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Resumo

Este trabalho descreve abordagens para recuperação de objetos baseados em Contend-

Based Image Retrieval (CBIR). O desafio é procurar por objetos em imagens de

documentos que podem variar em termos de cor, forma, tamanho e qualidade,

bem como a localização. Tal variabilidade torna o problema não trivial. Assim,

foram propostas duas abordagens para CBIR em imagens de documentos mediante

aprendizagem profunda. O principal desafio é realizar a tarefa de recuperação sem

conhecimento prévio sobre as imagens a serem recuperadas. A primeira abordagem

utiliza um modelo de Rede Neural Convolucional (CNN) pré-treinado, que é ajus-

tado para obter uma representação compacta, porém discriminante, de imagens de

consultas e candidatos. A segunda abordagem utiliza uma CNN Siamesa treinada

com um subconjunto de pares de imagens da base ImageNet, para fornecer os ma-

pas de caracteŕısticas baseados em similaridade. Em ambos os métodos, o esquema

de representação considera mapas de caracteŕısticas de tamanhos diferentes que

são avaliados em termos de desempenho. Um protocolo experimental robusto us-

ando dois conjuntos de dados públicos (Tobacoo-800 e DocExplore) mostrou que os

métodos propostos se comparam favoravelmente ao estado da arte. Assim, as abor-

dagens propostas são esquemas interessantes para encorajar outros pesquisadores

a continuarem trabalhando com diferentes problemas de recuperação de objetos.

Palavras-chave: Redes Neurais Convolucionais, Extração de Caracteŕısticas,

Redes Siamesas, Geração de Candidatos

xx



Abstract

This work describes approaches for content-based graphical object retrieval and

spotting in document images (CBIR). The challenge is to search for graphical ob-

jects in document images that can vary in terms of color, shape, size, and quality

as well as the localization. Such variability in the graphical objects makes the

problem not trivial. Thus, we propose two approaches for CBIR and pattern spot-

ting in document images using deep learning. The main challenge is to perform a

retrieval task without previous knowledge about the images to be retrieved. The

first approach uses a pre-trained Convolution Neural Network model to cope with

the lack of training data, which is fine-tuned to achieve a compact and discrimi-

nant representation of queries and candidate images. The second approach uses

a Siamese Convolution Neural Network trained on a previously prepared subset

of image pairs from the ImageNet dataset to provide the similarity-based fea-

ture maps. In both methods, the learned representation scheme considers feature

maps of different sizes which are evaluated in terms of performance. A robust ex-

perimental protocol using two public datasets (Tobacoo800 and DocExplore) has

shown that the proposed methods compare favorably against the state-of-the-art.

Thus, the proposed approaches are interesting schemes to further encourage other

researchers to continue tackle with different retrieval and spotting problems.

Keywords: Convolutional Neural Network, Feature extraction, Siamese Net-

works, Candidate Generation
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Chapter 1

Introduction

The recent advances in technology have made it possible to store large

amounts of information in digital libraries composed of images and videos related

to our cultural heritage. Such storage was done through the digitalization of

documents, pictures, books, and entire historical collections.

More than a valuable resource for researchers in the areas of Pattern Recog-

nition and Image Retrieval, some additional steps to better explore these libraries

may reveal new perceptions, knowledge, and context (ZHU; KEOGH, 2010). Thus,

the development of solutions dedicated to retrieving objects from digital libraries

based on their content is crucial (YARLAGADDA et al., 2011), and, the objects of an

image, such as stamps, graphs, decorative objects, logos, dropped initial letters,

and others may contain relevant information related to its source.

Image Retrieval (IR) and Pattern Spotting (PS) are very active research

topics in the field of Pattern Recognition. The main motivation is the increasing

demand for solutions capable of performing the retrieval of an image, or specific

objects in it, from wide digital libraries stored in the last decades of modern society.

Some efforts in this direction are the recent studies described in IR and PS (THUY

et al., 2017; WU et al., 2017b; XU et al., 2017; EN et al., 2016c), where IR consists

of finding relevant image candidates in digital collections based on a given query

represented by the whole image or just by a pattern available on it, while additional



2

information is necessary for the PS, which is related to the exact location of the

query in the retrieved images.

Different techniques can be used to retrieve information from a collection of

documents, but they are usually organized in a similar two-step process (MARINAI;

MIOTTI; SODA, 2011), as follows: a) in an offline step, object proposals (image

candidates) are extracted from the document images and indexed using a suitable

representation schema (a feature vector); b) in an online phase, given an input

query image, a measure of similarity is used to compare it with image candidates

extracted from the stored documents, returning a ranked list.

Therefore, some difficulties can also contribute to the unsatisfactory per-

formance of IR and PS methods, such as:

• the document image collections can present documents degradation due the

poor quality of the scanning process;

• the document image collections may have different nature, and they can

present small structures;

• the objects may be overlaped in the document, such as signatures and

stamps;

• there is a lack of previous information about the objects in the document

image collections;

• some queries can vary in terms of color, shape and texture or noisy environ-

ment;

• the queries and candidates may present different sizes.

A recent and exciting challenge on IR and PS has been the need for perform-

ing the retrieval task without previous knowledge about the images or patterns to

be retrieved. The idea is to produce generic solutions able to work on different

digital image libraries. This is an interesting challenge that increases considerably

the level of difficulty of the retrieval task.
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The lack of contextual information combined with the wide variability in

terms of scale, color, and texture of the patterns present in document collections,

which may include seals, logos, faces, and initial letters, make the definition of a

robust representation scheme (feature extraction) a real challenging problem. In

the literature, one may find some promising results of traditional representation

methods based on local descriptors such as bag-of-visual-words (BoVW) (SIVIC;

ZISSERMAN, 2003). However, some significant contributions have been recently

made through the use of deep learning-based methods, mainly by doing feature

extraction using Convolutional Neural Networks (CNN)(BABENKO; LEMPITSKY,

2015) (YUE-HEI; YANG; DAVIS, 2015) (GORDO et al., 2016). However, the main

challenge is to develop a generic solution that is independent of the query images

to work on different document collections by using deep architectures to provide

a robust representation.

With this in mind, in this work we evaluated the following hypotheses: a)

A pre-trained Convolutional Neural Network (CNN) model constructed to deal

with the lack of training data can provide a discriminant representation of queries

and image candidates for IR and PS tasks applied in document image collections;

b) Deep metric based on Siamese Convolutional Neural Network (SCNN) trained

on a general image dataset can be used to construct dataset-independent solutions

for IR and PS tasks in the context of document image collections.

1.1 Objectives

The main objective of this work is to develop image retrieval and pattern

spotting solutions for document image collections while reducing their dependency

on previous knowledge of the image dataset in hands. To this end, we plan to

represent the problem (query and image candidates) using deep learning. To reach

such objective, the following efforts are necessary:

1. Elaborate a literature survey about IR and PS, deep features, and searching

for object candidates;
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2. Define a method for object candidate generation from the document image

collections;

3. Define a deep representation that should be compact and discriminant for

queries and image candidates;

4. Implement the solutions using parallel computing for fast image retrieval and

spotting;

5. Evaluate the proposed solutions of IR and PS with a benchmarking in terms

of precision/recall, comparing the proposed approaches with the state-of-the-

art .

1.2 Proposal

To reach our main objective, in this work we describe two approaches based

on deep learning. In the first proposed approach, we applied a pre-trained CNN as

feature extractor considering feature maps of different sizes and explored the idea

of obtaining a compact representation to provide a fast image retrieval. Thus,

by transfer learning, we succeeded in obtaining a robust representation, while

reducing the importance of the training phase which was represented in this case

by a fine-tuning considering data augmentation on a small set of image queries.

Going deeper into the idea of avoiding training based on queries, in the

second approach, two deep models based (CNN) were organized in a Siamese

CNN and they were trained for feature extraction and similarity estimation. In

both approaches, a strategy for reducing the dimensionality of the feature maps

generated by the CNNs was proposed with the aim of reducing the computational

cost of the retrieval and storage processes.

1.3 Contributions

The contributions of this thesis can be summarized, as follows:
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• A CNN based method in which a pre-trained model is fine-tuned on a small

set of query images reducing the dependence on previous knowledge of the

used dataset;

• An additional implementation in the Selective Search algorithm to reduce

noise and improve the quality of candidate images;

• A schema for feature map reduction to produce a compact and discrimi-

nant set of features to find the best trade-off between feature dimension and

feature representation;

• A solution based on a implementation of a deep metric and trained in a

Siamese CNN that allows us to avoid the training using queries and candidate

images;

– The weights of this trained network can be used in different solutions

and datasets as a generic feature extractor model;

• The representation based on CNN models that reached competitive results

when compared to state-of-the-art using a robust experimental protocol.

1.4 Publications

The contributions of this PhD work have been published in the following

papers:

1. K. L. Wiggers, A. S. Britto, L. Heutte, A. L. Koerich and L. E. S. Oliveira,

”Document Image Retrieval Using Deep Features,” 2018 International Joint

Conference on Neural Networks (IJCNN), Rio de Janeiro, 2018, pp. 3185-

3192.

2. K. L. Wiggers, A. S. Britto, L. Heutte, A. L. Koerich and L. E. S. Oliveira,

”Image Retrieval and Pattern Spotting using Siamese Neural Network”,
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2019 International Joint Conference on Neural Networks (IJCNN), Budapest,

2019.

3. K. L. Wiggers, A. S. Britto, L. Heutte, A. L. Koerich and L. E. S. Oliveira,

”Deep Learning Approaches for Image Retrieval and Pattern Spotting in An-

cient Documents”. 2019. The paper is under review at Pattern Recognition

Letters.

1.5 Organization

This document is organized into four chapters: Chapter 2 presents the

literature review of IR and PS. This chapter is organized into four sections, namely:

Query Spotting; Pre-processing; Feature extraction based on Learning; Similarity

measures and Distances; Parallel Computing; Final considerations.

In Chapter 3 we present the proposed IR and PS methods for candidate

generation, feature extraction approaches with CNN, the evaluation protocol, and

the similarity measure. This chapter finishes with the description of the datasets

used in our work.

The experiments are presented in Chapter 4 with the results of our IR and

PS tasks. We also compared the performance of the proposed IR and IS methods

with those available in the literature.

The conclusions are presented in Chapter 5, where one may find the final

considerations about the results and the directions of future work.
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Chapter 2

Literature Review

The storage of documents, books, and other data collections results in a

relevant source of information that can be explored by specialists from different

areas. However, in traditional datasets, the document information is well organized

in predefined structures, but in a dataset made up of document images, it is not

so simple to define adequate queries due to the difficulty of understanding the

semantics of the data. This challenging problem has received special attention from

the information recovery community in the last few years, and various approaches

for indexation and recuperation have been proposed.

Several techniques can be used to retrieve information from a collection

of images. These techniques frequently follow a conventional process (MARINAI;

MIOTTI; SODA, 2011), in this way: indexation of the candidate extracted from

the images, and representation in an adequate feature space. This process can be

accomplished in an offline phase; then during an online phase, the user conducts

queries for the retrieval system and a measure of similarity is used to compare it

with the candidates of the stored images, returning a ranked list. This process

must be repeated until some stop condition is reached.

Therefore, this chapter presents the main definitions and processes selected

to create a retrieval and spotting system. Section 2.1 presents the literature review

on systems of query spotting and the main steps to implement a CBIR process.
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Thus, Section 2.2 presents the pre-processing step with some algorithms from

the literature to find object proposals (image candidates) given an input image

and its applications. The feature extractor as a second step, responsible for the

representation of images, is presented in Section 2.3, with emphasis placed on

the use of deep learning, while similarity measures to complete the third step

are presented in Section 2.4. Section 2.5 presents some concepts about parallel

computing for IR to complement our research.

2.1 Query Spotting: image retrieval and pattern lo-

calization

The approach of interest for this study is known as Content Based Image

Retrieval (CBIR). The main objective of the CBIR methods is to recuperate the

information without previous knowledge about the domain. That is, the system

must evaluate any variations in color, texture, shape, and localization of the query

of the image collection. This query can be presented as a whole image or small

areas of images. Datta et al. (2008) studied 300 articles related to CBIR systems

published from 1995 to 2005. The authors describe the challenge of developing

systems that are useful in the real world. In their opinion, aspects related to

character extraction, feedback, and the evaluation process should receive special

attention.

In other work (DOERMANN, 1998) one may find, a detailed report on the

initial research on recuperating images from documents. Each study has a different

focus, such as image retrieval in manuscripts, logos, medieval documents, signa-

ture. The authors conclude that the indexing and retrieval steps will make use of

the powerful features offered in the context of the text, graphics, and images. In

this way, the systems need to address complex trade-offs between image quality,

retrieval recall, and precision and algorithm speed.

Figure 2.1 shows a general overview of a CBIR process. It begins with
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the input of a query image and ends with a list of retrieved images. For Wan et

al. (2014), the performance of a CBIR system is crucially dependent on a robust

process for feature extraction and an appropriate similarity measure. Such infor-

mation based on content is extracted to retrieve similar images from the dataset.

The similarity is computed based on the difference between two feature vectors

(the query and the candidate). The IR system returns a ranked list, correspond-

ing to the level of similarity between the query and all the candidates (IQBAL;

ODETAYO; JAMES, 2012).

Figure 2.1: A typical CBIR system

Source: Adapted from Iqbal, Odetayo and James (2012)

A subclass of CBIR that aim to detect occurrences of a query and its precise

location in a document image is query spotting. Due to noise and the complexity

of the systems, image spotting tasks can be challenging, leading to false positives,

which consequently can reduce the precision of the algorithm (CHATBRI; KWAN;

KAMEYAMA, 2014). The spotting task can be based on Word Spotting, for retrieve

of words or lines of text, or on Pattern Spotting for the recovery of other graphic

objects from documents, such as decorative objects, coats of arm, or decorative
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letters. This section presents the approaches that can be used for these tasks, as

well as the principal directions for this work.

The initial concept of spotting methods emerged in 1996 through Man-

matha, Han and Riseman (1996), named Word Spotting (WS ). WS methods join

forces to detect words in documents without knowledge of the context. Handwrit-

ten documents constitute a separate research area with many challenges due to

differences between the quality of documents (KUMAR; GOVINDARAJU, 2016). An

example of a handwritten document is shown in Figure 2.2. For this proposal, WS

approaches describe each word as a sequence of features with varying sizes and

they are successful in a limited domain, in which the documents are of good qual-

ity. However, documents can be degraded, by inks, stains, faded or other factors,

which can make the recovery process more difficult.

Figure 2.2: Part of scanned document of George Washington collection

In documents written by the same person, patterns tend to be similar.

However, if a dataset is from different authors, traditional word recovery processes

can fail. Rath and Manmatha (2007) show the idea of WS, according to Figure

2.3 using a method of finding the shortest distances between the search word and

document images. This method is used to group all word occurrences. The groups

that contain terms of interest are selected and labeled. In this way, all instances

are indexed to the respective words and documents.
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Figure 2.3: WS process example

Source: Rath and Manmatha (2007)

Handwritten historical documents are frequently of low quality and the

pre-processing with the segmentation of a page into words is a challenge that

is being explored by some authors (TOSELLIA et al., 2016; RUSIÑOL et al., 2015;

TABIBIAN; AKBARI; NASERSHARIF, 2016; THOMAS et al., 2015; KANADJE et al.,

2016), including documents with low printing quality (KUO; AGAZZI, 1994). The

initial stage of creating a spotting method is related to pre-processing, where the

WS systems can be based on query-by-example (DOVGALECS et al., 2013; RUSIÑOL

et al., 2015), in which a query can be an image to be searched for or query-by-

string (ALMAZÁN et al., 2014), in which a string contains a word to be searched

for. In this stage, the system must define what to index from each image in the

collection. The study presented by Dovgalecs et al. (2013) used Sliding Windows

(SW) to find candidates in a collection of handwritten documents. The same idea

was also applied by En et al. (2016c), creating sub-windows of at least 20x20

pixels. However, SW should be used judiciously, due to a large number of sub-

windows that can be generated in this process, leading to exhaustive computational

processes for feature extraction and matching.
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A possibility to reduce the number of sub-windows to be indexed in this

process would be to use a method of finding zones of interest in the document. In

this way, the process seeks to separate graphic text from the rest of the document,

as (ALMAZÁN et al., 2014) that defined a fixed hierarchy of blocks, and used his-

tograms to combine the areas of interest, while (ROY; RAYAR; RAMEL, 2015) used

a tool to define the areas of each image in a handwritten book.

Besides, WS systems can be categorized into two approaches by the seg-

mentation procedures utilized: segmentation-based and segmentation-free. In the

segmentation-free approach, the search can be done without a segmentation pro-

cess or with only line-segmentation, as used by Roy, Rayar and Ramel (2015).

However, in the segmentation-based approach, each word must be segmented be-

fore carrying out the matching. In other words, each document must be divided

into small parts, which will be represented by feature sequences (MONDAL et al.,

2016). However, if the document is badly degraded, it may not be possible to

obtain good segmentation.

The second stage of development of a spotting system is the representa-

tion of the images, which can be done with the whole image or the sub-windows.

Approaches based on Scale-Invariant Feature Transform (SIFT ) can be found (AL-

MAZÁN et al., 2014; RUSIÑOL et al., 2015), but many authors based their work on

the Bag of Visual Words (BoVW ) (DOVGALECS et al., 2013; RUSIÑOL et al., 2015;

EN et al., 2016c), in which a document is represented by word occurrences, inde-

pendent of position in the document. Recent proposals for the use of Vector of

Locally Aggregated Descriptor (VLAD) and Fisher Vector (FV ) have obtained

better results than the BOVW approach (EN et al., 2016c; ALMAZÁN et al., 2014).

Other feature extraction methods can be used in spotting systems: Connected

component and glyph codebook (ROY; RAYAR; RAMEL, 2015), Grayscale and geo-

metric vectors (TOSELLIA et al., 2016), Binary vectors (RIBA et al., 2015; THOMAS

et al., 2015), color histogram (ZHU; KEOGH, 2010).

Systems based on deep learning also lead to an interesting direction for

spotting systems, especially if a Convolutional Neural Network (CNN) is used
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for feature extraction (JADERBERG; VEDALDI; ZISSERMAN, 2014). Thomas et al.

(2015) observed that the models based on deep architectures have a high level of

data representation and had the best performance in their experiments.

Finally, to carry out the matching between objects in the third step of a

spotting system, a similarity measure must be defined between the query and all

the indexed regions. This measure can be based on the approach of the nearest

neighbor, for example, Euclidean distance and cosine (EN et al., 2016c; RIBA et

al., 2015) or search pixel by pixel as used by Delalandre, Ogier and Lladós (2008).

Some other approaches can be used to obtain better performance, such as Dynamic

Time Warping (DTW ). One example is the study applied to WS by Kanadje et

al. (2016) who presented a new procedure using Mel Frequency Cepstral Coeffi-

cients for feature representation and relevant words identified considering DTW.

Thomas et al. (2015) presented a system of recuperation using Hidden Markov

Modeling (HMM ). One disadvantage of models based on DTW is that they have

slow execution time. On the other hand, the algorithms based on nearest neighbor

approaches are compatible with the sliding windows strategy.

Based on WS systems, the procedures can be improved to retrieve not only

words or lines of text but also other graphic objects present in image collections.

In this way, Dovgalecs et al. (2013) and Hu et al. (2012) introduced the concept

of Pattern Spotting (PS ) to find tools with the objective of mining handwritten

documents, or recover medieval capital letters, decorative objects, coats of arms,

and other objects from images (TRANOUEZ et al., 2012).

PS consists of finding occurrences of a graphic object given an image collec-

tion, considering its location. This object can have different features from others.

In this way, during the process, an image that has variability in its color and

texture is compared with the written word or symbol. However, some traditional

methods used in WS cannot be applied in the context of PS (EN et al., 2016c),

for example, query by string, since the strings cannot express patterns, this would

limit the systems capacity to detect patterns.

The first stage of a PS system is also the pre-processing. SW is also widely



14

applied in PS, as presented by Rakthanmanon, Zhu and Keogh (2011), Hu et

al. (2012) and En et al. (2016c). Zhu and Keogh (2010) indexed these images

using patches, with each patch being a rectangular window on the pages. The

graphic objects recuperated in PS systems can bring greater complexity due to

the variations found in the queries. In this way, the set of features must also be

robust, to form the best representation for the images. Many authors use different

color spaces to limit objects, such as HSV (YARLAGADDA et al., 2011) and RGB

(ZHU; KEOGH, 2010). Afterward, the objects can be represented by Histograms

of Oriented Gradients (HoG). En et al. (2016c) compared three representation

models, BOVW, VLAD and FV, in which the best results were obtained for the

representation based on VLAD and FV. In this study, the authors recovered the

query image and its respective location in the corresponding image. Dovgalecs et

al. (2013) chose to use SIFT descriptors and represent them by BOVW and the

pattern searched was considered correct only with overlap greater than 50%. SIFT

descriptors were also used by Le et al. (2013) and Le et al. (2014).

As similarity measures, in PS the methods based on nearest neighbor are

also chosen for the system, such as k-NN (ZHU; KEOGH, 2010), GHT distance

(RAKTHANMANON; ZHU; KEOGH, 2011), dot product (EN et al., 2016c). However,

expansion can be observed for other measures like Campana- Keogh-1 (CK1 ) used

by Hu et al. (2012), Longest Weighted Profile (LWP) used by Dovgalecs et al.

(2013) or SVM-base classifier, proposed by Yarlagadda et al. (2011).

2.1.1 Related Works

Recently, many articles have been dedicated to IR and PS problems, such

as Chen et al. (2016), Thuy et al. (2017), Hangarge et al. (2016), He et al. (2016).

Torres and Falcão (2006) presented a detailed survey with the use of the CBIR

approach in several applications for medical systems and digital libraries.

In Shirdhonkar and Kokare (2011) the authors performed handwritten docu-

ment image retrieval and used Contourlet Transform descriptors, followed by Eu-

clidean and Camberra measures for similarity analysis, while (LIN et al., 2015a)
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explored deep learning to retrieve manuscripts and shop images, applying deep

binary codes and an exhaustive search.

Logo retrieval was recently explored by Jain and Doermann (2012) that

used SURF descriptors, proposing a new indexing model and candidate filter.

They observed that the recognition of text along with logos could produce better

results. However, this strategy applied only with logo images does not produce

such satisfactory results.

Alaei, Delalandre and Girard (2013) presented an interesting system for

logo retrieval based on administrative documents, using a decision tree and a small

number of features for patches. They evaluated the proposed approach using public

and two large industrial datasets. Based on the experiments, most of the errors

occurred because some documents were very poor quality, noisy and skewed.

Table 2.1 shows a summary of the IR methods explained previously. The

type of data and the method used to represent images and generate candidates are

considered. Relevant papers were selected from research done in the last years.

Table 2.1: Summary of the recent works for Image Retrieval task

Author Dataset Representation Image segmenta-
tion

(CHEN et al., 2016) MPEG-7, (N-S) and
AT&T

Shape context Whole image

(THUY et al., 2017) Corel dataset Color and texture Whole image
(HANGARGE et al., 2016) Document images Gabor wavelets Word segmenta-

tion and bounding
boxes are fixed

(HE et al., 2016) Historical document Singular structural
feature

Patches with a
fixed image size

(SHIRDHONKAR;

KOKARE, 2011)
Historical handwritten Contourlet Trans-

form
Entire textual
handwriting

(LIN et al., 2015a) Cifar and Mnist Deep binary hash
code

Whole image

(JAIN; DOERMANN,
2012)

Administrative docu-
ments

SURF features Interest point de-
tector

(ALAEI; DELALANDRE;

GIRARD, 2013)
Industrial datasets Frequency and

Gaussian probabil-
ity, height, width,
average density

Piece-wise painting
algorithm
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Table 2.2 shows a summary of WS and PS methods found in the literature.

The type of data and the method used to represent images and generate candidates

are considered. For both WS and PS, the candidate generation used by the authors

was studied because it is important to evaluate similar approaches or alternative

algorithms. Relevant papers were selected from research done in the last years.

Zhu and Keogh (2010) performed objection detection in books, and the

RGB color space was used to represent units of low level to retrieval objects in

books, while Hu et al. (2012) presented a search by occurrences of small regions

of decorative letters of books. Yarlagadda et al. (2011) studied the object de-

tection problem in 27 medieval manuscripts from Heidelberg University Library,

presenting suitable results for multiple scales and orientations. However, there are

many processes to produce a robust representation, which can be avoided by deep

learning approaches.

Rakthanmanon, Zhu and Keogh (2011) introduced a system to detect oc-

currences of the patterns in historical texts, however, the authors did not use

the exact location of symbols. Dovgalecs et al. (2013) proposed a method for the

retrieval process using their dataset of historical documents, presenting some qual-

itative results about precise location. In our experiments we want to find the best

object and its respective location, returning a comparison to the state-of-the-art,

which in some cases was not described by the authors.

Riba et al. (2015) coded the images using graphs and binary vectors to

detect plant pattern. In the experiments, they had influence of symmetric sym-

bols that modify the entire topology of the plant. The use of binary vector can

result in poor representation. However, En et al. (2016c) proposed information re-

trieval in historical documents, with a focus on graphical patterns. The methods

were evaluated in DocExplore database, created by the authors in their research

project. The images were represented in gray-scale and, in some cases, there may

be confusion in some patterns.

Often we observe that the authors used shape features or binary repre-

sentation, which is difficult to represent the different levels of abstractions of the
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Table 2.2: Summary of the recent works for Word Spotting and Pattern Spotting

Author Dataset Representation Image segmenta-
tion

Word Spotting
(DOVGALECS et al.,
2013)

Historical handwritten BOVW Sliding Windows

(ALMAZÁN et al., 2014) Historical handwritten Fisher Vectors and
CSR

Spatial Pyramids

(ROY; RAYAR; RAMEL,
2015)

Historical book Connected compo-
nent
and glyph codebook

AGORA frame-
work

(RUSIÑOL et al., 2015) Historical handwritten BOVW Local patches
(THOMAS et al., 2015) Handwritten letters Binary pixels Frames
(RIBA et al., 2015) Historical handwritten Binary vectors Graphs
(TOSELLIA et al., 2016) Handwritten docu-

ment
Grayscale and geo-
metric vectors

Text line

(EN et al., 2016c) Manuscripts BOVW, VLAD and
Fisher Vectors

Sliding Windows

(KANADJE et al., 2016) Lecture videos MFCC Frames
(MONDAL et al., 2016) Historical handwritten RLSA Text line
(TABIBIAN; AKBARI;

NASERSHARIF, 2016)
Lecture videos Presence and Du-

ration Confidence
Function

Frames

Pattern Spotting
Zhu and Keogh (2010) Historical Manuscripts Color Histogram Patches
Yarlagadda et al. (2011) Medieval Images HoG Shape based HSV

representation
Rakthanmanon, Zhu
and Keogh (2011)

Historical Document Pixels Sliding Windows

Hu et al. (2012) Books Binary Vectors Sliding Windows
Dovgalecs et al. (2013) Author book BOVW Sliding Windows
Riba et al. (2015) Document images Binary Vectors Graphs
En et al. (2016c) Historical document BOVW, VLAD and

FV
Sliding Windows

Le et al. (2013) Administrative docu-
ment

SIFT feature space Keypoints

Le et al. (2014) Administrative docu-
ment

SIFT and BRIEF Keypoints

images. Thus, the use of deep learning in IR and PS approaches can allow a robust

representation of images, however, it is important to avoid training steps because

of the lack of information, that is, to perform IR and PS without any previous

knowledge about the patterns. Therefore, the next sections present the principal
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considerations of the methods that can be used in this study, based on the steps

of CBIR. First, pre-processing is a crucial task to find the candidates present in

each document. Then definitions of feature extraction will be present, ending the

chapter with the main similarity measures for IR.

2.2 Pre-processing: search for candidate objects

Pre-processing is a crucial task in IR and PS systems since it aims to search

for candidate objects in each document of the data set. The main objective is to

create a set of regions defined by bounding boxes corresponding to the objects that

can be present given an image (CHENG et al., 2014). In the past few years, this

process has become an important area of image processing. In CBIR solutions, we

need to find all the possible object proposals (candidates) present in each docu-

ment, but avoiding previous information about the type of object to be searched

for. As observed in the literature, SW is a common process for generating candi-

dates with fixed sizes, however, several approaches have been proposed to try to

balance computational cost and high quality of the objects (ARBELÁEZ et al., 2014;

GIRSHICK et al., 2014). So, this section presents some pre-processing methods for

candidate generation given an image, used by authors in recent publications.

The most classic approach (SW) segments the image in homogenous regions,

however, recent methods show a more advanced concept, called object proposals.

Though a variety of approaches exist, such as Arbeláez et al. (2014), Cheng et

al. (2014), Zitnick and Dollár (2014), Uijlings et al. (2013), the SW approach is

still used in some studies, as mentioned by Hu et al. (2012), En et al. (2016c),

Dovgalecs et al. (2013).

Forsyth and Ponce (2002) explain that the SW approach shows higher fea-

sibility when working with high-quality images without deformation. The objects

can be generated easily, using a set of fixed-size windows (m x n). However, care

is necessary for this process, since objects can vary in size and thus an adequate

scale must be defined for the images. Another important topic to keep in mind



19

is the overlap of the windows, that is, considering a limit of the overlap between

the windows generated in the image. So, it would interesting to find alternative

methods that search for candidate regions to be used in the image recovery task,

that could divide the image into small areas with various search parameters, not

just fixed-size windows (ARBELÁEZ et al., 2014).

Accordingly, He and Lau (2015) presented a new approach to generate ori-

ented object proposals based on different positions, scales and proportions. They

formulated a probabilistic model, in which objects are searched for and located with

the method of maximum likelihood. Then, the shape of the object is described

by a covariance matrix. They used the Freestyle Motocross data set containing

positive and negative samples. The results surpassed those found in the literature,

however, the data set is composed of only one type of object to be searched for.

Faktor and Irani (2013) presented a method of co-segmenting common ob-

jects by composition. They suggested an approach for inducing affinities between

parts of the image. In this way, the results were evaluated in three different data

sets. The results surpassed the state of the art, but in some cases, the method

failed when the background was complex (containing multiple images).

As a different alternative, Endres and Hoiem (2010) proposed an approach

for automatically generating a small number of regions in an input image. They

used binary segmentation (CFR Segmentation) based on a few regions as a seed and

computed the probability of other regions belonging to the same object. However,

they encountered difficulty finding regions in small objects.

Bhattacharjee et al. (2016) proposed a method based on the invariance of

occlusion, geometric shape, and deformations to find objects in a large data set.

The objective was to identify a set of regions of interest in which there is a high

probability of the presence of any object. They developed their work based on

the implementation of the Edge Boxes algorithm proposed by Zitnick and Dollár

(2014) integrated with BoVW to represent the images. Although the authors

developed an exhaustive search, the results were discriminative for outliers and it

is prone to disorder, deformation, and variations in the conditions of the image.
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A new pre-processing scheme was proposed by Liu, Lu and Jia (2015). First,

they used R-CNN to generate the box proposals and then statistical information

was codified to aggregate the boxes in a prediction of the final object. The data sets

used were from the Pascal challenge and the experiments showed an improvement

of 3.7% of mAP compared with the literature. However, the search process needs

a seed defined based on the ground truth.

Zhang et al. (2016) presented an approach to building the top of a hierar-

chical segmentation. Candidate objects of multiples scales were selected with this

approach, being obtained by the maximization of an objective submodular func-

tion. The results obtained in two data sets surpassed other methods, but some

classes were not recognized.

Thus, many popular methods in the literature are based on object segmen-

tation, as follows:

• Objectness (ALEXE; DESELAERS; FERRARI, 2010): it is considered one of the

earliest methods of segmentation proposals. It uses a probability function

based on spatial location, colors, and edges to define if the region of interest

is an object, and then the proposals are generated.

• CPMC (CARREIRA; SMINCHISESCU, 2012): it performs automatic segmen-

tation to generate and classify object hypotheses in images, without prior

knowledge of the individual properties of each class.

• Binarized Normed Gradients (BING) (CHENG et al., 2014): it presents a

thresholding version of standard gradient resource to estimate objects in an

image.

• Edges Boxes (EB) (ZITNICK; DOLLÁR, 2014): each object is found by means

of its edges. The closest contour number by a bounding box indicates the

probability of containing an object.

• RPrim (MANEN; GUILLAUMIN; GOOL, 2013): it uses a merge function to

calculate weights between low-level pixels to generate the proposals.
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• DeepBox (DB) (KUO; HARIHARAN; MALIK, 2015): the proposals are gener-

ated with bottom-up method, and ranked by a deep learning algorithm.

• Multiscale Combinatorial Grouping (MCG) (ARBELÁEZ et al., 2014): it is

an approach to image segmentation and object generation with efficient use

of multiscale information. This information is then grouped to generate the

objects.

• Selective Search (SS ) (UIJLINGS et al., 2013): it is a combination between

exhaustive search (capture locals of objects) and segmentation to generate

objects. This algorithm considers that the objects can occur at different

scales.

Zitnick and Dollár (2014) made comparisons among several algorithms

available in the literature to generate objects from the images. They presented EB

and SS as promising algorithms for this purpose since they have a high number of

object proposals and recall. Bing is an algorithm that can be faster than EB and

SS, but it has low precision. Table 2.3 shows a brief review of the methods studied

for object proposals. Some studies did not use a specific algorithm to generate the

objects.

Therefore, the result of this step is a set of candidates indexed from each

image of the collection. In the next step, a robust feature extractor must be defined

to represent these images. The definitions and approaches to implement a feature

extractor method for spotting systems are presented in the next section.



22

T
ab

le
2.

3:
L

it
er

at
u
re

re
v
ie

w
fo

r
ca

n
d
id

at
e

ge
n
er

at
io

n
m

et
h
o
d
s

A
u
th

o
r

A
lg
o
ri
th

m
D
a
ta

se
t

M
e
th

o
d
s

A
d
v
a
n
ta

g
e
s

D
is
a
d
v
a
n
ta

g
e
s

H
e

an
d

L
au

(2
01

5)
-

F
re

es
ty

le
M

o
to

cr
o
ss

P
ro

b
a
b

il
is

ti
c

m
o
d

el
D

iff
er

en
t

p
o
si

ti
o
n

s
a
n

d
sc

a
le

s
D

ep
en

d
s

tr
a
in

in
g

sa
m

p
le

s

F
ak

to
r

an
d

Ir
an

i
(2

01
3)

-
M

S
R

C
iC

o
se

g
P

a
sc

a
l

C
o
-s

eg
m

en
ta

ti
o
n

S
ea

rc
h

o
b

je
ct

s
in

co
m

m
o
n

C
o
n

fu
si

o
n

w
it

h
b

a
ck

-
g
ro

u
n

d
in

so
m

e
ca

se
s

E
n

d
re

s
an

d
H

oi
em

(2
01

0)
C

R
F

B
S
D

S
V

O
C

2
0
0
8

B
in

a
ry

se
g
m

en
ta

ti
o
n

F
in

d
p

ro
b

a
b

il
it

y
to

ea
ch

re
g
io

n
D

iffi
cu

lt
in

sm
a
ll

o
b

je
ct

s

B
h

at
ta

ch
ar

je
e

et
al

.
(2

01
6)

E
B

B
el

g
a
lo

g
o

F
li

ck
er

L
o
g
o
s-

2
7

T
o
b

a
cc

o
-8

0
0

E
d

g
eB

ox
B

o
V

W
D

is
cr

im
in

a
ti

ve
to

o
u

tl
ie

rs
E

x
h

a
u

st
iv

e
se

a
rc

h

L
iu

,
L

u
an

d
J
ia

(2
01

5)
R

-C
N

N
V

O
C

2
0
0
7

2
0
1
0

S
ta

ti
st

ic
a
l

In
fo

rm
a
ti

o
n

A
g
re

g
a
ti

o
n

o
f

b
ox

p
ro

p
o
s-

a
ls

D
ep

en
d

s
o
f

la
b

el
s

Z
h

an
g

et
al

.
(2

01
6)

-
B

S
D

S
3
0
0

V
O

C
2
0
1
2

H
ie

ra
rq

u
ic

a
l
se

g
m

en
ta

-
ti

o
n

S
el

ec
t

o
b

je
ct

fr
o
m

m
u
lt

i-
p

le
s

sc
a
le

s
S

lo
w

er
th

a
n

o
th

er
m

e-
th

o
d

s
C

ar
re

ir
a

an
d

S
m

in
ch

is
-

es
cu

(2
01

2)
C

P
M

C
M

S
R

C
V

O
C

2
0
0
9

P
o
o
l

o
f

se
g
m

en
ts

M
u

lt
ip

le
sp

a
ti

a
l

sc
a
le

s
P

ro
b

le
m

s
w

it
h

o
cc

lu
si

o
n

A
rb

el
áe
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2.3 Image representation: Feature Extraction based

on Learning

The feature extraction process plays an important role in traditional me-

thods of machine learning. An adequate method for extracting features from

images is essential for representing the queries and candidate images generated

in the pre-processing stage. The feature extraction process aims to describe the

object based on the chosen representation, and it begins with the result of a seg-

mentation stage to provide the representation of each object in the data set. This

representation results in quantitative information that is used to differentiate one

object class from another (GONZALEZ; WOODS, 2006). Therefore, feature extrac-

tion methods determine an appropriate subspace of dimensionality m (set of m

features) from a space of dimensionality d (the image), considering m ≤ d (JAIN;

DUIN; MAO, 2000). This will result in a feature vector for each instance of the data

set.

The feature vectors extracted are introduced to an inductor algorithm, such

as SVM, decision tree, Bayesian networks, etc., that can carry out the learning

task. Typically, the representation task is costly and challenging, because it is

necessary to find a set of features that adequately represent all the data. Several

researcher use a specialized feature extractor, such as SIFT descriptors (LOWE,

2004), SURF (BAY et al., 2008) or HOG (DALAL; TRIGGS, 2005).

Studies of image representation have received special attention from the

computational vision community for many years. When the main focus is on shape

features, an external representation is chosen. However, when the focus is related

to local properties of the image, then an internal representation is chosen, such as

color and texture (GONZALEZ; WOODS, 2006). In document images, the features

can be complex, with variability in shape, color, and texture. During most of the

last decade, the use of BoVW was considered a reference in the state of the art,

especially when used with SIFT descriptors. However, this representation works

with only local descriptors, motivating researchers to also use alternative methods.
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Recent studies show that Deep Learning (DL) has become a new alternative

for retrieval systems, The use of the learning process in feature extraction when

possible is an attractive approach with promising results. This approach is called

Feature Learning or Representation Learning (LECUN et al., 1998). In this way, fea-

ture learning can be accomplished through DL techniques, which represent a new

area of machine learning. These techniques have increased the efficacy of different

solution in pattern recognition and one objective is to improve the representation

in multiple levels of abstraction, such as images, sounds, and texts.

The generation of a feature map from a deep learning architecture is consi-

dered one of the best solutions for many computational vision problems, including

searching for images in repositories. It is common to acquire an image of an ob-

ject, place or person using a camera and then create a query image for the recovery

system (BOSCH, 2015). In the last few years, deep architectures have been used to

recover images using feature learning methods (KRIZHEVSKY; HINTON, 2011) (XIA

et al., 2014). Recently, Gordo et al. (2016) evaluated approaches using public data

sets, like ImageNet, Cifar-10 e Mnist. The principal focus is to learn high-level

features by the composition of low-level features (MITCHELL, 1997)

Another current focus of the DL models is the ability to work with data in

large scale, due to the high number of parameters and the type of deep architecture.

The performance of traditional machine learning models (for example SVM) has

caused problems of underfitting, which present large errors during the training

stage when the training becomes too large. The solution to this problem is to use

DL, as can be observed in Figure 2.4 (WANG, 2016).
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Figure 2.4: Comparison of machine learning models by training data size

Source: Wang (2016)

However, DL architectures are not more advantageous than other learning

methods and can even result in worse results when the amount of training is small.

The solution to this problem is the use of transfer learning. This method will be

explained in Section 2.3.2. However, DL makes a big difference in large scale data,

since in experiments, it has been observed that the performance was improved

when the dimensionality was increased. This is known as ”dimensionality blessing”

because a large training capacity is necessary. Bengio and LeCun (2007) defined

DL architectures as the composition of multiple layers with adaptive non-linear

components. In this sense, the architectures can:

• learn the previous knowledge with input data;

• have multiple layers where two adjacent layers may connect themselves with

non-linear components;

• have several parameters of training;

• be well dimensioned;

• support different paradigm of learning, such as multi-task learning or semi-

supervised.
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In the last few years, several researchers have worked with DL. Babenko

and Lempitsky (2015), Kalantidis, Mellina and Osindero (2016), Razavian et al.

(2014b) and Gong et al. (2014) recently worked with deep features applied to

image representation. Lin et al. (2015a) and Wu et al. (2017b) used deep binary

representation for fast IR, due to the large data set used in their experiments.

Many architectures have been proposed as presented by (BENGIO, 2009),

(VINCENT et al., 2008), (HINTON; OSINDERO; TEH, 2006) and (LECUN et al., 1989),

especially those that use Convolutional Neural Network (CNN ) as a feature ex-

tractor (LIN et al., 2015a) (GORDO et al., 2016) (RADENOVIC; TOLIAS; CHUM, 2016).

In the following sections, attention will be given to CNN architecture, since it was

used in the present study as a feature extraction method thanks to its high per-

formance as reported in recent studies.

2.3.1 Convolutional Neural Networks

The study of CNNs began with neurobiological studies and with an original

idea of HUBEL and WIESEL (1962) related to local sensitivity and selective neu-

rons of a cat’s visual cortex. The hypothesis of a good internal representation must

be hierarchical, in which pixels generate edges, edges become patterns of shape,

and the combined standards will form objects, which consequently form scenes (LE-

CUN; KAVAKCUOGLU; FARABET, 2010). Accordingly, CNN is an architecture that

is widely used in DL, making it a good candidate algorithm for resolving problems

involving pattern recognition. This section presents the CNN architecture and the

operation of this network.

The concept of CNN was proposed in 1989 by Lecun et al. (1989), as a

multiple-layer perceptron. This network was designed precisely to recognize two-

dimensional shapes with a high level of invariance for translation, scale and other

forms of distortion.

This network combines three architectural ideas: the local receptive fields

share weights and spatial or temporal subsampling. This permits the use of a filter

on the visual data, maintaining the neighbor relationship between the pixels of the
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image during the network processing.

Two decades after this concept of architecture was introduced, Krizhevsky,

Sutskever and Hinton (2012) presented this architecture model for the recognition

process applied to a data set from Imagenet Large Scale Visual Recognition Chal-

lenge (ILSVRC) in 2012 that is a dataset with millions of labeled examples. The

algorithm was able to learn features of different natures, that is, it could work

with spatial information, scales, and colors. Since then, the interest in this archi-

tecture model has grown, as presented by (SERMANET et al., 2014), (RAZAVIAN et

al., 2014a), (BOSCH, 2015), (TOLIAS; SICRE; JÉGOU, 2015), (GORDO et al., 2016),

(RADENOVIC; TOLIAS; CHUM, 2016) (KALANTIDIS; MELLINA; OSINDERO, 2016).

Zeiler and Fergus (2014) defined CNN as a feature hierarchy producer, and

the learning is evaluated through the analysis of the filters obtained at the end of

the training stage. A feature map is generated in each layer of the CNN model

(LECUN; KAVAKCUOGLU; FARABET, 2010) and the input represents a matrix of

pixel intensity. The feature map of any internal layer is a multichannel induced

image, in which each pixel corresponds to a specific feature. All the neurons are

connected to a small number of neurons adjacent to the last layer (DRUZHKOV;

KUSTIKOVA, 2016).

In this architecture, the first layers can learn filters for edges, borders, and

colors. At deeper levels, greater detail and complex features of the images are

detected. In the last layer, a final feature map is generated (LECUN et al., 1998).

In this way, feature extraction occurs when the learning of the layer is finished,

generating a feature map. Each feature map will serve as standard input for the

next layer. In IR or PS, it is necessary to define which layers will be used to

provide the final feature map, as done by Yue-Hei, Yang and Davis (2015) that

investigated the effect of different layers and the use of dimensioned input images,

evaluating the performance of convoluted features in the IR task.

Besides, CNN architectures can create filters with different dimension. The

filters are defined during the training process of the network, and they can have

different lengths, widths, and depths, crossing multiple channels. The classic filters
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in image processing rarely have these features, since most are 2D. The possibility

of this network generating feature maps is a great benefit of this model, and at the

same time, it follows a complex process of extraction. In this way, the training data

information is maximized. So, CNN has some important characteristics (LECUN

et al., 1998)(ZEILER; FERGUS, 2014)(LECUN; KAVAKCUOGLU; FARABET, 2010):

• the images are often large and have enough variability in the information of

the pixels;

• the input data goes through convolution layers;

• a convolution layer is composed of several neurons, each one responsible by

filter application in some specific piece of the image;

• the filter size defines the neighbor rate that each neuron of the layer will

process;

• an activation function is commonly used after the convolution layer and it is

responsible for applying a transformation in the data received;

• a reduction layer is applied after convolution and activation layers to reduce

the dimensionality of data;

• the parameter stride also must be defined, representing how the pixels will

be shifted between each window of the filter;

• a neuron is connected to the pixels of the superior layer, and each connection

receives a weight. The weights are shared between layers;

• the weights are assigned to the connections in each neuron and they are

interpreted as a matrix representing the convolution filter;

• when a classification is performed at least one fully connected layer is in-

creased after convolution layers and grouping. This layer will draw a decision

path from the filter responses;
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• a classification function is defined after fully connected layer. This layer

influences the filter learning and final results;

Unlike the formulation of the traditional perceptron, in a CNN only the

input set is connected to each neuron analyzing the local field, and the neurons

of the same layer are grouped into maps. In a CNN it is not necessary to define

an initial feature model, but only the architecture of the filters: quantity, size and

stride (ZEILER; FERGUS, 2014).

Once the architecture is defined, a feature map is obtained with the con-

volution in an input image by a linear filter, a bias, and an activation function.

That is, with the k layer, the filters are determined for a set of weights W k, input

feature map x, a bias term bk and a convolution operator ∗. Equation 2.1 defined

by Lecun, Kavakcuoglu and Farabet (2010) shows the output of the feature map

hk obtained by an activation function f .

hkij = f((W k ∗ x)ij + bk) (2.1)

The convolution process is made up of three phases: filter definition, acti-

vation function, and reduction. A typical CNN structure is composed of one or

more stages with these three phases. Figure 2.5 shows the basic CNN structure

composed of two convolutional stages. This type of network is widely used in

problems involving classification, detection and image recognition.
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Figure 2.5: Typical structure of CNN

Source: Adapted from Jing et al. (2017)

Thus, at each step of the filter definition, the convolution of the filters W k
i

corresponding to the i − th filter of the layer k of size l1 and l2. The filters are

responsible for detecting a particular feature in all locations of the input image.

Figure 2.6 shows an example of this convolution process with an image 4x3 and

convolution filter 3x3.

Image Convolution filter Result

c1 = 1 * 1 + 0 * 0 + 1 * 1 + 0 * 0 + 1 * 1 + 0 * 0 + 1 * 0 + 0 * 0 + 1 * 1 = 4

c2 = 0 * 1 + 1 * 0 + 0 * 1 + 1 * 0 + 0 * 1 + 1 * 0 + 0 * 1 + 1 * 0 + 1 * 1 = 1

Figure 2.6: Example of convolution and filter

Source: The author

The next step defines the use of an activation function (frequently non-

linearity is applied). This step is responsible for applying a function to each

element of the feature map. Equations 2.3 to 2.5 correspond to the principal
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functions used and their respective graphs, which depend on z obtained through

Equation 2.2.

z = (W T ∗ x) + b (2.2)

sigm(z) =
1

1 + e−z
(2.3)

Figure 2.7: Sigmoid function

tanh(z) =
ez − e−z

ez + e−z
(2.4)

Figure 2.8: Hyperbolic tangent function

relu(z) = max(0, z) (2.5)
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Figure 2.9: ReLu Function

The non-linear (sigmoid) function (Eq. 2.3) has values between [0,1] and

Menon et al. (1996) carried out a detailed study of this function. The hyper-

bolic tangent function (Eq. 2.4) has interval between [-1,1]. Comparing these

two functions, the tangent has shown better performance with deep architectures.

However, both face problems when units of the uppermost level become saturated,

and leakage gradients near 0 are propagated to lower levels. This can decelerate

the convergence of the training or generate a poor local minimum. On the other

hand, the ReLU function (Eq. 2.5) proposed by Glorot, Bordes and Bengio (2011)

offers an alternative for non-linear functions, solving this problem, since there is

no escape from gradients along with the actively hidden units. In this way, when

a unit is activated above 0, it has a partial derivative of 1 (MAAS; HANNUN; NG,

2013)(HAYKIN, 2001). Thus, the ReLU activation function has been more widely

used in CNN models.

The next step for defining a CNN model presents the reduction function

called subsampling. This function calculates the mean or maximum value of a

predetermined neighborhood in each feature map. Then, another map is generated,

with a lower resolution than the original image. These main functions are defined

as:

• Average (AVE): it uses the arithmetic average between the elements ai of

each region Rj (ZEILER; FERGUS, 2013), and it is defined by Equation 2.6

sj =
1

|Rj|
∑
i∈Rj

ai (2.6)
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• Maximun (MAX): it selects a neighborhood 2 x 2 without overlap (ZEILER;

FERGUS, 2014) according to Equation 2.7:

sj = maxi∈Rj
ai (2.7)

• Stochastic (STO): it firstly computes the probability p for each region Rj,

normalizing the activations inside of each region. The calculation is defined

by Equation 2.8:

pj =
ai∑

k∈Rj
ai

(2.8)

A local L = {l1, l2, ..., ln} based on p that is selected inside the region. The

activation is grouped in L resulting in sj = al where l ∼ P (p1, p2, ..., p|Rj |)

(ZEILER; FERGUS, 2013).

Figure 2.10 shows an example of the reduction process in a feature map

using the MAX function. This function is often used and decreases training time

without loss of quality (ZEILER; FERGUS, 2014).

Figure 2.10: Example of reduction function

Source: The author

Space arrangement. CNN requires some hyperparameters in addition to the

previously defined functions. These are:

• Stride: in convolution layers and reduction is necessary to define the value

of filter shifting which determines where must be the next subsample region.

If the stride is 1 the filter is shifted 1 pixel by time. If the stride is 2 then it

will be shifted 2 pixels by time. Stride equal or greater than 3 is not used.
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Figure 2.11: Example of stride applied in a region (stride 1 and 2)

Source: The author

• Padding : sometimes, it can be convenient increase the input image with

pixels around it to consider the borders of the image. The most common

approach is zero-padding, that adds zeros around of image. Figure 2.12 shows

an example of zero-padding, while Figure 2.11 shows an example of stride 1

and 2, respectively.

Figure 2.12: Example of padding applied in an image

Source: The author

• Weight initialization: Gaussian distribution can be used, in which case the

weights are initialized according to the mean and standard deviation of the

input. Alternatively, the Xavier algorithm can be used, and this depends on

the number of the connection on the neuron and its output.

• Optimization function: is used to minimize the error in a network with w

weights in k samples. A sample zk is randomly chosen, and an optimiza-

tion function is applied. Some optimization function have already been used

in CNN models, like Adadelta (ZEILER, 2012) and RMSPROP (TIELEMAN;

HINTON, 2012). Although, Gradient Descent is one of the most popular algo-

rithms for carrying out optimization. The gradients are used to update pa-

rameters once the analytic gradient is computed with backpropagation. The
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Stochastic Gradient Descent (SGD) function can often be applied (RECHT

et al., 2011). This function is defined by Equation 2.9.

w(t+ 1) = w(t)− λ5Q(zt, wt) (2.9)

in which w(t+ 1) is a new weight, λ is an adequately chosen learning radius,

and Q is the empirical risk with a sample zt. The risk is expected to decrease

significantly. Some hyperparameters can be used to accelerate the SGD

function in a relevant direction, improving the performance as follows:

– The parameter momentum γ does an addition of a fraction γ of the

update vector of the past time step to the current update vector. The

value γ = 0.9 or similar is often used.

– The dropout avoids the sensibility in the parameters turning off a per-

cent of connections of neurons randomly and uniformly.

According to the example in Figure 2.11, the spatial size of the output

of the convolution and reduction layer is calculated defining the volume W , the

respective filter F , the stride S, and the padding value P . They are:

• Convolution Layer: the output size will be (W−F+2P )/S+1. For example,

in an input 7× 7, a filter F = 3× 3 results in a volume W = 5. Considering

a stride 1 and zero-padding P = 1, the size of map is 5 × 5 because (5 −
3 + 2(1))/1 + 1 = 5. So, the volume may be calculate by W2 × H2 × D2

(length, width, depth), being W2 = (W1 − F )/S + 1, H2 = (H1 − F )/S + 1

and D2 = K. The parameter K corresponds to the number of filters and

(W1, H1) the length and width respectively.

• Reduction Layer: The output volume will be W2 × H2 × D2, being height,

width, and depth respectively. These values are obtained with W2 = (W1 −
F )/S + 1, H2 = (H1 − F )/S + 1 e D2 = D1.
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Once the CNN layers are implemented, the layer responsible for the output

interpretation is defined. This function is called Softmax, in which the sum of the

outputs must be 1. This output is interpreted as a distribution of the discrete

probability of the input belonging to each of the classes.

The Softmax function has as input a vector ŷi and it calculate the prob-

ability distribution for each class. The similarity x of the input is calculated by

each vector, and the vector weights Wi. The activation values are transformed in

positive values using an exponential function, and they are normalized (BISHOP,

2006). Then, cross-entropy is used as a measure of error where each error derivative

(Err) related to the weights Wi takes on ∂Err
∂Wi

= (ŷi − yi)x.

Various CNN architectures have been developed based on these specifi-

cations, such as LeNet (LECUN et al., 1998), with two convolution layers fol-

lowed by grouping, finishing with one convolution layer; AlexNet (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012), with five convolution layers following by grouping,

ending with two fully connected layers; the VGG network (SIMONYAN; ZISSER-

MAN., 2015) with two convolution layers followed by grouping between them; and

GoogLenet (SZEGEDY et al., 2015) with 9 inception models, each with three con-

volution layers followed by grouping. All these architectures showed promising

results when applied to the area of pattern recognition, as well as when they were

adapted to be used in retrieval systems.

2.3.2 Transfer Learning

CNN architecture is frequently used as a feature extraction method based

on trained models (Transfer Learning). The study of Transfer Learning (TL)

has gained attention since 1995 and is motivated by the fact that people can

intelligently apply the knowledge previously learned to solve new problems quickly

or with better solutions. Currently, TL methods appear in several areas, most

notably in data mining, machine learning, and their applications (PAN; YANG,

2010).

The TL is widely used when the amount of training data is small. It focuses
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on developing methods of transferring knowledge learned in one or more source

tasks and using it to improve the learning of a related target task, as shown in

Figure 2.13 (TORREY; SHAVLIK, 2009).

Figure 2.13: Transfer learning procedure. It is a machine learning method with an
additional source of information apart from the standard training data: knowledge
from one or more related tasks

Source: Torrey and Shavlik (2009)

The definition of TL is: Given a source domain DS and the learning task

TS, a target domain DT and the learning task TT , transfer learning aims to improve

the learning of the target predictive function fT (.) in DT using the knowledge in

DS and TS, in which DS 6= DT or TS 6= TT (PAN; YANG, 2010).

Many researchers have attempted to overcome the lack of training samples

in some categories using classifiers trained in other data sets. Examples of TL

include Zhuang et al. (2015), who used an algorithm based on auto-encoders to

find a good representation of instances of different domains. Other methods using

different architectures use the same objective, such as Yosinski et al. (2014) and

Oquab et al. (2014) that use a CNN as a generic feature extractor that was pre-

trained on a data set, the source task with the data set ImageNet, and then reused

for another target task.

Akçay et al. (2016) also made use of TL with a CNN that was pre-trained

using the ImageNet data set in the context of X-ray baggage security screening.

They obtained good results using an AlexNet architecture sharing the weights of

different layers and analyzing the results. In studies involving image retrieval,

such as Ou et al. (2014), a deep learning algorithm with the TL method can be

used to learn a robust image representation. In this way, the focus on TL for the
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present study is to evaluate the transfer of knowledge that can be used as a feature

extractor to find good representation in different domains based on a pre-trained

CNN.

Besides, Babenko et al. (2014) suggest one possible interesting direction for

investigation, but they did not implement in the paper. The idea is the feature

vectors can be obtained directly by training the whole deep architecture using the

pairs of matched images, through of Siamese Neural Network (SNN ), which can

be implemented based on CNN architectures. This network will be shown in the

following section.

2.3.3 Siamese neural networks

The name ”siamese” historically comes from the necessity to collect the

state of a single network for two different activation samples during training. It

can be seen as using two identical, parallel neural networks sharing the same set

of weights (BERLEMONT et al., 2018). The first idea of the siamese network was

published by Bromley et al. (1993) for signature verification problem. The Sia-

mese Neural Network (SNN) is usually implemented in face recognition (SCHROFF

DMITRY KALENICHENKO, 2015) (WU et al., 2017a), signatures or symbols problems

(KOCH; ZEMEL; SALAKHUTDINOV, 2015) to compute similarity between images.

Chopra, Hadsell and LeCun (2005) implement a method for training a siamese

network based on Contrastive Loss function and the reported results were promis-

ing. During the test, the output from one of the subnets of the SNN is a feature

vector of the input image of the subject. A model is constructed of each subject by

calculating the mean feature vector and the variance-covariance matrix using the

feature vectors generated from the first five images of each subject. The likelihood

that a test image is genuine is found by evaluating the normal density of the test

image on the model of the concerned subject. Figure 2.14 presents the architecture

implemented, where X1 and X2 are pair of images shown in the network. The Y

is a binary label, where Y = 0 if the images are similar to each other or Y = 1

otherwise. The architecture returns two points (GX and GY ) as feature vectors in
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the low-dimensional space. W is a shared parameter vector W which is subject to

learning. Then, the system calculates the compatibility between the images.

Figure 2.14: The siamese network implemented by Chopra, Hadsell and LeCun
(2005)

Recently, some authors are using SNN for different purposes, as shown in

Table 2.4.

Table 2.4: Summary of recent works for Siamese Networks in IR

Author Dataset Model
Qi et al. (2016) Flickr15K A novel architecture of CNN

Ong, Husain and Bober (2017) Oxford and Paris VGG + Fisher Vector Aggregation
Chung and Weng (2017) Medical images A novel architecture of CNN

Lin et al. (2015b) Aerial images A novel architecture of CNN

Qi et al. (2016) proposed a sketch-based image retrieval to pull output

feature vectors closer for input pairs that are labeled as similar and push them

away if irrelevant. They used query images to train the SNN. However, IR and

PS tasks do not rely on any prior information regarding the query, nor predefined
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class of graphical objects (EN et al., 2016c).

Recent work by Chung and Weng (2017) focused on a Siamese Convolu-

tional Neural Network (SCNN ) pre-trained in Imagenet dataset for IR. The pro-

posed method computed contrastive loss function and showed good performance

in Diabetic Retinopathy Fundus image dataset. The results are comparable to the

state-of-the-art, but this architecture needs high computational power although

the author uses only binary image pair information. Besides, the contrastive loss

function limits the use of a deep metric in the experiments. In contrast, in docu-

ment images, the features can be more complex, with variation in shape, color,

and texture, and in this case, both internal and external representation should

be used. Figure 2.15 shows the SCNN used by authors, in which two identical

CNN 2.15(a) learn to differentiate an image pair by evaluating the similarity and

relationship between the given images.

Figure 2.15: Architecture of used model in the study of Chung and Weng (2017).
(a) Single CNN, and (b) proposed SCNN.

Ong, Husain and Bober (2017) proposed a novel SCNN that simultaneously

learn both the CNN filter weights and Fisher Vector model parameters, although
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they perform supervised learning. Euclidean distance is metric learning. The

method improves on the retrieval performance of the following state-of-the-art

approaches: SCNN with max-pooling and Triplet loss with max-pooling. Lin et

al (LIN et al., 2015b) also proposed a SCNN to learn a feature representation and

finding matches between street view and aerial view imagery. However, they used

the dataset to train and test the representation, but again, this is different from

IR and PS objective because of the information regarding the queries.

We observe that the authors often do not explain the computational cost

of using SCNN. However, it can require high computational power because of

the number of combinations to calculate the similarity between the pair of images.

Thus, a possible solution is to add a new layer to produce a compact representation,

or similarity calculations can be added to solve IR problems. These methods are

described in the next few sections.

2.3.4 Learning additional layers

Region proposal methods often produce a large number of candidates in

each document, and storing all these regions, feature extraction, and calculation

of the distance between vectors can become very costly. It is expensive because

the IR process involves searching for the nearest neighbor, in which the main idea

is to find the regions that are closest to the query image. This problem can be

solved by techniques that generate the data in a compact dimensional space.

In this way, a layer can be developed that will receive the feature map from

the higher layers and carry out a new function. This function will be responsible for

generating a feature space with smaller size without losing all the information from

the higher levels. But, to perform this task, some crucial choices are necessary,

such as an adequate activation function and the number of outputs.

Some authors use strategies to generate binary codes through the networks

as feature extractors. First, a n−bit code is generated to form a hash code. Then,

the hash code is transformed with a function fk that normally considers Equation
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2.10:

hk(x) =

{
1 fk(x) > bk

0 fk(x) < bk

}
(2.10)

in which x is the representation of a data sample, fk is a hashing function, and

bk is the corresponding threshold. Based on the method for receiving fk, can use

data-dependent (or learning-based) in supervised or not-supervised methods.

Several hashing algorithms such as Locality Sensitive Hashing (LSH ) and

Spectral Hashing have been proposed as a solution for identifying relevant data.

LSH is the more popular approach and was originally introduced by Indyk and

Motwani (1998) for problems with the nearest neighbor search. This technique

aims to maximize the probability that the data is mapped to a similar binary

code, and there is a projection of data points for a random hyperplane. However,

LSH requires a great number of bit or multiple hash tables to reach a satisfactory

search performance (LU; ZHENG; LI, 2017).

Unsupervised methods use only unlabeled data as a training set to overcome

this limitation as Kernelized LSH (KULIS; GRAUMAN, 2009), Semantic Hashing

(KRIZHEVSKY; HINTON, 2011), and Spectral Hashing (WEISS; TORRALBA; FER-

GUS, 2009). Some authors such as Kulis and Grauman (2009), Gionis, Indyk and

Motwani (1999) and Xu et al. (2017) present methods of describing an improved

version of this algorithm and obtaining better execution time and the analysis are

generalized.

Recent studies have proposed methods based on CNN for hashing. Guo,

Zhang and Li (2016) introduced a hash layer in a hashing learning task in a CNN.

The objective was to learn k hash functions that are used to codify images in k-bit

hash codes. The codes are used for recovery, and the shared images that share the

same label with the query image will be ranked at the top of the list of results.

They proposed to learn semantic-preserving hash function, defining an original

softmax loss layer, a hash layer and hinge softmax layer.

Xia et al. (2014) proposed a two-stage supervised method for IR. The first

state is pre-processing, in which a matrix-decomposition algorithm learns the rep-
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resentation of the datum. They used CNN to learn k hash codes and image

representation. However, the first stage requires the input of a pairwise similarity

matrix of approximate target hash codes and this is unfavorable when the size of

the data is large because it takes up considerable storage space.

Lin et al. (2015a) proposed the use of TL based on data from ImageNet

for fine-tuning the network in a new layer for learning the representation and

generating hash codes. They adopted a coarse-to-fine search strategy in which the

first n outputs of a new layer are extracted and k binary codes are obtained by

binarization of the activations. Then, given a query image and its k binary codes,

a pool of m candidates is generated by the Hamming distance. Finally, in the IR

task, given a query image and a candidate pool, the features of the images were

extracted from the last fully connected layer before the hash layer (fc7 for AlexNet)

to then generate the image ranking by similarity using Euclidean distance.

In this way, the use of hashing for deep architectures proceeds to simul-

taneously learn a specific domain and a set of a hash function are satisfactorily

applied in large data sets as shown in the literature. However, such information is

lost using hashing methods, so other approaches should be considered, such as the

use of additional layers in the architectures. Functions and numbers of outputs of

the layers can be chosen without converting to binary codes. This methodology

will be shown in Chapter 3, as well as in the experiments, creating an additional

layer in the network model to reduce the number of features with a single CNN or

SCNN.

2.4 Similarity Measures and Distances

In spotting or retrieval systems, the analysis of the performance of the

method can be carried out by using a numerical measure capable of defining the

level of similarity between two images: the query image and the candidate present

in the document. The representation of images through feature vectors is used

in the similarity calculation. Besides, there are methods of appropriate distance
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for comparing image representations, such as Euclidean distance and cosine. This

section presents several similarities and dissimilarity measures frequently used in

computational vision. More details about the measures used in this study will be

provided in Chapter 3.

According to the features used in image representation, different similar-

ity measures can be used. Euclidean distances and cosine are frequently used

to work with clustering analysis (EN et al., 2016c), but if the information is bi-

nary, the Hamming distance is the appropriate measure (RIBA et al., 2015). In

the case of template matching, in which the images are compared pixel by pixel

(DELALANDRE; OGIER; LLADÓS, 2008) a similarity measure can also be considered

(SAIKRISHNA et al., 2012).

The use of the term distance is commonly used in dissimilarity calculations.

In the case of the present study, distance is calculated between feature vectors

extracted by a CNN to carry out a retrieval task. The choice depends on the

image set and its representation. In this sense, first all the dissimilarity functions

have some criteria (TAN; STEINBACH; KUMAR, 2005):

• d(x, y) ≥ 0 for all x and y;

• d(x, y) = 0 only if x = y;

• d(x, y) = d(y, x), when the distance between two elements is the same;

• d(x, y)+d(y, z) ≥ d(x, z), known as a triangular difference to x, y e z points.

In document image retrieval, the image set is organized as feature vectors,

with cj = {a1,j, a2,j..., an,j} and qi = {a1,i, a2,i, ...an,i}, in which cj is the candidate

from document j and q is the query vector with index i. The n corresponds to the

number of features from each image. The query must be compared with all the

vectors of the candidates in the data set to obtain a ranking of the results. These

results must be ordered according to the chosen measure. The main distances

found the literature will be described below.
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Minkowski distance

Minkowski distance is the generalization of the distance between two points

x, y, in an n-dimensional characteristic space (TAN; STEINBACH; KUMAR, 2005).

The distance is defined by Equation 2.11.

d(cj, qi) =

(
n∑

k=1

|ckj − qki|r
)1/r

(2.11)

in which k is the index of cj e qi. The parameter r can represent different values

and variations. The most widely used are:

• r = 1. Manhattan distance is used between two object with binary charac-

teristic vectors, defined by equation 2.13.

d(cj, qi) =
n∑

k=1

(ckj − qki) (2.12)

• r = 2. Euclidean distance is a function that is traditionally used, and corre-

sponds to the Equation 2.13:

d(cj, qi) =

√√√√ n∑
k=1

(ckj − qki)2 (2.13)

• r =∞. Chebychev distance is the maximum difference between any atributes

of the objects, defined by Equation 2.14.

d(cj, qi) = lim
r→∞

(
n∑

k=1

|ckj − qki|r
)1/r

(2.14)

Mahalanobis distance.

This distance is different from the Euclidean distance because the corre-

lation between the data set is considered. Firstly, a matrix of covariance C is

computed and the distance between two vectors of the same distribution is defined
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by Equation 2.15 (MAESSCHALCK; JOUAN-RIMBAUD; MASSART, 2000):

d(~cj, ~qi) = (~cj − ~qi)TC−1(~cj − ~qi) (2.15)

If the covariance matrix is an identity matrix, this measure is reduced to

Euclidean distance, and, if the matrix is diagonal, it is reduced to normalized

Euclidean distance, defined by Equation 2.16.

d(~cj, ~qi) =

√√√√ p∑
n=1

(cnj − qni)2

σ2
n

(2.16)

Cosine similarity

In this distance, the attributes are used as a vector to find the normalized

dot product of a pair of bit vectors. Two vectors with the same direction have

similarity equal to 1 and two opposite vectors have similarity equal to -1. The sim-

ilarity is calculated by the equation 2.17 (TAN; STEINBACH; KUMAR, 2005)(KUO;

CHOU; CHANG, 2016).

Similarity(cj, qi) =
~cj • ~qi
|~cj| · |~qi|

=

∑n
k=1 cj · qi√∑n

k=1 c
2
j ·
√∑n

k=1 q
2
i

(2.17)

in which ~cj • ~qi is the dot product between the vectors cj and qi. in this way, the

distance between two correlated vectors is presented in Equation 2.18.

dcosine(cj, qi) = 1− cos−1(Similarity(cj, qi)) (2.18)

Sum of absolute difference

It is a simple measure of similarity. The distortion is calculated between

the current object and the reference (query), using the absolute difference be-
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tween them. This difference calculated considering n-dimensions and is defined by

Equation 2.19 (OLIVARES et al., 2004).

SAD(c, q) =
M∑
i=1

N∑
j=1

|ci,j − qi,j| (2.19)

in which qi,j is each element in the query image and ci,j is each element of the

candidate object, with M × N dimensions. However, the computation of SAD

is divided into three steps: 1. Calculate the difference between the query and

the candidate; 2. Determine the absolute value of these distances; 3. add all the

absolute values.

Malik and Baharudin (2013) carried out an analysis between different mea-

sures to compare the performance in image recovery approaches, including SAD,

city block distance, Euclidean, maximum value metric and Minkowski difference.

They concluded that the Euclidean distance and SAD have good precision. How-

ever, the Euclidean and cosine distance also returns good results, as presented by

(EN et al., 2016c; RUSIÑOL et al., 2015; RIBA et al., 2015). In this way, to end this

section, the table 2.5 shows a summary of the main similarity measures used in

the literature, where it can be observed that the Euclidean distance and cosine

have been used recently in retrieval tasks and, the authors reported good results

using these methods.

2.5 Parallel Computing

The increasing amount of image data and massively parallel hardware have

opened new opportunities for researchers investigating the use of both CPUs

and GPUs. Hence, IR and PS applications are data-intensive and computation-

intensive, which creates significant challenges to process image data in real-time

(FANG et al., 2011). Although parallel computing implementations are not main

objectives for IR and PS tasks, the study and development of approaches to reduce

the computational cost can improve the performance, mainly with limited resource
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Table 2.5: Summary of the matching techniques

Work Representation Method
(ALMAZÁN et al., 2014) FV Euclidean distance
(EN et al., 2016c) BoVW, VLAD and FV Cosine similarity
(RUSIÑOL et al., 2015) BoVW Cosine similarity
(RIBA et al., 2015) Graphs Cosine similarity
(TOSELLIA et al., 2016) Grayscale or geometric

vectors
DTW

(KANADJE et al., 2016) MFCC Segmented DTW
(MONDAL et al., 2016) RLSA DTW
(TABIBIAN; AKBARI;

NASERSHARIF, 2016)
PCF and DCF M-Viterbi

(HU et al., 2012) Binary vectors CK1 distance
(THUY et al., 2017) Color and texture features Euclidean distance
(HANGARGE et al., 2016) Gabor features Cosine similarity
(HE et al., 2016) Adapted BoVW Manhattan and Cumulative

Score
(SAIKRISHNA et al., 2012) Primitives of color mo-

ments
SAD

(KAVITHA et al., 2011) Texture features L2 distance and Euclidean
distance

computational. In this sense, this section presents some parallel computing con-

cepts.

The compute resources are typically a single computer with multiple pro-

cessors/cores or an arbitrary number of such computers connected by a network,

thus the use of parallel computing concept is promising. In this way, parallel com-

puting is the use of multiple computes resources simultaneously to solve a specific

problem (BARNEY, 2018):

• A problem is broken into discrete parts that can be solved concurrently

• Each part is further broken down to a series of instructions

• Instructions from each part execute simultaneously on different processors

• An overall control/coordination mechanism is employed

Figure 2.16 shows the computational problem should be able to be broken

apart into discrete pieces of work that can be solved simultaneously; Execute



49

multiple program instructions at any moment in time; Be solved in less time with

multiple compute resources than with a single compute resource.

Figure 2.16: Example of parallel problem

Source:(BARNEY, 2018)

2.5.1 Process and subprocess

The concept of process is divided into two: a set of resources to execute a

program and, a line or context execution called thread. A process is an abstract

entity that uses the code and data to produce the output of that task activated

by the parallel program, within a finite amount of time. That is, a process is

just an instance of an executing program, including the current values of the pro-

gram counter, registers, and variable. During this time, in addition to performing

computations, a process may synchronize or communicate with other processes,

if needed (GRAMA et al., 2003)(TANENBAUM, 2014). Four principal events cause

processes to be created:

• System initialization.

• Execution of a process creation system call by a running process.

• A user request to create a new process.

• Initiation of a batch job.
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For each one of these events, the process can be divided into three ba-

sic elements (see Figure 2.17): hardware context, software context and address

space, which together keep all the information necessary to execute the program

(MACHADO; MAIA, 1999):

Figure 2.17: Example of process

Adapted from (MACHADO; MAIA, 1999)

• Hardware context: is the content of registers with the program counter (PC),

the stack pointer (SP) and state bits. When a process is running, the hard-

ware context is stored in the processor registers. At the time the process

loses the use of the CPU, the system saves the information.

• Software context: specifies process characteristics that will influence the ex-

ecution of a program, such as the maximum number of open files simultane-

ously or the size of the buffer for I/O operations. These characteristics are

determined at the time of the process creation, but some can be changed dur-

ing its existence. The software context defines three groups of information

in a process: identification, quotas, and privileges.

• Address space: is the memory area of the process where the program will

run, in addition to the space used for the data. Each process has an address

space, which must be protected from access to other processes. This area of
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memory as well as files, registers, and I / O devices can be shared between

processes, which can compromise the execution of applications. To avoid this

kind of problem, the processes must be synchronized from the mechanisms

offered by the operating system. Figure 2.18 provides an example where two

concurrent processes share a buffer to exchange information through write

and read operations. Thus, the data will be written only if the buffer is

not full, the same to read. In both cases, the processes must wait for the

buffer to be ready for operations. There are some algorithms to perform this

synchronization, such as semaphore, monitors and messaging

Figure 2.18: Example of synchronization between two process

Adapted from (MACHADO; MAIA, 1999)

For different applications, the initiation of a batch job creates processes. In

some cases, a process can create another process, thus the main process and child

process continue to be associated in certain ways. The child process can create

more processes, forming a process hierarchy, as shows Figure 2.19.
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Figure 2.19: Example of sub-process

Adapted from (MACHADO; MAIA, 1999)

However, in a multi-processing, the structure of the memory is quite com-

plex. Efficient memory management is very critical for good performance of the

entire system. Shared memory allows several processes to access the same por-

tion of main memory and very common in many applications. Figure 2.20 shows

how shared memory works. In this example, processing elements share memory

(either directly or indirectly); the communication among processing elements can

be achieved by carefully reading and writing in main memory and data and load

distribution can be hidden from the programmer (BEKAS, 2009).

Figure 2.20: Shared memory

Source:(BEKAS, 2009)
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2.5.2 Parallel implementation for Image Retrieval

Some parallel computing methods (KAO; STEINERT; DREWS, 2001) (LU et al.,

2007) (TERBOVEN et al., 2006) have been introduced into the CBIR. However, most

of these systems were designed only for some specifical task, as feature extraction

step, reading files or similarity calculation.

According to Terboven et al. (2006) given the IR system, three different

layers can be identified that offer potential for parallelization:

• Queries are mutually independent. The queries can be processed in parallel,

that is, several queries are run in batch mode.

• The scores calculated for each query and candidates from a document can be

calculated in parallel because the database images are independent of each

other.

• The distances between the feature vector from query and candidates can be

calculated in parallel.

For this purpose, Lu et al. (2007) present a parallel process for reading the

parameters for the image feature extraction from the configuration file, identifying

all image files in the specified directory, reading the image, and then generating a

feature vector. However, there was no obvious modification to retrieval precision

because they didn’t do any improvement to the retrieval methods, only focused on

the efficiency of the retrieval system.

Tungkasthan and Premchaiswadi (2013) propose a parallel processing tech-

nique via Hadoop MapReduce framework, contributing to the index creation pro-

cess and similarity measurement process through MapReduce. Figure 2.21 shows

the method proposed by the author to increase the performance of calculation,

where the functions feature extraction and similarity measurement is applied.

However, experiments with any dataset were not presented to prove the efficiency

of the method.
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Figure 2.21: The proposed a distributed processing framework using MapRe-
duce for data insertion module in CBIR system. Source:(TUNGKASTHAN; PREM-

CHAISWADI, 2013)

Lu et al. (2007) describes the importance of more research on finding the

factors that would affect the searching efficiency of IR retrieval systems. In this

sense, the influence of hardware devices on the efficiency of an IR system, such as

the I/O equipment, the processor ability, and the message exchange system could

be fully investigated.

All the authors presented above showed the importance of the use of parallel

computing in the implementation of IR tasks. Perhaps without these methodolo-

gies, the adopted procedures become unfeasible. In this case, the present work

presents the parallel computing approach used in Section 3.
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2.6 Final Considerations

This chapter presented the literature review related to CBIR systems, de-

scribing each step in the process: candidate generation, feature extraction based

on CNN models, computation of similarity measures and some definitions about

parallel computing. Recent studies for WS and PS were also described, showing

the methodology used. The next chapter (Chapter 3) presents the methodology

used in the present study to develop a new and efficient IR and PS system.
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Chapter 3

Proposed Method

Motivated by the significant growth of digital content storage observed in

the last years, we propose here two approaches that contemplate both image re-

trieval and pattern spotting, which are the main tasks of an image search engine.

The image retrieval consists of finding every document that contains a given query,

while additional information is necessary for the pattern spotting, which is related

to the exact location of the query in the retrieved images. Thus, Section 3.1 de-

scribes the pre-processing, while Sections 3.2 and 3.3 present the two proposed

approaches with an overview of them. Section 3.4 presents the experimental pro-

tocol, while Section 3.5 describes the database used for the experimental protocol.

3.1 Pre-processing

An algorithm to find candidate objects was defined to generate the list of

candidates to be retrieved. The idea is to use an algorithm based on segmentation

methods, which will be explained in this section.

According to literature (ZITNICK; DOLLÁR, 2014) , the Selective Search (SS )

is considered an algorithm with good performance to generate candidate objects.

It is used to find and generate candidates in the document images. The objective of

this algorithm is to generate a selective search strategy independent of class, based
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on data, that generates a small set of high-quality object locations (UIJLINGS et

al., 2013). Besides, this algorithm considers that the objects can occur in different

scales. There are other algorithms for this step, as shown in Section 2.2, but some

of them can not be used in IR and PS tasks. For example, the algorithms proposed

He and Lau (2015), Kuo, Hariharan and Malik (2015) and Liu, Lu and Jia (2015)

depend on labels and, we can not use ground truth as previous information to

search for candidates.

Two versions of SS were used in this study. The first approach, named

SSv1, is available at http://dlib.net/imaging.html#find_candidate_object_

locations that is based on the implementation of Uijlings et al. (2013). This

version was used without modifications of the parameters and it does not remove

background. Figures 3.1a and 3.1b show two examples of the SS algorithm applied

on a medieval document and Figures 3.1c and 3.1d of an administrative document.

For the example presented in Figure 3.1c, the maximum candidate size was limited

(for example 160 x 160), while in the example in Figure 3.1d, all the possible

candidates were selected. The experiments used an unlimited size.

In the second version presented in Figure 3.2, named SSv2, the tool available

at https://github.com/belltailjp/selective_search_py was used. This is a

SS tool implemented in Python and also based on Uijlings et al. (2013) and Sande

et al. (2011). In this tool, it is possible to modify the search parameters for possible

candidates, selecting the color space, size of the initial search seed (s), and the

merges (similarity between regions), which consider color, fill, size and texture.

http://dlib.net/imaging.html#find_candidate_object_locations
http://dlib.net/imaging.html#find_candidate_object_locations
https://github.com/belltailjp/selective_search_py
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(a) Example 1 - limited size (b) Example 2 - unlimited size

(c) Example 3 - limited size (d) Example 4 - unlimited size

Figure 3.1: SSv1 algorithm applied in an image of the medieval document (exam-
ples 1 and 2) and administrative document (examples 3 and 4)

Figure 3.2: Original tool of SSv2

Source: https://github.com/belltailjp/selective_search_py

https://github.com/belltailjp/selective_search_py
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After analysis of these initial parameters, the tool was improved to also

perform thresholding on the image (global and adaptive). For the global threshold,

the value of the standard histogram 127 may be used, since it is the equivalent of

middle gray in density, while in the adaptive, there is the possibility of modifying

the values of the block size (deciding the size of the neighborhood) and offset

(constant subtracted from the mean of the neighborhood). Figure 3.3 shows the

result of the use and adaptation of the tool for the implementation of SSv2.

• (A) it is possible to select to work with the original image (ndimage), global

threshold or adaptative threshold.

• (B) it is possible to write the parameters of the threshold model, as well the

block size and offset.

• (C) it is possible to put a precise location of an object of interest to observe

the result of segmentation for one document example.

• (D) it is possible to select the search algorithm (not only selective search

but also sliding windows and OpenCV algorithm). Other algorithms were

included to compare the results and the quality of objects.

• (E) the parameters color space, the size k of the initial candidate seed and

similarity measure can be selected.

• (F) presents the number of candidates generated to the page.

• (H) presents the result of the threshold.

• A button was added to save all the objects for the pages with the parameters

selected.
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(a) Adapted tool - example 1

(b) Adapted tool - example 2

Figure 3.3: SSv2 algorithm applied in a document image of a medieval document
(example 1) and administrative document (example 2)

For each document image, a different number of candidates was generated,



61

depending on the quantity of information present in the image. However, it is

necessary to do experiments to find the best configuration of parameters to return

objects with high quality. The results of these experiments are shown in Chapter

4.

The next step is related to image representation. Thus, the proposed ap-

proaches are used for identification of queries in collections of document images,

whether they be handwritten documents or symbols, drawing, letters, etc. In this

sense, the next sections present a general overview of the methods used and the

respective steps that make them up, as well as materials used in the application.

3.2 First approach - single CNN

The first approach is based on a single CNN architecture as a feature ex-

tractor. Figure 3.4 shows a general overview of the proposed method that works

with IR and PS in collections of document images. This approach has two phases:

online e offline. The offline phase begins with two steps: 1) data augmentation

to train the feature extractor based on the representation of the queries, in which

a set of transformations is applied to each query image; and 2) pre-processing

to produce a list of candidates for each document image based on an object seg-

mentation method. Then a fine-tuned (FT) CNN is used as a feature extractor.

This is done considering two strategies: a) the training of a standard CNN model

(SM) and b) training of a model with an additional layer for feature extraction

(CM). The online phase is made up of the retrieval process, in which candidates

are selected and compared with each query image in the collection, ending with

the calculation of the similarity measure.
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Figure 3.4: Overview of the proposed Single CNN

Source: The author

3.2.1 Pre-processing

The first step used data augmentation to train a feature extractor. The

data augmentation process uses query images to generate the training set for the

CNN. This set is composed of N images, the number of queries in the set X =

{x1, x2, · · · , xN}. Then, the following transformations were applied to each query

xi ∈ X, based on Dosovitskiy et al. (2014) .

• scale: resizing the image by a coefficient between -20 and 20 with stride 2;

• average filter: replacing the value of each pixel by an average of the intensity

levels of its neighborhood in each scaled image.

These image transformations are carried out to increase the number of

training samples since the deep architecture needs a large number of samples to

find the proper representation of the pattern to be learned.
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Dosovitskiy et al. (2014) applied in their research other transformations,

such as vertical and horizontal translation, contrast and added color in the H

channel of the HSV color space. They also trained a CNN model to use it as a

feature extractor. Figure 3.5 shows two examples of data augmentation applied to

a query of DocExplore and Tobacco800 dataset, respectively. Thus, the main idea

of using data augmentation is to increase the number of samples in each class to

perform the training on a CNN model, avoiding to use the original queries as a

training set.

(a) Example 1 - Medieval document (b) Example 2 - Administrative docu-
ment

Figure 3.5: Data augmentation applied to queries of medieval and administrative
documents

Source: The author

3.2.2 Image Representation

Deep features will be used to represent the candidates generated by the

algorithm in Section 3.1 and, the query images. With this representation model,

an appropriate architecture model can work with the great variability in each

object in terms of color, textures, and sizes. This training process uses transfer

learning approach from a model pre-trained on ImageNet data set. The weights

of first layers are frozen and the last fully convolutional layer is fine-tuned with

transformed queries (data set from data augmentation step). This set is divided

into 75% for the training set and 25% for validation, with the size of the images

fixed at 256 x 256.

The parameters for configuration of the CNN model will follow the values
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most commonly used in the literature for the first experiments: learning rate:

between 10−3 e 10−5 and linear or exponential function, optimization function:

SGD and snapshot: every 10 iterations.

For this approach, the CNN model is based on the AlexNet architecture

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012), which is composed of eight layers of

which five are convolutional followed by fully connected layers. This architecture

was chosen because returns good performance in the Imagenet challenge (RUS-

SAKOVSKY et al., 2015). Note that there are many more network topologies: for

example, Szegedy et al. (SZEGEDY et al., 2015) proposed GoogLenet, but their

model is theoretically 50% more complex than AlexNet; Simonyan and Zisserman

(SIMONYAN; ZISSERMAN., 2015) proposed architecture with very small convolution

filters, which is however slow to train and needs more memory.

Therefore, the AlexNet has been considered as a good starting point for

the proposed method. It is easy to implement and has shown to be effective in

different deep learning scenarios, showing a good compromise between the number

of layers and final accuracy. Besides, the non-linear part trains much faster than

standard functions (Sigmoid and Tanh).

Different approaches to the AlexNet model will be evaluated as the feature

extractor of the proposed method. The idea is to compare different architectures

and the relevance of its features, as follows:

• AlexNet standard model (SM): the model is trained with original configura-

tions;

• AlexNet + fine-tuned model (SM + FT): the model is trained using the

transfer learning process, sharing the weights in high layers and training the

last layer;

• AlexNet standard model + additional layer (SM + CM): the model is trained

with original configuration and one layer is added to extract reduced features

with n dimensions;
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• AlexNet + fine-tuned model + additional layer (CM + FT): the model is

trained using the transfer learning process, sharing the weights in high layers

and training one additional layer to extract reduced features;

The additional layer in the CNN model

We intend to evaluate the use of an additional layer in the model to reduce

the number of features of the original Alexnet model. The feature map of this

layer is used to perform the IR and PS task. Figure 3.6 shows the model of the

AlexNet architecture used as a reference and adapted for this study.

Figure 3.6: An illustration of the architecture proposed by Krizhevsky et al.
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) and adapted for our first approach
in the last layers. The n is the number of features

As shown in Figure 3.6, we added a layer in the fully connected part of

pre-trained AlexNet architecture to reduce the dimensionality of the feature maps

(LIN et al., 2015a). Afterward, we freeze the weights of the convolutional layers of

the pre-trained network and fine-tune only the fully connected part using a dataset

artificially generated from some query images with data augmentation. Thus, the

final layer (with 1000 outputs) of the original AlexNet is replaced by a new final

layer (with the number of classes considered in this problem, for example, 35

outputs of Tobacco800 dataset) Finally, the feature map generated by this model

is used to represent both the query and candidate images.

The objective of this layer is to learn a nonlinear function to encode each

point x in its compact k codes, such as a sigmoid function α(x) = 1
1+e−x . Then,
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we define the loss layer to use during the training. Thus, a Softmax loss layer is

trained, which is frequently used in multiclass problems, and the given predictions

for the classes are transformed with a loss function loss = −wglog(αg), where g

is the ground truth label and wg is the weight for the g-th category. The number

of parameters related to high-level features can change according to the network

configuration, as follows:

• 128, 256 or 512 features of the AlexNet model with an additional layer

(fc8new layer) (these values are based on Lin et al. (2015a) that worked

with binary codes).

Therefore, we have the description of each image by a feature extractor

based on CNN model to perform an exhaustive search. We can evaluate the

differences in terms of performance and time consuming of the approach based on

the standard Alexnet model, and that using the modified architecture with the

additional layer.

3.2.3 Computational Resources

The following resources were used to develop the proposed method: The

Caffe tool proposed by Jia et al. (2014); Digits NVIDIA; OpenCV Library; Postgres

database; Python as a programming language; Numpy Library and Ubuntu OS

14.04 LTS, dlib Library as an algorithm for searching for candidate objects.

The computational resources used in this first approach are available at

École de Technologie Supérieure (ETS), Montreal, Canada, and these consist of 2

Intel(R) Xeon(R) CPU E5-2620 v3 2.40GHz with 12 cores each; 64 GB of RAM;

2 GPU NDVIA Tesla K40 model with 11GB of memory and 2880 CUDA cores

each; 1 HD 4TB WD RE Enterprise WD4000FYYZ.
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3.2.4 Parallel computing

The use of parallel computing is essential in IR and PS tasks, thus the time

to retrieve a single query, considering the whole set of candidates to search can be

reduced. Let us recall the different layers that can be identified that offer potential

for parallelization, according to Terboven et al. (2006):

• Queries are mutually independent. The queries can be processed in parallel,

that is, several queries are run in batch mode.

• The scores calculated for each query and candidates from the document can

be calculated in parallel because the dataset images are independent of each

other.

• The distances between the feature vector from query and candidates can be

calculated in parallel.

Figure 3.7 shows the parallel method implemented in this study for the

online phase, considering that in the off-line phase all the features of candidates

and queries were extracted.

This approach begins with the main process, where a batch of 4096 candi-

dates is defined and get from the dataset. Each candidate is added in the queue

1 and 7 worker processes will be created to use this queue 1. Each worker process

starts getting the features of all the query. Then, the process gets the candidate

features of the queue 1 and the distance measure will be calculated for the queries

and that candidate. Finally, the worker process writes at the disk the distances

previously calculate.

Problems with synchronization were detected in our parallel processes.

Some items of a worker process finished before a new queue 1 be created, overwrit-

ing the data already calculate. To avoid problems with queue synchronization, in

other words, waiting a long time to finish previous processes, or ending up over-

writing the data, semaphores were used. Semaphores have two operations, down

and up (generalizations of sleep and wake up, respectively). The down operation in
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Figure 3.7: First parallel approach to retrieve the candidates using CNN features

a semaphore verifies if the value is greater than 0. If so, it reduces the value (uses a

stored activation) and continues. If the value is 0, the process is put to sleep with-

out finishing the down at the moment. Checking the value, altering it and possibly

sleeping, all of this is done as a unique atomic and indivisible action. It is guar-

anteed that, once a semaphore operation is initiated, no other process can access

the semaphore until the operation is concluded or blocked. This approach is es-

sential for solving synchronization problems and avoiding race conditions. The up

operation increases the value of the addressed semaphore. If one or more processes

were sleeping in that semaphore, incapable of concluding a previous descending

operation, one of them is chosen by the system (for example, randomly) and it

allowed to conclude the operation. In this way, after a signal in a semaphore with

a sleeping process in it, the semaphore will continue to be 0, but there will be

one fewer process sleeping in it. The operation of increasing the semaphore and

waking up a process is also indivisible. No process blocks its execution, just as no

process blocks the activation in the previous model (TANENBAUM, 2014).
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3.3 Second approach - Siamese Convolutional Neu-

ral Network (SCNN)

This approach uses the SCNN implemented with Alexnet architecture to

learn the image representation and the distance during the training stage. We de-

cide to avoid training data augmented and to improve distance calculation. Figure

3.8 shows an overview of the proposed method that works with IR and PS in a

collection of document images using a second approach to be investigated in the

present study. This proposed approach has also two phases: online and offline.

The offline phase begins with the Selective Search algorithm to find possible loca-

tions of objects and making them candidates for the image retrieval process. Also

in the offline phase, the SCNN model is trained on the Imagenet dataset, that

was prepared with a pair of images (similar and not similar pairs). The objective

is to pull output feature vectors closer for input pairs that are labeled as similar

and push them away if the input pair is not similar. Using the concept of transfer

learning the SCNN is used as a feature extractor for our datasets. For the search

process carried out during the on-line phase, given an image query, an exhaustive

search is performed considering the whole list of generated candidates. Here, there

are two possibilities to compare queries and candidates: (1) The feature map of

each candidate is stored to be further used in the on-line phase or (2) distance

calculation between queries and candidates can be done directly using the deep

metric. Each step of the proposed method is detailed as follows.
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Figure 3.8: Overview of the proposed SCNN approach

Source: The author

However, the main difference with the first approach (training a single

CNN) is the training of the SCNN without data augmentation, offering only trans-

fer of parameters to the online stage, as well as a network capable of learning the

distance metric.

3.3.1 Pre-processing

The first stage of this approach is the preparation of the ImageNet data

to carry out the training of the images. Firstly, the images are resized to 227 x

227 because the architecture Alexnet uses this size. To form this training set, all

the images need to have 3 channels of RGB color. For input into the network, the

images are transformed to BGR, since the tool being used requires this procedure to

interpret the input. Finally, the pair of images are labeled as positive or negative,

in the following way:
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• Negatives (label 0): if the pairs of images do not belong to the same class

and thus are not similar (see Figure 3.9a).

• Positives (label 1): if the pairs of images belong to the same class and there-

fore are similar (see Figure 3.9b);

(a) Pair of images Label 0

(b) Pair of images Label 1

Figure 3.9: Example of data preparation for the training set using Imagenet dataset

The images of Imagenet used to train the network were 100,000 similar

pairs and 150,000 not similar pairs. We generated 1.5x more not similar images
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for training and test as recommended by Melekhov, Kannala and Rahtu (2016).

We split the images into training (70%) and test (30%) sets. The configurations

of the network are shown in the next section.

3.3.2 Image representation

The image representation by deep features extracted from the SCNN will be

used. The SCNN of our approach was inspired by Melekhov, Kannala and Rahtu

(2016) approach and Chung and Weng (2017), we used the network illustrated in

Fig. 3.10 to learn deep representation from data for distinguishing similar and

not similar image pairs. Based on our first approach presented in Section 3.3, the

network is also based on the AlexNet architecture and we have added a layer to

reduce the feature map.

The SCNN is composed of two identical Alexnet architectures trained on the

Imagenet dataset (see Fig. 3.10). The last fully-connected layer with the number

of categories was removed and the fully connected layer with n dimensions was

trained as a feature representation. Thus, Euclidean distance learning is made

with layers available by Caffe tool (JIA et al., 2014): Eltwise (an operation to sum

between two blobs), Power (operation for power or square root) and Reduction

(reduce input blob using sum). After that, we implement a fully connected layer

with 1 output and loss layer. We set the learning rate in 10−3 with an exponential

function. The activation function used is Stochastic Gradient Descent (SGD), as

recommended by Recht et al (RECHT et al., 2011).

During the training, the input to the network is a pair of images X and Y ,

where X and Y are Imagenet positive and negative pairs from the training set,

respectively. The inputs X and Y are fed into the two Alexnet networks A and B,

both with an additional layer with n dimensions. The output distance of networks

A and B are fed to a sigmoid Cross-Entropy Loss layer, that aims to minimize

the difference of probability distribution between the predicted labels and ground
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Figure 3.10: Overview of our Siamese network - Training
Source: The author

truth labels (LIU; QI, 2017). For each sample we have:

Li =
C∑

k=1

tk(yi) logP (yi = k|bi;wk) (3.1)

where tk(yi) is the distribution of ground truth labels yi; P (yi = k|bi;wk) the

probability distribution of predicted labels. The sigmoid function is used for the

two-class logistic regression, that is, when using a network, we try to get 0 and 1.

During testing, we use the concept of transfer learning, where the weights

from previously trained network are used as a feature extractor to retrieve docu-

ment images. The input of the network is a pair of images from a dataset. First,

each image was converted from RGB to BGR and then merging an image x (net-

work A) and image y (network B). There are two possibilities to calculate the

similarity. (1) During the testing v1 (see Fig. 3.11a), the network is used as a

feature extractor. The feature maps extracted by the networks are used to repre-

sent the query (network A) and candidate images (network B). Each image passes

only one time to extract and index all the feature vectors of the dataset and then
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(a) Testing v1

(b) Testing v2

Figure 3.11: Overview of our Siamese network - Testing

a similarity measure is calculated. (2) During testing v2 (see Fig. 3.11b), instead

of storing the feature vectors, the distance calculation is done in real-time and

the SCNN returns the similarity between a query and a candidate. This method

uses the layers implemented to calculate Euclidean distance detailed previously.

However, there is a combination of images presented several times as input to the

network, for example, query q1 will be compared to candidates c1, c2, c3, ...cn and,

it requires a lot of computational resources.
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3.3.3 Computational Resources

The following resources were used to develop the proposed method: The

Caffe tool proposed by Jia et al. (2014); Digits NVIDIA; OpenCV Library; Postgres

database; Python as a programming language; Numpy Library and Ubuntu OS

14.04 LTS, dlib Library as an algorithm for searching for candidate objects.

The computational resources used in this second approach consist of: (1)

1 Notebook Acer Predator Helios 300, Core i7-7700HQ@ 2.80Ghz processor and

32GB of RAM DDR4; 1 GTX 1060 with 6GB; 1 SSD NVME 512GB and 1 HD

SATA 2TB. (2) Desktop with motherboard MSI X370 KRAIT Gaming MS-7A33,

AMD RYZEN 5 1600@ 3.2Ghz processor and 32GB of RAM DDR4; 1 GTX 1080

with 8GB; 1 SSD 256GB and 1 HD SATA 4TB.

3.3.4 Parallel computing

In this approach, parallel computing was also implemented. Figures 3.12

and 3.13 show the methods implemented in this approach for the online phase.

The approach of Figure 3.12 begins with the main process, where it gets

the features of queries. Each query feature is added in the queue 1 and 10 worker

processes will be created to use this queue 1. Each worker process starts getting

the features of all the query. Then, the process gets the features of a candidate.

We define some constraints based on context information before retrieval phase

starts. The candidate c will only be considered for retrieval if the ratio heightc
widthc

has a maximum of 25% difference with the query q. For example, if a query

has heightq
widthq

= 0.5, the candidate similarity calculation will only be performed if

the candidate has a heightc
widthc

between 0.375 and 0.625. Thus, the distance measure

will be calculated for the query and the candidate selected. Finally, the worker

process writes at the disk the distances previously calculate. In this approach

synchronization with semaphores was applied as presented in Section 3.3.5.

The search task presented in Figure 3.13 begins loading the network model

with the configurations. Then, a worker process (child process) was created to
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Figure 3.12: Parallel approach to retrieve candidates using features of SCNN (using
testing V1)

select queries and candidates that will be used in the retrieval phase (distance

calculation). This child process adds in a queue one query (image x) with all

candidates from the dataset (image y), to merge the image x (network A) and

image y (network B). Back to the main process, 6 workers processes will do the

merging between query and candidates until the batch size number defined in

the network model. After, these batches will be added in a queue of distance

calculation using the layer implemented (retrieval). Back to the main process, this

queues will be used to do the retrieval method using GPU and write the results at

the disk. All this process depends on a good performance of CPU and GPU.
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Figure 3.13: Parallel approach to retrieve candidates using features of SCNN (using
testing V2)

3.4 Search Procedure - Performance Evaluation Pro-

tocol

For both proposed approaches, Single CNN and SCNN, it is necessary to

compute the distances between the queries and image candidates. Thus, during an

exhaustive search, all candidates generated by the document images are compared

with all the queries, and a ranking is made with the most similar candidates. That

is, a comparison is made in pairs between all the feature vectors extracted from the

candidates and all the queries, where the smallest distance is ranked first. This

comparison is carried out using some similarity measure. In this work, we can

evaluate the results using euclidean and cosine distances, which were explained in

Section 2.5.

After this, a threshold number must be defined to generate a ranked list.
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The top k candidates were defined to evaluate the correct candidates, with the

value of k based on the literature (RUSIÑOL et al., 2015)(JAIN; DOERMANN, 2012)(BHAT-

TACHARJEE et al., 2016). This threshold number will be used in the IR and PS

tasks to evaluate the performance of the approaches.

3.4.1 Image Retrieval Task

The objective of this task is to retrieve the maximum number of relevant

images given an input query, independent of its position in the retrieved document.

There are no previously defined restrictions or categories regarding the object to

be detected, and there is also no training stage. The output is a list of document

images retrieved, and the confidence level of each image to the query.

In CBIR approaches, good performance depends on the process of extract-

ing features and the use of an adequate similarity measure (WAN et al., 2014). Thus,

a vector is extracted from the images according to the feature extractor based on

deep learning. Given a new query, this vector is extracted and compared with the

feature vectors of the candidates through a distance measure.

Figure 3.14 shows how the results should appear in this image retrieval

task, in which the shortest distance will be ranked first.

Figure 3.14: Results presented in images retrieval task. The output is a list of
images ordered by confidence level

Source: The author
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Evaluation metric. The performance of the present retrieval system is evaluated

using Precision (Pr) and Recall for each query (POWERS, 2011). Then, the mean

AP (mAP) is calculated. The AP is the area above the precision and recall curve

for each query, according to the equations 3.2 and 3.3, respectively.

precision =
relevant images ∩ retrieved images

retrieved images
(3.2)

recall =
relevant images ∩ retrieved images

relevant images
(3.3)

where the precision is the ratio of the number of positive images retrieved to

the total number of images retrieved. The recall is the ratio of the number of

positive images retrieved to the total number of positive images in the corpus.

Thus, the precision of each candidate retrieved for each query is evaluated by a

label identifying the page to which the candidate belongs. All the candidates are

organized by an ascending rank for each query.

3.4.2 Pattern Localization Task

Unlike CBIR systems, the pattern location task considers the overlap be-

tween the query and the image retrieved from the document. Thus, the system

must find a precise match between the candidate and the query. It will return

a list of images (without repetition) and the precise location of each candidate.

Figure 3.15 shows an example of retrieved images given a query, as well as the

location of the object (red square).

The overlap is computed to recover the location. It considers the position

of the query (x, y), and its area q1. The positions of the candidate (x1, y1) are also

considered, as well as its area o1, as described in Equation 3.4(NOWOZIN, 2014).

Uiou(x, y) =
q1 ∩ o1

q1 ∪ o1

(3.4)
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Figure 3.15: Example of the results presented in the pattern spotting task. The
output is a list of images, ordered by confidence level and their precise location

Source: The author

Evaluation metric. The same evaluation approach used in the IR task is applied.

However, an image will only be considered relevant if it overlaps enough to identify

the query. The criterion used to establish this is Intersection over Union (IoU ).

Figure 3.16 shows an example of this overlap calculation.

Figure 3.16: Example of IoU = 0.5, 0.7 and 0.9 in objects

Fonte: Zitnick and Dollár (2014)

IoU = 0.7 is considered to be a reasonably good result, since IoU = 0.5

is considered too small and IoU = 0.9, very restrictive (ZITNICK; DOLLÁR, 2014).

However, the present study considers the analyses: 0.1 ≤ IoU ≤ 0.7 to determine

that a positive candidate is retrieved, and in the end, the precision and recall are

calculated. Finally, the mAP is calculated to evaluate the results considering all

the queries.

Thus, the performance of feature extractor and the similarity measures are

adequately evaluated for the tasks of IR and PS. The results are compared with
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those found in the literature. Evaluation of the computational time for recovering

a query given the candidates and the space necessary to maintain all these results

is also being considered.
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3.5 Datasets

To evaluate the proposed method, two databases were selected to form the

experimental protocol, namely the databases Tobacco800 and DocExplore, which

will be described in this section.

3.5.1 Tobacco800

Tobacoo800 is a public data set from the Complex Document Image Pro-

cessing (CDIP) collection developed by Illinois Institute of Technology, containing

42 million pages of documents (in 7 million multi-page TIFF images) released by

tobacco companies through the Master Settlement Agreement. The collection is

made up of 1290 document images. It is a set of real data for research on docu-

ment images. These documents were collected and scanned using a wide variety

of equipment over time (LEWIS et al., 2006) (AGAM et al., 2006). Figure 3.17 shows

some examples of images from this data set.

Figure 3.17: Examples of documents from the Tobacco800 dataset

The ground truth of the Tobacco800 data set was created by the Language

and Media Processing Laboratory at the University of Maryland. The material

created includes the ground truth information in logos and signatures, considering

the location and dimensions of each visual entity (ZHU et al., 2007)(ZHU; DOER-
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MANN, 2007). The data set consists of 412 document images containing logos and

another 878 without logos.

This study will use only logos for IR and PS tasks. There are 35 different

categories of logos in the galleries, and for each logo, the number of occurrences

can vary from 1 to 68. We used 21 categories that have from 2 to 68 occurrences

by category totalizing 418 queries. Each occurrence in each category is used as

a query, and the remaining occurrences in the same category are kept as good

retrieval results. Figure 3.18 shows the classes of the logo in the Tobacco800

dataset used in this study.

Figure 3.18: The 21 categories of the Tobacco800 dataset used in this work

3.5.2 DocExplore

This database is from the Project DocExplore1, published in En et al.

(2016a). All the manuscripts date from the 10th through the 16th century. Each

page was scanned using the same high-resolution configuration, and the images

were stored with low resolution with 90% compression quality. Examples of manus-

cripts available in this database can be seen in Figure 3.19. The query images and

their corresponding number of occurrences are presented in Figure 3.20.

The 1500 images available in the data set are organized into 35 categories

and 1447 objects. The number of occurrences of each object in the collection can

1http://spotting.univ-rouen.fr
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vary from 2 to more than 100. The objects differ in color, shape, size, distortion

and possible degradation of the manuscript.

Figure 3.19: Examples of documents from DocExplore dataset

Figure 3.20: The 35 categories of queries from the DocExplore dataset. The images
and corresponding number of occurrences

Source: En et al. (2016a)

3.6 Final Considerations

In this chapter, we described the steps for the two proposed approaches,

single CNN and SCNN, such as candidate generation, feature extraction, indexing
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and similarity measure. Thus, we presented the approaches based on deep lear-

ning that can be used as a feature extractor to capture different levels of feature

abstraction, while the number of feature map was reduced to try to improve the

computational cost. We have two public datasets to evaluate our method conside-

ring the IR and PS tasks. Thus, in the next chapter (Chapter 4) we present the

results obtained in our experiments.
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Chapter 4

Experimental Results

This chapter describes the experimental results used to evaluate the pro-

posed approaches for IR and PS tasks in two different datasets. Finally, the results

were compared with the state-of-the-art. The final of this chapter, we discuss pos-

sible improvements to the method presented.

4.1 Tobacco800 dataset

This section presents the experimental results for the Tobacco800 data set.

The pre-processing, image representation, IR and PS tasks are presented. Analysis

of the results is based on the experimental protocol described in Section 3.5. The

end of this section shows comparisons of the results with the state of the art.

4.1.1 Pre-processing

As we presented in Section 3.1, based on the literature, the Selective Search

algorithm proposed by Uijlings et al. (2013) shows good parameters for finding

quality candidates. It combines the use of exhaustive search with segmentation

methods. In this way, it tries to find all possible object locations, making several

partitions in the images to work with all the image conditions.

Let us recall that the experiments were carried out using two versions of SS:
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SSv1 and SSv2, where the parameters were not modified in the SSv1 implementa-

tion. During a search stage at ÉTS, SSv1 was used to the first approach based on

single CNN. In the next implementations, we used SSv2, due to the improvement

of objects quality presented as follows.

Considering the variations of the parameters implemented in the SSv2 tool,

Table 4.1 shows the number of candidates generated in the Tobacco800 dataset.

Thus, for SSv2, we set the adaptive threshold with block = 241 andoffset0.12,

and the parameters k = 50 and 100, color + texture + fill + size, feature space

RGB and normalized RGB.

Table 4.1: Selective Search applied at the Tobacco800 dataset

Num of candidates SSv1 SSv2

Totals 1816852 1278174
IOU >= 10 826 14286
IOU >= 30 516 4064
IOU >= 50 311 1693
IOU >= 70 238 1202
IOU >= 90 44 573

In Table 4.1 it is possible to observe the difference between the number

of candidates using the SSv1 implementation of Uijlings et al. (2013) and SSv2

with the use of the customized parameters, as well as the implementation of the

adaptative threshold. It was observed that the use of the threshold reduced the

image noise resulting from document scanning. The quality of the objects in SSv2

was increased in comparison to the SSv1, where 573 candidates have high quality

(overlap above 90%) of SSv2 versus 44 candidates of SSv1.

Evaluating other algorithms, only for comparison, Sliding Windows gener-

ated 468, 262.125 with only 12 candidates with IOU at or above 90 % overlap with

the queries. In OpenCV, the algorithm opencv search single was used, generating

1, 869.923 candidates, with 507 IOU above 90 %.

Therefore, to verify the quality of the candidates generated and compare

the algorithms, a method was used to save the information from some randomly

selected queries and their position on the page (width and height). So, for each
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query on the respective page, it can be seen how many candidates with IOU

between 10 and 90 the method was able to select. Table 4.2 shows a comparison

of the algorithms.

Table 4.2: Number of candidates generated in some pages of Tobacco800

Page Query Search
IOU Total

regions10 30 50 70 90

SSv1 0 1 0 0 0 6,133
SSv2 28 7 2 2 3 552

Opencv 8 2 0 3 0 328
SW 640 141 25 0 0 75,480

SSv1 1 0 0 0 0 12,854
SSv2 13 1 3 0 3 320

Opencv 2 0 0 1 0 708
SW 1680 134 0 0 0 339,433

SSv1 0 0 0 1 0 7,024
SSv2 10 1 6 3 0 334

Opencv 1 1 4 2 0 419
SW 869 255 39 0 0 168,522

We consider an algorithm with quality when the candidates overlap to the

query with more than 70%. For example, using the implementation SSv2, in

the first page, for the 552 regions found, 3 of them have an overlap above 90%

as compared to the query on that page. Compared with the SSv1 or OpenCV

implementation and the same page, no region of this quality will be retrieved.
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4.1.2 First approach results: single CNN

The selective search algorithm (SSV1) was applied at the pre-processing

stage in all the 1,290 documents of the dataset and it generated 1.8M candidate

images. All these candidate images are used in the retrieval process. It is worth

mentioning that the images used to fine-tune the CNN were generated from the

use of data augmentation techniques on the set of all the 432 image queries from

Tobacco800 dataset, resulting in 17,240 training images, but the data augmenta-

tion does not balance the data. The dataset was split into a training set of 12,960

images (75%) and a validation set of 4,320 images (25%) to fine-tune the CNN.

So, only transformed images were used to train the neural network.

Different models based on the Alexnet architecture were evaluated as fea-

ture extractors, namely:

• Single CNN (SM4096) which is the standard trained model of Alexnet, having

a map size of 4096 features, without fine-tuning.

• Single CNN Fine-tuned model (SM4096 + FT) in which the model of Alexnet

that was pre-trained with the Imagenet dataset was used, and it was fine-

tuned in the layer with also 4096 features.

• Single CNN Fine-tuned model with additional fully connected layer (CMn)

which reduces the size of the feature map and, the model of Alexnet that

was pre-trained with the Imagenet dataset was used. In this case, 3 different

maps are evaluated, with n = 512, 256 or 128 features (values randomly

chosen and evaluated). The values for n were based on Lin et al. (2015a),

where binary codes are used as network output (feature map).

The results were evaluated using the exhaustive search, in which a com-

parison was made between all the features extracted from the candidates and the

query image, and then the lowest distance was ranked first. To analyze the results,

a threshold k was defined to rank the results, as suggested by Rusinol and Lladós

(2010) and Bhattacharjee et al. (2016).
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The evaluation metrics were described in detail in Chapter 3. In Pattern

Spotting task, which includes pattern localization of query, the values of mAP

consider the overlap with IOU for each candidate retrieved. The next sections

deal with the results for these two retrieval tasks, IR and PS, respectively.

4.1.2.1 Image Retrieval task

Table 4.3 shows the experimental results comparing the feature map ob-

tained with and without fine-tuned (FT) AlexNet architecture, which has 4,096

elements at the output of the convolutional layer (fc7 ), with the modified model

that has an additional layer to reduce the feature map to 512, 256 or 128 el-

ements (fc8new). The performance is significantly better using fine-tuning and

the reduced feature map when compared to the original one with 4,096 elements.

This can be explained by the fact that in a high dimensional feature space, the

similarity measure is less discriminant than in a smaller feature space, therefore

leading to a decrease of the precision when the dimensionality increases. Besides,

the computational cost decreases in this exhaustive search.

Afterward, to analyze more precisely the performance of our system, we

computed the mAP within a ranked list made of the top k candidates, for k =

{10, 25, 50, 75, 100} based on Rusinol and Lladós (2010).

Table 4.3: mAP for cosine distance using Top-k ranking for feature map of 4,096,
128, 256 or 512

Feature Map top-k
Dimension 10 25 50 75 100

SM4,096 (WFT) 0.43 0.33 0.26 0.21 0.18
SM4,096 (FT) 0.68 0.57 0.45 0.38 0.32

CM512 0.53 0.40 0.31 0.27 0.23
CM256 0.72 0.61 0.50 0.42 0.35
CM128 0.69 0.61 0.51 0.42 0.34
WFT: Without fine-tuning and FT: fine-tuned

As one may see in Table 4.3 considering the top-10 ranking, the best re-

sults were achieved using the cosine distance with the modified CNN model. The
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AlexNet fine-tuned with 4,096 features resulted in 0.68 of mAP, while the model

without fine-tuning resulted in 0.43. Using the modified model with just 256

dimensions, a mAP of 0.72 was achieved. These results show that the use of an

additional fully connected layer to reduce the number of features does not decrease

the performance when compared to the original AlexNet. In addition, we obser-

ved that using a feature map with 512 entries, the results decrease when compared

with the other models evaluated. In summary, we achieved an improvement of 4%

in mAP, while the number of features was reduced by 16 times. The best recalls

were 69% and 74% for the 128 and 256 based model, respectively. These recalls

are similar to those that were observed when using the 4,096-dimensional model.

We also can see the results per category of logos using the AlexNet model

with 256 features and the top-10 ranking in Figure 4.1. We observe that for some

categories no correct images were retrieved, such as categories 5, 10 and 19. This

can be explained by the fact that these categories contain too few samples that are

moreover of bad quality. However, for seven categories (6, 8, 9, 12, 13, 16 and 20)

we achieved an mAP greater than 0.8. The categories 8, 9, and 16, in particular,

have many samples in the dataset.

Table 4.4 shows some qualitative results of the retrieved logos. These results

are very promising since many correct logos were retrieved in the top-10 ranking.

When the search involves a logo with few positive samples or few details, the

proposed approach returns some false candidates, as seen in the fifth and sixth

rows.

The computation time is another very important performance measure for

retrieval systems. Table 4.5 compares the number of candidates processed per

second by the proposed approaches (256 and 128 features) and the original fea-

ture map (4,096 features). As one may see the computational time decreased by

approximately 55% and 47% when using the model with 128 and 256 features,

respectively. The computational resources consist of 2 Intel (R) Xeon (R) CPUs

E5-2620 v3 2.40GHz with 12 nuclei each and 64GB of RAM; 2 NVIDIA GPU

Model Tesla K40 with 11 GB of memory and 2,880 CUDA, available during the
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Figure 4.1: mAP per category in Tobacco800 dataset

Table 4.4: Qualitative retrieval results for some queries. Query logo and first ten
retrieved logos by similarity and 256 feature map
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stage at ÉTS in Montreal.

Table 4.5: Computational time for the retrieval task (in number of candidates
processed per second) using SSv1

Model Feature Extraction (num/sec) Retrieval (num/sec)

4,096 53.70 25.6
256 114.08 48.3
128 117.20 56.8

4.1.2.2 Pattern Spotting task

According to the PS, the method explained in Chapter 3, given a list of

retrieved candidates, each candidate will be considered correct only if it satisfies

the overlap value (IoU) established in the experiment. In this case, the results of

the values with IoU of 0.1 to 0.7 were analyzed.

Table 4.6 shows a comparison of the performance for the PS task using the

settings of the IR method, that is, comparing the feature extraction models, as

well as the SSv1 algorithm for candidate generation. It is important to note that

in these experiments only models with fine-tuning (FT) were used, according to

the best performance obtained in the IR results.

Table 4.6: mAP for pattern spotting considering different values of IoU, top - 10
ranking, Single CNN, fine-tuned model using SSv1

Model
IoU

0.1 0.3 0.5 0.7

SM4096 0.65 0.65 0.64 0.61
CM512 0.50 0.50 0.50 0.49
CM256 0.69 0.69 0.60 0.56
CM128 0.67 0.67 0.60 0.59

Based on the results obtained, the following observations can be made:

• Location precision: There is a small difference in the location performance

with the settings IoU = 0.1 and IoU = 0.7. This means that the proposed
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system was able to recover the candidate and precisely locate the position of

good quality objects. For example, SM4096 returned 0.65 for IoU = 0.1 and

0.61 for IoU = 0.7, then the difference is only 0.04.

• Influence of the new layer: The previous section showed that with the use

of the feature map, the IR performance can be significantly improved. The

location performance can be increased from 0.65 (IoU = 0.1) to 0.69 (IoU =

0.1). This significant improvement is also found using IoU = 0.3. However,

considering IoU = 0.5, which is a fairly standard IoU value, the location also

differ a little, we reached 0.60 for the model with 256 features and 0.64 for

SM. This probably occurred due to the quality of the regions.

The next section we present the results for the second approach using

SCNN, where we show the difference of results, comparing the methods used.

4.1.3 Second approach results: SCNN

This section shows the results obtained using the second approach from

Chapter 3, that is, using the SCNN proposed. In the pre-processing stage, the

improved Selective Search (SSv2) algorithm produces 1.2M of regions of interest

considering the 1,290 documents in the database. We decided to use the SSv2

for the experiments. We have considered the aspect ratio of the query image to

guide the SS algorithm as presented in Section 3.3.4. The candidate c will only be

considered for retrieval if the aspect ratio heightc
widthc

has a maximum of 25% difference

with the query q. For example, if a query has heightq
widthq

=0.5, the candidate similarity

calculation will only be performed if the candidate has a heightc
widthc

between 0.375 and

0.625. For Tobacco800 dataset, by applying this query-based contextual informa-

tion, the initial 1.2M of candidates were reduced to 873,876 candidates, improving

the quality of the pre-processing stage (candidate generation) The improved ver-

sion of SS increased in 13× the quantity of objects that overlap more than 90% to

the query, when compared to our previous approach.

The SCNN architecture trained with ImageNet dataset provides 4096-dim
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feature maps corresponding to its original fc7 layer. We have also investigated

the addition of a new layer (fcnew) to reduce the feature maps to 512, 256 and

128 dimensions. These values were used in our previous approach to reduce the

dimensionality of the feature map of a CNN model. Besides, we can use the SCNN

as a feature extractor to avoid spending time to process each candidate image more

than once. Table 4.7 compares the time spent in the retrieval task for some queries

when using the distance layer implemented inside the SCNN, and the SCNN used

as a feature extractor. In the last, the feature map is extracted using the fully-

connected layer, then an external Euclidean distance measure is computed. We

observed that the computational time to retrieve a single query using the SCNN

as a feature extractor is about 11 times lower.

Table 4.7: Comparison of computational time for the retrieval task in some queries-
distance layer of SCNN and feature extractor approach. Example with 256 feature
map. (time in seconds)

Query Num. of Siamese (V1) Siamese (V2)
Image candidates feature extractor distance layer

210,148
52.08 571.43

124,060
35.29 427.56

167,571
54.02 492.16

The evaluation metrics were described in detail in Chapter 3. The next

sections deal with the results for these two retrieval tasks, IR and PS, respectively.

Then, we compared the final results with our previous approach and the current

state-of-the-art.

4.1.3.1 Image Retrieval task

Table 4.8 shows the experimental results of the proposed image retrieval

method, comparing the SCNN with a 4096-dim feature map with those with n
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entries, where n={512, 256, 128}. The similarity between the network feature maps

was calculated using the Euclidean distance. Afterward, the Top-k candidates were

chosen to generate a ranked list of relevant image candidates according to the mAP,

where k={5, 10, 25, 50, 100}. As one may see in Table 4.8, the best results were

achieved by using the AlexNet with 4096 features resulting in 0.94 and 0.87 of mAP

in the Top-5 and Top-10 ranking, respectively. The recall is higher than 90% in

Top-5 and Top-10. With the additional layer, the best results are related to 256

features with a 0.74 of mAP for Top-5 ranking. The performance is significantly

better using the 4096-dimensional feature map than any version of the additional

layer. However, the computational cost to index all the vectors of the dataset is

much higher.

Table 4.8: mAP with Euclidean distance, Top-k ranking, and Siamese with feature
map sizes n = {4096; 512; 256; 128}

Feature Map
Top-k

5 10 25 50 100

4096 0.944 0.872 0.735 0.546 0.306

512 0.744 0.640 0.486 0.358 0.220

256 0.746 0.654 0.503 0.368 0.227

128 0.738 0.655 0.506 0.373 0.229

Table 4.9 shows some qualitative results of the logos retrieved using the

SCNN with full feature map (4096 dimensional). These results are very promising

since many correct logos were retrieved in the Top-5 ranking. We can observe the

good performance especially in the fifth row, where the query is very similar to a

signature, but we did not have false positives in Top-5 ranking. In the last row,

we can see some false candidates, motivated by the presence of very few positive

samples in the dataset for this query.

We can also see the results per category in Figure 4.2. We observed in some

categories an mAP greater than 0.8. The categories 8, 9, and 16, in particular, have

many samples in the dataset. The categories 5, 17, and 19 have very few samples

that are moreover, of bad quality. In our previous approach, several queries had
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Table 4.9: Qualitative retrieval results. Query and the first five retrieved logos
using 4096-dimensional feature map

0.0 of mAP in some categories, while in this new approach we do not observe

queries with an mAP lower than 0.2.

Therefore, we observed that the results related to the reduced maps are

quite competitive. The computation time is another very important performance

measure for retrieval systems, then, the computation cost of the proposed method

with SCNN Alexnet was evaluated for the two phases (off-line and online). The

computational resources consist of 1 AMD Ryzen 5 1600, 32GB of RAM, 1 GPU

NVIDIA GTX 1080 with 8GB of memory and 2560 CUDA. Table 4.10 compares

the number of candidates processed per second by the proposed approaches (512,

256 and 128 features) and the original feature map (4,096 features). As one may

see the number of candidates processed per second increased by approximately

6.1%, 9.2% and 8.4% in feature extraction using the model with 512, 256 and

128 features, while for retrieval method it increased in almost 2, 3.5 and 5 times,

respectively.
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Figure 4.2: Results by category using SCNN 4,096 feature map and top 5 ranking
on Tobacco800 dataset

Table 4.10: Computational time for the retrieval task (in number of candidates
processed per second)

SCNN Feature Extraction Retrieval
(num/sec) (num/sec)

4096 70.38 65.02
512 76.87 233.5
256 76.26 392.22
128 76.34 451.55

Comparison between the two proposed approaches

Table 4.11 shows the experimental results comparing the single CNN and

the SCNN approaches. Comparing the results with the single CNN approach in

Table 4.11, for the 4096-dimensional and 512-dimensional feature maps the pro-

posed SCNN-based method is 28.23% and 20.75% better for Top-10, respectively.

However, considering the 256-dimensional and 128-dimensional feature maps, the



99

results were 9.20% and 5.07% worst, respectively. We observe the use of SCNN

is more discriminant with high dimensional features, while the single CNN re-

turns better performance with low dimensional features. Thus, the better choice

depends on computational cost and the respective dataset to achieve promising

results. However, the difference between the approaches for 128 feature map is

only 0.03 of mAP in Top-10.

Table 4.11: Comparison with the two proposed approaches, retrieval task and
Top-k ranking for 4096, 512, 256 or 128-dimensional feature map on Tobacco800
dataset.

Method
Feature Map Top-k

Dimension 10 25 50 100

Single CNN

4096 0.68 0.57 0.45 0.32

512 0.53 0.40 0.31 0.23

256 0.72 0.61 0.50 0.35

128 0.69 0.61 0.51 0.34

SCNN

4096 0.87 0.73 0.54 0.30

512 0.64 0.48 0.35 0.22

256 0.65 0.50 0.36 0.22

128 0.65 0.50 0.37 0.22

In addition, to evaluate the quality of candidates using the improved version

of SS (SSv2), we did experiments with single CNN (4096 features) and improved

SS of Tobacco800 dataset. Table 4.12 shows these results. We can observe top-

10 ranking returned 0.75 of mAP, thus we increase 0.07 mAP (before was 0.68,

according to Table 4.11) but still, it is 14% below than improved SS with SCNN

(4096). Then the use of the new SS improved the results but we get better results

using new SS with SCNN.

Besides, we observed there is not a significant time-consuming difference

between the models single CNN and SCNN during retrieval phase since the online

phase depends on the feature map already extracted to calculate the distances and

perform the ranking list in both models. During the online phase, in both models,

the query search time is improved from ∼= 7s (4096 features) to ∼= 3s (256 features).
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Table 4.12: Comparison with the two proposed approaches for SSv2, Top-k ranking
for 4096 or 256-dimensional feature map on Tobacco800 dataset

Approach
Feature Map Top-k

Dimension 10 25 50 100

Single CNN
4096 0.75 0.59 0.39 0.24

256 0.86 0.73 0.57 0.33

SCNN
4096 0.87 0.73 0.54 0.30

256 0.65 0.50 0.36 0.22

Then, the computational time decreased when using the model with 256 features,

while the approaches return promising results.

4.1.3.2 Pattern Spotting task

Table 4.13 shows the experimental results of the pattern spotting task.

Here, the candidate is taken as relevant if it overlaps enough with the image query.

We can observe that our best results were achieved using the whole feature map

(4096), but the results related to the reduced maps are quite competitive. Despite

the reduction of about 0.12 in mAP, they have shown a significant reduction in

terms of time-consuming as shown in Table 4.10. Still, in Table 4.13, we can see

a small gap in terms of localization performance between IoU=0.1 and IoU=0.7.

This means that our system succeeded not only to retrieve the relevant image can-

didates for each query but also in finding the query position precisely. Qualitative

analysis can be seen in Table 4.14, in which we have some queries and the first

candidate retrieved with its respective location.

4.1.4 Comparison with the state-of-the-art

Comparison with state-of-the-art - Image Retrieval

The results in IR were compared with the current state-of-the-art, and the

results are shown in Table 4.15. In Jain and Doermann (2012), a scalable algo-
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Table 4.13: mAP for pattern spotting with euclidean distance considering different
values of IoU and top-5 on Tobacco800 dataset

SCNN
IoU

0.1 0.3 0.5 0.7 0.9

4,096 0.841 0.841 0.839 0.836 0.793
512 0.711 0.707 0.705 0.699 0.607
256 0.719 0.716 0.714 0.707 0.614
128 0.706 0.704 0.702 0.696 0.616

rithm was used to retrieve logos without segmentation in document images. The

proposed CNN approach is 51% and 60% better than the mAP reported by (JAIN;

DOERMANN, 2012) considering the 4096 and 256 features, respectively. On the

other hand, the mAP achieved by the CNN-256 is 15% below than the approach

proposed by (RUSINOL; LLADóS, 2010). This means that the candidates retrieved

by the proposed approach are not well ranked in the first positions or that there

are too many false positives. The SCNN approach is 93.80% and 45.33% better

than the results achieved by (JAIN; DOERMANN, 2012), with 4096 and 256 features,

respectively. The SCNN-4096 is 2.08% better the results achieved by (RUSINOL;

LLADóS, 2010). The results are almost 30% below for model with 256 features.

However, it is important to highlight that in the paper of Rusinol and Lladós

(2010), 10% of the logos were randomly chosen as the training set to carry out

k-means clustering and the other 90% were considered as a test. In our SCNN

approach, we did not require previous knowledge about the images.

Comparison with the state-of-the-art - Pattern Spotting

Table 4.16 shows a comparison with the current state-of-the-art for pattern

spotting on the Tobacco800 dataset. We selected our best image retrieval results

which have been obtained with the SCNN-4096 and the CNN-256 to evaluate the

PS task. For such a comparison we have used the same experimental parameters

of (LE et al., 2014; LE et al., 2013), who consider Top-5, IoU≥0.6 and classes with

at least three samples per category. The mAP achieved by the CNN-256 did not
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Table 4.14: Qualitative spotting results for some queries. Query logo and first five
retrieved logos by similarity and 4,096 feature map and location (red square) on
Tobacco800 dataset

Query 1st 2nd 3rd 4th 5th

outperform the state of the art. However, the mAP achieved by the proposed

SCNN-4096 is 1.31% better than mAP achieved by (LE et al., 2014) but it did not

outperform the mAP presented in (LE et al., 2013). On the other hand, the recall

is 4.44% and 4.86% better than (LE et al., 2014) and (LE et al., 2013) respectively.

It is important to highlight that both (LE et al., 2013) and (LE et al., 2014) require

the previous knowledge of the logo gallery, which is not necessary for the proposed
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Table 4.15: Comparison with the state-of-the-art for retrieval task (mAP). The
CNN and the SCNN-based methods, considering Top-10 and Top-25 on To-
bacco800 dataset.

Method
Top-k

10 25

(JAIN; DOERMANN, 2012) 0.45 NA
(RUSINOL; LLADóS, 2010) NA 0.72

CNN-4096 0.68 0.57
SCNN-4096 0.87 0.73

CNN-256 0.72 0.61
SCNN-256 0.65 0.50

NA: Not Available

method.
Table 4.16: Comparison with the state-of-the-art for Pattern Spotting in terms
of mAP. Top-5, IoU≥0.6, and classes with at least three samples of Tobacco800
dataset.

Method mAP Recall (%)

(LE et al., 2013) 0.970 88.42
(LE et al., 2014) 0.910 88.78
SCNN-4096 0.922 92.72
CNN-256 0.600 63.00

4.2 DocExplore dataset

This section presents the experimental results for the Docexplore dataset.

The pre-processing, image representation, image retrieval, and spotting stages are

presented. Analysis of the results is based on the experimental protocol described

in Section 3.5. The end of this section shows comparisons of the results with the

state-of-the-art.

4.2.1 Pre-processing

This section presents the experiments that were carried out using the me-

thods presented in Section 3 used to search for occurrences of query images based
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on the Selective Search algorithm proposed by Uijlings et al. (2013). We conclude

in Section 4.1.1 that the SSv2 presented better results. Thus, we use SSv2 and

the same parameters for finding quality candidates. However, none objects were

generated in 3 pages for errors not debugged. In this sense, we decide to personal-

ize other parameters, being the third version of SS for DocExplore dataset, named

SSv3. The parameters for SSv3 were: adaptative threshold with block = 209 and

offset = 0.14, k = 50, 100 and 150; feature space RGB and normalize RGB; color

+ fill + size + texture.

To compare the quality of objects, we implement a Template Matching

(TM ) which saves the approximate location of the queries present in each image,

creating our ground truth. Let us recall that the DocExplore dataset’s ground

truth is not publicly available by the authors. Thus, the only way to check the

approximate quality of objects is through a TM. The TM compares a template

against overlapped image regions. The implementation is available at a website 1.

We evaluated the performance of our TM at the online system http://spotting.

univ-rouen.fr.

Table 4.17: Selective Search applied at the DocExplore dataset

Num of candidates SSv2 SSv3

Totals 45,152.172 36,159.870
IOU >= 10 382,860 294,335
IOU >= 30 125,784 109,800
IOU >= 50 47,574 50,915
IOU >= 70 13,956 17,445
IOU >= 90 1,008 695
IOU >= 99 0 5

We can observe in Table 4.17, the SSv2 and SSv3 present good candidates

for the system, and we reduced the number of candidates from 45M to 36M. The

next sections show the results obtained using the approaches from the methods in

Chapter 3, that is, Single CNN and SCNN. The results also were evaluated using

1https://docs.opencv.org/3.4/df/dfb/group__imgproc__object.html#

gga3a7850640f1fe1f58fe91a2d7583695daf9c3ab9296f597ea71f056399a5831da

http://spotting.univ-rouen.fr
http://spotting.univ-rouen.fr
https://docs.opencv.org/3.4/df/dfb/group__imgproc__object.html#gga3a7850640f1fe1f58fe91a2d7583695daf9c3ab9296f597ea71f056399a5831da
https://docs.opencv.org/3.4/df/dfb/group__imgproc__object.html#gga3a7850640f1fe1f58fe91a2d7583695daf9c3ab9296f597ea71f056399a5831da
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exhaustive search, and then the lowest Euclidean distance was ranked first. To

analyze the results, a threshold k was defined to rank the results. We evaluated our

results thanks to the evaluation kit provided on-line2, where the authors included

a rule to ignore junk objects and IoU≥0.5 for PS task. The next sections deal with

the results for the retrieval and spotting tasks, respectively.

4.2.2 First approach results: single CNN

It is worth mentioning that the images used to fine-tune the CNN were

generated from the use of data augmentation techniques on the set of all the 1447

image queries from DocExplore dataset, resulting in 54,644 training images. The

dataset was split into a training set of 75% and a validation set of 25% to fine-tune

the CNN. So, only transformed images were used to train the neural network. The

results were evaluated using the exhaustive search, in which a comparison was

made between all the features extracted from the candidates and the query image,

and then the lowest distance was ranked first. The next sections present the results

for IR and PS tasks.

4.2.2.1 Image Retrieval task

Table 4.18 shows the experimental results comparing the feature map ob-

tained with fine-tuned AlexNet architecture, which has 4,096 elements at the out-

put of the convolutional layer (fc7 ), with the modified model that has an additional

layer to reduce the feature map to 256 elements (fc8new). As one may see in Table

4.18 the best results were achieved using the top-1000 ranking with 256 features

resulted in 0.141 of mAP, while the model with 4096 features resulted in 0.042. In

summary, we achieved an improvement of 3.3 times in mAP, while the number of

features was reduced by 16 times.

We can observe that our results for IR and PS tasks have shown the same

behavior of Tobacco800 dataset. The model trained with 256 features improve the

2http://spotting.univ-rouen.fr/evaluation-kit/

http://spotting.univ-rouen.fr/evaluation-kit/
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results while the set of features was reduced. Besides, related to computational

time, during the online phase, the query search time is improved from ∼= 1.7m

(4096 features) to ∼= 1.6m (256 features). Then, the computational time decreased

when using the model with 256 features, while it returns better results.

Table 4.18: Image retrieval (IR) results with Top-k ranking for Single CNN with
4096 and 256 on DocExplore dataset and SSv3.

Feat. map
Top-k

100 300 500 700 1000

256 0.052 0.096 0.120 0.133 0.141
4096 0.007 0.017 0.025 0.033 0.042

We also can see the results per category of queries using the single CNN

with 256 features for IR, SSv3 and top-1000 ranking in Figure 4.3. We observe

that for 2 categories we achieved a mAP ∼= 0.3 and 8 categories above 0.1. Some

categories achieved mAP lower than 0.1. This can be explained by the fact that

these categories could contain too few samples that are moreover of bad quality.

4.2.2.2 Pattern Spotting task

According to the system at Rouen system, the IOU was IoU > 0.5 to

consider that a returned bounding box is a good retrieval and the precision/recall is

calculated. Table 4.19 shows the experimental results of the proposed PS method,

which single CNN-4,096 and 256, and the candidates generated with SSv3. We

observe our results are similar to any Top-k ranking, where we achieved 0.001

of mAP in our best results, using 256 features. Thus we improve in 10 times

the results for PS using a reduced set of features. However, this approach did

not return promising results, since only 0.1% of queries were retrieved with good

precise location.
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Figure 4.3: Results by category using Single CNN 256 feature map and top 1000
ranking on DocExplore dataset

Table 4.19: Pattern spotting (PS) results with Top-k ranking for Single CNN 4096
and 256 on DocExplore dataset and SSv3

Feat. map
Top-k

100 300 500 700 1000

256 0.0007 0.0010 0.0010 0.0010 0.0010
4096 0.0001 0.0001 0.0001 0.0001 0.0001

4.2.3 Second approach results: SCNN

This section shows the results obtained for Image Retrieval and Pattern

Spotting tasks using the SCNN approach. The SCNN architecture trained with

ImageNet dataset provides 4096-dim feature maps corresponding to its original fc7

layer. We have also investigated the addition of a new layer (fcnew) to reduce the
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feature maps to 256 dimensions.

4.2.3.1 Image Retrieval task

We also evaluated our results thanks to the evaluation kit provided on-

line3. Table 4.20 shows the experimental results of the proposed image retrieval

and pattern spotting methods, using the SCNN 4096 and 256. We selected this

feature maps because of its performance in Tobacco800 dataset. Let us recall the

authors included a rule to ignore junk objects and IoU≥0.5 for PS task. We can

observe that our best result for IR is with Top-1000 in SCNN-4096 and SSv3 with

0.386 for mAP, but for Top-500 the difference is only 3.5%.

Table 4.20: Image retrieval (IR) results with Top-k ranking for SCNN 4096 and
256 on DocExplore dataset

Feat. map
Top-k

100 300 500 700 1000

4096 0.296 0.355 0.373 0.381 0.386
256 0.039 0.167 0.184 0.193 0.201

We also can see the results per category of queries using the SCNN with

4,096 features, SSv3 and top-1000 ranking in Figure 4.4. We observe that for

2 categories we achieved mAP 1.0 and 14 categories above 0.4. The categories

Pediment, Flower ornament and Henri’s II Profile L in particular, we achieved

mAP greater than 0.7. Some queries of 6 categories achieved mAP lower than

0.1. This can be explained by the fact that these categories could contain too few

samples that are moreover of bad quality. However, for 19 categories we have more

than 0.3 in mAP and 10 categories more than 0.5.

Table 4.21 shows some qualitative results of the images retrieved using

SCNN with 4096 feature map. These results are very promising since many correct

images were retrieved in the top-5 ranking. However, when the search involves an

image with few positive samples, the method returns some false candidates, as

3http://spotting.univ-rouen.fr/evaluation-kit/

http://spotting.univ-rouen.fr/evaluation-kit/
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Figure 4.4: Results by category using 4,096 feature map and top 1000 ranking on
DocExplore dataset

seen in the eighth row (in gray), although the level of detail of the method is

represented in Figure 4.5 for this same query (red square).

Besides, in this approach, we also observed the time-consuming. During

the online phase, the query search time is improved from ∼= 2.1m (4096 features)

to ∼= 1.6m (256 features). Then, the computational time decreased when using the

model with 256 features, while it returns promising results.

4.2.3.2 Pattern Spotting task

Table 4.22 shows the experimental results of the proposed PS method,

which SCNN-4,096 because of our best results of IR,and the candidates generated

with SSv2 and SSv3. The same evaluation system was used as the Single CNN
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Table 4.21: Qualitative retrieval results for some queries of DocExplore dataset.
Query image and first five retrieved candidates by similarity and 4,096 feature map

Query
Retrieved

1st 2nd 3rd 4th 5th

Figure 4.5: First candidate found for the query 945 using SCNN4096

approach. We observe our results are very similar to any Top-k ranking, but in

our best result, we achieved 0.076 of mAP.
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As En et al. (2016b), we observed that many candidates often contain only

a part of the query or overlap with other ranked candidates, hence reducing the

performance of the system. Thus, we propose a post-processing stage to use a

”union” of these retained candidates to discover rectangular regions as a way to

improve the performance of the localization task. Thus, we selected the first 2000

candidates to apply the union step. After the union, the first 1000 were considered

to feed the evaluation system, similar to (EN et al., 2016a) and (EN et al., 2016b).

We can observe that our results for PS are approximately 2.3 times better using

post-processing.

Table 4.22: Pattern spotting (PS) results with Top-k ranking for SCNN-4096 on
DocExplore dataset

Feat. map
Top-k

100 300 500 700 1000

PS 0.073 0.075 0.076 0.076 0.076
PS (PP) 0.174 0.174 0.174 0.174 0.174

PP: Post-processing

4.2.4 Comparison with the state-of-the-art

Table 4.23 shows the comparison with the current state-of-the-art and our

experimental results for SCNN, because of the best results presented for this ap-

proach. It can be observed that we did not outperform (EN et al., 2016a), being

almost 37% worse for IR. They used BING to propose regions and the feature

extraction is based on VLAD and K-means. In addition, the authors included a

post-processing stage using template matching. At each retrieval, the Top-2000

regions similar to the query are kept as inputs of the template matching stage.

Finally, only the first 1000 matched regions are used for calculating the mAP. It

can be observed that the mAP achieved by the proposed method in the local-

ization task outperforms in 57% the results presented in En et al. (2016a) when

considering our post-processing method.

The mAP for IR achieved by the proposed SCNN is similar to the mAP
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Table 4.23: Image retrieval (IR) and pattern spotting (PS) results on DocExplore
dataset. Values refer to mAP on Top-1000 candidates for SCNN-4096

Method IR PS

(EN et al., 2016a) 0.613 0.111
(ÚBEDA et al., 2019) ES 0.286 0.139
(ÚBEDA et al., 2019) PP 0.386 0.173
SCNN-4096 PP 0.386 0.174

ES: exhaustive search, PP: Post-processing

achieved by Úbeda et al. (2019) with post-processing (PP). (ÚBEDA et al., 2019)

used RetinaNet as a feature extractor and added a post-processing step where they

discard the localization if the bounding box is not entirely contained in the original

page. In addition, they trained a classifier with a set of pages of DocExplore and

use it to predict non-text regions in all pages to generate region proposals. It is

important to notice that we did not perform any training using images of DocEx-

plore for both the region proposal and the feature extractor. However, whereas

the authors used an exhaustive search, our results outperformed in approximately

35% in IR and 25% for PS. Therefore, our approach is better at retrieving patterns

and it does not need any additional classifier to improve the performance.

4.3 Final considerations

In this chapter, our objective was to evaluated IR and PS tasks of the graph-

ical objects on two public datasets (Tobacco800 and DocExplore). To achieve this

objective, firstly we investigated the use SS to produce a reasonable amount of

higher-quality candidates. Thus, we evaluated the two proposed approaches based

on CNN architecture. Based on the experimental results, the proposed single

CNN approach can provide a discriminant representation of queries and image

candidates for IR and PS tasks applied in document image collections and it out-

performed the state-of-the-art on Tobacco800 dataset. In this case, we prove our

first hypothesis proposed in Chapter 1. In SCNN proposed approach, in addition

to providing discriminant representation, it can be used to construct independent-

dataset solutions for IR and PS tasks in the context of document image collections.
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Thus, we prove our second hypothesis developing a generic solution that is inde-

pendent of the query images to work on different document collections. However,

in DocExplore experiments, although the results were very similar to the litera-

ture, we believe that there is still a large room for improvement. Given such big

difference in IR and PS tasks, a sanity check is necessary to understand if the

regions generated could be improved. One simple solution would be to take into

account some filter algorithm to reduce the candidate dataset, but it should be

discussed with care.
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Chapter 5

Conclusions and Future Work

In this work, we presented two approaches for IR and PS constructed to

minimize or even avoid the prior knowledge dependence of the dataset to be used.

In the first approach, we presented a promising Single CNN for IR and PS in

document image collections. The candidate images were indexed and represented

by a reduced set of deep features. An additional layer was added to the AlexNet

architecture with the aim of reducing the dimension of the feature map and to

improve the efficiency of the search process.

However, one main disadvantage of this approach is that the queries are

used for training (fine-tuning) the CNN. Therefore, previous knowledge of the

queries is needed a priori making this approach problem (or dataset) dependent.

The experimental results for this approach were very promising. It was possible

to observe an increase in the average precision while reducing considerably the

time consumed by the retrieval task. Therefore, we proved that the first hypo-

thesis is valid, which a pre-trained Convolutional Neural Network (CNN) model

constructed to deal with the lack of training data can provide a discriminant repre-

sentation of queries and image candidates for IR and PS tasks applied in document

image collections.

In the second approach, we presented a novel approach for IR and PS in

document image collections where the images are represented using a Siamese CNN
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model trained on the ImageNet dataset. We evaluated the results of conventional

AlexNet architecture and also the modified version with an additional layer with

the aim of reducing the dimension of the feature map. Our experimental results

were very promising. It was possible to observe an increase in the mAP since

the features generalize well and improve the matching performance compared to

features obtained with networks trained for image classification.

The main advantage over the previous approach is that we do not need to

know the queries in advance, i.e. during the off-line phase (training), thus being

independent of the queries. Therefore, the SCNN based approach may be viewed as

a problem (or dataset) independent approach for retrieving document images and

spotting patterns, as we demonstrated in the experiments (Section 4) by using the

same trained SCNN to retrieve images from two very different datasets. Thus, we

proved that the second hypothesis is valid, in which deep metric based on Siamese

Convolutional Neural Network (SCNN) trained on a general image dataset can be

used to construct independent-dataset solutions for IR and PS tasks in the context

of document image collections. This trained model also can be available to other

researchers use in different solutions of IR and PS, and, also, to perform online

the fine-tuning where the model can learns based on different query images.

Besides, we highlight the main difficulties of these approaches. In data

augmentation step in the single CNN because we need to define the processing

to generate an adequate number of images for each class which can influence in

training step. Some experiments with different values of data augmentation or to

generate a training set based on document images to include a bigger variability

of images could be evaluated. The object proposal algorithm, where some pa-

rameters were chosen and a limited number of candidates were generated. Some

comparisons with other algorithms based on segmentation could be interesting and

maybe candidates with more quality will be generated. Besides, the chose of the

architecture of deep learning as a feature extractor able to return promising results

and that spent good computational time was a challenge because of the limits of

computational resources.
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Further work must be carried out to improve the SCNN model by using

other architectures (such as Resnet , Retina network and, VGG). Aside from IR

and PS in document images, the transfer learning works in different datasets, we

could use our system for other spotting-related problem to evaluate the proposed

SCNN model, such as in Paris1, INRIA Holidays2, Washington Database3 . Fi-

nally, given that we can turn our system into a word spotting system, it would

be interesting to design a system that can spot words and patterns, making it a

generic system.

1https://www.robots.ox.ac.uk/ vgg/data/parisbuildings/
2https://lear.inrialpes.fr/ jegou/data.php
3http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/washington-

database
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RUSIÑOL, M. et al. Efficient segmentation-free keyword spotting in historical

document collections. Pattern Recognition, v. 48, p. 545–555, 2015.
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Appendix A

Tobacco800 dataset - additional experiments

We decide to evaluate the proposed SCNN based on Alexnet with other

popular architecture in the state-of-the-art. Table A.1 shows a comparison using

SCNN implemented with Alexnet and Googlenet. We implement and train a

SCNN Googlenet using the same parameters of SCNN Alexnet. However, the

Googlenet architecture is bigger than Alexnet, then we cannot use the batch size

= 128 as used in Alexnet. We needed to define a batch size = 16 because of the

memory available. The standard Googlenet has 1024-dimensional feature map,

but the additional layer with reduced feature map was also included to compare

results.

Table A.1: Comparison using SCNN AlexNet and Googlenet with top-k ranking

SCNN Feature map
top-k

5 10 25 50 100

Alexnet

1,024 0.577 0.480 0.342 0.250 0.170
512 0.744 0.640 0.486 0.358 0.220
256 0.746 0.654 0.503 0.368 0.227
128 0.738 0.655 0.506 0.373 0.229

Googlenet

1,024 0.585 0.453 0.300 0.210 0.141
512 0.360 0.284 0.201 0.152 0.111
256 0.254 0.210 0.160 0.125 0.096
128 0.299 0.245 0.168 0.128 0.098

According to the experiments presented in Table A.1, the performance of
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Top-5 is only 1.3% better using standard SCNN Googlenet than AlexNet with fea-

ture maps of 1024. Using other values of the feature map, the Alexnet architecture

returns better results and it is much faster.
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Appendix B

DocExplore - additional experiments

B.1 DocExplore Template Matching

In Chapter 4, experimentation showed the performance for IR and PS using

DocExplore dataset and the online system Rouen. In this appendix, we show the

results verified at the online system with our ground truth generated by TM.

Figure B.1 presents the results evaluated at Rouen system using a TM for PS.

These experiments were performed to evaluate the quality of our TM and use it

as an approximate ground truth. Using this ground truth, we could evaluate the

values of Table 4.17 presented in Section 4.2.

IIn this appendix, we have proposed additional experiments for PS to vali-

date our TM with SCNN approach. However, we do not have the original ground

truth or junk list to observe the results and compare the difference.
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Figure B.1: PS results using TM at Rouen system
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Appendix C

IR and PS system - E2E

In addition to this work, based on the methods investigated previously, we

decided to implement an end-to-end system that contains all the necessary steps to

evaluate a data set with CBIR approaches. Figure C.1 shows the starting frame.

The system was implemented with the ruby on rails backend framework and the

frontend framework uses semantic-ui. The system runs all previously deployed

scripts, having several options to choose from. Figure C.1) shows the options:

•(A) the possibility to send the own file of weights of a network (.caffemodel

file), or the use one of our models;

•(B) The user can choose even the dataset already available or submit a

dataset with pages and queries, and, if available, the ground truth.

•(C) Include parameters customized of the SS algorithm or choosing the de-

fault.

•(D) A new challenge can be created.

•(E) shows allow to explore details, edit or destroy the challenge.

•The bar progress in (F) shows when the tasks finished.
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Figures C.2 to C.11 shows more details about the implemented system

and the possibilities to use it. The examples contain some images of DocExplore

dataset to validate the system.

Figure C.1: IR and PS system - initial frame with two dataset examples already
created

The use of this system can help the researchers to evaluate their datasets,

the feature extractor implemented or candidates generate by some algorithm. In

the end, the results of IR and PS can be easily explored in the online system.
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Figure C.2: IR and PS system - (A) Upload a caffemodel
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Figure C.3: IR and PS system - (A) Upload a caffemodel - explore details
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Figure C.4: IR and PS system - (B) Upload database challenge
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Figure C.5: IR and PS system - (B) Upload database challenge - details
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Figure C.6: IR and PS system - (B) Upload database challenge - explore a page/-
query
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Figure C.7: IR and PS system - (C) Upload candidates
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Figure C.8: IR and PS system - (C) Run SS
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Figure C.9: IR and PS system - (C) Candidates details

Figure C.10: IR and PS system - (C) Explore candidates
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Figure C.11: IR and PS system - (D) New challenge classified
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Figure C.12: IR and PS system - (E) New challenge classified - explore classification
details
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Figure C.13: IR and PS system - (E) New challenge classified - explore classification
details
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Figure C.14: IR and PS system - (E) New challenge classified - example of JSON
object generated to represent the distance between a query and candidate. The
user can save these files to calculate the performance
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