the policy:

Authorization is a predicate over subject and object attributes. It evaluates whether a given
subject has the required rights to perform the requested action over the target object. For
instance, an authorization predicate may evaluate whether the subject has the right for
opening a file or for executing an application;

oBligation uses subject and object attributes as well. However, its logical function is to verify
if some obligatory procedure is performed. These obligations can be any type of action
to be performed by the requesting subject or someone else, such as filling an electronic
formulary, depositing some credit, keeping a window open on the web browser, and so on.

Condition differs itself from the previous types of predicates for using only environmental
attributes, such as time of day, the level of system load, geographical locations, etc. That
is, conditions does not use subject and object attributes.

An illustration of the usage control model can be seen on Figure 1. On it, we can see that
a usage decision is taken by combining the attributes of subjects and objects, usage rights, and
the three types of predicates. Environmental attributes are not shown because such attributes
cannot be changed by the usage control model itself.

UCONABC establishes that these type of predicates may be combined in many ways, and
may be evaluated in different stages of the usage procedure. In this aspect, the usage control
model differs from the traditional access control models that understand the policy evaluation
decision as something that happens only once, before the actual access takes place. This change
was required to deal with modern environments, where the actual context in which a given
decision was taken may change at any time, quickly rendering the decision obsolete.

30 Chapter 2. Fundamentals and Related Work

Subjects
(S)

Objects
(O)

Rights
(R)

Usage
Decisions

Authoriz
ations

(A)

Obliga
tions
(B)

Condi
tions
(C)

Subject Attributes (SA) Object Attributes (OA)

Figure 1 – Overview of UCONABC model components, based on the original from (1)

Therefore, usage control predicates may be further categorized according to the point
in time in which these predicates get evaluated. There are three possibilities for applying a
predicate:

Pre controls are predicates that get evaluated before the actual usage starts. These predicates
are equivalent to traditional access controls, as they are evaluated only once.

Ongoing controls are predicates that get evaluated during the usage process itself. In the
conceptual model, this ongoing evaluation happens continuously and a new decision is
taken whenever some attribute change changes the truth value of a predicate. Therefore, it
is possible to revoke the access during usage itself.

Post controls these type of predicates are actually used to change some state after the usage
process ends. As will be seen bellow, it would not make sense to describe actual controls
at this stage, thus it is used only for attribute updates.

The usage control model can reflect modifications in attributes on the policy decisions
during runtime (i.e., ongoing). This gives great flexibility for expressing highly dynamic usage
control policies. However, it would not be expressive enough if these attribute modifications were
only possible outside of the usage control predicates. Without controlled updates, a great deal of
modern access control approaches would fall outside of the UCONABC’s expressive reach.

Predicates for attribute mutability were designed to solve this limitation. They are called
update predicates and are used to change the value of subject and object attributes according to
some arbitrary expression. It is possible to define a predicate to reduce the number of times a

2.1. Fundamentals 31

0 (immutable) 1 (pre-update) 2 (ongoing-update) 3 (post-update)
preA Y Y N Y
onA Y Y Y Y
preB Y Y N Y
onB Y Y Y Y
preC Y N N N
onC Y N N N

Table 1 – The 16 basic ABC models ((1)).

user is allowed to play a song or to increase its trust level if she is behaving well, as well as to
reduce the amount of available resource (i.e., changing an object attribute).

Together with authorizations, obligations, and conditions, updates may be applied at any
point in time. However, it is important to make clear that only updates are actually useful on the
post stage, because the updates may affect future usage requests. It is also important to notice
that updates can not change environmental attributes, which are outside of the model. Therefore,
the combination of these predicates with the possible stages in which they get applied gives rise
to the 16 basic ABC models:

As can be seen on Table 1, authorizations before (preA) or during (onA) the usage can
be combined with immutable attributes (i.e., those that can not be changed by update predicates)
and mutable attributes. The same is valid for pre and ongoing obligations (preB and onB). We
can observe that there is no postA or postB, as that would not make sense. The conditions (preC
and onC), on the other hand, can not be coupled with mutable attributes.

It is possible to describe any of the traditional access control models by combining the
above ABC models. The highly expressive power of UCONABC allows writing discretionary,
mandatory and role-based access controls, as well as modern access control policies.

From the architectural point of view, the usage control reference monitor can be imple-
mented on the client side, on the server side, or a combination of both approaches. Conceptually
speaking, the reference monitor contains two facilities: one for policy decision, and one for
policy enforcement. These components are subdivided in modules that handle that many aspects
of the usage control process, such as attribute updates, usage accounting, obligations monitoring
and so on.

Being a purely conceptual model, the UCONABC does not define any of the technological
details of its implementation. The implementor must select what type of architecture to use, how
to write its policies, and how to implement important aspects such as continuous evaluation (e.g.,
will it be time-based or event-based), how to monitor obligations, how to update attributes and so
on. As we will see further, this gives rise to many different approaches to implement UCONABC,
with varying levels of compliance with the theoretical model.

32 Chapter 2. Fundamentals and Related Work

2.2 Related Work

This section describes some of the most relevant works related to the implementation of
the usage control model. From the limitations of these works, we derive the motivation for the
proposed solution.

2.2.1 A UCONABC Resilient Authorization Evaluation for Cloud Computing

On (4), we designed an architecture for the resilient evaluation of usage control policies
in cloud computing environments using the outsourcing model. The resilience property, in this
context, refers to the capacity of the proposed model to tolerate inconsistencies in the perceived
attribute values used in the policy evaluation process, which may differ from the actual values
read from the resources.

It is possible for the policy evaluation facility to perform policy evaluations based on
inconsistent values. This is a direct result from the distributed and asynchronous model employed
by the authors. The policy decision takes place in a central facility, that periodically receives
accounting updates from the remote hosts where the resources are being used. The delay between
reading the attributes in the remote systems, sending them to the central facility, consolidating
and then evaluating the policy, may cause exceptional situations in which a policy violation is
only discovered after a certain period of time.

The authors implemented an approach to cope with these possible exceptions: the model
reserves part of the resource quota to be used as a safety margin. It allows usage sessions to
exceed their actual quotas up to a certain limit, as long as a global constraint is fulfilled: as
long as the sum of all used resources is kept under a certain limit, the situation is considered
normal. The system manager is alerted whenever this constraint is violated, enabling her to take
corrective actions.

The proposed architecture seeks to provide scalability to the central facilities by using
tuple spaces. It allows the decoupling of the remote hosts from central entities and to handle the
high demand created by the remote systems.

The paper describes a prototype implementation and performance evaluation. The re-
searchers investigated the influence of network communications and message sizes on reevalua-
tion frequency. Their conclusion was that the minimum time between reevaluations is highly
dependent on the environment used, the message sizes and the number of requests.

However, we did not discuss the possibility of accounting messages drifting in time. That
is, it was assumed that every involved system would send accounting information at the same
time. It is possible that, due to the differing system loads, some messages will get progressively
delayed and lead to unpredictable results. Under heavy loads the accounting agent may be
unresponsive for a long time, while the user application is still executing and using resources,

2.2. Related Work 33

thus violating the usage control policies far beyond from the tolerance provided by the resilience
property of the model.

2.2.2 Usage Control in Cloud Systems

In the papers by Lazousky and colleagues (5, 6) a implementation of the usage control
model is discussed in details. One of the main contributions of the authors is the definition of
extensions to the XACML language to provide language constructs to express usage control
ideas, therefore it is possible to express when the conditions and obligations must be evaluated.

The authors also approached the challenging problem of dealing with attribute changes.
They introduced the concept of attribute retrieval policy to specify when to collect fresh attribute
values and to consequently trigger the access reevaluation. The attribute retrieval policy is formed
by a set of conditions that must hold true before an attribute can be fetched, when this happen, a
component (the PIP) collects the attribute and pushes it to the policy evaluator.

The proposed framework intercepts every access request (e.g., to create, suspend, reac-
tivate or delete a virtual machine) and determines whether the request is allowed or not. The
authorization framework is able to cancel an ongoing usage session if a policy violation is
detected.

These usage sessions are controlled by instances of the authorization service, which are
created on each new usage session. The usage session is destroyed when the violation of the policy
happens or the usage session ends normally. As the authors observed, the authorization service
instances of different usage sessions run concurrently. However, the prototype implementation
does not allow for cooperation between authorization service instances.

The proposed architecture works in an outsourcing manner. Therefore, it is safe to
conclude that it suffers from the unpredictability present in outsourcing models. The authors
did not cover the concurrency problem, not even from a conceptual point of view. Thus, their
proposal lacks generality for use in cloud computing environments.

2.2.3 A Usage Control Based Architecture for Cloud Environments

Tavizi and colleagues (7) focused on the architectural details of a usage control mecha-
nism. That is, they were concerned with organizing the function of each component, like policy
decision points, decision enforcers, policy information points, while providing semantics closer
to the usage control model.

Their proposed model is based on the outsourcing model, closely mimicking the XACML
proposed architecture. One of the differing aspects of their proposal is that to provide the best
security possible with the least computational overhead, the proposed model performs continuous
control according to the sensitivity degree of the attribute.

34 Chapter 2. Fundamentals and Related Work

The sensitivity is used to decide which type of attribute retrieval will be used. Highly
sensitive attributes are required to be pushed actively to the policy decision facility whenever a
change is detected. Lower sensitivity attributes can be pulled by the policy decision facility in a
periodical fashion. The authors also provided an event handler facility, which may be configured
to deal with various types of events that could trigger a policy evaluation.

A prototype was implemented using XACML language. The authors made some exten-
sions to the language to enable the expression of some usage control constructs. However, no
detail was given about any experimental results or the implementation itself.

2.2.4 Access Control of Cloud Service Based on UCON

An access control architecture based on the UCONABC model was proposed by Danwei
and colleagues (8). The architecture is different from the previous works for using an unusual
approach in which the client and server contain a negotiation module. They modified the
UCONABC model to enable the dynamic negotiation of access levels.

According to their proposal (called the Nego–UCONABC), the user has the possibility of
choosing another access option through a negotiation process. Therefore, in certain situations,
the user can still get some access to the resources, instead of being promptly rejected when an
authorization credential is insufficient.

The authors discussed a detailed architecture to implement the proposed model. They
described how SAML can be used to transport the authorization attributes and the interactions
between the various components. The proposed architecture follows the outsourcing model. No
implementation details were given.

2.2.5 An Administrative Model for UCONABC

Farzad Salim and colleagues (15) argued that UCONABC administration must be done
through the management of attributes, which they termed the administrative model. It must
define the meaning of attributes, valid attribute sources and who can manipulate these attributes.
This is also valid for object attributes as well.

The administrative model is connected to UCONABC because the former defines attributes
and the latter employs them to evaluate usage control policies. On the authors proposed adminis-
trative model, properties and rights are defined by attributes, which are formed through assertions
made by subjects or other entities with administrative capabilities.

The authors organized their model in a two-layer structure containing a peer model and
an authoriser model. The first provides an expressive and unrestricted environment where every
subject can make assertions about other subjects and objects. This allows the identification
of who can modify or delegate properties and rights. The authoriser model determines whose

2.3. Conclusion 35

assertions are to be used for the decision process. The authoriser model depends on a policy
agreed upon by every participant of the system.

The paper discusses trust aspects of these authoriser policies, including by using a
concrete language (SecPal, (16)). The authors aimed at eliminating the assumption of a single
administrator who issues attributes and the authorisation policies. They unified all attribute types
(mutable and immutable) under one category, which defines mutability as a condition that may
change under different circumstances.

Although the authors used a real language to express concrete examples, there was not
prototype implementation to demonstrate the feasibility of the proposed model. Therefore, the
authors described an interesting concept which can provide some insights into the administrative
details of UCONABC. In our proposal, we developed an administrative model to employ temporary
attributes to allow concurrent policy evaluations with cooperation between policy evaluators.

2.3 Conclusion

Cloud computing is a new type of distributed system. It was enabled by advances in
technologies like hardware virtualization and the standardization of networking protocols. As
we saw, cloud computing platforms can offer different levels of abstraction: the lowest level
(infrastructure, IaaS), the intermediary abstraction (the platform, PaaS) and the highest level of
abstraction (the software, SaaS).

We discussed the policy management architectures commonly seen on distributed sys-
tems: provisioning and outsourcing. We also described the usage control model (UCONABC) and
its defining characteristics.

The related works make clear that UCONABC is a very relevant topic for distributed
systems and especially for cloud computing environments. As we said earlier, most proposals
are based on the outsourcing model, which have clear disadvantages for the cloud computing
environment.

Most works are focused on expressing usage control rules in some language extension,
giving little attention to the other implementation details. Other authors focused on conceptual
aspects, giving no details of possible implementations. Only one work took the time to address
the shortcomings of the outsourcing model and, even then, there is still margin for inconsistent
behavior.

37

3 Proposed Solution

The drawbacks mentioned in the previous chapters motivate the reduction of variable
costs from the policy reevaluation process. This is required because if we want to implement a
usage control system that behaves in a predictable fashion, the policy reevaluation frequency
must remain stable no matter the number of servers present in the cloud computing environment.

We must also eliminate any shared state during policy evaluation. That is, considering
we can have two or more policy evaluation facilities in the environment, those facilities must
not share any state affecting the outcome of policy evaluation. This is a fundamental aspect;
otherwise, we would create a strong coupling between servers. Decentralizing evaluation would
not be any better if we were forced to synchronize state for policy evaluation.

Special care was taken to enable attribute mutability in a consistent fashion. This was
achieved by partitioning the resource limits (quotas) among local domains, in a way that each
local domain controls a subset of the whole (global) quota. Therefore, it is possible to provide
attribute mutability in a controllable fashion, propagating updates between local domains and
the administrative domain as needed.

In this work, we adopt the concept of quota as being a share or part of the total amount
of a given resource available. Thus, we have a global quota that is the sum of all the defined
user quotas plus the remaining amount that has not been allocated to any user yet. As will be
described further, a given user quota might be further segmented in application quotas at the user
discretion.

The decentralization of the authorization model (provisioning) can produce gains in
performance by eliminating the network overhead present in centralized models. It shows
potential for better scalability, because when each server does not depend on external entities
to evaluate and enforce policies, the usage control system is expected to scale linearly with the
number of servers without performance degradation. In a decoupled model each authorization
facility can take decisions independently, which leads to a more adequate authorization system.

However, to enable the UCONABC to be decentralized, we must first define how user
and object attributes will be handled and used during policy evaluation. We must define an
administrative model that provides these details, and also what constraints must be applied to it
to ensure that decisions will be consistent. This new administrative model is discussed in details
in the next section.

We designed an architecture inspired by the provisioning model to implement the new
administrative model. The architecture provides decentralized usage control focused on reducing
the latency present on the outsourcing approach. The architecture uses local policy evaluations to

38 Chapter 3. Proposed Solution

significantly reduce network latency. This increases the predictability of the system’s behavior,
despite the number of servers in the cloud. The servers perform the local enforcement of policy
decisions.

The policies themselves are generated from user credentials and policy templates. This
provides a way to configure individual policies for each user application, each one with a custom
defined resource quota, derived from the main user quota. Therefore, each policy is individualized
and it does not share direct attributes with other policies.

As the application quotas are preallocated and configured on the server, this could lead
to the main user quota becoming fragmented over several servers. To avoid this, we designed
an attribute reconfiguration model that allows the servers to detect starvation conditions and to
cooperatively rebalance the quota configurations previously defined by the users. This provides
for overall better quota usage and better user experience, as the applications will be able to
make use of all user quota before being denied further access to resources. This attribute
reconfiguration happens in an asynchronous fashion, without negative impact on the policy
reevaluation frequency.

The use of user credentials to provision application quotas was needed to avoid the high
complexity that would be present in a pure provisioning approach. That is, by letting users define
how much quota they want to allocate to each application, and then deriving the policy from a
template combined with the user credential, we free the manager of tracking where the policy
must be provisioned, of writing policies for each application, and from having to synchronize
those policies every time an application quota changes. Therefore, the task of the system manager
is much simpler.

3.1 Model

This section presents our proposal for an administrative model for the application of
UCONABC in distributed systems, more specifically those that are representative of cloud com-
puting systems. We describe how some UCONABC features might be used to create a model in
which concurrent policy evaluations may take place without requiring state sharing between the
decentralized policy evaluators.

As it has been shown on previous works, centralized approaches cause the policy reeval-
uation frequency to be highly coupled with the environment size. By enabling UCONABC to be
decentralized, we allow it to be implemented in a fashion that is scalable without coupling policy
reevaluation frequency to the number of entities in the cloud.

Controlling resource usage in cloud computing environments is a complex task that
cannot be solved with traditional access control models. One of cloud computing innovative
features is its capacity of redefining resource allocation amounts dynamically, called its resource

3.1. Model 39

elasticity. On one hand, it provides great flexibility for the consumer; on the other hand, it exposes
the shortcomings of traditional access control models when faced with a continuously changing
environment. Those models were designed based on the assumption that once a decision is taken,
it would not need to be reconsidered. Therefore, once a user was authorized, that decision could
not be taken back.

The limitations of traditional access control models can be clearly seen on the security
mechanisms implemented by current cloud computing offerings, such as RedHat OpenShift (17),
Pivotal Cloud Foundry (18) and Heroku (19). These cloud providers offer only static resource
allocation, based on a predefined set of configurations. That is, the consumer is allowed to acquire,
for instance, a virtual machine in a limited number of configurations. It is not possible to define
a custom configuration nor to redefine it dynamically. Any changes to virtual machine resource
configuration require a full restart, possibly involving installing the consumer’s applications
again. The only possibility for the user to dynamically acquire more resources is by initializing
more virtual machines.

If the underlying access control mechanisms were more flexible, the user would be able
to increase or decrease the resource amounts for its virtual machines, as the current virtualization
technologies already allow it (it is called ballooning, see (20)). Therefore, the consumer is stuck
with a situation that either might lead her to acquire too much resource or too little resource.

The usage control model, UCONABC, was designed to unify many research ideas that
were looking to overcome the limitations of traditional access controls in the context of modern
environments. The main aspects of usage control are the continuity of policy evaluation and
attribute mutability. It means that, unlike traditional models, UCONABC is capable of revoking a
decision at any point in time if a policy rule violation is detected.

This new model is being proposed as a better option to implement security mechanisms
in cloud computing environments, as it is able to express traditional access control restrictions,
and is better suited to deal with the dynamism of the cloud. UCONABC does not require the
resource limits to be static; any change to those limits can be promptly reflected on the policy
reevaluations affecting current usage sessions. This allows the consumers to allocate resources
as they see fit, unlike having to fit her applications in a predefined configuration.

The original UCONABC model, however, adopts a centralizing approach. Previous at-
tempts to implement usage control architectures for cloud computing environments that faithfully
followed the original model ended up with a centralized structure as well. The results were that
the performance of the usage control systems is highly dependent on the environment in question.
The policies reevaluation frequency must be set specifically for each environment size, and any
change in the number of components involved may require further analysis and reconfiguration
of this frequency.

The natural alternative to this problem is the adoption of a decentralized approach to

40 Chapter 3. Proposed Solution

the evaluation and enforcement of usage control. The original model does not provide for
concurrent policy evaluations using the same attributes on distributed evaluation facilities. That
is, in the original model, it is not possible to express a distributed usage control to be applied
and evaluated, for instance, on two virtual machines involving the same user and the same
authorization attributes. In the original UCONABC model it is only possible the expression
of unified policies that must be evaluated by a conceptually centralized entity that is able to
continuously observe the whole environment.

3.1.1 Operational Model

Before we discuss how the UCON ABC can be extended so that it can be implemented
in a decentralized manner, it is fundamental to present the objectives of the new model. In
the following paragraphs the main entities involved in the model will be presented with the
constraints that must be respected by it.

The proposed model contains three types of entities:

Provider: It is responsible for providing the computing resources of the cloud. For the context
of this proposal, the provider manages infrastructure resources (i.e., storage, network
bandwidth, processing power, etc.);

Consumer: is the entity that acquires computational resources from the provider for use in her
organization. The consumer allocates portions of the acquired resources for the execution
of user applications;

User: also known as the subject, is the entity that performs the effective use of resources by
running applications on the infrastructure acquired from the provider. The user has a
dependency relationship with the consumer, as the latter defines each user’s resource
allocations (quotas).

It is assumed that the provider takes no notice of how the resources provided to a particular
consumer will be used. The provider is only concerned with managing the infrastructure, letting
the consumer define how the allocated resources will be used. On the other hand, the consumer
determines how to best allocate the resources acquired for its users (whether they are employees
or customers of the organization). With this in mind, we can formulate the first model definition:

Definition 1. Global quota of a resource – GQ(ResID)

• ResID ∈R where R = {resource identifiers}

It represents the total amount, or global quota, of a resource that is identified by ResID,

which was acquired by the consumer from the cloud provider. It is a fundamental system

constraint that the sum of the use of all consumer users do not exceed this value, as this could

result in losses to the consumer in the form of additional charges by the provider.

3.1. Model 41

One can identify the conflict of interest in resource allocation control if it was delegated
to the provider. If we consider that the provider is benefited from the inefficient use of contracted
resources, it is clear that the usage control of users should be implemented independently from
the provider. In addition, for the provider to control consumer users a strong integration would be
needed between different cloud categories: in the current proposal, we assume that the provider
does not have knowledge of the existence of the users, it only recognizes the consumer.

Remark 1. In a previous research paper, we identified the lack of integration between different

cloud service models (21). To summarize, each cloud service model is isolated from the other

models. For instance, the IaaS provider is not aware of the PaaS or SaaS user identities. Therefore,

it is not possible to implement fine–grained resource controls outside one’s own service model

without some involved form of integration. Appendix A, on page 79, provides further details on

the challenges of integrating different cloud service models and discuss a possible approach.

It is the consumer’s responsibility to implement the mechanisms to control user appli-
cations in order to prevent the global quota GQ(ResID) of each resource from being exceeded.
However, it is not possible for the consumer to anticipate the number of resources that should be
allocated to each user application, or where in the cloud computing environment the application
will be instantiated. For these reasons, the consumer is limited to setting the maximum amount
derived from GQ(ResID) that should be reserved for a particular user. This brings us to our
second definition:

Definition 2. User quota – UQ(UserID,ResID)

• UserID ∈U where U = {user identifiers}

The user (identified by UserID) quota for a given resource (ResID), is a part of the global

quota GQ(ResID) which was reserved for the given user, allowing it to make use of the resource

in the contracted environment without exceeding this value, as she sees fit. Creating a user quota

should respect the following constraint:

UQ(UserID,ResID)≤ GQ(ResID)−∑UQ(id,ResID) ∀ id ∈ U −UserID (3.1)

The user can not just use her UQ(UserID,ResID) directly in a cloud environment, as
this would require the ability for all the systems involved to consistently share this attribute. That
is, it is necessary that all involved systems be strongly coupled to ensure that the accounting of
the various user applications does not exceed the permitted value. The computational cost and
complexity involved make this type of approach unfeasible.

Therefore, the user must allocate a portion of her UQ(UserID,ResID) for each appli-
cation she wants to use. That is, the user must estimate the number of resources that each
application instance will use and establish a reserve for each application. This leads us to the
third definition:

42 Chapter 3. Proposed Solution

Definition 3. Application Quota – AQ(AppID,ResID):

• AppID ∈A where A = {user application identifiers}

The application quota represents an amount of a resource (ResID) which is allo-

cated by the user for a specific application instance (AppID). This value is derived from

UQ(UserID,ResID). The definition of AQ must comply with the following constraint:

AQ(AppID,ResID)≤UQ(UserID,ResID)−∑AQ(id,ResID) ∀ id ∈ A (3.2)

The proposed model should allow the consumer’s manager to set the amount of resources
that each user will be able to consume (UQ(UserID,ResID)), the manager should not worry
about the way the user allocates these resources to her personal applications. Furthermore, the
manager should not be required to write individual policies to be provisioned on each system
where the users can run their applications.

Each user must decide how to use her resources. After defining how many resources each
application will receive, the user must request the consumer to issue credentials containing the
requested values to enable the application to be instantiated in any system of the cloud computing
environment. At this point, the consumer should implement the accounting restrictions mentioned,
i.e., to ensure that the sum of application quotas AQ(AppID,ResID) of the requesting user will
not exceed the user quota UQ(UserID,ResID) defined.

The credential issued by the consumer must contain the definitions of AQ(AppID,ResID)

requested by the user. The system that receives the request to run the user application, with the
credential issued, must perform the derivation of a usage control policy from a template policy.
The resulting policy is customized to the application in question. The evaluation of the derived
policy and the enforcement of the decision must take place in the local system, following the
original UCONABC model. Thus, each user application will have its own local usage control
policy.

Definition 4. Policy Derivation:

The usage control policy should be derived at run time from a policy template. The

controls (i.e., UCONABC predicates) are described on the template and must be configured with

the attributes of the presented credential.

The proposed model assumes that users should be able to run applications concurrently in
different systems. This means that the definition of UQ(UserID,ResID) may become fragmented,
that is, allocated inefficiently in various systems where the user has applications being executed.

The inefficiency stems from the fact that under certain circumstances, the applica-
tion quotas can be set with imprecision, generating low resource situations for some applica-

3.1. Model 43

GQ(Disk):
1000 GB

UQ(ID1, Disk):
100 GB

UQ(ID2, Disk):
300 GB

AQ(AppID1, Disk):
20 GB

AQ(AppID2, Disk):
50 GB

AQ(AppID3, Disk):
100 GB

AQ(AppID4, Disk):
150 GB

AQ(AppID5, Disk):
50 GB

Figure 2 – An example of quota hierarchy

tions and excess of resources to other applications. This is possible because each definition of
AQ(AppID,ResID) is made as an estimate which may have been too optimistic or pessimistic.

With the aim of improving resource usage efficiency, the user must allow the application
quotas to be reconfigured dynamically. This can happen between application instances on
the same system or on different systems. The purpose of this requirement is to ensure that
applications with an overestimated AQ(AppID,ResID) may transfer part of it to applications
that may suffer from lack of resources, thereby increasing system efficiency. Furthermore, it is
important that the reconfiguration process occurs without the need of user intervention:

Definition 5. Quota Reconfiguration:

The system should enable automatic reconfiguration of application quota in cases ex-

plicitly allowed by the owner of the application, when the use of resources by the application is

approaching the limits of its configured quota. The goal is to reduce quota fragmentation due to

the unpredictability of user application requirements.

With the previous definitions in mind, it is possible to describe a hierarchy of resource
quotas in accordance with the level of granularity. The Figure 2 illustrates this hierarchy. At the
top is the GQ for the resource Disk, with assigned value of 1000 GB of storage. The consumer
has decided to allocate 100 GB for user (ID1) and 300GB to another user (ID2), leaving 600
GB available to allocate to other users. User ID1 has allocated 20 GB and 50 GB respectively
for applications AppID1 and AppID2 while the user ID2 has allocated all its quota for three
applications (AppID3 100GB, AppID4 150GB and AppID5 50GB).

In this scenario, if the application AppID1 needs more resources to complete its task, the
user can transfer part of the free quota (30GB) present in UQ(ID1,Disk). User ID2, on the other
hand, has no quota available in UQ(ID2,Disk): in this case, for instance, AppID5 may require
more resources to complete its task, and because AppID4 has a large amount of unused quota, it
could allow a portion of its quota to be transferred to correct the situation.

The model must comply with the above definitions and promote decentralization of
activities (i.e., decoupling), in order to facilitate the administration of policies and user attributes

44 Chapter 3. Proposed Solution

regardless of the environment size. To meet this goal, the application of usage control, including
the evaluation of policies, should be performed at the local level, eliminating the unpredictability
factor intrinsic to the remote communications that could negatively affect the performance of
the model. In addition, the model should ensure the consistency of attributes, preventing the
occurrence of repeated use of the same definition of AQ(AppID,ResID) (potentially causing
incorrect accounting, whether by accident or by malicious activities).

3.1.2 UCONABC Administrative Model

The previously proposed objectives can be achieved by designing an administrative
model to extend the operation of the original UCONABC model. At the heart of this new model is
the concept of attribute mutability provided by UCONABC.

This attribute mutability was conceived as a pillar of the usage control model (22). It
makes it possible to perform user or object attribute modification at any time in a usage session
(i.e., before, during or after the actual use), providing great flexibility to the usage control model.

There are two categories of mutable attributes that can be used in the usage control
policies:

• Persistent attributes: are those that have a persistent nature and that can be shared over
time in various usage sessions. A persistent attribute example is a prepaid card that is
decremented on each use and that can be used several times.

• Temporary attributes: are those that exist only during a single usage session and, gen-
erally, are not shared with other sessions. When the session is finished, the temporary
attribute ceases to exist. An example of a temporary attribute is the duration of a phone
call, which is continuously updated during the call, but it ceases to exist as soon as the
user hangs up.

Persistent attributes and temporary attributes can be related to each other, i.e., temporary
attributes can be used to update persistent attributes. In the case of a prepaid phone card, the
credit (persistent attribute) is updated after calculating the cost of the telephone call based on
call duration (temporary attribute) and other cost factors of the telephone company. This allows
different administrative models to be implemented in UCONABC, for instance, the Dynamic

Separation of Duty, as can be seen in (22).

In this work, we developed a new administrative model for UCON ABC meeting the
requirements set out in the previous sections. We used temporary and persistent attributes in a
manner not envisioned in the original model. The objective of this new model is to enable the
decentralization of the usage control evaluation, which otherwise could not be expressed in the
originally proposed administrative model.

3.1. Model 45

In our model, we consider the global quota GQ and user quota UQ as persistent attributes
that are used use in several usage sessions. The application quotas AQ, on the other hand,
are considered temporary attributes because they only affect a single usage session and are
extinguished when the application is terminated.

Persistent attributes are not directly used during the usage control of an application. That
is, they exist for the high–level management, ensuring that the sum of the quotas reserved for
users does not exceed the global quota and the sum of application quotas of a user does not
exceed her own quota. As these attributes are not used during the evaluation of policies, the
constraints from Definition 2 and Definition 3 can be enforced at the time the user and application
quotas are being created.

The infrastructure must be controlled with temporary attributes (the application quota
AQ), allowing each application to be independent from the others. When submitting a request
to instantiate an application in any system, together with the AQ(AppID,ResID) definition, the
resource reservation is guaranteed for the desired application.

At the local level, the usage control model behaves the same way that was defined in
the original UCONABC model. This is, policies are formed by predicates over sets of user and
resource attributes, with the distinction that the attributes for users are temporary and exist only
in the scope of the local system.

The values contained in the AQ(AppID,ResID) definition serve to derive the application’s
usage control policy from a local policy template, in which predicates must be configured before
they can be evaluated. The amounts of each application quota become limits for local use, which
will be matched with the application’s accounting attributes.

The mutability of attributes is used in a different manner from the original vision
from (22): the derived policy for the application must contain update predicates that change the
persistent attributes on the administrative domain. Specifically, the attributes related to the user’s
quota utilization. Periodically, an update of the current quota usage is made and relayed to the
administrative domain. At the end of the usage session, any quota amount that is left over can be
reclaimed for later use for other applications.

Although the user quota might be updated by events from the local domains, it does not
negatively impact the performance of the local evaluation facilities. That is, the user quota is not
a state shared among the local domains. Each local domain needs only the application quotas
provisioned prior to application execution to successfully evaluate the local policies. The updates
sent to the user quota are there to improve the efficiency of user quota usage.

Although application quota attributes are considered temporary and should be used only
in a single session, it does not mean they cannot be changed due to other concurrent sessions
of the same user. The proposed dynamic reconfiguration of quotas is based on this assumption.
It allows for independent local systems that can automatically transfer part of a user’s quota as

46 Chapter 3. Proposed Solution

needed. These transfers take place using conditional update predicates.

When a resource usage limit is achieved in a given AQ(appID,ResID), an update pred-
icate will transfer a part of the application quota from the system with the larger amount of
unused quota, or from the user quota on the administrative domain, to the system where the
starving application resides. If we consider a requesting application (req), a donor application
with unused quota (pro) and a given amount of quota (P) to be transferred, we have the fol-
lowing operations that must be performed atomically: AQ(req,ResID)← AQ(req,ResID)+P

and UQ(UserID,ResID)←UQ(UserID,ResID)−P (when there is free quota on the UQ) or
AQ(pro,ResID)← AQ(pro,ResID)−P when the quota is transferred from another application.
Priority is given for the second option (transfers between local domains). As will be better
explained further, this aims at improving efficiency in quota usage.

This means that the local usage control policy contains a trigger to start the process
of quota reconfiguration. When the user application reaches a predetermined amount of the
application quota, a distributed attribute update must be performed in order to transfer an amount
of quota (either from the user or another application quota), preventing the initial application
from running out of resources.

The reconfiguration process only rewrites temporary attributes from a single user, in order
to improve quota usage, reducing the fragmentation of user quota and improving user experience.
Conceptually speaking, the reconfiguration process is represented only by the execution of a
conditional update predicate that happens to be implemented as a distributed operation.

3.2 Architecture

The decentralization of the UCONABC for cloud computing requires a design flexible
enough to achieve the scalability common to these environments without compromising the
security of the system. This section presents that design, answering the following questions:

• How does the architecture manage the policies among the participating servers?

• How does the architecture ensure a predictable UCONABC reevaluation frequency?

• How is the resource allocation consistency enforced?

• How does the architecture avoid quota from becoming fragmented?

• How does the architecture manage resource allocation for the users?

3.2.1 Organization

To achieve the desired objectives, the architecture was designed with some features in
mind: the use of local authorization and enforcement facilities, policy management based on the

3.2. Architecture 47

use of user credentials and policy templates, and the use of an auto-configuration approach to
allow the application hosts to reconfigure and to improve quota usage.

Remark 2. In this work, a user credential is a digital document that carries various authorization

related data, resembling security capabilities(23), though more general. A user credential does

not automatically imply a permission. It must be analyzed by the usage control system, in light of

the applicable policies, before any action can be permitted.

An overview of the proposed architecture’s organization can be seen on Figure 3. We
designed it around the idea of two basic domain types: the administrative domain and the local
domain.

• Administrative domain is used to provide high-level management services, such as user
attribute management, policy management, issuing and tracking of user credentials and
consolidation of accounting information.

• Local domains are the servers in which user applications are executed. A local domain
contains a usage control system based on UCONABC, coupled with local accounting
and attribute reconfiguration mechanisms, to control resource usage and avoid resource
allocation fragmentation.

Each local domain is isolated from the rest of the local domains. That is, it does not
share state (usage control information) with other local domains. This is a fundamental feature
to preserve local domain autonomy and, thus, producing a predictable performance for the usage
control system. Each local domain is a host equipped with special environments to execute user
applications (i.e., application containers), controlled by usage control policies, and is able to
manage local attributes with a LOW-AM, reconfiguring those attributes as needed.

We use policy templates combined with user credentials to derive the applicable policies
on the local domain, making it self-sufficient, i.e., everything needed for policy evaluation and
enforcement is available in the local domain.

This self-sufficient approach, however, has an important challenge: application quota
may be spread (fragmented) over several local domains. Thus, some applications could starve
without the use of some mechanism to enable the reconfiguration of the user’s spare quota from
the local domain or even from other domains (including the administrative domain itself).

The administrative domain and local domains in conjunction provide a distributed and
cooperative attribute management service. It enables the automatic reconfiguration of resource
quotas among the local domains, thus reducing fragmentation of the user quota (e.g. small
remaining quota in different user sessions) and improving the global quota usage efficiency.
Users might also have a better experience as this approach reduces the risk of applications being
interrupted by lack of usable quota.

48 Chapter 3. Proposed Solution

Consumer's
User

Consumer's
Administrator

Security Gateway MID-AM

TOP-AM

S
T

S

Authorization
Credential

Authorization
Attributes

A
cc

ou
nt

in
g

D
at

a

Authorization
Attributes
Management

PAP

Policy
Templates
Management

Usage Request

ADMINISTRATIVE DOMAIN

LOW-AMUCON System

Attribute
Reconfiguration

Usage Request
with Credential

LOCAL DOMAIN

ResourcesU
sa

ge

Accounting
Data

Candidates for
Reconfiguration

Local Domain
Instantiation

Quota Reconfiguration
Negotiation

VM Repository

VM Image
Configuration

Figure 3 – General organization of the proposed architecture

The following sections describe the architecture of Figure 3 in a bottom-up style. We
begin by discussing the organization and operation of a local domain and then we describe the
details of the administrative domain.

3.2.2 Local Domain

The local domain implements the run–time environment in which user applications can
be executed and individually controlled. A given service is executed in an isolated environment
provided by the local domain mechanisms (we call them containers), which allows for mul-
titenancy – the ability to execute applications from different users alongside each other. The
local mechanisms validate user credentials and combine them with policy templates to generate
the usage control policies that will be applied to application containers. The evaluation and
enforcement of these policies are locally performed. For an illustration of the local domain
components, see Figure 4.

Users can perform two request types on the local domains: application requests and

3.2. Architecture 49

management requests. Application requests are always directed to the user application being
executed inside the container. Management requests, on the other hand, are used to create,
modify, delete or retrieve information about a particular application (e.g., request to start a web
application). Local usage control mechanisms are focused solely on the second type of request,
application requests are routed to the user application itself.

When the user wants to perform a management request, she must submit the request
to the Security Gateway (SG). The SG acts as a broker, retrieving the user credential from the
administrative domain, selecting the appropriate local domain and forwarding the user request
to it. The SG must take special care to ensure the user credential has not been already used
elsewhere, as it contains authorization data akin to a capability.

The above-mentioned user credential is crafted especially for each application instance.
As we will see on Section 3.2.3, the user must specify the resource quotas she wants to reserve
for the requested application. These quota definitions are encoded on the user credential that will
be used to perform the user’s management requests for the target application.

A Policy Enforcement Point (PEP), on the selected local domain, receives the request
from the SG and ensures that only authorized requests are performed in the local domain. The
first step in the authorization process is to invoke the security token service (STS) to authenticate
and validate the user credential (e.g. by verifying expiration dates, the authenticity of signatures,
trust relations, data integrity). Any user credential that fails to be validated causes the user
request to be rejected. After successful validation, the PEP submits an authorization request to
the context handler (CH) along with contextual information (e.g. user credential, request content).
The PEP then waits for a reply with an authorization decision to be enforced.

The CH integrates the many components of the local domain. It translates the request
format used on the PEP to a format useful to the other components. After extracting the user
credential from the PEP’s request, the CH invokes the local policy administration point (LPAP)
and, in parallel, retrieves any resource utilization data associated with the user application (if it
is already running) and the environment attributes from the Policy Information Point (PIP).

The LPAP derives usage control policies from the user credentials and policy templates
contained in the local template repository. The discovery of which rules must be created (e.g.
pre-authorizations, ongoing conditions, etc.) is done by matching attributes contained in the
credentials with field-ids present on the policy template. Each rule with a matching field-id is
configured with the corresponding value from the user credential. The resulting policy is stored
in a policy repository and a success message is returned to the CH, allowing the authorization
evaluation process to continue.

The purpose of the PIP is to provide resource usage information to the CH through a
well-defined interface. Usage information is collected by the low-level accounting agent (LOW-
AM) and made available to the PIP. The LOW-AM uses the operating system’s native APIs

50 Chapter 3. Proposed Solution

user
application

application
container

manage
container

Container
Manager

Policy Enforcement
Point (PEP)

create
update
delete

Policy Information
Point (PIP)

usage
metrics

Local Policy Adm.
Point (LPAP)

Security Token
Service (STS)

validate
credential

Context
Handler (CH)decision

derive
policy

template policy

tempalte repository

accounting
data

Policy Decision
Point (PDP)

decision

retrieve policy

Reevaluation
trigger

configure
trigger

LOCAL DOMAIN
response

application
requests

policy repository

retrieve

User

SG

request store policy

read

DOM
ADM

LOW-AM

accounting
data

Figure 4 – Local Domain Components

to discover the resource usage for each individual container, as well as the current state of the
system (e.g. load average, the number of running processes). UCONABC obligations are treated
as normal attributes stored on the PIP that must be updated by an external agent, because not all
obligations can be observed from within the system.

LOW-AM is separated from the PIP because it implements other features not related
to the PIP, whose sole function is to provide an attribute recovery interface to the context
handler. The LOW-AM, on the other hand, collects accounting data and must register application
quota definitions when the user presents her user credential. It performs cooperative quota
reconfiguration between applications of the same user locally or remotely and sends accounting
data to the MID–AM for further consolidation.

The next step for the CH is to verify if the request is related to an already running
user application (subject to ongoing controls) or if it is a request for the instantiation of a new
user application (subject to pre controls). An application container represents the object being
controlled; therefore, its mere existence implies that a usage session is ongoing. The CH creates
an authorization request with the gathered data, sends it to the PDP and waits for a decision.

The PDP is the specialized component for the evaluation of usage control policies,
matching the data contained in the CH’s request to the policy rules. The policy applicable to the
application container is retrieved from the LPAP before evaluating the request. Each policy is
linked to a single user credential; therefore, the PDP can select the right policy on the LPAP.
The lack of an applicable policy causes the request to be denied. A request is authorized if, after
matching all attributes to the applicable policy rules, the rule-combining algorithm produces a
permit decision. The decision is sent to the CH along with details of how the decision must be
enforced.

3.2. Architecture 51

Algorithm 1: Policy Evaluation
Input: reqCtx a request context
Output: resCtx a decision response context

1 S← reqCtx.sub ject // requesting subject
2 O← reqCtx.ob ject // requested resource
3 C← reqCtx.action // requested action
4 A← address(LPAP) // LPAP address
5 PS← retrieve_policy(S,O,A) // retrieve policy set
// deny by default

6 if policies(PS,C) = /0 then
7 return Deny

// evaluate all policies
8 for P in policies(PS,C) do
9 for R in P do

10 if evaluate(R,S,O,C) = Deny then
11 return Deny

12 return Permit

The aforementioned process is repeated for any management request. This process can
be clarified by studying Algorithm 1. The PDP retrieves the subject (S), object (O) and context
(C) linked to the user request (represented as request context, reqCtx). The data is used to retrieve
the applicable set of policies from the LPAP’s address (A). A request is rejected if no policy
applies to the current context (lines 6,7). A deny overrides algorithm is shown from lines 8 to 12:
if any rule produces a Deny decision, the request is immediately refused, otherwise, the request
is permitted.

The response from the PDP contains a decision to be enforced, a reevaluation trigger
(RT) and any attribute updates required. The CH invokes the PIP to update any attribute, ef-
fectively supporting UCONABC attribute mutability. Failure to update the attributes must cause
the user request to be rejected. The decision and reevaluation trigger are converted to a format
understandable by the PEP and sent to it after updating any attributes.

The PEP configures the reevaluation trigger (RT) in a component with the same name. The
RT functions as a timer that invokes the PEP to repeat the authorization process periodically. The
trigger is created with request data provided by the PEP, this data serves as contextual information
to reevaluate the suitable policy. Therefore, the RT component performs the continuity of control,
defined on UCONABC, as a configurable periodic reevaluation.

The PEP forwards authorized requests to a local Container Manager, which performs the
required actions to prepare the containers and to manage user applications in it, as well as to
manage the container life cycle. The application’s access details (e.g. IP address) are returned
to the user after container creation. The container manager uses the operating system’s native
mechanisms to setup the container limits in accordance with the user credential values.

52 Chapter 3. Proposed Solution

<Rule RuleID="Storage" Effect="Permit">
<Target><Any/></Target>
<Condition>

<Apply FunctionId="integer−less−than−or−equal">
<Apply FunctionId="integer−one−and−only">

<AttributeDesignator Category="access−subject"
AttributeId="usedDiskSpace" DataType="integer"/>

</Apply>
<Apply FunctionId="integer−one−and−only">

<AttributeValue DataType="integer">
<%TotalDiskSpace%>

</AttributeValue>
</Apply>

</Apply>
</Condition>
</Rule>

Figure 5 – Sample template rule

3.2.2.1 Templates and Policy Derivation

A template is a set of all the rules that can be used to control the behavior of a user
application being executed in a container. To clarify this idea, a simplified version of a rule for
controlling storage space is shown on Figure 5.

A RuleID identifies each rule unequivocally: when rule identifier is present in the user
credential, the rule must be activated for this user. The rule may contain a variable number of
attribute identifiers (e.g. TotalDiskSpace), which must be replaced by the value with the same
field-id from the user credential. The TotalDiskSpace attribute, in this example, must be present
on the user credential, otherwise no policy will be derived and the user request will be refused.
Accounting data collected on the local domain can also be referred on the policy template with
variable names, like usedDiskSpace for storage space already used.

The applicable rules are configured with the authorization attributes from the user
credential and, after a successful derivation, the resulting policy is stored on the LPAP. This
policy may contain rules to control the full lifecycle of the service container (i.e. pre and ongoing
controls). Updates made to the template causes the derivation of policies to be repeated — the
obsolete policies are deleted and the new policies take place. Policies may also be grouped
in Policy Sets, each policy representing a well-defined stage of the usage session (e.g., pre-
authorization, ongoing-conditions).

Remark 3. The local domain architecture was the object of a research paper (24) published by

us before the attribute management model was designed. As this proposal’s main contribution is

related to the autonomous self-configuration of these local domains, we included the research

paper as an appendix to provide a more detailed view on the inner workings of the local domain.

Therefore, to know more about the local domain details and the policy management approach

3.2. Architecture 53

based on templates and user credentials, please consult Appendix B, on page 85.

3.2.3 Administrative Domain

The administrative domain groups services that are related to high–level management.
Local domains are autonomous in the sense that, at run-time, policy evaluation and enforcement
are executed solely on the local domain, without the intervention of any external entity. However,
the administrative domain plays an essential role in the functioning of the architecture. It provides
the local domains with the required features to enable the cooperative attribute reconfiguration.

To achieve this task, there are two main components in the administrative domain. They
are responsible for resource allocation (quota definition) and usage accounting. Together, they
enable the local domains to reduce quota fragmentation. The components are:

• TOP–AM: it is the top level accounting module. It is hosted on the administrative domain
and it has the responsibilities of managing user quotas and issuing application quotas upon
user request. It also serves the purpose of monitoring global quota usage by receiving
periodical updates from the lower level accounting agents.

• MID–AM: The mid–level accounting module has the purpose of consolidating accounting
data received periodically from the local domains. The consolidated data is sent to the
TOP–AM. The MID–AM helps on the process of quota reconfiguration between user
instances in different domains, it also registers user credentials to avoid double spending.

3.2.3.1 Top–Level Accounting

The top–level accounting concentrates the activities related to coarse–grained quota
management. When the consumer buys a certain amount of virtual resource from a provider, the
consumer’s manager configures the TOP–AM with the thresholds defined by the service level
agreement (SLA) agreed by the provider. The manager distributes the available global quota
among the consumer’s users. Therefore, the TOP–AM is responsible for managing global quota
(GQ) and user quotas (UQ) (Figure 2, on page 43).

On Algorithm 2 we can see details of the high-level accounting process. The TOP–AM
module can be invoked by the STS from the administrative domain or by the MID–AM, anything
else is rejected (see lines 2,14 and 18).

Messages from the STS are processed in a two–stage procedure. First, the TOP–AM
verifies if there is enough free quota for each of the requested resource on the requesting user’s
quota (lines from 4 to 7). The whole request must be rejected if any of the requested quotas
cannot be fulfilled (line 13), thus respecting the limits set up for the user. The requested quota
amounts are debited in the user’s account when there is enough free quota (lines from 8 to 11).

54 Chapter 3. Proposed Solution

Algorithm 2: TOP–AM algorithm
Input: A message request from the STS or MID–AM
Output: A message reply with the status of the operation

1 user← request.targetUser // requesting user
// treats requests from the STS

2 if request.source == STS then
3 ok← true

// enforce quota limits
4 foreach qr in request.quotas do
5 if f reeQuota(user,qr.id)< qr.amount then
6 ok← f alse
7 break

// update user quota definition
8 if ok == true then
9 foreach qr in request.quotas do

10 debit(user,qr.id,qr.amount)

11 return success

12 else
13 return denied

// applies updates from the MID–AM
14 else if request.source == MID–AM then
15 foreach qr in request.quotas do
16 updateUse(user,qr.id,qr.amount)

17 return success

18 else
19 return denied

Messages received from the MID–AM (line 14) are used to update the global accounting.
The TOP–AM updates each user account with the data received from the MID–AM (lines 15
and 16), replying with a success message to the MID–AM (17).

This consolidation of user accounting allows the consumer’s manager to see how much
quota is being actually used by each user. The manager can detect when some users are suffering
from quota starvation and, therefore, may reconfigure the quota definitions, taking spare quota
available from some users and transferring it to the starving users. The consumer may also decide
to buy more virtual resources when all users are working closer to their quota limits.

3.2.3.2 Intermediary Accounting

Intermediating the low–level accounting and the high–level accounting is the MID–AM
component. It implements an auxiliary service with a couple of functions:

1. Keeps backup records of used user credentials to avoid double spending;

3.2. Architecture 55

2. Receives accounting data from the local domains;

3. Consolidates the accounting data for each user and relays it to TOP–AM;

4. Keeps records on quota usage for each application/user on each local domain;

Item 1 is related to the double-spending problem. The local domains must verify if any
user credential received was not used prior to the actual request. Unseen credentials (i.e., not
found on the local records) must be first registered by the LOW–AM on the MID–AM service
before they can be used in the local domain. The LOW–AM will receive an error message when
it tries to register a user credential that has been registered earlier, otherwise, a success message
is returned and the credential is registered.

Remark 4. Even though the user credential is targeted at a unique local domain, a malicious

user could still try to use it more than once on the same local domain (assuming that she could

exploit some vulnerability on the security gateway to perform such action). Therefore, it is

essential that the MID–AM be fault–tolerant to some degree, to guarantee that even when a local

domain loses its user credential records, such information can be recovered from the MID–AM.

The user credential is double-checked before it is used (i.e., by searching local and
external records). This can increase the credential validation cost, though it only incurs on the
first request. The usage control system does not need to interact with the MID–AM to evaluate
and enforce the usage control policies.

The MID–AM also receives accounting data from each user on each local domain. A
given user can own many applications executing on different local domains, and each with its
own application quota definition. Periodically, each local domain sends the accounting data about
each user to the MID–AM, where it will be recorded, consolidated and sent to the TOP–AM (to
be used for high-level management operations).

The recorded accounting data can be consulted by the LOW–AM modules to figure out
where a given user owns unused quotas. That is, the LOW–AM modules can discover potential
candidates to transfer part of the configured application quota for the target user (Candidates for
Reconfiguration, Figure 3). The local domains access this information through a service interface
that lists each domain where the target user owns application quota and how much of the quota
is unused. Therefore, this information can be used for the quota reconfiguration process.

3.2.3.3 Application Quota Configuration Process

The applicable usage control policy can only be derived from attributes in the user
credential and a policy template. As mentioned earlier, these user credentials are issued on the
administrative domain.

56 Chapter 3. Proposed Solution

1.1 set
user limits

Consumer's
User STS

High Level Accounting

Consumer's
Administrator

Security Gateway

3.2 authenticate

3.3 validate
request

3.4 validate and
register

3.5 request
confirmed

3.6 credential

2. request service

4 forward to
local domain

3.1 issue
credential

Figure 6 – Overview of application quota configuration

The TOP–AM (seen Figure 6) module is used for defining user-level resource limits (i.e.,
the user quota), as well as to keep track of consolidated usage data. The consumer’s administrator
must set the limits for each user (step 1.1). For instance, a given user can be granted 20 GB of
disk space, 5 CPU cores, and 30 GB of network bandwidth. To further simplify matters, the
administrator could choose to use a role-based approach: each user role can be configured with a
predefined group of resource limits, thus when the user requests a credential, her user quota will
be set as per the role definitions.

The user must make her request through the Security Gateway (step 2), and it will
negotiate with the STS of the administrative domain before she can request any service from
the local domains (step 3.1). The user request must contain the tentative limits the user wants to
impose on the application to be run on the local domain (i.e. the application quota). The STS
will authenticate the request (step 3.2) and forward it to the TOP–AM module to be validated
(step 3.3).

The TOP–AM module first searches for the applicable user quota: if the limits are
role-based, the system will derive the user quota from the role definitions. The system then
verifies if there is enough available quota to be granted (see Definition 3, page 42), registering
the requested amount in the positive case (step 3.4). A successful validation and registration
process is followed by a confirmation to the STS (step 3.5). The requested attributes are then
issued as a user credential for the requesting user and the target domain (step 3.6). The request is
then sent to the local domain (step 4) to be processed.

3.2.3.4 Avoiding double-spending

The security token service of the administrative domain issues user credentials to re-
questing users, allowing them to perform usage requests on the local domains (Figure 3). The
user credential contains application quota definitions that could be used to create an application
instance in any of the available local domains. However, the user credential must be used only

3.2. Architecture 57

once, otherwise, the user could easily bypass the usage control restrictions.

The Security Gateway was created to prevent double spending. Besides hiding the local
domains from the direct contact of the outside world, it decides which local domain will perform
the user request and, thus, receive the user credential. It requests the user credential on behalf of
the user and selects where it will be used.

To select the local domain, the security gateway can base its decision on different kinds
of strategy (e.g., round-robin fashion, first-fit, best-fit, etc). The suitable local domain’s address
is used when requesting the application quota to the STS. The user credential issued will contain
the selected local domain’s address as the target of the assertion, thus, only the targeted local
domain can use this assertion. This feature eliminates the possibility of using the same credential
in more than one local domain. However, there is still the possibility of using it again on the
same local domain.

Double-spending the application quota contained in the user credential on the same
local domain is avoided by using validity timestamps, local records of the user credentials used
and remote records of the same information. Timestamps are required to eliminate the need of
eternally remembering what credentials have been used: after the credential becomes invalid (i.e.,
stale), the corresponding record can be eliminated. The local records allow the local domain to
identify already used credentials and quickly refuse the offending request. The external records
are used as a safety prevention against failures in the local domain: should the local domain
crash and loose its records of used credentials, it can recover the required data from a backup
service. The level of replication of such records will define how many faults can be tolerated.

3.2.4 LOW–AM and Application Quota Reconfiguration

The LOW–AM module performs the local accounting tasks. It gathers accounting data
for each application executed on the local domain and updates a local accounting repository. As
said previously, when the user requests the instantiation of an application, the user credential
is registered locally with the respective resource quota for the application and remotely on the
MID–AM. As the application utilizes the resource, the LOW–AM module updates the application
records to reflect this. The consolidated user accounting data is sent to the MID–AM, which
further consolidates the user data received from the other local domains.

The biggest problem that arises from the decentralized approach is the fact that, under
certain circumstances, an application can exhaust its configured quota and abort, even though
the application’s owner is entitled to more quota, which may be free elsewhere. When the user
defines the application quota, it sets just a tentative limit for that application. The reasoning is
that by bootstrapping the application with a tentative amount, we can avoid the large number of
interactions that would be present in an architecture where no quota was previously defined and
all the local domains would have to negotiate quota on demand.

58 Chapter 3. Proposed Solution

Is the reconfiguration
request from the local

LOW-AM?

Yes
Find the best local

candidate for
reconfiguration

Candidate Perform local
quota reconfiguration

No Candidate
was found

Search for candidates
on the MID-AM service

List of
Candidates Select the next

candidate

CandidateNegotiate
reconfiguration

with remote candidate
Failure

No
Candidates

Negotiate
reconfiguration
with TOP-AM

Failure

Success

Reconfigure
local quota

Search for the best
local candidate

No

Candidate Failure

Success

Failure

Success
Failure

Request

Notify
administrator

Success

Notify
remote host

Figure 7 – Overview of quota reconfiguration process

Thus, the solution found was to give a large enough amount of resources to each applica-
tion and to reconfigure this definition as needed to avoid fragmentation. The user still possesses
the power to define that some applications are not allowed to have its quota reconfigured. The user
might want to use such a limitation to control problematic applications (e.g., applications that
might have memory leaks, services exposed to the outside world that might get short computing
surges, and so on).

This requires the application owner to indicate if she wants to let the application quota to
be reconfigured, and when this reconfiguration must take place. That is, the user must define
what the trigger for the reconfiguration procedure is. The simplest form is to set the trigger as
a proportion of the application quota: when the accounting data indicates that the application
already used, for instance, 80% of its quota, the reconfiguration must start. This proportion is
highly dependent on the application type and reconfiguration time. Applications that consume
resources in a fast pace must require a lower proportion as a trigger (e.g., 60%) to give the
LOW–AM enough time to finish the reconfiguration process, while slower applications could
work with higher proportions (e.g., 90%).

The Figure 7 describes the LOW–AM process for reconfiguration of application quotas. It
works with three types of reconfigurations: local reconfigurations between application quotas of
the same user; reconfigurations between different local domains; and reconfigurations involving
the TOP–AM.

To avoid race conditions on the quota reconfiguration process, we adopted a FIFO
approach when dealing with reconfiguration requests. That is, the LOW–AM does not handle
concurrent requests, every received request goes through a queue and waits for its turn to be

3.2. Architecture 59

processed. Therefore, it is possible that a requesting local domain will need to make multiple
tries before finding another local domain with enough quota to transfer.

Each local domain executes a process that continuously monitors each application
reconfiguration trigger, as defined by the user. Every time the accounting data is updated, the
corresponding trigger is verified. When a trigger is reached, a reconfiguration message is sent to
the local LOW–AM with the reconfiguration parameters (AppID, ResID, UserID and requested
amount). The owner of the user credential must also define the amount in order to provide an
adequate increment, thus avoiding frequent reconfigurations. When the LOW–AM receives a
message, it verifies if it comes from the local system or from a remote system.

Local requests should be first reconfigured with local application quota definitions. The
reasoning behind this strategy is that by reconfiguring locally we can reduce network overhead,
resorting to remote reconfiguration only when there is no locally available quota.

A local domain might have more than one possible candidate for quota reconfiguration.
Thus, the LOW–AM must select the best candidate. A possible heuristic might be a candidate
that: (i) must have enough quota to transfer to the requesting application and, after decreasing its
quota, (ii) must have the highest proportional safety margin before reaching its own trigger. The
idea is to take quota from the process with the smallest probability of hitting its own trigger in
a short amount of time. This process can also be improved by employing a machine learning
based classifier, as discussed on (25), to decide if a quota reconfiguration should take place or if
it can be ignored (when the classifier detects a temporary computing surge).

Once a local candidate is found, the LOW–AM module tries to reconfigure the quotas
from the requesting application and the donor application. This is done as a transaction and,
as the quota might have changed in the interval between candidate selection and the actual
reconfiguration, this operation may become infeasible. When the operation fails, the LOW–AM
searches for the next best candidate and tries again. A successful reconfiguration results in two
operations (not shown): updating the affected policies (of the requesting application and donor
application) and updating the MID–AM records. When no local candidate is found, the external
quota reconfiguration is initiated.

The LOW–AM from the requesting application must contact the MID–AM to receive
a list of domains where the application’s owner has configured application quotas. This list
contains the local domains addresses and the amount of quota that is available on each domain,
sorted by the largest safety margin to reach the reconfiguration trigger.

The requesting LOW–AM picks one candidate from this list and sends a reconfiguration
message to it, with ResID, amount requested and UserID. The remote LOW–AM must select
the best candidate for reconfiguration. When a candidate is found, the remote LOW–AM must
coordinate with the requesting domain, so that both domains update their local quotas. A
successful operation results in the applicable policies being updated message sent to the MID–

60 Chapter 3. Proposed Solution

AM to update the accounting records. Care must be taken for this operating to be performed
as a transaction (i.e., all or nothing); failure to do so might expose the system to inconsistent
accounting.

The remote LOW–AM system follows the same principle of operation as local reconfig-
urations. It keeps searching for reconfiguration candidates until there are no more candidates
available. The failure to find candidates results in an error message being returned to the request-
ing LOW–AM, which then must choose another candidate from the list of candidates returned
from the MID–AM. This process is repeated until there is no more candidates available.

The last resort is the TOP–AM. The local domain’s LOW–AM sends a message directly
to the TOP–AM, requesting additional quota for the application. The reconfiguration is successful
if the user owns enough free quota on the TOP–AM, otherwise, the administrator is notified and
an error message is returned. The application will execute until its quota is not exhausted. This
operation must be a transaction to avoid inconsistent accounting.

The reasons for leaving the TOP–AM as the last resort are two: (i) to avoid the bottleneck
of using a centralized point for requesting reconfigurations — which would require some involved
scheme to provide high scalability and fault tolerance to the TOP–AM; (ii) to allow the user
to instantiate more applications with the quota available on the TOP–AM, which would not be
possible if the user quota quickly became fragmented on the local domains.

For instance, suppose the user quota is defined as 100 GB of storage and the user
instantiated two applications using 40 GB each one. Application one reaches its trigger (e.g., 38
GB), while application two used only 10 GB. Considering that the application reconfiguration
block is, for example, 5 GB, the user would soon run out of free quota on the TOP–AM, even
though there is a large amount of unused application quota defined for Application two. Therefore,
the user would not be able to start another application.

3.3 Conclusions

This chapter described the proposed solution in light of the requirements identified in
the previous chapters. It presented the conceptual model that allows the usage control model
to be decentralized. UCONABC was originally conceived as a centralized model, in which the
policy evaluation is performed by a single entity that can observe all changes to attributes on the
system.

For UCONABC to be adequately implemented in cloud computing environments, the
policy evaluation procedure must be essentially decentralized. The best way of achieving this is
by avoiding information sharing between policy evaluators, as it would be unfeasible to do this
in a consistent fashion in the scales involved in cloud computing environments.

We propose the use of temporary attributes that must be created following a small number

3.3. Conclusions 61

of constraints, to enable independent policy evaluators that avoid the above problem. We also
show how these same attributes can be used to update the persistent attributes, thus affecting
future usage sessions, though without suffering from the high coupling present in the originally
envisioned UCONABC administrative model.

Cloud computing environments require any proposed access control mechanism to be
flexible and scalable. This is a major challenge for traditional access control approaches, as
the conventional models can be made scalable though cannot offer the required flexibility.
The administrative model we described for UCONABC allows it to be decentralized, therefore
improving its scalability.

We designed an architecture that allows the proposed model to be implemented in a
fashion that promotes scalability without compromising service predictability and flexibility. We
showed that, even though the local domains does not share usage session state (to prevent them
from becoming highly coupled), they can cooperate to avoid quota fragmentation. The autonomy
of the local domains provide for a fast policy evaluation frequency (which is not affected by
the environment size) and resiliency in the face of faults on some local domains (as the other
domains can keep functioning normally).

Policy management is made simple by using policy templates and user credentials.
Each policy is derived specifically for the target application and it is updated whenever the
user credential changes. The mechanisms proposed, avoid the need of remembering each user
credential forever and ensures that there cannot be double-spending.

Therefore, the architecture proposed achieves the objectives laid out for the model. It
combines flexibility, scalability, and ease of management, without requiring complex mechanisms.
In these regards, it shows many advantages over previous proposals for applying UCONABC to
cloud computing environments.

In the next chapter, we will discuss a possible software implementation of the proposed
architecture. We will also detail the prototype implementation of some components of the
architecture that were used to evaluate its feasibility.

63

4 Implementation and Evaluation

This chapter discusses the software implementation of a prototype to evaluate the pro-
posed architecture. It shows that it is possible to implement the envisioned features using open
standards and public available software systems. It also shows the experimental evaluation results
followed by its discussion.

4.1 Implementation

The prototype consists of mainly two components: the local usage control system and
the MID–AM component. The first component was implemented to investigate the behavior
of the system under normal conditions (i.e., without involving quota reconfiguration). The
second component was designed to evaluate the feasibility and the performance of the interme-
diary accounting service, which is very important to the correct functioning of the proposed
architecture.

We used two UNIX-like operating systems to implement the prototype. The FreeBSD
operating system, version 10, was used to experiment with the Jails (26) environment, an
operating system container that is capable of isolating groups of user processes, creating the
illusion of a dedicated system to the process. It works by intercepting system calls and enforcing
the access controls. The jail’s system also provides a convenient application-programming
interface to gather accounting information on the contained processes, and an easy way to
enforce usage decisions on user processes.

The Linux operating system (27) was used to implement and evaluate the MID–AM
service. FreeBSD could have been used in this step, though by using Linux we got access
to a larger test bed. Linux can also be used to provide software containers (e.g., LXC (28),
OpenVZ (29)), though these implementations are less mature than FreeBSD’s jails. Linux also
provides a feature called control groups, or cgroups for short, which allow the allocation of
resources to groups of tasks defined by the user (30).

User credentials were encoded using the Security Assertion Markup Language (SAML)(31),
which is a standard for writing various kinds of security assertions. More specifically, we used
the AttributeAssertion type to carry user attributes describing the quota parts that should be
configured for the user request. The OpenSAML toolkit(32) was used to craft and validate
the assertions. Each assertion is digitally signed and encrypted using X509 certificates – those
certificates must be signed by a trust anchor configured manually on the system’s entities.

The communication with the local domain was made through a web service interface,
based on the ReST model (33). This model was selected for being fast to prototype and is

64 Chapter 4. Implementation and Evaluation

M
ID

-A
M

read data

web service interface

register assertion,
update accounting

search
candidates

local domain
LOW-AM
ws-client

synchronize

ZK Node ZK Node

Zookeeper Cluster

write data

T
O

P
-A

M

attribute
database

w
s-

cl
ie

nt

co
ns

ol
id

at
ed

 a
cc

ou
nt

in
g

update
attributes

Figure 8 – MID–AM mechanism

well integrated into the web architecture. The web services were hosted on the NGINX web
server (34). The services were implemented in a mixture of Java and Python programming
languages. The communications were protected using the SSL protocol (35).

The policy templates are XML (36) files which represent XACML policies (eXtensible
Access Control Markup Language(37)). The templates are not valid policies until they are
processed by a substitution procedure which instantiates the usage control policies. The attribute
identifiers present on the user’s attribute assertion are matched with identifiers in the policy
template, and the values are inserted as needed. The policy evaluation process is done with the
Balana XACML library(38), which provides an XACML policy decision point implemented in
the Java programming language.

Probably the most important part of the prototype is the MID–AM mechanism, where
various information are kept to allow the cooperation between local domains (e.g., user attributes
configured on each machine, assertion usage information, accounting data for consolidation and
so on). As we mentioned earlier, this data must be replicated to provide some fault-tolerance to
the local domains. When a local domain fails, it can recover its state from the MID–AM service
and continue its normal operation.

The chosen architecture is shown on Figure 8. Each local domain is able to send requests

4.2. Evaluation 65

to write or read information to the MID–AM web service interface (e.g., search for candidates,
register assertions and update accounting data). This interface can be replicated to provide some
load balancing as well as to shield the back-end data storage services from misbehaving local
domains. The web service validates the request and interacts with the back-end to perform the
required actions.

The MID–AM storage is built using Apache Zookeeper(39), forming a cluster of
Zookeeper Nodes (i.e., ZK Node). It provides a replicated storage based on the Paxos al-
gorithm (40), thus consistency is guaranteed between ZK Nodes. Reads are faster than writes
because reads can be relaxed in some situations, that is, a read can see older data in some
situations. This, however, is not a problem, as Zookeeper allows the client to request a fully
synchronized read when needed.

The services implementing the MID–AM web service interface can send read and
write requests to any node from the Zookeeper cluster. The web service interface also sends
consolidated accounting data to the TOP–AM upon request, thus allowing the administrator to
obtain a consolidated view of the quota usage.

4.2 Evaluation

The experiments were divided into two scenarios: One for testing the local domain
mechanisms and the other to evaluate the MID–AM performance. The next section details the
tasks performed and the results obtained.

4.3 Local Domain Performance

The experiments were performed on a FreeBSD server running on an Intel core i7
machine with 4 processors, with two cores each, clocked at 2.67 GHz. The server had a total of
8 GB of RAM memory. All communications were made locally (i.e., no network overhead) to
avoid external interferences on the results. The aim of these experiments were to evaluate the
performance that each local domain could be expected to provide, as all quota reconfiguration
process happens asynchronously. The variability coefficient remained under 5%.

One experiment measured the response time of the reference monitor (PDP) according to
the number of policies stored locally. As it can be seen on Fig. 9, it can be considered low, always
staying below 2 milliseconds on average. In the worst case, response times remained under 6
milliseconds in all scenarios, which still is a good response time. In this particular implementation,
the limiting factor becomes the amount of memory available for caching policies. It must be
noticed that the outsourcing model requires a request/response protocol, which is slower and
may generate a larger amount of network messages.

66 Chapter 4. Implementation and Evaluation

The second test (Fig. 10) compares the hybrid template-based approach to traditional
provisioning approaches. Provisioning is significantly more expensive when dealing with the
same number of rules. The hybrid model used messages in the 4754-18524 bytes range; while in
the provisioning model messages are in the 11314-42594 bytes range, the scenario involved the
use of policies with 6 to 96 rules. The messages were 42.7% smaller on average.

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

Ti
m

e
(m

illi
se

co
nd

s)

Number of Policies

Response Time x Number of Policies

Max
Med
Min

Figure 9 – PDP evaluation: response time versus number of policies in the repository

4.4 MID–AM Performance

The tests consisted of different scenarios of variable concurrency as well as requests of
different sizes. The experiments were performed on eleven machines, one acting as the server
and the rest acting as clients (i.e., local domains). The operating system on the hosts was Ubuntu
Server LTS 12.04 for 64-bit architectures. The hardware platform was Intel core i5-3470 Quad
Core, with 3.2 Ghz and 4 GB of RAM. The software on the clients used the official Apache
Zookeeper Java client library to access the server. The server itself was the standard Zookeeper
server, running in standalone mode (i.e., no replication). All tests performed 1000 requests to the
server and the response times were measured in milliseconds.

The first test evaluated the response time for a single client writing a series of documents
of variable size to the server node. The results are seen on Figure 11, on line 1. The test was
repeated 1000 times for each message size. As can be seen, the response time is almost linear in
the message range of 100 bytes to 5 kilobytes.

A variation of the first test was the measurement of the influence of the number of
concurrent writes on response time, coupled with various message sizes. This can be seen also
on Figure 11, represented by the other lines (the numbers on the lines represent the number of
concurrent writers). Almost all scenarios show a similar behavior as the first test, though with
higher response times directly related to the number of concurrent writers, except for the case
of 10 concurrent writers, where the response times is better than when using 8 writers and 5
kilobyte messages.

4.5. Conclusions 67

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100

S
iz

e
(b

yt
es

)

Number of Rules

Number of Rules x Message Size

Policies
Templates

Figure 10 – PDP evaluation: message size in pure provisioning versus the proposed approach

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ill

is
ec

o
n
d
s

size in kbytes

1
2
4
8

10

Figure 11 – Influence of writing concurrency and message size on response time

The reading performance was measured in two scenarios. The first one is shown on
Figure 12, which shows the relation of concurrent writers (up to 8) on the response time of a
single reader. All messages were 100 bytes long, and the reader kept iterating on the data from
each writer (i.e., the target data changed at each request). The growth in response time is clearly
correlated with the number of concurrent writes.

We also performed an evaluation of the message size on reading performance. This time,
the scenario counted with eight concurrent writers and one reader. The message size was in the
range of 100 bytes to 2.5 kilobytes. As can be seen from Figure 13, from 100 to 1000 bytes
messages, reading performance is barely affected. The situation changes greatly when going to
2.5-kilobyte messages.

4.5 Conclusions

This chapter showed that it is feasible to implement a usage control system on current
cloud computing environments. As our architecture is based on a Platform-as-a-Service approach,
it is viable to implement it on actual cloud computing environments, as long as the host operating

68 Chapter 4. Implementation and Evaluation

4

6

8

10

12

14

16

18

20

22

24

1 2 3 4 5 6 7 8

m
ill

is
ec

o
n
d
s

numer of writers

Figure 12 – Influence of writing concurrency on reading time for 100 byte messages

20

22

24

26

28

30

32

34

36

38

40

42

0 500 1000 1500 2000 2500

m
ill

is
ec

o
n
d
s

message size

Figure 13 – Influence of message size on reading time for 8 concurrent writers

systems offer the required software containers. The missing components can be implemented
using freely available software libraries and software implementations, everything based on open
standards.

The experiments made showed the viability of the proposal. The experiments involving
the local domain demonstrated that a template-based approach has advantages over pure pro-
visioning approaches. Outsourcing approaches have to deal with the cost of network overhead,
which increases as the number of servers grow, and pure provisioning must contend with higher
message costs and a more complex management system. The proposed implementation combines
the advantages of provisioning and outsourcing, without the aforementioned shortcomings.

69

5 Discussion, Conclusion and Future Work

We described an architecture that uses policy templates and user credentials to derive
usage control policies. Templates are previously stored in the local domains, at which policy
evaluation and enforcement are performed. The user credentials avoid the need of sending whole
policies through the network for each user, reducing message sizes and keeping the flexibility
for defining individual policies. Policy synchronization is done by sending new credentials with
different attribute values – when the local domain detects the change, the affected local policies
are derived again and reevaluated.

In this work, we designed a model and corresponding architecture to allow for de-
centralized usage control using a distributed cooperative attribute reconfiguration model. Our
architecture behaves in an easier to predict way when compared to centralized approaches. The
attribute reconfiguration protocol was developed to tackle the lack of attribute sharing intrinsic to
decoupled applications. The same reason that makes decentralized architectures more predictable
(decoupling) also makes it harder to correctly use the distributed resources.

We improved this problem by using temporary attributes that are provisioned to each
local domain. These attributes can be reconfigured when the system detects a threshold condition,
which triggers a process to reconfigure the temporary attributes of a given user. This allows the
user quota to be better used on the system, even though each local domain is unaware of what is
happening on other hosts.

This attribute reconfiguration model was discussed in the context of UCONABC attribute
mutability concept. We demonstrated that, even though the original authors did not discuss this
scenario of independent authorization facilities and mutable distributed attributes, it is possible
to include this variation by using the concepts of persistent and temporary attributes, coupled
with update rules.

The problem of double spending that could happen when using digital credentials is
avoided by using targeted credentials, defined during run–time, and a registration service that
keeps track of the already used credentials while they are valid. The intermediary service (MID–
AM) acts as a helper for the local domains. It can be regarded as a compromise between a
completely centralized architecture and a fully decentralized one. Our experiments showed that
it offers a reasonable performance, with little impact on the operation of the local domains, as
most operations from the LOW–AM happen in the background (i.e., the user process does not
stop while attributes are being reconfigured).

The experimental results show that the proposed architecture is viable; it shows promising
performance and can be implemented with well–known technologies and standards. It provides
advantages in comparison with centralized architectures, which must use complex technologies

70 Chapter 5. Discussion, Conclusion and Future Work

to achieve scalability and that are harder to configure, due to dependency on variable parameters
affecting the usage control implementation.

The tests showed a 42.7% reduction in message size compared to provisioning and faster
response times compared to outsourcing (network latency is eliminated). The proposal shows the
benefits of the provisioning without the complexity of synchronizing policies.

The contributions of this thesis can be summarized as follows:

1. It contains the description of a localized usage control system that eliminates the network
overhead present in centralized approaches. The result of this is a higher frequency for
policy reevaluations, as well as a predictable behavior, the reevaluation cost is stable no
matter the number of hosts in the environment.

2. It describes a distributed and cooperative attribute management model that enables the
automatic reconfiguration of application quotas in a distributed system, reducing the
fragmentation of the user quota and improving the global quota usage efficiency.

3. It discusses the implications of distributed attributes reconfiguration in the scope of
UCONABC model.

4. It describes a policy management approach to reduce the work of the system’s manager by
using policy templates and user credentials. The manager does not need to specify policies
for each user, the policy limits are derived from the user credentials.

5. It proposes an attribute management approach that creates a consolidated view for the sys-
tem’s manager, with a fully distributed implementation to preserve the system’s scalability.

6. It describes a reconfiguration protocol to allow the hosts to dynamically reconfigure
application quotas to avoid process starvation when there is available quota elsewhere.

7. It shows how to integrate the reconfiguration protocol with the accounting architecture,
enabling the local hosts to discover where the available attributes are and to proceed the
reconfiguration. This process is carried in a proactive manner, avoiding the interruption of
user applications to handle quota reconfiguration.

8. It demonstrates the viability of the proposed architecture by implementing a prototype
based on open standards, coupled with discussion of experimental results from a perfor-
mance evaluation.

Two aspects that were not covered in this work remain as future work: the investigation
of thrashing conditions and the possibility of using a fully distributed model for the MID–AM
component. The first topic is related to a possible cascading effect on attribute reconfiguration
(e.g., host A takes some quota from host B, which takes some quota from host C, which takes

71

some quota from host A, and so on). The second topic refers to the possibility of using fully
decentralized protocols to increase decentralization without increasing operational costs nor
decreasing the architecture’s robustness.

As part of the research works, the following publications were made:

• One conference paper discussing identity management integration between different Cloud
Computing categories (21);

• One journal paper (4), a collaboration to investigate the use of flexible quota definitions
in an outsourcing architecture to provide for resilience in the evaluation of usage control
policies;

• two conference papers (41, 24) describing the organization of the local domain and the
architecture for managing usage control policies with user credentials and policy templates.

73

References

1 PARK, J.; SANDHU, R. The ucon abc usage control model. ACM Transactions on
Information and System Security (TISSEC), ACM, v. 7, n. 1, p. 128–174, 2004. Cited 6 times on
pages 15, 17, 23, 29, 30, and 31.

2 ARMBRUST, M.; FOX, A.; GRIFFITH, R.; JOSEPH, A. D.; KATZ, R.; KONWINSKI,
A.; LEE, G.; PATTERSON, D.; RABKIN, A.; STOICA, I. et al. A view of cloud computing.
Communications of the ACM, ACM, v. 53, n. 4, p. 50–58, 2010. Cited on page 23.

3 TAKABI, H.; JOSHI, J. B.; AHN, G.-J. Security and privacy challenges in cloud computing
environments. IEEE Security & Privacy, IEEE, n. 6, p. 24–31, 2010. Cited on page 23.

4 MARCON, A. L.; SANTIN, A. O.; STIHLER, M.; BACHTOLD, J. A UCONABC) Resilient
Authorization Evaluation for Cloud Computing. Parallel and Distributed Systems, IEEE
Transactions on, IEEE, v. 25, n. 2, p. 457–467, 2014. Cited 4 times on pages 23, 24, 32, and 71.

5 LAZOUSKI, A.; MANCINI, G.; MARTINELLI, F.; MORI, P. Usage control in cloud
systems. In: IEEE. Internet Technology And Secured Transactions, 2012 International
Conference for. [S.l.], 2012. p. 202–207. Cited 2 times on pages 23 and 33.

6 LAZOUSKI, A.; MARTINELLI, F.; MORI, P. A prototype for enforcing usage control
policies based on XACML. [S.l.]: Springer, 2012. Cited 2 times on pages 23 and 33.

7 TAVIZI, T.; SHAJARI, M.; DODANGEH, P. A usage control based architecture for cloud
environments. In: IEEE. Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International. [S.l.], 2012. p. 1534–1539. Cited 2 times on
pages 23 and 33.

8 DANWEI, C.; XIULI, H.; XUNYI, R. Access control of cloud service based on ucon. In:
Cloud computing. [S.l.]: Springer, 2009. p. 559–564. Cited 2 times on pages 23 and 34.

9 PARKHILL, D. F. Challenge of the computer utility. Addison-Wesley, 1966. Cited on page
27.

10 VAQUERO, L. M.; RODERO-MERINO, L.; CACERES, J.; LINDNER, M. A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review, ACM,
v. 39, n. 1, p. 50–55, 2008. Cited on page 27.

11 MELL, P.; GRANCE, T. The nist definition of cloud computing. Computer Security
Division, Information Technology Laboratory, National Institute of Standards and Technology
Gaithersburg, 2011. Cited on page 27.

12 DURHAM, D.; BOYLE, J.; COHEN, R.; HERZOG, S.; RAJAN, R.; SASTRY, A. The
COPS (common open policy service) protocol. [S.l.]: rfc 2748, January, 2000. Cited on page 28.

13 SELIGSON, J.; CHAN, K. H.; GAI, S.; SMITH, A.; HERZOG, S.; MCCLOGHRIE, K.;
DURHAM, D.; REICHMEYER, F. Cops usage for policy provisioning (cops-pr). 2001. Cited
on page 28.

74 References

14 PARK, J.; SANDHU, R. Towards usage control models: beyond traditional access
control. In: ACM. Proceedings of the seventh ACM symposium on Access control models and
technologies. [S.l.], 2002. p. 57–64. Cited on page 29.

15 SALIM, F.; REID, J.; DAWSON, E. An administrative model for ucon abc. In:
AUSTRALIAN COMPUTER SOCIETY, INC. Proceedings of the Eighth Australasian
Conference on Information Security-Volume 105. [S.l.], 2010. p. 32–38. Cited on page 34.

16 BECKER, M. Y.; FOURNET, C.; GORDON, A. D. Secpal: Design and semantics of a
decentralized authorization language. Journal of Computer Security, IOS Press, v. 18, n. 4, p.
619–665, 2010. Cited on page 35.

17 Red Hat, Inc. OpenShift. 2016. <http://www.openshift.org/>. [Online; accessed
24-April-2016]. Cited on page 39.

18 Pivotal Software, Inc. Pivotal Cloud Foundry. 2016. <http://pivotal.io/platform>. [Online;
accessed 24-April-2016]. Cited on page 39.

19 Heroku, Inc. Heroku Cloud Application Platform. 2016. <https://www.heroku.com/>.
[Online; accessed 24-April-2016]. Cited on page 39.

20 LIU, H.; JIN, H.; LIAO, X.; DENG, W.; HE, B.; XU, C.-z. Hotplug or ballooning: A
comparative study on dynamic memory management techniques for virtual machines. Parallel
and Distributed Systems, IEEE Transactions on, IEEE, v. 26, n. 5, p. 1350–1363, 2015. Cited
on page 39.

21 STIHLER, M.; SANTIN, A. O.; JR, A. L. M.; FRAGA, J. D. S. Integral federated identity
management for cloud computing. In: IEEE. New Technologies, Mobility and Security (NTMS),
2012 5th International Conference on. [S.l.], 2012. p. 1–5. Cited 2 times on pages 41 and 71.

22 PARK, J.; ZHANG, X.; SANDHU, R. Attribute mutability in usage control. In: Research
Directions in Data and Applications Security XVIII. [S.l.]: Springer, 2004. p. 15–29. Cited 2
times on pages 44 and 45.

23 LEVY, H. M. Capability-based computer systems. [S.l.]: Digital Press, 2014. Cited on
page 47.

24 STIHLER, M.; SANTIN, A. O.; MARCON, A. L. Managing distributed uconabc policies
with authorization assertions and policy templates. In: 2015 IEEE Symposium on Computers and
Communication (ISCC). [S.l.: s.n.], 2015. p. 619–624. Cited 2 times on pages 52 and 71.

25 SEGALIN, D.; SANTIN, A. O.; MARYNOWSKI, J. E.; SEGALIN, L.; MAZIERO, C.
An approach to deal with processing surges in cloud computing. In: Computer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual. [S.l.: s.n.], 2015. v. 2, p.
897–905. Cited on page 59.

26 MCKUSICK, M. K.; NEVILLE-NEIL, G. V.; WATSON, R. N. The design and
implementation of the FreeBSD operating system. [S.l.]: Pearson Education, 2014. Cited on
page 63.

27 Linux Kernel Organization. The Linux Kernel Archives. 2016. <https://www.kernel.org/>.
[Online; accessed 24-April-2016]. Cited on page 63.

http://www.openshift.org/
http://pivotal.io/platform
https://www.heroku.com/
https://www.kernel.org/

References 75

28 Canonical Ltd. Linux Containers. 2016. <https://linuxcontainers.org/>. "[Online; accessed
24-April-2016]". Cited on page 63.

29 Virtuozzo. OpenVZ Virtuozzo Containers – Wiki. 2016. <https://openvz.org/>. "[Online;
accessed 24-April-2016]". Cited on page 63.

30 RedHat, Inc. Chapter 1. Introduction to Control Groups (Cgroups). 2016. <https:
//access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_
Management_Guide/ch01.html>. "[Online; accessed 24-April-2016]". Cited on page 63.

31 COMMITTEE, O. S. S. T. et al. Security Assertion Markup Language (saml) 2.0. 2012.
Cited on page 63.

32 Shibboleth Consortium. OpenSAML Toolkit. 2016. <https://wiki.shibboleth.net/confluence/
display/OpenSAML/Home/>. [Online; accessed 24-April-2016]. Cited on page 63.

33 FIELDING, R. Representational state transfer. Architectural Styles and the Design of
Netowork-based Software Architecture, p. 76–85, 2000. Cited on page 63.

34 REESE, W. Nginx: the high-performance web server and reverse proxy. Linux Journal,
Belltown Media, v. 2008, n. 173, p. 2, 2008. Cited on page 64.

35 FREIER, A.; KARLTON, P.; KOCHER, P. The secure sockets layer (ssl) protocol version
3.0. 2011. Cited on page 64.

36 BRAY, T.; PAOLI, J.; SPERBERG-MCQUEEN, C. M.; MALER, E.; YERGEAU,
F. Extensible markup language (xml). World Wide Web Consortium Recommendation
REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210, v. 16, 1998. Cited on
page 64.

37 RISSANEN, E. eXtensible Access Control Markup Language (XACML) version 3.0
(committe specification 01). [S.l.], 2010. Cited on page 64.

38 WSO2. WSO2 Balana Implementation. 2016. <https://github.com/wso2/balana>. "[Online;
accessed 24-April-2016]". Cited on page 64.

39 The Apache Software Foundation. Apache Zookeeper. 2016. <https://zookeeper.apache.org/
>. "[Online; accessed 24-April-2016]". Cited on page 65.

40 LAMPORT, L. et al. Paxos made simple. ACM Sigact News, v. 32, n. 4, p. 18–25, 2001.
Cited on page 65.

41 STIHLER, M.; SANTIN, A. O.; MARCON, A. L. A usage control platform based on rule
templates and authorization credentials. In: SBC. Computer Networks and Distributed Systems
(SBRC), 2015 XXXIII Brazilian Symposium on. [S.l.], 2015. p. 50–59. Cited on page 71.

https://linuxcontainers.org/
https://openvz.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://wiki.shibboleth.net/confluence/display/OpenSAML/Home/
https://wiki.shibboleth.net/confluence/display/OpenSAML/Home/
https://github.com/wso2/balana
https://zookeeper.apache.org/
https://zookeeper.apache.org/

Appendix

79

APPENDIX A – Integral Federated Identity
Management for Cloud Computing

Integral Federated Identity Management
for Cloud Computing

Maicon Stihler, Altair Olivo Santin, Arlindo L. Marcon Jr.
Graduate Program in Computer Science
Pontifical Catholic University of Paraná

Curitiba, Brazil
{stihler,santin,almjr}@ppgia.pucpr.br

Joni da Silva Fraga
Department of Systems Automation
Federal University of Santa Catarina

Florianópolis, Brazil
fraga@das.ufsc.br

Abstract—Cloud computing environments may offer different
levels of abstraction to its users. Federated identity management,
though, does not leverage these abstractions; each user must set
up her identity management solution. This situation is further
aggravated by the fact that no identity federation solution is able
to integrate all abstraction layers (i.e. IaaS, PaaS, and SaaS). On
this paper we describe a new architecture offering integral
federated identity management, to support multi-domain clients
in a multi-provider environment. We also present some
implementation details. The proposed architecture offers
significant advantages over current offerings: it eases identity
management without losing flexibility, offers better user tracking
through the whole cloud computing layers, and enables the
implementation of multi-provider environments through account
data replication.

Keywords: cloud computing; federated identity management;
single sign-on.

I. INTRODUCTION
Federated identity management deals with the

establishment of trust relationships between various security
domains, to share authentication data to reduce management
complexity and security risks. It also helps to simplify
authentication procedures for end users (e.g. by employing
single sign-on, SSO) [1]. This subject has been studied and
applied to many environments, such as web resources [2], web
services [3], and grid computing [4], an evidence of the high
relevance of federated identity management.

The emergence of cloud computing created a new
environment that is not completely addressed by previous
works. Cloud computing can be categorized as Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), or Software as a
Service (SaaS) [5], respectively by increasing level of
abstraction. It is a common approach for higher levels of
abstraction to leverage functionalities provided by the lower
levels. However, current federated identity solutions are
isolated to a single level (e.g. identity is federated only for IaaS
or SaaS). Thus, if a SaaS provider wants to employ user
identification at a lower level (e.g. to track user actions for
auditing) she will have to come up with her own ad hoc
solution, as the lower levels (i.e. PaaS and IaaS) are completely

unaware of such user. The matters are further complicated if
the environment spans multiple IaaS providers, as no available
solution can offer a federation that is both horizontally (i.e.
between multiple IaaS providers) and vertically (i.e. through all
abstraction levels – SaaS, PaaS, and IaaS) integrated.

We designed a new architecture for federated identity
management aimed at IaaS users, who wish to provide services
and resources to other subjects. A defining characteristic is the
transparent translation of high level identities (i.e. from SaaS
level), authenticated by a third party identity provider (IdP), to
lower level identities (i.e. for PaaS/IaaS usage). This allows
SaaS users to perform authentication on their IdP and interact
with the SaaS with SSO. Furthermore, the SaaS provider is
able to track the user actions on the lower levels of abstraction,
as the architecture provides the means to attach a unique
credential that is valid on the IaaS. This also enables the
provider to create applications tailored to each user, running
under their own identity (i.e. no shared application), with
individual accounting.

An interceptor installed in front of the SaaS application
captures the user identity, received from the user’s IdP, and
exchanges it for an internal token on a security token service
(STS). This token contains a unique identification that is
digitally signed and registered on a central repository. The
interceptor attaches this token to the user’s request; another
component operating on the IaaS level can then, for example,
start a user processes under this identification. The central
repository provisions this account data to the low level
components, and is able to replicate data to other IaaS
providers, effectively allowing the SaaS provider to track user
activity over the entire environment.

This work makes significant contributions to the field of
identity management. Previous works generally deal with
relatively homogeneous scenarios (e.g. every resource is a web
site) or makes some assumptions (e.g. authentication is
interactive and password-based). We present a proposal to
tackle a much more complex scenario, allowing sharing of
information through all cloud abstraction layers, as well as on
environments spanning multiple IaaS providers. The end users
(i.e. from SaaS) are free to use their own IdPs, while the SaaS
provider translates their identities transparently. The proposal
brings various security advantages, like better auditing,
accounting, and facilities for access controls.

The paper is organized as follows: Section 2 discusses
some related works; Section 3 describes the proposed

This work was partially sponsored by the Program Center for the
Research and Development on Digital Technologies and
Communication (CTIC/MCTI), grant 1313 and National Council for
Scientific and Technological Development (CNPq), grants
310319/2009-9 and 478285/2011-6.

978-1-4673-0229-6/12/$31.00 ©2012 IEEE

architecture. On Section 4 we present some implementation
details. Section 5 presents our conclusions.

II. RELATED WORKS
Shibboleth [2] offers federated identity management based

on two main components: the service provider (SP) and the
identity provider (IdP). SPs protect web resources (i.e. web
sites) and establish trust relationships with IdPs that act as
authoritative authenticators. Once a user is authenticated on the
IdP, she can access resources protected by SPs that rely on this
IdP, without need for further authentications; she just needs to
inform which one is her IdP. Under the covers, IdPs and SPs
exchange authentication data according to the SAML
specification. Identity providers have autonomy to decide,
according to their privacy policies, which SPs may access the
user’s authentication data. OpenID [6] resembles Shibboleth on
some aspects. The building blocks are called Relying Party
(RP) and OpenID providers. OpenID providers store
authentication data, and RPs play a role similar to what SPs do
on Shibboleth. However, the user is the one who decides who
may have access to her authentication data. This approach
empowers the user discretion to choose who is to be trusted
and, therefore, makes the trust relationships more flexible.

Kerberos [7] is a distributed authentication service very
popular for operating systems. It employs encrypted messages,
following the authentication protocol by Needham and
Schroeder [8], with the addition of timestamps. Kerberos
provides single sign-on on systems that trust its authentication
mechanisms (i.e. the authentication service and the ticket
granting service). It is also possible to perform federated
authentication between different security domains, if the
authoritative authentication servers have trust relationships
established with each other [9].

A model for distributed identity management for digital
ecosystems is described on [10]. Authentication data is
abstracted through the usage of user profiles that are encrypted
and replicated to trusted peers. It describes a model to support
dynamic digital ecosystems, with single services and service
compositions.

The above mentioned works represent a good approach
when dealing with a relatively homogeneous environment (e.g.
only operating systems with Kerberos, or only web sites with
Shibboleth). Although the proposal on [10] works with
credential translation, it is heavily based on SAML. This is not
easily supported on popular operating systems, thus restricting
its usage mostly to web based resources and systems that are
SAML compatible.

III. FEDERATED IDENTITY MANAGEMENT ARCHITECTURE
First, we need to define the entities belonging to the

scenario considered in this work:

• SaaS User: any entity that wants to access the
resources exposed as a SaaS application. Her identity
is unknown outside of the SaaS context.

• IaaS Contractor: someone that contracts resources
from IaaS providers, to deploy the SaaS Application to
be provided to SaaS Users.

• IaaS User: the entities recognized on the IaaS
resources (e.g. operating systems) as valid accounts.

• Contracted Resources: infrastructure resources like
processing time, disk space, and network bandwidth.

• SaaS Application: a system that employs contracted
resources to provide some specific functionality to the
SaaS users.

• Identity Providers: any entity that is responsible for
managing the SaaS users’ authentication data.

IaaS contractors employ contracted resources to offer
SaaS applications to the SaaS users. It is a popular approach to
sell such services in a pay-as-you-go manner. However, as the
SaaS user is only known inside the SaaS application itself, it is
hard to measure with precision how much of the contracted
resources a given SaaS user has consumed. Without the
unification of SaaS user identities and IaaS user identities, it is
only possible to obtain estimated (average) individual resource
consumption.

In this proposal it is important to know which SaaS user is
executing which actions on the infrastructure level. This not
only enables a fair accounting system, it also permits an
accurate identification of users for fine grained auditing and
access control in IaaS.

With these requirements in mind, we propose a new
architecture for federated identity management that integrates
the IaaS and SaaS layers. Some components are operated on
the PaaS layer to conceal the implementation details of identity
translation from the IaaS contractor. We also designed an
approach to permit the SaaS user to use the SaaS application
without any interference.

Figure 1: Example Scenario

A. Example Scenario
On Figure 1 we show a scenario involving all the entities

described above. The IaaS contractor acquires the contracted
resources, in the form of virtual machine instances, from two
different providers (IaaS Providers One and Two). The IaaS
contractor then deploys her SaaS application over the
contracted resources; she already has the burden of managing
both the infrastructure and the application. It is also important
to set up trust relationships with the many identity providers
responsible for the SaaS users’ authentication.

Figure 1 exposes the limitation of current approaches: even
though the IaaS contractor can delegate SaaS users’
authentication to third party identity providers, she cannot be
sure of which user is consuming what resources on the
infrastructure. An outside view, perceives the SaaS application
consumption as referring to a single entity (e.g. IaaS User 1).
The IaaS contractor must design her SaaS application
specifically to track SaaS users’ actions, for accounting and
auditing purposes, as well as for authorization and access
control enforcement.

B. The Architecture
The proposed architecture is shown on Figure 2. It is

composed of four identity domains: User domain corresponds
to the security domain in which a given external user exists;
IaaS domain is where the contracted resources exist, and may
be spread over different IaaS providers; SaaS domain refers to
the security domain of the provided SaaS application; The
PaaS domain contains the components necessary to perform
identity translation and data replication over different IaaS
providers. On real world scenarios there may be more
occurrences of the same kind of domain (e.g. many IaaS and
User domains), we presented only one of them for the sake of
simplicity.

A trust relationship between the given user’s domain and
the SaaS domain is prerequisite for the SaaS user to access the
provided application and resources. The configuration of this
relationship depends on the type of Identity Provider
employed. The proposed architecture can support different
identity providers (e.g. Shibboleth, OpenID) by using different
application access points (i.e. interceptors).

The basic steps needed for a given SaaS user to access the
provided SaaS application are described bellow (see Fig. 2):

1) The SaaS user tries to access the SaaS application
interface with her browser.

2) The interceptor cannot find a valid session for the
access request, thus it requests the SaaS user to authenticate
on her choosen identity provider.

3) The SaaS user is forwarded to the Identity Provider
authentication interface, and performs her login if needed.

4) The Identity Provider redirects the SaaS user to the
interceptor, embedding the required proof of authentication
(e.g. a SAML token).

5) The SaaS user’s browser tries to access the provided
SaaS application, though now the request has an embedded
proof of authentication.

6) The interceptor validates the proof of authentication
and requests a new security token from the Security Token
Service (STS). The trust relationship between interceptors and
the STS is established by the PaaS administrator, who owns
both components.

7) The STS verifies if the SaaS user is allowed on the IaaS
security domain. A new token containing the IaaS user’ ID is
issued for valid users and is signed with the STS private key:

a) First time SaaS users get their account registered on
the IaaS Identity Provider, this is needed only once. A unique
identification is created, derived from the SaaS user’s
identification. Thus the STS can always issue new security
tokens whitout need for storing the IaaS identities locally.

b) The IaaS Identity Provider centralizes the accounts
for all IaaS users, and shares this data with the authorized
mechanisms (e.g. operating systems) eliminating the need for
account creation on each virtual machine’s operating system.

8) The interceptor forwards the access request to the
application endpoint (e.g. an internal URL), embedding the
security token obtained from the STS.

Figure 2: Architectural Overview

9) A local component (i.e. the dispatcher), running with
administrator rights, captures the request and extracts the
security token. If it is signed by the STS, it is considered
authenticated. The dispacher uses the IaaS identification
contained on the request to execute actions on behalf of the
requesting user (e.g. to start an application instance owned by

the provided user identity). The trust relationship with the STS
is configured by the PaaS administrator.

10) As the underlying mechanisms recognize the IaaS
identification, the action is performed with success.

11) The access request is delivered to the SaaS application
instance owned by the IaaS user provided on the security
token.

Steps from 12 to 14 refer to the forwarding of SaaS
application responses to the SaaS user’s browser or client
application.

The actual SaaS user authentication procedure depends on
the solution used by the user domain. For approaches that offer
single-sign on, we consider that the SaaS client application will
be running on top of a web browser, thus inside the
authenticated SaaS user’s session. The application requests are
tunneled inside this authenticated session and the interceptor
enriches the access request with the security token from the
STS.

For SaaS users who want to use custom developed
applications (e.g. web service clients) it is possible to provide a
separate gateway (i.e. interceptor). The only difference from
the mentioned scenario is that the SaaS user’s application will
have to actively authenticate itself on the identity provider and
cache the authentication proof for future use. Therefore, the
application requests will not be tunneled inside browser
authenticated HTTP sessions.

Account data stored on the IaaS identity provider can be
replicated to other instances running on different IaaS
providers. This allows for the unique identification of any user,
no matter where the SaaS application instance is created, and
provides what we called horizontal federation of identification.
Data replication is desirable for reducing communication costs
(e.g. network latency), though it is possible to set up an
environment in which each IaaS IdP would be responsible for
some subset of the identities, delegating the rest to the
remaining IaaS IdPs.

Vertical federation is achieved by supporting different user
authentication mechanisms in the front-end (i.e. interceptor),
enabling different SaaS users to use their chosen identity
management approaches, though maintaining identification
unity through the abstraction levels by using the STS in
cooperation with the IaaS identity provider.

The dispatcher, running on each virtual machine, acts as a
proxy, performing the actions the SaaS user requested. It is
needed to start the SaaS application with the user’s credentials
or to import (mount) the user’s network storage devices on the
target system, and so on. This is fundamental for the individual
accounting, for auditing purposes, and to employ access
controls tailored to specific users.

IV. IMPLEMENTATION DETAILS
Bellow we present brief descriptions of the software

components for the prototype implementation:

• OpenID authentication system [6]: offers a flexible
solution for web authentication. It is used in the role of
the Identity Provider from Figure 2. We selected this

implementation for its ease of use and because it is a
well-known framework for SSO purposes.

• JAX-WS RI [11]: an implementation of the Java API
for XML Web Services. It used to create Java Applets
running inside a web browser’s HTTP session, making
SOAP requests to the SaaS application.

• Apache Tomcat [12]: a popular servlet container, used
for hosting web based components, like the interceptor
and the STS.

• Apache Axis 2 for Java [13]: a web services toolkit
used in conjunction with the Apache Rampart [14]
security module to implement the STS component,
compliant with the WS-Trust specification.

• OpenLDAP [15]: an LDAP implementation,
supporting data replication to slave servers. This
component is used on the role of IaaS Identity
Provider.

• OpenSAML [16]: a popular SAML toolkit, used by the
STS to create security tokens according to the SAML
specification.

We are using Eucalyptus [17], an IaaS platform capable of
deploying a group of virtual machines running the Debian
GNU/Linux [18] operating system.

The OpenLDAP directory provides account information to
the Linux operating systems through a component called
NSS_LDAP. This enabled us to configure the operating
systems with account information without the need for locally
creating user accounts. It also enabled the data replication to
other IaaS providers with native protocols. We also considered
using a Kerberos implementation, but it seemed very inflexible
if compared to an LDAP directory, because it depends on clock
synchronization and user accounts must be manually created on
each machine, what is not reasonable in a dynamic
environment as cloud computing.

The dispatcher module runs as the root user, it spawns user
processes which drop the administrative rights, using only the
credentials provided on the security token. It evaluates security
tokens in the SAML format, and considers tokens signed by the
trusted STS to be authentic.

The STS implements a scheme for deriving unique user
identification from the SaaS user’s name (e.g. applying a hash
function). This identification is then registered on the LDAP
directory, and the operating systems are notified to synchronize
their data with the directory server. It then creates SAML
assertions and signs them with its private key.

The interceptor is a servlet that acts as a proxy. It receives
requests from SaaS users that want to access the SaaS
application interface (i.e. an URL pointing to a provided
applet). The URL is protected by a module implementing the
OpenID authentication, so the user must go through the
authentication procedure, which ends up creating an
authenticated session in the servlet. The interceptor interacts
with the STS, and requests the security token using the WS-
Trust specification. After successfully receiving a security
token, it stores the token on a session attribute for further

reference; sessions that already contain a security token does
not need to repeat this step. The token is attached to the
application request before it is forwarded to the dispatcher.

 The SaaS user’s application is composed of an applet that
executes inside an OpenID authenticated session. The
application uses SOAP as its protocol, using the JAX-WS
implementation. When a request is made, the interceptor
considers it just an XML document. However, we are able to
embed SOAP headers on it before it arrives on the dispatcher.
Thus, the SaaS user herself is unaware of the credential
translation taking place. The proposal could, as well, support
Shibboleth users by providing a different interceptor able to
interpret this protocol.

Even though we are working mainly with Linux-based
operating systems, most modern operating systems have
mechanisms to enable impersonating other users when given
the appropriate credentials. Besides, LDAP is a very well
supported technology, so the proposed architecture can
adequately support different implementation scenarios.

We also devised the architecture to be application agnostic.
That is, it can support SOAP based web services, HTTP based
applications like CGI, REST, and so on. The use of web
browsers was selected to show that it is possible to offer
integral federated identity management transparently, though
without losing the single sign-on functionality.

V. CONCLUSIONS
In this work we presented a new architecture and platform

for federated identity management, mapping high level
identities (i.e. from SaaS) to low level identities (i.e. for IaaS).
By eliminating this integration gap we enable the SaaS
application developer to track resource usage on a user based
fashion, that is, it is possible to do fine grained accounting.

Besides, the application developer also gains advantages as:
possibility of applying security policies for individual users on
the infrastructure level; obtain accurate auditing records, as the
users are known on the whole cloud computing layer; get the
ability to deploy applications on multiple IaaS providers
without losing identity unity.

The end user is not disturbed by the presence of the
proposed architecture. We showed that it is possible to use
interceptors to offer credential translation transparently. This
also permits the proposal to support many authentication
approaches in the front-end by just changing the interceptor.

The implementation aspects of prototype showed that the
proposal is reasonable. There are plenty of freely available

technologies and components, based on open standards, which
supports the implementation of the proposed architecture.

References
[1] Shim, S.S.Y.; Geetanjali Bhalla; Vishnu Pendyala; "Federated identity

management," Computer , vol.38, no.12, pp. 120- 122, 2005.
[2] Morgan, R. L.; Cantor, S.; Carmody, S.; Hoehn, W.; Klingenstein, K.;

“Federated Security: The Shibboleth Approach,” EDUCAUSE
Quarterly, vol. 27, no. 4, pp. 12-17, 2004.

[3] OASIS; “Web Services Federation Language (WS-Federation) Version
1.2,” Available at: http://docs.oasis-open.org/wsfed/federation/v1.2/ws-
federation.html, Retrieved on January, 2012.

[4] Mikkonen, H.; Silander, M.; "Federated Identity Management for
Grids," International conference on Networking and Services, pp. 69,
2006.

[5] Badger, L.; Grance, T.; Patt-Corner, R.; Voas, J.; “Cloud Computing
Synopsis and Recommendations,” Available at:
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-
146.pdf, Retrieved on January, 2012.

[6] OpenID Foundation; “OpenID Authentication 2.0,” Available at:
http://openid.net/specs/openid-authentication-2_0.html, Retrieved on
January, 2012.

[7] Steiner, J.G.; Neuman, B.C.; Schiller, J.I.; “Kerberos: An Authentication
Service for Open Network Systems,” Proceedings of the Usenix
Conference, 1988.

[8] Needham, R. M.; Schroeder, M. D.; “Using encryption for
authentication in large networks of computers,” Commun. of the ACM.
vol. 21, no. 12, pp 993-999, 1978.

[9] Neuman, B.C.; Ts'o, T.; “Kerberos: An Authentication Service for
Computer Networks,” IEEE Communications, vol. 32 no. 9, pp 33-38,
1994.

[10] Koshutanski, H.; Ion, M.; Telesca, L.; , "Distributed Identity
Management Model for Digital Ecosystems," The International
Conference on Emerging Security Information, Systems, and
Technologies, pp.132-138, 2007.

[11] GlassFish Community; “The JAX-WS Reference Implementation,”
Available at: http://jax-ws.java.net/, Retrieved on January, 2012.

[12] The Apache Software Foundation; “Apache Tomcat,” Available at:
http://tomcat.apache.org/, Retrieved on: January, 2012.

[13] The Apache Software Foundation; “Apache Axis2/Java,” Available at:
http://axis.apache.org/axis2/java/core/, Retrieved on: January, 2012.

[14] The Apache Software Foundation; “Apache Axis2 Security Module,”
Available at: http://axis.apache.org/axis2/java/rampart/, Retrieved on
January, 2012.

[15] OpenLDAP Foundation, “OpenLDAP Software,” Available at:
http://www.openldap.org/, Retrieved on Jan 2012.

[16] OpenSAML; “Open Source SAML Implementation,” Available at:
https://wiki.shibboleth.net/confluence/display/OpenSAML/Home,
Retrieved on: January, 2012.

[17] Eucalyptus Systems, Inc.; “Eucalyptus Open Cloud Platform,” Available
at: http://open.eucalyptus.com/, Retrieved on: January, 2012.

[18] Debian Foundation; “Debian GNU/Linux,” Available at:
http://www.debian.org, Retrieved on: January, 2012.

85

APPENDIX B – Managing Distributed
UCONABC Policies with Authorization

Assertions and Policy Templates

Managing Distributed UCONABC Policies with
Authorization Assertions and Policy Templates

Maicon Stihler∗†,
∗Federal Center for Technological Education – CEFET-MG

Department of Computing and Mechanics
Leopoldina, MG, Brazil

e-mail: stihler@leopoldina.cefetmg.br

Altair O. Santin†, Arlindo L. Marcon Jr.†
†Pontifical Catholic University of Parana – PUCPR
Graduate Program on Computer Science – PPGIa

Curitiba, PR, Brazil
e-mail: {santin,almjr}@ppgia.pucpr.br

Abstract—Managing UCONABC policies in modern dis-
tributed computing systems is a challenge for traditional ap-
proaches. The provisioning model has trouble to keep track and
to synchronize large numbers of distributed policies, outsourcing
model may suffer from network overhead and single point of
failure. This paper describes an approach to manage distributed
UCONABC policies, derived from the combination of authoriza-
tion assertions and policy templates. It combines the benefits of
provisioning and outsourcing, eliminating their respective draw-
backs. Prototyping details and performance evaluation are shown,
messages are 42.7% smaller than provisioning and response times
are faster than outsourcing.

I. INTRODUCTION

Cloud computing [1] provides a dynamic environment, in
which client organizations can implement their own computing
services using infrastructure provisioned on demand. This
reconfigurable infrastructure allows the services to be scaled
up or down as needed. Cloud providers are accessible from
any computer connected to the Internet and can be used with-
out requiring the installation and configuration of specialized
hardware or software on the client side. These environments
can also support many users on the same infrastructure (i.e.,
Multitenancy), improving resource utilization.

The abstraction level of these environments are commonly
used to categorize them as being Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) or Software as a Service
(SaaS) [2]. IaaS clouds provide virtual hardware infrastructure
controlled by the users. The PaaS hides the virtual infrastruc-
ture and provides intermediary services (e.g. security and user
management) supporting the development and deployment of
services. SaaS provides complete applications to the end user,
who can only modify some application aspects. Each model
is conceptually independent, although, one may use a given
model (e.g. IaaS) to build another model (e.g. PaaS or SaaS).

Cloud computing access controls show different degrees of
granularity. IaaS environments, like Amazon EC2 [3], usually
enforce access controls on whole virtual machines (VM), while
PaaS providers, like Heroku [4], often enforce the controls on
a lightweight process container. SaaS solutions, on the other
hand, focus on individual application users.

This work was partially sponsored by the Brazilian National Council for
Scientific and Technological Development (CNPq), grants 310671/2012-4 and
404963/2013-7.

Takabi [5] argued that cloud computing must use fine-
grained access control policies, which require mechanisms
able to capture the cloud dynamics, through the use of
contextual information, attributes and credentials. The usage
control model (UCONABC) [6] meets the aforementioned
requirements, as it can reflect changes on attributes of users,
objects and the environment, by continuously reevaluating the
policies and applying the usage decisions during runtime.

Previous research on the application of UCONABC in
cloud computing [7], [8], [9] were centralized approaches,
prone to communication overhead, single point of failure in
the reference monitor and low scalability. Tuple spaces was
investigated to solve these shortcomings [7], though its use
of non-standard complex mechanisms [10], [11] hinders its
applicability. Decentralized approaches based on the provision-
ing model, on the other hand, have difficulties to synchronize
a large number of policies in distributed systems like cloud
computing.

It is possible to protect any kind of abstract object (e.g.
files, VMs) using UCONABC . The definition of what an object
is can impact its access control granularity. VMs (IaaS) can
only support coarse grained controls and is hard to reconfigure
without restarts. Process containers (PaaS), on the contrary,
allow for a fine-grained control, configuration parameters can
be updated without restarts, and the computing overhead is low.
SaaS could potentially offer an even higher degree of control,
however, the control mechanisms would not be generic enough
to be used on other services.

This work describes the management of usage control poli-
cies with an architecture based on provisioning of authorization
assertions, policy templates previously configured in a runtime
environment and process containers. Individual policies are de-
rived on the local access control mechanisms, by combining in-
formation taken from the provisioned authorization assertions
and the local policy templates. The proposal eliminates the
need for synchronizing local policies with a centralized policy
management system, enables the enforcement of individually
customized policies on a lightweight container, and allows a
higher frequency (almost continuous) policy reevaluation when
compared to outsourcing approaches.

The paper is organized as follows: Section II presents
the preliminary concepts; Section III discusses the proposal
in details; Implementation and evaluation of a prototype, as
well as its tests are described in Section IV; Related work

are presented in Section V; Section VI shows our concluding
remarks.

II. PRELIMINARIES

This section presents a brief introduction to key concepts
for understanding this paper. In particular, it addresses the
concepts of policy architectures and the UCONABC .

A. Policy Architectures

Access control policies have been commonly managed
following on of two approaches:

• Provisioning: requires the setup of policies at the
place where the controls are enforced. The policy is
stored in a local repository and then, on each access
request, the resource guardian invokes a local policy
decision point (PDP). The PDP is a reference monitor
which produces policy evaluation decisions (i.e. per-
mit or deny) to be enforced by the guardian [12]. Its
main advantage is its robustness, as it has no external
dependencies. On the other hand, it is harder to keep
policies synchronized on a distributed system.

• Outsourcing: is based on a client and server model.
An external service, a reference monitor, responds to
requests from the guardians requiring the evaluation of
access control policies, this happens on every access
attempt. The guardian waits for a policy evaluation
decision and enforces it [13]. Its advantage is the
simplicity of policy management and guardian imple-
mentation. The disadvantages are the communication
overhead and its fragility, as the reference monitor
may be a single point of failure. Moreover, by being
centralized it becomes harder to achieve the scalability
expected of cloud computing systems.

B. Usage Control Model

The usage control model, UCONABC [6], unifies prior
ideas on access controls under a formal (predicate-based)
cohesive model. It has two fundamental concepts:

• Continuity defines that policies are evaluated and
enforced throughout the usage of an object (i.e. the
resource being protected). The evaluation may occur
before the usage starts (pre), while it happens (ongo-
ing) and when it finishes (post);

• Mutability considers that certain attributes of the
subject or object may be changed as a side effect of
a subject’s usage. Thus, policy rules may defined how
some attributes get updated.

Usage controls are categorized as authorizations (the user
must have rights to perform an action), conditions (constraints
on environmental attributes, such as the time of day or ge-
ographic location), obligations (external actions that must be
performed by the user) and updates (modifications that should
be made to a user’s or object’s attributes).

III. MANAGING USAGE CONTROL

In this section we propose an infrastructure for usage con-
trol management in distributed systems, using policy templates
and authorization assertions to derive policies that are locally
evaluated. This approach eliminates the need of setting up poli-
cies, present in the provisioning model, and the communication
costs of the outsourcing model.

The components that comprise the infrastructure can be
categorized as being part of an administrative domain or of
a local domain. The administrative domain offers services
to manage the contents of authorization assertions and to
create the policy templates to be preset in the local domains.
The local domain contains the components for authorization
assertion validation, derivation of usage control policies, its
evaluation and decision enforcement.

User applications are executed in the local domain in
isolated environments, called containers, which allow for fine-
grained control and accounting, regardless of the number of
processes running within the containers. Each container is con-
trolled by a customized policy, derived from an authorization
assertion and a policy template preset on the local domain.

The infrastructure was designed to eliminate the need of
provisioning policies for each service, as well as the complex
mechanisms required to keep those policies synchronized with
a central repository. Local usage control mechanisms allow
for shorter response times when compared to outsourcing
approaches and reduces the likelihood of single point of failure,
due to local domains being independent of each other.

A. Administrative Domain

The administrative domain consists of four services (see
Fig. 1): Policy Administration Point (PAP), where policy tem-
plates are created; Attribute Manager (AM), used for managing
each user’s authorization attributes; Security Token Service
(STS), issues authorization assertions; Security Gateway (SG),
prevents assertions from being used more than once.

Policy templates are managed on the PAP and stored on
the policy template repository. A template contains a set of
authorization rules, and each rule contains some fields (identi-
fied by unique names, the field-id), to be filled with attributes
obtained from the authorization assertions. The template must
contain all the rules (e.g. quota for disk and CPU time) that an
administrator needs to enforce on a service container. Different
authorization assertions may activate different sets of rules,
therefore, each user can have a customized policy.

All local domains are preset with a copy of the template
repository, making them available as soon as the local domain
is operational. This local repository can be updated at any
time by a notification system (e.g. when a template changes
in the administrative domain, a reliable notification system
informs all the local domains affected, which then update their
repositories and derive again the involved policies).

The AM service consists of a repository of attributes used
for issuing authorization assertions. Each attribute contains
a field-id, which is matched with the field-ids on the policy
template. The repository controls the amount of resources that
can be issued for each user and the amounts already issued

LOCAL
DOMAIN

LOCAL
DOMAIN

ADMINISTRATIVE DOMAIN
Security Token
Service (STS)

create
update
delete

read

Policy Administration
Point (PAP)

policy
template

template repository

Attribute
Manager (AM)

create
update
delete

read

attribute
repository

read

create
policy
template

manage
authorization
attributes

Security Gateway(SG)

issued
assertion

create
service

+
assertion

LOCAL
DOMAIN

request + assertion

setup policy template

user user

user

administrator

Fig. 1. Administrative domain components

(e.g. an user may have a disk quota of 100 GB, but 10 GB is
already used). When an assertion is issued, the corresponding
amount is accounted on the repository, thus an user cannot
exceed his/her total quota.

Attributes are used by the STS to issue authorization
assertions upon user requests. After user authentication, the
STS requests the AM to validate the attributes claimed by
a user. A valid request (i.e. authentic and not exceeding
the administrative domain quota amount) updates the AM
repository, reducing the available quota and allowing the STS
to issue an authorization assertion with the requested attributes.
This assertion is then signed by the STS, encrypted (only the
local domains may decrypt it) and then returned to the user.

Security gateways control the interaction of users with
the local domains, all application management requests must
be made through this service. It transparently selects local
domains to perform user requests, and prevents authorization
assertions from being used more than once. Therefore, a
security gateway needs to keep track of session state (e.g. in
which local domain each request is being processed and what
assertion is related to it) and to reliably share this information
with other security gateways – the synchronization mechanism
is considered a future work.

User application requests are forwarded directly to the
application, bypassing the security gateway. Therefore, if the
administrative domain becomes temporarily unavailable, the
current applications will still be usable (though the user will
not be able to change its parameters). A certain degree of fault
tolerance is desirable on the administrative domain, to avoid
delaying the creation and management of user applications,
however, it is not as critical as in the outsourcing model, which
may have a single point of failure.

B. Local Domain

A local domain is the runtime environment where services
(i.e. user applications) can be executed and usage controlled.
A service is executed in an isolated environment provided by
the operating system, a container. This allows the execution
of services from different users alongside each other. The
local mechanisms validate authorization assertions and com-
bine them with policy templates, generating the usage control

policies to be applied to service containers. The evaluation
and enforcement of these policies is made locally. For an
illustration of the local domain components see Fig. 2.

Users can perform two request types: application and
management. Application requests always target the service
being executed inside the container. Management requests, on
the other hand, are used to create, modify, delete or retrieve
information about a particular service (e.g. request to start
a web application). Local control mechanisms are focused
solely on the second type of request, application requests are
forwarded to the service itself.

When the user wants to perform a management request,
he/she must submit the request with an authorization assertion
to the SG (Security Gateway). The SG selects the appropriate
local domain and forwards the user request, assuring the
authorization assertion has not been already used elsewhere.

A Policy Enforcement Point (PEP) receives the request
from the SG and ensures that only authorized requests get
executed. The first step in the authorization process is to
invoke a local security token service (STS) to validate the
assertion (e.g. by verifying expiration dates, authenticity of
signatures, trust relations, data integrity). An invalid assertion
causes the user request to be rejected. After validation, the PEP
submits an authorization request to the context handler (CH)
along with contextual information (e.g. authorization assertion,
request parameters). The PEP then waits for a reply with an
authorization decision to be enforced.

The CH integrates the many components of the local
domain. After extracting the authorization assertion from the
PEP’s request, the CH invokes the local policy administration
point (LPAP). The LPAP derives usage control policies from
authorization assertions and policy templates stored in the
template repository. The discovery of which rules must be
created (e.g. pre-authorizations, ongoing conditions, etc.) is
made by matching attributes contained in the assertions with
the field-ids present on the policy template. Each rule with a
matching field-id is configured with the corresponding attribute
value. The resulting policy is stored in a policy repository
and a success message is returned to the CH, allowing the
authorization evaluation process to continue.

The next step for the CH is to contact the policy informa-

user
service

service
container

manage
containers

Container
Manager

Policy Enforcement
Point (PEP)

create
update
delete

Policy Information
Point (PIP)

metrics

Local Policy Adm.
Point (LPAP)

Security Token
Service (STS)

assertion
validity

Context
Handler (CH)decision

derive
policy

policy
template

derived
policy

template repository

usage
data

Policy Decision
Point (PDP)

decision

policy

Reevaluation
Trigger (RT)

setup
trigger

LOCAL DOMAIN

read

application
requests

policy repository

read

user

SG

create
update
delete store policy

read

ADM
DOM

Fig. 2. Local Domain Components

tion point (PIP), which provides resource usage information
through a well known interface. Data is collected by other
components (e.g. accounting agents) and stored on the PIP’s
repository. These components use the operating system na-
tive APIs to discover the resource usage for each individual
container, as well as the current state of the system (e.g. load
average, number of running processes). UCONABC obligations
are treated as normal attributes stored on the PIP and must be
updated by an external agent, because obligations cannot be
controlled within the system.

The data retrieved from the PIP is combined with con-
textual information from the PEP’s request to create an policy
evaluation request, which is sent to the policy evaluator (PDP).
This component evaluates access control policies, matching the
data contained on the CH request with the applicable policy
rules. The policy applicable to the service container is retrieved
from the LPAP. Each policy is linked to a single authorization
assertion, therefore, the PDP can select the right policy on the
LPAP. The lack of an applicable policy causes the request to
be denied. A request is authorized only if, after matching all
attributes to the applicable policy rules, the rule combining
algorithm produces a permit value. The decision is sent back
to the CH, that forwards it to the PEP along with details of
how the decision must be enforced.

The aforementioned process is repeated for each man-
agement request. This process can be better understood with
Algorithm 1. The PDP retrieves the subject (S), object (O) and
context (C) linked to an assertion. The data is used to retrieve
the applicable set of policies from the LPAP address (A). A
request gets rejected if no policy is available (line 4-6). A deny
overrides algorithm is shown from lines 7 to 14: if any rule
produces a Deny decision, the request is immediately rejected,
otherwise the request is authorized.

The PDP’s decision may contain a revaluation trigger (RT)
and any attribute updates required. The CH invokes the PIP to
update any attribute, effectively supporting attribute mutability
for UCONABC . Failure to update the attributes causes the user
request to be rejected. The decision is converted to the format
used on the PEP and sent to it, after updating the attributes.

The PEP configures the RT in a component with the same
name. The RT functions act as a timer to alert the PEP to
repeat the authorization process periodically. The trigger is

created with request data provided by the PEP. This data serves
as contextual information to reevaluate the suitable policy.
Therefore, the RT component implements the continuity of
control, defined by UCONABC , as a configurable periodic
reevaluation.

The PEP forwards authorized requests to a local Container
Manager to setup the container and start up the user service
(i.e., it manages the container life cycle). The service access
details (e.g. IP address) are returned to the user after container
creation. The Container Manager uses the operating system
native mechanisms to configure the container limits in accor-
dance with the values on the authorization assertion.

C. Templates and Policy Derivation

A template is a set of all the rules that can be used to
control the behavior of a user service. For the sake of simplicity
a version of a rule for controlling CPU time is shown on Fig. 3.
Each rule is identified by a RuleID: when a rule identifier is
present in the authorization assertion, the rule must be activated
for this user. A rule may contain a variable number of field-ids
(e.g. TotalCpuTime) that must be replaced by values with the
corresponding field-id. Thus, the TotalCpuTime attribute must
be present on the authorization assertion, otherwise no policy
will be derived and the request will be refused. Accounting
data can also be referred on the policy template through the

Algorithm 1 Policy Evaluation
1: S ← subject(assertion), O ← object(assertion)
2: C ← context(request), A← address(LPAP)
3: PolicySet← retrieve_policy(S,O,A)
4: if PolicySet = ∅ then
5: return Deny
6: end if
7: for Policy in PolicySet do
8: for Rule in Policy do
9: if evaluate(Rule, S,O,C) = Deny then

10: return Deny
11: end if
12: end for
13: end for
14: return Permit

use of variable names (e.g., usedCpu is the amount of CPU
time already used).

The applicable rules are configured with the attributes from
the authorization assertion and, after a successful derivation,
the resulting policy is stored on the LPAP. This policy may
contain rules to control the full life-cycle of the service con-
tainer (i.e. pre and ongoing controls). Changes to the template
forces the derivation of the affected policies – the obsolete
policy is deleted and the new policy takes place. Policies
may be grouped in Policy Sets, each policy representing a
well defined stage of the usage session (e.g. pre-authorization,
ongoing-conditions).

IV. PROTOTYPE

The local domain components were prototyped and eval-
uated, demonstrating that the local mechanisms are able to
support controls from UCONABC . Furthermore, a performance
analysis identified the container’s accounting overhead and
the PDP message size overhead when compared to a pure
provisioning approach.

A. Implementation

To implement the prototype we used some open source
libraries and the Java programming language. The application
containers were provided by FreeBSD jails [14] mechanism, it
features an API to monitor resource utilization and to manage
the jails operation. The container manager uses these APIs
to create the container where the user service is executed.
Jails offer an execution environment that resembles a dedicated
operating system. However, different applications are unable to
observe or affect the environment outside of their own jails.

The authorization assertions employed the SAML speci-
fication [15], more precisely the AttributeStatement message
type, and were created and handled by the OpenSAML [16]
library. Usage control policies were created following the
XACML [17] standard format and were evaluated through
the WSO2 Balana [18] library. The templates were written as
XACML rules with embedded variable names. A search and
replace procedure was executed to fill the template with the
corresponding attribute values, deriving the policies.

1 <Rule RuleId="CPURule" Effect="Permit">
2 <Target><Any/></Target>
3 <Condition>
4 <Apply FunctionId="integer-less-than-or-equal">
5 <Apply FunctionId="integer-one-and-only">
6 <AttributeDesignator Category="access-subject"
7 AttributeId="usedCpu" DataType="integer"/>
8 </Apply>
9 <Apply FunctionId="integer-one-and-only">
10 <AttributeValue DataType="integer">
11 ${TotalCpuTime}
12 </AttributeValue>
13 </Apply>
14 </Apply>
15 </Condition>
16 </Rule>

Fig. 3. Sample Rule

A REST Web service executing on the local domain
receives requests containing SAML assertions and the desired
action to be performed (e.g. make a new service instance). The
local STS authenticates and validates the SAML assertion and
a context handler is invoked to process the request. Embedded
modules derive the XACML policy and save it on a private
directory, gather the local information (i.e. on the PIP) and
evaluate the policy. A background thread is configured with
a parameter from the authorization decision to periodically
request the reevaluation of a policy. Session data and policies
are kept in a local directory readable only by the context
handler. After successful evaluation, the request is executed
by the container manager (it creates a container, configures
its limits and IP address, starts the desired service and returns
the access details). The resulting information is returned to the
user.

B. Evaluation

One test measured the cost of retrieving accounting at-
tributes from 400 containers (jails) mimicking a production
environment. Each jail was executing services like e-mail,
SSH and cron, while the attributes were being retrieved, thus
causing a heavy load on the host system. Figure 4-A shows
that sequential reading is the best method, with 0.13 ms on
average for each jail, while 16 parallel requests spent 1.61
ms on average. The worst case remained stable at 7.81 ms,
up to 4 threads, going up to 18.06 ms with 16 threads. Due
to this small overhead, process containers are better suited to
implement UCONABC controls to processes not requiring the
isolation of full virtual machines.

The second test (Fig. 4-B) compares the proposed approach
to traditional provisioning approaches. Provisioning is signifi-
cantly more expensive when dealing with the same number of
rules. The hybrid model used messages ranging from 4754 to
18524 bytes; in the provisioning model messages are ranging
from 11314 to 42594 bytes. The scenario involved the use of
policies from 6 to 96 rules. The messages for the hybrid model
were 42.7% smaller on average.

V. RELATED WORK

In our previous work [7] we designed an architecture
for resilient usage control for cloud computing based on the
outsourcing model. Tuple spaces were employed to handle the
high demand created by the remote PEPs. The architecture
handles the discrepancies in the use of resources, in between
policy evaluations, by using a share of the resource as a
threshold. This proposal employs a hybrid-provisioning model
with authorization credentials and policy templates, with local
evaluation and enforcement of the dynamically derived poli-
cies. By using local mechanisms, we can offer now a much
tighter control, avoiding the need for such resilience.

Lazouski and co-authors [8] applied usage control to a
IaaS cloud system and created XACML language extensions in
order to express attribute updates and reevaluation constraints.
Their architecture is based on the outsourcing model and peri-
odically reevaluates policies affected by attribute changes. The
authors also consider the possibility of an event-based reevalu-
ation. The possible overload of policy evaluation mechanisms
is not addressed. This proposal does not employ extensions to

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12 14 16

T
im

e
(m

s)

Number of threads

Accounting time for 400 jails

Avg
Max

A B

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

6 12 24 48 96

S
iz

e
(b

yt
es

)

Number of Rules

Message size comparison:

Policies
Templates

Provisioning (policies) vs. Proposal (templates)

Fig. 4. Prototype evaluation for accounting overhead (A) and message size (B)

the XACML specification; it offers individually configurable
reevaluation periods for policies, and uses mechanisms for
fine-grained control (i.e. application containers, not full virtual
machines).

An access control architecture based on the UCONABC

model was proposed by Danwei and his colleagues [9]. Their
main contribution is the inclusion of a negotiation module
coupled with the authorization architecture. The user has the
possibility of choosing another access option through negoti-
ation, in certain situations, instead of being promptly rejected
when an authorization credential is insufficient. Our proposal
does not need such fall-back functionality because policies
are derived dynamically, thus it is not possible to encounter
a mismatch between user attributes and the enforced policy.

VI. CONCLUSION

This paper presented and evaluated an architecture for
the distributed management of usage control in distributed
systems (e.g. cloud computing). Our contribution is the use
of policy templates and authorization assertions to derive
access control policies. Templates are previously stored in
the local domains, where policy evaluation and enforcement
are performed. The authorization assertions avoid the need of
sending whole policies through the network for each user, thus
reducing message sizes and keeping the flexibility for defining
individual policies.

Policy synchronization is done by sending new assertions
with different attribute values – when the local domain detects
the change, the affected local policies are derived again and
reevaluated.

Tests showed the suitability of containers to implement
lightweight UCONABC controls, and that the proposal signifi-
cantly reduces message size (42.7% when compared to provi-
sioning). The proposal shows the benefits of the provisioning
without the complexity of synchronizing policies.

As future works, we plan to develop a decentralized archi-
tecture for sharing attributes between local domains, aiming to
enable the dynamic setup of authorization attributes.

REFERENCES

[1] B. Hayes, “Cloud Computing,” Commun. ACM, vol. 51, no. 7,
pp. 9–11, Jul. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1364782.1364786

[2] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of Cloud
Computing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[3] Amazon Web Services, Inc., “Amazon Elastic Compute Cloud (EC2)
- Scalable Cloud Hosting,” https://aws.amazon.com/ec2/?nc1=f_ls, ac-
cessed: 2015-05-03.

[4] Heroku Inc., “Dynos and the Dyno Manager,” https://devcenter.heroku.
com/articles/dynos, accessed: 2015-05-03.

[5] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and Privacy Challenges
in Cloud Computing Environments.” IEEE Security & Privacy, vol. 8,
no. 6, pp. 24–31, 2010.

[6] J. Park and R. Sandhu, “The UCONABC Usage Control Model,”
ACM Trans. Inf. Syst. Secur., vol. 7, no. 1, pp. 128–174, Feb. 2004.
[Online]. Available: http://doi.acm.org/10.1145/984334.984339

[7] A. L. Marcon Jr., A. O. Santin, M. Stihler, and J. Bachtold, “A
UCONABC Resilient Authorization Evaluation for Cloud Computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 457–467, Feb.
2014. [Online]. Available: http://dx.doi.org/10.1109/TPDS.2013.113

[8] A. Lazouski, G. Mancini, F. Martinelli, and P. Mori, “Usage Control
in Cloud Systems,” in IEEE 2012 International Conference for Internet
Technology And Secured Transactions. IEEE, 2012, pp. 202–207.

[9] X. R. Danwei Chen, Xiuli Huang, “Access Control of Cloud Service
based on UCON,” in Cloud Computing. Springer, 2009, pp. 559–564.

[10] S. Capizzi, “A Tuple Space Implementation for Large-scale Infrastruc-
tures,” PhD thesis, Università di Bologna, 2008.

[11] S. Capizzi and A. Messina, “A Tuple Space Service for Large Scale
Infrastructures,” in IEEE 17th Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises. IEEE, 2008, pp. 182–
187.

[12] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog,
F. Reichmeyer, R. Yavatkar, and A. Smith, “COPS Usage for Policy
Provisioning (COPS-PR),” RFC 3084, IETF, Mar. 2001.

[13] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry,
“The COPS (Common Open Policy Service) Protocol,” RFC 2748,
IETF, Jan. 2000, updated by RFC 4261.

[14] The FreeBSD Project, “The FreeBSD Project,” https://www.freebsd.org,
2015, accessed: 2015-05-03.

[15] OASIS Security Services TC, “Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML) V2.0,” http://
docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf, 2014, ac-
cessed: 2015-05-03.

[16] OpenSAML Project, “OpenSAML 2 for Java,” https://wiki.shibboleth.
net/confluence/display/OpenSAML/Home, 2015, accessed: 2015-05-03.

[17] OASIS eXtensible Access Control Markup Language (XACML) TC,
“eXtensible Access Control Markup Language (XACML) Version
3.0,” http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.
html, 2014, accessed: 2015-05-03.

[18] WSO2 Inc., “Balana XACML for Authorization,” https://svn.wso2.org/
repos/wso2/trunk/commons/balana/, 2015, accessed: 2015-05-03.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives and Challenges
	Contributions
	Text Organization

	Fundamentals and Related Work
	Fundamentals
	Cloud Computing
	Policy Architectures
	Usage Control Model

	Related Work
	A UCONABC Resilient Authorization Evaluation for Cloud Computing
	Usage Control in Cloud Systems
	A Usage Control Based Architecture for Cloud Environments
	Access Control of Cloud Service Based on UCON
	An Administrative Model for UCONABC

	Conclusion

	Proposed Solution
	Model
	Operational Model
	UCONABC Administrative Model

	Architecture
	Organization
	Local Domain
	Templates and Policy Derivation

	Administrative Domain
	Top–Level Accounting
	Intermediary Accounting
	Application Quota Configuration Process
	Avoiding double-spending

	LOW–AM and Application Quota Reconfiguration

	Conclusions

	Implementation and Evaluation
	Implementation
	Evaluation
	Local Domain Performance
	MID–AM Performance
	Conclusions

	Discussion, Conclusion and Future Work
	References
	Appendix
	Integral Federated Identity Management for Cloud Computing
	Managing Distributed UCONABC Policies with Authorization Assertions and Policy Templates

