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Abstract

This work encompasses the proposal of a new kind of ensemble classifier for data stream

classification, namely the network-based ensemble. This kind of ensemble explicitly de-

fines relations between component classifiers that are used in various forms, for example,

to combine classifiers’ decisions. Effectively, this work is based on the hypothesis that an

ensemble classifier can obtain accurate predictions with the aid of structural analysis of a

weighted network of its component classifiers. A limited set of works already use relational

data, or even networks, to abstract the ensemble, however there is still a lack of thorough

analysis to justify its use for data stream classification. The overall objective, in this

work, is to define, analyze and propose implementations of network-based ensembles for

data stream classification. We present a formal description of a network-based ensemble,

a thorough analysis of the literature (including a taxonomy of existing methods), a pre-

liminary implementation (Social Adaptive Ensemble 2 - SAE2), two methods for relation

definition - Pairwise Accuracy (PA) and Pairwise Patterns (PP) -, and a final enhanced

implementation (Complex Network Ensemble - CNE). Results show that SAE2 and CNE

are able to achieve results, w.r.t. accuracy, memory and processing time, that are com-

petitive with state-of-the-art ensembles, and that many interesting voting patterns can

be obtained through PA and PP, which sometimes lead to accuracy improvements.

Keywords: Data Stream Mining; Ensemble Learning; Concept Drift; Machine Learn-

ing; Network-based Ensembles.
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Chapter 1

Introduction

Data stream mining has grown in importance in recent years due to the tremendous

amount of real-time data generated by computer networks, smartphones and all sorts of

sensors available. The analysis of these data streams can be very useful to companies

and to their customers, since it can be used to leverage products and services. For

example, an e-commerce website can log users’ shopping behavior and devise a model

capable of recommending products for new users based on the products they have clicked.

Other examples include: network intrusion detection, spam identification, social media

analysis, real time sensor based system, and many others. These examples have in common

many important characteristics of data stream mining, the most prominent being: vast

amounts of streaming data, which relevance may decay over time. In this work, we

focus on the problem of data stream classification. We argue that this problem is even

more challenging than traditional classification. Our claim is based on the fact that data

stream classification is not only subject to virtually all problems that affect traditional

classification (e.g., absent values, outliers, noise, unbalanced classes, and others), but also

to specific issues that arise in a data stream configuration. These issues include: concept

drifts, great to infinite amount of instances, limited resources (memory and processing

time) and temporal dependencies.

In recent years, new classifiers have been proposed to cope with different dimen-

sions of the data stream classification problem. A lot of interest has been shown for

methods that are based on ensembles of classifiers (OZA, 2005; BIFET et al., 2009;

BIFET; HOLMES; PFAHRINGER, 2010; KOLTER; MALOOF, 2007; GOMES; ENEM-

BRECK, 2013; BARDDAL; GOMES; ENEMBRECK, 2014). The reason for that can be

attributed to ensembles, frequently, being able to achieve higher accuracy when compared

to single classifiers. Also, ensembles can deal with concept drift in a less drastic way than

a single classifier. For example, a single classifier may discard its hypothesis completely

1
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when faced with a concept drift, while an ensemble may only replace (or reset) a few of

its component classifiers. Some of the first works on ensemble classifiers for data stream

were focused on adapting existing algorithms to a data stream context. That was the case

for Online Bagging and Online Boosting (OZA, 2005). Although many ensembles were

specifically designed to work with data streams, some of which were able to deal with

concept drift either explicitly (BIFET et al., 2009; BIFET; HOLMES; PFAHRINGER,

2010)) or implicitly (KOLTER; MALOOF, 2007; GOMES; ENEMBRECK, 2013; BARD-

DAL; GOMES; ENEMBRECK, 2014). Most ensemble classifiers are designed following

the intuition that its component classifiers must be diverse in order to allow their combi-

nation to achieve higher accuracy than a single classifier. That is true for many successful

ensemble methods not limited to data stream mining, namely Bagging (BREIMAN, 1996),

AdaBoost (FREUND; SCHAPIRE et al., 1996) and Random Forest (BREIMAN, 2001).

The subjective notion of diversity has been explored thoroughly (KUNCHEVA et al.,

2003; KUNCHEVA; WHITAKER, 2003) and yet there is not a “one size fits it all” metric

for measuring diversity between ensemble members, or a theoretical proof that corre-

lates a given diversity measure and its impact on accuracy. Even though it is difficult to

measure, or formalize, the contribution of “diversity” to the ensemble overall prediction

accuracy, intuitively it is easy to rationalize why an homogeneous set of classifiers when

combined cannot achieve accuracy any better (or worse) than any of its members would

individually.

In this work, we explore a new area of ensemble classifiers for data stream mining,

namely the network-based ensembles. This class of ensemble explicitly defines relations

between its members that are used in various ways, for example, to combine similar

classifiers decisions. More specifically, we define the fundamental characteristics of a

network-based ensemble, present a preliminary algorithm (SAE2), experiment with novel

relations (PA and PP), and present a final implementation named CNE. Experiments

include an empirical evaluation of SAE2, experiments with optional relation definitions,

an analysis of the combination method used in SAE2 and thorough analysis of CNE.

1.1 Problem

Currently there are many data stream classifiers, some of which are based on

ensemble of classifiers. A very restricted subset of these ensembles (GOMES; ENEM-

BRECK, 2013; BARDDAL; GOMES; ENEMBRECK, 2014) uses a network of classifiers

to arrange the component classifiers. These network-based ensembles do not use the net-

work abstraction to its maximum extend. For example, SAE (GOMES; ENEMBRECK,
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2013) uses a network of classifiers to discover subgroups of very similar classifiers, but

it does it by simplifying the weighted connections between classifiers, that measure their

similarity, to dichotomous connections according to a fixed threshold. This simplification

may cause a loss of useful information. Also, current works do not provide detailed analy-

sis that justify the network abstraction. For example, in (GOMES; ENEMBRECK, 2013)

and (BARDDAL; GOMES; ENEMBRECK, 2014) it is not possible to conclude how the

network abstraction actually contributes to the ensemble decisions.

1.2 Objectives

In this work, the overall objective is to define, analyze and propose implementations

of network-based ensembles for data stream classification. By arranging classifiers in a

network structure that obey to a given relation R it is possible to not only identify

similarities and dissimilarities among component classifiers, but also use this structure

to obtain accurate predictions. We are concerned only about scalable methods, since

data stream classifiers are supposed to deal with huge amounts of instances, therefore any

method that is not able to scale to this scenario might not be useful in practice. While

proposing a new data stream classification method it would be temerarious to not consider

the benefits of well-established techniques, such as drift detection (BAENA-GARCÍA et

al., 2006; BIFET; GAVALDÀ, 2007). Therefore, this work will also include the analysis

of how network-based ensembles and traditional data stream classification techniques can

be combined. In order to meet the general objective of this work, we outline the following

specific objectives:

1. Define a taxonomy for data stream ensemble classifiers, which includes aspects of

network-based ensembles;

2. Formalize and analyze the proposed network-based ensemble;

3. Investigate alternative ways to define relation R and define methods to explore these

in benefit of the ensemble;

4. Define a flexible adaption method that does not depend on predefined parameters

and can effectively exploit network-based ensemble properties.

Objective 1 allows us to situate our new proposal in relation to existing ensem-

bles. Objective 2 concerns formalization of a theoretical network-based ensemble and the

instantiation of a network-based ensemble method. The instantiation of a network-based
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ensemble is useful to illustrate advantages and shortcomings, while providing a testable

algorithm. Objective 3 deepen our analysis in one of the most important aspects of the

proposed network-based ensembles, which are the relations that define connections be-

tween classifiers. Objective 4 is related to the adaptation and use of existing data stream

learning methods for network-based ensembles.

1.3 Hypothesis

Hypothesis. An ensemble classifier can obtain accurate predictions with the aid

of structural analysis of a weighted network of its component classifiers.

This hypothesis depends on the existence of an ensemble that is able to extract re-

lational information from its component classifiers, and interpret this data in benefit of its

overall decisions. In simple terms, we hypothesize that it is possible to use relational data

that correlates component classifiers, such as their similarity with respect to predictions,

in benefit of the ensemble overall decisions. The weighted network of classifiers referred

in the hypothesis is simply a set of classifiers that obeys to relation R. The relation R

is a measure between pairs (or sets) of classifiers, which must explicitly measure useful

information about them, e.g., their similarities or, conversely, their differences. In pre-

vious works (GOMES; ENEMBRECK, 2013), R was defined as the “similarity between

classifiers”, i.e., the fraction of all “recent” predictions in which both classifiers predicted

the same class label. Notice that relation R is instantiate in the form of connections

between pairs of classifiers and that these connections form a network of interconnected

classifiers.

Another fundamental aspect of our hypothesis is the structural analysis. This

portion comprises the extraction of knowledge from the network of classifiers. In this

analysis, not only individual statistics, such as component classifier’s accuracy, are taken

into account, but also information that can be extracted from pairs, triples or subsets of

component classifiers. The insights obtained from the structure can be used to enhance

predictions, update component classifiers, or even to guide training for diversity induction.

1.4 Expected outcomes and contribution

Through this work we expect to advance the current understanding of ensemble

classifiers for data streams, specifically those based on networks of classifiers, as well as

developing novel methods to tackle data streams classification. Concretely, we provide
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empirical evidence to illustrate the advantages and disadvantages of network-based en-

sembles in the context of data stream classification. These empirical evidences include

statistical tests comparing state-of-the-art ensemble classifiers and the methods presented

on this work, and experiments developed to validate the contributions of structural anal-

ysis to the ensemble.



Chapter 2

Data Stream Mining

Recently, the amount of data generated by smart phones, social networks and

all kinds of sensors has grown tremendously. Companies, governments and individuals

are flooded with data about their costumers, citizens and even their own body through

wearables. All this data is only useful if it can be efficiently processed, so that individuals

can make timely decisions based on them. A lot of progress has been made towards

obtaining useful models out of massive amounts of data under the research area of data

mining. Even though classical data mining is able to address many issues related to data

processing, most of its algorithms were designed to deal with static data, i.e., while the

algorithm is running the data distribution does not change. This assumption does not

hold for many practical problems. Consider the problem of classifying customer’s opinions

in a social network as either positive or negative related to a given topic. In this problem,

despite the need to perform a preprocessing step on the user comments, there are two

other issues that must be considered: data is generated continuously and users’ opinions

may change over time. A continuous flow (stream) of data requires that the learning

algorithm update its model incrementally or through batches of instances. Also, if users’

opinions change, then the algorithm must update its model as fast as possible to continue

providing accurate predictions. A data stream can be defined as “A sequence of digitally

encoded signals used to represent information in transmission.”1.

Data streams pose several challenges for learning algorithms, including, but not

limited to: concept drifts, temporal dependences, great to infinity amount of instances,

restrictive time and memory requirements. On top of that, data stream mining includes

most existing problems in traditional data mining, such as absent values, noise, irrelevant

features, class imbalance, and others.

In this work, we focus on the task of classification for data streams. Succinctly,
1Institute for Telecomunication Sciences: <http://www.its.bldrdoc.gov/fs-1037/dir-010/_1451.htm>
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classification refers to the problem of learning a function that maps instances into one

of two or more predefined classes. It is possible to use traditional (batch) classifiers in a

data stream configuration as long as instances are grouped into batches before training.

This requirement may be restrictive for some streams due to demanding time and memory

constraints, and the presence of concept drifts. Thus, incremental classifiers are usually

preferred over their batch counterparts. To date, many incremental algorithms have been

proposed for data stream classification, some of which are adaptations of existing batch

algorithms, for example, Online Bagging (OZA, 2005) is an adaption of the Bagging

algorithm (BREIMAN, 1996).

In the following sections the main concepts and challenges related to data stream

classification are presented. Section 2.1 presents a detailed description of the stream

classification problem that we use as well as its challenges. Section 2.2 presents the

concept drift problem and its different kinds. In Section 2.3, the existing methods for

evaluating stream classifiers are presented. Section 2.4 presents datasets and synthetic

stream generators commonly used for data stream classifiers evaluation.

2.1 Context and Assumptions

Data stream classification is a variation of the traditional supervised machine learn-

ing task of classification. Both tasks are concerned with the problem of predicting a nom-

inal value of an unknown instance represented by a vector of characteristics. The main

difference between these tasks is that in the context of data stream classification instances

are not readily available to the classifier as being part of a large static dataset, instead,

instances are provided one by one by a continuous data stream. Therefore, a data stream

classifier must be ready to deal with a great amount of instances, possible infinity, such

that each instance can only be inspected once or stored for only a short period of time.

In order to properly work in a data stream environment, a classifier must attend to the

following constraints, presented in (BIFET et al., 2010):

1. Process instances one at a time and inspects them only once. Each

instance must be processed, or ignored, in the order at which it is presented to the

algorithm and deleted right after. There is no restriction against storing instances for a

short period of time as long as characteristic 2 is preserved.

2. Use a limited amount of memory. One of the major motivations to use

data stream classifiers is that these allow processing large amounts of data with a limited

memory. This is possible as long as the algorithm is able to respect the maximum space

of memory that can be used. To allow more memory usage, the algorithm can store data
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in a secondary storage, although this must take into account characteristic 3.

3. Use a limited amount of processing time. The time taken to process

one instance must not surpass the time t, which is the ratio at which new instances are

presented to the algorithm. If the algorithm happens to increase the time it needs to

process each instance over time, i.e., it does not scale linearly, then the algorithm will

either start ignoring instances or lose its capability to process instances as soon as they

arrive. If the algorithm is not able to process instances in real time, then it will not be

able to adapt itself to concept drifts in a timely fashion.

4. Be ready to predict at any time. An ideal algorithm must be ready to use

its best possible model at any time, independently of the number of instances that it has

already processed. This implies that the construction model must be efficient (character-

istic 3). To achieve this the algorithm must be able to update its model incrementally as

instances arrive, i.e., without the need to reconstruct the whole model every time a new

instance is presented to it.

In this work, we assume that instances from a data stream S appear sequentially

as a sequence, in intervals of u time units, of unlabeled instances xt, where xt represents

a vector of attribute values. Also, it is assumed that the true class label yt of a given

instance xt is available before the next instance xt+1, thus the classifier can use it for

training immediately after it has been used for testing. Specifically, we do not consider

other forms of learning, such as semi-supervised classification where labels are not available

for all incoming instances. Also, it is expected that the underlying concept is unstable,

i.e., the data distribution is expected to change through different types of concept drifts.

More recently, in (ŽLIOBAITĖ et al., 2014) it was advised to consider temporal

dependences in evaluating and designing data stream classifiers. A temporal dependence

occurs whenever the current instance, xt label is not independent of previous instances

xt−1, xt−2, . . . labels. To date only a few classifiers have been designed to take into account

temporal dependences and an evaluation metric has been proposed, both presented in

(ŽLIOBAITĖ et al., 2014). The problem setting described, with exception of the temporal

dependence part, is the same used in other existing works, such as (OZA, 2005; BIFET;

HOLMES; PFAHRINGER, 2010; BIFET et al., 2009; GOMES; ENEMBRECK, 2013;

BARDDAL; GOMES; ENEMBRECK, 2014; BRZEZINSKI; STEFANOWSKI, 2014) and

on data stream analysis frameworks, e.g. MOA (BIFET et al., 2011). We use an ex-

tended version of the traditional problem setting considering temporal dependences in

the evaluation metric when necessary.
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2.2 Concept Drift

Real world problems tend to be very dynamic. For example, a consumer behavior

may change as he/she ages, a group of people can change their opinion about a prod-

uct or a political party, the attacks a network receives may change as new barriers are

created, and so on. Learning from data which distribution may change over time is a chal-

lenging task as conventional machine learning algorithms assumes the data distribution

is static. Conventionally, streams that contain drifts are identified as evolving streams,

while streams in which data distribution is stationary are named stationary streams.

There are many aspects to consider concerning a drift, including its cause, rate

and where the data distribution has changed.

The cause of a drift can be related to the hidden variables (hidden context) (TSYM-

BAL, 2004) of the learning problem. The attributes available to a learner do not contains

all possible variables that affects its output, simply because these variables are either

sporadic or very complex. For example, considering a learning problem in which it is

expected to uncover shoppers’ behavior, as time passes this behavior may be affected by

inflation, season, marketing campaigns, and other variables unknown to the learner. In

practice, it is not necessary to discover the cause to adapt the learning hypothesis, i.e., it

is the learner task to adapt itself to a drift, not to explain the reason behind it.

Another important trait of concept drift relates to the rate at which it happens.

The rate at which drifts happen can be abrupt, incremental, gradual or reoccurring.

Notice that noise or outliners ought not be confused with drift. The difference between

noise/outliers and drifts is persistence.

Abrupt drifts are the most noticeable kind of drift because the prediction error and

the data distribution vary greatly in a short period of time. A drift is considered abrupt

if after one given instance the concept shifts persistently. For example, if the learning

problem is to evaluate products as relevant or irrelevant for a single user, considering the

user has been looking for a new smartphone, after he bought it, smartphones become

irrelevant for him all of a sudden.

If the new concept takes a while to become persistent, then it is said that the

drift is gradual. Precisely, during an unknown size window, instances from a previous

concept appear less frequently, while instances from a new concept become predominant.

For example, considering that a user has already bought a new smartphone, but he/she is

still sporadically interested in smartphones up to the point when he/she completely loses

interest on them.

Concepts that slowly evolve over time cause incremental drifts to happen, which
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are not easily detectable.

Reoccurring concepts refers to concepts that alternates with certain regularity over

time. For example, when the user behavior changes according to the season of the year.

The last classification at which a drift is susceptible relates to its location. There

are many works with different naming conventions for the same phenomena. In this work

we adopt the same definitions, and naming, as those presented in (GAMA et al., 2014).

Generally, a drift can be either “real” or “virtual”. A real concept drift happens when

there are changes in the posterior probabilities of classes, p(y|X), i.e., the output variable

distribution changes affecting the upcoming predictions. A virtual concept drift is said

to occur if the distribution of the incoming data p(X) changes without affecting p(y|X).

In practice, there is not much interest in virtual drifts, because they do not change the

conditional distribution of the output. Figure 2.1 illustrates a visual comparison of virtual

and real drift.

(a) Original data. (b) Real drift. (c) Virtual drift

Figure 2.1: Types of drifts. Squares and circles represents instances with different classes,
adapted from (GAMA et al., 2014)

It is important to notice that virtual drifts are observable by checking the input

distribution, which is always available. This advantage may not be useful, as virtual

drifts do not impact the output variable. Usually, detecting real drifts depends on the

availability of labeled instances. In some contexts the label of instances may not be

readily available after they have been used for testing. In this work we do not consider

these contexts (see Section 2.1).

Different strategies have been developed to deal with drifts varying from active

drift detection algorithms (detectors) to indirect adaptation methods (dynamic ensemble

classifiers). According to (ŽLIOBAITĖ et al., 2010) there are mainly four strategies to deal

with concept drift: Forgetting, Detectors, Contextual and Dynamic Ensemble Classifiers.

Each of these strategies has tradeoffs, for example, Dynamic Ensemble Classifiers are

usually good at recovering from gradual drifts, but they tend take longer to adapt to an

abrupt drift.
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One of the simplest strategies to adapt to concept drifts is to “forget” old instances

and train the model only on the most recent data. This forgetting mechanism is based

on the hypothesis that instances lose relevance as time passes. It is possible to forget

one single instance at a time or whole chunks of instances (windows). On one hand,

forgetting only one instance at a time is difficult because removing its influence from the

classifier hypothesis is not trivial for non-instance based classifiers. On the other hand,

determining the window size is difficult if the rate of change that drifts exhibit is unknown

for the given stream. Smaller windows are appropriate in case of abrupt drifts, as the

classifier is able to adapt itself faster. Although during times where there are no drifts the

prediction accuracy will be impacted as the classifier cannot learn from a large amount

of instances. A third option is to use dynamically sized windows, but then the problem

turns to “when” and “how” to change the window sizes. A possible solution resides at drift

detection algorithms.

It is possible to detect changes by observing the data distribution, the parameters

of the classifier, or the incorrectly classified instances. Algorithms that actively check

for drifts, namely drift detector algorithms, are used together with classifiers. Usually,

a drift detector indicates the instance at which the drift had begun and the training is

restarted at that instance. Drift detectors are often associated with abrupt drifts, as

gradual and incremental drifts are very difficult to detect with existing techniques. Some

well-known and widely used drift detectors are the DDM (GAMA et al., 2004), EDDM

(BAENA-GARCÍA et al., 2006) and ADWIN (BIFET; GAVALDÀ, 2007).

Contextual strategies denote methods that build many hypothesis and alternate

between them according to the current data. In other words, instead of discarding the

current hypothesis, it is stored for future use when its corresponding concept becomes

active again. Even though this strategy saves time and resources as there is no need to

rebuild the hypothesis, it can be difficult to determine if a previously seen concept has

returned.

Many popular methods to cope with evolving streams are based on dynamic en-

semble classifiers. Learning methods based on ensemble of classifiers are widely used

in traditional machine learning, the most prominent examples are Bagging (BREIMAN,

1996), Boosting (SCHAPIRE; FREUND, 2012) and Random Forests (BREIMAN, 2001).

These ensemble classifiers tend to achieve accuracy that overcomes single classifiers, with

other additional characteristics (see Chapter 3). For evolving streams, ensemble learners

can be modeled to remove or add classifiers according to variations on the data distribution

of the stream, along with other complex strategies that involves combining and weighting

classifiers. This dynamic characteristic allows ensemble based classifiers to smoothly adapt
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to gradual drifts, although they may fail to rapidly adapt to abrupt drifts. Despite its

benefits, ensemble classifiers demand more resources, processing time and memory, than

a single classifier. Thus, depending on the data stream setting, some ensemble classifiers

are not viable. Some examples of dynamic ensemble classifiers are DWM (KOLTER;

MALOOF, 2007), SEA (STREET; KIM, 2001), Flora (WIDMER; KUBAT, 1996), AD-

WIN and ASHT Bagging (BIFET et al., 2009), Leveraging Bagging (BIFET; HOLMES;

PFAHRINGER, 2010), OAUE (BRZEZINSKI; STEFANOWSKI, 2014), SFNC (BARD-

DAL; GOMES; ENEMBRECK, 2014) and SAE (GOMES; ENEMBRECK, 2013).

2.3 Evaluation Procedures

Data stream classification has three main evaluation metrics: space, time and clas-

sification performance. Very often, especially on less recent research, evaluation was solely

based on accuracy. Machine learning evaluation has received more attention from prac-

titioners (JAPKOWICZ; SHAH, 2011; DEMŠAR, 2006), partially because of suspicious

raised about statements like “algorithm A is better (more accurate) than algorithm B”,

which were made without the foundation of a reliable (and applicable) statistical test.

In a data stream context, evaluating classifiers can become even more complicated

as it is necessary to observe not only “if” a prediction error happened, but also “when” it

took place. Since learning from data streams is a process that happens over time, it makes

sense to observe accuracy, or other metric of classifier quality, evolution over time, instead

of outputting a single value at the end of the process. On top of that, data streams can be

very large, potentially infinite, thus there is no clear “end of training” and “start of testing”.

Another aspect to be considered is that a stream may be non-stationary (evolving), thus

the latest instances can better represent the current concept than instances that were

processed a long time ago. Therefore, in order to have a consistent estimation of the

current accuracy the most recent incorrect predictions must have a greater impact than

older ones. On top of that, a data stream classifier might not be useful in practice if

it cannot attend to specific constrains like memory and processing time. Therefore a

consistent evaluation might include estimations of space and time required.

In this section we describe methods for evaluating data stream classifiers, including

the three dimensions of interest: classification performance, space and time. Even though

we use statistical tests to assess our findings (see Chapter 5), we refrain from discussing

them here as the subject is vast and beyond the scope of this work. The reader is referenced

to (JAPKOWICZ; SHAH, 2011) for a detailed discussion on the topic.
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2.3.1 Evaluating Data Stream Classifiers

In traditional classification problems there is a concern about taking the maximum

advantage of a limited amount of data. Some problems have very little labeled instances,

sometimes because it is too expensive to label them, thus every instance counts to obtain a

stronger hypothesis. One could suggest using all instances for training, but then it would

not be possible to assess the hypothesis ability to correctly predict previously unseen

instances (generalization). To address this issue, many strategies to split the database

into train and test sets have been proposed over the last years, for example: holdout,

cross-validation, leave-one-out, and others.

One of the widely used approaches, in batch learning, is the k-fold cross-validation.

Although this strategy requires multiple passes over the database, thus it cannot be used in

a data stream scenario because it is prohibitive to store all instances and then inspect them

multiple times. For data stream classifiers evaluation, the preferred strategies include:

periodic holdout, test-then-train and prequential.

In periodic holdout fixed size windows are defined for training and testing. For

instance, the first 100 instances are used for training, the subsequent 60 instances are used

for testing, and then the next 100 instances are used for training, and so forth. One good

trait of this strategy is that the generalization capabilities of the classifier can be assessed,

i.e., instances used for training are not used for testing. Also, the accuracy value given at

the end of a test window is influenced only by the instances on that window, thus it is a

good approximation of the current accuracy of the algorithm. Although not using some

instances for training can be a drawback, even though in a data stream it is expected

that data is abundant. To take maximum advantage of input data the test-then-train

strategy can be used. Test-then-train uses all instances for testing and training, such

that each incoming instance is first used for testing and right after for training. Even

though, maximum advantage is obtained from data, test-then-train accuracy at a given

point in time is influenced by old predictions. Therefore test-then-train may overestimate

(or underestimate) the current accuracy.

The prequential (GAMA; RODRIGUES, 2009) strategy is similar to test-then-

train, but maintain characteristics from holdout. Prequential uses a fading factor that

diminishes the impact of older incorrect predictions. In (GAMA; RODRIGUES, 2009)

authors demonstrate how prequential results converges to equivalent results obtained by

periodic holdout.
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2.3.2 Kappa, Kappa M and Kappa-Temporal statistics

It is important to consider alternatives to accuracy for measuring classifier fitness.

The reason for that is based on the fact that accuracy can be misleading in many situ-

ations, for example, if the distribution of classes is imbalanced. In these cases, a valid

option is to use Cohen’s Kappa statistic (COHEN, 1960). For datasets that exhibit tem-

poral dependencies, i.e. instances are not temporally independent of each other 2, it is

advisable to evaluate Kappa Temporal since it replaces majority class classifier with the

NoChange classifier (ŽLIOBAITĖ et al., 2014).

While determining which classifier to use for a given problem it is important to

define performance baselines for the minimum meaningful performance, otherwise a lot of

effort may be wasted (ŽLIOBAITĖ et al., 2014). A baseline classifier is a naive classifier

that does not use any information about x, only the class labels y. If all the considered

classifiers are considered worse than a baseline classifier, then none of them is appropriate

for the given problem. In the absence of data, but knowing the number of possible class

labels, then the best strategy for a baseline classifier is to assign class labels at random

(pran). Even though, in most cases, input data is available, thus it is viable to estimate at

least the prior probabilities. Therefore, a better baseline classifier would be the one that

always predict the class label that has maximum prior probability (pmaj). In (BIFET et

al., 2015) authors show that Kappa Statistic M (km) measure has advantages over Kappa

statistic as it has a zero value for a majority class classifier.

Many efforts were made to detect or adapt to concept drift, as it is expected that

data streams exhibit non-stationary behavior, i.e. data is not identically distributed.

Identically distributed means that the joint probability of an observation and its label is

the same at any time, i.e., P (xt1, yt1) = P (xt2, yt2), when t1 6= t2. However, most existing

works consider instances as independent, i.e., xt class label does not influence xt+1. Under

the assumption of instances independency and class imbalance, a popular measure to

assess classifiers is the Kappa M Statistic. Equation 2.1 presents the calculation of Kappa

M, such that p∗ is the baseline classifier (e.g. pmaj), p is the analyzed classifier accuracy.

If the predictions of the classifier are perfectly correct, then k = 1, if the predictions

coincide with the correct ones as often as by chance, then k = 0. Any classifier with k ≤ 0

is not improving upon the baseline classifier and may not be adequate to the problem at

hand.
2In this context, an independent distribution means that the probability of a class label does not

depend on the previous class label, i.e., P (yt) = P (yt|yt−1).
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k =
p− p∗

1− p∗
(2.1)

Despite its benefits, k and km both fail to diagnose cases of poor performance due

to temporal dependence. In these cases, it is necessary to use a baseline classifier that

takes into account temporal information. In (BIFET et al., 2013) authors propose the

No-Change classifier 3 (pper), which assumes that the next class label is always equal to the

previous class label. Equation 2.2 presents the Kappa-Temporal Statistic (or Kappa Plus

Statistic, denoted by kper), which is similar to k, but uses pper as the baseline classifier.

kper =
p− pper
1− pper

(2.2)

The problem is that if there are no temporal dependences, then pmaj may be

more accurate than pper, which is undesirable as the baseline must be the best possible

naïve classifier. In (ŽLIOBAITĖ et al., 2014) authors propose a combined measure for

classification performance, that takes into account k and kper. Equation 2.3 presents the

combined metric (geometric average).

k+ =
√
max(0, k)×max(0, kper) (2.3)

In Equation 2.3, if any measure is zero or below, the combined measure will result

in zero. This trait is to avoid the situation when both input measures are negative, but

their product is positive. Alternatively, an arithmetic average could be used, but then a

good performance in one criterion could fully compensate for a bad performance in the

other. Thus the geometric average is used, as it punishes large differences in the two input

measures.

2.3.3 RAM Hours and CPU Time

Even if the classifier is able to achieve a high accuracy or k+, if it cannot do so in a

timely fashion or within available memory, then it cannot be used in practice. It is possible

to infer a classifier’s resources demands through computational complexity analysis of its

memory and processing time needs. Although it is easier, for comparison purposes, to

estimate resources demands through empirical analysis. In this work we use CPU Time

(BIFET et al., 2011) and RAM Hours (BIFET et al., 2010) to evaluate processing time

and memory, respectively. CPU Time is the amount of time the classifier process is active

in the processor. While RAM Hours is the amount of gigabytes deployed per hour by the
3In (ŽLIOBAITĖ et al., 2014) the No-Change classifier is named Persistent classifier.
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classifier, e.g., one GB of memory deployed for one hour corresponds to one RAM-Hour.

For consistent results both metrics must be assessed on the same environment for all

considered classifiers, since they are hardware dependent.

2.4 Data stream Generators and Real Datasets

To evaluate if a classifier is able to work in different scenarios, e.g., streams with

abrupt drift, noise, temporal dependences, and so forth, it is necessary to consider different

datasets for evaluation. Synthetic data stream generators are frequently used to evaluate

data stream classifiers. This preference is due to the flexibility that these generators offer,

such as a precise specification of a drift type and location within the stream. In the

next sections, we present some of the most widely used data stream generators and real

datasets, which are later used for experimental evaluations.

2.4.1 LED

The LED data set simulates both abrupt and gradual drifts based on the LED

generator, early introduced in (BREIMAN et al., 1984). This generator yields instances

with 24 boolean features, 17 of which are irrelevant. The remaining 7 features corresponds

to each segment of a seven-segment LED display. The goal is to predict the digit displayed

on the LED display, where each feature has a 10% chance of being inverted. To simulate

drifts in this data set the relevant features are swapped with irrelevant features.

2.4.2 RBF

This generator creates centroids at random positions and associates them with

a standard deviation value, a weight and a class label. To create new instances one

centroid is selected at random, where centroids with higher weight have more chances to

be selected. The new instance input values are set according to a random direction chosen

to offset the centroid. The extent of the displacement is randomly drawn from a Gaussian

distribution according to the standard deviation associated with the given centroid. To

simulate incremental drifts, centroids move at a continuous rate, effectively causing new

instances that ought to belong to one centroid to another with (maybe) a different class.
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2.4.3 Random Tree Generator

The Random Tree Generator (RTG) (DOMINGOS; HULTEN, 2000) builds a de-

cision tree through randomly selecting attributes as split nodes and assigning random

classes to each leaf. After the tree is build, new instances are obtained through the as-

signment of uniformly distributed random values to each attribute. The leaf reached after

a traversal of the tree, according to the attribute values of an instance, determines its class

value. RTG allows customizing the number of nominal and numeric attributes, as well as

the number of classes. Originally, RTG does not incorporate a concept drift simulator.

Since RTG is build upon a decision tree structure, it is assumed that decision tree based

classifiers may obtain better results from it (BIFET et al., 2011).

2.4.4 SEA Generator

The SEA generator (STREET; KIM, 2001) can produce data streams with three

continuous attributes (f1, f2, f3). The range of values that each attribute can assume is

between 0 and 10. Only the first two attributes (f1, f2) are relevant, i.e., f3 does not

influence the class value determination. New instances are obtained through randomly

setting a point in a two dimensional space, such that these dimensions corresponds to f1
and f2. This two dimensional space is split into four blocks, each of which corresponds

to one of four different functions. In each block a point belongs to class 1 if f1 + f2 ≤ θ

and to class 0 otherwise. The threshold θ used to split instances between class 0 and 1

assumes values 8 (block 1), 9 (block 2), 7 (block 3) and 9.5 (block 4). It is possible to add

noise to class values, being the default value 10%, and to balance the number of instances

of each class.

2.4.5 AGRAWAL Generator

The AGRAWAL generator (AGRAWAL; IMILIELINSKI; SWANI, 1993) can pro-

duce data streams with six nominal and three continuous attributes. There are ten dif-

ferent functions that map instances into two different classes. Table 2.1 presents the

attributes domains. A perturbation factor is used to add noise to the data. This factor

changes the original value of an attribute by adding a deviation value to it, which is

defined according to a uniform random distribution.
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Attribute Type Domain
Salary Continuous between 20k and 150k

Commission Continuous If salary < 75k then 0 else between 10k and 75k
Age Continuous between 20 and 80
Elevel Nominal between 0 and 4
Car Nominal between 1 and 20

Zipcode Nominal between 9 different zipcodes

Hvalue Continuous between 0.5p100000 and 1.5p100000,
such that p ∈ 1. . . 9 varying according to zipcode

Hyears Continuous between 1 and 30
Load Continuous between 0 and 500k

Table 2.1: AGRAWAL generator attributes, adapted from (BIFET et al., 2011)

2.4.6 HYPERPLANE Generator

The hyperplane generator was presented in (HULTEN; SPENCER; DOMINGOS,

2001). A hyperplane is a flat, n− 1 dimensional subset of that space that divides it into

two disconnected parts. It is possible to change a hyperplane orientation and position

by slightly changing its relative size of the weights wi. Formally, a hyperplane in a n-

dimensional space is the set of points x that satisfy Equation 2.4.

n∑
i=1

wixi = w0 (2.4)

Such that xi is the ith coordinate of x. In a binary classification problem, instances

where
∑n

i=1wixi ≥ w0 are labeled positive, and instances for which
∑n

i=1wixi < w0

are labeled negative (HULTEN; SPENCER; DOMINGOS, 2001). This generator can

be used to simulate time-changing concepts, by varying the values of its weights as the

stream progresses (BIFET et al., 2011). The direction of changes alternate according to

a probability σ.

2.4.7 Spam Corpus

The Spam Corpus dataset was developed in (KATAKIS et al., 2009) as the result

of a text mining process on an online news dissemination system. The work presented in

(KATAKIS et al., 2009) intended on creating an incremental filtering of emails classifying

them as spam or ham (not spam), and based on this classification, deciding whether an

email was relevant or not for dissemination among users. This dataset has 9,324 instances

and 39,917 boolean attributes, such that each attribute represents the presence of a single

word (the attribute label) in the instance (e-mail).
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2.4.8 Forest Covertype

The covertype dataset (BLACKARD; DEAN, 1999) represents forest cover type for

30 x 30 meter cells obtained from the US Forest Service Region 2 Resource Information

System (RIS) data. Each class corresponds to a different cover type. This data set

contains 581,012 instances, 54 attributes (10 numeric and 44 binary) and 7 possible class

labels.

2.4.9 Airlines

The Airlines dataset was inspired in the regression dataset from Ikonomovska4.

The task is to predict whether a given flight will be delayed given information on the

scheduled departure. Thus, it has 2 possible classes: delayed or not delayed. This dataset

contains 539, 383 records with 7 attributes (3 numeric and 4 nominal).

2.4.10 Electricity

The Electricity dataset was collected from the Australian New South Wales Elec-

tricity Market, where prices are not fixed. These prices are affected by demand and supply

of the market itself and set every five minutes. The Electricity dataset contains 45, 312

instances, where class labels identify the changes of the price (2 possible classes: up or

down) relative to a moving average of the last 24 hours. An important aspect of this

dataset is that it exhibits temporal dependencies.

2.4.11 GMSC

The Give Me Some Credit (GMSC) data set5 is a credit scoring dataset where

the objective is to decide whether a loan should be allowed. This decision is crucial

for banks since erroneous loans lead to the risk of default and unnecessary expenses on

future lawsuits. The data set contains historical data provided on 150,000 borrowers, each

described by 10 attributes.
4<http://kt.ijs.si/elena_ikonomovska/data.html>
5Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last access in Dec. 9th, 2016.

http://kt.ijs.si/elena_ikonomovska/data.html
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2.4.12 KDD99

KDD’99 data set6 is often used for assessing data stream mining algorithms’ ac-

curacy due to its ephemeral characteristics (AGGARWAL et al., 2003; AMINI; WAH,

2014). It corresponds to a cyber attack detection problem, i.e. attack or common access,

an inherent streaming scenario since instances are sequentially presented as a time series

(AGGARWAL et al., 2003). This data set contains 4, 898, 431 instances and 41 attributes.

2.5 Final Considerations

In this chapter we have presented the main aspects of data stream learning, em-

phasizing the classification task. It is very important to situate the reader about the

assumptions made, since they may not be true in some environments. For example, it is

possible that labels are not readily available after an instance xt before instance xt+1 is

available. It would be unfruitful to develop novel classifiers for data streams without con-

sidering strategies that take into account concept drifts. The methods presented in this

work are mainly based on dynamic ensemble classifiers, although they also include hybrid

methods that combine drift detectors and dynamic ensemble classifiers. The evaluation

procedures are utterly important, as weak experimental protocols cannot support strong

statements. Therefore, we reviewed the current best practices on the field, including Pre-

quential evaluation and the combined metric of k+, which takes into account temporal

dependence. In this work we present results based on the Prequential evaluation, but not

yet results based on k+. The reason for not using k+ yet is because it is not clear how this

measure behaves, in comparison with Prequential accuracy, if the stream does present

temporal dependences. Instead we decided to report both Kappa M and Kappa T instead

of using the geometric average. In the next chapter we discuss Ensemble Learning, first

highlighting its fundamental concepts, and latter discussing its variations for data stream

learning.

6<http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html>

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Chapter 3

Ensemble Learning

Ensemble classifiers are widely used as an alternative to obtain accurate models

through the combination of weak classifiers. During recent years, well-known ensemble

methods for traditional machine learning have been adapted to cope with data streams,

as well as new methods.

There are two main components that must be taken into account while devel-

oping an algorithm based on an ensemble of classifiers (POLIKAR, 2006). Firstly, the

building strategy of the ensemble must enforce diversity among its component classifiers.

Secondly, the output combination method must highlight correct and obfuscate incorrect

predictions. Also, in a stream learning context it is important to consider adaptation

techniques, since drifts are expected to occur.

Despite the difficulty around proving the effectiveness (and relationship) between

accuracy and diversity, in practice ensemble classifiers tend to overcome single classifiers in

a multitude of problems. In (KUNCHEVA, 2004), three reasons to use ensemble classifiers

are presented, i.e., Statistical, Computational and Representational.

Statistical. Assuming that Dk samples of a training data set D are used to train

K classifiers, such that each of them obtain 100% accuracy on the subset of Dk used for

training them. It is possible that the generalization capabilities of these classifiers will be

different when they are applied to a test set disjoint from D, therefore their accuracy will

vary. From a statistical point of view it is safer to use the mean of individual predictions

from these K classifiers instead of using only one of them, since the chance of selecting

the classifier with the worst generalization capabilities is eliminated. There is a chance

that the ensemble accuracy is worst than that of the best of its members, but the goal

here is to avoid selecting the worst classifier.

Computational. Some classifiers may converge to a local maximum. Suppose

that the local maxima ofK classifiers are close to the absolute maximum. Such that, there

21
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is a way of combining them in a model even closer to the absolute maximum (optimal

classifier) than any of them is capable individually.

Representational. The classifier used may not be able to represent the separation

surface of the given problem. For example, a classifier based on decision trees, e.g., C4.5

(QUINLAN, 1993) is capable only of linear separations, therefore when applied to a

problem where data is not linearly separable, a single decision tree is not capable of

achieving good results. Although the combination of linear classifiers can approximate a

non-linear separation surface, similarly to a non-linear classifier.

One of the main goals of an ensemble classifier is to permit that each classifier be as

unique as possible, particularly with respect to classification errors (POLIKAR, 2006). If

an ensemble is composed of classifiers that misclassify different instances, complementing

each other, then this set is said to be diverse and it is probably going to have accuracy

above any of its members individually. On the other hand, it is possible that by combining

classifiers the overall accuracy is worst than any of the classifiers individually.

To illustrate the reasons previously mentioned, we now present a classical example,

first presented in (KUNCHEVA, 2004), of ensemble application that motivates its use.

Consider a problem with 10 instances and an ensemble of 3 classifiers, such that each

classifier has an individual accuracy of 60% on those 10 instances, i.e., each classifier is

capable of correctly classifying 6 out of 10 instances. Assuming all possible combinations

there 28 possible cases in which 3 classifiers can obtain 60% accuracy for a data set of

10 instances. Table 3.1 presents these 28 combinations (rows) and the overall accuracy

according to a simple majority vote. In Table 3.1 columns a to h presents the sum of

correct predictions made to the same instance for the 3 classifiers simultaneously (column

a), only for the first and last classifier (column b), and so forth. The optimal combination

achieves an accuracy of 90% (row 1). In practice, it is unlikely to happen, but the chances

of a good combination (rows 2 to 12) or at least the same accuracy as individual classifiers

(rows 13 to 23) are more probable. There is a chance that the overall accuracy is worst

than that obtained by any of the ensemble members, but it is less probable than the other

(rows 24 to 28). Notice that, even though the chances are in favor of best or similar for 3

classifiers with 60% accuracy in a data set of 10 instances, there is not a general formula

for higher orders of instances or classifiers and empirical tests are difficult since there are

too many possible combinations, even though some experiments and discussion can be

found at (KUNCHEVA, 2004).

In the following sections we describe the most distinctive characteristics of data

stream ensemble classifiers, i.e., combination, diversity and update dynamics. Even

though, specific algorithms may be referenced, detailed information about some of them
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ID a
111

b
101

c
011

d
001

e
110

f
100

g
010

h
000

Overall
Accuracy

Overall -
Individual

1 0 3 3 0 3 0 0 1 0.9 0.3
2 2 2 2 0 2 0 0 2 0.8 0.2
3 1 2 2 1 3 0 0 1 0.8 0.2
4 0 2 3 1 3 1 0 0 0.8 0.2
5 0 2 2 2 4 0 0 0 0.8 0.2
6 4 1 1 0 1 0 0 3 0.7 0.1
7 3 1 1 1 2 0 0 2 0.7 0.1
8 2 1 2 1 2 1 0 1 0.7 0.1
9 2 1 1 2 3 0 0 1 0.7 0.1
10 1 2 2 1 2 1 1 0 0.7 0.1
11 1 1 2 2 3 1 0 0 0.7 0.1
12 1 1 1 3 4 0 0 0 0.7 0.1
13 6 0 0 0 0 0 0 4 0.6 0
14 5 0 0 1 1 0 0 3 0.6 0
15 4 0 1 1 1 1 0 2 0.6 0
16 4 0 0 2 2 0 0 2 0.6 0
17 3 1 1 1 1 1 1 1 0.6 0
18 3 0 1 2 2 1 0 1 0.6 0
19 3 0 0 3 3 0 0 1 0.6 0
20 2 1 1 2 2 1 1 0 0.6 0
21 2 0 2 2 2 2 0 0 0.6 0
22 2 0 1 3 3 1 0 0 0.6 0
23 2 0 0 4 4 0 0 0 0.6 0
24 5 0 0 1 0 1 1 2 0.5 -0.1
25 4 0 0 2 1 1 1 1 0.5 -0.1
26 3 0 1 2 1 2 1 0 0.5 -0.1
27 3 0 0 3 2 1 1 0 0.5 -0.1
28 4 0 0 2 0 2 2 0 0.4 -0.2

Table 3.1: Three classifiers combination, adapted from (KUNCHEVA, 2004)
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are discussed only in Section 3.5. A summary of over sixty ensemble classifiers for data

streams is presented in Table 4.1 (Section 4.1) accompanied by our proposed taxonomy

to organize ensemble learning for data streams.

3.1 Combination

Combining ensemble members’ predictions can either enhance the overall perfor-

mance or jeopardize it. Through an appropriate combination method it is expected to

correctly predict the class label of difficult to classify instances. However, a lot of effort has

been dedicated to the generation of diverse sets of classifiers, and not so much on meth-

ods to combine classifiers outputs (TULYAKOV et al., 2008). For example, the original

bagging algorithm (BREIMAN, 1996) emphasizes the construction of a diverse ensemble,

while its combination method is a simple majority vote. There are many approaches to

handle voting for ensemble classifiers, varying from simple methods (e.g. majority vote)

to more complex approaches (e.g. Behavior-Knowledge Space (HUANG; SUEN, 1993)).

In this work we differentiate between the voting method and how ensemble mem-

bers are arranged (architecture). Very often ensemble members’ arrangement and voting

method are intrinsically related, thus while explaining the inner workings of a specific

algorithm it is sometimes much clearer to not separate them into different blocks. How-

ever, while analysing multiple ensemble methods it is reasonable to differentiate between

voting and ensemble architecture, since it facilitates the understanding of algorithms in

which the ensemble members’ arrangement is not trivial. For example, SAE (GOMES;

ENEMBRECK, 2013), SAE2 (GOMES; ENEMBRECK, 2014) and SFNC (BARDDAL;

GOMES; ENEMBRECK, 2014) arrange the ensemble members in a network (graph)

structure, while the ensemble of Restricted Hoeffding trees (BIFET et al., 2012) uses a

meta-level combiner trained on the outputs of a set of decision trees trained on the input

data. Also, there are situations in which the architecture can be used for more than

voting, for example, it can be used to control the ensemble training (CHAN; STOLFO,

1995) or to enable operators, e.g., a redundant classifier removal method (GOMES; EN-

EMBRECK, 2013; GOMES; ENEMBRECK, 2014). In the following sections we discuss

different architectures and voting methods for ensemble learning in a data stream context.

3.1.1 Architecture

The ensemble architecture defines how classifiers interact with one another. In

(JAIN; DUIN; MAO, 2000), authors organize ensemble methods, for batch learning, into
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(d) Network

Figure 3.1: Ensemble structural arrangement (circles = classifiers; squares = instances)

three different architectures: parallel, cascading and hierarchical. In the parallel architec-

ture each classifier output is aggregated by a combiner, such that the combiner can be a

simple linear function (e.g. weighted vote) or another classifier (e.g. stacking (WOLPERT,

1992)). Cascading includes architectures in which the output of one classifier is the input

of another for multiple levels (ALPAYDIN; KAYNAK, 1998; GAMA; BRAZDIL, 2000).

Finally, an ensemble in which members are arranged in a tree-like structure is classified

as hierarchical. Our taxonomy for ensemble architecture differs from that presented in

(JAIN; DUIN; MAO, 2000), as we split parallel into two different architectures, combine

cascading and hierarchical into one and include a new architecture. Concretely, we classify

a given ensemble structure as either: flat (parallel with simple combiner), meta-learner

(parallel with meta-learners), hierarchical (cascading or tree-like structure) or network

(graph structure). Figure 3.1 presents a schematic view of these four different structural

arrangements of ensembles.

Flat. The flat structure assumes that base models are trained on the input data

and the decision fusion is delegated to a simple combination function (voting scheme)

such as majority voting. In comparison to other arrangements this is the most widely

used, partly because it is simple, but also because it makes fewer assumptions about

individual classifiers. Examples of data stream ensemble classifiers that employ a flat

structure includes: Online Bagging (OZA, 2005), DWM (KOLTER; MALOOF, 2007),

Leveraging Bagging (BIFET; HOLMES; PFAHRINGER, 2010), and many others.

Meta-learner. In a meta-learning structure the combiner (meta-learner) is trained

on meta-data, which may refer to properties of the learning problem (MINKU; YAO, 2012)

or to the outputs of learners trained on the input data (BIFET et al., 2012). From a high-

level perspective the flat and meta-learner approaches may seem very similar, however

they are effectively different since the latter involves creating a meta-dataset and training

a meta-learner on it. Despite meta-learning being feasible without an ensemble structure
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(BRAZDIL et al., 2008; GAMA; KOSINA, 2009) in this work we focus on meta-learning

for ensemble classifiers. A canonical example of meta-learning is the stacking algorithm

(WOLPERT, 1992). Stacking creates a meta-dataset where every meta-instance corre-

sponds to an instance in the original dataset. This meta-dataset replaces the original

instances’ inputs by the predictions of each ensemble member, while the class label re-

mains the original. A meta-classifier is induced from the meta-dataset, which during

predictions is responsible for combining component classifiers predictions into a final one.

An example of stacking for data stream classification is the ensemble of Restricted Hoeffd-

ing trees (BIFET et al., 2012), where the first level of learners is composed of Hoeffding

Trees, while the meta-learner level is formed by perceptrons (one per class label).

Hierarchical. We classify as hierarchical any ensemble that imposes a tree-like

structure or a strict order (cascading) over its members. Examples of batch ensembles in

which the structural arrangement adhere to this definition includes Arbiter Trees (CHAN;

STOLFO, 1995), Combiner Trees (CHAN; STOLFO, 1997) and Hierarchical Misture

of Experts (HME) (JORDAN; JACOBS, 1994). There are ensemble methods for data

stream classification that use hierarchical structures, most notably HSMiner (PARKER;

MUSTAFA; KHAN, 2012) and SluiceBox (PARKER; KHAN, 2013). HSMiner is a hierar-

chical additive weighted voting ensemble that boosts the accuracy of a set of weak learners

by decomposing the learning problem. At the top tier of HSMiner’s hierarchy stands a

multi-class ensemble of k per-class ensembles, where k corresponds to the number of cur-

rent class labels. Each per-class ensemble is composed of single class ensembles, which are

further decomposed into single feature classifiers. Besides the top tier ensemble, all other

classifiers that compose HSMiner’s hierarchy of learners are all committed to distinguish

one class from all others (i.e. single class learners), thus HSMiner performs a one-vs-all

decomposition of multi-class problems. At the bottom of HSMiner’s hierarchy, single fea-

ture classifiers learn a model that discerns between the class label it represents (positive

label) from all others (negative label) using only one feature. To avoid pre-processing,

if the feature domain is discrete then a Naive Bayes classifier is used, otherwise (domain

is continuous) an AdaBoost ensemble of threshold learners is used. Finally, in our clas-

sification the main difference between meta-learner and hierarchical structures is that

we consider the former to only include one level of learners which outputs are used to

train second level learners, while the latter may organize learners hierarchically for other

purposes, such as decomposing the input data.

Network. The last ensemble structure in our taxonomy includes methods that

arrange the ensemble members in a graph. We use the term network instead of graph to

refer to these structures since they are often dynamic and thus most closely related to
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complex networks (ALBERT; BARABÁSI, 2002) than to static graphs. In this structure,

ensemble members are represented as vertices of a network whose connections are deter-

mined according to a specific criterion. In SFNC (BARDDAL; GOMES; ENEMBRECK,

2014) connections between classifiers are generated according to a Scale-Free Network

model, such that classifiers with higher estimated accuracy are more likely to connect to

recently added classifiers. During voting, classifiers weighting is directly proportional to a

given centrality metric α, e.g., eigenvector, betweenness, degree, etc. Since high accuracy

classifiers usually receive most of the connections, these are expected to have higher in-

fluence on the overall decision. This thesis is dedicated to network-based ensembles, thus

to avoid redundancy we do not include further explanations here.

Our goal with the architectures presented is to be as general as possible while

emphasizing distinguishable characteristics of actual algorithms. Although, some algo-

rithms, which could be interpreted as ensembles, do not fit in any of these architectures.

An example is the Option Hoeffding Trees (PFAHRINGER; HOLMES; KIRKBY, 2007),

which is basically an algorithm that could be interpreted as either a decision tree or an

ensemble. The ensemble architecture, most of the time, is chosen to accomplish a specific

voting scheme.

3.1.2 Voting

Voting concerns how individual outputs from ensemble members are used during

prediction. The ensemble structure influences voting, e.g., it is possible that some learn-

ers’ outputs are only used as input for another level of meta-learners. There are many

voting schemes for ensemble learning, which we organize into five categories: Majority,

Weighted Majority, Rank, Classifier Selection and Relational. The voting categories can

be organized in an hierarchy, such that: majority vote is the most basic method; weighted

majority extends majority vote by allowing heterogeneous weights; rank is a form of

weighted vote where all outputs from all learners are considered; classifier selection sets

weights dynamically; and relational voting transform individual votes, through an intri-

cate method, before applying majority or weighted voting. These categories are general

enough to represent voting in batch learning, stationary and evolving data streams. How-

ever, in an evolving data stream scenario it is common that the voting method also plays

an important role with respect to concept drift adaptation. For example, a simple strategy

consists of weighting learners based on their age or on their performance restricted to the

latest instances (GOMES; ENEMBRECK, 2013; GOMES; ENEMBRECK, 2014; BARD-

DAL; GOMES; ENEMBRECK, 2014; BRZEZINSKI; STEFANOWSKI, 2014). These
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Figure 3.2: Ensemble basic voting methods

strategies can be build on top of the five voting categories, thus they should not be inter-

preted as a separate category. Figure 3.2 depicts our five basic voting categories and the

following paragraphs discuss each of them.

Majority Vote. Majority vote assumes every classifier has the same weight on

the overall ensemble decision. Thus, the final prediction is the class label that most

classifiers predicted. To avoid ties in a binary classification setting, it is usual to define

an odd number of base learners. In multiclass problems, ties can become a concern and

the default approach is to randomly break them. Examples of data stream ensembles

that use majority vote includes: Online Bagging and Boosting (OZA, 2005), Leveraging

Bagging (BIFET; HOLMES; PFAHRINGER, 2010) and the MCIK-Ensemble (MASUD

et al., 2008).

Weighted Majority. It is reasonable to weight classifiers’ predictions according

to some criteria. For example, it is possible to assign a score to each classifier based on its

accuracy on a validation set. A more complex method is the Weighted Majority (WM)

algorithm (LITTLESTONE; WARMUTH, 1994). WM weights the predictions of classi-

fiers based on their past performance, such that every classifier has a weight β, which is

decreased every time it predicts incorrectly. Majority and weighted vote share the char-

acteristic of only considering one prediction per classifier, i.e., each classifier chooses one

class label. The Dynamic Weighted Majority algorithm (KOLTER; MALOOF, 2007) as
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well as other data stream ensemble classifiers rely on some form of weighted majority,

to name a few: Accuracy Update Ensemble (AUE) (BRZEZIŃSKI; STEFANOWSKI,

2011), Online Accuracy Update Ensemble (OAUE) (BRZEZINSKI; STEFANOWSKI,

2014), Adaptive Classifiers-Ensemble (ACE) (NISHIDA; YAMAUCHI; OMORI, 2005),

Weighted Ensemble Online Bagging (WEOB) (WANG; MINKU; YAO, 2015).

Rank. In situations where the base learner can output more than one class label

per prediction a voting method, which is similar to the weighted majority approach, can

be used to combine all predictions. For example, if the base learner prediction is a sorted

list of class labels, then the Borda count method can be used. Borda count (BORDA,

1781) is a preferential voting system introduced in 1770 by Jean Charles de Borda. In

ensemble learning, the overall decision when using Borda count is the class label with the

highest rank sum. An example of batch ensemble that uses rank based voting (Borda

count) is the Nearest Neighbor Ensemble (DOMENICONI; YAN, 2004).

Classifier Selection1. Classifier selection concerns selecting the most ‘appropri-

ate’ classifiers for predicting the class label of an unknown instance. The selection can

take place during training (SCHAFFER, 1993) or prediction (MERZ, 1996; WOODS;

BOWYER; JR, 1996), which are commonly known as static (SCS) and dynamic classifier

selection (DCS), respectively. Usually, DCS involves storing instances used for training

each learner and then using a K nearest neighbor approach to determine which classifiers

should be combined for predicting an unknown instance. This naive DCS approach is

infeasible on a data stream setting as the impact of storing all instances may surpass

available memory, or simply cause the algorithm to take too long to calculate all needed

distances. On top of that, selecting an appropriate distance function and setting K are

challenging tasks. DCS has been used in several ensemble methods for data stream classifi-

cation, such as the Coverage Base Ensemble Algorithm (CBEA) (RUSHING et al., 2004),

the Attribute-Oriented Dynamic Classifier Selection (AO-DCS) (ZHU; WU; YANG, 2004)

and the Conceptual Clustering and Prediction (CCP) (KATAKIS; TSOUMAKAS; VLA-

HAVAS, 2010). In CCP to avoid storing a large amount of instances to describe each

classifier a clustering algorithm is used to ‘summarize’ the instances representation, i.e.,

only the instances’ centroids are stored.

Relational. Instead of interpreting each ensemble member prediction individu-

ally, and literally, these can be translated to reflect the class label that they most likely

represent. For example, suppose two classifiers ci and cj consistently choose class labels

0 and 1, respectively, whenever the true class label is 2. Then it would be reasonable to
1A related term to classifier selection is a gating network, this is often used in Artificial Neural

Networks literature (JACOBS et al., 1991).
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‘translate’ to class label 2 whenever classifier ci predicts 0 and cj predicts 1. This is a pow-

erful voting strategy, as it allows a group of learners to indirectly predict the class label of

hard to classify instances. This voting strategy is represented by the Behavior-Knowledge

Space (BKS) (HUANG; SUEN, 1993), in batch learning, and a similar version appears for

online learning as Pairwise Patterns (PP) (GOMES; BARDDAL; ENEMBRECK, 2015).

The Learn++.NC algorithm (MUHLBAIER; TOPALIS; POLIKAR, 2009) uses a voting

method, namely the dynamically weighted consult and vote (DW-CAV), in which clas-

sifiers consult its peer decisions to check if its decision is aligned with them and with

the classes it was trained on. If the classifier identifies discrepancies, it reduces its vote,

or even refrains from voting. Other voting strategies could be classified as ‘Relational’,

yet they differ from BKS, PP and DW-CAV significantly. For example, even though

SAE (GOMES; ENEMBRECK, 2013), SAE2 (GOMES; ENEMBRECK, 2014) and SFNC

(BARDDAL; GOMES; ENEMBRECK, 2014) extract relational data from ensemble mem-

bers to generate networks, they are more closely related to a multilevel weighted majority

vote, since these algorithms do not map original outputs to a different domain. Finally,

relational voting can be related to the meta-learner structural arrangement (see Section

3.1.1), where the ‘vote’ translation is delegated to a learner trained on the first layer

learners’ outputs.

Different voting strategies are biased towards specific assumptions regarding the

problem. For example, a voting method that takes into account the class label distribution

can outperform another method that does not, especially for imbalanced data streams

(WANG; MINKU; YAO, 2013; WANG; MINKU; YAO, 2015). However, a simple voting

scheme may overcome a complicated method that considers a variety of factors, usually

because the assumptions that the latter is based on do not hold for the problem at hand.

For example, a weighted majority vote strategy will perform poorly if the weighting

function fails to represent each classifier true prediction capabilities. Nevertheless, the

ensemble structure and the voting method are useless unless ensemble members are diverse

with respect to their outputs. Finally, some authors focus on determining the limits of

majority voting (KUNCHEVA et al., 2003) or on comparing multiple voting methods using

a probabilistic framework (KUNCHEVA; RODRÍGUEZ, 2014), yet conclusions obtained

are often limited to specific cases.

3.2 Diversity

Diversity is often identified as one of the building blocks of ensemble-based classi-

fiers. The motivation for the importance of diversity can be intuitively explained using the
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anthropomorphic example of a group of individuals, such that their opinions are always

homogeneous. This group can safely be replaced by any of its members if its only purpose

is decision making.

Although some works are able to show correlations between accuracy and specific

diversity measures for some special cases (KUNCHEVA; WHITAKER, 2003), theoretical

guarantees are more complicated to obtain, and often inconclusive, for the general case.

Unfortunately, it is not as simple as ‘augment diversity measure d and the overall accuracy

will improve’. This problem is even more complicated because there is no generally

accepted definition of diversity (KUNCHEVA, 2004).

Only a few studies on ensemble learning for data streams are focused on measuring

diversity and on diversity properties (MINKU; WHITE; YAO, 2010; MINKU; YAO, 2012).

However, most ensemble learners proposals are accompanied with strategies to induce

diversity. In the following sections we present different strategies to induce diversity and

classical metrics to measure diversity. Appendix A presents experiments that illustrate

how diversity can be monitored during stream execution for different ensemble methods.

3.2.1 Inducing diversity

For our purposes, a set of diverse classifiers is analogous to a set of non-trivial clas-

sifiers (i.e. consistent with the training data) that given the same instance output different

predictions. This definition assumes that learners cannot be random guessers, although

it does not consider diverse a set of learners with different internal representations that

consistently predict the same class labels.

In this work we organize methods to induce diversity based on whether they ma-

nipulate the input data, the output predictions, the underlying classifiers or use a set

of heterogeneous base learners. A similar classification of diversity inducing methods is

presented in (ROKACH, 2010) with a slightly different nomenclature.

Input manipulation. Methods that manipulate the input are common and in-

clude training classifiers in different chunks of data (horizontal partitioning) or with differ-

ent subsets of features (vertical partitioning). Training classifiers with different instances

often includes some form of randomization, e.g., bagging uses resampling (BREIMAN,

1996). The problem with resampling in a data stream environment is that it requires

multiple passes over data. That is infeasible, since streams are expected to provide an

infinite amount of data. To solve this problem in (OZA, 2005) authors propose a method

that approximates resampling for online processing. Besides sampling, a stream can be

partitioned horizontally by “adding classifiers at different points of the stream” (KOLTER;
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MALOOF, 2007; BRZEZINSKI; STEFANOWSKI, 2014; BARDDAL; GOMES; ENEM-

BRECK, 2014). For example, classifier c1 is added at moment t and classifier c2 is added

at moment t+ δ, thus c2 will be only trained with instances provided after t+ δ while c1
is trained with instances after t. This latter strategy can also be used to indirectly adapt

to drifts, but it can potentially jeopardize diversity if there are no concept drifts because

classifiers that have been added not too far apart become very similar after a while. In-

stead of training classifiers on different subsets of instances it is possible to train them on

different subsets of features (HO, 1995; AMIT; GEMAN, 1997; HO, 1998b; BREIMAN,

2001). This strategy is known as the Random Subspace Method (RSM). For a feature

space ofM dimensions, there are 2M−1 different non-empty subsets of features, thus it is

infeasible to train one learner for each subset given a high dimensional dataset, especially

on a data stream setting (BIFET et al., 2012). Nevertheless, Ho noted in (HO, 1998b),

based in the theory of stochastic modeling, that highly accurate ensembles can be obtained

far before all possible combinations of subspaces are explored. RSM is usually associated

with decision trees, however in its general form it can be applied to different base learn-

ers, such as nearest neighbors (HO, 1998a) or linear classifiers (SKURICHINA; DUIN,

2002). The reason behind the association of decision trees with RSM is attributable to the

Random Forests algorithm (BREIMAN, 2001), an ensemble method in which the random

feature selection is intrinsically related to how its learners (decision trees) are trained, i.e.,

every node split is based on a (potentially) different random subset of features. Training

ensembles using RSM yield several advantages, such as diversity enhancement and effi-

cient training and prediction. The former depends upon the base learner’s instability (see

Section 3.3), while the latter may occur if ensemble member’s training is independent,

which permits training several learners in parallel. Also, on high dimensionality prob-

lems, such as functional magnetic resonance imaging (fMRI) classification, RSM can be

used to ease the impact of the ‘curse of dimensionality’ by using small subsets of features

per learner (KUNCHEVA et al., 2010). Examples of RSM for data stream classification

includes: Streaming Random Forests (ABDULSALAM; SKILLICORN; MARTIN, 2007),

Restricted Hoeffding Trees (BIFET et al., 2012), Dynamic Streaming Random Forests

(ABDULSALAM; SKILLICORN; MARTIN, 2008) and the Ensemble Decision Trees for

Concept-drifting data streams (EDTC) (LI et al., 2015).

Output manipulation. To manipulate the output of a classification problem

one could decompose the original problem into smaller, potentially easier, problems. Af-

terwards, each problem can be mapped to a single classifier, and these classifiers would

be diverse since they interpret the hypothesis space differently. One classifier that is

capable of differentiating between multiple classes is difficult to achieve, while a set of



33

binary classifiers is relatively easy to obtain. Therefore, to cope with multiclass problems

many ensembles use the One-Versus-All approach, i.e., decompose the original problem

into k(k − 1)/2 binary problems, and assign a different classifier to each class, such that

instances associated with other classes are interpreted as negative examples by the given

classifier. Decomposing the problem in tractable smaller problems is the main goal of

this strategy, while diversity increase can be viewed only as a by-product. Examples of

algorithms that use this strategy for data stream learning include the One-versus-All Deci-

sion Trees (HASHEMI et al., 2009) and HSMiner (PARKER; MUSTAFA; KHAN, 2012).

There are some difficulties when applying this strategy to data stream learning, such

as concept drifts, imbalanced class distributions and the high update cost (HASHEMI

et al., 2009). A slightly different manipulation of the output can be achieved by using

Error-Correcting Output Codes (ECOC) (DIETTERICH; BAKIRI, 1995). ECOC were

inspired by the Error-Correcting Codes (ECC) presented in Shannon’s information the-

ory (SHANNON, 1948), and were originally used to decompose multiclass problems into

binary problems. In (BIFET; HOLMES; PFAHRINGER, 2010), the authors experiment

with a version of Leveraging Bagging that uses a variation of ECOC, namely random

output codes. In random output codes class labels assigned to each example are modified

to create a new binary classification of the data induced by a mapping from all possible

labels to {0, 1}. Effectively, in this setting every classifier has a different view of the hy-

pothesis space, e.g., one classifier may interpret class labels A and B as 0, while C and D

as 1. For practical reasons, in (BIFET; HOLMES; PFAHRINGER, 2010) the algorithm

balances the 0s and 1s for each classifier, to prevent them from mapping all original labels

to 0 or to 1.

Base learner manipulation. In order to achieve diversity, it is possible to modify

characteristics of each base model. For example, one could use multiple neural networks

with different topologies, or with the same topology, but starting with different weights at

the first layer (ROKACH, 2009). In (BIFET et al., 2009) authors propose the Adaptive

Size Hoeffding Trees (ASHT) Bagging algorithm, which is an ensemble of decision trees

of varying sizes. ASHT is based on the intuition that smaller trees are able to rapidly

adapt to drifts, while bigger trees are useful during stable periods, thus mixing both yield

different ensemble members, and may also contribute to drift recovery.

Heterogeneous base learners. Instead of varying parameters of the same base

learner, it is possible to use heterogeneous base learners and obtain ensemble members

with different biases. Heterogeneous ensembles for data stream learning includes BLAST

(RIJN et al., 2015), HEFT-Stream (NGUYEN et al., 2012) and HSMiner (PARKER;

MUSTAFA; KHAN, 2012). BLAST trains several different base learners and during pre-



34

diction selects one of them through a meta-learning approach. HEFT-Stream maintains

an ensemble of decision trees and naive bayes learners, and in the occurrence of a sudden

drift it adds a new learner, whose base learner matches the current learner with highest

weight. HSMiner (PARKER; MUSTAFA; KHAN, 2012) uses two different base learners

to avoid preprocessing features, naive bayes for discrete and threshold learners for con-

tinuous, thus if the feature set is heterogeneous with respect to features’ domains then

learners will also be heterogeneous.

Depending on which strategy is employed for inducing diversity into the ensemble,

one must be aware that while processing a massive (potentially infinite) data stream,

members’ models may converge. That is especially true for methods that relies solely

on adding (or resetting) models on different moments of the stream. Also, instead of

committing to one or another strategy to induce diversity, it is possible to combine two

or more strategies. For example, HEFT-Stream trains heterogeneous learners on different

samples (online bagging) and subspaces of data2. To assess how effective one diversity

inducing strategy is, one could choose to observe the ensemble overall accuracy. However,

this analysis is biased since there may be other factors that influence accuracy. In the

next section, we present some diversity measuring metrics and examples of their use to

assess diversity in a data stream setting.

3.2.2 Measuring diversity

There are a few reasons to measure the diversity among members of an ensemble.

The most obvious is based on the intuitive notion that an ensemble of homogeneous

classifiers cannot achieve any better than any of its members alone can. Thus, it may

seem logical to maximize diversity, since doing so will consequently have a good impact on

the overall results. Although before optimizing for diversity, it is necessary to keep in mind

that no general correlation between diversity and accuracy has been proven (KUNCHEVA

et al., 2003). Although high diversity may not directly indicate high accuracy, measuring

diversity can be useful to analyze the effectiveness of the diversity inducing method,

and even to more specific tasks such as pruning ensemble members (MARGINEANTU;

DIETTERICH, 1997; GOMES; ENEMBRECK, 2013; GOMES; ENEMBRECK, 2014).

Diversity can be measured in multiple levels, but it is usually calculated in pairs

(pairwise) or for the complete ensemble (non-pairwise or aggregated). We now present a

few pairwise metrics, but before we define some concepts that assist in the definition of
2HEFT-Stream periodically runs a feature selection algorithm (Fast Correlation-Based Filter - FCBF

(YU; LIU, 2003)) and new learners are only trained with the latest subset of features deemed relevant.
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Table 3.2: All possible outputs of a pair of classifiers hu and hv

hu correct (1) hu incorrect (0)
hv correct (1) N11 N10

hv incorrect (0) N01 N00

such metrics (KUNCHEVA; WHITAKER, 2003).

Let X = x1, . . . , xn be a labeled data set, ŷv = [ŷv(x1), . . . , ŷv(xn)] a n-dimensional

binary vector that represents the output of a classifier hv, such that ŷv(xj) = 1, if hv
correctly predicts the class label for instance xj, and 0, otherwise. Table 3.2 presents all

the possible outcomes for a pair of classifiers hu and hv, such that hu 6= hv, where Nab is

the number of instances xj ∈ X for which ŷu(xj) = a and ŷv(xj) = b.

The Yule’s Q statistic (YULE, 1900) (Equation 3.1), or simply Q, is a widely used

measure of diversity in many fields. Q varies between −1 and 1, such that for statistically

independent classifiers the expectation of Qv,u is 0. Classifiers that tend to correctly

predict the same instances yield positive values of Q, while those that commit errors on

different instances render negative values.

Qv,u =
N11N00 −N01N10

N11N00 +N01N10
(3.1)

Another way of estimating the pairwise diversity is the correlation coefficient pv,u
(Equation 3.2). For any two classifiers, Q and p have the same sign, and it can be proved

that |p| ≤ |Q|. Since Q is easier to calculate it is usually preferred.

pv,u =
N11N00 −N01N10√

(N11 +N10) (N01 +N00) (N11 +N01) (N10 +N00)
(3.2)

The disagreement measure Dv,u (Equation 3.3) is used to characterize diversity

between a base classifier hv and a complementary classifier hu. This metric is symmetrical,

and correlated with Qv,u and pv,u. Dv,u represents the ratio between the number of

instances on which one classifier is correct and the other is incorrect with respect to the

total number of instances.

Dv,u =
N01 +N10

N11 +N00 +N01 +N10
(3.3)

The measures presented so far are all based on concomitant correct or incorrect

predictions. For binary classification problems the way matrix N is calculated (see Table

3.2) is sound, since if classifiers hv and hu incorrectly predict instance x class label, then

hv and hu predictions must be equal, i.e., if the correct label was 0, then hv and hu

both predicted 1. Although, for multiclass classification problems matrix N may fail to
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Figure 3.3: 2-dimensional multiclass problem (labels: green squares = 0, blue diamonds
= 1 and red circles = 2)

Table 3.3: Correct and incorrect counters Nab for ha and hb according to Figure 3.3

ha correct (1) ha incorrect (0)
hb correct (1) 6 0
hb incorrect (0) 0 12

measure differences between classifiers that incorrectly predict the same instance using

different labels. For example, given a 3-class classification problem, two linear classifiers

ha and hb, such that

ha =

{
2, x1 ≥ 8

0, x1 < 8

hb =

{
0, x2 ≥ 5

1, x2 < 5

and the distribution of instances according to Figure 3.3, the classification errors

of ha and hb will be accounted equally by the measures previously discussed. Table 3.3

shows the distribution of correct and incorrect predictions for ha and hb. If Q statistic is

used to assess ha and hb diversity we obtain Qa,b = 1, which indicates that both classifiers

tend to correctly predict the same instances, yet it fails to express their divergences on

incorrect predictions.

To precisely capture differences between classifiers in a multiclass problem context

a possible approach is to keep track of the classifiers’ exact predictions instead of only

the dichotomy correct/incorrect. This can be achieved by constructing a contingency

table Cij, such that the value at the intersection of a row i and a column j stores the

amount of instances x ∈ X where hv(x) = i and hu(x) = j. Table 3.4 shows an example

of contingency table Cij for a k-class problem. The diagonal in matrix Cij contains the

concomitant decisions of the pair, thus a naive approach to weight their similarity is to

sum its values and divide it by the amount of instances n, as shown in Equation 3.4.
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Table 3.4: All possible outputs of a pair of classifiers hv and hu for a multiclass classifica-
tion problem with K possible labels

hu(x) = 0 hu(x) = 1 ... hu(x) = (k − 1)
hv(x) = 0 C00 C01 ... C0(K−1)
hv(x) = 1 C10 C11 ... C1(K−1)

... ... ... ... ...
hv(x) = (K − 1) C(K−1)0 C(K−1)1 ... C(K−1)(K−1)

Θ1 =
1

n

k∑
i=0

Ci,i (3.4)

As noted in (MARGINEANTU; DIETTERICH, 1997) in problems where one class

is much more common than others, all classifiers may agree by chance, so all pairs will

obtain high values for Θ1. Thus, it is more appropriate to use the Kappa κ statistic3,

since it corrects Θ1 by considering the probability that two classifiers agree by chance

according to the observed values in Cij, namely Θ2 (see Equation 3.5). The kappa κ

statistic is shown in Equation 3.6.

Θ2 =
K∑
i=0

(
K∑
j=0

Ci,j
n
·
K∑
j=0

Cj,i
n

)
(3.5)

k =
Θ1 −Θ2

1−Θ2

(3.6)

The interpretation of κ is similar to Q, i.e., if hu and hv agree on every instance

then κ = 1, and if their predictions coincide by chance, then κ = 0. Negative values of κ

occurs when agreement is weaker than expected by chance, but this rarely occurs in real

problems. The Kappa statistic has already been used to report diversity for data stream

ensemble-based classifiers (BIFET et al., 2009; BIFET; HOLMES; PFAHRINGER, 2010;

KUNCHEVA et al., 2010) and is often accompanied by a Kappa-Error diagram. The

Kappa-Error diagram is a scatterplot where each point corresponds to a pair of classifiers.

The x coordinate of the pair corresponds to the κ value, while the y coordinate is the

average of the error rates of the two classifiers.

We now analyze our example concerning classifiers ha and hb (see Figure 3.3) from

the perspective of κ statistic. Table 3.5 presents the contingency table for ha and hb,

where the different predictions from ha and hb are clearly separated. Classifiers ha and

hb scores κ = −0.2, such that the expected agreement by chance is Θ2 = 0.4, while ha
3Cohen’s Kappa statistic (COHEN, 1960) measures inter-rater agreement for categorical variables and

it was first used in (MARGINEANTU; DIETTERICH, 1997) as a pairwise diversity measure for ensemble
learners.
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Table 3.5: Contingency table for Nab for ha and hb according to Figure 3.3

ha(x) = 0 ha(x) = 1 ha(x) = 2
hb(x) = 0 6 0 6
hb(x) = 1 6 0 0
hb(x) = 2 0 0 0

and hb effective agreement is only Θ1 = 0.3. For this toy problem κ is able to represent

the differences between ha and hb more precisely than Q, still for some problems it may

be the case that κ and Q yield very similar results, perhaps because classifiers tend to

commit prediction errors consistently.

The semantics behind κ and Q raise at the least two questions: (1) does it matter

to measure error divergences as in κ? (2) Should κ be the preferred diversity metric in

the analysis of every ensemble learner? Reinforcing the statement at the beginning of

this section there is not a diversity metric that can be considered the ‘best’, it depends

on the situation, thus when faced with a multiclass problem we may choose κ as it

can differentiate between classifiers’ errors. However, we may not be concerned whether

classifiers commit prediction errors differently as long as we can identify how often they

correctly predict the same instances, then it is reasonable to use Q or a similar metric.

To measure diversity for the whole ensemble one can either combine average pair-

wise measurements or use a non-pairwise measurement. Given symmetric diversity met-

rics, as is the case for κ and Q, we can calculate their average by summing all pairwise

measures and dividing it by all possible pairs 2/ (L (L− 1)). The main problem of ‘aggre-

gating’ statistics is that potentially interesting information is blurred in the midst of all

possible combinations, thus it might be used and interpreted with caution. Other diversity

measures have been studied for ensemble classifiers, including non-pairwise measures, for

example: double-fault, entropy, Kohavi-Wolpert, difficulty θ, and others. We refer readers

to Chapter 8 of Kuncheva’s book (KUNCHEVA, 2004) and other works (KUNCHEVA;

WHITAKER, 2003; BANFIELD et al., 2005; ZHOU, 2012) for an extensive discussion of

diversity measures for ensemble learners.

Diversity is often identified as one of the building blocks of any ensemble-based

classifier (ROKACH, 2010; ZHOU, 2012). While developing ensemble learners for data

streams it is still considered a very important step to not only induce diversity into

the ensemble, but also understand its implications in the overall ensemble performance

(MINKU; WHITE; YAO, 2010).

Many techniques are used to induce diversity in a streaming environment, one of

the simplest being the online bagging algorithm (OZA, 2005). Online bagging was used
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in (MINKU; WHITE; YAO, 2010) to conduct diversity related experiments in evolving

data streams for mainly 2 reasons: (1) “it does not present any specific behaviour to

handle concept drift” (MINKU; WHITE; YAO, 2010); and (2) diversity in online bagging

is ‘controlled’ through a single parameter λ4.

In (MINKU; WHITE; YAO, 2010) experiments with online bagging (OZA, 2005)

were specifically designed to analyze diversity before, during, and after concept drifts.

Based on these experiments, authors found out that before a drift occurs, ensembles with

less diversity obtain higher accuracy, but shortly after the drift occurs, highly diverse

ensembles yield better accuracy despite the type of drift. Also, when there are no drifts,

high diversity becomes less important.

3.3 Base Learner

Most ensemble classifiers for data stream learning were designed to work with

any base learner (BIFET; HOLMES; PFAHRINGER, 2010; OZA, 2005; BRZEZINSKI;

STEFANOWSKI, 2014; GOMES; ENEMBRECK, 2014) with open-ended constraints (e.g.

any incremental base learner), still selecting an appropriate base learner according to

the classification problem is an important step for obtaining an accurate ensemble. For

example, very often classifiers can naturally deal with only one type of feature domain

without resorting to input pre-processing. Thus, one can either select a base learner

according to the input features domain, assuming all features have the same domain; use

a base learner that deals with both discrete and continuous features, e.g., Hoeffding Tree

(DOMINGOS; HULTEN, 2000); or use an ensemble method that combines heterogeneous

base learners coherently with the feature domain, e.g., HSMiner (PARKER; MUSTAFA;

KHAN, 2012). This last approach is more flexible as the ensemble can address problems

where new features with different domains appear/disappear over time. It is still possible

to achieve a diverse set of classifiers by using stable learners as long as the diversity

induction strategy allows it. For example, one could use different subsets of features

(see ‘vertical partitioning’ in Section 3.2.1) for training each classifier (BREIMAN, 2001;

ABDULSALAM; SKILLICORN; MARTIN, 2007; NGUYEN et al., 2012).

The base learner must match the desired diversity induction strategy. If it is

planned to obtain a diverse set of classifiers by training them on different instances, like
4Authors in (OZA, 2005) observe that the probability of each instance to be selected for a given subset

is approximated by a Poisson distribution with λ = 1, thus it is feasible to “simulate” bagging in an online
fashion by training each classifier k times on each instance, such that k = poisson(λ = 1). In (BIFET;
HOLMES; PFAHRINGER, 2010) authors presents the Leveraging bagging algorithm, which ‘enhances’
online bagging by using λ = 6, thus increasing the amount of instances presented to each classifier.
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in Bagging (BREIMAN, 1996), then unstable learners (e.g. decision trees) should be

preferred instead of stable learners (e.g. Naive Bayes). Stable learners must be trained

on a large set of different instances for their models to differ from one another, while

unstable learners tend to yield significantly different models even when trained on subsets

of instances that overlap a lot (ZHOU, 2012).

Decision trees are the most common base learner for ensemble learning in a stream-

ing setting. Specifically Hoeffding Trees5 (DOMINGOS; HULTEN, 2000) or some of its

variations that explicitly deals with concept drift as Adaptive Hoeffding Trees (BIFET;

GAVALDÀ, 2009) and Concept-Adaptive Very Fast Decision Trees (CVFDT) (HULTEN;

SPENCER; DOMINGOS, 2001), or that replaces majority class predictions by Naive

Bayes models at the leaves of the tree (HOLMES; KIRKBY; PFAHRINGER, 2005).

Other base learners often used in ensemble stream learning include naive bayes (KOLTER;

MALOOF, 2007), perceptrons (CHEN; LIN; LU, 2012; PARKER; MUSTAFA; KHAN,

2012; PARKER; KHAN, 2013) and multilayer perceptrons (POLIKAR et al., 2001). Ho-

effding Tree’s preference over other base learners is attributable to its characteristic of

being not only unstable, but also an incremental learner (DOMINGOS; HULTEN, 2000).

We discuss incremental and batch (window) based learning in Section 3.4.2, however

while explaining base learners it is important to emphasize that by using non-incremental

learners, such as C4.5 (QUINLAN, 1993), the ensemble must incorporate a parameter to

control the window (batch) size used for training its members. Ensemble methods that

use incremental base learners may also include a widow size parameter, but then it is

used to define when the ensemble is updated (e.g. adding new learners or recalculating

statistics). This latter approach allows the development of algorithms in which the top

level method (the ensemble) learns at a different rate than its members (GOMES; ENEM-

BRECK, 2013; GOMES; ENEMBRECK, 2014; BRZEZINSKI; STEFANOWSKI, 2014).

Table 4.1 in Section 4.1 can be used for a quick overview of ensemble methods that use

incremental or batch base learners.

3.3.1 Dependency

The training of one ensemble member may depend upon the output of other mem-

bers. A canonical example of this approach is AdaBoost (FREUND; SCHAPIRE et al.,

1996). Conversely, classifiers may be trained completely independently of one another,

that is the case for Bagging (BREIMAN, 1996) and its variants. Intuitively, training one
5In (DOMINGOS; HULTEN, 2000) authors refer to their general method of inducing decision trees

for data streams as Very Fast Decision Trees (VFDT) and to their implementation as Hoeffding Trees.
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classifier while considering its peers’ mistakes seems reasonable as it uses more informa-

tion to guide the training process, for example, which instances to emphasize or which

are already correctly mapped by the group. The drawback of this approach is that it may

lead to overfitting, and on a stream environment it is not straightforward to train classi-

fiers in this ‘sequential’ way. There are several proposals for adapting boosting for online

classification (OZA, 2005; PELOSSOF et al., 2009; CHU; ZANIOLO, 2004; SCHOLZ;

KLINKENBERG, 2007; BEYGELZIMER; KALE; LUO, 2015). Training classifiers inde-

pendently is often preferred as it is easier, yields good results (BIFET et al., 2009), and

allows training classifiers in parallel. The ability to train classifiers independently of one

another is one characteristic that enables ensemble-based methods to cope with big data

streams (MORALES; BIFET, 2015). An example of an algorithm that was developed

to allow parallel training is HSMiner (PARKER; MUSTAFA; KHAN, 2012) and its sub-

sequent enhancements presented in (HAQUE et al., 2014) that runs on top of Hadoop

(WHITE, 2012).

3.4 Update Dynamics

There are specific characteristics of ensemble methods that are not directly related

to diversity or combination methods, e.g., the ensemble cardinality. Learning from data

streams requires algorithms that are not only accurate, but also efficient and able to adapt

to changes in data. In this section we focus on the update dynamics of ensemble classifiers

for data streams, i.e. how learning takes place in the ensemble.

3.4.1 Cardinality

Intuitively, it seems that by adding more classifiers it will cause the ensemble to

achieve higher accuracy. Although it is not straightforward to exploit this in practice,

since as the number of classifiers increases it becomes difficulty to maintain all classifiers

minimally different from each other, i.e., a diverse set. Generating a great quantity of

redundant classifiers cannot do any good to the overall decision quality, but will surely

negatively impact the ensemble memory and processing consumption. In a data stream

context, the cardinality of the ensemble can be either defined prior to the execution or

vary during execution. There are good reasons to support both approaches, for example,

the resources needed for a fixed set of classifiers are easier to estimate and control, while

an ensemble that can selectively add or remove classifiers has more flexibility, e.g., remove

redundant classifiers and save resources or add more classifiers to cover different parts of
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the classification space.

Ensemble methods that vary its size dynamically, like SAE (GOMES; ENEM-

BRECK, 2013) and DWM (KOLTER; MALOOF, 2007), are intuitively better suited for

a highly dynamic task, such as data stream classification. Although in practice these en-

sembles can yield too little or too many classifiers, because their heuristic method that dic-

tates when to add or remove classifiers is not suitable for the given data stream. To avoid

too many classifiers, some methods (KOLTER; MALOOF, 2005a; BARDDAL; GOMES;

ENEMBRECK, 2014; GOMES; ENEMBRECK, 2014) include a parameter to define the

‘maximum’ number of classifiers of an ensemble. The complexity behind the definition

of a heuristic method for adding and removing classifiers, and the success of existing

stream ensembles (OZA, 2005; BIFET et al., 2009; BIFET; HOLMES; PFAHRINGER,

2010; BRZEZINSKI; STEFANOWSKI, 2014) that use a predefined number of classifiers

explains the lack of interest in the development of strategies for dynamically sizing the

ensemble (this is observable in Table 4.1 where algorithms’ cardinality is often ‘fixed’).

3.4.2 Learning mode

The ability to learn new concepts (plasticity) while retaining previously learned

knowledge (stability) is referred as the stability-plasticity dilemma (LIM; HARRISON,

2003). This dilemma is pervasive in the evolving data stream setting (GAMA et al., 2014)

as it is expected that evolving data streams alternate between drifting and stable periods.

Therefore any data stream classifier, including ensembles, must incorporate mechanisms

to adapt its model to concept drifts, while accounting for periods of concept stability.

There are different types of concept drifts that may occur as well as several ap-

proaches for coping with them. For example, a classifier may periodically forget its model

and learn a new model on the most recent n instances or reset the current model if a

change has been triggered by a drift detector algorithm. These methods are different ap-

proaches for dealing with concept drift that can be adapted to either ensembles or single

classifiers. Although ensemble-based classifiers have the advantageous characteristic of

being flexible as its members can learn at different rates (see Section 3.3); new classifiers

can be added and existing classifiers may be updated, replaced, reset or even removed

selectively.

Most stream classifiers assumes that recency is analogous to relevance when it

comes to weighting instances for training, and ensembles are no exception to that. The

reasoning behind this assumption is simple: old instances are associated with previously

outdated concepts, while new instances are committed to the most current concept. In
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practice, real world problems may not adhere to this assumption as concepts can reoccur

either periodically (e.g. seasons of the year) or erratically. If concepts reappear it is a

waste of resources to re-learn old concepts over and over again. Therefore, tracking and

dealing with recurring concept drifts is a difficult task in which the classifier must provide

efficient answers to the following questions:

• When to store a previously learned model?

• When should a model be removed/updated?

• When (and how) to evaluate old models for ‘activating’ them?

One can only justify using a recurring concept drift strategy if storing and updating

previous models is more efficient, with respect to resources and accuracy, than re-learning

the model. FLORA3 (WIDMER; KUBAT, 1996) was one of the first algorithms that

dealt with recurring concept drifts. More recently, several ensemble classifiers (KATAKIS;

TSOUMAKAS; VLAHAVAS, 2010; JABER; CORNUÉJOLS; TARROUX, 2013a; DÍAZ

et al., 2015a) were designed for dealing with recurring concept drifts.

Ensemble-based algorithms can be more flexible with respect to concept drift adap-

tation. For example, several algorithms (STREET; KIM, 2001; GOMES; ENEMBRECK,

2013; BRZEZINSKI; STEFANOWSKI, 2014; GOMES; ENEMBRECK, 2014; GOMES;

BARDDAL; ENEMBRECK, 2015) use a background learner, i.e., an auxiliary single

learner trained only on the most recent instances alongside the other ensemble members,

but that does not influence overall decisions. Whenever it is necessary to reset an ensem-

ble member the background learner replaces it. There are at least two advantages that

supports this approach. First, the background learner already has a trained model, thus

it will not take too long until it starts positively impacting the overall ensemble decision.

Second, assuming that recency implies relevance, the background learner model might

overcome existing models as it has been trained only on the latest instances.

Previous works organize data stream learning in different categorizations accord-

ing to which specific learning problem the work discusses (GAMA et al., 2014; SILVA

et al., 2013; GAMA, 2010; READ et al., 2012). Authors in (GAMA et al., 2014) or-

ganize learning into three categories: learning mode: whether the algorithms retrain

models or incrementally update them; adaption methods: concerns how adaptation to

drifts happens, either pro-actively (blind strategy) or reactively (informed); and model

management: divided into three aspects of ensemble learning (dynamic combination,

continuous updates of learners, and structural updates). In (READ et al., 2012) the au-

thors provide an extensive discussion of the advantages and disadvantages of incremental
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Figure 3.4: Learning modes for data streams

and batch learners, while in (SILVA et al., 2013) authors focus on learning modes for

clustering algorithms, thus they discuss learning according to window based models, i.e.,

landmark window, sliding window and damped window.

Ensemble classifiers designed to deal with evolving data streams may combine

more than one learning strategy, as explained in Section 3.3, through, for example, the

combination of incremental learners and a window based approach. In the remainder

of this section we present our attempt to classify how learning happens on ensemble

classifiers. We subdivide learning into two general classes: incremental and window based.

Many of the existing stream ensemble learners fall into the latter category, which is

further divided into: sliding windows, damped windows, landmark windows, and adaptive

windows. Figure 3.4 illustrates learning mode according to our categorization.

In Section 3.3 we have briefly discussed how the base learner and the ensemble

may operate at different learning rates. Throughout the rest of this Section we discuss

each learning mode individually and present, whenever possible, examples of ensemble

classifiers that instantiate the corresponding learning mode.

Incremental. A batch learner must store a batch of instances before using them

for training; conversely, an incremental learner is trained on instances as they arrive. As

a consequence, incremental learners better adhere to the four constraints suggested in

(BIFET et al., 2010) (see Section 2.1) and are often preferred on a data stream setting.

As discussed in (READ et al., 2012), both approaches have advantages and disadvan-

tages. There is a large amount of algorithms to choose from when using batch learners,

while, comparatively, the amount of incremental learners available is small (READ et

al., 2012). On the other hand, batch learners require parameterizing the amount of in-
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stances to be used for training, i.e. the batch size, which is critical for obtaining accurate

models, yet difficult to define for evolving data streams. Generally, incremental learners

are more effective when applied to streams that exhibit gradual or incremental drifts or

when combined with drift detectors. In the occasion of an abrupt drift, an incremen-

tal learner (without the aid of a drift detector) may take longer to recover as its model

is influenced by the concepts it has previously been presented to, while a batch learner

completely discards its previous models periodically. Examples of incremental learners in-

clude Bayesian classifiers (JOHN; LANGLEY, 1995), like Naive Bayes; decision trees, like

Hoeffding Trees (DOMINGOS; HULTEN, 2000); Stochastic Gradient Descent variations

(WANG; CRAMMER; VUCETIC, 2012); Instance-based (Lazy) methods (BERINGER;

HÜLLERMEIER, 2007; ZHANG et al., 2011a); and ensemble classifiers (OZA, 2005;

BIFET; HOLMES; PFAHRINGER, 2010) as long as its base learners are also incremen-

tal learners.

Landmark windows. Landmarks can be used to separate the stream into disjoint

chunks of data. A landmark can be defined using the number of instances seen since the

previous landmark or according to a specific time frequency. Whenever a new landmark is

reached, all instances in the previous chunk are discarded. Some ensemble classifiers use

landmark windows (batches) of a fixed size n to control the periodicity of the ensemble

updates, such as classifiers’ removals, resets, additions, or statistics reset. This approach

was first introduced in the Dynamic Weighted Majority (DWM) algorithm (KOLTER;

MALOOF, 2007), and later used in other algorithms, such as AddExpert (KOLTER;

MALOOF, 2005a), AUE (BRZEZIŃSKI; STEFANOWSKI, 2011), SAE2 (GOMES; EN-

EMBRECK, 2014), OAUE (BRZEZINSKI; STEFANOWSKI, 2014), and others. It seems

reasonable that if incremental learners are used, then using a predefined fixed landmark

window is unnecessary. However, many ensemble classifiers for data streams combine

landmark windows and incremental base learners. This design choice may allow reason-

ably fast adaptation to abrupt drifts (given small values of n), while it allows incremental

updates of ensemble members, which help addressing gradual and incremental drifts. The

fixed landmark window approach permits the use of traditional batch learning algorithms

for stream learning. In this case, a batch learner is trained on instances from window w

and its model is used to classify instances from the next window w+1. After window w+1

is over, the model learned on w is replaced by a model trained on w+ 1. If this approach

is used for adapting a batch learner for stream learning, then some problems may arise,

most notably: training is concentrated during the transitions between windows, therefore

if new instances arrive in a fast pace, then it is necessary to account for prediction delays

while a new model is being trained; very often batch learners needs to be trained on large
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amounts of data in order to yield accurate models, thus the window must be very large or

the learned model will be weak. Finally, if a concept drift happens, it will not be taken

into account until the window ends and the new model is generated, thus adaptation to

abrupt drifts will be slow. Despite the simplicity of using fixed landmark windows, it is

difficult to define the landmark size parameter n. On one hand, if the stream has abrupt

drifts, smaller values of n are better, since ensemble updates will happen more often. On

the other hand, if the stream is stationary (no drifts) or if drifts are gradual, then larger

window sizes are advised, since the ensemble members will be capable of training on a

larger number of instances before an ensemble update takes place. Although if the stream

exhibits different types of drifts interlaced with periods of stability, then any predefined

window size will most likely be unsatisfactory. Finally, by using incremental base learners

instead of batch base learners, the ensemble might be capable of adapting to gradual or

incremental drifts simply because its members’ learned models must not necessarily be

discarded after every window.

Sliding windows. Sliding windows are similar to landmark windows in the sense

that both define a window size n, although sliding windows discard only one instance

at a time. Instance-based classifiers (KHAN; DING; PERRIZO, 2002; LAW; ZANIOLO,

2005; GABER; KRISHNASWAMY; ZASLAVSKY, 2005; BERINGER; HÜLLERMEIER,

2007; ZHANG et al., 2011a) can be viewed as incremental learners and as sliding window

based methods. They are incremental learners since their ‘models’ are updated after every

new instance (READ et al., 2012), but as memory is limited it is necessary to forget one

instance to make room for another. Discarding the influence of a single instance from the

model is easy for instance-based methods, viable for Bayesian classifiers and very difficult

for decision trees.

Damped windows. The damped window, or time-fading model, associate weights

to instances based on their age. Thus, instances that have been recently presented to the

learner will have a higher weight than those that were presented a long time ago. It is

possible to use a linear or exponential decay function to assign weights. The base learner

must differentiate between instances weights, such that these must influence its learning,

otherwise the damped window model degenerates into a simple sliding window.

Adaptive windows. The adaptive window model can be viewed as a landmark

window with varying values of n. Assuming that the stream contains drifts with varying

extents and rates, using windows of different sizes is a suitable strategy. The problem

is how to dynamically adjust n according to observations of the stream. The FLORA2

algorithm (WIDMER; KUBAT, 1996) uses a heuristic (Window Adjustment Algorithm)

to augment or shrink the window size based on yet another heuristic that guesses whether



47

a drift has occurred or not. This approach for adjusting the window size may be useful

in practice, however it depends on fixed thresholds to define by ‘how much’ should the

size be decreased or increased. On top of that, it depends on a heuristic to determine

whether the current concept is stable or a drift is happening. A different approach is used

by ADWIN Bagging (BIFET et al., 2009) and Leveraging Bagging (BIFET; HOLMES;

PFAHRINGER, 2010), where both algorithms use the ADWIN drift detector to selectively

reset classifiers. Concretely, in these algorithms a classifier is reset whenever its associate

ADWIN detector signals that a drift has occurred. Thus, the ensemble may end up with

classifiers with varying levels of commitment to the current concept.

3.5 Data Stream Ensemble Classifiers

This section presents some of the previous works for supervised learning in the

context of data stream mining. The focus is on incremental methods, especially those

based on ensemble of classifiers. Even though some of the presented methods have roots

in traditional machine learning, i.e., Bagging and Adaboost, the algorithms presented

here are the versions adapted for online learning.

3.5.1 Hoeffding Tree

Even though the Hoeffding Tree (DOMINGOS; HULTEN, 2000), also known as

Very Fast Decision Trees (VFDT) 6, is not an ensemble, we include it in our review since

Hoeffding Trees are not only a state-of-the-art single classifier, but also widely used as a

base learner for ensembles.

In every decision tree, any given node will contain a test, based on the values

of its attributes, to decide to which path an instance should be sent down the tree.

This process is repeated until a leaf node is reached, where the predict label is decided.

Therefore, there are at least two important decisions while building a decision tree: how

nodes are split and how the predicted label is decided. Decision trees usually split nodes

based on a criterion that selects the attribute that best divides the data according to the

class labels. The most popular method for this endeavor is the information gain used

in the C4.5 algorithm (QUINLAN, 1993). Information gain uses entropy to determine

which attribute can better be used to predict the class label. The critical part for data
6Originally in (DOMINGOS; HULTEN, 2000) authors describe the Hoeffding Tree as the basic theo-

retical algorithm, while the VFDT is the actual implementation. Currently, authors usually refer to the
implementation and slight variations of the original algorithm simple as Hoeffding Tree (BIFET et al.,
2011).
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streams is that entropy is calculated based on statistics obtained from data. Since it is not

possible to observe all instances before generating the model, the traditional way to build

decision trees is not applicable in a data stream environment 7. In this matter is where

Hoeffding Trees provides its most distinctive innovation, by using the Hoeffding Bound

(HOEFFDING, 1963) to estimate the mean of a random variable with only a minimal

amount of observations, which allows to build trees incrementally. In (DOMINGOS;

HULTEN, 2000), authors demonstrate that a Hoeffding Tree performs very close to batch

learned decision trees.

One very popular variation of the Hoeffding Tree is the Adaptive Naïve Bayes

Hoeffding Tree (HNBT) (HOLMES; KIRKBY; PFAHRINGER, 2005). This variation

works by adding a naïve Bayes predictor at each leaf, but it only uses it for predictions if

it was more accurate during training than majority class.

There are more to Hoeffding Trees than what has been briefly discussed here.

For information about memory management, computational complexity, and specifics on

actual implementations the reader is directed to (BIFET et al., 2011). For theoretical

guarantees and further discussion, the reader must investigate the original publication in

(DOMINGOS; HULTEN, 2000).

3.5.2 FLORA

In (WIDMER; KUBAT, 1996) authors presents four versions of the FLORA basic

approach. Each version is build on top of its predecessor and is meant to solve its previous

drawbacks. Authors in (WIDMER; KUBAT, 1996) emphasize that an effective learner

must be able to detect drifts without being explicitly informed about them; promptly

recover from them by adjusting its hypothesis; re-use previous hypothesis if a concept

reoccur. The general FLORA approach aimed at providing reasonable implementation to

these characteristics. Thus, the general FLORA approach was defined according to the

following properties:

• Maintains only a window of currently trusted examples and hypotheses;

• Store concept descriptions and re-use them if a previously seen concept reappears;

and

• Control both functions using a heuristic that constantly monitors the algorithm

performance.
7It is always possible to use batch learners by using training windows, but here we are referring to

classifiers that have been developed specifically for data streams.
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To satisfy these properties, an algorithm would need to implement the following

functions:

1. Operators for the modification of the concept description in reaction to changes in

the contents of the window

2. The ability to decide when and how many old examples should be deleted from the

window (forgotten)

3. Store current and old (hypotheses) and ability to assess the relative merits of concept

hypotheses for the current context.

The base learner in FLORA is restricted to a representation language based on

attribute-value logic that does not include negation. In this setting, a hypothesis is

analogous to a concept description. A concept description is composed of three description

sets:

1. ADES. description of items that matches positive examples only;

2. NDES. summarizes all negative examples; and

3. PDES. all of its description items are too general, i.e. they match positive and

negative examples concomitantly.

Description sets are conjunctions of attribute-value pairs. A description item is

said to match an example if all of its literals occur in the description. For instance,

(color = white)(temperature = low) matches ‘snow’, and (shape = cube) does not match

‘Globe’.

When instances are added or removed from a window, the current description

concepts are updated to reflect these changes.

The FLORA2 algorithm uses a heuristic to dynamically adjust the window size

based on a strategy that actively monitors concepts drifts. This strategy depends on

the extent of the drift and on the momentary state of the learner, which can only be

determined during learning. FLORA2 detects drifts by (1) monitoring accuracy over a

fixed number of past classification attempts, and by (2) interpreting syntactic properties of

the evolving concept descriptions, which are identified by sudden increases of the number

of description items in ADES. Fixed thresholds are used to control this drift detection,

e.g., (1) is controlled by an acceptable predictive accuracy threshold p. FLORA2 uses a

heuristic to dynamically shrink if a drift has been detected, keep the window size when

a concept seems stable, or enlarge the window until a stable concept description can
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be formed. The specific algorithm implemented in FLORA2 is the Window Adjustment

Heuristic (WAH). WAH algorithm decrease the window size by 20% if a concept drift is

suspected to have occurred. To avoid too many instances in memory, the window size is

decreased by 1, i.e. add 1 new example and delete the 2 oldest examples, if the concept

description seems extremely stable.

If neither of the previous conditions is met, then the current concept description

seems stable enough and the window size is left unchanged. The authors note that it

is “hopeless to make the heuristic general and free of parameters” (WIDMER; KUBAT,

1996), thus its parameters might vary for different datasets. The FLORA3 algorithm

adds the capability of storing and reusing previously learned models, while maintaining

the adaptation strategy of FLORA2. The authors claim that in many real world problems

the hidden contexts that vary over time causing concept drifts are finite, and reappear

either cyclically or in an unordered fashion. As a consequence, it is a waste to re-learn a

concept description from scratch. One possible way that a learning algorithm could avoid

this wasteful situation is by storing and reinstating concept descriptions when concept

drifts are suspected to have occurred. Put in simple terms, the algorithm, in FLORA3,

evaluate the current state of learning after every cycle and decide if some old concept

description must be reconsidered. When a concept drift seems to occur, the storage of old

concept descriptions is consulted. If a stable period is reached, the concept descriptions

are saved to the storage, if they are not already represented there.

To decide which old concept description must be selected, FLORA3 uses a three

step procedure, described below:

1. Find best candidate. A concept description becomes a candidate if it is consistent

with the current example. All candidates are evaluated w.r.t the ratio of the number

of positive and negative instances that they match in current window;

2. Update the best candidate. The best candidate is updated to the current data

by setting all counters in the description sets to 0 and then re-processing all the

examples in the window (re-run FLORA for each instance); and

3. Comparison between best candidate and current. The (updated) best can-

didate Cb is compared to the current concept description C by using some ‘measure

of fit’ to decide whether Cb is better than C. If Cb is indeed better than C then

replace C with Cb.

In FLORA3, the measure of fit is the relative complexity of the description, i.e. a

concept description Cx is said to be ‘better’ than Cy if Cx’s ADES set is more concise.
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During experiments, authors noticed that datasets with gradual drifts, especially those

with noticeable noise, destabilized FLORA3’s performance more than expected. This

observations lead to the development of FLORA4. FLORA4 avoid shortcomings due to

decisions based on absolute values by basing decisions on confidence intervals. During ex-

periments, FLORA4 performed better on noisy data than its predecessors, such behaviour

was attributed to its use of statistical comparisons.

3.5.3 Streaming Ensemble Algorithm

In (STREET; KIM, 2001) authors presents one of the first ensemble-based ap-

proaches for evolving data streams, namely the Streaming Ensemble Algorithm (SEA).

It discusses important concepts, like “any-time learning”, limited memory, “single-pass”

algorithms, and block processing classifiers for large datasets or streaming data. The

proposed ensemble is not limited to a specific base learner. However authors only present

results using the C4.5 decision trees. One very interesting trait of SEA is that it was

one of the first ensemble-based methods for data stream processing to emphasize update

dynamics, such as adding/removing and replacing classifiers during execution. On top

of that, classifier training was aimed at inducing diversity into the ensemble by using

different blocks of instances to train each classifier. SEA employed the terminology of

a “candidate” classifier, as recent methods do, which represented a classifier that is not

yet part of the ensemble and may be added to it. When the ensemble has reached its

maximum size, the candidate would need to replace a member of the ensemble. Choos-

ing between which classifiers must be kept and which must be removed depends on a

score function. The classifier scores were calculated to represent how much the classifier

contributes to the ensemble, not just how well it performed individually (e.g. individual

accuracy). Specifically, there are four variables involved during classifier scoring:

• P1 : percentage of votes received by the class with most votes.

• P2 : similar to P1, but for the class with the second highest number of votes.

• PC : percentage of votes that the correct class received.

• PT : percentage of votes that the class which classifier T choose received.

The scoring formulation can be applied to multiclass problems, although authors

only report experiments with binary problems.
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The reported experiments are limited to comparisons between SEA and single

classifiers on binary classification problems. To simulate concept drifts, authors presents

a synthetic data generator, which is described in details on Section 2.4.4.

3.5.4 Online Bagging

The Online Bagging algorithm was introduced in (OZA, 2005) as an adaptation of

the batch ensemble classifier Bagging (BREIMAN, 1996). Originally, a bagging ensemble

is composed of k classifiers, which are trained with subsets (bootstraps) Nj of the whole

training set N . However, sampling usually is not feasible in a data stream configuration,

since it requires storing all instances before creating subsets. Authors in (OZA, 2005) ob-

serve that the probability of each instance to be selected for a given subset is approximated

by a Poisson distribution with λ = 1, thus it is feasible to “simulate” bagging in an online

fashion by training each classifier k times on each instance, such that k = poisson(1).

3.5.5 Online Boosting

In this section, we briefly discuss the adaptations by Oza and Russel (OZA, 2005)

for online learning of the original AdaBoost (FREUND; SCHAPIRE et al., 1996), precisely

the AdaBoost.M1 algorithm. The term ‘boosting’ is sometimes used to refer to the actual

AdaBoost ensemble algorithm. For an extensive review of the ‘boosting’ meta-algorithm,

and theoretically sound explanations, the reader is directed to (SCHAPIRE; FREUND,

2012).

AdaBoost generates base models sequentially, i.e., h1, h2, h3, . . . , hM , by training

them one after the other on weighted instances drawn from sets D1, D2, D3, . . . , DM . The

weights of instances in training set Dm depends upon the misclassified instances by hm−1,

such that the misclassified instances are given half the total weight, while the remaining

instances (correctly classified) are given the other half. Intuitively, models hm and hm−1
will differ significantly because hm−1 will emphasize its training on instances that were

previously misclassified.

In Online Boosting, the Poisson distribution is used for deciding the random prob-

ability that an example is used for training, similarly to Online Bagging (OZA, 2005) (see

Section 3.5.4). The difference to Online Bagging is that when model hm−1 misclassifies a

training instance, the Poisson distribution parameter λ associated with that instance is

increased when presented to hm, otherwise it is decreased. Just as in AdaBoost, Online

Boosting assigns the misclassified instances by hm−1 half the total weight for hm. Con-

versely, the correctly classified instances receive the remaining half of the total weight.
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Authors prove in (OZA; RUSSELL, 2001) that this procedure converge to the original

algorithm when the number of models and training instances tend to infinity.

3.5.6 ADWIN Bagging

In (BIFET et al., 2009) authors present two new ensemble methods, Adaptive-Size

Hoeffding Trees (ASHT) Bagging and ADWIN Bagging. Both methods combine Online

Bagging with a strategy to cope with concept drift. The idea behind ASHT Bagging is

that smaller decision trees (less levels) can adapt quickly to concept drifts, while bigger

decision trees (more levels) perform better during periods with little to no changes in

the underlying concept. ADWIN Bagging combines Online Bagging with the Adaptive

Window (ADWIN) (BIFET; GAVALDÀ, 2007) algorithm for concept drift detection.

ADWIN maintains a window of variable size with data in a histogram to reduce memory

usage. This window has the maximum size statistically consistent with the hypothesis:

“there were no changes in the average value within this window” (BIFET et al., 2011).

A fragment of the window is removed if there is no evidence that its average value is

different from the average value of the remainder of the window. Concept drifts are

observed through analysis of changes in the window size.

3.5.7 ASHT Bagging

The idea behind the Adaptive-Size Hoeffding Tree (ASHT) Bagging algorithm

(BIFET et al., 2009) is that smaller decision trees (less levels) can adapt faster to changes,

while, larger trees (many levels) obtain better performance during periods with little or

no changes. In ASHT Bagging, the base learner used is the Adaptive-Size Hoeffding Tree

(ASHT), which is a derivation of the original Hoeffding Tree (DOMINGOS; HULTEN,

2000) that allows the user to specify the maximum three height through a parameter. In

ASHT, after a node is split, if the maximum height has been reached, some nodes must

be removed (operation known as the ‘reset’ of the tree). There are two approaches for

the tree reset. The first option is to remove the root and all nodes, except for the node

that started the split, which then becomes the new root. The second option is to remove

all nodes, i.e., completely reset the tree.

In ASHT Bagging, the maximum size of the tree at position n is the double of

the tree at position n − 1. For example, in an ensemble with 5 trees, such that the first

one has maximum height equals 2, then the maximum height of the other trees will be 4,

8, 16 and 32, respectively. Each tree has an assigned weight proportional to the reverse

of its squared error, and its error is monitored through the exponential weighted moving



54

average (EWMA) with α = 0.01.

It is important to notice that in ASHT Bagging, trees are always reset, indepen-

dently if a drift has occurred or not. However, it is expected that this behavior does not

negatively impact the overall ensemble prediction accuracy as threes are weighted accord-

ing to their estimated accuracy. The smaller trees are reset more often and consequently

can adapt faster if a drift occurs, while the larger trees takes longer to reset and are able

to form more complex models.

3.5.8 Leveraging Bagging

Aiming at enhancing Online Bagging accuracy, authors in (BIFET; HOLMES;

PFAHRINGER, 2010) introduce the Leveraging Bagging algorithm, which adds more

randomization to the input of the ensemble by using a larger λ value. The standard

Online Bagging algorithm uses λ = 1, which means that around 37% of the values output

by the Poisson distribution are 0, another 37% are 1, and 26% are greater than 1. This

implies that by using Poison(1) 37% of the instances are not used for training (value 0),

37% are used once (value 1), and 26% are trained with repetition (values greater than

1). By using Poisson(6) we obtain 0.25% of values 0, 45% lower than 6, 16% of values

6, and 39% greater than 6. Thus, by using values of λ > 1, we are effectively using

more instances for training and, as a consequence, the base classifiers are able to produce

more refined hypothesis of the input. This may lead to overfitting, even in a data stream

context, although this has not been investigated yet.

Besides randomizing the input, in (BIFET; HOLMES; PFAHRINGER, 2010) au-

thors also propose manipulating the output of the ensemble through random error correct-

ing codes. For each ensemble member the class label of a training instance is mapped to

a binary classification problem. For example, assuming a multiclass problem with classes

0, 1, 2 and 3, a given classifier C could interpret instances assigned with class label 0 and

3 as class 0, and those assigned to class labels 1 and 2 as class 1. By doing that, ensemble

members may form different hypothesis, thus minimizing correlation between them, and

enhancing diversity. In order to account for concept drifts, Leveraging Bagging uses the

ADWIN algorithm (see Section 3.5.6) to detect drifts and reset ensemble members. Some

variants of the described leveraging algorithm were presented in the paper as well, which

are briefly described bellow:

• Levearging Bagging MC. Does not use Random Output Codes.

• Levearging Bagging ME. Adds more weight to misclassified instances. If an
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instance is misclassified it is accepted with a weight of one, otherwise it is accepted

with a probability eT/((1 − eT )), where eT is the error estimate computed as a

smoothed version of the proportion of misclassified instances using the estimation

of ADWIN that is monitoring the error.

• Leveraging Subbaging. Resampling without replacement. Authors observe that

this method uses less memory and is faster, but has low accuracy when compared

to others.

• Leveraging Half Subbaging. Resampling without replacement half of the in-

stances. Authors observe that this method is even fast and requires less memory

that Leveraging Subbaging, but it has even lower accuracy.

• Leveraging Bagging WT. Bagging without taking out any instance. This is

implemented using 1 + Poisson(1) instead of Poisson. Authors observe that if all

instances are used, accuracy is improved at the expense of memory and speed.

3.5.9 Heterogeneous Ensemble with Feature Drift for Data Streams

The work of Nguyen, Woon and Wan introduces the Heterogeneous Ensemble with

Feature Drift for Data Streams classifier (HEFT-Stream) (NGUYEN et al., 2012). Im-

portant traits of this ensemble method include allowing different base learners to compose

the ensemble, which can induce more diversity to the ensemble. Also, HEFT-Stream uses

a feature selection technique called FCBF (YU; LIU, 2003) to periodically select only the

most relevant features for training. Authors claim that HEFT-Stream is suitable to adapt

to gradual and sudden drifts, such that adaptation to gradual drifts occurs naturally be-

cause they only employ incremental classifiers as base learners, i.e. they used Hoeffding

Trees (DOMINGOS; HULTEN, 2000) and Online Naive Bayes on their experiments. To

further enhance diversity, ensemble members are trained according to online bagging, as

a consequence besides each classifier learning from a different projected set of attributes,

they also observe different instances. The overall ensemble prediction is given by a weight-

ing combination according to each ensemble member individual probability distribution

vectors.

Whenever the selected feature subset changes from one chunk of instances to an-

other, a feature drift is signalled to the ensemble. It is assumed that if a feature drift has

occurred, then a sudden drift has happened as well. In (NGUYEN et al., 2012) authors

reason about the relationships between concept drifts and feature drifts, they conclude

that concept drifts may or may not cause feature drifts, but when they do the feature drift
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occurs at a slower rate than the concept drift. To adapt to sudden drifts, a new classifier is

added to the ensemble. Its base learner must be the same as the classifier with the highest

weight. On top of that, if the ensemble has reached its maximum size, the classifier with

the lowest weight is removed to make place for the new classifier. Authors argue that this

update policy allow the ensemble to select the fittest base learner dynamically.

The experiments presented shows that HEFT-Stream perform well w.r.t accuracy

and resources usage, especially on datasets with high dimensional data (hundreds or

thousands of features). Processing time and memory used was low due to ensemble

members learning from projected sets of features, such that this fraction was for some

experiments lower than 1% of the total features.

3.5.10 Fast Adapting Ensemble

The Fast Adapting Ensemble (FAE) (DÍAZ et al., 2015b) is an ensemble method,

designed with the goal of dealing with abrupt, gradual and recurrent drifts concomitantly.

FAE maintains a limited set of classifiers with two possible statuses: active or inactive.

Active classifiers decisions are taken into account on the overall ensemble prediction. It

is assumed that active classifiers have a better model of the current concept, which is

reflected by their high weight. Inactive classifiers are only kept in expectation that they

might become useful in the future if the concept that they model reappears.

In FAE, learning is divided into chunks of equal size according to a user given

threshold. Classifiers are weighted according to a formula similar to that of AWE (WANG

et al., 2003), such that weighted is relative to the classifier estimated accuracy calculated

only in the current chunk of instances. Similarly to SAE2 (GOMES; ENEMBRECK,

2014), and differently from AWE, weights are updated after every new instance is pre-

sented according to w(t)j := β1w(t−1)j+β2accb,t, such that accbt represents the estimated

accuracy on the batch of instances b up to instance t, w(t)j is the weight associate with

classifier j at moment t, and parameters β1 and β2 are used to control the trade-off be-

tween noise and rapid adaptations8, respectively. Active classifiers’ weight can be either

decreased or increased, while inactive classifiers’ weights are only updated if the value has

increased. Authors justify this decision based on the argument that inactive classifiers

represent concepts that are not currently active, thus it is not reasonable to decrease their

weights based on their accuracy on the current concept.

FAE uses operators to add and remove classifiers based on specific criteria. A new

classifier is added only if a drift is detected. The drift detector used in (DÍAZ et al.,
8By definition β1 + beta2 = 1.
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2015b) is the EDDM (BAENA-GARCÍA et al., 2006), although authors note that any

detector capable of outputting 3 levels of drift detection are suitable, i.e., no drift, warning

and change. Classifiers are deleted whenever the ensemble has reached its maximum size

(user given parameter). In order to remove a classifier, four characteristics are taken into

account: (1) Active status; (2) Age; (3) Weight; (4) Number of classifiers associated with

the concept. Preference for removal is given to classifiers that are not currently active,

but if all classifiers are active then the other 3 criteria are used.

Overall, FAE combines many heuristics to deal with different types of drifts, and

often save resources, e.g., it does not periodically (and blindly) add new classifiers. The

experiments presented in (DÍAZ et al., 2015b) are limited to one real dataset (Electricity,

see Section 2.4.10) and variations of two synthetic data generators (SEA and LED, see

Section 2.4.4), thus in order to draw more general conclusions about FAE capabilities it

might be necessary to carefully examine it on more datasets.

3.5.11 Ensemble of Restricted Hoeffding Trees

The work in (BIFET et al., 2012) uses the observation that it is not necessary to

model complex attribute interactions to obtain good classification accuracy on practical

problems. Therefore, a learner may be capable of obtaining an average performance only

by training on a subset of attributes. Authors exploit this by building an ensemble of

Hoeffding Trees (DOMINGOS; HULTEN, 2000), which have their learning restricted to

a subset of features. These trees are exhaustive, i.e. all possible attribute subsets of a

given size have one tree associated with it, thus if there are m attributes and all subsets

of size k are to be generate, there will be
(
m
k

)
subsets. As a consequence, only moderate

values of k, or values of k very close to m, are feasible for high-dimensional data.

The trees’ predictions are combined using a stacking approach, where the meta

level data is composed of the log-odds of the class probabilities estimates (trees outputs)

instead of discrete classifications, since probabilities estimates provide more information

for the combiner.

The meta level combiner is formed by perceptrons (one per class value) with

sigmoid activation functions, trained using stochastic gradient descent to minimize the

squared loss with respect to the actual observed class labels in the data stream.

The reason for using log-odds instead of raw probabilities estimates is because the

application of the sigmoid function presupposes a linear relationship between log(f(ai)/(1−
f(ai))) and ai, assuming that ai is a vector of log-odds for class i, and that f(ai) is the out-

put of the sigmoid perceptron for class i according to f(ai) = 1/(1+e−(wiai+bi)). To avoid
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zero-frequency problems, a small constant ε is added to the trees probabilities estimates.

The learning rate α is decreased as the amount of training data increases. This

is to avoid situations where a large value of α prevent convergence. Assuming m as the

total number of attributes, and n the current number of instances seen, the learning rate

α is updated according to Eq 3.7. Figure 3.5 depicts a schematic view of the ensemble

structure.

α = 2/(2 +m+ n) (3.7)
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Figure 3.5: Ensemble of Restricted Hoeffding Trees for a problem with 3 classes (A,B and
C), total features m = 4 and K = 3.

Although, this approach assumes that the training data is identically distributed

and that is not true since the Hoeffding trees probability estimates change over time,

usually becoming more and more accurate. Thus, setting the learning rate based solely

on Eq. 3.7 means that the perceptrons will adapt too slowly after the initial data has
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been processed (BIFET et al., 2012). To overcome this problem, authors interpret the

meta level data as an evolving stream and use the ADWIN change detector (BIFET;

GAVALDÀ, 2007) to determine when substantial changes have happened. Notice that

not necessarily the input data has to be an evolving data stream for this approach to

work. Once a drift is detected, the value of n is reset, and thus α value restart (see

Eq 3.7). Finally, the effect of this approach is that the learning rate will be relatively

large as long as the Hoeffding trees models keep evolving. When there are no drifts, n is

incremented and as a consequence the value of α decreases.

The ADWIN detector is used to selectively reset trees whenever concept drifts that

may happen in the input data. This approach is similar to the one presented in (BIFET

et al., 2009) and (BIFET; HOLMES; PFAHRINGER, 2010). In practice, there is one

ADWIN detector per Hoeffding tree, and whenever the change detector of a particular

tree reports a significant decrease in accuracy, this tree is reset and the learning coefficients

in the perceptrons associated with it are set to zero. There is another approach tested in

the paper that consists in not resetting the tree in which the change was detected, but

the tree with the lowest accuracy estimates.

The work presented in (BIFET et al., 2012) include several experiments, which

were not only designed to verify the new method proposed in it, but also to test individual

properties of it when they are applied to ADWIN Bagging. For example, an experiment

is reported where an ADWIN Bagging based ensemble uses stacking as the combination

method. Authors note that the stacking procedure merits further investigation, as it could

not only improve on their new method, but also ADWIN Bagging results.

3.5.12 Dynamic Weighted Majority

The Weighted Majority (WM) algorithm (LITTLESTONE; WARMUTH, 1994)

weights classifiers votes based on past performance, such that every classifier has a weight

β, which is decreased every time it predicts incorrectly. Authors in (KOLTER; MALOOF,

2007) introduced the Dynamic Weighted Majority (DWM) algorithm, which uses the

same voting strategy as WM with the addition of update heuristics to cope with evolving

streams. The update method includes removing classifiers if their weight β is below a

given user threshold α. The combined decision of the ensemble is a simple aggregation

of each classifier prediction weighted by their β value. In DWM, the ensemble size varies

due to removals and additions of classifiers. Originally, new classifiers are added whenever

the ensemble prediction is incorrect. Although since this heuristic may cause too many

additions of classifiers authors introduced a user given parameter p, which defines after
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how many instances an ensemble update (additions and removals) will happen. DWM

does not include an explicit drift detection method. Concretely, adaptation to drifts occur

indirectly through the removals of old classifiers, as their β value degenerates in response

to prediction errors on the current instances. This strategy is suitable for gradual drifts,

although its efficiency depends directly on the parameter p. Despite the fact that p

depends on the user, it is fixed throughout the whole execution, assuming that the stream

drift characteristics can change as time goes on, this method fails to adapt the algorithm

to the current state of the stream.

3.5.13 Online Accuracy Updated Ensemble

In (BRZEZINSKI; STEFANOWSKI, 2014) the Online Accuracy Updated Ensem-

ble (OAUE) is presented as an evolution to existing block-based ensemble methods for data

stream mining, namely Accuracy Weighted Ensemble (AWE) and Accuracy Updated En-

semble (AUE). A block-based classifier, as described in (BRZEZINSKI; STEFANOWSKI,

2014), is any classifier that needs to be trained in a block of instances before being able to

perform predictions. The opposite of a block-based classifier is an incremental classifier,

which is able to update its hypothesis after every instance. Even though it is possible to

train block-based classifiers on blocks of one instance, the results would be suboptimal,

since these classifiers need more instances in order to produce a consistent hypothesis.

OAUE aims at combining the best characteristics of three adaptions to block-based en-

sembles presented in (BRZEZINSKI; STEFANOWSKI, 2014), namely: online evaluation

of components; introduce an additional incremental learner; and addition of a drift de-

tector algorithm. Even though authors claim that the best of each of these adaptations

were included in OAUE, only the first two are actually implemented, i.e., OAUE does not

include an active drift detector algorithm.

In OAUE, a window of d instances is used to determine how many instances are

going to be used to train a new classifier, namely the candidate. At the beginning of every

window a new candidate classifier is created and trained only on the next instances. Also,

the candidate does participate on the ensemble predictions during the window in which

it was created. When the window comes to an end, if the total number of component

classifiers is less than a parameter k the current candidate is added to the ensemble,

otherwise the candidate replaces the least accurate component classifier.

Since OAUE does not use an active drift detection technique, it relies on gradual

resets of the ensemble through candidates to adapt to concept drifts. The weighting mech-

anism also contributes to the ensemble adaptation to concept drifts, since the weighting
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function is designed to assign higher impact to predictions on recently presented instances.

The weighting function is based on the equations, introduced in (WANG et al., 2003),

originally developed to estimate prediction error for block-based classifiers. Equations 3.8,

3.9, 3.10, 3.11, 3.12 presents the adaptations to these functions, presented in (BRZEZIN-

SKI; STEFANOWSKI, 2014) that allow incremental estimations of prediction error, thus

permitting the weighting function usage for incremental classifiers.

MSEt
r =


MST ti − 1 +

eti
d

+
et−d
i

d
, t− τ < d

t−τi−1
t−τi MSEt

i − 1 +
eti
t−τi , 1 ≤ t− τi ≤ d

0, t− τi = 0

(3.8)
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(
1− f tiy

(
xt
))2 (3.9)

MSEt
r =

MSEt−1
r − rt−1(yt)− rt−1(yt−d) + rt(yt) + rt(yt−d), t > d∑

y r
t(y), t = d

(3.10)

rt (y) = pt (y)
(
1− pt (y)

)2 (3.11)

wti =
1(

MSEt
r +MSEt+ε

i

) (3.12)

Such that:

• d = window (period) size;

• t = sequential number assigned to each instance, also denotes the number of in-

stances already seen;

• i = component classifier index in the ensemble;

• τi = time at which classifier i was created;

• f tiy = probability given by classifier Ci that instance xt is an instance of class yt;

• ε = a very small value to avoid division by zero;

• rt(y) = for instance xt and class value y, the probability of t being randomly assigned

y;
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• pt(y) = class distribution of y up to instance xt.

MSEt
i estimates the prediction error of classifier Ci on the last d instances, and

it is scaled according to the number of instances seen. MSEt
r is the mean square error

of a randomly predicting classifier, also trained on the d instances, and it is used as a

reference point to predictions made based on the current class distribution.

Regarding time and memory demands, authors show in (BRZEZINSKI; STE-

FANOWSKI, 2014), through empirical experiments, that OAUE is able to achieve a com-

parable tradeoff between resources usage and accuracy obtained when compared to other

state-of-the-art algorithms.

3.5.14 Scale-free Network Classifier

The Scale-free Network Classifier (SFNC) (BARDDAL; GOMES; ENEMBRECK,

2014) is an ensemble method that weights classifiers predictions based on an adaptation

of the scale-free network construction model. In SFNC, classifiers are arranged in a graph

structure, such that classifiers with higher accuracy are more likely to connect to recently

added classifiers. Classifiers weighting is directly proportional to a user given centrality

metric α, e.g., eigenvector. Since high accurate classifiers usually receive many connec-

tions, these are expected to have higher influence on the overall decision. Although this

process is non-deterministic and, therefore low accuracy classifiers can become prominent,

that is very rare in practice. The worst classifier, in terms of accuracy, is removed from

the network every p instances, and that triggers a rewiring process to maintain the graph

connected.

3.5.15 Social Adaptive Ensemble

The Social Adaptive Ensemble (SAE) (GOMES; ENEMBRECK, 2013) arranges

ensemble members as a network (undirected graph), such that there is one node for each

classifier and a connection between two nodes quantify their similarity with respect to past

predictions. Precisely, connections are weighted according to the Similarity Coefficient

(Sc) shown in Equation (3.13), where l represents the period length and ki,j accounts for

how many instances i and j predicted the same class value.

Sc(i, j) =
ki,j
l

(3.13)

SAE uses a fixed window (period), denoted as l, to determine after how many

instances a network updates happen, similarly to DWM. These updates happens at the end
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of every period and includes: addition and removal of classifiers, and network structural

changes. Many classifiers can be removed during a network update, but only one classifier

can be added. The main difference between SAE and other ensemble methods is that it

uncovers similarities among classifiers and uses this knowledge to update the ensemble

and to combine individual predictions. The relationships among classifiers are depicted

as a network, which is updated every period to better approximate the current state

of its members’ similarities. One example of usage of the network is to identify highly

correlated (redundant) classifiers, i.e., almost always predict the same class value given

the same instances. The identification of such pairs is followed by the removal of one of

the pair, thus improving run time without drastically affecting overall accuracy.

To increase diversity among classifiers SAE uses Online Bagging (OZA, 2005) for

training. Adaptation to concept drifts happens implicitly in SAE due to its adaptation

strategies which includes removing classifiers with very low individual performance during

last period and adding new classifiers trained on last period misclassified instances. These

strategies are complemented by a combination method that combine similar classifiers

decisions before applying majority vote to predict a new instance class value.

One of the main drawbacks in SAE is that new classifiers are only trained on

instances that were misclassified during the last period. This method is appropriate if

there were a large number of misclassified instances, possibly due to a concept drift, but

it is not suitable if there were only a few misclassified instances, since the new classifier

would be trained only on a small set of instances. Besides that, new classifiers are kept

isolated from other classifiers in the network during the period subsequent to its addition,

independently of their prediction similarities to other classifiers. Thus incorrectly high-

light the new classifier predictions as if it were dissimilar to all other classifiers. Other

issues related to SAE include an elevated amount of prediction ties and its unconstrained

addition method, which can cause the ensemble to grow very large.

3.6 Final Considerations

This chapter contains the fundamentals of ensemble classifiers for data streams,

including a discussion about diversity, combination and update dynamics. These concepts

serve as basis for our current work, since we are proposing of a new kind of data stream

ensembles. We also present state-of-the-art ensemble classifiers for data streams in this

chapter. Most methods presented on Section 3.5 focus on one or two aspects of ensemble

learning for data streams. For example, Online Bagging focus on adding diversity to the

ensemble through a simulation of resampling, while OAUE uses background learners (or
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candidates) to implicitly recover from concept drifts and uses a sophisticate combination

(voting) method. In this work, we hypothesize that it is possible to achieve accurate

predictions through the use of an ensemble classifier that exploits relational data extract

from it component classifiers. The SAE algorithm (GOMES; ENEMBRECK, 2013) is a

seminal work on this area, yet we observe that SAE does not use its network of classifiers

to its maximum extend. For example, SAE simplifies its weighted connections to dichoto-

mous relations based on a fixed threshold. In the next Chapter, we present the definition

of a network-based ensemble, a preliminary implementation and proposals for subsequent

developments.



Chapter 4

Methodology

To date, there are many ensemble classifiers for data stream learning. Some of these

ensembles employ different approaches that have proved to be efficient, such as: implicit

drift recovery, explicit drift detection, periodic updates, diversity enhancing training, and

so forth. In this work, we propose a new family of data stream ensemble classifiers, namely

the network-based ensembles. The determining characteristic of network-based ensembles

is the exploration of relational data obtained from component classifiers. These relations

can be used, for example, to define unique combination methods or to identify redundancy

between classifiers.

We introduce network-based ensembles by first positioning them in relation to

other stream ensemble classifiers. To achieve this, we propose a general data stream

ensemble classifiers taxonomy, and outlines which portions of it are most representative

to network-based ensembles. Subsequently, we present a formal definition, followed by

a preliminary implementation of a network-based ensemble. We close our explanations

with individual discussions around “Combination” and “Relation”, followed by an outline

of a novel network-based ensemble method.

4.1 A Taxonomy of Data Stream Ensemble Classifiers

Ensemble learning has been an active research topic in the last years. Thus, many

taxonomies and classifications (BROWN et al., 2005; KUNCHEVA, 2004; ROKACH,

2009) have been proposed to provide a reasonable way to think about ensembles, and to

identify opportunities for future work.

In this section, we present a taxonomy for data stream ensemble classifiers in order

to address the specific objective 1 of this work (see 1.2). The taxonomy is presented in

Figure 4.1. This taxonomy shares with previous proposals (for batch learning) the dis-
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Figure 4.1: A taxonomy of data stream ensemble classifiers. Dashed edges = ‘part of’,
Normal edges = ‘a kind of’.
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tinction between two very important concepts for ensemble learning, namely, combination

and diversity. The difference to its predecessors resides in the inclusion of a dimension

that is relevant to data stream learning, namely ‘update dynamics’. This part of the

taxonomy represents important methods for stream learning, e.g., strategies to cope with

drifts. Generally, it is difficult to clearly separate different methods into a taxonomy, since

some areas are blurred and grouped together by different algorithms. For example, one

algorithm may use one technique to adapt to concept drifts that also induces diversity

among classifiers.

The dimensions presented in the taxonomy are discussed in Sections 4.4, 3.2, 3.3,

and 3.4. Therefore, in the following sections we focus the discussion around the dimensions

that are relevant to network-based ensembles, i.e., “combination→ structure→ network”

and “diversity → measuring”. The latter is identified as a form of “relation” in our work.

Table 4.1 presents the classification of ensemble learners from the literature (see

Section 3.5), alongside with the implementations presented in this work, according to the

taxonomy presented. Our implementations are: SAE2 (Section 4.3), PA (Section 4.5.1),

PP (Section 4.5.2) and CNE (Section 4.6). The columns and rows identifiers from Table

4.1 are presented below:

• (A) Architecture: f : flat, m: meta-learner, h: hierarchical, n: network;

• (V) Voting: m: majority, w : weighted, r : rank, s : classifier selection, re: rela-

tional;

• (DI) Diversity Inducer: he:heterogeneous, l : learner manipulation, v : vertical

input, v∗: vertical input with instance weighting, h: horizontal input, o: output, t :

time-based;

• (B) Base Learner: b: batch, i : incremental;

• (D) Dependency: d : dependent, i : independent, h: hybrid;

• (C) Cardinality: f : fixed, f∗: fixed (derived from feature set), m: maximum, d :

dynamic;

• (L) Learning Mode: s : sliding window, l : landmark window, d : damped window,

a: adaptive window, i : incremental.
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Algorithm (A) (V) (DI) (B) (D) (C) (L) Reference
SEA f m t b i m l (STREET; KIM, 2001)

Learn++ f w v b d f l (POLIKAR et al., 2001)
AWE f r t b i f l (WANG et al., 2003)
CDC f w t i i m i (STANLEY, 2003)

FLBoost f w v∗ b d f l (CHU; ZANIOLO, 2004)
CBEA f s,m t b i m l (RUSHING et al., 2004)

AO-DCS f s v b i f l (ZHU; WU; YANG, 2004)
OzaBag f m v i i f i (OZA, 2005)
OzaBoost f w v∗ i d f i (OZA, 2005)
AddExpert f w t b i f l (KOLTER; MALOOF, 2005b)

ACE f w t i,b i d l,i (NISHIDA; YAMAUCHI; OMORI, 2005)
FAE f w t,h i i d i (WENERSTROM; GIRAUD-CARRIER, 2006)
DWM f w t b i d l (KOLTER; MALOOF, 2007)

BoostDC f w v∗ b d f l (SCHOLZ; KLINKENBERG, 2007)
ICEA f w t i i m i (YUE et al., 2007)
RDE f w t b i d l (RAMAMURTHY; BHATNAGAR, 2007)

Streaming RF f m h i i f i (ABDULSALAM; SKILLICORN; MARTIN, 2007)
Dynamic SRF f m h i i f i (ABDULSALAM; SKILLICORN; MARTIN, 2008)

MCIK-Ensemble f w v i,b i f l (MASUD et al., 2008)
ASHT Bag f w l i i f a (BIFET et al., 2009)
ADWIN Bag f m v i i f a (BIFET et al., 2009)
OVA Trees f w o,v i i f i (HASHEMI et al., 2009)
OCBoost f w v∗ i d f i (PELOSSOF et al., 2009)

Learn++.NC f w,re t b i f l (MUHLBAIER; TOPALIS; POLIKAR, 2009)
FISH f s v i d f a (ŽLIOBAITĖ, 2009)
LevBag f m v,o i i f a (BIFET; HOLMES; PFAHRINGER, 2010)
CCP f s v i,b i d l (KATAKIS; TSOUMAKAS; VLAHAVAS, 2010)

Learn++.UDNC f w,re t i i f l (DITZLER; MUHLBAIER; POLIKAR, 2010)
DXMiner f w t i,b i f l (MASUD et al., 2010)
ONSBoost f w v∗ i d f l (POCOCK et al., 2010)

AUE f r v,t i i f l (BRZEZIŃSKI; STEFANOWSKI, 2011)
AE f w he,v i,b i f l (ZHANG et al., 2011b)
BWE f w t b i f a (DECKERT, 2011)

Learn++.NSE f w t b i f l (ELWELL; POLIKAR, 2011)
DDD m w v,l b i f a (MINKU; YAO, 2012)

RestrictedHF m w v,h i d f∗ a (BIFET et al., 2012)
HEFT-Stream f w he,h,v i i f l (NGUYEN et al., 2012)

AEBC f w v i d f a (WANKHADE et al., 2012)
HSMiner h w he,h,o i h f∗ l (PARKER; MUSTAFA; KHAN, 2012)

OSBoosting f w v∗ i d f l (CHEN; LIN; LU, 2012)
Woo f w v i i d l (RYU; KANTARDZIC; KIM, 2012)
OOB f m v i i f i (WANG; MINKU; YAO, 2013)
UOB f m v i i f i (WANG; MINKU; YAO, 2013)
SAE n m v,t i h d l (GOMES; ENEMBRECK, 2013)
DACC f m t b,i i f l (JABER; CORNUÉJOLS; TARROUX, 2013b)
ADACC f m t b,i i f a (JABER; CORNUÉJOLS; TARROUX, 2013a)
SluiceBox h w he,h,o i i f l (PARKER; KHAN, 2013)

Learn++.CDS f w t i i f l (DITZLER; POLIKAR, 2013)
Learn++.NIE f w v,t i i f l (DITZLER; POLIKAR, 2013)

RCD f m t i i m l (JR; BARROS, 2013)
OAUE f r t i i f l,i (BRZEZINSKI; STEFANOWSKI, 2014)
SFNC n w t i i m l (BARDDAL; GOMES; ENEMBRECK, 2014)
SAE2 n w v,t i h m l (GOMES; ENEMBRECK, 2014)
M3 f w he i i f l (PARKER; KHAN; BIFET, 2014)

SE-PLS h w v i i f i (SETHI et al., 2014)
Fast-AE6 f w t i i m l (DÍAZ et al., 2015a)
IBEP f w v i i f l (ZHI et al., 2015)
PA/PP f re v i i f l (GOMES; BARDDAL; ENEMBRECK, 2015)

Online BBM.W f w v∗ i,b d f i (BEYGELZIMER; KALE; LUO, 2015)
AdaBoost.OL.W f w v∗ i,b d f i (BEYGELZIMER; KALE; LUO, 2015)
SluiceBox-AM h w he,h,o i i m i (PARKER; KHAN, 2015)

WEOB f w v i i f i (WANG; MINKU; YAO, 2015)
EDTC f m h i i f i,s (LI et al., 2015)
BLAST m w he i i f i (RIJN et al., 2015)
MOOB f r v i i f i (WANG; MINKU; YAO, 2016)
CNE n w v,h,t i i f a -

Table 4.1: Data stream ensemble classifiers according to our taxonomy
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4.2 Formal Definition of Network-Based Ensembles

Actual implementations are useful for empirical evaluations, and for studying spe-

cific characteristics of algorithms. While formal abstract definitions can be used for rea-

soning in a higher level about a method. In this section we present a formal description

of a general network-based ensemble, which specifically achieves objective 2 of this work

(see Section 1.2).

Let C = {c1, c2, cM} be a diverse set of classifiers, R a relation that defines connec-

tions Φ = {φ1, φ2, φP} between members of C, β a combination method that takes into

account the structure formed by Φ, and fψ an adaptation function that updates C and Φ

according to the current state of a data stream S.

Notice that it is expected that members of C are different from one another,

i.e., diverse. The reason for that is to be consistent with the intuitive principle that a

homogeneous subset of classifiers cannot contribute to the overall decision any better than

any of them alone. For the sake of generality our definition is not bound to any specific

method to induce diversity into the ensemble.

An important trait in this definition is that connections are not strictly defined

to be between pairs of classifiers. Even though, pairs are the most intuitive way to

group elements in a network (WASSERMAN; FAUST, 1994) or measure diversity between

classifiers (KUNCHEVA; WHITAKER, 2003), we do not want to restrict other types of

connections. Also, the relation R is not strictly defined to be a measure of diversity or

similarity, so far we can only envision one of these two to be useful for a combination

method (see Sections 4.3 and 4.6), although it would be a limiting factor if we added it

to this general definition.

Recalling our hypothesis, we state that “An ensemble classifier can obtain accurate

predictions with the aid of structural analysis of a weighted network of its component

classifiers” (see Section 1.3). The “aid” referenced in our hypothesis is the combination

method β, which must use the set of connections Φ as a source of information to achieve

accurate predictions. For example, in SAE (GOMES; ENEMBRECK, 2013) classifiers

deemed as similar are combined into subnetworks in order to obtain a voting method in

which similar classifiers do not reinforce their homogeneous decisions. A subnetwork’s

decision is effectively interpret as a single vote at the ensemble level. In this case, we

observe that the combination method used the information of “how similar” component

classifiers are to avoid a large set of similar classifiers dominating the ensemble decisions.

The last component of our definition is the adaptation function fψ. This function

must update the ensemble structure, either periodically or incrementally, to allow it to



70

adapt to drifts. These updates may include adding, removing, or replacing classifiers,

and refreshing statistics extracted from classifiers, such as similar predictions counters.

In SFNC (BARDDAL; GOMES; ENEMBRECK, 2014), a Scale-free network (ALBERT;

BARABÁSI, 2002) model is used to update the ensemble, in which periodically a new

classifier is added to the ensemble.

The following section presents an instantiation of the theoretical network-based

ensemble, namely the Social Adaptive Ensemble 2 (SAE2). Latter, in Section 4.6, we

present another network-based ensemble, namely the Complex Network Ensemble (cne).

4.3 A Preliminary Network-Based Ensemble: The So-

cial Adaptive Ensemble 2

In Section 4.2 a formal general description network-based ensembles was intro-

duced. This kind of formal abstract definition can be used for reasoning about high level

properties, without bounding these to specific implementations. Although abstract meth-

ods cannot be tested or compared with existing algorithms. Thus, aiming at providing

an initial attempt to solve objective 4 of this work (see Section 1.2), in this section we

present the details of an instantiation of our generic network-based ensemble, namely the

Social Adaptive Ensemble 2 - SAE2.

The original SAE (GOMES; ENEMBRECK, 2013) algorithm focused on three

aspects of ensemble classifiers in a data stream scenario, which are: diversity, combination

and adaptation. SAE2 is based on the same hypothesis as SAE, but its adaptation

mechanisms have been significantly enhanced. The hypothesis behind SAE and SAE2 is

that if it is possible to track component classifiers similarity, then it is feasible to quantify

diversity; combine individual predictions in a way that similar classifiers predictions are

grouped; remove redundant classifiers; and in the occurrence of a concept drift, emphasize

recently added classifiers predictions.

SAE and SAE2 use relational information to refine the ensemble. The relational

ties among ensemble members are weighted according to the relation “has similar pre-

dictions”. We found it useful to employ Social Network terminology to refer to SAE2

functionalities. Hence on this Section we refer to new classifiers as candidates, similarity

between two classifiers as a connection, subsets of similar classifiers as subnetworks and

the whole ensemble as network. Figure 4.4a presents an example of a network of classifiers.

SAE2 divides training in periods (windows) of c instances, each of which are pre-

sented only once to the network and used to train classifiers and candidates using Online
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Bagging. The network is updated at every period end to adapt it to the current concept.

This update includes the following actions in order: classifiers’ removal, candidate’s addi-

tion and network restructure. There is only one candidate per period, but the number of

classifiers that form the network vary from one to maxe. Figures 4.2 and 4.3 presents an

overview of the periodical updates (periods) and an outline of a SAE2 period, respectively.
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Figure 4.2: Overview of periods in SAE2 with the network structure obtained at every
period end.
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Figure 4.3: Schematic representation of a period in SAE2.

The candidate is trained along with the network during the period in which it

was created, although it does not influence the network predictions until it is added to

the network (similarly to OAUE (BRZEZINSKI; STEFANOWSKI, 2014)). One reason
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to train the candidate before adding it is to identify its similarities with the rest of the

ensemble. If it is very similar to others, it will become part of an already established

component, otherwise, it will be left isolated and its predictions will have direct impact

on network predictions. Also, if candidates were trained only on incorrectly classified

instances in some cases there would be too little instances to train on, thus candidates

would have low individual accuracy. The reason to reinforce candidates’ learning on

misclassified instances is to allow them to correctly classify them, thus enhancing network

diversity and adapting the candidate to concept drifts.

SAE adds an classifier to the network if the network accuracy is below a minimum

threshold (Accnet.min). Therefore, if the parameter Accnet.min is too optimistic a classifier

will be added every period and since there are no limits imposed on the ensemble size

it could grow to an unreasonable size, e.g., more than fifty classifiers. In SAE, it was

expected that the removal method could aid this situation by constantly removing clas-

sifiers, although there are some exceptional situations not covered by it. In (GOMES;

ENEMBRECK, 2013), the authors present an experiment with a Random Tree Genera-

tor, identified as RTC, in which performance was decreased and accuracy not significantly

increased, due to the addition of too many classifiers. To aid this situation, in SAE2 a

threshold that limits ensemble size (maxe) has been added. Also, the Accnet.min threshold

has been removed and the candidate classifier is added to the network if it has not been

marked for removal by the removal method. If maxe has been reached, the classifier with

lowest accuracy during last period is replaced by the candidate.

After being presented to a great volume of instances that belongs to the same

concept it is possible that two classifiers that initially had different hypothesis become

very similar with respect to their predictions. Consequently, it is useful to track similarity

between classifiers and take actions based on that. These actions vary from removing

one of two very similar (redundant) classifiers to combining decisions of similar enough

classifiers. The subjective concepts of “very similar” and “similar enough” are based on the

Similarity Coefficient (Equation (3.13)) and determined by the Maximum and Minimum

Similarity Coefficient, Scmax and Scmin, respectively.

Maintaining a diverse set of classifiers is not enough to enhance accuracy. The

combination method plays the important role of highlighting correct and obfuscating

incorrect predictions. In SAE and SAE2, predictions are first combined within subsets

of similar classifiers (subnetworks), and afterwards their outputs are combined to obtain

the final prediction. There are mainly two reasons to combine predictions in two levels.

First, it is reasonable to combine highly similar classifiers, such that they do not dominate

predictions based only on their quantity; and second, it is faster to recover from concept
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drifts, since the combination method tends to assigns more weight on isolated classifiers,

which is exactly what happens to a candidate if a drift has occurred. The differences

between SAE and SAE2 rely on how classifiers are combined (subnetworks generation)

and weighted during voting.

Identifying subnetworks (or communities) is a complex problem, precisely a NP-

complete problem, and it has been thoroughly investigated by the complex network re-

search community (FORTUNATO, 2010). For network-based ensembles besides the effi-

ciency of the subnetwork generation process, it is also important to consider its semantics,

i.e., what are the traits of the discovered subnetworks. In SAE, subnetworks are gener-

ated through identification of weakly connected components, while SAE2 uses maximal

cliques to generate subnetworks. Figure 4.4 presents how subnetworks are generated based

on the network shown in Figure 4.4a using both methods. By generating subnetworks

through weakly connect components, classifiers that are dissimilar, may become part of

the same component, for example, classifiers 6 and 4 in Figure 4.4c. This behavior is

inconsistent with the notion of grouping similar classifiers, therefore SAE2 obtains sub-

networks through identification of maximal cliques, i.e., members of a component must

be connected to all other members as shown in Figure 4.4b.

SAE performs majority voting within subnetworks followed by a weighted majority

voting based on subnetworks predictions. Subnetworks’ votes are decreased if its members’

predictions are split. For example, given an instance i and subnetwork A = {1, 2, 3, 4, 5, 6}
(Figure 4.4c), if all members of A predicted a class value of 1 for i, besides 5 that predicted

0, then subnetwork A will predict 1 with a weight of 5/6. This tends to increase isolated

classifier’s influence, since their prediction weights are always maximum. This voting

method may cause too many ties and it can highlight low accuracy classifiers predictions,

simply because they are isolated. In SAE2, voting is weighted according to classifiers

and subnetworks accuracy during the current period. First, classifiers’ predictions are

combined within subnetworks based on a weighted majority vote, such that weight is

given by their accuracy. Afterwards, a weighted majority vote is performed based on the

subnetworks’ predictions and weighted by the average accuracy of its members. Ties are

diminished and unreasonable emphasis on low performance classifiers are avoided by this

voting method.

Classifiers and the candidate are subject to be marked for removal if their accuracy

is bellow the minacc threshold or if their predictions are redundant with respect to other

classifier. This strategy assists the addition and combination methods in maintaining an

ensemble of diverse classifiers, such that those that impact performance (redundant) and

accuracy (low accuracy) are removed. When two classifiers are identified as redundant,
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Algorithm 1: SAE2 algorithm. Input: Data stream S that provides an instance
i every t moments. Period length l. Maximum and Minimum Similarity Coefficient,
Scmax and Scmin, respectively. Max classifiers maxe. Minimum classifier accuracy
minacc. Local variables: Network of classifiers N . Instance i = (~xi, yi). Set of
misclassified instances I. Candidate classifier c.
Require:
maxe ≥ 1 ∧ Scmin ∈ (0, 1) ∧ Scmax ∈ (0, 1) ∧ Scmin < Scmax ∧minacc ∈ (0, 1) ∧ l ≥ 1
e0 ← new.classifier
N ← {e0}
while has.next(S) do
reset.statistics(N)
c← new.classifier
I ← {}
for j ← 1 to l do
i← next(S)
di ← predict(N, i)
if di 6= yi then
I ← I ∪ {i}

end if
for all e ∈ N ∪ {c} do
online.bagging(e, i, λ := 1)
for all w ∈ (N ∪ {c})− {e} do
similarities.update(w, e)

end for
end for

end for
remove.classifiers(N ∪ {c}, Scmax,mine)
if not.removed(c) then
train(c, I)
if size(N) = maxexp then
el ← lowest.accuracy(N)
N ← N − {el}

end if
N ← N ∪ {c}

end if
connections.update(N,Scmin)
generate.subnetworks(N)

end while
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(a) Network composed of 7 experts and their Sc (Equation
3.13) between active connections

(b) Maximal cliques (c) Weakly Connected Components

Figure 4.4: Network and its subnetworks using two different combination methods

that which was added first to the network is removed. This design decision is based on

the assumption that recently added classifiers are less committed to older concepts (oldest

first), thus they may adapt to new concepts faster. In the occasion of a concept drift

many classifiers might be removed at once, while during periods without drifts redundant

classifiers are more likely to be removed. If all classifiers are marked for removal, then the

one with higher accuracy is kept.

The main function for SAE2 is presented in Algorithm 1. At the beginning of every

period, all the statistics from the last period are discarded. These statistics account for

the individual accuracy of classifiers, the similarity counter between pairs of classifiers ki,j
and the set of misclassified instances I. The classifiers’ hypotheses are kept across periods,

but network structure may change. Subnetworks are generated only once at period end.

In the following sections we deepen our analysis about network-based ensembles

by exploring the combination and relation definition processes.

4.4 Combination

Combination plays a very important role in an ensemble classifier. Ideally, the

combination method is responsible for obfuscating incorrect and highlighting correct pre-
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dictions. For conventional ensembles, combination is analogous to voting, but for network-

based ensembles it is worthwhile to separate the combination into two separate processes:

building the structure and voting. The building block of the structure is the connections

between classifiers. The connections adhere to the relation defined for the ensemble. In

SAE2, connections are created between pairs of classifiers based on their similarity, af-

terwards this structure is filtered and a network of classifiers is obtained. It is expected

that voting exploit the network structure. For example, in SAE2 voting is performed in

two levels, such that the first one is internal to subgroups of classifiers as specified by the

network structure. One could argue that conceptually building the structure is also part

of voting, but for the existing methods (SAE, SAE2, SFNC), it has been considered a

separate step, as it involves complex steps that, different from voting, are not executed

every time a new prediction is requested.

In SAE (GOMES; ENEMBRECK, 2013) empirical reasons are presented that jus-

tify the exploration of an ensemble beyond simply assigning individual weights or rein-

forcing diversity. Although it is not clear that those results were due to the network or

due to other characteristics, such as periodical additions and removals of classifiers, time

dependent weighting, or diversity enhancing training. To investigate the benefits of using

a network of classifiers, in Section 5.2, we present results of SAE2 with 3 different vari-

ations of combination method, including a “no network” version. Also, a more in-depth

analysis of how combination influence the overall results is presented in Section 5.4.

4.5 Relation R

The relation R is the fundamental block that defines how connections are formed

and weighted. Intuitively, to produce useful information for the combination step the

relationship between a pair of classifiers must express their similarities or dissimilarities.

The most generic way to measure similarity or dissimilarity between a pair of classifiers

is to observe their outputs given the same input. Notice that there may be other forms of

defining relations for a set of classifiers, therefore we do not bound our general definition

to “similarity/diversity” weighting (see Section 4.2). In SAE2, and SAE, the Similarity

Coefficient (Sc) is used to define the relation between classifiers. Sc measures the sim-

ilarity between classifiers according to the number of instances that both predicted the

same class label. One benefit of this approach is that SAE and SAE2 do not depend on

a specific base learner.

In the following sections we present two different relation definitions that are asso-

ciated with objective 3 of this work (see Section 1.2). These relations are used to define
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voting strategies that focus almost completely on the relational data extracted from the

component classifiers. These strategies are mainly based on pairwise combination of com-

ponent classifiers. Despite efforts to build a diverse ensemble, there is always some degree

of overlap between component classifiers models. In these methods, we hypothesize that

by combining pairs of classifiers it is possible to alleviate incorrect individual predictions

that would otherwise negatively impact the overall ensemble decision. The first strategy,

Pairwise Accuracy (PA), combines the shared accuracy estimation of all possible pairs in

the ensemble, while the second strategy, Pairwise Patterns (PP), record patterns of pair-

wise decisions during training and use these patterns during prediction. We also present

the adaptations needed for an ensemble to incorporate PA and PP.

4.5.1 Pairwise Accuracy

Pairwise Accuracy (PA) combine classifiers into pairs, and weights the predictions

of these pairs based on their shared estimated accuracy in the most recent instances.

To estimate accuracy, we use a similar approach to the weighting function in SAE2 (see

Section 4.3), such that individual and pairs of classifiers are weighted incrementally and

reset periodically according to a fixed window (period). Formally, let Un be the set of all

instances from window n, I and J be subsets of Un, which classifiers ci and cj were able

to correctly classify, respectively, and Ie and Je instances drawn from Un that ci and cj
incorrectly classified, respectively. Also, U t

n = I ∪ J ∪ Ie ∪ Je is the set of all instances

from window n already presented to ci and cj up to instance t. We define the pairwise

estimated accuracy, namely Sacc(ci, cj) (Equation 4.1), of classifiers ci and cj, as the ratio

of instances from U t
n that both correctly classifies. Conversely, ci and cj shared estimated

error rate, namely Serr(ci, cj) (Equation 4.2), is defined as the ratio of instances from U t
n

that both incorrectly classifies.

Sacc(ci, cj) =
|I ∩ J |
|U t

n|
(4.1)

Serr(ci, cj) =
|Ie ∩ Je|
|U t

n|
(4.2)

We also define the accuracy estimation for a single classifier ci during window n up to

instance t, namely acc(ci) (Equation 4.3), as the ratio of instances from U t
n that ci was

able to correctly classify.

acc(ci) =
|I|
|U t

n|
(4.3)

Figure 4.5 shows a graphical representation of how sets I, J , Ie, Je could overlap.
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Un

Ie

I

Je J

Figure 4.5: Venn diagram representation of window n and classifiers ci and cj correctly
and incorrectly classified subsets of instances

In order to use Sacc and Serr during voting, we employ a weighting function that

prioritizes equal pairwise predictions over individual predictions, if and only if, their pair-

wise predictions are accurate. For all ci classifiers in C at window n, voting is performed

in pairs, such that
(|C|

2

)
pairs are formed. Using a vector ~v to store weights during voting,

such that every position in ~v corresponds to a possible label and is initialized with 0,

and assuming individual predictions are denoted by h(x), each pair of classifiers (ci, cj)

contributes to the overall prediction through Equation 4.4, if ci prediction matches cj
prediction, i.e., hi(x) = hj(x), or Equations 4.5 and 4.6, if ci and cj predictions diverge

for an instance x, i.e., hi(x) 6= hj(x).

~v(hi(x)) := ~v(hi(x)) + Sacc(ci, cj)− Serr(ci, cj) (4.4)

~v(hi(x)) := ~v(hi(x)) + acc(ci)− Sacc(ci, cj) (4.5)

~v(hj(x)) := ~v(hj(x)) + acc(cj)− Sacc(ci, cj) (4.6)

After inspecting every pair, the overall ensemble prediction is obtained by Equation 4.7.

arg max
i

~v(i) (4.7)

Through Equations 4.4, 4.5 and 4.6, it is possible to observe that given two classi-

fiers with high Sacc, their split predictions will be degraded, while their equal predictions

will obtain a high weight, which in turn is decreased by their shared mistakes Serr. If pairs

disagree on their predictions, their individual decisions will be taken into account, but

their weights will be decreased according to their estimated shared accuracy (Sacc). The

intuition behind PA is: “if i and j are accurate when their decisions match, then when

they disagree it might be a mistake, conversely, if they are not accurate together, them

their individual predictions must be taken into account”. We note that this formulation

does not take into account concept drifts directly, although since all pairs of classifiers
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are considered, classifiers committed to previous concepts might be obfuscated when their

votes are combined with classifiers trained only in the latest instances.

When and how classifiers are added to the ensemble is beyond the scope of the

voting method, but PA was conceived to work with either periodically additions/removals

of classifiers (SAE, SAE2, SFNC, OUAE) or drift detection based classifier resets (Lever-

aging bagging, ADWIN bagging). In comparison to existing weighting methods, PA

resembles OAUE and SAE2 weighting mechanism as its formulation normalizes weights

based on the number of instances that a classifier has been trained on. The main difference

between existing voting methods and PA, is that the later combines classifiers pairwise,

which may reduce the impact of classifiers with low accuracy on the overall decision.

4.5.2 Pairwise Patterns

Similarly to PA, Pairwise Patterns (PP) voting scheme uses all possible pairs of

classifiers
(|C|

2

)
, but instead of estimating shared accuracy, PP records predictions patterns,

during training, and use these patterns to weight decisions while predicting the label of

an unknown instance x. To achieve that, PP uses a vector ~p with all possible d = k2

prediction patterns given two classifiers and k classes, and a matrixMd,k which is updated

during training and used to determine which labels corresponds to each pattern. Md,k

has one column for each possible label and one line for each pattern. During training,

classifiers ci and cj predict the label of an instance x independently, their predictions are

then combined into a pattern which is used to find the corresponding line index in Md,k,

while the correct label y determines the column index that must be incremented in Md,k.

The overall ensemble prediction for an unknown instance x is the label that receives more

votes based on the observed patterns from all pairs of classifiers for instance x. Figure

4.6 presents an example of how Md,k and ~p are related for a given pair. It is important

to notice that the whole ensemble just needs one vector ~p, but every pair of classifiers

must have a distinct matrix Md,k. Using the example from Figure 4.6, while predicting

the label of an unknown instance x, if hi(x) = 0 and hj(x) = 1, then pair pci,cj combined

prediction weight is going to be 3 for label 0, 16 for label 1, and so forth.

The intuition behind PP is: “If i and j decisions are A and B, it might be the case

that the correct class label is C”. For instance, consider a classifier i that always predict

A for instances with real class label C, and a classifier j that always predict class B for

instances with real class label C. When i decides for A and j for B this individual outputs

can be corrected as C through PP voting method. PP is similar to PA as it is able to

effectively work with different ensemble learning strategies, i.e., periodical resets or drift
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~p
(0,0)
(0,1)
...

(k-1,k-1)

Corr. 0 Corr. 1 . . . Corr. (k-1)
12 4 . . . 0
3 16 . . . 1
... . . . . . . . . .
3 5 . . . 18

Figure 4.6: Example of the data stored for a given pair of classifiers ci and cj for a
classification problem with k classes. Every entry in ~p has a one-to-one relation to a line
in M .

detection resets. The main difference between PP and PA is that PP ignores individual

predictions completely. Only combined predictions are considered. Theoretically, the

individual accuracy does not matter in PP as long as classifiers are consistent with their

decisions, i.e., classifier i is still useful if it consistently incorrectly predict class values.

This characteristic brings PP fairly close to error-correcting output codes (ECOC) for

multiclass problems (DIETTERICH; BAKIRI, 1995), even though PP is designed to

combine multiple classifiers decisions and not decompose multiclass problems into binary

problems.

4.5.3 Ensemble Adaptations for Pairwise methods

To make it possible to test PA and PP, we use an ensemble structure based on ex-

isting methods. We denote this ensemble by Generic Ensemble (GE) and briefly describe

it. GE updates its component classifiers periodically based on a predefined window, such

that the worst or oldest classifier is replaced by a background learner (also known as can-

didate (BRZEZINSKI; STEFANOWSKI, 2014; GOMES; ENEMBRECK, 2014)) trained

during the last window. The default method and the adaptation for PA replaces the worst

classifier, according to Equation 4.3, while the adaptation for PP replaces the oldest clas-

sifier, since the latter does not assess classifiers individually. During the first window

GE only has one active classifier and a background classifier. In the second window the

background classifier becomes active and a new background classifier is created. This pro-

cess continues until the maximum number of classifiers has been reached (user threshold),

and after that new classifiers can only replace existing classifiers. There are mainly two

reasons to perform this process. First, classifiers are trained on different chunks of data

and this assists in creating a diverse set. Second, the background classifier is adapted to

the latest concept, and therefore it can gradually “adapt” the ensemble if concept drifts

occurs. The background classifier do not take part of voting during predictions, since it

could potentially degrade the overall performance as it may have a “weaker” hypothesis.
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The default voting strategy of GE is based on the combination of the individual

classifiers weight, such that weights are assigned according to Equation 4.3. Besides

using GE to test PP, we have also adapted the Leveraging Bagging (BIFET; HOLMES;

PFAHRINGER, 2010) algorithm to use PP for voting. The changes made to Leveraging

Bagging includes the addition of a vector of patterns ~p to the ensemble, and for each pair

of classifiers a matrix M . In order to account for the fact that Leveraging Bagging uses

ADWIN to detect concept drifts, whenever a drift is detected, and a classifier c is reset,

all matrices M corresponding to classifier c are reset as well. As a consequence, values

in different matrices M may vary in scale. To adjust for that, each pair vote is weighted

according to the total amount of instances that both classifiers have predicted together.

We have not adapted Leveraging Bagging to work with PA, since PA weight functions

depends on a fixed window size.

The empirical analysis of PA and PP are presented in Section 5.3.

4.6 The Complex Network Ensemble Classifier

In this section we present a novel network-based ensemble aiming at fully accom-

plishing objective 4 (see Section 1.2) of this thesis, namely the Complex Network Ensemble

(CNE). We define CNE in terms of our general model presented in Section 4.2, thus we

explain it in terms of the relation R, the combination β used to induce a network structure

from the set of connections according to R, and the adaptation function fψ.

Whenever possible we tried to address SAE2 shortcomings in CNE. SAE2 uses a

fixed period length parameter to define when to perform multiple updates to the network,

including: removing/adding models and resetting estimations, etc. Setting this param-

eter correctly is crucial to obtain good classification performance as smaller values will

lead to many updates while larger values may jeopardize the ability to adapt to drifts.

Besides that, SAE2 demands the specification of other fixed parameters, for example, to

define when to remove models based on their estimated accuracy (minacc) or redundancy

(Scmax). In overall, SAE2 heavily depends upon the following hyperparameters:

• l period length;

• Scmax maximum similarity coefficient;

• Scmin minimum similarity coefficient;

• minacc minimum classifier accuracy;

• maxe maximum number of classifiers.
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The main problem with these parameters is that most of them must ideally be

tuned for each stream. For example, minacc is set to 0.7 in our experiments (see Section

5.2), however assuming that for a given data set there is no single base model able to

achieve this accuracy the ensemble will constantly reset models. The same argument

can be used to define the maximum (Scmax) and minimum (Scmin) similarity coefficients,

which control when to remove redundant classifiers and when to activate connections,

respectively.

In CNE, we have decided to remove the l parameter and use an active drift detec-

tion strategy. The main benefit is that it is not necessary anymore to fine tune the period

length, yet it increases the complexity of the algorithm as effectively there are multiple

adaptive windows (one for each base model). In SAE2 the relation R was defined as

the similarity coefficient (Sc) between a pair of classifiers, connections were activated if

they surpassed Scmin and a network was induced based on the maximal cliques. In SAE2

predictions were obtained by combining the weighted votes (based on current period accu-

racy) first at the subnetwork level and latter at the network level, which contributed to an

indirect drift adaptation technique as recently added classifiers, probably better adapted

to the current concept, tend to receive higher weights. In CNE we define the relation

R as either the Kappa statistic between pairs of base models outputs or their Jaccard

similarity of the features used to induce the model, and the network is build using a k

nearest strategy as presented in (SILVA; ZHAO, 2016). CNE uses an adaptation strategy

based on one drift/warning detector per base model, training background learners when-

ever warnings are detected, and weighting votes based on accuracy calculated on adaptive

windows. Also, CNE uses two diversity inducing techniques: vertical (similar to Leverag-

ing Bagging) and horizontal (random subspaces). The rest of this section discusses each

aspect of CNE in details.

4.6.1 CNE Relation R

We have tried two different similarity weighting functions to define the relation

R, namely Kappa statistic κ and Jaccard Index. The reason for using Kappa instead of

Similarity Coefficient is that Kappa account for agreements that might happen by chance,

while also precisely measuring divergence votes on multiclass problems (See Section 3.2.2

for a thorough discussion on Kappa).

Jaccard Index is used to estimate the similarity between finite sample sets (LEVANDOWSKY;

WINTER, 1971), and is defined as the size of the intersection divided by the size of the

union of the sample sets as shown in Equation 4.8, where A and B represents subsets of
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features used to induce models a and b. The intuition behind using Jaccard to measure

the similarity among base models is that models induced using approximately the same

features might as well generate very similar models even if bagging is used. There are

other set distance metrics that could be used instead of Jaccard, such as Sorensen-Dice

index (DALIRSEFAT; MEYER; MIRHOSEINI, 2009), however our problem matches the

ideal scenario for applying Jaccard, i.e., it is defined in terms of a binary set membership

and element identity (features either belong to the subset or not), and two features are

either completely equal or not at all.

J(A,B) =
A ∩B
A ∪B

(4.8)

There are three important factors to take into account when comparing Kappa

and Jaccard for measuring similarity in CNE:

1. Input data to estimate similarity: Kappa is calculated on the output predictions,

while Jaccard is calculated on the feature subset;

2. Domain: Kappa ranges from -1 (Inverse dependency) to 1 (Dependency), such that

0 represents independency. Jaccard ranges from 0 (No features are shared between

models) to 1 (Exactly the same subset or one subset is a superset of the other1).

3. Update frequency: To maintain an updated estimation Kappa must be recalculate

after every new instance is used for training, while Jaccard is updated only when

the subspaces are defined for each model and when subspaces are reset.

In overall, Kappa provides a more accurate similarity estimation as it is based on

the actual outputs. For example, it may happen that a completely different subset of

features is used to induce two models, yet the features that compose these subsets may

be correlated, thus both models will output very similar predictions. The main concern

about using Kappa is that CNE does not use a fixed update period length to control

network updates, thus it is necessary to recalculate Kappa after every new instance is

used for training, which requires a lot of computational resources. Optionally, we could

have defined a grace period after which Kappa would be recalculate and the network

rebuild, however we would then be tied to a similar parameter as the period length l in

SAE2.
1In CNE the number of subspaces is fixed, thus it is not possible that the number of features diverges

from one classifier to another.
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4.6.2 CNE Combination β

Beyond defining relations, it is also necessary to specify how they will be explored

by the ensemble. In this case, how the structure induced by them will be used to boost pre-

dictions. In our formal framework this is equivalent to defining the combination method

β. In SAE2, classifiers were combined based on dichotomous connections created based

on the Scmin parameter. The goal was to first decide within a set of highly similar clas-

sifiers a class label, and then use this decision in a secondary level in which all subsets of

classifiers decisions were combined to form the overall ensemble decision.

In CNE we use a similar voting strategy, i.e., first combine votes within subnet-

works and then combine the subnetworks votes to obtain the overall prediction. Precisely,

when an unknown instance x is to be classified each component model will yield one vote

weighted by its current estimate accuracy. These individual votes are then combined into

an overall subnetwork vote, which is weighted by the average accuracy estimation of its

members. This final vote per subnetwork is used to define the overall decision.

The network structure is created based on a variation of the k nearest neighbors

network construction technique as proposed in (SILVA; ZHAO, 2016). This method must

not be confused with the classical k nearest neighbor learner. In (SILVA; ZHAO, 2016)

authors present a deterministic approach to construct a network given an arbitrary dis-

tance function. Basically, once set a reference vertex, the remaining non-reference vertices

are ordered according to the their distance to it. Then, the reference vertex creates a con-

nection with the top k vertices, i.e., closest, from the ordered list.

The base algorithm (SILVA; ZHAO, 2016) does not specify how the reference

vertices are selected. Thus, we have changed it to accommodate a more intuitive network

construction approach given our problem. First, we define the k reference vertices, which

we name as seed models/nodes, to maximize the overall distance among them. Intuitively,

our goal is to create subnetworks as diverse as possible from one another. To do that, we

maximize the dissimilarity among seed nodes in an iterative process: first we select the 2

most distant nodes, then the node that is most distant from the previously selected 2, and

continue until k is reached. For example, assuming k = 3 and that nodes are arranged in

Figure 4.7 with distance corresponding to their Kappa (or Jaccard) measure, the nodes

selected as seeds would be first 14 and 81, and then 12.

Finally, there are a multitude of algorithms for finding subgroups on networks

(BOCCALETTI et al., 2006). In SAE (GOMES; ENEMBRECK, 2013) we have used

weakly connected components, while in SAE2 we used maximal cliques. In CNE we have

decided to use a method that was already used in the context of complex networks for
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(a) Initial network. (b) After selecting the 2 most distant nodes (12
and 81).

(c) After selecting the node (14) most distant
from the previously selected.

(d) Assigning remaining nodes to the nearest
seed node.

Figure 4.7: CNE network formation example.

machine learning, though not exactly for the same purpose as in (SILVA; ZHAO, 2016)

authors show how to use the k-nearest neighbors algorithm to transform vector-based

data into networks.

This network formation strategy still depends on an hyperparameter (k). However,

it is an improvement over SAE2 Scmin parameter as it is independent of the connections

weight scale. For example, assuming each connection in the example from Figure 4.7 were

25% “closer”, the resulting subnetworks would be the same.

4.6.3 CNE Adaptation fψ

Following our definition of a network-based ensemble, we have to define the adapta-

tion function fψ, responsible for matters such as: how training takes place and when/how

the ensemble structure is updated. As explained in Section 4.2, the general definition of a

network-based ensemble does not explicitly defines the training method used. Although
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the definition specifies that component classifiers must be diverse, thus for implementa-

tions this must be taken into account. In SAE2, diversity is induced into the base models

by training using Online Bagging (OZA, 2005) and by removing/adding new models.

In CNE we decided to simulate Leveraging Bagging (BIFET; HOLMES; PFAHRINGER,

2010) instead of Online Bagging. Both methods train each model using a randomly se-

lected subset of instances. As discussed in Section 3.5.4 and 3.5.8 this is simulated in

an online setting by using a poisson distribution. The Online Bagging algorithm uses

Poisson(λ = 1), which means that around 37% of the values output by the Poisson dis-

tribution are 0, another 37% are 1, and 26% are greater than 1. This implies that by

using Poison(1) 37% of the instances are not used for training (value 0), 37% are used

once (value 1), and 26% are trained with repetition (values greater than 1). Leveraging

Bagging uses Poisson(λ = 6), which implies that 0.25% of values are 0, 45% are lower

than 6, 16% are 6, and 39% are greater than 6. Effectively, base models are trained

using more instances in Leveraging Bagging, still more resources are used in comparison

to Online Bagging.

Besides training classifiers on different subsets of instances, in CNE we also train

them on different subsets of features. This strategy is known as the Random Subspace

Method (RSM). As discussed in Section 3.2.1 there are 2M − 1 different non-empty sub-

sets of features, which makes it not practical (sometimes impossible) to try every possible

combination. However, it is possible to achieve good classification performance in the

aggregated ensemble even if only a subset of all possible combinations is explored. The

main reason for using random subspaces to train CNE component classifiers is to enhance

diversity among them. One secondary reason would be to allow processing high dimen-

sionality data streams, however this is not exactly the case as CNE requires too many

resources to execute because of the network updates.

As previously commented, instead of using a fixed window approach for updates,

CNE uses drift detectors. Each component classifier is associated with one drift/warning

detector. When detector dj signals a drift warning, then a background learner cbkg(j),

is initialized. When dj outputs the drift signal, then cbkg(j) replaces the current classi-

fier cj. This approach is similar to that used in Leveraging Bagging (BIFET; HOLMES;

PFAHRINGER, 2010), although instead of just resetting the classifier, we also start train-

ing a replacement beforehand, i.e., when a drift warning is detected. CNE is not bounded

to a specific drift detection method, however for our actual implementation we used AD-

WIN (BIFET; GAVALDÀ, 2007), which demands a unique parameter that specify the

drift confidence level δ. Thus we have two separate parameters, one for warning detection

δw and another for drift detection δd.
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Given our reset strategy based on drift detectors there is no fixed window to esti-

mate accuracy or any other metric. Therefore, to weight classifiers we use the estimated

accuracy for the given classifier window. This provides a good estimation of the classifier

as long as it has seen enough instances, i.e., it will underestimate or superestimate its

classification performance if the classifier has seen just a few instances. This is somewhat

aided by using background learners as by the time a classifier is added to the ensemble

it will already been trained on a few instances (hundreds or thousands) and will have a

good estimation of its accuracy.

4.6.4 CNE Subspace resets

We learned through empirical experiments (see Section 5.5) that not resetting the

subspace when drifts were detected was not a good approach for CNE. The intuition be-

hind this is that some feature subsets might be irrelevant either temporally or throughout

the whole stream, thus we present two approaches for resetting them whenever background

learners are created. The first approach simply assign a new randomly generate subset

of features whenever a new background learner is created. The second approach tries to

find the best subset to be assigned by taking into account the current learners accuracy.

Similar approaches have been tested in different works for batch learning, either to as-

sign weights to component classifiers based on their subspace (LI; ZHAO, 2009) or (more

similar to our approach) to assign weights or select feature subsets (JOHN et al., 1994;

NGUYEN et al., 2015). Basically, our second approach assign each feature a probability

of being selected to compose the subspace of a newly created background learner. For

each feature, we sum over the estimated accuracy of all learners that are using it, then we

normalize these weights by dividing each feature weight by the number of learners where

they are used and end up with a vector w which is then used to selected the features for

the new subspace.

4.6.5 CNE Overview

It is very difficult to achieve a parameter-free ensemble classifier. For example, we

were not able to eliminate the parameter to limit the number of classifiers n and introduced

a few, other parameters. The following list presents CNE parameters accompanied by their

short descriptions.

• n defines the total amount of active based models that the ensemble will have at

any time. In a stream learning context it is very important to limit the number
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of classifiers, since memory and processing time are limited assets. n is different

from maxc from SAE2, as CNE starts execution with n component classifiers and

maintain it during the whole execution, while in SAE2 maxc defines the maximum

number of component classifiers, thus at some point of the execution there might

be less than maxc active classifiers.

• k defines the number of seed nodes to build the network. As discussed in Section

4.6.2 this parameter serves a similar purpose as that from Scmin in SAE2, i.e., it

guides the connections and subnetworks creation. However, k is easier to set as it

is independent from the similarity metric used scale.

• m is the subspace size, which defines the percentage of features randomly assigned

to be used for training each base model. Lower values adds more diversity into the

ensemble as it lower the chances of the same component classifiers being assigned

exactly the same subspaces. However, it can also be detrimental to performance as

low subspace sizes for a high dimensional problem may incur that some important

features are never selected.

• δd and δw representing the ADWIN drift and warning confidence levels. These

parameters effectively replace SAE2 l period length, since they define individually

the periodicity of when each base model is updated. Effectively, each base model

has its own adaptive window

The pseudocode for CNE is presented in Algorithm 2. One important aspect of the

algorithm depends upon the connection weighting function. If Kappa is used, then the al-

gorithms executes as illustrates in Algorithm 2, i.e., after every instance UpdateEdges(N)

and RegenerateSubnetworks(k,N) are executed as in lines 19 and 20. However, if Jac-

card is used instead, then only if a ResetSubspace(c,m) takes place it will be necessary

to update edges and recreate the subnetworks, since Jaccard is calculated on the feature

subset instead of learners outputs.

4.7 Final Considerations

In this section we have presented our efforts to address the overall and specific

objectives (see Section 1.2). Albeit there is room for improvements in our solutions, for

example, CNE presented in Section 4.6 still demands a lot of computational resources as

is shown in Section 5.5.
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Algorithm 2: CNE algorithm. Input: S: data stream that provides an instance
(xi, yi) every t moments; n: total base models; m: subspace size; k: number of seed
models; δd and δw: drift and warning detection confidence levels. Local variables:
N : set of classifiers; R: set of subspaces. W : set of classifiers’ weights; P (·): learning
performance estimation function (e.g. accuracy); E: set of edge weights; BKG: set
of background learners; u number of times a classifier will be trained on the same
instance (given by poisson(λ = 6)); x̂: input feature vector limited to a given
subspace.
Require: n ≥ 1 ∧ δw > δd
1: R← RandomSubspaces(m,n)
2: N ← CreateNetwork(k, n)
3: while HasNext(S) do
4: (x, y)← next(S)
5: for all c ∈ N do
6: x̂← PrepareSubspace(R, x, c)
7: ŷ ← predict(c, x̂)
8: W (c)← P (W (c), ŷ, y)
9: u← poisson(λ = 6)
10: Train(c, x̂, y, u)
11: if ADWIN(δw, c, x̂, y) then
12: BKG(c)← CreateClassifier()
13: ResetSubspace(c,m)
14: end if
15: if ADWIN(δd, c, x̂, y) then
16: c← BKG(c)
17: end if
18: end for
19: UpdateEdges(N)
20: RegerateSubnetworks(k,N)
21: end while
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In the next section we present empirical results aiming at a deeper level of under-

standing of SAE2, PA, PP and CNE.



Chapter 5

Experiments

We segment the experiment sections according to the methods presented in sec-

tions 4.3, 4.5.1, 4.5.2 and 4.6. Assessing all methods concomitantly would be confusing.

Therefore, we organize this section into four subsections in order to analyze SAE2, PA,

PP and CNE separately. We added Section 5.4 to specifically evaluate the combination

method used in SAE2, and also investigate the general idea of “combination” through

relational data.

For all experiments, we present empirical results comparing ensemble classifiers

in both real and synthetic datasets, with and without concept drifts. The datasets used

are described in Section 2.4. The experimental protocol for each experiment might differ

as they are aligned with their original publications. For an overall assessment of all

the methods presented in this work against the literature state-of-the-art, the reader is

directed to the last section 5.5.

5.1 Datasets configuration

The data used for the experiments presented on this chapter include six real

datasets and nineten variations of synthetic data streams. The synthetic data are ei-

ther evolving (abrupt, gradual and incremental drifts) or stationary (no drifts) streams.

Table 5.11 presents which types of drifts were simulated for every synthetic data stream

used. Synthetic data streams configurations generated 1 million instances, while real

datasets have varying sizes. Table 5.2 presents a summary of the real datasets used.

We do not use all datasets in all experiments, for example, it was not feasible to
1Notice that SAE2, PA and PP have already been published during the writing of this work, to avoid

“clash” of the acronyms used to refer to each dataset presented on each paper we have renamed some
configurations here. Concretely, AGR1 and AGR2 in PA/PP (GOMES; BARDDAL; ENEMBRECK,
2015) are AGR3 and AGR4 here.
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ID Data generator # Attributes # Classes Drifts
LEDa LED 24 10 A/A/A
LEDg LED 24 10 G/G/G
RTS RTG 10 2 N
RTC RTG 10 2 N
AGR1 AGRAWAL 9 2 A
AGR2 AGRAWAL 9 2 G
AGR3 AGRAWAL 9 2 A/A
AGR4 AGRAWAL 9 2 G/G
AGRa AGRAWAL 9 2 A/A/A
AGRg AGRAWAL 9 2 G/G/G
SEA1 SEA 3 2 A
SEA2 SEA 3 2 G
SEA3 SEA 3 2 A/A
SEA4 SEA 3 2 G/G
SEAa SEA 3 2 A/A/A
SEAg SEA 3 2 G/G/G
RBFm RBF 10 5 Im
RBFf RBF 10 5 If
HYPE Hyperplane 10 2 If

Table 5.1: Synthetic data streams configurations (A: Abrupt Drift, G: Gradual Drift, I:
Incremental Drift (m: moderate, f:fast), N: None).

ID # Instances # Attributes # Classes MF Label LF Label
Airlines 539,383 8 2 55.46% 44.54%

Electricity 45,312 8 2 57.55% 42.45%
Covertype 581,012 54 7 48.76% 0.47%
GMSC 150,000 11 2 93.32% 6.68%
KDD99 4,898,431 41 23 57.32% 0.00004%
Spam 9,324 39,917 2 74.4% 25.6%

Table 5.2: Real datasets. MF Label and LF Label stands for Most Frequent and Less
Frequent class label, respectively.

use SPAM on the experiments listed on Section 5.4 simply because it is computationally

impractical. Thus, in each of the following sections we specify which datasets were used

for the current experiments.

All experiments were configured and executed on MOA (Massive On-line Analy-

sis) framework (BIFET et al., 2011). To evaluate accuracy on all experiments we apply

the Prequential (GAMA; RODRIGUES, 2009) evaluation procedure. The reason to use

Prequential is because it gives accuracy estimates that approximates those of a holdout

evaluation and allows using all instances for testing and training (see Section 2.3). For

the final experiments in section 5.5, we also report Kappa M and Kappa Temporal. Ex-

periments that measure processing time and memory used proceed as follows: Processing

time is measured in seconds and is based on CPU time; and memory is measured in MB

and based on RAM-hours (BIFET et al., 2010), e.g., one GB of memory deployed for one
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hour corresponds to one RAM-Hour.

To account for random decisions in some methods, we repeat evaluations third

times and average the results varying the random seeds. Thus, reported accuracy, time

and memory cost are based on averages of third repetitions.

5.2 SAE2 Experiments

In this experimental evaluation we assess three aspects of data stream classification:

average accuracy, processing time and memory.

In order to evaluate how SAE2 performs when compared to other ensemble clas-

sifiers we present results for DWM, ASHT Bagging, ADWIN Bagging, Leveraging Bag-

ging and SAE. The parameters defined for these ensemble methods were those defined

in their original papers. SAE and SAE2 parameters are set as follows: Scmax = 0.99,

Scmin = 0.90, minacc = 0.70, maxe = 10 (SAE2) and Accnet.min = 0.9 (SAE). The period

length was set to 10,000 for synthetic data streams for SAE and SAE2 to DWM. For real

data sets, SAE, SAE2 and DWM had their period lengths set to approximately 1/100

of total instances. We present results for 3 versions of SAE2, varying its combination

method, SAE2-c (maximal cliques), SAE2-w (weakly connected components) and SAE2-f

(“free” combination). The last version, SAE2-f, considers every classifier as a subnetwork,

i.e., it does not group classifiers based on their connections. All ensembles presented,

besides ASHT Bagging, uses Hoeffding Naive Bayes Tree (HNBT) (HOLMES; KIRKBY;

PFAHRINGER, 2005) as base learner. It is reasonable to use decision trees as base learn-

ers since they are unstable classifiers, i.e., given two slightly different sets of instances the

decision trees induced from them will differ significantly. ASHT Bagging uses a variation

of the Hoeffding Tree (DOMINGOS; HULTEN, 2000), named Adaptive Size Hoeffding

Tree (ASHT), which imposes a limit on the tree height.

To perform statistical comparisons between SAE2-c and other classifiers we em-

ploy non-parametric tests (DEMŠAR, 2006). First, the Friedman test has been performed

(p = 0.05) and differences were found among classifiers. Since we are performing with mul-

tiple comparisons among multiple datasets to one control classifier (SAE2-c), the Fried-

man test was followed by the post-hoc test of Bonferroni-Dunn. The Bonferroni-Dunn

test indicates, with a confidence level of 95%, that for the given experiments SAE2-c

� {ASHT Bagging, Online Bagging, DWM, HFNB, SAE} and that there are no signif-

icant differences between SAE2-c and SAE2-f, SAE2-w, ADWIN Bagging or Leveraging

Bagging.

Through analysis of Table 5.3, it is evident that different versions of SAE2 yields
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ADWIN Bag ASHT Bag Leveraging Bag Online Bag DWM HNBT SAE2-f SAE2-c SAE2-w SAE
AGR1 93.79 ± 0.31 91.68 ± 0.54 93.94 ± 0.25 92.04 ± 0.29 78.98 ± 1.14 91.36 ± 0.55 94.21 ± 0.37 94.3 ± 0.29 94.18 ± 0.33 86.5 ± 5.45
AGR2 94.89 ± 0.44 91.14 ± 0.76 94.16 ± 0.61 89.78 ± 0.61 85.28 ± 1.39 88.36 ± 1.15 95.23 ± 0.43 95.25 ± 0.35 95.12 ± 0.51 87.26 ± 9.52
AGR3 88.84 ± 1.38 88.33 ± 0.96 91.64 ± 0.32 88.47 ± 0.35 75.83 ± 1.21 86.44 ± 0.5 91.44 ± 0.75 91.28 ± 0.64 90.95 ± 0.73 75.48 ± 1.42
AGR4 91.72 ± 1.11 88.86 ± 0.72 94.09 ± 0.42 85.58 ± 0.37 83.29 ± 1.27 82.76 ± 0.54 93.84 ± 0.97 93.54 ± 0.76 93.44 ± 0.81 68.25 ± 0.43
RTC 76.58 ± 4.72 70.49 ± 4.49 54.27 ± 3.84 76.37 ± 4.93 67.49 ± 6.91 75.37 ± 5.34 74.34 ± 5.74 74.33 ± 5.72 74.32 ± 5.7 63.64 ± 8.11
RTS 96.68 ± 1.74 89.73 ± 2.01 80.25 ± 10.78 96.68 ± 1.74 92.32 ± 5.17 94.92 ± 2.66 95.8 ± 2.35 95.72 ± 2.3 95.66 ± 2.27 89.83 ± 11.41
SEA1 89.46 ± 0.57 89.28 ± 0.47 89.65 ± 0.49 89.03 ± 0.48 88.57 ± 0.48 88.57 ± 0.53 89.72 ± 0.45 89.72 ± 0.44 89.72 ± 0.45 89.77 ± 0.45
SEA2 88.62 ± 0.61 88.68 ± 0.38 89.25 ± 0.35 86.23 ± 0.39 88.41 ± 0.38 85.69 ± 0.41 89.46 ± 0.36 89.52 ± 0.34 89.48 ± 0.37 88.49 ± 0.35
SEA3 89.38 ± 0.37 88.94 ± 0.39 89.39 ± 0.37 88.7 ± 0.39 88.26 ± 0.42 88.25 ± 0.45 89.4 ± 0.35 89.4 ± 0.35 89.4 ± 0.35 89.44 ± 0.38
SEA4 89.4 ± 0.34 88.66 ± 0.37 89.41 ± 0.32 86.39 ± 0.39 88.4 ± 0.34 85.83 ± 0.37 89.33 ± 0.34 89.42 ± 0.3 89.36 ± 0.3 88.57 ± 0.35

Syn. Avg 89.94 87.58 86.61 87.93 83.68 86.76 90.28 90.25 90.16 82.72
Syn. Avg Rank 4.23 6.64 5 6.23 8.68 8.05 2.73 2.45 3.64 7.36

AIRL 65.82 68.02 62.97 64.11 64.13 64.45 61.09 61.09 61.09 62.56
COVT 85.31 86.29 88.88 84.34 91.28 82.91 84.69 87.09 86.36 84.77
ELEC 84.7 84.54 89.31 84.76 84.69 81.17 85.44 85.35 84.92 85.44
SPAM 88.27 81.61 92.85 81.58 88.21 78.84 86.86 87.83 87.76 86.53

Real Avg 81.03 80.12 83.5 78.7 82.08 76.84 79.52 80.34 80.03 79.83
Real Avg Rank 4.25 5.75 2.5 7.25 4 8.25 6.38 5 5.75 5.88

Total Avg 87.39 85.45 85.72 85.29 83.22 83.92 87.2 87.42 87.27 81.9
Total Avg Rank 4.25 6.43 4.07 6.61 7.29 8.21 3.89 3.21 4.29 6.75

Table 5.3: Comparison of average accuracy. Best accuracies per data stream are indicated
in boldface. Bottom line indicates average ranking for each classifier.
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Figure 5.1: Accuracy on the AGRAWAL experiment AGR3 (2 abrupt drifts).

similar results with respect to overall classification accuracy. Among SAE2 versions

compared, SAE2-c obtains a slightly better performance on average. Even though, the

Bonferroni-Dunn test indicates that there are no significant differences between SAE2-

c and Leveraging Bagging or ADWIN Bagging, if we turn our attention to Table 5.4,

it is noticeable that SAE2-c demands less processing time and memory than these two

algorithms. For example, SAE2-c model cost is around 2.19 MB/Hour for RTC experi-

ment, while ADWIN Bagging and Leveraging Bagging model costs are 28.67 MB/Hour

and 49.5 MB/Hour, respectively. We also note that SAE2 does not outperform its base

learner (HNBT) in non-evolving data streams, such as RTS and RTC. This characteristic

is shared by other ensemble methods, such as Leveraging Bagging, ASHT Bagging and
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Figure 5.2: Classifier counter for SAE2-c in AGR3 (period 66 through 78).

ADWIN Bag Leveraging Bag SAE2
Time Mem. Time Mem. Time Mem.

AGR1 55.47 0.16 189.35 5.01 42.24 0.08
AGR2 59.76 0.21 212.91 6.28 40.44 0.05
AGR3 59.27 0.15 206.59 5.78 38.57 0.06
AGR4 56.99 0.11 203.33 3.71 36.94 0.03
RTC 528.08 28.67 1130.75 49.5 129.33 2.19
RTS 77.95 0.47 335.64 16.85 40.82 0.16
SEA1 37.66 0.03 123.58 1.55 23 < 0.01
SEA2 36.01 0.03 112.85 1.07 22.96 < 0.01
SEA3 36.4 0.02 118.14 1.28 22.95 < 0.01
SEA4 34.39 0.01 102.13 0.66 23 < 0.01
AIRL 180.02 1.97 480.15 4.41 37.15 0.02
COVT 146.42 0.01 210.95 0.1 157.43 0.01
ELEC 4.53 < 0.01 9.1 < 0.01 3.74 < 0.01
SPAM 1405.46 76.68 3429.94 922.67 772.14 22.13

Table 5.4: Comparison of time and memory of SAE2-c, Leveraging Bagging and ADWIN
Bagging. Time is measured in seconds and memory in megabytes per hour.

DWM. SAE2 versions inefficiency in non-evolving streams can be attributed to its period

length parameter. If we augment its period length, it may perform better in non-evolving

streams, but it will perform poorly in evolving data streams.

Besides evaluating average accuracy and resources used (time and memory), it is

also interesting to evaluate accuracy before, during and after a concept drift happens and

the state of the network during these periods. Figures 5.1, 5.2 and 5.3, presents classifiers

accuracy every 100 thousand instances, SAE2-c network size at every 10 thousand in-

stances and SAE2-c network snapshots around a concept drift, respectively. Experiment

AGR3 has an abrupt concept drift at instance 666,666, i.e., end of period 67. In the of

period68 (Figure 5.3c), 7 classifiers are removed due to low accuracy, which in turn is

caused by the drift at period 67 (Figure 5.3b). After the new concept becomes stable,

classifiers start being removed due to redundancy, e.g., period 76 (Figure 5.3k).
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(a) 66 (b) 67 (c) 68 (d) 69 (e) 70

(f) 71 (g) 72 (h) 73 (i) 74

(j) 75 (k) 76 (l) 77 (m) 78

Figure 5.3: SAE2-c Network state for AGR2. Period 66 (instance 650000 to 660000) to
78 (instance 770000 to 780000)

5.3 Pairwise methods experiments

In this section, we present empirical results comparing ensemble classifiers with

our ensemble adaptations for PA and PP (see Section 4.5.3). Our analysis indicates that

pairwise voting is able to enhance overall performance for PP, especially on real datasets,

and that PA is useful whenever there are great differences in accuracy estimates among

ensemble members, which is common during concept drifts.

On these experiments, we assess only the accuracy of classifiers. Even though, other

aspects such as processing time and memory are important for data stream evaluation,

we do not present these here, as the specific goal of these experiments is to evaluate the

methods accuracy and not resources usage. In overall, the overhead caused by PA and PP

only marginally affects memory and processing time for either PA or PP, as long as the

number of possible class labels is low. By “low” number of possible class labels we mean

a number below ten class labels. The number of classes has no impact on PA, but on PP

it can yield too many combinations and cause it to generate large pattern matrices.

We compare our modified ensemble classifiers with PA and PP to their default

methods (without pairwise voting), and also to other ensemble classifiers. The reason to

compare the modified ensembles against default implementations is to check whether (and



97

Dataset LevBag-PP LevBag
AGR3 93.64 ± 0.15 93.69 ± 0.83
AGR4 90.95 ± 1.17 91.07 ± 1.29
AIRL 63.7 ± 0.28 62.67 ± 0.25
COVT 92.95 ± 0.26 92.19 ± 0.28
ELEC 90.67 ± 0.24 90.82 ± 0.21
RTS 97.99 ± 0.1 98.21 ± 0.09
SEA3 89.91 ± 0.04 89.64 ± 0.34
SEA4 90.46 ± 0.03 90.45 ± 0.04
SPAM 93.89 ± 0.55 93.11 ± 0.35
HYPE 90.75 ± 0.11 90.29 ± 0.12

Table 5.5: Average accuracy for LevBag and LevBag-PP. The best accuracies per data
stream are indicated in boldface.

Dataset GE-PA GE-PP GE
AGR3 94.2 ± 0.27 87.43 92.04 ± 0.08
AGR4 92.42 ± 0.41 82.7 90.87 ± 0.01
AIRL 66.38 ± 0.15 62.67 66.21 ± 0.02
COVT 87.72 ± 0.43 89.67 88.31 ± 0.16
ELEC 86.03 ± 0.17 84.76 85.97 ± 0.15
RTS 95.13 ± 0.08 96.57 95.19 ± 0.02
SEA3 89.32 ± 0.22 86.54 89.33 ± 0
SEA4 89.41 ± 0.07 86.51 89.43 ± 0
SPAM 87.19 ± 0.06 88.76 87.1 ± 0.02
HYPE 91.16 ± 0.06 86.42 91.15 ± 0.06

Table 5.6: Average accuracy for GE, GE-PA and GE-PP. The best accuracies per data
stream are indicated in boldface. GE-PP standard deviation was below 10−9 for all
experiments.

when) these pairwise voting strategies are able to enhance the overall ensemble accuracy.

Tables 5.5 and 5.6 presents the results for the adapted methods (LevBag-PP, GE-

PA and GE-PP) with their default methods (LevBag and GE). LevBag-PP was able to

boost LevBag accuracy most notably in 3 real datasets (SPAM, AIRL and COVT). We

observed that the best results for LevBag-PP were achieved when classifiers with low

individual accuracy for a given class, when combined translated their prediction pattern

into the most often correct label. For example, classifiers ci and cj predict label 1 for an

unknown instance x, but it is more likely that the correct label is 0 when both decide for

1.

Through analysis of Table 5.6 it is noticeable that GE-PA was able to achieve

higher or comparable accuracy in most datasets, while GE-PP was more unstable. In

order to understand in which situations PA voting surpassed that of GE we analyzed in

details experiments AGR3 and AGR4. Figures 5.4 and 5.5 shows that GE-PA was able to



98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

80

85

90

95

Instances

A
cc
ur
ac
y
(%

)

GE-PA GE

Figure 5.4: Accuracy on the AGR3 experiment.

adapt itself to the second concept drift (around instance 666,666) faster than GE. GE-PA

performance reported at 0.7×106 (see Figure 5.5) cannot be credited solely to background

classifiers replacing older classifiers, as this same mechanism took place on GE during the

same period.

By analyzing the period comprehended between instances 666, 000 and 700, 000

for AGR1, we observed a scenario, unusual during other periods, in which the amount of

disagreement between pairs was high, and it was for the better. In this scenario, during

prediction, classifiers with low individual weight (adapted to the previous concept) “trans-

ferred” their condition to other classifiers that predicted the same label as them, since

their estimated shared accuracy (Sacc) were low as well, while classifiers with high indi-

vidual weight (adapted to the current concept) were able to achieve significant weight in

split decisions when combined with these low weight classifiers. Table 5.7 presents the av-

erage accuracy for LevBag-PP and GE-PA in comparison to other ensemble methods. To

verify if there were statistically significant differences between algorithms, we performed

non-parametric tests using the methodology from (DEMŠAR, 2006). First, we used the

Friedman test with α = 0.05 and the null hypothesis “there were no statistical difference

between given algorithms” was rejected. We proceeded with the Nemenyi post-hoc test

to identify these differences. The Nemenyi test indicates, with a confidence level of 95%,

that for the given experiments {LevBag-PP, OAUE} � {DWM}.
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Figure 5.5: Accuracy on the AGR4 experiment.

5.4 Combination Methods in SAE2

The objective of the experiments presented on this section is to verify one fun-

damental constituent of our hypothesis: “Is it worthwhile to use a combination method

based on a network of classifiers?” We use the SAE2 algorithm presented in Section 4.3

to illustrate our experiments.

Experiments were performed on almost all data sets presented in Section 5.1. The

reason for using different data sets is because we want to observe characteristics that

hold beyond one specific data set. We could not use all data sets because the processing

time on SPAM and RTC were prohibitively high. The following invariants were obeyed

throughout all the experiments in this section:

1. There are no classifiers removals based on accuracy or redundancy;

2. SAE2 period (window) size was set to 1/100 of the data stream size;

3. The default SAE2 combination method is maximal cliques, which was referenced as

SAE2-c in Section 5.2;

4. All other SAE2 parameters were set as presented in Section 4.3.

To keep the ensemble, whenever possible, with all the classifiers we ignored the

removal based on low accuracy or redundancy. The main goal of these experiments is to

compare multiple ways of combining the set of classifiers, and if many removals happened
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Dataset LevBag-PP GE-PA ADWBag DWM OAUE SFNC SAE2
AGR1 93.64±0.15 94.2±0.27 94.36±0.2 86.5 93.77 93.33 94.68±0.15
AGR2 90.95±1.17 92.42±0.41 90.69±1.32 82.41 93.24 92.31 89.79±2.09
RTS 97.99±0.1 95.13±0.08 95.6±0.09 93.64 97.35 95.09 95.06±0.12
SEA1 89.91±0.04 89.32±0.22 88.63±0.48 88.6 90.02 89.54 89.86±0.17
SEA2 90.46±0.03 89.41±0.07 90.15±0.08 88.63 90.25 89.16 90.12±0.1
HYPE 90.75±0.11 91.16±0.06 90.5±0.12 88.2 90.41 90.91 90.88±0.12

Syn. Avg 92.28 91.94 91.66 88 92.51 91.72 91.73
Syn. Avg Rank 2.83 3.33 4 7 2.67 4.33 3.83

AIRL 63.7±0.28 66.38±0.15 66.05±0.32 61.46 64.48 66.42 60.8±0.58
COVT 92.95±0.26 87.72±0.43 85.67±0.25 91.28 93.55 85.85 86.59±0.53
ELEC 90.67±0.24 86.03±0.17 85.05±0.33 84.69 89.38 85.38 85.8±0.48
SPAM 93.89±0.55 87.19±0.06 88.34±0.9 88.21 67.23 86.5 87.76±0.42

Real Avg 85.3 81.83 81.28 81.41 78.66 81.04 80.24
Real Avg Rank 2.25 3.5 4.5 4.75 3.5 4.5 5

Total Avg 89.49 87.9 87.5 85.36 86.97 87.45 87.13
Total Avg Rank 2.6 3.4 4.2 6.1 3 4.4 4.3

Table 5.7: Comparison of average accuracy. The best accuracies per data stream are
indicated in boldface. SFNC standard deviation were below 10−14 for all experiments.

then it would not be possible to achieve the expected scenario. After every period end,

SAE2 rebuild the network of classifiers according to the relations observed during the last

period. In the experiment, all possible network structures were generated, including the

default SAE2 network build method (maximal cliques) and the “Free combination”, i.e.

no connections considered. The output of the experiment is the accuracy obtained in each

period by the “Best combination”, “Worst combination”, SAE2 default method (maximal

cliques – SAE2-c) and “Free combination” (SAE2-f).

We could not extend our experiments to generate all possible networks for ensem-

bles with more than 6 classifiers. The time to generate these networks was prohibitive,

since each experiments requires that all possible network structures be build 100 times

(number of periods). Since the number of networks is given by 2(n∗(n−1)/2), where n is

the number of classifiers, thus for n = 6 there are 32, 768 networks per period and for

n = 7 there are 2, 097, 152 networks per period. Table 5.8 shows the number of graphs

that must be checked per period given the number of classifiers. To illustrate the diffi-

culty in running experiments with 7 or more classifiers, it took fifteen days to finish the

experiments for AIRL dataset with 6 classifiers.

Figures 5.6, 5.7 and 5.8 presents for ELEC dataset the comparison between the

overall accuracy obtained over 100 SAE2 evaluation periods for each of the four networks

of interested: Best, Worst, SAE2-c and SAE2-f. The first periods do not have a full

network, as SAE2 adds one classifier per period. Thus, the first 4, 5 or 6 periods present

very similar results for all different combinations.

The plots for the other datasets have a very similar behavior, thus they were moved
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# Classifiers # Networks
1 1
2 2
3 8
4 64
5 1024
6 32768
7 2097152
8 268435456
9 6.8719×1010

10 3.5184×1013

Table 5.8: The amount of possible networks given n classifiers

to Appendix B.

It is important to observe that the conclusions presented cannot be extrapolated

to the general case for two reasons. First, we could not use more than 6 classifiers for

testing. Second, SAE2 is an implementation of a network-based ensemble, thus it has its

own bias and does not represent all possible network-based ensembles. Our conclusions

about these experiments are presented below:

• The difference between Worst and Best shows that there are ways to combine clas-

sifiers that either negatively or positively affect the ensemble;

• The proximity between the results obtained by SAE2-c and SAE2-f, indicate that

the current default combination method for SAE2, i.e. SAE2-c, does not improve

significantly over SAE2-f. Although when we look at the overall accuracy using ten

classifiers, SAE2-c outperforms SAE2-f (see Section 5.2);

• SAE2-c and SAE2-f are usually closer to Best than they are to Worst;

• The Best network was selected for each period, thus the topology of this network

was different in every period for the same experiment. Unfortunately, it is difficult

to observe a concise pattern from the best networks generated. We have tried to

verify each Best network individually, but all we could learn was that almost all the

times Best is not SAE2-f, i.e., the Best network almost never has an empty set of

edges.
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Figure 5.6: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset ELEC, max
classifiers = 4
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Figure 5.7: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset ELEC, max
classifiers = 5
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Figure 5.8: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset ELEC, max
classifiers = 6
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5.5 CNE Experiments

In this section we discuss the final experiments concerning the CNE algorithm.

The experiments in this section includes challenging problems such as multi-class tasks

or datasets that exhibits temporal dependences, multiple drifts or class imbalanced. To

better assess temporally dependent problems and imbalanced datasets we use Kappa

Temporal and Kappa M. In (BIFET et al., 2015) authors show that Kappa Statistic M

measure has advantages over Kappa statistic as it has a zero value for a majority class

classifier. For datasets that exhibit temporal dependences it is advisable to evaluate

Kappa Temporal since it replaces majority class classifier with the NoChange classifier

(ŽLIOBAITĖ et al., 2014).

All experiments in this section use 100 base models2; the base learner for all ensem-

bles is the Hoeffding Naive Bayes Tree (HNBT) (HOLMES; KIRKBY; PFAHRINGER,

2005) (grace period = 50 and split confidence = 0.01); specific parameter values for meth-

ods other than CNE were set according to their original publications. Some datasets that

were not used in previous experiments are included in this section to provide a broader

benchmark, which includes abrupt, gradual and incremental drifts, configured on several

different synthetic generators. The real world datasets GMSC and KDD99 were added

here, both exhibit class label imbalance (see Table 5.2 for details). Given the number of

base models it was unfeasible to include SPAM corpus (KATAKIS et al., 2009) dataset

as part of this experimentation as it requires too much memory. This section does not

include a thorough analysis of parameters such as the drift/warning confidence levels (All

experiments uses δd = 0.00002 and δw = 0.0002) or the number of features per random

subspace (All experiments uses m = 85%). The reader is directed to Appendixes C and

D for further analysis of these parameters.

5.5.1 Jaccard and Kappa networks

We start the experiments comparing the two connection weighting functions de-

scribed in section 4.6, i.e. Jaccard and Kappa. Specifically, we present the results for

k = 5, 10, 20, 30 using Jaccard or Kappa. As previously mentioned, k stands for the num-

ber of seed base models used to create subnetworks according to either Kappa or Jaccard

measures. Table 5.9 presents the results for these experiments.

The results in Table 5.9 suggests that CNEkap30 is the most effective, yet the non-

parametric Friedman test indicates that there are no differences among the methods.
2DWM is an exception as it does not include a maximum or target number of base models (see Section

3.5.12)
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Table 5.9: Accuracy - CNE Jaccard and Kappa varying k. KDD99 did not finish for
some variations of Kappa versions, thus KDD99 is not used for the average and ranking
calculations.

Dataset CNEkap5 CNEkap10 CNEkap20 CNEkap30 CNEjac5 CNEjac10 CNEjac20 CNEjac30
LEDa 73.77 73.8 73.8 73.78 73.73 73.74 73.76 73.76
LEDg 73.1 73.11 73.1 73.12 73.06 73.07 73.09 73.11
SEAa 89.49 89.49 89.49 89.49 89.49 89.49 89.49 89.48
SEAg 89.08 89.07 89.07 89.07 89.07 89.07 89.07 89.07
AGRa 90.16 90.38 90.66 90.85 90.71 90.21 90.27 90.33
AGRg 86.25 86.63 86.99 87.09 87.24 86.48 86.55 86.65
RTS 97.33 97.31 97.06 96.94 97.39 97.37 97.36 97.32
RBFm 86.46 86.47 86.47 86.49 86.36 86.5 86.51 86.52
RBFf 77.11 77.16 77.29 77.34 76.9 77.14 77.18 77.22

HYPER 85.08 85.05 85.03 85.08 85.18 85.24 85.26 85.29
Syn. Avg 84.78 84.85 84.9 84.92 84.91 84.83 84.85 84.87

Syn. Avg Rank 5.44 4.78 4.44 3.11 4.67 4.56 4.78 4.22
AIRL 64.94 65.04 65.14 65.14 65 64.87 64.92 64.96
ELEC 89.66 89.61 89.65 89.75 89.58 89.73 89.67 89.67
COVT 95.11 95.12 95.14 95.12 95.1 95.12 95.14 95.15
GMSC 93.55 93.55 93.55 93.55 93.57 93.55 93.54 93.55
KDD99 99.96 - - - 99.96 99.96 99.96 99.96
Real Avg 85.82 85.83 85.87 85.89 85.81 85.82 85.82 85.83

Real Avg Rank 5.63 4 3.63 3 5.25 5.5 5.13 3.88
Total Avg 85.95 86 86.05 86.08 86.05 85.99 86 86.02

Total Avg Rank 5.5 4.54 4.19 3.08 4.85 4.85 4.88 4.12

Figure 5.11 presents the average CPU Time and RAM-Hours for each variation in Table

5.9, where it is clear that Kappa does not scale well as it requires recomputing the subnet-

works after every new instance. Jaccard variations vary only slightly in terms of resources

used as the subnetworks are generated only once at the beginning of the execution after

the random subspaces were selected. Thus we choose the simplest, yet accurate, CNEjac30
for further experimentation.

5.5.2 Subspace reset

Further analysis of the network state for CNEjac30 shows that using a fixed subspace

and only resetting the model is inflexible as if a set of features ceases to be relevant this

will not be reflected on the base models subspaces associated with it. This can be observed

in Figures 5.12, 5.13 and 5.14 where:

• Seed nodes are depicted in the center of the image;

• Blue edges represent connections between seeds and illustrate how far apart are they

(these connections are not active);

• Node fill color represent the model accuracy, varying from light red (worse accuracy)

to light green (best accuracy);
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Figure 5.9: CPU Time
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Figure 5.10: RAM-Hours
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(a) after 4532 instances. (b) after 9064 instances. (c) after 13596 instances.

Figure 5.12: CNEjac30 executing on ELEC without resetting subspaces.

(a) after 4532 instances. (b) after 9064 instances. (c) after 13596 instances.

Figure 5.13: CNEjac30 executing on ELEC using random subspace resets.

• The distance between nodes is the result of a stress minimization layout3.

The intuition behind applying subspace resets is related to the fact that some

subsets of features might be less useful to represent the underlying concept. For example,

in Figure 5.12 the subnetwork on the left is committed to a subset of features which

models trained on it are consistently worse than the rest throughout the execution of the

stream. Based on this verifications we developed two strategies to reset the subspaces as

described in Section 4.6, i.e. randomly resetting the subspace or reset it based on accuracy.

Figures 5.13 and 5.14 depict the network state using random resets and accuracy resets,

respectively. It can be observed that using these strategies avoid consistent bad subspaces

of low accurate models as in the default strategy.

Figures 5.15, 5.16 and 5.17 report the networks for CNEjac30, CNEjac30(rand) and

CNEjac30(acc), respectively, for the LEDg dataset (3 gradual drifts). These networks

represent the period immediately before the first drift starts, during the drift window

and after it. We observe that CNEjac30(rand) (Figure 5.16) and CNEjac30(acc) (Figure
3These network visualizations were created using the Visone software (BAUR et al., 2001)
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(a) after 4532 instances. (b) after 9064 instances. (c) after 13596 instances.

Figure 5.14: CNEjac30 executing on ELEC using accuracy based subspace resets.

5.17) are able to recover faster from the drift than the default version CNEjac30 (Figure

5.15), which is also shown in Figure 5.18 where the overall accuracy of these 3 variations

are plotted overtime. Drifts are simulated on LED dataset by changing which of the 24

features correspond to the 7 digit segments that can be used for determining the number

displayed on the LED, i.e., the class label, when the ensemble can reset the subspaces it

becomes easier, especially for CNEjac30(acc), to find the most suitable subsets of features

that correspond to the current concept.

5.5.3 CNE compared to other ensembles

In this section we compare CNE against state-of-the-art ensemble learners using

Accuracy, Kappa M and Kappa Temporal. As discussed in Section 2.3.2 Kappa M and

Kappa Temporal are useful for evaluating learners for datasets containing imbalaced class

labels and temporal dependences, respectively. Thus, we present the results in terms of

accuracy in Table acompanied by the results of Kappa M and Kappa Temporal in Tables

5.11 and 5.12, respectively.

We observe that SAE2, as well as other ensembles, classification performance seems

degraded in these experiments in comparison to previously reported results. There are

mainly two reasons for this behavior: (1) The update period length is set to 5, 000 for

all experiments, which was previously set as 1/100 of the total number of instances per

dataset; (2) The experimental protocol is different, while previously we split the dataset

into 10 equal sized chunks and averaged the prequential performance of classifiers in each

chunk, here we report the overall prequential performance over the whole dataset. The

first reason impacts SAE2 as the period length is sometimes “too large” or “too small”,

for example, to be able to adapt to incremental drifts, such as those in RBFf and RBFm,
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(a) after 200,000 instances. (b) after 250,000 instances. (c) after 300,000 instances.

(d) after 350,000 instances. (e) after 400,000 instances. (f) after 450,000 instances.

(g) after 500,000 instances. (h) after 550,000 instances. (i) after 600,000 instances.

Figure 5.15: CNEjac30 executing on LEDg without any subspace resets.
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(a) after 200,000 instances. (b) after 250,000 instances. (c) after 300,000 instances.

(d) after 350,000 instances. (e) after 400,000 instances. (f) after 450,000 instances.

(g) after 500,000 instances. (h) after 550,000 instances. (i) after 600,000 instances.

Figure 5.16: CNEjac30(rand) executing on LEDg using random based subspace resets.
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(a) after 200,000 instances. (b) after 250,000 instances. (c) after 300,000 instances.

(d) after 350,000 instances. (e) after 400,000 instances.

(f) after 450,000 instances.

(g) after 500,000 instances. (h) after 550,000 instances. (i) after 600,000 instances.

Figure 5.17: CNEjac30(acc) executing on LEDg using accuracy based subspace resets.
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Figure 5.18: CNEjac30, CNEjac30(rand) and CNEjac30(acc) executing on LEDg. Solid and
dashed vertical lines indicates drifts and drift window start/end, respectively.

SAE2 would require a smaller period length. In this aspect, we note that CNE is able to

adapt better than SAE2 and even to methods that include active drift detection, such as

LevBag.

The usefulness of the analysis based on Kappa M and Kappa Temporal is visible

when we analyze ELEC, COVT, GMSC and KDD99. In COVT all learners obtain accu-

racy over 90%, however when we observe the Kappa Temporal metric, only a few (CNE

variations and LevBag) are able to surpass the baseline NoChange classifier, i.e. yield

non-negative values. Due to the severe imbalance in both GMSC and KDD99, it is diffi-

cult to visualize their differences by inspecting only accuracy. For example, CNEjac30(acc)

and SAE2 yields 93.58% and 93.46%, respectively, which suggests that there is not much

difference between these two, but when we observe Kappa M, then CNEjac30(acc) and

SAE2 obtains 3.88% and 2.14%, which better illustrate their differences in predicting the

minority class.

We highlight CNE stability in comparison to other ensembles. For example, OAUE

obtain good results in general, but fails to obtain a reasonable model for KDD99 (-128.58%

while others obtain a minimum of 98.81% Kappa M). The same happens for OzaBoost,

which obtains an outstanding result for ELEC dataset (36.39% Kappa Temporal), yet ob-

tains the worse results for LEDa, LEDg, RBFm and RBFf . Using the same parametriza-

tion (besides varying the subspace reset strategy) CNE obtain the best or reasonable

results for all datasets considered in this experiment. This is an interesting fact, since
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(c) All datasets.

Figure 5.19: Nemenyi posthoc with 95% confidence.

there is a multitude of different problems represented in this benchmark.

We followed these experiments with a non-parametric Friedman test, which indi-

cate that there are significant differences among the evaluated classifiers for these datasets,

both when we evaluate all datasets at once and when we conduct the test separately for

synthetic and real datasets. Figures 5.19a, 5.19b and 5.19c presents the results of apply-

ing the nemenyi posthoc test to identify the statistically relevant differences. We observe

that when considering all datasets at once we cannot find relevant differences among

CNE variations, LevBag, OAUE and OSBoost. When we analyse the synthetic and real

datasets separately, then we observe that for the synthetic datasets the results are similar

to those obtained in the general analysis, but when we limited our analysis to the real

datasets there are no longer differences among CNE variations, LevBag, OAUE, OSBoost,

OzaBoost and OzaBag.

Finally, we compare CNE and the other ensembles in terms of CPU time and RAM

Hours. Figure 5.22 presents the average CPU time and RAM Hours for the previous

experiments (Tables 5.10, 5.11 and 5.12). The overall good classification performance

of CNE comes at the expense of a high resources demand, especially the version based

on accuracy resets. On the other hand, SAE2 is very efficient, however it may demand

specific parameter tuning for each dataset to become part of the most accurate methods

as shown in the previous analysis. CNE’s inefficiency is attributable mainly to three

aspects of it implementation: (1) it is rare that all base models in the ensemble maintain

a background learner at the same time, however in the worst case it is necessary to

maintain 2 versions of each base model concomitantly; (2) when a drift is detected it

triggers a change in the ensemble, effectively replacing the learner where it was detected

by its background learner and causing a recalculation of the network; (3) the subspace
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reset based on accuracy demands further calculation to estimate each feature probability.

For CNEjac30 (2) and (3) are not applicable, since there are no subspace resets in this

version and thus it is not necessary to recalculate the network structure, neither perform

any estimation on the features.

5.6 Final Considerations

In this section we presented a multitude of experiments concerning the methods

implemented in this work. Our experiments with PA and PP revealed many interesting

patterns, such as situations where a small set of classifiers could correct misclassifications

from a larger set using PA (see experiments AGR3 and AGR4 in Section 5.3). The exper-

iments in Section 5.4 contemplates comparisons between SAE2-c, SAE2-f, the best and

the worst possible combinations. In these experiments we learned that the differences

between SAE2-c and SAE2-f may be due to chance, and thus performance obtained by

SAE2 may be attributable to its adaptation methods, instead of its combination func-

tion, however it was unfeasible to scale the experiments using larger networks, thus the

results were inconclusive. The results for SAE2 shows that it is able to achieve accuracy

comparable to existing ensembles, while demanding minimum resources. However, using

a larger and more general set of datasets we observe that SAE2 depends too much on

its parametrization, especially the period length. This motivated us to develop a method

where learners were updated according to an active drift detection method, which culmi-

nates on CNE and its variations. For CNE, we present experiments with different edge

weighting functions (Kappa and Jaccard), subspace reset strategies and finally a strategy

to save resources by limiting the number of drift detectors. In the next chapter we present

our final conclusions alongside future work.
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Figure 5.20: CPU Time
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Figure 5.21: RAM-Hours
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Figure 5.22: Average CPU Time and RAM-Hours for CNE and others. DWM RAM
Hours is less than 104.
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Table 5.10: Accuracy - CNE x others.

Dataset OAUE OSBoost OzaBag OzaBoost LevBag DWM SAE2 CNEjac30 CNEjac30(rand) CNEjac30(acc)
LEDa 73.39 72.47 69.04 68.9 73.95 71.69 72.53 73.76 73.85 73.83
LEDg 72.58 72.12 68.71 68.54 73.22 70.72 72.07 73.11 73.16 73.18
SEAa 88.8 89.16 87.21 88.25 88.44 86.81 88.94 89.48 89.48 89.48
SEAg 88.19 88.94 87.11 87.92 89.09 86.38 88.72 89.07 89.07 89.07
AGRa 90.16 90.37 83.83 88.12 88.72 76.91 88.17 90.33 91.31 90.85
AGRg 85.24 87.83 79.25 84.66 83.71 76.3 82.4 86.65 87.93 87.96
RTS 96.81 94.78 95.12 96.93 97.85 94.76 95.68 97.32 97.4 97.43
RBFm 84.26 74.51 73.06 65.23 84.34 73.51 65.43 86.52 86.47 86.48
RBFf 57.15 48.7 43.54 26.16 76.77 53.88 39.83 77.22 77.15 77.14

HYPER 87.8 86.96 79.37 85.3 85.74 81.04 85.11 85.29 85.51 85.5
Syn. Avg 82.44 80.59 76.62 76 84.18 77.2 77.89 84.87 85.13 85.09

Syn. Avg Rank 5 5.2 8.8 8.1 3.5 8.8 7.2 3.4 2.5 2.5
AIRL 65.23 64.56 64.89 60.63 62.82 61.67 59.03 64.96 66.3 66.44
ELEC 87.41 89.51 85.08 90.67 89.51 82.19 83.66 89.67 89.82 90.01
COVT 92.86 92.69 91.49 94.82 95.1 90.03 91.98 95.15 95.18 95.14
GMSC 93.57 93.05 93.52 92.32 93.54 92.92 93.46 93.55 93.55 93.58
KDD99 2.45 99.94 99.93 99.49 99.97 99.93 99.88 99.96 99.96 99.96
Real Avg 68.3 87.95 86.98 87.59 88.19 85.35 85.6 88.66 88.96 89.02

Real Avg Rank 5.6 6.2 7 6.8 4.6 8.6 8.4 3.4 2.2 2.2
Total Avg 77.73 83.04 80.08 79.86 85.52 79.92 80.46 86.14 86.41 86.4

Total Avg Rank 5.2 5.53 8.2 7.67 3.87 8.73 7.6 3.4 2.4 2.4

Table 5.11: Kappa M - CNE x others.

Dataset OAUE OSBoost OzaBag OzaBoost LevBag DWM SAE2 CNEjac30 CNEjac30(rand) CNEjac30(acc)
LEDa 70.39 69.37 65.55 65.39 71.01 68.49 69.43 70.79 70.9 70.88
LEDg 69.48 68.97 65.18 64.98 70.2 67.41 68.91 70.07 70.13 70.15
SEAa 72.06 72.96 68.09 70.7 71.16 67.11 72.41 73.77 73.77 73.77
SEAg 70.55 72.41 67.84 69.87 72.8 66.03 71.86 72.73 72.73 72.73
AGRa 79.15 79.59 65.72 74.82 76.08 51.04 74.92 79.49 81.59 80.6
AGRg 68.72 74.21 56.01 67.48 65.47 49.75 62.68 71.7 74.42 74.47
RTS 92.44 87.62 88.43 92.71 94.91 87.58 89.75 93.65 93.83 93.9
RBFm 77.51 63.59 61.51 50.32 77.62 62.16 50.61 80.74 80.67 80.68
RBFf 38.77 26.7 19.34 -5.5 66.81 34.11 14.04 67.45 67.36 67.34

HYPER 75.56 73.88 58.67 70.54 71.44 62.02 70.16 70.52 70.96 70.95
Syn. Avg 71.46 68.93 61.63 62.13 73.75 61.57 64.48 75.09 75.64 75.55

Syn. Avg Rank 5 5.2 8.8 8.1 3.5 8.8 7.2 3.4 2.5 2.5
AIRL 21.94 20.43 21.17 11.61 16.53 13.94 8.02 21.34 24.33 24.66
ELEC 70.33 75.3 64.85 78.02 75.28 58.04 61.5 75.66 76.02 76.46
COVT 86.06 85.74 83.39 89.89 90.44 80.55 84.35 90.53 90.59 90.51
GMSC 3.78 -4.02 3.1 -14.89 3.37 -5.88 2.14 3.48 3.54 3.88
KDD99 -128.58 99.85 99.84 98.81 99.92 99.85 99.72 99.91 99.91 99.9
Real Avg 10.71 55.46 54.47 52.69 57.11 49.3 51.15 58.18 58.88 59.08

Real Avg Rank 5.6 6.2 7 6.8 4.6 8.6 8.4 3.4 2.2 2.2
Total Avg 51.21 64.44 59.25 58.98 68.2 57.48 60.03 69.46 70.05 70.06

Total Avg Rank 5.2 5.53 8.2 7.67 3.87 8.73 7.6 3.4 2.4 2.4

Table 5.12: Kappa Temporal - CNE x others.

Dataset OAUE OSBoost OzaBag OzaBoost LevBag DWM SAE2 CNEjac30 CNEjac30(rand) CNEjac30(acc)
LEDa 70.42 69.4 65.59 65.43 71.05 68.53 69.47 70.83 70.94 70.92
LEDg 69.52 69 65.22 65.02 70.23 67.45 68.95 70.1 70.16 70.19
SEAa 76.5 77.26 73.16 75.36 75.74 72.34 76.8 77.94 77.94 77.94
SEAg 75.24 76.81 72.96 74.67 77.13 71.44 76.34 77.07 77.07 77.07
AGRa 78.48 78.94 64.62 74.01 75.32 49.48 74.12 78.83 81 79.98
AGRg 68.14 73.73 55.19 66.88 64.83 48.81 61.99 71.17 73.94 73.99
RTS 93.46 89.3 90 93.7 95.6 89.26 91.14 94.51 94.66 94.73
RBFm 79.64 67.02 65.15 55.01 79.74 65.73 55.28 82.56 82.5 82.5
RBFf 44.56 33.62 26.96 4.46 69.95 40.33 22.15 70.53 70.44 70.43

HYPER 75.61 73.93 58.75 70.6 71.49 62.09 70.22 70.58 71.02 71.01
Syn. Avg 73.16 70.9 63.76 64.51 75.11 63.54 66.64 76.41 76.97 76.87

Syn. Avg Rank 5 5.2 8.8 8.1 3.5 8.8 7.2 3.4 2.5 2.5
AIRL 17.11 15.51 16.29 6.14 11.37 8.62 2.33 16.47 19.65 20
ELEC 14.16 28.52 -1.72 36.39 28.48 -21.42 -11.39 29.56 30.6 31.88
COVT -44.63 -47.91 -72.32 -4.93 0.86 -101.81 -62.32 1.73 2.35 1.57
GMSC 48.43 44.25 48.06 38.42 48.21 43.25 47.55 48.27 48.3 48.48
KDD99 -770648.87 -401.94 -431.29 -3900.97 -175.81 -417.42 -850.32 -211.94 -210.32 -225.65
Real Avg -154122.76 -72.31 -88.19 -764.99 -17.38 -97.75 -174.83 -23.18 -21.88 -24.74

Real Avg Rank 5.6 6.2 7 6.8 4.6 8.6 8.4 3.4 2.2 2.2
Total Avg -51325.48 23.16 13.11 -211.99 44.28 9.78 -13.85 43.21 44.02 43

Total Avg Rank 5.2 5.53 8.2 7.67 3.87 8.73 7.6 3.4 2.4 2.4



Chapter 6

Conclusions

The problem that we tackle in this work is beyond defining a new network-based

ensemble algorithm. Concretely, the problem extends to providing enough evidence that

justifies the use of relational data in ensemble classifiers. Thus, beside propose and eval-

uate various relation definitions and structural analysis methods, we also had to provide

sustainable evidence to validate network-based ensembles use for evolving data stream

classification.

Besides network-based ensembles related innovations, it would be unfruitful to not

explore existing adaption methods for data streams, such as drift detection algorithms or

temporal aware weighting functions. Although if we employ such methods and limit our

empirical analysis to the classification performance obtained by the proposed methods,

we can actually blur the impact of network-based methods. Therefore, whenever possible

we also set up experiments to verify the contribution of network approaches for ensemble

classifiers (e.g. Section 5.4).

Effectively, in this work we present four distinct implementations that use relational

data alongside ensemble classifiers for evolving data stream classification: SAE2, PA,

PP and CNE. Each of them was empirically tested, and we were able to achieve good

performance in terms of classification accuracy (CNE) and resources usage (SAE2). We

also present a general strategy for developing network-based ensembles and a thorough

analysis of existing ensemble classifiers as well as a comprehensible taxonomy of methods.

For future work we are going to pursue more efficient implementations of CNE, the

most accurate and flexible method, and explore the combination methods from PA and

PP. Also, we plan on using the network to guide which instances are used to train each base

classifier, besides using it solely for performance pruning and voting. Training classifiers

on different instances based on the network will give more control to how classifiers are

build, thus we may build operators to make sure important subspaces of the classification

116
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space are covered. However, this needs more investigation as it is not trivial to decide the

criteria to build the network, especially for evolving data streams.

6.1 Published Work

In this section we present papers already published/recommended for publication

during the development of this work. We highlight the papers “SAE2: Advances in the

Social Adaptive Ensemble”1, “Pairwise Combination of Classifiers for Ensemble Learning

on Data Streams” and “A Survey on Ensemble Learning for Data Stream Classification”,

as these form substantial portions of the current work.

GOMES, HEITOR MURILO; BARDDAL, JEAN PAUL ; ENEMBRECK, FABRÍ-

CIO; BIFET, ALBERT. A Survey on Ensemble Learning for Data Stream Classification.

ACM Computing Surveys, Submitted: Dec 2015, Recommended for publication with mi-
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ŽLIOBAITĖ, I.; BIFET, A.; READ, J.; PFAHRINGER, B.; HOLMES, G. Evaluation

methods and decision theory for classification of streaming data with temporal depen-

dence. Machine Learning, Springer, p. 1–28, 2014.

ŽLIOBAITĖ, I.; RAUDYS, Š.; JUOZAPAVIČIUS, A.; TAMOŠIŪNAITĖ, M.; VAITKUS,
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Appendix A

Diversity monitoring sample experiments

As a way to provide further understanding on how efficient different diversity

inducing techniques are with respect to diversity maintenance we set up an experiment

with one real multiclass dataset (COVT) and two synthetic generators with 1 million

instances each, one containing two abrupt drifts (AGR) and the other without any drifts

(RTG). To evaluate diversity we report Qavg and κavg for every evaluation window, while

accuracy is measured using prequential evaluation (GAMA; RODRIGUES, 2009). For

these experiments we choose 3 algorithms that use different methods for inducing diversity:

OzaBagging (vertical split and independent training), OzaBoosting (vertical split and

dependent training) and Online Accuracy Updated Ensemble (vertical time-based split

and independent training).

The results of the experiments are presented in Figures A.1, A.2 and A.3. In

these experiments we observed that OzaBoosting (OZA, 2005) is closer to achieving a

set of statistically independent classifiers (Qavg = 0 or κavg = 0) than OzaBagging or

OAUE. Also, right after a drift has happened (around instances 3.3×105 and 6.6×105 in

Figure A.3) the Qavg and κavg value decreases for all algorithms, but more dramatically

for OAUE. This behavior is attributable to OAUE update operators, such that after a

drift models might be replaced by others that are more adapted to the current concept,

which in turn enhances the overall diversity.

Unfortunately, it is impossible to draw strong conclusions (e.g. find strong rela-

tionships between diversity and accuracy) from experiments that use the same protocol

that we employed in this section (KUNCHEVA et al., 2003). Although, individuals using

(or developing) ensemble-based algorithms for data streams may find it useful to use this

experimental protocol to observe how diversity measures changes as a result of a drift, or

to verify if the diversity inducing strategy is working as expected.

134



135

0 2 4 6

·105

−1
−0.5

0
0.5

1

Instances

Q
a
v
g

(a) Qavg

0 2 4 6

·105

−1
−0.5

0
0.5

1

Instances

K
a
v
g

(b) κavg

0 2 4 6

·105

0.6

0.8

1

Instances

A
cc

OAUE
OzaBag
OzaBoost

(c) Prequential Accuracy

Figure A.1: Qavg, κavg and Prequential Accuracy for OAUE, OzaBag and OzaBoost on
the real dataset Covertype (Multiclass)
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Figure A.2: Qavg, κavg and Prequential Accuracy for OAUE, OzaBag and OzaBoost on
the dataset RTG (No Drifts)
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Figure A.3: Qavg, κavg and Prequential Accuracy for OAUE, OzaBag and OzaBoost on
the dataset AGR2 (2 Abrupt Drifts: dashed vertical lines)



Appendix B

All plots of the combination methods in SAE2

The following plots emphasize the experiments reported and discussed in Section

5.4, such that we observe that the differences between SAE2-c and SAE2-f are not too dif-

ferent, yet both methods are closer to the line representing the Best possible combination

and far from the Worst combination in all plots.
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Figure B.1: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AGR1, max
classifiers = 4
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Figure B.2: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AGR1, max
classifiers = 5
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Figure B.3: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AGR1, max
classifiers = 6
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Figure B.4: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AGR2, max
classifiers = 4
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Figure B.5: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AGR2, max
classifiers = 5
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Figure B.6: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AGR2, max
classifiers = 6
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Figure B.7: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset RTS, max
classifiers = 4
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Figure B.8: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset RTS, max
classifiers = 5
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Figure B.9: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset RTS, max
classifiers = 6
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Figure B.10: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset SEA1, max
classifiers = 4
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Figure B.11: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset SEA1, max
classifiers = 5
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Figure B.12: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset SEA1, max
classifiers = 6
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Figure B.13: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset SEA2, max
classifiers = 4
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Figure B.14: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset SEA2, max
classifiers = 5
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Figure B.15: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset SEA2, max
classifiers = 6
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Figure B.16: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AIRL, max
classifiers = 4
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Figure B.17: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AIRL, max
classifiers = 5
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Figure B.18: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset AIRL, max
classifiers = 6
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Figure B.19: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset COVT, max
classifiers = 4
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Figure B.20: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset COVT, max
classifiers = 5
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Figure B.21: Comparison between Best, Worst, SAE2-c and SAE2-f, dataset COVT, max
classifiers = 6



Appendix C

CNE Drift and Warning Detection Exploration

In this Appendix we explore two different parametrisations of CNEjac30 used in

Section 5.5. The experiments here use the same parameters for CNEjac30 (without any

subset reset) and are identified as CNEfast and CNEnone. CNEfast uses higher confidence

values (δd = 0.001 and δw = 0.01) in comparison to CNEjac30 (δd = 0.00002 and δw =

0.0002) for the drift and warning detector resulting in early detection of warnings and

drifts and also increasing the false positives w.r.t detections. CNEnone does not use any

drift or warning detection, thus it does not reset base models and never add background

learners. Table C.1 presents a comparison in terms of accuracy of the three variations.

As can be observed in Table C.1, the version without any drift detection can only

achieve slightly better results when there are no drifts (e.g. RTS dataset). CNEjac30 uses

a more moderate approach to detect drifts, thus it outputs better results for gradual drift

scenarios such as LEDg, SEAg and AGRg. Even though CNEfastdoobtainslightlybetterresultsinoverall, wechoosetheCNEjac30

parametrization in terms of drift/warning detection for the other experiments in this work,

basically because CNEfast also yield too many learners resets due to false positives, effec-

tively increasing the execution time and memory used.
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Table C.1: Accuracy - CNEjac30, CNEfast and CNEnone.

Dataset CNEjac30 CNEfast CNEnone
LEDa 73.756 73.59 70.064
LEDg 73.11 72.87 69.899
SEAa 89.484 89.5 87.281
SEAg 89.066 89.06 87.211
AGRa 90.325 90.38 85.373
AGRg 86.649 86.6 81.309
RTS 97.324 97.3 97.497
RBFm 86.523 86.83 76.17
RBFf 77.221 77.82 51.74

HYPER 85.287 85.56 78.846
Syn. Avg 84.874 84.95 78.539

Syn. Avg Rank 1.6 1.6 2.8
AIRL 64.962 65.02 65.032
ELEC 89.667 90.5 87.553
COVT 95.147 94.95 94.627
GMSC 93.549 93.56 93.549
KDD99 99.961 99.957 99.959
Real Avg 88.657 88.79 88.144

Real Avg Rank 1.9 1.8 2.3
Total Avg 86.135 86.23 81.741

Total Avg Rank 1.7 1.67 2.633



Appendix D

CNE Subspace Exploration

Figures D.1 and D.2 present an experiment where multiple executions of CNE

were made varying the subspace m and ensemble size n. We can observe through these

experiments that except for AIRLINES dataset it is advisable to use high values of m.

Also, there is a small improvement by increasing m, yet using an appropriate m value has

a higher impact in the overall classification performance.

147



148

X (size)

10
20

30
40

50
60

70
80

90
100 Y (#

su
bsp

ace
s)

1
2

3
4

5
6

7

Z
 (

a
cc

u
ra

cy
)

30.00
35.00
40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

LEDg

45

48

51

54

57

60

63

66

69

(a) LEDg

X (size)

10 20 30 40 50 60 70 80 90100
Y 

(#
su

bs
pa

ce
s)

1.0

1.5

2.0

2.5

3.0

Z
 (

a
cc

u
ra

cy
)

74.00
75.78
77.56
79.33

81.11

82.89

84.67

86.44

88.22

90.00

SEAa

82

83

84

85

86

87

88

89

(b) SEAa

X
 (size

)

10
20
30
40
50
60
70
80
90
100

Y (#subspaces)1 2 3 4 5 6 7 8 9

Z
 (

a
cc

u
ra

cy
)

60.00

63.89

67.78

71.67

75.56

79.44

83.33

87.22

91.11

95.00

AGRg

69

72

75

78

81

84

87

90

93

(c) AGRg

X (size)

10
20
30
40
50
60
70
80
90
100

Y (#subspaces)
1 2 3 4 5 6 7 8 9 10

Z
 (

a
cc

u
ra

cy
)

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

RTS

64

68

72

76

80

84

88

92

96

(d) RTS

X (size)

10
20

30
40

50
60

70
80

90
100

Y (#
su

bsp
ace

s)

1
2

3
4

5
6

7
8

9
10

Z
 (

a
cc

u
ra

cy
)

40.00
45.56
51.11
56.67
62.22

67.78

73.33

78.89

84.44

90.00

RBFm

52

56

60

64

68

72

76

80

84

88

(e) RBFm

X (size)

10 20 30 40 50 60 70 80 90100
Y 

(#
su

bs
pa

ce
s)

1
2

3
4

5
6

7
8

9
10

Z
 (

a
cc

u
ra

cy
)

20.00
26.67
33.33
40.00

46.67

53.33

60.00

66.67

73.33

80.00

RBFf

40

45

50

55

60

65

70

75

(f) RBFf

Figure D.1: CNE surfaces (LEDg, SEAa, AGRg, RTS, RBFm and RBFf ): accuracy x
ensemble size (n) x subspace size (m). Marked lines highlights m = 85%
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Figure D.2: CNE surfaces (Hyperplane, Airlines, Electricity, Covertype): accuracy x
ensemble size (n) x subspace size (m). Marked lines highlights m = 85%
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