
RODOLFO MIRANDA PEREIRA

DEALING WITH IMBALANCENESS IN
HIERARCHICAL CLASSIFICATION PROBLEMS

THROUGH DATA RESAMPLING

Thesis presented to the Graduate Pro-
gram in Informatics (PPGIa) of the
Pontifícia Universidade Católica do
Paraná (PUCPR) as partial fulfill-
ment of the requirements for the de-
gree of Doctor in Computer Science.

Curitiba

2020

RODOLFO MIRANDA PEREIRA

DEALING WITH IMBALANCENESS IN
HIERARCHICAL CLASSIFICATION PROBLEMS

THROUGH DATA RESAMPLING

Thesis presented to the Graduate Pro-
gram in Informatics (PPGIa) of the
Pontifícia Universidade Católica do
Paraná (PUCPR) as partial fulfill-
ment of the requirements for the de-
gree of Doctor in Computer Science.

Concentration Area: Artificial Intelli-
gence

Supervisor: Prof. Dr. Carlos Nasci-
mento Silla Jr.
Co-supervisor: Prof. Dr. Yandre Mal-
donado e Gomes da Costa

Curitiba
2020

Dados da Catalogação na Publicação

Pontifícia Universidade Católica do Paraná
Sistema Integrado de Bibliotecas – SIBI/PUCPR

Biblioteca Central
Luci Eduarda Wielganczuk – CRB 9/1118

 Pereira, Rodolfo Miranda

P436d Dealing with imbalanceness in hierachical classification problems through
2020 data resampling / Rodolfo Miranda Pereira ; supervisor: Carlos Nascimento
 Silla Jr. ; co-supervisor: Yandre Maldonado e Gomes da Costa. – 2020.
 292 f. : il. ; 30 cm

 Tese (doutorado) – Pontifícia Universidade Católica do Paraná, Curitiba,

 2020

 Bibliografia: f. 256-275

 1. Informática. 2. Algoritmos. 3. Processamento eletrônico de dados.

 I. Silla Júnior, Carlos Nascimento. II. Costa, Yandre Maldonado e Gomes da

 III. Pontifícia Universidade Católica do Paraná. Programa de Pós-Graduação

 em Informática. IV. Título.

 CDD 22. ed. – 004

Pontifícia Universidade Católica do Paraná

 Escola Politécnica
 Programa de Pós-Graduação em Informática
GRUPO MARISTA

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil
Fone: (41) 3271-1669 e-mail: secretaria@ppgia.pucpr.br

DECLARAÇÃO

Declaro para os devidos fins que o aluno RODOLFO MIRANDA

PEREIRA, defendeu sua tese de Doutorado intitulada “Dealing with

Imbalanceness in Hierarchical Classification Problems Through Data

Resampling”, na área de concentração Ciência da Computação, no dia 03 de

agosto de 2020, no qual foi aprovado.

Declaro ainda que foram feitas todas as alterações solicitadas pela Banca

Examinadora, cumprindo todas as normas de formatação definidas pelo

Programa.

Por ser verdade, firmo a presente declaração.

Curitiba, 17 de novembro de 2020.

Prof. Dr. Emerson Cabrera Paraiso

Coordenador do Programa de Pós-Graduação em Informática
Pontifícia Universidade Católica do Paraná

To my beloved wife, Cláudia.

Acknowledgements

Fist of all, I would like to thank my wife Cláudia Trevizan for all the support and
patience that she had during the long development of this Doctoral Research. She was
always my inspiration and wall of comfort during the hard days and nights.

I thank my supervisors Carlos Silla Jr and Yandre Costa for guiding me during the
studies that lead me to this Thesis. I’m happy to have the honor to work with such good
researchers as you. In the end, each reunion during the daybreak was worthy. In special, I
thank Yandre Costa for showing me an open door when I was almost giving up.

I thank Júlio Nievola, Deborah Carvalho, Luiz Merschmann and Andre Leon de
Carvalho for their insightful comments during the Thesis defense, which have increased
the quality of this document.

I thank the Pontifícia Universidade Católica do Paraná (PUCPR) for the opportu-
nity and structure for the studies. This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

I would also like to thank all my friends from PPGIA that were somehow together
with me during this four years of studies. In special, I thank João Pedro, Lucas Martiniano
and Zacarias Curi for being such good friends during this phase. I’m grateful for meeting
you guys in PPGIA, this is for sure one of the most important things that I’ve accomplished
in this Doctoral Research.

I thank my friends from IFPR, Alessandra Zavala, Ana Carolina Carvalho, Andrius
Roque, Eduardo Tieppo, Gledson Bianconi, Guilherme Gasparotto and Ronan Assumpção,
and all my friends from my hometown, Alan Clappis, Ana Leticia, Bruno Godoy, Daniel
Rosseto, Danilo Bueno, Débora França, Débora Sandi, Derick Gobetti, Erick Klein,
Felippe Fernandes, Germano Paiola, Helen Pascoeto, Leonardo Hayashi, Leonardo Martins,
Leonardo Saiki, Lucas Maldonado, Lucas Perassoli, Luiz Henrique Davantel, Guilherme
Shiba, Maicon Michelon, Maurílio Campano, Rafael Aguiar, Ruan Liberato, Thales Chicoski
and Yago Legal for supporting me somehow during the development of this project. In
special, I thank Bruno, Leonardo and Yago for letting me stay at their home in the first
year of the Doctoral Research, I really appreciate your efforts to make me comfortable.

I also thank all the support of my in-laws, in special Bianca Trevizan, Felipe
Amadeo, Vera Trevizan and Pedro Segovia. You are also part of my life and have helped
me somehow in this journey.

Last and not less important, I thank my parents Clarice Ruiz Miranda and José
Lopes Pereira, my grandmother Nair Ruiz and my brother and sister, Guilherme Pereira
and Karen Pereira, for sending me positive thoughts and supporting me during the last
four years. Everything that I’ve become and achieved in my life is part of you.

Abstract
The process of classifying unlabeled and unseen data based on patterns of previously
known samples is one of the main interests in Machine Learning. In this context, a lot of
classification problems are naturally imbalanced, which means that some classes are less
frequent then others, and even though many classification algorithms tend to benefit the
most frequent classes during the training process, in scenarios such as disease identification,
the main interest is exactly to maximize the identification rate of the less frequent ones.
Although the data resampling algorithms are the most common and widely used solutions,
they were not well defined for the hierarchical classification scenario. Given that many
important real-world problems are casted as hierarchical, this is an open research gap.
Thus, the main objective of this Doctoral Research is to study and propose resampling
approaches to handle the class imbalanceness issue for hierarchical classification problems.
In order to achieve this objetive, four directions were investigated: (i) The use of well-
known binary and multi-label resampling methods in hierarchical datasets with single
and multiple paths, respectively; (ii) A label path conversion strategy to deal with the
imbalanceness in hierarchical multi-label datasets with multi-label resampling techniques;
(iii) The design of classification schemas to use binary resampling algorithms with the
different local classificaiton approaches; (iv) The proposal of global resampling algorithms
that are able to identify the majority/minority label paths in hierarchical datasets and deal
with them as a whole, considering their different characteristics such as number of paths
and depth of prediction. During the investigation of the second and third directions, we
have also proposed novel metrics to measure imbalanceness in hierarchical datasets in local
and global perspectives. Concerning the fourth direction, we have proposed three novel
resampling algorithms: Hierarchical Random Oversampling (HROS); Hierarchical Random
Undersampling (HRUS); and Hierarchical Synthetic Oversampling Technique (HSMOTE).
Moreover, while studying the challenges involved in dealing with multi-label imbalanced
data, we have also developed a novel multi-label resampling algorithm named Multi-Label
Tomek Link (MLTL). All the proposed approaches were experimentally analyzed in well-
known hierarchical datasets, with different characteristics and, supported by statistical
analysis, were able to somehow improve the classification results. In order to show the
impacts of the contributions of this Thesis in a real world scenario, we have investigated
the imbalanceness issue in the COVID-19 identification in chest x-ray images problem.
The proposed resampling approaches were able to improve the COVID-19 identification
rate in most scenarios. This was the first work to analyze this problem with a hierarchical
taxonomy, considering the biological relationships between the pneumonia pathogens.

Keywords: Hierarchical Classification, Imbalanced Learning, Class Imbalanceness, Re-
sampling Algorithms.

Resumo
O processo de classificação de dados não rotulados com base em padrões de amostras
previamente conhecidas é uma das principais tarefas da Aprendizagem de Máquina. Neste
sentido, muitos problemas de classificação são naturalmente desbalanceados, o que significa
que algumas classes são menos frequentes do que outras, e embora muitos algoritmos
de classificação tendam a beneficiar as classes mais frequentes durante o processo de
treinamento, em cenários como detecção de doenças, o principal interesse é exatamente
maximizar a taxa de identificação das classes menos frequentes. Apesar dos algoritmos de
resampling serem as soluções mais amplamente utilizadas, elas não foram bem definidas
no cenário de classificação hierárquica. Dado que muitos problemas importantes do mundo
real são considerados hierárquicos, esta é uma lacuna de pesquisa. Assim, o objetivo
principal deste trabalho é estudar e propor abordagens de resampling para lidar com o
desbalanceamento de classes em problemas de classificação hierárquicos. Para atingir este
objetivo, quatro direções foram investigadas: (i) O uso de métodos de resampling binários
e multi-rótulos em conjuntos de dados hierárquicos com caminhos únicos e múltiplos,
respectivamente; (ii) Uma estratégia de conversão de rótulos hierárquicos para utilização de
técnicas de resampling multi-rótulo; (iii) O desenvolvimento de esquemas de classificação
para o uso de algoritmos de resampling binários em abordagens hierárquicas locais; (iv)
Algoritmos de resampling globais capazes de identificar os rótulos majoritários/minoritários
em conjuntos de dados hierárquicos e tratá-los como um todo, considerando suas difer-
entes características como número de rótulos e profundidade de predição. Durante as
investigações da segunda e terceira direções, também foram propostas novas métricas para
medir o desbalanceamento em conjuntos de dados hierárquicos em perspectivas locais
e globais. Em relação à quarta direção, foram propostos três novos algoritmos: Hierar-
chical Random Oversampling (HROS); Hierarchical Random Undersampling (HRUS); e
Hierarchical Synthetic Oversampling Technique (HSMOTE). Além disso, ao estudar os
desafios envolvendo desbalanceamento multi-rótulo, foi desenvolvido um novo algoritmo
de resampling chamado Multi-Label Tomek Link (MLTL). As abordagens propostas foram
analisadas em uma grande variedade de bases de dados hierárquicos e, apoiados por análises
estatísticas, conseguiram melhorar os resultados da classificação. Para mostrar os impactos
das contribuições desta Tese em um cenário real, o problema do desbalanceamento na
identificação de COVID-19 em imagens de raios-X de tórax foi investigado. As abordagens
propostas foram capazes de melhorar a taxa de identificação do COVID-19 na maioria
dos cenários. Este foi o primeiro trabalho a analisar este problema com uma taxonomia
hierárquica, considerando as relações biológicas entre os patógenos da pneumonia.

Palavras-Chave: Classificação Hierárquica, Aprendizado Desbalanceado, Desbalancea-
mento entre Classes, Algoritmos de Reamostragem.

List of Figures

Figure 1 – Inductive Learning Hierarchy. 39
Figure 2 – Example of kNN classification algorithm. 40
Figure 3 – Example of Decision Tree classification algorithm (TAN; STEINBACH;

KUMAR, 2005). 41
Figure 4 – Example of Random Forest classification schema. 42
Figure 5 – Example of SVM classification algorithm (MEYER, 2004). 43
Figure 6 – Categorization of multi-label learning evaluation measures (adapted

from Madjarov et al. (2012)). 46
Figure 7 – Examples of hierarchical organization (adapted from Silla Jr & Freitas

(2011)). 50
Figure 8 – Classifiers approaches - circles represent classes and each dashed rectan-

gle encloses the classes predicted the classifier (adapted from Silla Jr &
Freitas (2011)). 53

Figure 9 – The positive/negative policies of the local classifiers per node approach.
Blue nodes represent the positive labels, red the negative and white the
labels that will not be used. 54

Figure 10 – Label combination process of the HMC-LP method (CERRI; CAR-
VALHO, 2010). 56

Figure 11 – Label decomposition process of the HMC-CT method (CERRI; CAR-
VALHO, 2010). 58

Figure 12 – Example of hierarchical precision and recall measure. The real labels
are marked in gray. 63

Figure 13 – Example of hierarchical precision and recall measure. The predicted
labels are marked in pink. 63

Figure 14 – Graphical representation of the H-Loss function (CERRI et al., 2015). . 65
Figure 15 – Different classes distribution in a binary labeled dataset. 72
Figure 16 – Example of the binarization techniques for a 3-class problem (FER-

NÁNDEZ et al., 2013). 73
Figure 17 – Example of Undersampling technique. 74
Figure 18 – Classic Tomek Link Identification. 75
Figure 19 – Tomek Link’s types of use. 76
Figure 20 – Example of NearMiss undersampling technique. 77
Figure 21 – Example of CNEN undersampling technique. 78
Figure 22 – Example of ENN/RENN undersampling techniques. 80
Figure 23 – Example of CC undersampling technique. 81
Figure 24 – Example of NCL undersampling method. 82

Figure 25 – Example of All-KNN undersampling method. 83
Figure 26 – Example of SMOTE interpolation to create the synthetic samples (RA-

MENTOL et al., 2012). 85
Figure 27 – Example of SMOTE oversampling technique. 87
Figure 28 – Example of SMOTE-Borderline oversampling techniques. 88
Figure 29 – Example of Safe-Level SMOTE oversampling technique. 90
Figure 30 – Example of SPIDER oversampling method. 93
Figure 31 – Example of SPIDER-2 oversampling method. 93
Figure 32 – Example of ADASYN technique oversampling. 94
Figure 33 – Example of the SMOTE + ENN hybrid technique. 96
Figure 34 – Example of the SMOTE + Tomek Link hybrid technique. 97
Figure 35 – Ten most frequent and ten least frequent labels in some datasets

(adapted from Herrera et al. (2016)). The frequency scale is individually
adjusted to show better the relevance of labels in each MLD, instead of
being common to all plots. 100

Figure 36 – Concurrence among the labels in Yeast Dataset (CHARTE et al., 2017). 101
Figure 37 – The Multi-Label Tomek Link (in this illustration, each color refers to

one of the labels assigned to the instance). 115
Figure 38 – Graphical Overview of the Multi-Label Tomek Link. 116
Figure 39 – Resampling schema for the application of binary resampling algorithms

in Hierarchical problems with single paths. 127
Figure 40 – Resampling schema for the application of multi-label resampling algo-

rithms in Hierarchical problems with multiple paths. 128
Figure 41 – Example of Label Paths in a Hierarchical Taxonomy. 135
Figure 42 – Schema of the Proposed Resampling Approach. 136
Figure 43 – Example of HMD↔ML Conversion. 137
Figure 44 – Longest Paths Identification. 138
Figure 45 – Results Comparison Graphics. 142
Figure 46 – An example of a hierarchical classification dataset subdivided into train

and test. 149
Figure 47 – The general classification schema for the LCN approach. 150
Figure 48 – Example of resampling schema for hierarchical datasets using LCN with

two different policies. 151
Figure 49 – The general classification schema using the LCPN approach. 152
Figure 50 – Example of resampling schema for hierarchical datasets using LCPN

with the two different policies. 153
Figure 51 – The general classification schema using the LCL approach. 154
Figure 52 – Example of resampling schema for hierarchical datasets using LCL. . . 154

Figure 53 – Mean Imbalance Ratio for Local Classifiers per Node (IRLCN) for each
dataset before (original dataset) and after resampling. 160

Figure 54 – Mean Imbalance Ratio for Local Classifiers per Parent Node (IRLCPN)
for each dataset before and after resampling. 161

Figure 55 – Mean Imbalance Ratio for Local Classifiers per Level (IRLCL) for each
dataset before and after resampling. 162

Figure 56 – Charts with the best F-Score results for all techniques in each dataset. 163
Figure 57 – An example of the main issue when creating samples in leaf nodes. The

numbers on the top left of the nodes symbolize the number of samples
belonging to each node. 173

Figure 58 – An example of application of the HROS-PD in a dataset with 85 in-
stances. The nodes marked with a circled dashed are being processed at
the certain step and the red nodes represent the label paths belonging
to the minority set. 174

Figure 59 – Mean Imbalance Ratios for the Datasets. 177
Figure 60 – An example of the main issue when creating samples in leaf nodes. The

numbers on the top left of the nodes symbolize the number of samples
belonging to each node. 189

Figure 61 – An example of the application of an oversampling method in a dataset
with 85 instances. The nodes marked with a circled dashed are being
processed at the certain step and the red nodes represent the label paths
belonging to the minority set. 190

Figure 62 – The hierarchical class structure of pneumonia caused by micro-organisms.214
Figure 63 – A general classification schema for the COVID-19 identification in CXR

images. While the blue lines represents the early fusion connections, the
pink lines are used for the late fusion and results without fusion. 221

Figure 64 – The baseline resampling schema for the COVID-19 identification in
CXR images. 227

Figure 65 – The resampling schema with local classifiers for the COVID-19 identifi-
cation in CXR images. 228

Figure 66 – The classification schema with global resampling for the COVID-19
identification in CXR images. 229

Figure 67 – RYDLS-20 image samples. 230
Figure 68 – F-scores per label in the best macro-avg scenario using the baseline

approach. 234
Figure 69 – F-scores per label in the best COVID-19 identification scenario using

the baseline approach. 235
Figure 70 – Confusion Matrix in the best macro-avg scenario using the baseline

approach. 235

Figure 71 – Confusion Matrix in the best COVID-19 identification scenario using
the baseline approach. 236

Figure 72 – F-scores per label in the best macro-avg scenario using the local classi-
fiers with Resampling approaches. 237

Figure 73 – F-scores per label in the best COVID-19 identification scenario using
the local classifiers with Resampling approaches. 238

Figure 74 – Confusion Matrix in the best macro-avg scenario using the local classi-
fiers with Resampling approaches. 238

Figure 75 – Confusion Matrix in the best COVID-19 identification scenario using
the local classifiers with Resampling approaches. 239

Figure 76 – F-scores per label in the best macro-avg and COVID-19 identification
scenarios using the global resampling approach. 241

Figure 77 – Confusion Matrix in the best macro-avg and COVID-19 identification
scenarios using the global resampling approach. 242

Figure 78 – Examples of samples with “COVID-19” label that were predicted as
“Normal”. 248

Figure 79 – Different examples of CXR with “normal” lungs. 248

List of Tables

Table 1 – Papers developed during this Doctoral Research. 33
Table 2 – Papers that were collaboratively developed during this Doctoral Research. 34
Table 3 – Novel datasets proposed in this Thesis. 35
Table 4 – Summary of the main media reports concerning our work. 36
Table 5 – Feature vector example. 38
Table 6 – Categorization of multi-label classification methods. 45
Table 7 – Example of differences between labelsets. 112
Table 8 – Hypothetical Dataset D1. 114
Table 9 – Hypothetical Dataset D2. 114
Table 10 – Hypothetical Dataset D3. 115
Table 11 – Characteristics of the datasets used in the experiments. 117
Table 12 – Parameter settings of the classifiers used in this work. 118
Table 13 – MeanIR of the datasets before/after apply the resampling methods. . . 119
Table 14 – Experimental results for the CAL500 dataset. 120
Table 15 – Experimental results for the Emotions dataset. 120
Table 16 – Experimental results for the Enron dataset. 120
Table 17 – Experimental results for the FMA dataset. 121
Table 18 – Experimental results for the Medical dataset. 121
Table 19 – Experimental results for the Scene dataset. 121
Table 20 – Experimental results for the Yeast dataset. 122
Table 21 – Wilcoxon statistical tests for F-score results. 122
Table 22 – Ranking for the classification algorithms using the Friedman test. 123
Table 23 – Time complexity of the multi-label resampling algorithms. 124
Table 24 – Hierarchical Datasets with Single and Multiple Paths. 129
Table 25 – Clus-HMC execution parameters. 130
Table 26 – Results for the hierarchical classification datasets with single paths before

and after applying binary resampling. 130
Table 27 – Results for the hierarchical classification datasets with multiple paths

before and after applying multi-label resampling (Part 1). 131
Table 28 – Results for the hierarchical classification datasets with multiple paths

before and after applying multi-label resampling (Part 2). 131
Table 29 – Wilcoxon test for the hierarchical datasets with single paths. 132
Table 30 – Wilcoxon test for the hierarchical datasets with multiple paths. 133
Table 31 – Clus-HMC execution parameters. 140
Table 32 – Imbalanceness features of FMA before/after resampling. 140
Table 33 – Experimental results for the proposed resampling approach. 141

Table 34 – General review of the datasets used in the experiments. 155
Table 35 – Parameter settings of the Classification algorithms. 158
Table 36 – The imbalance ratios after each step from Figure 6. Numbers in bold are

above the mean imbalance ratio - HMeanIR. 174
Table 37 – Datasets with Full Depth Hierarchical Classification Problems. 177
Table 38 – Datasets with Partial Depth Hierarchical Classification Problems. 177
Table 39 – Clus-HMC execution parameters. 179
Table 40 – Results for the full depth hierarchical datasets with single paths. 179
Table 41 – Results for the full depth hierarchical datasets with multiple paths. . . . 180
Table 42 – Results for the partial depth hierarchical datasets with single paths. . . 180
Table 43 – Results for the partial depth hierarchical datasets with multiple paths

(Part 1). 181
Table 44 – Results for the partial depth hierarchical datasets with multiple paths

(Part 2). 181
Table 45 – P-values of the Wilcoxon signed-rank statistical test for the Full Depth

Random Resampling Algorithms. 182
Table 46 – P-values of the Wilcoxon signed-rank statistical test for the Partial Depth

Random Resampling Algorithms. 182
Table 47 – Example of Label Paths Combinations for a partial depth problem

with single paths considering the minority label path “A/B/C” and five
neighbors. 192

Table 48 – Example of Label Paths Combinations for a FD problem with multiple
paths considering the minority label path “A/B/C” five neighbors. . . . 193

Table 49 – Example of Label Paths Combinations for a PD problem with multiple
paths considering the minority label path “D/F” five neighbors. 194

Table 50 – Hierarchical Classification Datasets with FD Problems. Datasets marked
with (*) were originally proposed as flat datasets and were adapted to a
hierarchical taxonomy. 201

Table 51 – Hierarchical Classification Datasets with PD Problems. Datasets marked
with (*) and (**) were originally proposed as flat datasets and were
adapted to a hierarchical taxonomy. 202

Table 52 – Clus-HMC execution parameters. 203
Table 53 – AUPRC classification results for the datasets with FD and single paths

before and after applying HSMOTE in the training set. 204
Table 54 – AUPRC classification results for the datasets with FD and multiple paths

before and after applying HSMOTE in the training set. 204
Table 55 – AUPRC classification results for the datasets with PD and single paths

before and after applying HSMOTE in the training set. 205

Table 56 – AUPRC classification results for the datasets with PD and multiple
paths before and after applying HSMOTE in the training set. 205

Table 57 – HMeanIR values before and after applying HSMOTE in the training
datasets. 206

Table 58 – P-values of the Wilcoxon signed-rank statistical test for the best results
with HSMOTE. 207

Table 59 – The best classification results before and after applying HSMOTE in
each training set and its variances against the original results. 208

Table 60 – Ranking of the results for the strategies used in the FD with SP datasets.208
Table 61 – Ranking of the results for the strategies used in the FD with MP datasets.209
Table 62 – Ranking of the results for the strategies used in the PD with SP datasets.209
Table 63 – Ranking of the results for the strategies used in the PD with MP datasets.209
Table 64 – Summary of the works described in this section. 220
Table 65 – Features dimensions and main parameters. 225
Table 66 – RYDLS-20 main characteristics. 229
Table 67 – RYDLS-20 samples distribution for the hierarchical scenario. 231
Table 68 – Random Forest parameter settings. 231
Table 69 – Clus-HMC parameter settings. 232
Table 70 – Best macro-avg results for each prediction schema in the Baseline approach.233
Table 71 – Best COVID-19 results for each prediction schema in the Baseline approach.234
Table 72 – IRLP measure results for the baseline experiments. 236
Table 73 – Best macro-avg results for each prediction schema in the local classifiers

with Resampling approaches. 237
Table 74 – Best COVID-19 results for each prediction schema in the local classifiers

with Resampling approaches. 237
Table 75 – IRLCN measure results for the local classifiers per node experiments. . . 239
Table 76 – IRLCPN measure results for the local classifiers per parent node experi-

ments. 240
Table 77 – IRLCL measure results for the local classifiers per parent node experiments.240
Table 78 – Best macro-avg results for each prediction schema in the global hierar-

chical resampling approach. 240
Table 79 – Best COVID-19 identification results for each prediction schema in the

global hierarchical resampling approach. 241
Table 80 – IRLP measure results for the global hierarchical resampling experiments. 242
Table 81 – Ranking of the results per feature set in all classification scenarios. . . . 243
Table 82 – Wilcoxon test results for the baseline approach. 244
Table 83 – Wilcoxon test results for the local classifiers approach. 245

Table 84 – Wilcoxon test results for the global hierarchical resampling approach.
The configuration values for the random algorithms represent the resize
rate in %, while the values for the HSMOTE represent the number of
neighbors used in the sample section stage. 245

Table 85 – Ranking of results per resampling method in the baseline classification
schema. 246

Table 86 – Ranking of results per resampling method in the local classifiers schema. 246
Table 87 – Ranking of results per resampling method in the global resampling schema.246
Table 88 – F-Score results for the proposed approaches in the Cell-cycle dataset. . . 277
Table 89 – F-Score results for the proposed approaches in the Eisen dataset. 278
Table 90 – F-Score results for the proposed approaches in the Exp dataset. 278
Table 91 – F-Score results for the proposed approaches in the FMA MFCC dataset. 279
Table 92 – F-Score results for the proposed approaches in the Gasch-1 dataset. . . . 279
Table 93 – F-Score results for the proposed approaches in the CLEF dataset. 280
Table 94 – F-Score results for the proposed approaches in the DMOZ-2010 dataset. 280
Table 95 – F-Score results for the proposed approaches in the LSHTC-small dataset. 281
Table 96 – F-Score results for the Top-Down (TD) approaches in all datasets. . . . 281
Table 97 – F-Score results for the Flat-ML approach in all datasets. 281
Table 98 – F-Score results for the Flat-MLRS approach with all datasets. 282
Table 99 – F-Score results for the Clus-HMC approach with all datasets. 282
Table 100 –F-Score results for the HierCost approach with all datasets. 282
Table 101 –Wilcoxon statistical tests for F-score results in the Flat Multi-Label

scenarios. 282
Table 102 –Wilcoxon statistical tests for F-score results in the resampling for the

Local Classifiers per Node approach. 283
Table 103 –Wilcoxon statistical tests for F-score results in the resampling for the

Local Classifiers per Parent Node approach. 283
Table 104 –Wilcoxon statistical tests for F-score results in the resampling for the

Local Classifiers per Level approach. 284
Table 105 –Average ranking of the classification results in the resampling for the

Local Classifiers per Node approach. 284
Table 106 –Average ranking of the classification results in the resampling for the

Local Classifiers per Parent Node approach. 284
Table 107 –Average ranking of the classification results in the resampling for the

Local Classifiers per Level approach. 284
Table 108 –Average ranking of the classification results in the resampling for the all

the Local Classifiers approaches. 284
Table 109 –Post-Hoc Mannwhitney Test comparing the flat with the local classifier

approaches. 284

Table 110 –Pearson Correlation Statistical Test for the MeanIRLCN measure and
the classification results. 285

Table 111 –Pearson Correlation Statistical Test for the MeanIRLCPN measure and
the classification results. 285

Table 112 –Pearson Correlation Statistical Test for the MeanIRLCL measure and
the classification results. 285

Table 113 –Wilcoxon statistical tests comparing the best F-score results from the
proposed approaches (LCN) versus the best results for each global
classification approach considering all datasets. 285

Table 114 –Top-10 macro-avg f-score using the baseline approach. 286
Table 115 –Top-10 COVID-19 f-score using the baseline approach. 287
Table 116 –Best macro-avg f-score per feature set using the baseline approach. . . . 287
Table 117 –Best COVID-19 f-score per feature set using the baseline approach. . . . 287
Table 118 –Top-10 macro-avg f-score with the early fusion technique using the

baseline approach. 287
Table 119 –Top-10 COVID-19 f-score with the early fusion technique using the

baseline approach. 288
Table 120 –Top-3 macro-avg f-score with the late fusion technique using the baseline

approach. 288
Table 121 –Top-3 COVID-19 f-score with the late fusion technique using the baseline

approach. 288
Table 122 –Top-10 macro-avg f-score using the local classifiers approaches. 289
Table 123 –Top-10 COVID-19 f-score using the local classifiers approaches. 289
Table 124 –Best macro f-score per feature set using the local classifiers approaches. 289
Table 125 –Best COVID-19 f-score per feature set using the local classifiers approaches.289
Table 126 –Top-10 macro-avg f-score with the early fusion technique using the local

classifiers approaches. 290
Table 127 –Top-10 COVID-19 f-score with the early fusion technique using the local

classifiers approaches. 290
Table 128 –Top-10 macro-avg f-score the global resampling approach. 291
Table 129 –Top-10 Covid-19 f-score using the global resampling approach. 291
Table 130 –Best macro-avg f-score per feature set using the global resampling approach.291
Table 131 –Best COVID-19 f-score per feature set using the global resampling approach.291
Table 132 –Top-10 macro-avg f-score with the early fusion technique using the global

resampling approach. 292
Table 133 –Top-10 COVID-19 f-score with the early fusion technique using the global

resampling approach. 292
Table 134 –Top-3 macro-avg f-score with the late fusion technique using the global

resampling approach. 292

Table 135 –Top-3 Covid-19 f-score with the late fusion technique using the global
resampling approach. 292

List of abbreviations and acronyms

ADASYN Adaptive Synthetic Sampling Approach for Imbalanced Learning

AHD Adjusted Hamming Distance

AI Artificial Intelligence

AUC Area Under Curve

AUPRC Area Under the Precision-Recall Curve

AUROC Area Under the ROC Curve

BR Binary Relevance

BR-kNN Binary Relevance k-Nearest Neighbors

BSIF Binarized Statistical Image Features

CART Classification and Regression Tree

CBR Case-Based Reasoning

CCH Classifier Chain

CC Cluster Centroids

CLR Calibrated Label Ranking

CNEN Condensed Nearest Neighbors

CNN Convolutional Neural Networks

COVID-19 Coronavirus Disease 2019

CT Computed Tomography

CVIR Coefficient of Variation of IRLbl

CXR Chest X-Ray

DAG Directed Acyclic Graph

DT Decision Trees

DWT Discrete Wavelet Transform

EBP Eliptical Binary Pattern

EF Early Fusion

ENN Edited Nearest Neighbor

EQP Elongated Quinary Pattern

FD Full Depth labeling

Flat-MLRS Flat Classification with Multi-Label Resampling

FMA Free Music Archive

FPR False Positive Rate

GC Global Classifier

HC Hierarchical Classification

HD Hamming Distance

HierCost Hierarchical Cost Sensitive Classification

H-Loss Hierarchical Loss Function

HMC Hierarchical Multi-Label Classification

HMC-BR Hierarchical Multi-Label Binary Relevance

HMC-CT Hierarchical Multi-Label Cross-Training

HMC-LP Hierarchical Multi-Label Label-Powerset

HMD Hierarchical Multi-Label Dataset

HMeanIR Hierarchical Mean Imbalance Ratio

HOMER Hierarchy of Multi-label Classifiers

HROS Hierarchical Random Oversampling

HROS-FD Random Oversampling for Full Depth Hierarchical Classification Prob-
lems

HROS-PD Random Oversampling for Partial Depth Hierarchical Classification
Problems

HRUS Hierarchical Random Undersampling

HRUS-FD Random Undersampling for Full Depth Hierarchical Classification Prob-
lems

HRUS-PD Random Undersampling for Partial Depth Hierarchical Classification
Problems

HSMOTE Hierarchical Synthetic Oversampling Technique

HVDM Heterogeneous Value Distance Metric

ICD-10 International Statistical Classification of Diseases and Related Health
Problems

ICU Intensive Care Unit

IR Imbalance Ratio

IRLCL Imbalance Ratio for Local Classifiers per Level

IRLCN Imbalance Ratio for Local Classifiers per Node

IRLCPN Imbalance Ratio for Local Classifiers per Parent Node

IRLbl Imbalance Ratio per Label

IRLP Imbalance Ratio per Label Path

kNN k-Nearest Neighbours

LBP Local Binary Pattern

LC Local Classifiers

LCard Label Cardinality

LCL Local Classifiers per Level

LCN Local Classifiers per Node

LCPN Local Classifiers per Parent Node

LDen Label Density

LDiv Label Diversity

LDN Local Directional Number

LETRIST Locally Encoded Transform Feature Histogram

LF Late Fusion

LP Label Path

LPS Label Powerset

LPQ Local Phase Quantization

LPROS Label Powerset Random Oversampling

LPRUS Label Powerset Random Undersampling

LTP Local Ternary Pattern

MeanIR Mean Imbalance Ratio

MERS Middle East Respiratory Syndrome

ML Machine Learning

MLC Multi-Label Classification

MLD Multi-Label Dataset

MLeNN Multi-Label edited Nearest Neighbor

MLkNN Multi-Label k-Nearest Neighbors

MLNP Mandatory Leaf-Node Prediction

MLROS Multi-Label Random Oversampling

MLRUS Multi-Label Random Undersampling

MLSMOTE Multi-Label Synthetic Minority Oversampling Technique

MLTL Multi-Label Tomek Link

MPL Multiple Path of Labels

MPP Multiple Path Prediction

NCL Neighbourhood Cleaning Rule

NCP Novel Coronavirus Pneumonia

NM NearMiss

NMLNP Non-Mandatory Leaf-Node Prediction

NNR Nearest Neighbor Rule

O-A-A One-Against-All

O-A-O One-Against-One

OBIF Oriented Basic Image Features

PCT Predictive Cluster Tree

PD Partial Depth labeling

PLDen Proportion of Label Diversity

PROD Product Rule

RAkEL Random k-LabelSets

REMEDIAL Resampling by decoupling highly imbalanced labels

REMEDIAL-HwR REMEDIAL Hybridization with Resampling

RENN Repeated Edited Nearest Neighbor

RF Random Forest

ROC Receiver Operating Characteristics

ROS Random Oversampling

RUS Random Undersampling

SARS Severe acute respiratory syndrome

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2

SCUMBLE Score of ConcUrrence among iMBalanced LabEls

SMOTE Synthetic Minority Oversampling Technique

SPIDER Selective Preprocessing of Imbalanced Data

SPL Single Path of Labels

SPP Single Path Prediction

SUM Sum Rule

SVM Support Vector Machines

TD Top-Down

TH Threshold

TL Tomek Links

TPR True Positive Rate

VDM Value Difference Metric

VOTE Voting Rule

WFT Wavelet Frame Transform

WPT Wavelet Packet Transform

Contents

1 INTRODUCTION . 28
1.1 Problem . 29
1.2 Objectives . 30
1.3 Hypothesis Statements . 31
1.4 Outcomes, Contributions and Repercussions 32
1.4.1 Scientific Contributions . 32
1.4.2 Technical Contributions . 34
1.4.3 Social and Media Impact . 35
1.5 Text Organization . 35

2 MACHINE LEARNING . 37
2.1 Single-Label Classification . 39
2.1.1 Bayesian Classifiers . 40
2.1.2 K-Nearest Neighbors . 40
2.1.3 Decision Trees . 41
2.1.4 Support Vector Machines . 42
2.2 Multi-Label Classification . 43
2.2.1 Database Indicators . 43
2.2.2 Classification Algorithms . 44
2.2.3 Evaluation Measures . 46
2.2.3.1 Example-Based Metrics . 47
2.2.3.2 Ranking-Based Metrics . 47
2.2.3.3 Label-Based Metrics . 48
2.3 Hierarchical Classification . 49
2.3.1 Definitions . 50
2.3.2 Classification Algorithms . 52
2.3.3 Evaluation Metrics . 62
2.3.3.1 Hierarchy-Based Evaluation Metrics . 63
2.3.3.2 Distance-Based Evaluation Metrics . 66
2.4 Final Considerations . 68

3 THE IMBALANCENESS FACTOR 70
3.1 Evaluating the Classification Results in Imbalanced Scenarios 70
3.2 Dealing with Imbalanceness . 71
3.3 Classic Resampling Techniques . 73
3.3.1 Undersampling Algorithms . 74

3.3.2 Oversampling Algorithms . 84
3.3.3 Hybrid Resampling Techniques . 94
3.4 Measuring Imbalanceness in Multi-label Datasets 97
3.4.1 Imbalance Ratio per Label . 98
3.4.2 Mean Imbalance Ratio . 98
3.4.3 Coefficient of Variation of IRLbl . 98
3.4.4 Score of Concurrence among Imbalanced Labels 99
3.4.5 Visually Exploration of the Imbalanceness 99
3.5 Facing Imbalanced Multi-Label Scenarios 100
3.6 Multi-Label Resampling Techniques 101
3.6.1 Random Algorithms . 102
3.6.2 MLeNN . 103
3.6.3 MLSMOTE . 104
3.6.4 REMEDIAL . 107
3.6.5 REMEDIAL-HwR . 109
3.7 Final Considerations . 109

4 THE MULTI-LABEL TOMEK LINK 110
4.1 The Proposed Method . 110
4.2 Experimental Analysis . 116
4.2.1 The Datasets . 116
4.2.2 Algorithms and Parameters . 117
4.2.3 Results and Discussion . 118
4.3 The Imb-Mulan Framework . 124
4.4 Final Considerations . 125

5 USING FLAT RESAMPLING TECHNIQUES IN IMBALANCED HI-
ERARCHICAL DATASETS . 126

5.1 Binary Resampling in Hierarchical Datasets with Single Paths 126
5.2 Multi-Label Resampling in Hierarchical Datasets with Multiple Paths127
5.3 Experimental Setup . 128
5.3.1 The Datasets . 128
5.3.2 Algorithm and Parameters . 129
5.4 Results . 130
5.5 Discussion . 131
5.6 Final Considerations . 133

6 A LABEL PATH CONVERSION STRATEGY FOR IMBALANCED
HIERARCHICAL DATASETS . 134

6.1 Measuring Imbalanceness in HMDs 134

6.2 Using Multi-Label Techniques to Deal with Imbalanceness 135
6.2.1 Hierarchical to Multi-Label Conversion . 137
6.2.2 Multi-Label to Hierarchical Conversion . 137
6.2.3 Approach Limitations . 138
6.3 Experimental Evaluation and Discussions 139
6.3.1 Results . 139
6.3.2 Analysis and Discussion . 140
6.4 Final Considerations . 143

7 DEALINGWITH IMBALANCED HIERARCHICAL DATASETS ON
LOCAL CLASSIFICATION APPROACHES 144

7.1 Measuring the Imbalanceness with Local Perspectives 144
7.1.1 Imbalance Metrics for the LCN Approach 146
7.1.2 Imbalance Metrics for the LCPN Ppproach 147
7.1.3 Imbalance Metrics for the LCL Approach 147
7.2 Proposed Approaches . 148
7.2.1 Resampling Using the LCN Approach . 149
7.2.2 Resampling Using the LCPN Approach . 150
7.2.3 Resampling Using the LCL Approach . 152
7.3 Experimental Protocol and Results 155
7.3.1 The Datasets . 155
7.3.2 Proposed Approaches . 156
7.3.3 Baseline Approaches . 156
7.3.4 State-of-the-art Approaches . 157
7.3.5 Parameters and Configurations . 157
7.3.6 Hierarchical Local Imbalanceness Metrics Results 158
7.3.7 Classification Results . 159
7.4 Analysis and Discussion . 162
7.5 Final Considerations . 167

8 GLOBAL APPROACHES: THE HIERARCHICAL RANDOM RE-
SAMPLING ALGORITHMS . 169

8.1 The Proposed Random Resampling Algorithms 169
8.1.1 Finding the Majority and Minority Classes 170
8.1.2 Resampling Full Depth Hierarchical Classification Problems 172
8.1.3 Resampling Partial Depth Hierarchical Classification Problems 173
8.2 Experimental Protocol and Results 176
8.2.1 The Datasets . 176
8.2.2 Classification Algorithm and Parameters 178
8.2.3 Experimental Setup . 178

8.2.4 Results . 179
8.3 Analysis and Discussion . 181
8.4 Final Considerations . 183

9 GLOBAL APPROACHES: THE HIERARCHICAL SYNTHETIC OVER-
SAMPLING ALGORITHM . 185

9.1 The Synthetic Oversampling Techniques 185
9.2 The Proposed HSMOTE Technique 186
9.2.1 Minority Instances Selection . 187
9.2.2 Dealing with different kinds of hierarchical classification problems 188
9.2.3 Nearest neighbor search . 190
9.2.4 Feature set generation . 190
9.2.5 Synthetic labelset production . 190
9.2.6 HSMOTE Pseudocode . 193
9.2.6.1 How HSMOTE deals with Full Depth problems with Single Paths 196
9.2.6.2 How HSMOTE deals with Full Depth problems with Multiple Paths 199
9.2.6.3 How HSMOTE deals with Partial Depth problems with Single Paths 199
9.2.6.4 How HSMOTE deals with Partial Depth problems with Multiple Paths 200
9.3 Experimental Protocol and Results 201
9.3.1 The Datasets . 201
9.3.2 Classification Algorithm and Parameters 202
9.3.3 Results . 203
9.4 Analysis and Discussion . 205
9.5 Final Considerations . 210

10 A CASE STUDY OF IMBALANCENESS IN COVID-19 IDENTIFI-
CATION IN CHEST X-RAY IMAGES 211

10.1 COVID-19 Pandemic and the Pneumonia Disease 213
10.2 Hierarchical Structure of the Problem 214
10.3 Related Works . 215
10.4 General Classification Schema . 219
10.4.1 Feature Extraction (Phase 1) . 221
10.4.2 Early Fusion (Phase 2) . 225
10.4.3 Late Fusion (Phase 5) . 225
10.5 Hierarchical Classification with Flat Resampling 226
10.6 Local Classifiers with Resampling . 226
10.7 Resampling with Global Algorithms 227
10.8 Experimental Setup . 227
10.8.1 The Database . 228
10.8.2 Algorithms, Parameters and Metrics . 231

10.8.3 Evaluation Metric . 232
10.9 Experimental Results . 233
10.9.1 Baseline Results . 233
10.9.2 Local Classifiers with Resampling . 236
10.9.3 Global Hierarchical Resampling . 240
10.10 Discussions . 242
10.11 Final Considerations . 249

11 CONCLUSIONS . 251
11.1 Concluding Remarks . 251
11.2 Research Gaps and Future Work Directions 254

BIBLIOGRAPHY . 256

APPENDIX 276

APPENDIX A – EXPERIMENTAL RESULTS OF LOCAL CLAS-
SIFIERS WITH RESAMPLING 277

A.1 Classification Results . 277
A.2 Statistical Tests . 282

APPENDIX B – EXPERIMENTAL RESULTS OF THE COVID-19
IDENTIFICATION STUDY CASE 286

B.1 Baseline Results . 286
B.1.1 No Fusion . 286
B.1.2 Early Fusion . 287
B.1.3 Late Fusion . 288
B.2 Local Classifiers with Resampling . 288
B.2.1 No Fusion . 289
B.2.2 Early Fusion . 290
B.3 Global Hierarchical Resampling . 290
B.3.1 No Fusion . 291
B.3.2 Early Fusion . 292
B.3.3 Late Fusion . 292

28

C
ha

pt
er

1 Introduction

Machine Learning is an area of Computer Science that has evolved from the study
of Pattern Recognition and the theory of Computational Learning in Artificial Intelligence.
The term “Machine Learning” was created by Arthur L. Samuel in 1959 and defined
as “the field of study that gives computers the ability to learn without being explicitly
programmed” (SAMUEL, 1988). The Machine Learning tasks are typically classified into
three categories, depending on whether or not there is a “learning signal” available to
the learning system: a) Supervised learning, when the learning algorithms are presented
with samples and their outputs; b) Unsupervised learning, in which samples without their
outputs are given to the learning algorithms; c) Semi-supervised learning, which combines
a small amount of labeled data with a large amount of unlabeled data in the learning
algorithms.

One of the most important tasks in Machine Learning is the supervised learning
classification. This subarea explores the study and construction of algorithms that can learn
from labeled input data and make predictions. Such algorithms operate by constructing a
model from these sample inputs to make predictions or decisions guided by data rather
than simply following inflexible and static programmed instructions. In other words, the
goal is to train a computational model using a set of labeled data, obtaining a classifier
able to label new, never seen before, unlabeled samples.

A large amount of research in the Machine Learning community has focused on
flat classification problems. By flat we are referring to binary, multi-class or multi-label
classification problems in which there are no relationships between the classes. First, the
difference between a binary and multi-class is that in binary problems a sample can only
have two possible classes, whilst in a multi-class classification problem an instance can
have in principle any number of classes. Second, in binary and multi-class problems a
sample is associated with only one label, whereas in multi-label classification problems
each of the instances can be associated to more than one class (TSOUMAKAS; KATAKIS,
2006).

Nevertheless, according to Silla Jr & Freitas (2011), many important real-world
classification problems are naturally cast as hierarchical, in which the predicted classes are
organized into a class hierarchy, such as Text Categorization (KOLLER; SAHAMI, 1997;
CHAKRABARTI et al., 1998; LI; KUANG; LING, 2012), Protein Function Prediction

Chapter 1. Introduction 29

(TIPTON, 1994; COSTA et al., 2008; OTERO; FREITAS; JOHNSON, 2009; LIN et al.,
2013), Music Genre Classification (BURRED; LERCH, 2003; DECORO; BARUTCUOGLU;
FIEBRINK, 2007; SILLA JR; FREITAS, 2009b; ARIYARATNE; ZHANG, 2012), Biological
Sequence Classification (SZALKAI; GROLMUSZ; HANCOCK, 2018), Image classification
(BINDER; KAWANABE; BREFELD, 2009; DIMITROVSKI et al., 2011a), Credit Card
Fraud detection (CHAN; STOLFO, 1998) Pneumonia identification (PEREIRA et al.,
2020) and so on.

Hierarchical Classification (HC) is as a type of classification problem where the
output of the learning algorithm is defined over a particular class taxonomy. While the
authors Wu, Zhang & Honavar (2005) consider the taxonomy as a structured concept tree
hierarchy, Silla Jr & Freitas (2011) describe that the label taxonomy in a HC problem can
also be structured as a Directed Acyclic Graph (DAG), which means that a certain label
node have more than one parent node in the label path. Furthermore, a Hierarchical Multi-
Label Classification (HMC) problem is a variant where the instances may be associated
with multiple label paths at the same time. There are different types of hierarchical
classification problems, mainly regarding the number of label paths per samples and the
depth of the prediction in the label hierarchy. This variety of types of problems makes the
hierarchical classification a challenging research area.

In the last years, in the hierarchical classification research area, a lot of studies and
effort have been made in proposing new and different methods for classification such as in
(FAGNI; SEBASTIANI, 2007; PUNERA; GHOSH, 2008; SILLA JR; FREITAS, 2009b;
DIMITROVSKI et al., 2012; LIN et al., 2013; ROY et al., 2015; MCNAMARA et al.,
2015; KHOWAJA; YAHYA; LEE, 2017; BONIFAZI; CAPOBIANCO; SERRANTI, 2018).
However, there are other well-known issues in flat classification problems, such as class
imbalanceness, that has not been addressed and studied for hierarchical problems so far.

1.1 Problem

Class imbalanceness is a problem where the total number of samples from some
classes is far less than the total number of instances from other classes. Usually the
classifiers are focused in the minimization of the global error rate and thus, when dealing
with imbalance data, the algorithms tend to benefit the most frequent classes, also known
as the Majority Classes. Most evaluation metrics are not appropriately affected by the
incorrect classification of classes with few samples. However, depending on the problem, the
main interest of the task could be on properly labeling these rare patterns. It is important
no observe that the problem is not necessarily the imbalanceness, but the impact that the
imbalanceness can cause in the learning phases of the classification algorithms.

Chapter 1. Introduction 30

A lot of researchers face these imbalanced class distribution issues, mostly when
working with real world datasets such as medical image classification (PEREIRA et al.,
2020), detection and classification of acoustic scenes and events (MESAROS et al., 2018),
credit card fraud detection (KUMAR et al., 2015) and so on.

In order to deal with the imbalanceness problem in the flat classification context,
i.e., in binary, multi-class and multi-label problems, several methods have been proposed
in the literature such as cost-sensitive solutions, data resampling and hybrid techniques.
According to Haixiang et al. (2017) the resampling techniques, which can be further sub-
categorized into oversampling and undersampling, are the most common and widely used
solutions, since they present, in general, the most promising results. While oversampling
balances the dataset by creating new instances for the minority classes, undersampling is
aimed at the removal of existent samples from the majority classes.

Although dataset imbalanceness is a well-known problem in the machine learning
community, as shown in Branco, Torgo & Ribeiro (2016), there are few works in the litera-
ture studying this issue in the context of hierarchical classification (CESA-BIANCHI; RE;
VALENTINI, 2012; CHEN; DUAN; HU, 2012; LI; JU; ZOU, 2016; NAIK; RANGWALA,
2016; XU; GENG, 2019). Even though, these studies do not directly address the imbalance
problem with resampling methods.

1.2 Objectives

In this work, the overall objective is to analyze and propose methods to deal with
imbalanceness in the hierarchical classification scenarios. We are concerned in how the
imbalanceness in a dataset can affect the classification results and, in addition, how to
pre-process the dataset by using resampling techniques in order to minimize the imbalance
issues. In order to meet the general objective of this work, we outline the following specific
objectives:

1. Propose novel resampling methods to deal with imbalanced datasets in the flat
classification scenario.

2. Investigate the impacts of binary/multi-class and multi-label resampling methods
on hierarchical datasets.

3. Propose metrics to measure the imbalanceness issues in the different types of hierar-
chical classification problems.

4. Propose techniques to deal with imbalanceness in hierarchical classification problems
considering the different classification approaches.

Chapter 1. Introduction 31

5. Propose and investigate the use of the novel resampling measures and approaches in
a real world hierarchical classification case study.

Objective 1 allows us to deeply investigate and understand the basics machine
learning and the existing resampling methods used in flat classification scenarios. Objective
2 gives experimental baselines for further comparison with the novel hierarchical methods.
Objective 3 concerns the formalization of the imbalanceness problem in the different types
of hierarchical datasets, as well as formulas to assist the identification of this issue in this
type of dataset. Objective 4 allows the most important contributions of this work, i.e., the
proposal of different techniques to deal with the imbalanceness in the different hierarchical
classification problems. Finally, Objective 5 allows us to investigate the impact of the
contributions from this Thesis in a real world hierarchical classification problem.

1.3 Hypothesis Statements

Hypothesis 1. The imbalanceness of a hierarchical dataset can be measure by
using metrics that consider different local and global perspectives, i.e., perspectives that
compute the number of samples per node, per parent node, per level and considering the
hierarchy as a whole.

Hypothesis 2. The classification results for a hierarchical dataset may be im-
proved by reducing its imbalanceness using the existing binary, multi-class and multi-label
resampling approaches with global classification approaches.

Hypothesis 3. The classification results for a hierarchical dataset may be improved
by using existing binary and multi-class resampling techniques to reduce its imbalanceness
in local perspectives with local flat classification approaches.

Hypothesis 4. The classification results for a hierarchical dataset may be improved
by reducing its imbalanceness using novel global resampling techniques developed to consider
the labels relationships in the hierarchy.

All Hypothesis are somehow related. In order to verify Hypothesis 2, 3, and 4 it is
necessary to have specific metrics that measure the degree of imbalanceness in hierarchical
classification problems, which is analyzed in Hypothesis 1. Hence, we hypothesize that it
is possible to use techniques to pre-process the hierarchical classification dataset in order
to reduce its imbalanceness, and this reduction will improve the hierarchical classification
overall result.

A fundamental aspect of all the hypothesis is that we have to test the proposed
techniques in different hierarchical classification datasets, evaluating their effectiveness
across different application domains.

Chapter 1. Introduction 32

1.4 Outcomes, Contributions and Repercussions

The development of this Thesis lead to outcomes for the research community and the
society. In addition to the expected scientific contributions, which were already published or
are currently under evaluation in peer-reviewed venues, some technical contributions were
also made freely available to the research community. Furthermore, one of the scientific
contributions of this Thesis attracted the attention of the local, national and international
media, given its potential social impact. In order to describe these outcomes in more detail,
this section is subdivided into three subsections: (i) Scientific Contributions; (ii) Technical
Contributions; and (iii) Social Impact and Media Recognition.

1.4.1 Scientific Contributions

Through this work we have contributed to the current understanding of dataset
imbalanceness for hierarchical classification problems. We developed novel metrics and
methods to tackle the imbalanceness issue in both flat and mainly in hierarchical clas-
sification contexts. Concretely, we also provided new datasets and empirical evidences
of the advantages of using the proposed techniques to handle the class imbalanceness.
These empirical evidences include statistical tests comparing state-of-the-art baselines
to the methods presented in this work, which are experiments developed to validate the
contributions of all the proposed metrics and techniques.

As almost all Chapters of this thesis generated research papers, they were published
or submitted to peer-reviewed venues. In Table 1 we present the journal and conference
papers that were directly developed during this Doctoral Research, while in Table 2 shows
the journal and conference papers that were collaboratively developed. In this context, we
make explicit what were the learning step and contribution of the paper to the project and
the research community. The tables have information about the venue in which the paper
was published (or currently under revision), the venue (conference or journal name), year
of publication or submission and the impact factor (in case of journal) or h5-index (in case
of conference) of the venue. It is important to mention that, even thought some papers
from the tables are not described in the Chapters of this Thesis, they were important
steps towards the construction of the knowledge path necessary for the execution of this
Doctoral Research.

Chapter 1. Introduction 33

Table 1 – Papers developed during this Doctoral Research.

Paper
Learning
Step and

Contribution
Venue Impact Reference

A multi-label
approach
for the

Tomek Link
undersampling

algorithm

A Novel
Multi-Label
Resampling

Neurocomputing IF:
4.44 (PEREIRA; COSTA; SILLA JR, 2020)

Handling
imbalanceness
in hierarchical
classification

problems using
local classifiers
approaches

Second
proposal
towards

Hierarchical
Classification
of Imbalanced

Data

Data Mining
and

Knowledge
Discovery

IF:
2.63

Currently Under
the Third Round

of Reviews

Towards
Hierarchical
Classification
of Imbalance

Data

Third
proposal
towards

Hierarchical
Classification
of Imbalanced

Data
(Random

Resampling
Methods)

Information
Sciences

IF:
5.91

Currently Under
the First Round

of Reviews

HSMOTE: Dealing
with imbalanceness

in hierarchical
classification

problems using
synthetic samples

Fourth
proposal
towards

Hierarchical
Classification
of Imbalanced

Data

Knowledge
Based
Systems

IF:
5.92

Currently Under
the Second Round

of Reviews

COVID-19
identification
in chest X-ray

images
on flat and
hierarchical
classification
scenarios

Case Study
Analysis of

Thesis
Application

Computer
Methods and
Programs in
Biomedicine

IF:
3.63 (PEREIRA et al., 2020)

Using simplified chords
sequences to classify

songs genres

Basics of
Machine
Learning

Application

IEEE
International
Conference on
Multimedia
and Expo

H5i:
30 (PEREIRA; SILLA JR, 2017)

Representation Learning
vs. Handcrafted

Features for Music
Genre Classification

Advanced
Machine
Learning

Application

International
Joint

Conference
on Neural
Networks

H5i:
46 (PEREIRA et al., 2019)

Dealing with
Imbalanceness
in Hierarchical

Multi-Label Datasets
Using Multi-Label

Resampling Techniques

First proposal
towards

Hierarchical
Classification
of Imbalanced

Data

IEEE
International
Conference

on Tools with
Artificial

Intelligence

H5i:
19 (PEREIRA; COSTA; SILLA JR, 2018)

Chapter 1. Introduction 34

Table 2 – Papers that were collaboratively developed during this Doctoral Research.

Paper
Learning
Step and

Contribution
Venue Impact Reference

A multimodal approach
for multi-label
movie genre
classification

Basics of
Multi-Label
Resampling

Multimedia
Tools
and

Application

IF:
2.31 (MANGOLIN et al., 2020)

A Resampling Approach
for Imbalanceness
on Music Genre
Classification

using Spectrograms

Binary and
Multi-Class
Resampling

The Florida
Artificial

Intelligence
Research
Society

Conference

H5i:
16 (VALERIO et al., 2018)

1.4.2 Technical Contributions

Most of the codes and scripts used in the experiments performed in this Thesis are
freely available for download. Considering that there are few freely available implementa-
tions to deal with resampling or hierarchical classification in the literature, this can be
considered an important technical contribution of this work.

In order to understand the technicality of the state-of-the-art resampling approaches,
during the preliminary studies of this Thesis, a multi-label imbalance learning framework,
named Imb-Mulan1, was developed. This framework is an extension to the well-known
Mulan framework (TSOUMAKAS et al., 2011) and contains the state-of-the-art multi-label
resampling approaches, including the one proposed in this Thesis.

As three novel hierarchical resampling algorithms were proposed in this Thesis, in
order to provide machine learning researchers with implementations of these techniques,
we proposed the hierarchical-imblearn2, an Open-source Hierarchical Imbalanced Learning
Framework.

Beyond the frameworks, we proposed many novel datasets in order to investigate
the effects of the proposed classification and resampling approaches. Since the search
for datasets is always a challenging task for researchers, specially when dealing with
hierarchically organized data, these datasets can also be considered an important technical
contribution of this thesis. In Table 3 we present a brief summary of the datasets proposed
in this work and where to find them.

1 https://github.com/rodolfomp123/imb-mulan
2 https://github.com/rodolfomp123/hierarchical-imblearn

Chapter 1. Introduction 35

Table 3 – Novel datasets proposed in this Thesis.

Dataset Type of
Classification Domain Link for

Download

RYDLS-20
Single-Label

and
Hierarchical

Medical https://bit.ly/rydls-20

P-TMDB Multi-Label Movie https://bit.ly/p-tmdb
FMA90k

Music

https://bit.ly/fma-90k
FMA-SL Single-Label https://bit.ly/fma-sl
BRMD https://bit.ly/brmdb
Hier-CAL500

Hierarchical https://bit.ly/h-imb-db

Hier-Emotions
Hier-FMA-MFCC
Hier-FMA-SL-LBP
Hier-FMA-SL-SSD
Hier-Enron Text
Hier-Birds Animal

1.4.3 Social and Media Impact

This Doctoral Research was partially developed during the breakthrough of the
COVID-19 and its pandemic. Considering this context, in order to give a case study of
the methods proposed in this work in a real world scenario, we developed a method to
identify COVID-19 and other pneumonia pathogens in Chest X-Ray (CXR) images. Our
work was one of the first studies published in the literature (PEREIRA et al., 2020) that
proposed a method to deal with the COVID-19 identification task considering factors such
as data imbalance and the hierarchical relationship between the pneumonia pathogens.
Given the importance of the topic and the timely publication of this contribution, it has
attracted the attention of researchers, society, and media vehicles.

In order to give an overview of the repercussions, in Table 4 we present a summary
of the main reports concerning our work in the TV, Radio and Magazines. It is worth
mentioning that the report from the Agencia Brasil was republished by over a 100 online
news agency websites, including Valor Econômico, Época and Istoé.

1.5 Text Organization

The remaining of this work is organized as follows: Chapter 2 presents a litera-
ture review concerning machine learning, being subdivided into Single, Multi-Label and
Hierarchical Classification, while Chapter 3 describes the imbalanceness issue as well as
related work. Chapter 4 shows the Multi-Label Tomek Link, the first contribution of this

https://bit.ly/rydls-20
https://bit.ly/p-tmdb
https://bit.ly/fma-90k
https://bit.ly/fma-sl
https://bit.ly/brmdb
https://bit.ly/h-imb-db

Chapter 1. Introduction 36

Table 4 – Summary of the main media reports concerning our work.

Report Name Repercussion
Level Venue Media

Type Reference

AI Assist for Spotting COVID-19
in X-Rays International Physics Magazine (WRIGHT, 2020)

Coronavírus: Pesquisadores do Paraná
criam método para diagnóstico com raio-x National Gazeta do Povo Magazine (FELIX, 2020)

Estudo possibilita diagnóstico da
COVID-19 via Raio-X National CAPES Youtube

Channel (JELLER, 2020)

Estudo brasileiro identifica COVID-19
por Raio-X com 90% de eficácia National CNN Brasil TV (BRONZE, 2020)

Novo Sistema de Diagnóstico por Raio-X National JovemPan News Radio (PEREIRA, 2020)

Radiografia Inteligente National SuperAcesso Magazine (SILLA JR, 2020d)

Universidades desenvolvem apoio a
diagnóstico de covid-19 com raio-x National Agencia Brasil* Magazine (VALENTE, 2020)

COVID-19: estudo desenvolve
diagnóstico por Raio-X State CBN Curitiba Radio (SILLA JR, 2020a)

Estudo com Inteligência Artificial para
diagnóstico da COVID-19 em Raio-X State Transamérica Radio (SILLA JR, 2020b)

Imagens de Raio-X no diagnóstico
da COVID-19 State RPC Parana TV (SILLA JR, 2020c)

Pesquisadores do Paraná estudam método
para diagnosticar COVID-19 com Raio-X Local CBN Maringá Radio (COSTA, 2020)

Pesquisadores maringaenses fazem estudo
que pode ajudar a identificar o COVID-19 Local RIC Maringá TV (GERHARD, 2020)

Pesquisadores se unem para agilizar
diagnóstico da COVID-19 Local RPC Maringá TV (GUZZONI, 2020)

* This report was republished by over a 100 online news agency websites.

work in terms of resampling methods. Chapter 5 presents the main baseline approach for
this work, which is grounded in the use of binary/multi-class and multi-label resampling
algorithms in the different hierarchical classification problems. Chapter 6 presents the
proposal of two novel metrics to measure the imbalanceness in hierarchical datasets and a
label path conversion method in order to deal with this imbalanceness by using multi-label
resampling techniques. In Chapter 7 we present an approach to deal with imbalanceness in
hierarchical datasets on local classifiers perspectives, using the binary/multi-class resam-
pling algorithms, as well as imbalanceness measures for each one of these local perspectives.
Chapter 8 shows the first hierarchical resampling solutions able to handle the data as
whole, the Hierarchical Random Overesampling (HROS) and Undersampling (HRUS)
algorithms. In Chapter 9 we present the Hierarchical Synthetic Oversampling Technique
(HSMOTE). Chapter 10 shows a case study of imbalanceness in a real world problem,
which is the COVID-19 identification in chest x-ray images. Finally, in Chapter 11, we
describe the concluding remarks and future works of this Doctoral Research.

https://bit.ly/physics-covid19
https://bit.ly/physics-covid19
https://bit.ly/gazeta-covid19
https://bit.ly/gazeta-covid19
https://bit.ly/capes-covid19
https://bit.ly/capes-covid19
https://bit.ly/cnnbrasil-covid19
https://bit.ly/cnnbrasil-covid19
https://bit.ly/jovempan-covid19
https://bit.ly/3r12JLq
https://bit.ly/agenciabrasil-covid19
https://bit.ly/agenciabrasil-covid19
https://bit.ly/cbn-covid19
https://bit.ly/cbn-covid19
https://bit.ly/lightnews-covid19
https://bit.ly/lightnews-covid19
https://bit.ly/rpc-covid19
https://bit.ly/rpc-covid19
https://bit.ly/cbn-mga-covid19
https://bit.ly/cbn-mga-covid19
https://bit.ly/ric-covid19
https://bit.ly/ric-covid19
https://bit.ly/rpc-mga-covid19
https://bit.ly/rpc-mga-covid19

37

C
ha

pt
er

2 Machine Learning

The development of machines able to learn by experience has been, for a long time,
objective of technical and philosophical discussion. The technical aspect of the discussion,
in specific, has receive a lot of attention since the beginning of the electronic computers
era.

Given that there are problems that cannot be resolved by classic programming
methods, because it is not possible to algorithmically model these problems, reliable ma-
chine learning systems becomes an important topic. An example of this is the classification
of musical genres, in which given a series of previous identified songs’ patterns, a learning
system is able to recognize unseen songs based on its patterns. The solution of this kind
of task is to build a system able to learn from previous experiences.

According to Mitchell (1997), a computer program is said learning from a experience
E with respect of a task class T and performance measure P, if its performance in the
tasks in T, according to the measure P, improves with the experience E.

There is an overlap in the literature concerning the terms “Machine Learning”,
“Pattern Recognition” and “Data Mining”. These terms are often used to refer to a same
Artificial Intelligence (AI) subarea. However, there are some differences between these
areas. While the term Pattern Recognition is related to statistical analysis of data patterns
(FUKUNAGA, 2013), Data Mining is more related to the data preparation and the kinds
of knowledge discovery processes (ZHANG; ZHANG; YANG, 2003). Moreover, according
to Monard & Baranauskas (2003), the Machine Learning is a subarea of AI which its main
objective is to develop computational techniques over learning and designing intelligent
systems capable to obtain knowledge in an automatic way. Within the Machine Learning
there is a variety of learning paradigms. According to Monard & Baranauskas (2003), most
of the existing approaches can be fitted in one of these paradigms:

• Symbolic: The learning system attempt to build symbolic representations of a concept
by analysing existing examples. In general, the symbolic representations are expressed
as logical expression, rules, decision trees or web semantic.

• Statistic: The learning system uses statistical models to find a good approximation
of the induced concept. One of the most well-known statistical methods is the

Chapter 2. Machine Learning 38

Bayesian learning, which uses a probabilistic model based on previous knowledge of
the problem.

• Example-based: This type of system uses previous examples of well-known classes to
classify a new example based on their similarity. The most common algorithms in
this paradigm are the Case-Based Reasoning (CBR) and the k-Nearest Neighbours
(kNN).

• Connectionist: This kind of learning system is based on highly interconnected units,
such as Neural Networks.

• Genetic: The learning system consists of a population of classification elements
competing to make the prediction. The elements that present better performances
are maintained and the weak ones are discarded. The main idea is that the “strong”
elements are maintained and may proliferate, producing promising variations of
itselves.

There are a lot of machine learning algorithms and each one can perform differently
depending on the problem. Thus, there is no single algorithm capable of obtaining the
best result in all situations, and it is important to understand the power and limitations of
each one of them. This concept was handled by Wolpert & Macready (1997) and became
widely known as the “No Free Lunch Theorem”.

According to Monard & Baranauskas (2003), induction is the form of logical
inference that makes it possible to obtain generic conclusions through a set of examples
and inductive learning can be divided between supervised and unsupervised. Usually
the examples used in inductive learning are composed of a feature vector containing the
attributes of each example.

Table 5 shows an example of feature vector with three samples, each one of them
containing three attributes (nominal an numeric) and their labels (A, B and C).

Table 5 – Feature vector example.

#Sample Attribute 1 Attribute 2 Attribute 3 Label
1 No Big 200 A
2 Yes Medium 100 B
3 No Small 150 C

In supervised learning the algorithm, also known as the inductor, receives a set
of training samples. Usually these samples are composed of a feature vector and the
label/class associated to them. In this case, the objective of the inductor algorithm is to
build a classifier, based on these labeled samples, able to label a new unlabeled and unseen
sample. In synthesis, this kind of learning method is used when the labels are already
known by the user.

Chapter 2. Machine Learning 39

In unsupervised learning, the samples are usually unlabeled feature vectors. Thus,
without knowing the label of each sample, the inductor is concerned to group the samples
in some way, forming clusters or clusters. In this case, since the samples are not labeled,
it is necessary to make an analysis to identify the meaning of each group based on the
problem context. In synthesis, this type of learning is used when the user is not aware of
possibly existing labels.

Furthermore, semi-supervised learning can be considered as a halfway between
supervised and unsupervised learning. Besides unlabeled data, the learner is provided
with some supervision information, but not necessarily for all examples in the dataset
(CHAPELLE; SCHOLKOPF; ZIEN, 2009).

Figure 1 presents the hierarchy of inductive learning, in which in the second level
we have the separation between supervised, unsupervised and semi-supervised models, and
in the third level we have some examples of models commonly used. As the focus of this
Thesis is the “Classification” field, is it circled with a dashed red square in Figure 1. In
the next sections, we will present some details concerning the Classification research field.

Inductive
Learning

Supervised
Learning

Unsupervised
Learning

Classification Regression Grouping Association
Rules

Semi-supervised
Learning

Generative
Models

Graph-
Based
Methods

Low-Density
Separation

Figure 1 – Inductive Learning Hierarchy.

2.1 Single-Label Classification

We refer as single-label classification problem the ones where the samples are
associated with only one single class. If there is only two possible class labels in the
problem it is called a binary classification task, otherwise the problem is know as a multi-
class task. Since the focus of this work is to deal with prediction tasks, in the following we
briefly explain some of the single-label predictive techniques that have been widely used
in the machine learning community.

Chapter 2. Machine Learning 40

2.1.1 Bayesian Classifiers

Bayesian classifiers use the Bayesian Decision Theory, presented in Duda, Hart &
Stork (2001), in which the class conditional probability densities and prior probabilities
are estimated from a training set. The classification is achieved through the assignment of
each sample to the class of a maximum posteriori probability given by Formulas 2.1 and
2.2, where y specifies the class labels, and x is a given sample.

YMAP = argmaxiP (yi|x) (2.1)

P (yi|x) = P (yi)P (x|yi)
P (x) (2.2)

The Naive Bayes classifier assumes that the features in each class are independent
and normally distributed, thus, the product rule can be applied for the estimation of the
conditional probabilities.

2.1.2 K-Nearest Neighbors

The K-Nearest Neighbor (kNN) is an algorithm that uses the labels of the k nearest
samples provided by the training set to predict the label of a testing sample.

According to Tan, Steinbach & Kumar (2005) this kind of algorithm is specially
focused in two points: (1) A metric to calculate the distance between the samples and
(2) a value for k, which is the number of nearest neighbors to search for. In general, the
distance metric is calculaed with the Euclidean Distance, nevertheless, other measures can
be applied as shown in Kotsifakos et al. (2013).

k = 5

k = 3

Figure 2 – Example of kNN classification algorithm.

Chapter 2. Machine Learning 41

Figure 2 presents an example of the application of k-NN technique, with k = 3 and
5, to classify a sample represented as a “red cross” in the dataset. The dash dots shows
which instances from the dataset would be consider to choose the label.

2.1.3 Decision Trees

A decision tree is an approach that generates a visual model of the learning
procedure, where each non-leaf node is labeled with an attribute and each leaf node
contains a decision. One of the most famous decision trees is the C4.5, proposed in Quinlan
(1993). The C4.5 algorithm finds the attribute that more effectively divide the samples
into subsets tending to a category or another. The standardized information gain is the
partitioning criterion and the attribute with the highest information gain is chosen to make
the decision. The C4.5 algorithm then repeats the previous step in the smaller partitions
and so on, until there is no data left to divide.

Figure 3 shows an example of classification using a Decision Tree for the problem
of tax evasion identification. We may observe that the training dataset is composed by 10
samples and the features values are used as internal nodes to generate the Decision Tree
model.

Figure 3 – Example of Decision Tree classification algorithm (TAN; STEINBACH; KU-
MAR, 2005).

Another well used decision tree technique is the Random Forest (BREIMAN, 2001).
This method is a combination of decision trees in a way that each tree is dependent of
values from a random vector with the same distribution for all trees in the forest. As the
number of trees in the forest increases, the generalization error tends to converge to a
limit.

Chapter 2. Machine Learning 42

Figure 4 presents a classification schema for the Random Forest algorithm. We
may observe that, for this example, four random trees are generated in order to give the
final decision for the instance X.

Sample X

Tree #1 Tree #2 Tree #3

CLASS A CLASS B CLASS C

Majority Voting

Final Class Decision

Figure 4 – Example of Random Forest classification schema.

2.1.4 Support Vector Machines

The Support Vector Machines (SVM) technique, first proposed in (BOSER; GUYON;
VAPNIK, 1992) and then published in (CRISTIANINI; SHAWE-TAYLOR, 2000), is a
binary classifier based on the maximum-margin principle. This technique has solid bases
in the statistical learning theory proposed by (VAPNIK; CHERVONENKIS, 1971).

The SVM algorithm uses labeled samples from a training set to find the optimal
hyperplane that best separates the samples from two classes. The hyperplane is calculated
so that the distance between the nearest samples from each class and the hyperplane is
maximized. Such samples are referred to as supporting vectors and represent the closest
samples to the hyperplane with labels.

According to (MEYER, 2004), a SVM classifier may be roughly sketched as follows:

• Class separation: The optimal separating hyperplane between the two classes, which
maximizes the margin between the classes’ closest samples.

• Overlapping classes: Data points on the “wrong” side of the discriminant margin are
weighted down to reduce their influence (known as “soft margin”).

• Nonlinearity: If a linear separator is not found, some samples are projected into an
higher-dimensional space where these samples effectively become linearly separable.

Chapter 2. Machine Learning 43

• Problem solution: The task is formulated as a quadratic optimization problem.

Figure 5 shows an example of SVM classifier used to classify two classes of samples.
We may observe that there is a margin in the hyperplane, in which it would correctly
separate the samples.

Figure 5 – Example of SVM classification algorithm (MEYER, 2004).

2.2 Multi-Label Classification

Traditional classification problems are concerned with learning from a set of
instances that are associated to a single-label l of a disjoint set of labels L, where the
cardinality of the set is greater than 1. If the cardinality of the set of labels is equal to
2 (|L| = 2), then the learning problem is called binary classification. If the cardinality
of the set is greater than 2 (|L| > 2), then it is a multi-class classification problem. In
multi-label classification each instance will be associated to a set of labels Y ⊆ L instead
of a single-label l ∈ L (TSOUMAKAS; KATAKIS, 2006).

In the next subsection we present fundamental concepts concerning the multi-label
classification problem, which includes database indicators, main classification algorithms,
and evaluation metrics.

2.2.1 Database Indicators

According to Zhang & Zhou (2014) to characterize the properties of any Multi-Label
Database (MLD), there are several useful multi-label indicators that can be utilized. Let
D be the MLD, m the total number of labels and Y the set of Labels with Yi being the
i-th label of the set, the most natural way to measure the degree of “multi-labeledness”
are:

Chapter 2. Machine Learning 44

• Label Cardinality: The average number of labels per example.

LCard(D) = 1
m

m∑
i=1
|Yi| (2.3)

• Label Density: Normalization of label cardinality by the number of possible labels in
the label space.

LDen(D) = 1
|Y |
× LCard(D) (2.4)

• Label Diversity: The number of distinct label sets appeared in the dataset.

LDiv(D) = |{Y | ∃ x : (x, Y) ∈ D}| (2.5)

• Proportion of Label Diversity: Label diversity normalized by the number of examples,
indicating the proportion of distinct label sets.

PLDen(D) = 1
|D|
× LDiv(D) (2.6)

2.2.2 Classification Algorithms

According to (TSOUMAKAS; KATAKIS, 2006), we can group the existing methods
for multi-label classification into two main categories: (1) problem transformation methods;
and (2) algorithm adaptation methods.

The problem transformation methods are those in which the multi-label classifica-
tion problem is transformed either into one or more single-label classification or regression
problems, for both of which there exists a huge bibliography of learning algorithms.

On the other hand, we call algorithm adaptation methods, those techniques that
extend specific learning algorithms in order to handle multi-label data directly.

Table 6 presents the categorization of the multi-label classification methods, which
will be described in the following subsections.

Binary Relevance

The Binary Relevance (BR) technique builds independent binary classifiers for each
label (λi). Each classifier maps the original dataset to a single binary label with values λi,
∼ λi. The classification of a new instance is given by the concatenation of the labels λi
that are produced by the classifiers (BRINKER; FÜRNKRANZ; HÜLLERMEIER, 2006).

Label Powerset

The Label Powerset (LPS) was first introduced by Boutell et al. (2004). This
method transforms the multi-label dataset into a multi-class dataset by using the labelset

Chapter 2. Machine Learning 45

Table 6 – Categorization of multi-label classification methods.

Problem Transformations

Binary Relevance
Classifier Chain
Calibrated Label Ranking
HOMER
Label Powerset
RAkEL

Algorithms Adaptation
ADABoost.MH
BRkNN
MLkNN

of each instance as class identifier. Any multi-class classifier can be used, transforming
back the predicted class into a labelset.

Classifier Chain

According to Read et al. (2009), in the Classifier Chain (CCH), one classifier hi
is trained for each label similarly to a scoring function fi. Given a new instance x to be
classified, the model h1 predicts y1, i.e., the relevance of λ1 for x. Then, another classifier
h2 predicts the relevance of λ2, taking x plus the predicted value y1 ∈ 0, 1 as an input.
Proceeding in this way, hi predicts yi using y1...yi−1 as additional input information.

Calibrated Label Ranking

The Calibrated Label Ranking (CLR) was originally proposed in Fürnkranz et al.
(2008), and its main idea is to add an additional label to the original label set which is
interpreted as a “neutral element”. This label calibrates a ranking by splitting it into a
positive and a negative part. By extending conventional label ranking approaches, this
algorithm provides a means to represent and learn bipartite partitions of alternatives and,
thereby, combines multi-class classification and label ranking.

Hierarchy of Multi-label Classifiers

According to Tsoumakas, Katakis & Vlahavas (2008), the Hierarchy of Multi-label
Classifiers (HOMER) follows the divide-and-conquer paradigm of algorithm design. The
main idea is the transformation of a multi-label classification task with a large set of labels
L into a tree-shaped hierarchy of simpler multi-label classification tasks, each one dealing
with a small number k << |L| of labels.

Random k-LabelSets

In the Random k-LabelSets (RAkEL) algorithm, first introduced by Tsoumakas,

Chapter 2. Machine Learning 46

Katakis & Vlahavas (2011), each ensemble member constructs an LPS classifier based
on a randomly chosen subset of k labels. These subsets are referred to as k-labelsets.
The classification of a new instance is achieved by thresholding the average of the binary
decisions of each model for each label.

kNN-Based Algorithms

The Multi-Label k-Nearest Neighbors (MLkNN) (ZHANG; ZHI-HUA, 2007) is an
adaptation of the kNN lazy learning algorithm for multi-label data. In essence, MLkNN
uses the kNN algorithm independently for each label l: It finds the k nearest examples to
the test instance and considers those that are labeled at least with l as positive and the
rest as negative.

On the other hand, the Binary Relevance k-Nearest Neighbors (BRkNN) determines
the k-nearest neighbors of a query and calculates the confidences of each label based on
the label sets of the neighbor queries. In this algorithm, the neighbors are determined
by the Problem Transformation of Binary Relevance (SPYROMITROS; TSOUMAKAS;
VLAHAVAS, 2008).

2.2.3 Evaluation Measures

The evaluation of methods that learn from multi-label data requires metrics that
differ from those employed for single-label data. According to Madjarov et al. (2012), the
multi-label evaluation metrics can generally be categorized into three groups: Example-
Based, Ranking-Based and Label-Based metrics. Figure 6 presents a categorization of the
evaluation measures used in this work.

Evaluation Measures

Example-Based Label-Based Ranking-Based

Hamming Loss
Accuracy
Precision

Recall
F1-Score

Subset Accuracy

Macro Precision
Macro Recall

Macro F1-Score
Micro Precision

Micro Recall
Micro F1-Score

One-Error
Ranking Loss

Average Precision

Figure 6 – Categorization of multi-label learning evaluation measures (adapted from Mad-
jarov et al. (2012)).

For the definition of the Example-Based and Ranking-Based metrics let (xi, Yi), i =

Chapter 2. Machine Learning 47

1..m be a set of instances of a dataset, where Yi ∈ L is the set of labels associated with an
instance and L = λj : j = 1..q is the set of all labels. Given an instance xi, the resulting
set of labels predicted by a multi-label classifier is denoted by Zi.

2.2.3.1 Example-Based Metrics

The Example-based measures evaluate the performance on each test example
separately, and then return the mean value across the test set.

• Subset Accuracy: The ratio of labels predicted for a sample that exactly match with
the corresponding set of labels.

1
m

m∑
i=1
|Yi = Zi| (2.7)

• Accuracy: The proportion of label values correctly classified of the total number
(predicted and actual) of labels for that instance averaged over all instances.

1
m

m∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(2.8)

• Precision: The proportion of labels correctly classified of the predicted positive labels,
averaged over all instances.

1
m

m∑
i=1

|Yi ∩ Zi|
|Zi|

(2.9)

• Recall: The fraction of predicted correct labels of the actual labels.

1
m

m∑
i=1

|Yi ∩ Zi|
|Yi|

(2.10)

• F-Measure: Harmonic mean that combines Precision and Recall.

(β2 + 1)Precision×Recall
β2Precision+Recall

(2.11)

2.2.3.2 Ranking-Based Metrics

Compare the predicted ranking of the labels with the ground truth ranking.

• Average Precision: Evaluates the average fraction of labels ranked above a particular
label λ ∈ Yi which actually are in Yi.

1
m

m∑
i=1

1
|Yi|

|Y |∑
λ∈Yi

∣∣∣λ′ ∈ Yi : ri(λ
′) ≤ ri(λ)

∣∣∣
ri(λ) (2.12)

Chapter 2. Machine Learning 48

• Hamming Loss: The percentage of incorrect labels predicted in relation to the total
number of labels.

1
m

m∑
i=1

|Yi∆Zi|
M

(2.13)

where M is the total number of labels and ∆ is the symmetric difference between
two sets, which is, in set theory, equivalent to the XOR operator in Boolean logic.

• One-Error: Evaluates how many times the highest ranked label is not in the set of
relevant labels of the instance. Let ri(λ) be the rank predicted for a label λ by the
classification method, where for the most relevant label is given the rank 1 and the
less relevant receives the rank M .

1
m

m∑
i=1

δ(arg min ri(λ)), λ ∈ L (2.14)

2.2.3.3 Label-Based Metrics

These measures evaluate the performance on each class label separately, and then
return the macro or micro-averaged value across all class labels. The measures are based
on a generalization of single label measures for many classes Ci where tpi, fpi, fni, and tni
are true positive, false positive, false negative and true negative counts for Ci respectively.
According to Sokolova & Lapalme (2009), macro-averaging treats all classes equally while
micro-averaging favors classes with more samples.

• Micro-Averaged Precision: Agreement of the data class labels with those of a classifiers
if calculated from sums of per-text decisions.∑l

i=1 tpi∑l
i=1 tpi + fpi

(2.15)

• Micro-Averaged Recall: Effectiveness of a classifier to identify class labels if calculated
from sums of per-text decisions. ∑l

i=1 tpi∑l
i=1 tpi + fni

(2.16)

• Micro-Averaged F-Measure: Relations between data’s positive labels and those given
by a classifier based on sums of per-text decisions.

(β2 + 1)µPrecision× µRecall
β2µPrecision+ µRecall

(2.17)

• Macro-Averaged Precision: An average per-class agreement of the data class labels
with those of a classifiers. ∑l

i=1
tpi

tpi+fpi

l
(2.18)

Chapter 2. Machine Learning 49

• Macro-Averaged Recall: An average per-class effectiveness of a classifier to identify
class labels. ∑l

i=1
tpi

tpi+fni

l
(2.19)

• Macro-Averaged F-Measure: Relations between data’s positive labels and those given
by a classifier based on a per-class average.

(β2 + 1)MPrecision×MRecall

β2MPrecision+MRecall
(2.20)

• Area Under the ROC Curve (AUROC): The Receiver Operating Characteristics
(ROC) describes the classifiers’ performance across the entire range of error costs
by plotting the true positive rate (TPR) and the false positive rate (FPR) for
each possible threshold. Furthermore, the Area Under the Curve (AUC) metric is
given by computing the exact area under the ROC curve. In a multi-label problem,
the TPs and FPs can be calculated individually by label and then joined with a
micro-averaged technique to calculate TPR and FPR. In mathematical terms we
can define micro TPR and FPR as:

micro− TPR =
∑|L|
i=1 tpi∑|L|
i=1 pi

(2.21)

micro− FPR =
∑|L|
i=1 fpi∑|L|
i=1 ni

(2.22)

where L is the set of labels, tpi and fpi are the number of True Positives and False
Positives for label i, pi is the number of instances with label i and ni is the number
of instances without label i.

• Area Under the Precision-Recall Curve (AUPRC): The AUPRC measure is computed
as the area below the curve plotted with the precision (y-axis) and the recall values
(x-axis) considering the different classifiers decision thresholds.

2.3 Hierarchical Classification

Hierarchical Classification (HC) can be seen as a particular type of classification
problem, in which the output of the learning algorithm is defined over a specific class
taxonomy. In Wu, Zhang & Honavar (2005) this taxonomy is considered a structured
concept tree hierarchy defined over a partially order set (C, ≺), where C is a finite set that
enumerates all class concepts in the application domain, and the relation ≺ represents a
“IS-A” relationship. In Silla Jr & Freitas (2011) is described that a HC label taxonomy
can also form a Directed Acyclic Graph (DAG), meaning that a certain label node in

Chapter 2. Machine Learning 50

the hierarchy may be derived from more than one label path. By its turn, Hierarchical
Multi-label Classification (HMC) problem is a variant where the instances may belong to
multiple classes at the same time and these classes are organized in a hierarchy.

2.3.1 Definitions

According to Silla Jr & Freitas (2011) a hierarchical classification problem can be
described as a 3-tuple 〈Υ,Ψ,Φ〉, where:

• Υ specifies the type of graph representing the hierarchical classes (nodes in the
graph) and their interrelationships (edges in the graph). The possible values for this
attribute are:

– Tree (T): Indicates that the classes to be predicted are arranged into a tree
structure (See Figure 7(a)).

– DAG (D): Indicates that the classes to be predicted are arranged into a DAG
(Direct Acyclic Graph) (See Figure 7(b)).

1 2

R

2.1 2.21.1 1.2

2.1.1 2.1.2 2.2.1

(a) Tree structure.

1 2

R

2.1 2.21.1 1.2

2.1.1 2.1.2 2.2.1

(b) DAG structure.

Figure 7 – Examples of hierarchical organization (adapted from Silla Jr & Freitas (2011)).

Chapter 2. Machine Learning 51

• Ψ indicates whether a data instance is allowed to have class labels associated with a
single or multiple paths in the class hierarchy. This attribute can take one of the
two values:

– Single Path of Labels (SPL); or

– Multiple Paths of Labels (MPL).

• Φ describes the label depth of the data instances:

– Full Depth labeling (FD): Indicates that all instances have a full depth of
labeling, i.e., every instance is labeled with classes at all levels, from the first
level to the leaf level; or

– Partial Depth labeling (PD): Indicates that at least one instance has a partial
depth of labeling, i.e. the value of the class label at some level (typically the
leaf level) is unknown.

Furthermore, according to Silla Jr & Freitas (2011) a hierarchical classification
algorithm, can be described as a 4-tuple 〈∆,Ξ,Ω,Θ〉 where:

• ∆ indicates whether or not the algorithm can predict labels in just one or multiple
(more than one) different paths in the hierarchy. This attribute can take on two
values, as follows:

– Single Path Prediction (SPP): Indicates that the algorithm can assign to each
data instance at most one path of predicted labels or

– Multiple Path Prediction (MPP): Indicates that the algorithm can potentially
assign to each data instance multiple paths of predicted labels.

• Ξ is the prediction depth of the algorithm. It can have two values:

– Mandatory Leaf-Node Prediction (MLNP): Means the algorithm always assign
leaf class(es); or

– Non-mandatory Leaf-Node Prediction (NMLNP): Means the algorithm can
assign classes at any level (including leaf classes).

• Ω is the taxonomy structure the algorithm can handle. It has two values:

– Tree (T): Indicates that the classes to be predicted are arranged into a tree
structure; or

– DAG (D): Indicates that the classes to be predicted are arranged into a DAG
(Direct Acyclic Graph).

Chapter 2. Machine Learning 52

• Θ is the categorization of the algorithm under the proposed taxonomy and has one
of the following values:

– Local Classifier per Node (LCN);

– Local Classifier per Level (LCL);

– Local Classifier per Parent Node (LCPN); or

– Global Classifier (GC).

According to Silla Jr & Freitas (2011), specifically for the LCN approach, there are
at least six different policies that can be used to define the set of positive and negative
examples for training the binary classifiers per node:

• Exclusive (Figure 9(a)): Consider the true label node as positive and all others as
negative;

• Less Exclusive (Figure 9(b)): Consider the true label node as positive and all nodes
not descendants as negative (ignore the descendant nodes);

• Inclusive (Figure 9(c)): Consider the true label node and all descendants as positive
and all other nodes as negatives, besides the ancestors, which are ignored;

• Less Inclusive (Figure 9(d)): Consider the true label and all descendants as positive
and all others as negative;

• Siblings (Figure 9(e)): Consider the true label and all descendants as positive and
the siblings and its descendants as negatives (ignore all others); and

• Exclusive Siblings (Figure 9(f)): Consider only the true label as positive and its
sibling as negative (ignore all others).
Moreover, for the LCPN approach, there are also two different policies in order

to choose which samples will be used to train the multi-class classifier per parent node:
Siblings or Exclusive Siblings. In this case, the difference is related to use all descendant
samples or only the immediate child in order to build the multi-class classification model
which is used to differ the nodes children.

2.3.2 Classification Algorithms

As stated in Silla Jr & Freitas (2011), there are three different strategies to perform
hierarchical classification, which can be categorized into: Flat Classifiers; Local Classifiers;
and Global Classifiers.

Chapter 2. Machine Learning 53

1 2

R

2.1 2.21.1 1.2

2.1.1 2.1.2 2.2.1

(a) Local Classifier per Node (LCN).

1 2

R

2.1 2.21.1 1.2

2.1.1 2.1.2 2.2.1

(b) Local Classifier per Level (LCL).

1 2

R

2.1 2.21.1 1.2

2.1.1 2.1.2 2.2.1

(c) Local Classifier per Parent Node (LCPN).

1 2

R

2.1 2.21.1 1.2

2.1.1 2.1.2 2.2.1

(d) Global Classifier (GC).

Figure 8 – Classifiers approaches - circles represent classes and each dashed rectangle
encloses the classes predicted the classifier (adapted from Silla Jr & Freitas
(2011)).

Chapter 2. Machine Learning 54

A

B

D

E

Root

F

C G H I

(a) Exclusive.

A

B

D

E

Root

F

C G H I

(b) Less Exclusive.

A

B

D

E

Root

F

C G H I

(c) Inclusive.

A

B

D

E

Root

F

C G H I

(d) Less Inclusive.

A

B

D

E

Root

F

C G H I

(e) Siblings.

A

B

D

E

Root

F

C G H I

(f) Exclusive Siblings.

Figure 9 – The positive/negative policies of the local classifiers per node approach. Blue
nodes represent the positive labels, red the negative and white the labels that
will not be used.

The flat classification approach is the simplest one and consists of completely
ignoring the labels hierarchy, predicting only classes at the leaf nodes, using typical multi-
class classification methods. This approach provides an indirect solution to the problem
of hierarchical classification, since when a leaf class is assigned to an example, one can
consider that all its ancestor classes are also implicitly assigned to that instance (SILLA
JR; FREITAS, 2011).

On the other hand, the Local Classifiers (LC) approach can be sub-categorized
based on how they use the local information and how they build their classifiers around it.
There are three standard ways of using the local information:

• Local Classifier per Node (LCN): Consists of training one binary classifier for each
node of the class hierarchy (except the root node). This type of classification was
used in Eisner et al. (2005), Fagni & Sebastiani (2007), Ceci & Malerba (2007),
Valentini (2009), Melo, Paulheim & Völker (2016), Nakano et al. (2017b), Zhang,
Shah & Kakadiaris (2017). In Figure 8(a) we present an visual example of this type
of classification;

• Local Classifier per Level (LCL): Consists of training one multi-class classifier for each
level of the class hierarchy. This category of classsification was used in Cerri, Barros
& Carvalho (2014), Bewley et al. (2015), Zeng et al. (2018), Alshamaa, Chehade &
Honeine (2018). In Figure 8(b) we shown a visual example of this method;

Chapter 2. Machine Learning 55

• Local Classifier per Parent Node (LCPN): In this approach, for each parent node in
the class hierarchy, a multi-class classifier (or a problem decomposition approach
with binary classifiers) is trained to distinguish between its child nodes. This method
was used in works such as Silla Jr & Freitas (2009b), Ramírez-Corona, Sucar &
Morales (2016), Cerri et al. (2016), Nakano et al. (2017a), Costa et al. (2018). Figure
8(c) presents a visual example of this kind of technique.

In the Local Classifiers approach, conventional classification algorithms, such as
Decision-Trees, Support Vector Machines and Neural Networks, are trained to produce
an hierarchy of classifiers. On the other hand, the Global Classifiers approach (GC), also
known as the big-bang approach, consists of using one global hierarchy classifier for hole
the problem - See Figure 8(d) for example.

In the following we present a detailed description of some of the well-known ap-
proaches to perform HMC, such as: HMC Binary Relevance (LCN), HMC Label-Powerset
(LCPN), HMC Cross-Training (LCL), Ant-Miner (GC), Association Rule-Based (GC),
Decision Tree-Based (GC), Hierarchical Naive Bayes (GC) and Predictive Clustering Trees
(GC).

HMC Binary Relevance

According to Cerri & Carvalho (2010), HMC Binary Relevance (HMC-BR) uses
N classifiers in the induction phase, with N being the number of labels in the hierarchy,
associating each classifier to one of the node labels. Then, the method trains these classifiers
to solve N binary classification problems, using the One-Against-All approach. During
the training phase, the label associated with node is considered as positive, while all the
others are considered negatives.

Considering a HMC problem with five levels, which contains 2, 3, 4, 5 and 6 labels
on each level, two classifiers will be trained in the first level, three in the second, four in
the third, five in the fourth level and six in the fifth level. In this context, the jth classifier
considers the samples belonging to the jth label as positives and all the other samples as
negatives.

Algorithm 1 presents the pseudocode for the classification process of HMC-BR
method. The pseudocode is recursive, and C is initially the set of the first level classes of
the hierarchy.

Chapter 2. Machine Learning 56

Algorithm 1 HMC Binary Relevance (adapted from Cerri et al. (2015))
Input: xi: Instance, C: Set of classes
Output: Classes
1: Classes ← empty set
2: for each cj in C do
3: if cj not leaf node then then
4: Children ← child classes of cj in C
5: Classes ← Classes ∪ {cj} ∪ HMC-BR(xi, Children)
6: else
7: Classes ← Classes ∪ {cj}
8: end if
9: end for

10: return Classes

HMC Label-Powerset

The HMC Label-Powerset (HMC-LP) approach, proposed by Cerri & Carvalho
(2010), is a hierarchical adaptation of the multi-label classification method Label Powerset.
HMC-LP combines all the labels assigned to the hierarchy, at a specific level, into a new
and unique label.

Given two example of samples: One assigned to the labels A/D and A/E, and
other sample assigned to B/F, B/G, C/H and C/I, in which these labels are hierarchically
organized as in the left tree of Figure 10. The powerset combination of these labels would
be a new hierarchical structure CA/CDE and CBC/CFGHI , respectively. In the example,
CDE is a new label formed by the combination of the labels D and E, while CFGHI is a
label formed by the combination of the labels F, G, H and I (CERRI; CARVALHO, 2010).
Figure 10 presents the label combination process.

Figure 10 – Label combination process of the HMC-LP method (CERRI; CARVALHO,
2010).

According to Cerri & Carvalho (2010), after combining the labels, the original
HMC problem is transformed into a hierarchical single-label problem, and a top-down
approach can be employed, using multi-class classifiers for each level. In the end of the
classification process, the original labels are recovered. Although the correlation between

Chapter 2. Machine Learning 57

the labels is considered, it can increase the total number of labels. The label combination
procedure is presented in the Algorithm 2.

Algorithm 2 Label Combination of HMC-LP (adapted from (CERRI; CARVALHO,
2010))
Input: Y: Set of instances, C: Set of classes
Output: New classes
1: for each level j of the class hierarchy do
2: for each subset Ci of the set C, assigned to an sample yi in level j do
3: Gets a new class ci,j for the example yi from Ci
4: NewClassesi,j ← ci,j
5: end for
6: end for
7: return NewClasses

HMC Cross-Training

The HMC Cross-Training (HMC-CT), proposed by Cerri & Carvalho (2010), uses
a label decomposition method. In this process the multi-label samples are decomposed
into a set of single-label samples. For each sample, each possible label is considered as the
positive label in sequence, using the multi-label data more than once during the training
phase. For instance, if a given dataset has samples with labels A, B and C, when a classifier
for the label A is trained, all the multi-label samples whose set of labels includes A become
single-label samples for label A.

Figure 11 shows an example of the label decomposition process applied by the
HMC-CT method in a dataset. It is important to observe that when a sample is assigned
to more than one label, these labels are separated with slashes. Algorithm 3 shows the
classification process of HMC-CT.

Algorithm 3 HMC Cross-Training (adapted from Cerri & Carvalho (2010))
Input: y: Sample, Cl: Set of classifiers
Output: Classes
1: Classes ← empty set
2: for each classifier cli from Cl do
3: Predicts a class ci for the example y using the classifier cli
4: if not the last hierarchical level then then
5: Gets the set Cli of children of cli trained with examples from class ci
6: Classes ← Classes ∪ {ci} ∪ Classify(y, Cli)
7: else
8: Classes ← Classes ∪ ci
9: end if

10: end for
11: return Classes

Chapter 2. Machine Learning 58

Figure 11 – Label decomposition process of the HMC-CT method (CERRI; CARVALHO,
2010).

Ant-Miner

In Otero, Freitas & Johnson (2009) is proposed the hAnt-Miner algorithm, the
first hierarchical Ant-Miner classification approach. The hAnt-miner method is a type of
swarm intelligence method based on the paradigm of ant colony optimization.

Algorithm 4 presents the pseudocode for the hAnt-miner algorithm. The pseudocode
starts with an empty rule list and adds a new rule while the number of uncovered training
examples is greater than a maximum parameter (specified by the user). In the iterations,
the rules are created using an ant colony optimization procedure.

According to Otero, Freitas & Johnson (2009), hAnt-miner discovers a list of classi-
fication rules that can predict all classes from a class hierarchy, independently of their level,
but has the limitation of not being able to cope with multi-label data. Moreover, in Otero,
Freitas & Johnson (2010), the same authors presented an extension to the hAnt-miner
algorithm, which overcomes this limitation.

Association Rule-Based

In Wang, Zhou & He (2001) an association rule mining algorithm is modified in
order to deal with hierarchical document categorization. The main adaptation was to make
the algorithm able to work with a set of labels instead of only a single label.

According to Wang, Zhou & He (2001), there are four steps to build the classifier.

Chapter 2. Machine Learning 59

Algorithm 4 hAnt-miner (adapted from Otero, Freitas & Johnson (2009))
Inputs: Training Examples
Output: Discovered Rule List
1: training_set ← all training examples
2: rule_list ← empty set
3: while (|training_set| > max_uncovered_examples) do
4: rulebest ← empty set
5: i ← 1
6: repeat . use separate ant colonies for antecedent and consequent construction
7: rulecurrent ← empty set
8: for (j from 1 to colony_size) do
9: rulej ← CreateAntecedent() + CreateConsequent()

10: Prune(rule j) . applies a local search operator
11: if Q(rulej) > Q(rulecurrent) then
12: rulecurrent ← rulej . updates the reference to the best rule
13: end if
14: j ← j + 1
15: end for
16: UpdatePheromones(rulecurrent)
17: if Q(rulecurrent) > Q(rulebest) then
18: rulebest ← rulecurrent
19: end if
20: i ← i + 1
21: until i ≥ max_number_iterations OR RuleConvergence()
22: rule_list ← rule_list + rulebest
23: training_set ← training_set - Covered(rulebest, training_set)
24: end while
25: return rule_list

First, association rules are created in the form T → CS, where T is a set of terms and
CS is a classset, that satisfy the minimum support (specified by the user) and minimum
confidence. Second, the rules are ranked in order to determine the classification rule of a
specific document. Third, the rules that incorrectly classify many training documents are
removed. Lastly, the ranked list is remover to minimize the overall classification error.

Decision Tree-Based

In Clare & King (2003) is proposed a modified version of the classic C4.5 decision
tree algorithm, named HC4.5, which was specifically developed to deal with hierarchy
between the labels. There are few details available about how this algorithm is different from
the standard C4.5. The main information the authors provide is referred to modifications
that they have made in the entropy formula to consider a form of weighting.

The new entropy, proposed by Clare & King (2003) and presented in Formula 2.23,
allows the leaves of the decision tree to be a set of labels. In this context, the classification

Chapter 2. Machine Learning 60

output for a new sample can be a set of labels, which is represented as a vector. The model
induction is done in one step, generating one decision tree for the whole hierarchy.

entropy(S) = −
N∑
j=1

((p(cj) log2 p(cj)) + (q(cj) log2 q(cj))− α(cj) log2 treesize(cj)) (2.23)

where:

• N = number of classes of the problem.

• p(cj) = probability (relative frequency) of class cj.

• q(cj) = 1− p(cj) = probability of not being member of class cj.

• treesize(cj) = 1 + number of descendant classes of class cj (1 is added to represent
cj itself).

• α(cj) = 0, if p(cj) = 0 (a user-defined constant (default = 1) otherwise).

The final output of the HC4.5 classifier, for a given sample yi, is a vector of real val-
ues vi. If the value of vi,j is above a given threshold l, the example is assigned to the class cj .

Naive Bayes Classifier

In Silla Jr & Freitas (2009a) the authors extended the traditional flat Naive Bayes
to deal with a hierarchical classification problem. According to the authors, this extension
allows the algorithm to create a global-model that allows the prediction of any class in the
hierarchical class structure instead of only classes at the leaf nodes of the class hierarchy.
The authors also augment the global-model Naive Bayes by using a notion of “usefulness”,
which takes into account the depth of the prediction.

To calculate the probabilities for the Naive Bayes hierarchical classification, the
authors adapted Clare’s measure of “usefulness” (CLARE, 2003) by using a normalized
usefulness value based on the position of each class level in the hierarchy, as presented in
Equation 2.24.

usefulness(ci) = 1− (a(ci) log2 treesize(ci)
max

) (2.24)

where:

• treesize(ci) = 1 + number of descendant classes of ci (1 is added to represent ci
itself).

Chapter 2. Machine Learning 61

• a(ci) = 0, if p(ci) = 0; a(ci) = a user defined constant (default = 1) otherwise.

• max is the highest value obtained by computing a(ci) log2 treesize(ci) and it is used
to normalize all the other values into the range [0, 1].

Furthermore, in order to make the final classification decision, the proposed Naive
Bayes has two options: (1) Assign the final class label with the maximum value of posterior
probability (as shown in Formula 2.25); or (2) Assign the class label which maximizes the
product of the posterior probability and usefulness (as shown in Formula 2.26).

classify(A) = argmaxclass
n∏
i=1

(Ai = Vij|Class)× P (Class) (2.25)

classify(A) = argmaxclass
n∏
i=1

(Ai = Vij|Class)×P (Class)×Usefulness(Class) (2.26)

Predictive Clustering Trees

In Blockeel et al. (2006) and Vens et al. (2008) the authors present the Clus-HMC
algorithm1, which is based on Predictive Cluster Trees (PCTs). The key idea of Clus-HMC
is to build a set of trees to predict a set of labels, instead of only one label. In order to do
this, Clus-HMC transforms the classification output into a boolean vector corresponding
to the possible labels. The algorithm also needs to consider a distance-based metric to
calculate how similar the training samples are in the classification tree. Futhermore, the
procedure used to construct the PCTs is similar to another decision tree algorithms, like
Classification and Regression Trees (CART) or the classic C4.5.

The Euclidean Distance metric is usually the distance-based metric used in Clus-
HMC. In Aleksovski, Kocev & Dzeroski (2009) the authors analyzed the use of other
distance measures, namely the Jaccard distance, the SimGIC distance and the ImageClef
distance. However, they concluded that there was no statistically significant difference
between the distance metrics in their empirical experiments.

Moreover, in Dimitrovski et al. (2011a) the authors have proposed the use of
ensembles approaches in the Clus-HMC algorithm, such as Bagging and Random Forests,
and concluded that the use of these methods may improve the classification accuracy.

Algorithm 5 presents the pseudocode for the Clus-HMC approach. The main loop
(lines 2-8) searches for the best acceptable attribute-value test for a node. If this test t∗
can be found, then the method creates a new internal node labeled t∗ and calls itself
recursively to construct a sub-tree for each subset in the partition P∗ induced by t∗ on
the training instances. Otherwise, if no acceptable test can be found, the algorithm creates
a leaf node.
1 Available for download at https://dtai.cs.kuleuven.be/clus/

Chapter 2. Machine Learning 62

Algorithm 5 Clus-HMC (adapted from Blockeel et al. (2006))
Input: T: The training set of instances
Output: The decision tree
1: (t*, h*, P*) ← (none, ∞, empty set)
2: for each possible test t do
3: P ← partition induced by t on T
4: h ← ∑

tk∈P
|Tk|
|T | V ar(Tk)

5: if (h < h*) and acceptable (t, P) then
6: (t*, h*, P*) ← (t, h, P)
7: end if
8: end for
9: if t* 6= none then

10: for each Tk ∈P* do
11: treek ← Clus-HMC(Tk)
12: end for
13: return node(t*, ⋃k{treek})
14: else
15: return leaf(v̄)
16: end if

2.3.3 Evaluation Metrics

According to Cerri et al. (2015), accuracy measures for flat classification problems
are not appropriate for hierarchical multi-label problems. In addition to not consider the
label hierarchy, the samples may simultaneously be assigned to more than one label, which
makes the conventional accuracy metrics ignore that the difficulty of classification usually
increases with the depth of the labels to be predicted.

In general, in hierarchical classification problems, labels from lower levels in the
hierarchy (finer-grained labels) can be harder to predict than labels in higher levels (coarse-
grained labels). The conventional metrics consider the misclassification costs independent
of the location of labels in the hierarchy. Moreover, in multi-label problems, the measures
do not consider that a sample may be classified with a subset of its true labels (CERRI et
al., 2015).

Considering the previously described context, specific metrics for hierarchical multi-
label classification problems have been proposed in the literature. According to Cerri
et al. (2015), these metrics can be sub-categorized into: (i) Hierarchy-Based Evaluation
measures; and (ii) Distance-Based evaluation measures. While the first ones are based
only on the hierarchical label structure, the second ones consider the distance between
the predicted and true label paths. The following sub-sections gives a general overview of
these hierarchical evaluation measures.

Chapter 2. Machine Learning 63

2.3.3.1 Hierarchy-Based Evaluation Metrics

When evaluating a classifier, the hierarchy-based metrics consider the ancestors
and descendants of the predicted labels. In the following, we present a brief review of the
existing hierarchical-based evaluation measures.

Hierarchical Precision and Recall

Based on the classic precision and recall metric, Kiritchenko, Matwin & Famili
(2004) proposed the hierarchical precision and hierarchical recall measures, in order to
consider the hierarchical relationships between labels. Even though the metrics were
proposed in 2004, they were only formally defined latter, in Kiritchenko, Matwin & Famili
(2005).

According to Cerri et al. (2015), the hierarchical precision/recall consider that a
sample belongs not only to its predicted labels but also to all its ancestor labels in the
hierarchy. Given a sample (xi, L

′
i), in which xi belongs to the space X of samples, L′i is the

set of predicted labels for xi, and Li is the set of true labels of xi, the sets Li and L
′
i can

be extended to contain their corresponding ancestor labels as L̂i = ⋃
lk∈Li

Ancestors(lk)
and L̂′i = ⋃

lm∈L
′
i
Ancestors(lm), where Ancestors(ck) denotes the set of ancestors of class

lk.

A

B

D

E

Root

F

C G H I

Figure 12 – Example of hierarchical precision and recall measure. The real labels are
marked in gray.

A

B

D

E

Root

F

C G H I

A

B

D

E

Root

F

C G H I

A

B

D

E

Root

F

C G H I

hP = 3/3 hR = 3/3 hP = 2/3 hR = 2/3 hP = 2/2 hR = 2/3

Figure 13 – Example of hierarchical precision and recall measure. The predicted labels are
marked in pink.

Chapter 2. Machine Learning 64

Equations 2.27 and 2.28 shows the hierarchical precision (hP) and recall (hR)
metrics, respectively. These measures count the correctly predicted labels, in conjunction
with the number of correctly predicted ancestor labels (KIRITCHENKO; MATWIN;
FAMILI, 2005). Figures 12 and 13 shows a visual example of how to calculate hP and hR.
While Figure 12 presents the true labels, Figure 13 shows three possible label paths that
were predicted for a given sample.

hP =
∑
i |L̂i

⋂
L̂
′
i|∑

i |L̂
′
i|

(2.27)

hR =
∑
i |L̂i

⋂
L̂
′
i|∑

i |L̂i|
(2.28)

As shown in Figure 13, all nodes from the root to the label pointed with the red
arrow were assigned to the sample, indicating that the ancestor labels of the predicted
label are also part of the label path. The values for hP and hR in the three different
prediction scenarios are shown below each tree in Figure 13 (CERRI et al., 2015).

Hierarchical F-Measure

Equation 2.29 shows the hierarchical F-Measure metric (named Hierarchical−Fβ),
which combines hR and hP, previously presented. In the equation, β represents the
importance assigned to the values of hP and hR. As the value of β increases, the weight
assigned to the value of hR also increases. On the other hand, when the value of β decreases,
the weight assigned to hP increases (CERRI et al., 2015).

Hierarchical − Fβ = (β2 + 1)× hP × hR
β2 × hP + hR

(2.29)

Hierarchical Loss Function

In Cesa-Bianchi, Gentile & Zaniboni (2006), the Hierarchical Loss Function, also
known as H-Loss, was proposed. The main idea of this metric is that a misclassification in
a label of the hierarchy should not penalize the sub-tree of this label. This means that,
when a missclassification occurs in a label l′j, the additional errors in the sub-tree with
root at l′j should not be considered. For instance, if a given classifier misclassifies a music
assigning it to the label “rock”, this same classifier should not be penalized again by
erroneously classifying it in the label “indie rock”.

Lets consider that the true labels of a given sample xi is any subset of the set L,
which is composed of all the labels from the hierarchy. In this context, the subset will
be represented as a vector (l1, ...,l|L|), where a label lj belongs to the subset of labels of

Chapter 2. Machine Learning 65

sample xi if and only if lj = 1. According to Cerri et al. (2015), before defining the H-Loss
function, we must define two measures regarding the discrepancy between a multi-label
prediction for xi(L

′ = (l′1, ..., l
′

|L|)), and the true set of labels of xi(L = (l1, ..., l|L|)), for
each sample: (i) The zero-one loss (l0/1(L,L′)), which is presented in Equation 2.30; (ii)
The symmetric difference loss (l∆(L,L′)), which is defined in Equation 2.31. Based on
these metrics, Cesa-Bianchi, Gentile & Zaniboni (2006) proposed the H-Loss function
(lH(L,L′)), which is presented in Equation 2.32. In these three equations, 1. is a function
used to return 1 if the provided equation is true and 0 otherwise.

l0/1(L,L′) = 1, if ∃j ∈ {1, ..., |L|} : lj 6= l
′

j (2.30)

l∆(L,L′) =
|L|∑
j=1

1{lj 6= l
′

j} (2.31)

lH(L,L′) =
|L|∑
j=1

1{lj 6= l
′

j ∧ Ancestors(lj) = Ancestors(l′j)} (2.32)

According to Cerri et al. (2015), the H-Loss metric leans on the idea that a
hierarchical structure G can be considered as a forest of trees based on the set of labels
belonging to the problem. Considering this, a multi-label classification L

′ ∈ {0, 1}|L|

respects the structure G only if L′ is the union of one or more paths from G, where each
path starts in a root and not necessarily ends in a leaf label. Thus, all the paths of G are
examined (from root to a leaf) and, when a label l′j is found, considering that in this case
l
′
j 6= lj, the value 1 is added to H-Loss and all predictions in the sub-trees rooted in this
label l′j are discarded.

(a) (b) (c) (d)

Figure 14 – Graphical representation of the H-Loss function (CERRI et al., 2015).

Figure 14, first proposed by Cesa-Bianchi, Gentile & Zaniboni (2006) and adapted
in Cerri et al. (2015), presents the basic concepts of the H-Loss metric. In the hierarchy
example, the round gray nodes represent the labels being predicted for a given sample,
while the squared gray nodes represent the true labels of this sample. It is important to
observe that in Figure 14(a), the labels predicted do not respect the hierarchical taxonomy

Chapter 2. Machine Learning 66

of G, since some parents labels were not predicted. On the other hand, in Figure 14(b),
the hierarchical taxonomy is respected. Moreover, Figure 14(c) presents the true labels
of the sample previously classified in Figure 14(b), and in Figure 14(d) is presented an
example of the H-Loss metric calculation schema, in which the classifications shown in
Figures 14(b) and 14(c) are considered. It can be noted that the nodes marked with “X”
are the only ones considered when computing the H-Loss. In this example, the zero-one
loss function will output the value 1, whilst the symmetric difference loss function will
output 6, and, as a final results of H-Loss, we will have the value 4.

2.3.3.2 Distance-Based Evaluation Metrics

This kind of metric takes into account that labels that are closer in the hierarchy are
usually similar to each other when compared to distant labels. Thus, classification errors
in which close labels are mixed up, should lead to smaller errors rates when compared to
confusions made between labels far from each other. In the following, we present a brief
review of the existing distance-based evaluation measures.

Micro/Macro Distance-Based Hierarchical Precision and Recall

In Sun & Lim (2001) the micro and macro hierarchical precision and recall metrics
are proposed. In general, these measures consider the distance between the true and the
predicted labels. For the macro hierarchical precision and recall, first we have to compute
the performance obtained in each label separately and then return the average of these
values for each metric. By its turn, in the micro hierarchical precision and recall metrics,
we compute the average of the performance obtained in each sample of a dataset.

It is necessary to define the contribution of the samples erroneously associated
to that label for each one of these metrics and label. According to Cerri et al. (2015),
the contribution is defined according to an acceptable distance (named as number of
edges (DisΘ)) between a predicted and a true label, which must be higher than zero. For
instance, when using the value DisΘ = 2, the samples that are “slightly” misclassified
give no contribution in the computation of the measures, while the samples that are
“seriously” misclassified contribute negatively to the values of the metrics. Equations 2.33
and 2.34 define the contribution of a sample xi to a label lj , where xi.agd and xi.lbd are the
predicted and true labels of xi, respectively. Moreover, Dis(l, l′j) is the distance between a
true label l and a predicted label l′j.

• If xi is a false negative:

Con(xi, l
′

j) =
∑

l∈xi.agd

(1.0−
Dis(l, l′j)
DisΘ

) (2.33)

Chapter 2. Machine Learning 67

• If xi is a false positive:

Con(xi, l
′

j) =
∑

l∈xi.lbd

(1.0−
Dis(l, l′j)
DisΘ

) (2.34)

Equation 2.35 defines the RCon(xi, l
′
j), which is a refinement of the contribution of

a sample xi that restricts its values with a range between [-1, 1].

RCon(xi, l
′

j) = min(1,max(−1, Con(xi, l
′

j)) (2.35)

Equations 2.36 and 2.37 defines the total contribution of false positives (FP)
(FpConj) and false negatives (FN) (FnConj), respectively.

FpConj =
∑

xi∈FPj

RCon(xi, l
′

j) (2.36)

FnConj =
∑

xi∈FNj

RCon(xi, l
′

j) (2.37)

Equations 2.38 and 2.39 define the hierarchical precision and recall for each label,
which are calculated after computing the contributions of each sample.

PrCDj = max(0, |TPj|+ FpConj + FnConj)
|TPj|+ |FPj|+ FnConj

(2.38)

ReCDj = max(0, |TPj|+ FpConj + FnConj)
|TPj|+ |FNj|+ FpConj

(2.39)

The values of hierarchical micro precision and recall are presented in equations
2.40 and 2.41, where m represents the number of labels. Depending on DisΘ, FpConj and
FnConj can assume negative values. Thus, in order to not let their value get lower than
zero, a max function is used into the numerators of Equations 2.40 and 2.41 (CERRI et
al., 2015).

P̂ r
µCD =

∑m
j=1max(0, |TPj|+ FpConj + FnConj)∑m

j=1 |TPj|+ |FPj|+ FnConj
(2.40)

R̂e
µCD =

∑m
j=1max(0, |TPj|+ FpConj + FnConj)∑m

j=1 |TPj|+ |FNj|+ FpConj
(2.41)

Equations 2.42 and 2.43 presents the hierarchical macro precision/recall metrics,
in which m is the number of labels.

P̂ r
MCD =

∑m
j=1 Pr

CD
j

m
(2.42)

Chapter 2. Machine Learning 68

R̂e
MCD =

∑m
j=1Re

CD
j

m
(2.43)

Such as hP and hP metrics, the hierarchical micro/macro precision and recall
metrics can also be combined to generate the Hierarchical − Fβ metric.

Calculating the Distances Between Classes

In order to determine the predictions of a given classifier, the micro/macro hierar-
chical precision/recall use the distances between two labels in the hierarchy. According to
Cerri et al. (2015), for the purpose of calculate the distances, the methods are generally
defined as a function of two components: (i) the number of edges between the predicted
label and the true label and (ii) the depth of the predicted and true label in the hierarchy.

According to Cerri et al. (2015), the standard of the metrics is to consider the
distance as the number of edges that separate the true and predicted labels. Besides,
weights can be assigned to each edge of the labels hierarchy, making the misclassification
between the predicted and true labels be the sum of the weights in the path.

Depending on the hierarchy structure of the problem, different approaches may be
used to compute the paths between labels. When the structure is a tree, there is only one
path between two labels. However, when dealing with a DAG structure, it is possible to
have more then one path between two labels, depending on the number of father labels of
each label. According to Cerri et al. (2015), in the final classification, it can be considered
two interpretations of the labels hierarchy: (i) if a sample belongs to a label lj, it belongs
to all father labels of lj; (ii) it belongs to at least one father label of lj.

2.4 Final Considerations

In this chapter we presented a brief review concerning the machine learning context.
Logical inference is one of the most used resources in the artificial intelligence to deal
with knowledge. In this work, since we are studying the classification task in specific, we
subdivided the logical inference into three main categories: Single-Label Classification,
Multi-Label Classification and Hierarchical Classification.

It is worth to mention that, while studying the machine learning concepts, we
have used the field known as Information Retrieval (IR) as a case study and we have also
published contributions to this research field in the 18th IEEE International Conference on
Multimedia and Expo (ICME) (PEREIRA; SILLA JR, 2017), in the 2019 International
Joint Conference on Neural Networks (IJCNN) (PEREIRA et al., 2019), in the Thirty-First
International Florida Artificial Intelligence Research Society Conference (VALERIO et al.,

Chapter 2. Machine Learning 69

2018) and in the Multimedia Tools and Applications (MANGOLIN et al., 2020).

Regardless of label taxonomy, the imbalanceness problem is present in all kinds of
datasets. In the single-label classification context, the problem is well-known and studied,
whilst in the multi-label classification context is still under investigation. In the next
chapter we present a general review concerning the imbalanceness factor in single and
multi-label classification contexts.

70

C
ha

pt
er

3 The Imbalanceness Factor

Usually the classifiers are focused in the minimization of the global error rate and
thus, when dealing with imbalance data, the algorithms tend to benefit the most frequent
classes. Most evaluation metrics may hide the incorrect classification of classes with few
samples. However, depending on the scenario, the main interest of the task could be properly
labelling these rare patterns. A lot of researchers face imbalanced class distribution issues,
mostly when working with real world datasets such as medical image classification (ARIAS
et al., 2016; BAI et al., 2019; ABDULRAZZAQ et al., 2019; PEREIRA et al., 2020),
detection and classification of acoustic scenes and events (MESAROS et al., 2018), anomaly
detection (AHMED; MAHMOOD; HU, 2016), credit card fraud detection (KUMAR et al.,
2015) and so on.

In the following sections we present explanations concerning how to evaluate the
classification results in a imbalanced dataset, metrics to measure the dataset imbalanceness,
and the most well-known techniques to resampling datasets in single-label (binary class or
multi-classes) and multi-label classification scenarios.

3.1 Evaluating the Classification Results in Imbalanced Scenarios

The performance of machine learning algorithms is typically evaluated using the
classic predictive accuracy. However, this is not appropriate when the data is imbalanced
and/or the costs of different errors vary markedly.

As an example, lets consider the classification of pixels in mammogram images
as possibly cancerous, as studied in Woods et al. (1993). A mammography dataset may
have 98% normal pixels and 2% abnormal pixels. The most simple approach, in which
the majority class is guessed, will give an accuracy of 98%. However, the nature of the
application requires a fairly high rate of correct detection precisely in the minority class,
even allowing a small error rate in the majority class in order to achieve this. In this kind
of situation, the predictive accuracy is surely not appropriate (CHAWLA et al., 2002).

There are some alternative metrics that can be used in these cases to predict the
classification results considering the data imbalanceness. In general, these measures should
present a balanced result between precision and recall scores, showing that the classifier is

Chapter 3. The Imbalanceness Factor 71

not only correctly predicting a certain class X, but also not making mistakes by classifying
Y samples as X.

Considering this context, according to Davis & Goadrich (2006), one of these
measures is the Area Under the Precision-Recall Curve (AUPRC), which is more in-
formative when there is a high-class imbalance in the dataset. Moreover, according to
Goutte & Gaussier (2005), another well-known measure that can be used to consider the
imbalanceness of the different labels is the F-Score.

3.2 Dealing with Imbalanceness

In order to answer this question, it is necessary to understand and define how the
instances are arranged in the dataset. If the dataset is modeled as a binary classification
problem, then the imbalanceness problem may be identified if one class, named majority
class, has much more instances than the other class (the minority class). A binary dataset
with a class proportion of 75/25, for example, may be considered an unbalanced dataset.

According to Fernández et al. (2013), a large number of approaches have been
proposed to deal with imbalanceness in binary classification problems, which can be mainly
sub-categorized into three groups:

• Data level solutions: Their objective is to re-balance the class distribution by creating
and/or removing instances from the dataset to diminish the effect of the class
imbalanceness, i.e., pre-process the dataset before the training phase (HART, 1968;
CHAWLA et al., 2002; MANI; ZHANG, 2003; BATISTA; PRATI; MONARD,
2004; HAN; WANG; MAO, 2005; STEFANOWSKI; WILK, 2008; HE et al., 2008;
BUNKHUMPORNPAT; SINAPIROMSARAN; LURSINSAP, 2009; NAPIERAŁA;
STEFANOWSKI; WILK, 2010).

• Algorithmic level solutions: This type of solution modifies the classifier to reinforce the
learning towards the minority class. Unlike the data-level solutions, the algorithmic
solutions do not make any modifications in the class distribution and, although are
classifier dependent, are adaptable to the dataset (ZADROZNY; ELKAN, 2001;
BARANDELA et al., 2003; DIAMANTINI; POTENA, 2009; GARCÍA-PEDRAJAS
et al., 2012; CIESLAK et al., 2012).

• Cost-sensitive solutions: In these solutions, instead of correctly or incorrectly classify-
ing each sample, each class is associated with a misclassification cost. Thus, instead
of optimizing the accuracy, the task is to minimize the total misclassification cost
(DOMINGOS, 1999; TING, 2002; ZADROZNY; LANGFORD; ABE, 2003; SUN et
al., 2007; ZHAO, 2008; ZHOU; LIU, 2010).

Chapter 3. The Imbalanceness Factor 72

As the most well-known and used techniques to solve the imbalanceness issue and
the focus of our research, the resampling methods are the main object of study in the next
sections.

The resampling methods can be subdivided in two categories: Oversampling and
Undersampling, which are used to adjust the class distribution of a dataset, i.e., the ratio
between the different classes in the dataset. While in an undersampling method some
instances from the majority class are removed in order to balance the samples distribution,
in an oversampling technique, some instances from the minority class are duplicated or
synthetically created in order to balance the distribution.

In a certain way, the resampling techniques (oversampling and undersampling) can
be considered opposite and roughly equivalent, since both methods use a bias to select
more samples from one class than another.

Original unbalanced dataset

Resampled dataset A Resampled dataset B

Undersample the
Majority Class

Oversample the
Minority Class

Majority Class
Minority Class

Figure 15 – Different classes distribution in a binary labeled dataset.

Figure 15 shows three different classes distribution in a typical binary dataset: (1)
The original unbalanced dataset; (2) The resulting dataset after applying a undersampling
over the majority class (Resampled dataset A); (3) The resulting dataset after applying a
oversampling over the minority class (Resampled dataset B).

Altought the resampling solutions were first defined and implemented in binary
class distribution scenarios, we may apply them to multi-class imbalanceness problems as
well. According to Wang & Yao (2012), in order to apply these solutions in multi-class
scenarios, most attention in the literature was devoted to class decomposition, i.e., the
conversion of a multi-class problem into a set of binary class sub-problems. Fernández
et al. (2013) describes two common decomposing schemas: The One-versus-One and the
One-versus-All approaches.

Chapter 3. The Imbalanceness Factor 73

The One-versus-One (O-V-O) technique, also known as One-Against-One (O-A-O)
and first proposed in Hastie & Tibshirani (1998), tries to train a classifier for each possible
pair of classes, ignoring the examples that do not belong to the related classes. When
classifying instances, a query is submitted to all binary models, and the predictions of
these models are combined into an overall classification. An example of this binarization
technique is depicted in Figure 16(a).

On the order hand, the One-versus-All (O-V-A) approach, also known as One-
Against-All (O-A-A) and introduced by Rifkin & Klautau (2004), builds a single classifier
for each of the classes of the problem, considering the examples of the current class to be
positives and the remaining instances negatives. An example of this binarization technique
is depicted in Figure 16(b).

(a) One-versus-One approach. (b) One-versus-All approach.

Figure 16 – Example of the binarization techniques for a 3-class problem (FERNÁNDEZ
et al., 2013).

3.3 Classic Resampling Techniques

As stated in the previous section, the single-label or classic resampling techniques
can be further subcategorized into three groups: (1) Undersampling methods that create a
subset of the original dataset by eliminating some of the examples of the majority class;
(2) Oversampling methods that create a superset of the original data-set by replicating
some of the examples of the minority class or creating new ones from the original minority
class instances; (3) Hybrid methods that combine the two previous methods, eliminating
some of the examples before or after resampling, in order to reduce overfitting.

Chapter 3. The Imbalanceness Factor 74

The next subsections are aimed to describe methods belonging to these categories,
with figurative examples and pseudocodes. The figure examples represent graphical exam-
ples of the samples from a certain dataset before and after applying the given resampling
method. The example dataset is composed of two labels (blue and red) and two features
(represented by axis y and x).

3.3.1 Undersampling Algorithms

The previous described, the following methods create a subset of the original dataset
by eliminating samples from the majority class.

Random Undersampling

The Random Undersampling (RUS) is the most common undersampling techniques
in the literature and was proposed in Batista, Prati & Monard (2004). Usually considered
as baseline results, its main idea is to balance the dataset class distribution by randomly
removing samples from the majority class. While Figure 17 shows a graphical example of
dataset before and after applying the RUS method, Algorithm 6 presents the pseudocode
for RUS. In the pseudocode, the Dataset D is duplicated to D’ and P percent of the
samples belonging to the majority class are randomly removed.

(a) Original Dataset. (b) After applying RUS.

Figure 17 – Example of Undersampling technique.

Tomek Links

Given two samples Ei and Ej belonging to different classes, lets consider d(Ei, Ej)
the distance between them. A pair (Ei, Ej) is called a Tomek Link if there is no other
sample El, such that d(Ei, El) < d(Ei, Ej) or d(Ej, El) < d(Ei, Ej) (BATISTA; PRATI;
MONARD, 2004). Figure 18 shows a graphical example of Tomek Link identification for a
dataset with a binary classification problem, in which the Tomek Link pairs are identified
with green circles.

Chapter 3. The Imbalanceness Factor 75

Algorithm 6 Random Undersampling (adapted from Batista, Prati & Monard (2004))
Inputs: D: Dataset to resample, P : Percentage of samples to delete, Cmaj : Majority Class
Output: D′ : The resampled dataset
1: D

′ ← copyOf(D)
2: smaj ← samples from Cmaj
3: samplesToDelete ← (P/100)× |smaj|
4: while samplesToDelete > 0 do
5: x← random(smaj)
6: D

′ ← D
′ − x

7: smaj ← smaj − x
8: samplesToDelete ← samplesToDelete - 1
9: end while

10: return D
′

(a) Original Dataset. (b) Tomek Links.

Figure 18 – Classic Tomek Link Identification.

According to Batista, Prati & Monard (2004) Tomek Links could be used as an
undersampling technique or as a cleaning post-process step. If used as the first one, only
the samples from the majority class identified as Tomek Link pairs are removed, otherwise
both samples are removed. Figure 19 shows the datasets resulted from the application of
Tomek Link as a Undersampling approach (Figure 19(a)) or as a cleaning method (Figure
19(b)), both over the same dataset from Figure 18. Algorithm 7 shows the Tomek Link
undersampling technique. In the pseudocode, the set o Tomek Link samples (identified as
TL) is identified and removed from the dataset D, generating the resampled dataset D’.

The reason to use Tomek Link as a post-process clean step leans on the fact that,
after applying an oversampling method, frequently the classes groups are not well defined.
Some samples from the majority class may be invading the minority class space.

NearMiss

Mani & Zhang (2003) proposed the use of techniques named NearMiss, which has
three different variants: 1, 2 and 3. All versions perform undersampling of samples in the

Chapter 3. The Imbalanceness Factor 76

(a) Undersampling. (b) Cleaning.

Figure 19 – Tomek Link’s types of use.

Algorithm 7 Tomek Link Undersampling (adapted from Batista, Prati & Monard (2004))
Inputs: D: Dataset to resample, Cmaj: Majority Class
Output: D′ : Resampled dataset
1: TL ← empty set of samples
2: checkedSamples ← empty set of samples
3: smaj ← samples from Cmaj
4: for each sample si in smaj do
5: if (si in checkedSamples) then
6: continue
7: end if
8: NN ← nearestNeighbor(si)
9: checkedSamples ← checkedSamples ∪ si
10: if (NN[class] 6= si[class]) then
11: TL ← TL ∪ si
12: end if
13: end for
14: D

′ ← empty dataset
15: for each sample sj in D do
16: if (sj not in TL) then
17: D′ ← D′ ∪ sj
18: end if
19: end for
20: return D

′

Chapter 3. The Imbalanceness Factor 77

majority class based on their distance to other instances from the same class.

(a) Original Dataset. (b) After applying NearMiss-1.

(c) After applying NearMiss-2. (d) After applying NearMiss-3.

Figure 20 – Example of NearMiss undersampling technique.

In NearMiss-1, the samples retained from the majority class are those in which
their mean distance to their k-nearest neighbors in the minority class is the lowest. On the
other hand, NearMiss-2 keeps the samples from the majority class whose mean distance
to the k-farthest instances in the minority class is lowest. The last variant, NearMiss-3,
selects the k-nearest neighbors from the majority class for every sample in the minority
class. While in NearMiss-1 and NearMiss-2 k is a tunable hyperparameter, in NearMiss-3,
k is directly used to control the undersampling ratio.

Figure 20 shows an example of the use of the three NearMiss techniques in a
unbalanced dataset with binary classes. We may observe that all NearMiss techniques
cause huge samples reductions in the original dataset.

Moreover, Algorithm 8 presents a pseudocode for the NearMiss techniques. The
three versions are grouped in the same pseudocode, since the V parameter is used as an
input to choose between the versions. In the Algorithm, the function seldistbased is used
to select the samples which will remain in the dataset D based on a vector of distances
(distvec), which is calculated for each sample in the majority class.

Chapter 3. The Imbalanceness Factor 78

Algorithm 8 NearMiss Undersampling (adapted from Mani & Zhang (2003))
Inputs: D: Dataset to resample, Cmin: The minority class, Cmaj: The majority class,
k: The number of Neighbors, V: Algorithm version (1, 2 or 3)
Output: D′ : Resampled dataset
1: smaj ← samples from Cmaj
2: n_samp_maj ← number of samples in smaj
3: smin ← samples from Cmin
4: n_samp_min ← number of samples in smin
5: if V = 1 then
6: dist_vec ← KNearestNeighbors(smaj, k)
7: D

′ ← sel_dist_based(D, dist_vec, n_samp_maj, Cmaj, “nearest”)
8: else
9: if V = 2 then

10: dist_vec, sampselect ← KFarthestNeighbors(smin, k)
11: D

′ ← sel_dist_based(sampselect, dist_vec, n_samp_maj, Cmaj, “farthest”)
12: else
13: if V = 3 then
14: dist_vec ← KNearestNeighbors(smaj, k, n_samp_min)
15: D

′ ← sel_dist_based(D, dist_vec, n_samp_maj, Cmaj, “nearest”)
16: end if
17: end if
18: end if
19: return D

′

Condensed Nearest Neighbor

The Condensed Nearest Neighbor (CNEN) was firstly proposed in Hart (1968). Its
main objective is to undersample the dataset by choosing a subset of the training set much
more representative then the full dataset. This technique guarantees that all instances in
the training set will have the same classification with CNEN and the original dataset, and
that the new training set will be no larger than the original.

(a) Original Dataset. (b) After applying CNEN.

Figure 21 – Example of CNEN undersampling technique.

Figure 20 presents an example of application of CNEN method over an unbalanced

Chapter 3. The Imbalanceness Factor 79

dataset, while Algorithm 9 presents a pseudocode for the technique. In the pseudocode,
the set of CNEN samples are obtained from the dataset D and the resampled dataset D’
is generated by coping the samples which are not present in the CNEN set.

Undersampling with CNEN can be slower if compared with other methods, once it
requires a lot of passages over the training data. Due to the randomness envolved in the
selection of the points in each iteration, the selected subset can vary significantly.

Algorithm 9 Condensed Nearest Neighbor Undersampling (adapted from Hart (1968))
Inputs: D: Dataset to resample
Output: D′ : Resampled dataset
1: x ← a random instance from D
2: CNEN ← {x}
3: additions ← true
4: while additions is true do
5: additions ← false
6: for each sample si in D do
7: classify si with samples in CNEN
8: if si is incorrectly classified then
9: CNEN ← CNEN ∪ si
10: additions ← true
11: end if
12: end for
13: end while
14: D

′ ← empty set of samples
15: for each sample sj in D do
16: if sj not in CNEN then
17: D

′ ← D
′ ∪ sj

18: end if
19: end for
20: return D

′

Edited Nearest Neighbor

The Edited Nearest Neighbor (ENN) was proposed in Wilson (1972), the under-
sampling of the majority class is made by removing the instances in which its label differs
from the most of its nearest neighbors.

There is a extension of the ENN named Repeated Edited Nearest Neighbours
(RENN), presented in Tomek (1976). In this algorithm the ENN is applied successively
until ENN cannot remove anymore instances. Figure 22 shows examples of a binary dataset
before and after applying the ENN and RENN techniques.

Algorithm 10 shows ENN method. In this pseudocode, the variable “kind_selection”
represents the strategy to use in order to exclude samples. If "all" is chosen, all neighbours
will have to agree with the samples of interest to not be excluded. However, if “mode” is

Chapter 3. The Imbalanceness Factor 80

(a) Original Dataset.

(b) After applying ENN. (c) After applying RENN.

Figure 22 – Example of ENN/RENN undersampling techniques.

selected, the majority vote of the neighbours will be used in order to exclude a sample.

Cluster Centroids

Proposed by Yen & Lee (2009), Cluster Centroids (CC) perform undersampling
by generating centroids based on clustering methods. This method that undersamples
the majority class by replacing a cluster of majority samples by the cluster centroid of
a KMeans algorithm. This algorithm keeps N majority samples by fitting the KMeans
algorithm with N cluster to the majority class and using the coordinates of the N cluster
centroids as the new majority samples.

While Figure 23 presents a visual example of the application of CC in a unbalanced
dataset, Algorithm 11 shows the pseudocode for the CC technique. The pseudocode uses a
KMeans function to select the clusters centers in the dataset D and a generate_sample
function to create the new resampled dataset D’ based on these clusters.

Chapter 3. The Imbalanceness Factor 81

Algorithm 10 Edited Nearest Neighbor Undersampling (adapted from Tomek (1976))
Inputs: D: Dataset to resample, Cmaj: The majority class, sel_kind: Strategy used to
exclude the samples, k: Number of neighbors
Output: D′ : Resampled dataset
1: D

′ ← empty set of samples
2: smaj ← samples from Cmaj
3: for each sample si in smaj do
4: neighbors ← kNearestNeighbors(D, si, k)
5: if sel_kind = “mode” then
6: neigh_labels ← getLabelSet(neighbors)
7: freq_label ← mostFrequentValue(neigh_labels)
8: selected_samples ← selectSamples(D, neighbors, freq_label)
9: else

10: if sel_kind = “all” then
11: ref_label ← si[class]
12: selected_samples ← selectSamples(D, neighbors, ref_label)
13: end if
14: end if
15: D

′ ← D
′∪ selected_samples

16: end for
17: return D

′

(a) Original Dataset. (b) After applying CC.

Figure 23 – Example of CC undersampling technique.

Algorithm 11 Cluster Centroids Undersampling (adapted from Yen & Lee (2009))
Inputs: D: Dataset to resample, Cmaj: The majority class
Output: D′ : Resampled dataset
1: D

′ ← empty set of samples
2: n_samples ← number of samples in Cmaj
3: cluster_centers ← KMeans(n_samples)
4: D

′ ← generate_sample(D, cluster_centers, Cmaj)
5: return D

′

Chapter 3. The Imbalanceness Factor 82

Neighbourhood Cleaning Rule

The Neighbourhood Cleaning Rule (NCL) (LAURIKKALA, 2001) can be considered
a modification of ENN, in which the role of data cleaning is increased. The NCL consists
of two phases. The first one is focused in identifying the noisy data from the majority
class and removing them by using the ENN method. The second consists into removing
samples from the majority class which are misclassified by their k-nearest neighbors.

(a) Original Dataset. (b) After applying NCL.

Figure 24 – Example of NCL undersampling method.

Figure 24 presents a visual example of the application of Neighbourhood Cleaning
Rule in a unbalanced dataset, and Algorithm 12 shows the pseudocode for the Neighbour-
hood Cleaning Rule technique. In the pseudocode, the two phases are represented with
the set of samples P1 and P2, which obtain the samples to remove from the dataset D
following the previously described reasoning.

All-kNN

All-kNN was proposed in Tomek (1976), and it can also be used as an undersampling
method. The idea is to delete the instances from the majority classes if a k-NN classifier
misclassifies it. The technique proposes the use with a k parameter, which will be used in
the algorithm to build different neighborhoods ranging from 1 to k neighbors.

While Figure 25 presents a visual example of the application of All-KNN in a
unbalanced dataset, Algorithm 13 shows the a pseudocode for the All-KNN method. In
the pseudocode, the set of samples misclassified by its k-nearest neighbors are grouped in
the set R, which is used to filter the dataset D into D’ later in the algorithm.

Chapter 3. The Imbalanceness Factor 83

Algorithm 12 Neighbourhood Cleaning Rule Undersampling (adapted from (LAU-
RIKKALA, 2001))
Inputs: D: Dataset to resample, Cmaj: The majority class, Cmin: The minority class,
k: The number of neighbors
Output: D′ : Resampled dataset
1: smaj ← samples from Cmaj
2: smin ← samples from Cmin
3: P1 ← EditedNearestNeighbors(smaj)
4: P2 ← empty set of samples
5: for each class Ci in smaj do
6: for each x ∈ Ci do
7: y ← kNearestNeighbors(x, k)
8: misclas ← samples y that missclasifies x
9: if (misclas not empty) and (|Ci| ≥ 0.5× |smin|) then

10: P2← x ∪ P2
11: end if
12: end for
13: end for
14: D

′ ← D − (P1 ∪ P2)
15: return D

′

(a) Original Dataset. (b) After apply AKNN.

Figure 25 – Example of All-KNN undersampling method.

Chapter 3. The Imbalanceness Factor 84

Algorithm 13 All-KNN Undersampling (adapted from Tomek (1976))
Inputs: D: Dataset to resample, NN : The number of neighbors, Cmaj : The majority class
Output: D′ : Resampled dataset
1: R, D′ ← empty set of samples
2: smaj ← samples from Cmaj
3: for each sample si in smaj do
4: for k ← 1 to NN do
5: neighbors ← kNearestNeighbors(si, k)
6: if si[class] 6= mostFreqLabel(neighbors) then
7: R ← R ∪ si
8: end if
9: end for
10: end for
11: for each sample sj in D do
12: if sj not in R then
13: D

′ ← D
′ ∪ sj

14: end if
15: end for
16: return D

′

3.3.2 Oversampling Algorithms

The following methods create new sets of samples from the original dataset by
duplicating instances from the minority classes or creating new synthetic samples.

Random Oversampling

Random Oversampling (ROS) is the most common oversampling techniques in the
literature and was proposed in Batista, Prati & Monard (2004). Usually considered as
baseline results, the main idea is to balance the dataset class distribution by randomly
duplicating instances from the minority class.

Algorithm 14 shows the pseudocode for ROS technique. For this resampling algo-
rithm, we do not present a visual example of the feature space modifications. Since the
method just duplicate samples from the minority class, these samples are overlapped in
the feature space, thus they cannot be viewed in the visual example.

It is important to observe that ROS method may increase the probability of overfit-
ting in the classification, since it produces exact copies of samples from the minority classes.
The problem may happen if the classifier is induced to learn only from the duplicated
instances.

Chapter 3. The Imbalanceness Factor 85

Algorithm 14 Random Oversampling (adapted from Batista, Prati & Monard (2004))
Inputs: D: Dataset to resample, P : Percentage of samples to increase, Cmin: Minority
Class
Output: D′ : The resampled dataset
1: D

′ ← copyOf(D)
2: smin ← samples from Cmin
3: samplesToClone ← (P/100)× |smin|
4: while samplesToClone > 0 do
5: x← random(smin)
6: newSample ← cloneSample(x)
7: D

′ ← D
′∪ newSample

8: samplesToClone ← samplesToClone - 1
9: end while

10: return D
′

SMOTE

The Synthetic Minority Oversampling Technique (SMOTE) is one of the most
important and used resampling methods from the literature (CHAWLA et al., 2002).
The approach is inspired by a technique that proved successful in handwritten character
recognition (HA; BUNKE, 1997). SMOTE proposes the creation of new synthetic samples
from the minority classes by interpolation nearest instances.

According to the quantity of new samples to be created, some of the k nearest
neighbors are randomly chosen. By default SMOTE uses five nearest neighbors. In Figure
26 we exemplify the interpolation process, considering that xi is the selected point/sample,
xi1 to xi4 are the nearest neighbors and ri1 to ri4 are the synthetic points/samples created
by the randomly interpolation.

x
i2

 r
2

x
i1

x
i3

x
i4

r
1

r
3

r
4

x
i

Figure 26 – Example of SMOTE interpolation to create the synthetic samples (RAMEN-
TOL et al., 2012).

Synthetic samples are created using the following criteria: Calculate the difference

Chapter 3. The Imbalanceness Factor 86

between the characteristics vector from the analyzed sample and its nearest neighbor.
Multiply this difference by a random value between 0 and 1, add this result to the
characteristic vector in analysis. This causes the selection of a new sample between the
segment line of two specific characteristics. This approach forces the class decision region
to become more widespread.

Lets consider a sample S = (6, 2) and N = (4, 3) as its nearest neighbor. In
this example, S is the sample in which k nearest neighbors are being identified. Then,
considering a function fij where i is the sample identifier (1 for sample S and 2 for sample
N) and j is the feature identifier (1 for feature x and 2 for feature y), we can calculate
the synthetic sample as:

f11 = 6
f21 = 4

→ f21 − f11 = −2 (3.1)

f12 = 2
f22 = 3

→ f22 − f12 = 1 (3.2)

Considering the calculations above and that rand(0-1) generates a random number
between 0 and 1, the new sample will be generated as follows:

(f ′1, f
′

2) = (6, 4) + rand(0− 1)× (−2, 1) (3.3)

According to Chawla et al. (2002) the synthetic examples cause the classifier to
create larger and less specific decision regions, rather than smaller and more specific regions.
More general regions are now learned for the minority class samples rather than those
being subsumed by the majority class samples around them. The effect is that decision
trees usually makes a more robust generalization.

While Algorithms 15 and 16 presents the pseudocodes for SMOTE technique,
Figure 27 presents a visual example of applying SMOTE over an unbalanced dataset.

SMOTE Borderline

In order to improve the prediction, often the classification algorithms try to learn
the borderline of each class as much as possible during the training process. According to
Han, Wang & Mao (2005), the examples on the borderline and the ones nearby are more
likely to be misclassified than the ones far from the borderline. Considering this context,
samples from the borderlines can be considered more important for the classification than
the samples far from theses borderlines. Considering this issue, Han, Wang & Mao (2005)

Chapter 3. The Imbalanceness Factor 87

(a) Original Dataset. (b) After applying SMOTE.

Figure 27 – Example of SMOTE oversampling technique.

Algorithm 15 SMOTE Oversampling (adapted from (CHAWLA et al., 2002))
Inputs: D: The dataset to resample, Cmin: The minority class, P : Percentage of samples
to increase, NN : The number of neighbors to consider
Output: D′: The resampled dataset
1: Nmin ← Number of samples from Cmin
2: if P < 100 then
3: Randomize the Nmin samples from the minority class
4: Nmin ← (P/100) × Nmin

5: P ← 100
6: end if
7: NS ← (int)(P/100)
8: numattrs ← Number of attributes
9: samples ← Array with the original samples from the minority class

10: newindex ← Counter of the number of synthetic samples generated (initialized with 0)
11: synthetics ← Vector of synthetic samples
12: for i ← 1 to Nmin do
13: calculate NN nearest neighbors for i and save the index in nnarray
14: Populate(NS, i, nnarray, samples, synthetics, newindex)
15: end for
16: D′ ← copyOf(D) ∪ synthetic
17: return D′

Chapter 3. The Imbalanceness Factor 88

Algorithm 16 SMOTE-Populate (adapted from (CHAWLA et al., 2002))
Inputs: D: The dataset to resample, NS: Number of sampes to increase, NN : The
number of neighbors to consider, samples: Array of samples from minority class, i: Sample
index, nnarray: A array of the neighbors indexes, synthetics: Array of synthetic samples
created, newindex: Index for the new synthetic samples
1: while NS 6= 0 do
2: Choose a random number between 1 and NN and name it rand.
3: for attr ← 1 to numattrs do
4: diff ← samples[nnarray[rand]][attr] - samples[i][attr]
5: gap ← random number between 0 and 1
6: synthetics[newindex][attr] ← sample[i][attr] + gap × diff
7: end for
8: newindex ← newindex + 1
9: NS ← NS - 1

10: end while

presented two adaptation to the classic SMOTE algorithm: SMOTE Borderline-1 and
SMOTE Borderline-2. In these techniques, only the samples from the minority class that
belongs to the borderlines of the feature space are oversampled by creating new synthetic
samples.

(a) Original Dataset.

(b) After applying SMOTE Borderline-1. (c) After applying SMOTE Borderline-2.

Figure 28 – Example of SMOTE-Borderline oversampling techniques.

Chapter 3. The Imbalanceness Factor 89

A possible SMOTE Borderline-1 pseudocode is given in Algorithm 17. In this pseu-
docode, the DANGER set represents the samples identified in the borderline that may be
used to generate the synthetic samples. SMOTE Borderline-2 not only generates synthetic
examples from each example in DANGER and its nearest neighbors from minority class in
P, but also does that from its nearest neighbor from majority class in N. The difference
between it and its nearest negative neighbor is multiplied by a random number between 0
and 0.5, making the new synthetic sample closer to the minority class. Figure 28 presents
a visual example of applying SMOTE Borderline (1 and 2) over an unbalanced dataset.

Algorithm 17 SMOTE Borderline-1 Oversampling (adapted from Han, Wang & Mao
(2005))
Inputs: D: The dataset to resample, Cmin: The minority class,m: The number of neighbors
to consider
Output: D′: The resampled datasets
1: smin ← instances from the Cmin
2: DANGER ← empty set
3: for each pi in smin do
4: nn ← nearestNeighbors(pi, m)
5: m

′ ← Number of majority examples among nn (0 ≤ m
′ ≤ m).

6: if m′ = m then
7: pi is considered a noise and is not operated in the following steps
8: end if
9: if 0 ≤ m

′
< m/2 then

10: pi is safe and do not needs to participate in the follows steps
11: end if
12: if m/2 ≤ m

′
< m then

13: pi is considered to be easily misclassified
14: DANGER ← pi
15: end if
16: end for
17: for each sample in DANGER do
18: calculate its k nearest neighbors from smin
19: generate dnum× s synthetic samples from the data in DANGER
20: for each pi in smin do
21: randomly select s nearest neighbors from its k nearest neighbors in smin.
22: calculate the differences, difj(j = 1, 2, ..., s) between p′i and its s neighbors
23: multiply difj by a random number rj(j = 1, 2, ..., s) between 0 and 1
24: D ← D ∪ new synthetic sample generated between p′i and its neighbors
25: end for
26: end for
27: D

′ ← copyOf(D)
28: discard all changes in D
29: return D

′

Chapter 3. The Imbalanceness Factor 90

Safe-Level SMOTE

According to Bunkhumpornpat, Sinapiromsaran & Lursinsap (2009), SMOTE faces
the problem of over-generalization because it blindly generalizes the region of the minority
class without considering the majority class. In order to solve this issue, Safe-Level SMOTE
attribute to each instance of the minority class a level of security called safe level before
generating synthetic instances. Each synthetic instance is positioned as close as possible
to the highest level of security so that all synthetic instances are generated only in secure
regions (BUNKHUMPORNPAT; SINAPIROMSARAN; LURSINSAP, 2009). Figure 29
presents a visual example of applying the Safe-Level SMOTE over an unbalanced dataset.

(a) Original Dataset. (b) After applying Safe-Level SMOTE.

Figure 29 – Example of Safe-Level SMOTE oversampling technique.

The Safe-Level-SMOTE method can be see in Algorithm 18. In the pseudocode, p
represents the set of original minority class samples from D, n is the nearest neighbours of
p, s is the synthetic sample from the minority class, slp and sln are safe level of p and safe
level of n respectively, and D′ is the resampled dataset D.

SPIDER

The Selective Preprocessing of Imbalanced Data (SPIDER) method was first
introduced in Stefanowski & Wilk (2008). The idea is to use “internal characteristic” of
the samples to drive their preprocessing. Two types of instances are distinguished: noisy
and safe. Safe instances should be correctly classified by a constructed classifier, while
noisy ones are likely to be misclassified and require special processing. The sample type
is discovered by applying the Nearest Neighbor Rule (NNR) in conjunction with the
Heterogeneous Value Distance Metric (HVDM). According to the authors, an instance is
safe if it is correctly classified by its k-Nearest Neighbors, otherwise it is noisy. Figure 30
presents a visual example of the application of SPIDER in a unbalanced dataset.

In Algorithm 19 is presented the SPIDER technique. For this algorithm, the
flags safe and noisy indicate appropriate types of samples. Moreover, the function

Chapter 3. The Imbalanceness Factor 91

Algorithm 18 Safe-Level-SMOTE Oversampling (adapted from Bunkhumpornpat,
Sinapiromsaran & Lursinsap (2009))
Inputs: D: The dataset to resample, k: The number of neighbors to conside
Output: D′ : The resampled dataset
1: D

′ ← empty set
2: for each positive sample p in D do
3: compute the k nearest neighbours for p and randomly select one of them, call it n.
4: slp ← the number of positive instances in k nearest neighbours for p in D
5: sln ← the number of positive instances in k nearest neighbours for n in D
6: if sln 6= 0 then
7: sl_ratio ← slp/sln
8: else
9: sl_ratio ←∞

10: end if
11: if sl_ratio =∞ and slp = 0 then
12: does not generate positive synthetic instance
13: else
14: for atti = 1 to numattrs do
15: if sl_ratio =∞ and slp = 0 then
16: gap ← 0
17: end if
18: if sl_ratio = 1 then
19: gap ← randomize(0, 1)
20: end if
21: if sl_ratio > 1 then
22: gap ← randomize(0, 1/sl_ratio)
23: end if
24: if (sl_ratio < 1 then
25: gap ← randomize(1-sl_ratio, 1)
26: end if
27: dif ← n[atti] - p[atti]
28: s[atti] ← p[atti] + gap × dif
29: end for
30: D

′ ← D
′∪ {s}

31: end if
32: end for
33: return D

′

classify_knn(x, k) is used to retrieve the result of classifying the sample x using its
k-Nearest Neighbors and knn(x, k, c, f) is used for a set of these examples among k-
Nearest Neighbors of x that belong to class c and are flagged as f.

SPIDER-2

In Napierała, Stefanowski & Wilk (2010) proposed a modified version of the
classic SPIDER technique, named SPIDER-2. This new version consisted of two phases

Chapter 3. The Imbalanceness Factor 92

Algorithm 19 SPIDER Oversampling (adapted from Stefanowski & Wilk (2008))
Inputs: D: The dataset to resample, Cmin: The minority class, Cmaj: The majority class
Output: D′ : The resampled dataset
1: for each x ∈ Cmaj ∪ Cmin do
2: if classify_knn(x, 3) is correct then
3: flag x as safe
4: else
5: flag x as noisy
6: end if
7: end for
8: D ← all y ∈ Cmaj and flagged as noisy
9: if weak amplification then

10: for each x ∈ Cmin and flagged as noisy do
11: amplify x by creating its ‖knn(x, 3, Cmaj, safe)‖ copies
12: end for
13: else
14: if weak amplification and relabeling then
15: for each x ∈ Cmin and flagged as noisy do
16: amplify x by creating its ‖knn(x, 3, Cmaj, safe)‖ copies
17: end for
18: for each x ∈ Cmin and flagged as noisy do
19: for each y ∈ knn(x, 3, Cmaj, noisy) do
20: relabel y by changing its class from Cmaj to Cmin
21: remove y from D
22: end for
23: end for
24: else
25: for each x ∈ Cmin and flagged as safe do
26: amplify x by creating its ‖knn(x, 3, Cmaj, safe)‖ copies
27: end for
28: for each x ∈ Cmin and flagged as noisy do
29: if classify knn(x, 5) is correct then
30: amplify x by creating its ‖knn(x, 3, Cmaj, safe)‖ copies
31: else
32: amplify x by creating its ‖knn(x, 5, Cmaj, safe)‖ copies
33: end if
34: end for
35: end if
36: end if
37: remove all y ∈ D
38: D

′ ← copyOf(D)
39: discard all changes in D
40: return D

′

Chapter 3. The Imbalanceness Factor 93

(a) Original Dataset. (b) After applying SPIDER.

Figure 30 – Example of SPIDER oversampling method.

corresponding to the preprocessing of Cmaj (the majority class) and Cmin (the minority
class), respectively.

The first phase identifies the characteristics of Cmaj samples and, depending on the
label exchange option, can remove or change the label of the Cmaj noisy samples (changing
its classification to Cmin). In the second phase, it identifies the characteristics of the Cmin
samples considering the changes introduced in the first phase. Then, noisy samples of Cmin
are amplified (by replicating them) according to a ampl option.

The two-phase structure is the main difference between SPIDER-2 and SPIDER,
which first identifies the nature of the samples and then simultaneously processes Cmaj and
Cmin. Figure 31 presents a visual example of the application of SPIDER-2 in a unbalanced
dataset.

(a) Original Dataset. (b) After applying SPIDER-2.

Figure 31 – Example of SPIDER-2 oversampling method.

Algorithm 20 shows the SPIDER-2 method step-by-step. In the pseudocode was
used the following auxiliary functions: correct(S, x, k) – classifies example x using its
k-nearest neighbors in set S and returns true or false for correct and incorrect classification
respectively; class(S, c) – returns a subset of examples from S that belong to class c;

Chapter 3. The Imbalanceness Factor 94

flagged(S, c, f) – returns a subset of examples from S that belong to class c and are flagged
as f ; knn(S, x, k, c) – identifies and returns these examples among the k-nearest neighbors
of x in S that belong to class c; amplify(S, x, k) – amplifies example x by creating its
n-copies and adding them to S.

ADASYN

Proposed by He et al. (2008), the Adaptive Synthetic Sampling Approach for
Imbalanced Learning (ADASYN) method creates synthetic instances for the minority class
adaptively. Its essential idea is to use a weighted distribution for different samples from
the minority classes according to their level of learning difficulty. More synthetic data
is generated for instances of the minority classes that are harder to learn compared to
minority samples that are easier to learn.

(a) Original Dataset. (b) After applying ADASYN.

Figure 32 – Example of ADASYN technique oversampling.

Figure 32 shows a visual example of applying the ADASYN over an unbalanced
dataset. Algorithm 21 shows ADASYN technique. In this algorithm, the training dataset
is represented as D with m samples xi, yi, i = 1, ...,m, where xi is an instance in the
n-dimensional feature space X and yi ∈ Y = {1,−1} is the class identity label associated
with xi. Define ms and ml as the number of minority class examples and the number of
majority class examples, respectively. Therefore, ms ≤ ml and ms +ml = m.

3.3.3 Hybrid Resampling Techniques

The following methods combine the application of the two previous methods
(oversampling and undersampling), eliminating some minority class instances that have
been expanded by oversampling methods to eliminate overfitting.

Chapter 3. The Imbalanceness Factor 95

Algorithm 20 SPIDER-2 Oversampling (adapted from Napierała, Stefanowski & Wilk
(2010))
Inputs: D: The dataset to resample, Cmin: The minority class, k: The number of nearest
neighbors, relabel: Relabeling option (yes, no), ampl: amplification option (no, weak,
strong)
Output: D′ : The resampled dataset
1: Cmaj ← An artificial class combining all classes except Cmin
2: for each x ∈ class(D, Cmaj) do
3: if correct(D, x, k) then
4: flag x as safe
5: else
6: flag x as not-safe
7: end if
8: end for
9: RS ← flagged(D, Cmaj, not-safe)

10: if relabel then
11: for each y ∈ RS do
12: change classification of y to Cmin
13: SR ← SR \{y}
14: end for
15: else
16: D ← D \RS
17: end if
18: for each x ∈ class(D, Cmin) do
19: if correct(D, x, k) then
20: flag x as safe
21: else
22: flag x as not-safe
23: end if
24: end for
25: if ampl = weak then
26: for each x ∈ flagged(D, Cmin, not-safe) do
27: amplify(D, x, k)
28: end for
29: else
30: if ampl = strong then
31: for each x ∈ flagged(D, Cmin, not-safe) do
32: if correct(D, x, k + 2) then
33: amplify(D, x, k)
34: else
35: amplify(D, x, k + 2)
36: end if
37: end for
38: end if
39: end if
40: D

′ ← copyOf(D)
41: discard all changes in D
42: return D

′

Chapter 3. The Imbalanceness Factor 96

Algorithm 21 ADASYN Oversampling (adapted from He et al. (2008))
Inputs: D: The dataset to resample, Cmin: The minority class, dth: Threshold for the
maximum tolerated degree of class imbalance ratio
Output: D′ : The resampled dataset
1: d← ms/ml

2: if d < dth then
3: G ← (ml −ms)× β . total number of synthetic samples to be generated
4: for each xi ∈ Cmin do
5: find k-nearest neighbors based on the Euclidean distance in n-dimensional space
6: ∆i ← number of samples in the knn of xi which belongs to Cmin
7: ri ← ∆i/k, where i = 1, ...,ms

8: Normalize ri according to r̂i = ri/
∑ms
i=1 ri

9: gi ← r̂i ×G . number of synthetic samples to be generated for each xi
10: for each xi ∈ Cmin do
11: for 1 to gi do
12: Randomly choose one minority data example, xzi, from the knn for xi.
13: λ← a random number between 0 and 1
14: dif_vector ← xzi − xi
15: si ← xi + (dif_vector)× λ.
16: end for
17: end for
18: end for
19: end if
20: D

′ ← copyOf(D)
21: discard all changes in D
22: return D

′

SMOTE + ENN

This combination of oversampling and undersampling techniques was first proposed
by Batista, Prati & Monard (2004). The ENN technique is used after the application of
SMOTE to remove samples from both classes (majority and minority) that are incorrectly
classified by their three nearest neighbors.

(a) Original Dataset. (b) After applying SMOTE and ENN.

Figure 33 – Example of the SMOTE + ENN hybrid technique.

Chapter 3. The Imbalanceness Factor 97

Figure 3.3.3 shows a visual example of applying the ENN method after apply
SMOTE technique over an unbalanced dataset.

SMOTE + Tomek Link

Also proposed in Batista, Prati & Monard (2004), the idea is to apply SMOTE in
the original dataset, and then the Tomek Links are identified and removed (of all classes),
producing a balanced and well-defined grouping of data.

(a) Original Dataset. (b) After applying SMOTE and Tomek Link.

Figure 34 – Example of the SMOTE + Tomek Link hybrid technique.

Figure 34 shows a visual example of applying the Tomek Link method after apply
SMOTE technique over an unbalanced dataset.

3.4 Measuring Imbalanceness in Multi-label Datasets

The number of labels in an Multi-Label Datasets (MLD) can go from a few dozens
to several thousands. Only a handful of them have less than ten labels. According to
Herrera et al. (2016), despite the fact that most MLDs have a large set of labels, the
average number of active labels per instance (their cardinality) seldom is above 5. As a
general rule, the more labels there are in an MLD, the higher would be the likelihood of
having imbalance problems.

Another important fact, easily deducible from the own MLDs nature, is that there
is not a single majority label and a single minority one, but several of them in each group.
This have different implications, affecting the way the imbalance level of an MLD can be
measured or the behavior of resampling and classification methods.

In order to measure the “imbalanceness” of a multi-label database, the authors
of (CHARTE et al., 2013) propose three metrics, which will be detailed explained in the
following subsections.

Chapter 3. The Imbalanceness Factor 98

3.4.1 Imbalance Ratio per Label

With D being a MLD with a set of labels Y, and Yi the i-th label, the Imbalance
Ratio per Label (IRLbl) is calculated for the label y as the ratio between the majority
label and the label y. Formula 3.4 shows the mathematical representation of this measure.

The IRLbl value will be 1 for the most frequent label and a greater value for
the remaining labels. The larger the IRLbl is, the higher is the imbalance level for the
considered label.

IRLbl(y) =
max
y′∈Y (∑|D|i=1 h(y′, Yi))∑|D|

i=1 h(y, Yi)

h(y, Yi) =

1, y ∈ Yi
0, y /∈ Yi

(3.4)

3.4.2 Mean Imbalance Ratio

The Mean Imbalance Ratio (MeanIR) will offer a value that represents the average
level of imbalance in an MLD. The value 0 will show that there is no imbalance in the
database. Formula 3.5 presents the mathematical terms for MeanIR.

MeanIR = 1
|Y |

Y|Y |∑
y=Y1

IRLbl(y) (3.5)

It must be taken into account that different label distributions can produce the
same MeanIR value, hence the MeanIR measure should always be used jointly with the
CVIR metric, which will be presented in the next subsection.

3.4.3 Coefficient of Variation of IRLbl

The Coefficient of Variation of IRLbl (CVIR) will indicate if the labels suffer from
a similar level of imbalance or, on the contrary, there are big differences among them. The
larger the CVIR value, the higher would be this difference, and the value 0 indicates that
there is no difference between the imbalance levels of the labels. The CVIR measure is
given by Formula 3.6.

CV IR = IRLblσ

MeanIR
(3.6)

Chapter 3. The Imbalanceness Factor 99

IRLblσ =

√√√√√ Y|Y |∑
y=Y1

(IRLbl(y)−MeanIR)2

|Y | − 1 (3.7)

3.4.4 Score of Concurrence among Imbalanced Labels

The Score of ConcUrrence among iMBalanced LabEls (SCUMBLE) was conceived
by Charte et al. (2014) in order to establish a way to discover “how difficult” would be
to resampling a certain MLD. According to the authors, its main goal is to appraise the
concurrence among imbalanced labels. On other words, SCUMBLE metric aims to quantify
the imbalance variance among the labels present in each data sample.

The SCUMBLE measure is calculated as presented in Formula 3.8, and it is based
on the Atkinson index (ATKINSON, 1970) and the IRLbl measure (shown in Formula 3.4).
The Atkinson index is calculated using incomes, we used the imbalance level of each label
instead, taking each instance Di in the MLD D as a population, and the active labels in
Di as the individuals. If the label l is present in the instance i then IRLblil = IRLbl(l).
On the contrary, IRLblil = 0. IRLbli stands for the average imbalance level of the labels
appearing in instance i. The scores for every sample are averaged, obtaining the final
SCUMBLE value.

SCUMBLE(D) = 1
|D|

|D|∑
i=1

[1− 1
IRLbli

](
|Y |∏
l=1

IRLblil)(1/|Y |)] (3.8)

The SCUMBLE score will be in the range [0, 1], in which a low value would denote
an MLD with not much concurrence among the imbalanced labels, whereas a high one
would evidence the opposite case.

3.4.5 Visually Exploration of the Imbalanceness

According to Herrera et al. (2016), besides the use of specific characterization
metrics, one of the best approaches to analyze label imbalance in MLDs is to visually
explore the data from the dataset. In Figure 35, the relative frequencies for the ten most
frequent labels (left side) and the ten least frequent ones (right side) in three well-known
MLDs (Cal500 (TURNBULL et al., 2008), TMC2007 (SRIVASTAVA; ZANE-ULMAN,
2005) and Enron (KLIMT; YANG, 2004a)) have been plotted. As we may observe, the
difference between frequent and rare labels is immense. Even among the most frequent
labels, there are significant disparities, with one or two labels having much more presence
than the others. This pattern is common to many MLDs. Therefore, the imbalance problem
is almost intrinsically linked to multi-label data.

Chapter 3. The Imbalanceness Factor 100

(a) Cal500 Dataset. (b) TMC2007 Dataset. (c) Enron Dataset.

Figure 35 – Ten most frequent and ten least frequent labels in some datasets (adapted
from Herrera et al. (2016)). The frequency scale is individually adjusted to
show better the relevance of labels in each MLD, instead of being common to
all plots.

The concurrence between the samples labels in MLDs can also be visually explored
in some cases. Figures 36 the concurrence among the labels of Yeast Dataset Elisseeff &
Weston (2002) is plotted. Each arc in the external circumference represents a label. The
arc’s amplitude is proportional to the frequency of the label, so small arcs are associated
with minority labels, and analogously large arcs indicate majority labels. The width of
the bands connecting arcs denote the number of samples in which each label pair appears
together. We may observe that the samples associated to minority labels, such as Class14
and Class9, always appear together with one or more majority labels (CHARTE et al.,
2017).

3.5 Facing Imbalanced Multi-Label Scenarios

On the basis of the specific characteristics associated with imbalanced MLDs, the
design of algorithms capable of dealing with this problem is a challenge (HERRERA et
al., 2016). In general, two main approaches have been followed in the literature to face the
imbalanceness issue in multi-label scenarios:

• Classifier Adaptation: The idea is to adapt the classifier to take this aspect into
consideration, for instance assigning weights to each label depending on its frequency.
It is a solution tightly attached to the adjusted algorithm. Although it is not a
general application approach, what can be seen as a disadvantage, the adaptation
can strengthen the best point of a good classifier, something that a pre-processing
method cannot do.

• Resampling Techniques: Consisting of the same core idea from the single-label

Chapter 3. The Imbalanceness Factor 101

Figure 36 – Concurrence among the labels in Yeast Dataset (CHARTE et al., 2017).

resampling methods, these techniques are based on removing samples which belong
to the majority label, adding samples associated with the minority label, or both
actions at once.

As the focus of this work is the development of resampling techniques, in the next
section we describe the most well-know algorithms in the multi-label resampling context.

3.6 Multi-Label Resampling Techniques

In the last years some papers have been published concerning solutions for imbal-
anceness in multi-label problems. For this task, the most common and successful studies
are based on resampling techniques. In this section we present a brief review of the main
multi-label resampling approaches, as well as their pseudocodes.

Chapter 3. The Imbalanceness Factor 102

3.6.1 Random Algorithms

In Charte et al. (2013) two random resampling techniques are presented. LPROS
(Label Powerset Random Oversampling) and LPRUS (Label Powerset Random Under-
sampling) evaluate the frequency of the full labelsets. While LPRUS removes instances
from the most frequent labelsets, LPROS clones samples associated with the least frequent
ones.

Algorithms 22 and 23 presents the pseudocodes for LPROS and LPRUS, respec-
tively. Both algorithms take as input the percentage of samples to create/remove from
the MLD. After computing the average number of samples sharing each labelset, a set
of minority/majority bags are produced. The number of instances to create/delete is
distributed among these minority/majority bags, randomly picking the data samples to
duplicate/remove.

Algorithm 22 LPROS (adapted from Charte et al. (2013))
Inputs: D: The dataset with all original instances, P : Percentage of samples to duplicate
Output: D′ : The resampled dataset
1: samplesToClone ← |D|/100× P
2: labelsets ← retriveLabelSets(D) . Group samples according to their labelsets
3: for each i from 1 to |labelsets| do
4: labelSetBagi ← samplesWithLabelset(i)
5: end for
6: meanSize ← 1/|labelsets| × (sum(i = 1, labelsets)|labelSetBagi|)
7: for each labelSetBagi in labelSetBag do
8: if |labelSetBagi| < meanSize then
9: minBagi ← labelSetBagi

10: end if
11: end for
12: meanIncrement ← samplesToClone/|minBag|
13: minBag ← SortFromLargestToSmallest(minBag)
14: for each minBagi in minBag do
15: incrementBagi ← max(|minBagi| - meanSize, meanIncrement)
16: remainder ← meanIncrement - incrementBagi
17: distributeAmongBags(j>i)(remainder)
18: for each n from 1 to incrementBagi do
19: x← random(features)
20: createSample(minBagi, x)
21: end for
22: end for
23: D

′ ← copyOf(D)
24: discard all changes in D
25: return D

′

The work of Charte et al. (2015a) also presents two different random resampling
methods: Multi-Label Random Oversampling (MLROS) and Multi-Label Random Under-

Chapter 3. The Imbalanceness Factor 103

Algorithm 23 LPRUS (adapted from Charte et al. (2013))
Inputs: D: The dataset with all original instances, P : Percentage of samples to delete
Output: D′ : The resampled dataset
1: samplesToDelete ← |D|/100× P
2: labelsets ← retriveLabelSets(D) . Group samples according to their labelsets
3: for each i from 1 to |labelsets| do
4: labelSetBagi ← samplesWithLabelset(i)
5: end for
6: meanSize ← 1/|labelsets| × (sum(i = 1, labelsets)|labelSetBagi|)
7: for each labelSetBagi in labelSetBag do
8: if |labelSetBagi| > meanSize then
9: majagi ← labelSetBagi

10: end if
11: end for
12: meanReduction ← samplesToDelete/|majBag|
13: majBag ← SortFromSmallestToLargest(majBag)
14: for each majBagi in majBag do
15: reductionBagi ← min(|majBagi| - meanSize, meanReduction)
16: remainder ← meanReduction - reductionBagi
17: distributeAmongBags(j>i)(remainder)
18: for each n from 1 to reductionBagi do
19: x ← random(1, |majBagi|)
20: deleteSample(majBagi, x)
21: end for
22: end for
23: D

′ ← copyOf(D)
24: discard all changes in D
25: return D

′

sampling (MLRUS). However, unlike LPROS and LPRUS, both techniques are focused on
the evaluation of the individual imbalance level per label, deleting instances linked to the
majority labels (MLRUS) or cloning those associated with the minority ones (MLROS).

The pseudocodes for MLROS and MLRUS are respectively provided in Algorithms
24 and 25. Once the number of samples to clone/delete is computed, the IRLbl and MeanIR
measures are used to get a bag with the instances in which each minority/majority label
appears. The clones (or samples to delete) will be generated (or deleted) from these bags.
A new sample is created from each minority bag (or deleted from each majority bag),
reassessing their condition of minority/majority bags in each cycle.

3.6.2 MLeNN

Multi-Label edited Nearest Neighbor (MLeNN), proposed in Charte et al. (2014), is
a heuristic undersampling procedure. The method was built considering the ENN (Edited
Nearest-Neighbor) rule, which is a well-known data cleaning algorithm. It compares the

Chapter 3. The Imbalanceness Factor 104

Algorithm 24 MLROS (adapted from Charte et al. (2015a))
Inputs: D: The dataset with all original instances, P : Percentage of samples to delete
Output: D′ : The resampled dataset
1: samplesToClone ← |D|/100× P
2: labelsets ← retriveLabelSets(D) . Group samples according to their labelsets
3: MeanIR ← calculateMeanIR(D, labelsets)
4: for each label in labelsets do IRLbllabel ← calculateIRperLabel(D, label)
5: if IRLbllabel > MeanIR then
6: minBagi++ ← Baglabel
7: end if
8: end for
9: while samplesToClone > 0 do . Clone a random sample from each minority bag
10: for each minBagi in minBag do
11: x← random(1, |minBagi|)
12: cloneSample(minBagi, x)
13: if IRLblminBagi ≤ MeanIR then
14: minBag ← minBagi
15: end if
16: samplesToClone ← samplesToClone - 1
17: end for
18: end while
19: D

′ ← copyOf(D)
20: discard all changes in D
21: return D

′

classes from each sample against the one from its k-Nearest Neighbors, in which k is
usually three. Those samples whose classes differ from the classes of at least half of the
neighbors are marked for removing.

Algorithm 26 presents the pseudocode for MLeNN. According to Charte et al.
(2014), the algorithm adapts the ENN rule to the Multi-Label context introducing two key
ideas: (1) A principle to chose the samples acting as candidates to be removed; and (2)
A comparison operator to determine when the labelsets of two instances are considered
to be different. Only the instances which do not contain any minority label are used as
candidates.

The samples labelsets are compared with a metric based on the Hamming distance
among labelsets, but only taking into account active labels. As a result, a value in the
range of [0,1] is obtained. Applying a configurable threshold (parameter TH in Algorithm
26), the algorithm determines which of its neighbors will be considered as distinct.

3.6.3 MLSMOTE

The Multi-Label Synthetic Minority Oversampling Technique (MLSMOTE) was
proposed by Charte et al. (2015b), and it is an adaptation of the original SMOTE

Chapter 3. The Imbalanceness Factor 105

Algorithm 25 MLRUS (adapted from Charte et al. (2015a))
Inputs: D: The dataset with all original instances, P : Percentage of samples to delete
Output: D′ : The resampled dataset
1: samplesToDelete ← |D|/100× P
2: labelsets ← retriveLabelSets(D) . Group samples according to their labelsets
3: MeanIR ← calculateMeanIR(D, labelsets)
4: for each label in labelsets do IRLbllabel ← calculateIRperLabel(D, label)
5: if IRLbllabel < MeanIR then
6: majBagi++ ← Baglabel
7: end if
8: end for
9: while samplesToDelete > 0 do . Clone a random sample from each minority bag

10: for each majBagi in majBag do
11: x← random(1, |majBagi|)
12: deleteSample(majBagi, x)
13: if IRLblmajBagi ≥ MeanIR then
14: majBag ← majBagi
15: end if
16: samplesToDelete ← samplesToDelete - 1
17: end for
18: end while
19: D

′ ← copyOf(D)
20: discard all changes in D
21: return D

′

Algorithm 26 MLeNN (adapted from Charte et al. (2014))
Inputs: D: The dataset with all original instances, TH: The threshold, NN : Number of
Neighbors to consider
Output: D′ : The resampled dataset
1: for each sample in D do
2: for each label in getLabelset(D) do
3: if IRLbl(label) > MeanIR then
4: Jump to next sample . Preserve instance with minority labels
5: end if
6: end for
7: numDifferences ← 0
8: for each neighbor in nearestNeighbors(sample, NN) do
9: if adjustedHammingDist(sample, neighbor) > TH then

10: numDifferences ← numDifferences + 1
11: end if
12: end for
13: if numDifferences ≥ NN/2 then
14: markForRemoving(sample)
15: end if
16: end for
17: D

′ ← deleteAllMarkedSamples(D)
18: discard all changes in D
19: return D

′

Chapter 3. The Imbalanceness Factor 106

(proposed by Chawla et al. (2002)) toward the creation of syntethic samples in MLDs.
Rather than producing synthetic samples only from one minority class, the MLSMOTE
method individually processes the set of samples in which the minority labels appears.

In practice, each one of the minority instances is used as seed for a new synthetic
sample. The new samples need a set of synthetic features, as well as a synthetic labels,
and, to solve this issue, MLSMOTE adopt four main strategies:

1. Minority instances selection: The algorithm assumes that most MLDs will have more
than one minority label. Therefore, the criterion to know if a label l is minority takes
into account if IRLbl(l) > MeanIR, i.e., the labels that has a frequency below the
average frequency of all labels in the dataset.

2. Nearest neighbor search: Once a sample belonging to a minority label has been
selected, MLSMOTE has to search its nearest neighbors. The size of the neighborhood
is established by a parameter, and the process begins by obtaining the distances
between the sample and the other instances from the same minority bag. In the
algorithm, the distance between two samples is calculated aggregating the differences
between their corresponding features. For numeric attributes the Euclidean Distance
is used, while for the nominal ones is used the Value Difference Metric (VDM)
(STANFILL; WALTZ, 1986).

3. Feature set generation: Having selected one of the neighbors, the set of features for
the synthetic instance is obtained through a interpolation technique.

4. Synthetic labelset production: In order to generate the synthetic labelset three
techniques may be used: Ranking, Union and Intersection. As statistically proved
in Charte et al. (2015b), the most effective technique was ranking the labels in the
labelsets. This method consists in counting the number of occurrences of each label
in the reference sample and its neighbors, including in the synthetic labelset those
present in half or more of the samples considered.

Algorithm 27 shows the pseudocode of MLSMOTE. The main body of the algorithm
spans from line 4 to line 14, a loop that goes across all the labels in the dataset. For
each label its IRLbl is obtained, and if it is above the MeanIR the label is considered
as minority. In this case, all the samples in which the label appears are taken as seed
instances, looking for their nearest neighbors and generating a synthetic sample.

Furthermore, Algorithm 28 shows the pseudocode for the function in charge of
generating the new synthetic instances. The function uses as inputs the seed sample,
its nearest neighbors, and a random neighbor (one of the previous neighbors) that will
be taken as reference to interpolate the features values. As can be seen, the function is

Chapter 3. The Imbalanceness Factor 107

basically divided in two parts: While the first one (lines 1-10) produces the feature values
of the synthetic sample, the second one (lines 12–15) generates the synthetic labelset.

Algorithm 27 MLSMOTE (adapted from Charte et al. (2015b))
Inputs: D: The dataset with all original instances, NN : Number of Neighbors to consider
Output: D′ : The resampled dataset
1: D

′ ← copyOf(D)
2: L ← labelsInDataset(D) . Full set of labels
3: MeanIR ← calculateMeanIR(D, L)
4: for each label in L do
5: IRLbllabel ← calculateIRperLabel(D, label)
6: if IRLbllabel > MeanIR then
7: minBag ← getAllInstancesOfLabel(label) . Bags of minority labels samples
8: for each sample in minBag do
9: distances ← calcDistance(sample, minBag)

10: sortSmallerToLargest(distances)
11: neighbors ← getHeadItems(distances, NN) . Neighbor set selection
12: refNeigh ← getRandNeighbor(neighbors)
13: synthSample ← newSample(sample, refNeigh, neighbors)
14: D

′ ← D
′∪ synthSample

15: end for
16: end if
17: end for
18: return D

′

3.6.4 REMEDIAL

The Resampling by decoupling highly imbalanced labels (REMEDIAL), presented
in Charte et al. (2015c), is a method designed to deal with MLDs having a high concurrence
level between the labels. This method works both as an oversampling method and as an
editing technique.

Algorithm 29 shows REMEDIAL pseudocode. This method is specifically designed
to work with MLDs having a high SCUMBLE. Firstly, the samples in which minority
and majority labels appear together are found. Then, for each instance in the previous
set a new sample is generated by preserving the original features, but containing only the
minority labels. The final step is to edit the original sample, removing the same minority
labels from it.

According to Charte et al. (2015c), using REMEDIAL, the samples which can
make harder the learning process are decoupled. Moreover, as the authors highlight, the
method can also be used as a previous step to apply other resampling techniques.

Chapter 3. The Imbalanceness Factor 108

Algorithm 28 Function: newSample
Inputs: sample: Sample of reference, refNeigh: Random neighbor of reference, neighbors:
Nearest neighbors as configured in the main algorithm
Output: synthSmpl: The new synthetic sample
1: synthSmpl ← new Sample . Feature set assignment
2: for each feat in synthSmpl do
3: if typeOf(feat) is numeric then
4: diff ← refNeigh.feat - sample.feat
5: offset ← diff × randInInterval(0, 1)
6: value ← sample.feat + offset
7: else
8: value ← mostFreqVal(neighbors,feat)
9: end if

10: syntSmpl.feat ← value
11: end for
12: lblCounts ← counts(sample.labels) . Label set assignment
13: lblCounts ← lblCounts + counts(neighbors.labels)
14: labels ← lblCounts > (k+1) / 2
15: synthSmpl.labels ← labels
16: return synthSmpl

Algorithm 29 REMEDIAL (adapted from Charte et al. (2015c))
Inputs: D: The dataset with all original instances, NN : Number of Neighbors to consider
Output: D′ : The resampled dataset
1: D

′ ← empty dataset
2: L ← labelsInDataset(D) . Full set of labels
3: for each label in L do . Calculate imbalance levels
4: IRLbll ← calculateIRLbl(l)
5: end for
6: IRMean ← IRLbl
7: for each Insi in D do
8: SCUMBLEInsi

← calculateSCUMBLE(Insi)
9: end for

10: SCUMBLE ← SCUMBLEInsi

11: for each instance i in D do
12: if SCUMBLEInsi

> SCUMBLE then
13: D

′
i ← Di . Clone the affected instance

14: Di[labelsIRLbl ≤ IRMean] ← 0 . Maintain minority labels
15: D

′
i[labelsIRLbl > IRMean] ← 0 . Maintain majority labels

16: D ← D +D
′
i

17: end if
18: end for
19: D

′ ← copyOf(D)
20: discard all changes in D
21: return D

′

Chapter 3. The Imbalanceness Factor 109

3.6.5 REMEDIAL-HwR

In 2019, Charte et al. (CHARTE et al., 2019) proposed an improvement for the
REMEDIAL technique named REMEDIAL Hybridization with Resampling (REMEDIAL-
HwR). The main goal of the proposal is to hybridize REMEDIAL with well-known
resampling methods described in the literature. In their experiments three different
combinations with REMEDIAL were tested: MLROS (REMEDIAL-HwR-ROS), MLeNN
(REMEDIAL-HwR-HUS) and MLSMOTE (REMEDIAL-HwR-SMT).

3.7 Final Considerations

In this chapter we presented a review concerning the imbalanceness issue in classi-
fication datasets. Imbalanceness is a well-known and studied problem in the binary and
multi-class classification scenarios, with a large variety of solutions, nevertheless it may be
noted that it is still an open problem in the multi-label context, being addressed in some
studies in the recent years (CHARTE et al., 2015a; CHARTE et al., 2015b; CHARTE et
al., 2017; CHARTE et al., 2019).

Whilst there are a lot of resampling alternatives for single-label datasets, there
are only a few techniques in the multi-label context. Considering this issue, in the next
chapter we present a preliminary contribution of this work: The Multi-Label Tomek Link
(MLTL), an adaptation for the classic Tomek Link algorithm to deal with imbalanced
multi-label data.

110

C
ha

pt
er

4 The Multi-Label Tomek Link

As well as some multi-label resampling methods were inspired from classic techniques
from the single-label scenario, such as MLSMOTE and MLeNN, there are resampling
techniques that have not been adapted and analyzed in the multi-label context, which
could lead to promising results. Among these methods, there is the Tomek Link.

The Tomek Links identification, first introduced by Tomek (1976), was proposed
as an undersampling technique in Batista, Prati & Monard (2004). A pair of instances
is a Tomek Link if they are nearest neighbors but belong to different classes. According
to Batista, Prati & Monard (2004), if two samples form a Tomek Link, it means that
either one of them is a noise or both are at the boundary of the clusters. The resampling
can be made by removing only the samples belonging to the majority classes or removing
all Tomek Links pairs from the dataset. If used as in the second case, Tomek Link is
considered a post-process cleaning method.

In the following sections we present the Multi-Label Tomek Link (MLTL). Besides
pseudocodes, we also present an experimental analysis for the proposed technique applied
to seven well-known datasets from the literature. A paper describing the Multi-Label
Tomek Link was published in the Neurocomputing journal (PEREIRA; COSTA; SILLA
JR, 2020).

4.1 The Proposed Method

There are two main concerns when resampling a Multi-Label Dataset. First, single-
label resampling methods usually consider that there are only one minority and one majority
class in the dataset, which does not apply to MLDs. Second, classic resampling methods,
such as Tomek Link, cannot be directly applied in MLDs, since they were developed to deal
with instances that belong to only one class. Thus, a new MLD resampling approach has to
be designed by taking into account the intrinsic characteristics of multi-label classification
problems.

In order to attend the first consideration, we used the imbalance measures IRLbl
and MeanIR. The criterion used to consider a label l as a majority label is that IRLbl(l) <
MeanIR, i.e., if the frequency of l is above the average frequency of all labels, it is

Chapter 4. The Multi-Label Tomek Link 111

considered a majority label.

The second and main concern was to adapt the identification of Tomek Links to
deal with multiple labels. Tomek Links are defined based on the similarity between the
features from two instances at the same time that have different labels. Thus, in the
Multi-Label context, the problem is to define how different two labelsets are. In order to
calculate this difference, MLTL uses a Hamming Distance between the labelsets.

The Hamming Distance may be calculated by counting how different two labelsets
are. However, if the total number of labels in the dataset is large, the percentage of distance
between two instances is usually low. To solve this issue Charte et al. (2014) suggested the
use of an Adjusted Hamming Distance (AHD), which considers only the “active” labels
from the labelsets. In this context, the “active labels” means the union of labels from the
labelsets.

Given two vectors of binary numbers a and b of size N and considering VecSum(z)
as the individual sum of the elements of a given vector z, we define the percentages of
Hamming Distance (HD%) and Adjusted Hamming Distance (AHD%) in Equations 4.1
and 4.2, respectively. While Equation 4.1 is defined as the number of coefficients in which
the vectors differ over all possible coefficients, Equation 4.2 is given as the fraction of
coefficients in which the vectors differ considering only the ones which appears in at least
one of the vectors.

HD%(a, b) = V ecSum(XOR(a, b))
N

(4.1)

AHD%(a, b) = V ecSum(XOR(a, b))
V ecSum(OR(a, b)) (4.2)

Table 7 shows an example of the difference between two labelsets. The first line
represents the labels from the dataset (numbered from 1 to 100), the second and third lines
are the two labelsets being compared (the number 1 represents the presence of a label),
and the fourth line shows the differences between the labelsets (the number 1 represents
that there is a difference). In the example presented on 7, the labels from 6 to 99 are note
present in the labelsets, thus they are represented with the value zero. We may observe
that calculating the HD measure we obtain a distance of 3% (3/100), a very low value. On
the other hand, using the AHD metric the distance is 50% (3/6), a higher and considerable
value. As there are MLDs with many different labels, but usually with few active ones, it
makes sense to use the AHD measure to evaluate the differences between labelsets.

Algorithms 30, 31 and 32 show the MLTL scheme of operation. Algorithm 30 (lines
2-6) handles the type of use chosen for MLTL, i.e., a cleaning technique or undersampling
method, and creates the new resampled dataset based on the instances selected for removal.

Chapter 4. The Multi-Label Tomek Link 112

Table 7 – Example of differences between labelsets.

Line n.◦ 1 #Label 1 2 3 4 5 ... 100
Line n.◦ 2 Labelset 1 0 1 1 1 0 0 1
Line n.◦ 3 Labelset 2 1 1 1 0 1 0 1
Line n.◦ 4 Difference 1 0 0 1 1 0 0

Algorithm 31 identifies the Tomek Links instances in case of undersampling, i.e., creation
of the majority bags of instances2 (lines 1-9) and selects only the Tomek Link samples
from these bags. On the other hand, Algorithm 32 identifies all Tomek Links from the
dataset, irrespective of whether they are from the majority or the minority class.

Algorithm 30 Multi-Label Tomek Link
Inputs: D: Dataset to resample, TH: Threshold
Output: D′: Resampled dataset
1: TL ← new empty list of instances
2: if (MLTL was chosen as a cleaning procedure) then
3: TL ← cleaningMethod(D, TH)
4: else
5: TL ← undersamplingMethod(D, TH)
6: end if
7: D′ ← new empty dataset
8: for each sample in D do
9: if (sample not in TL) then
10: D′ ← D′ ∪ {sample}
11: end if
12: end for
13: return D′

As we may observe in Algorithms 31 (lines 20-22) and 32 (lines 10-12), it is necessary
to define a Threshold (TH) to consider two labelsets as “distinct” or not, since the Adjusted
Hamming Distance generates a value in the range of [0,1]. We propose a metric to find a
TH value considering the dataset imbalanceness. Equation 4.3 defines an indicator I, based
on MeanIR measure. This equation determines the imbalance level of the dataset with a
value between 0 and 1. Using I, Equation 4.4 shows how to determine TH considering
three levels of imbalanceness: High (I < 0.3); Medium (0.5 > I ≥ 0.3); and Low (I ≥ 0.5).
These intervals were empirically determined during the preliminary experiments.

I = 1√
MeanIR

(4.3)

TH =


0.5 if I ≥ 0.5
0.3 if 0.5 > I ≥ 0.3
0.15 if I < 0.3

(4.4)

2 Maj./min. bag of instances is a set of samples from a maj./min. class.

Chapter 4. The Multi-Label Tomek Link 113

Algorithm 31 Undersampling Method
Inputs: D: Dataset to resample, TH: Threshold
Output: TL: Tomek Link instances
1: L ← labelsInDataset(D)
2: meanIR ← getMeanIR(D)
3: for each l in L do
4: iRLBl ← getIRLbl(l)
5: if (iRLBl < meanIR) then
6: majBags[l] ← getInstances(l)
7: end if
8: end for
9: TL ← empty list of instances

10: checkedSamples ← new empty list of instances
11: for each majBag in majBags do
12: for each sample in majBag do
13: if (sample in checkedSamples) then
14: continue
15: end if
16: NN ← nearestNeighbor(sample)
17: checkedSamples ← checkedSamples ∪ {sample}
18: dist ← adjustedHammingDist(sample, NN)
19: if (dist ≥ TH) then
20: TL ← TL ∪ sample
21: end if
22: end for
23: end for
24: return TL

Algorithm 32 Cleaning Method
Inputs: D: Dataset to resample, TH: Threshold
Output: TL: Tomek Link instances
1: TL ← new empty list of instances
2: checkedSamples ← new empty list of instances
3: for each sample in D do
4: if (sample in checkedSamples) then
5: continue
6: end if
7: NN ← nearestNeighbor(sample)
8: checkedSamples ← checkedSamples ∪ sample
9: dist ← adjustedHammingDist(sample, NN)
10: if (dist ≥ TH) then
11: TL ← TL ∪ sample
12: end if
13: end for
14: return TL

The use of I (shown in Equation 4.3) is important to define a value strictly between

Chapter 4. The Multi-Label Tomek Link 114

0 and 1. However, using this value directly as the threshold may be a problem because it
tends to be too small (if the dataset is very imbalanced) or too big (if the dataset is not
imbalanced), leading to a cleaning threshold that can be too high or too low, which in
practice (in some of our preliminary experiments) would either remove all the instances
or leave the instances unmodified. Thus, we defined Equation 4.4 to “normalize” TH for
three possibilities of imbalanceness: high, medium and low.

It is important to observe that TH may be manually defined and tested in the MLTL
algorithm, which gives the user the freedom to test the best threshold for its problem.
Nevertheless, the idea behind Equations 4.3 and 4.4 is to give the user an automatic way
to define TH based on the imbalanceness level of the dataset, adapting this threshold
to different datasets, which may even be used as a start value for further tests aimed at
optimizing the threshold value (which is out of the scope of this contribution).

In the following we give a brief example of how to manually set the TH threshold
considering the pre-established values obtained from Equations 4.3 and 4.4. Tables 8, 9
and 10 present three hypothetical datasets with different levels of imbalanceness: low
(exemplified by dataset D1); medium (D2); and high (D3). Considering the MeanIR from
the datasets, we can calculate the indicator I, from Equation 4.3, which will lead to 0.81,
0.41 and 0.09 values for D1, D2 and D3, respectively. With the indicator I, the researcher
can use Equation 4.4 to define a starter value for TH threshold and then may test other
values around it. For instance, for each hypothetical dataset we could test the following
thresholds: D1 - TH starts with 0.5 and values between 0.35 and 0.75 may be tested; D2 -
TH starts with 0.3 and values from 0.2 to 0.5 may be tested; D3 - TH starts with 0.15
and values from 0.05 to 0.35 may be tested.

Table 8 – Hypothetical Dataset D1.

La Lb Lc
#Samples 100 120 190
IRLbl 1.90 1.58 1.00
MeanIR 1.49

Table 9 – Hypothetical Dataset D2.

La Lb Lc Ld
#Samples 100 500 700 50
IRLbl 7.00 14.00 1.00 14.00
MeanIR 5.85

In Figure 37 we present a graphical example of the Multi-Label Tomek Link
identification for the labels in a dataset. Each label is then represented by one specific
color: Green, Red, Yellow, Blue, Black and White.

Chapter 4. The Multi-Label Tomek Link 115

Table 10 – Hypothetical Dataset D3.

La Lb Lc Ld Le
#Samples 10 100 500 900 5000
IRLbl 500.00 50.00 10.00 5.50 1.00
MeanIR 113.33

(a) Original Dataset. (b) Tomek Links.

(c) Cleaning. (d) Undersampling.

Figure 37 – The Multi-Label Tomek Link (in this illustration, each color refers to one of
the labels assigned to the instance).

As we can see in Figure 37(a), the dataset is composed of 38 samples, which are
labeled with 1 to 4 labels (each label is represented by a different color). Using Equation 3
to calculate the imbalance ratio per label (IRLbl) of these labels we will get the following
values: Green - 1.00; Red - 1.05; Yellow - 1.16; Blue - 1.29; Black - 1.47; and White - 2.44.
As the mean imbalance ratio (MeanIR) of these labels is 1.40, we consider the Black and
White labels as belonging to the Minority Classes, since their IRLbl are greater than the
MeanIR. All the other labels are considered as belonging to the Majority Classes.

Figure 37(b) shows which pairs of instances were identified as Tomek Links (numer-
ated from 1 to 6). In this example, the identification is made by considering a Threshold
(TH) of 0.5 when applying the Adjusted Hamming Distance in each instance and its nearest
neighbor. Furthermore, in Figure 37 we also show the resulting datasets when using MLTL
as a Cleaning Method (Figure 37(c)) and as an Undersampling Technique (Figure 37(d)).
It is important to observe that, when using MLTL as undersampling technique, in the cases

Chapter 4. The Multi-Label Tomek Link 116

where the Tomek Link pairs do not have a label belonging to the Minority Classes (e.g.:
pair identified with number 1 in Figure 37(b)), MLTL chooses to remove both instances
from the dataset.

In order to give a general overview of the proposed resampling method, Figure 38
presents a graphical abstract of the Multi-Label Tomek Link approach. In the schema,
the labels S1.X and S2.Y represents the steps towards the construction of the final
classification model. While S1.X shows the flow when MLTL is chosen as a Undersampling
Method, S2.Y is used to represent the flow of MLTL as a Cleaning Step.

Multi-Label
Dataset

Real World
Problem

Tomek Link
Identification

Undersampling

Cleaning

Pattern
Recognition Classification

Well-known
Oversampling

Method

S1.1

S2.1

S2.3

S2.2

S1.3

S1.4

S1.5

S1.6

S1.7

S1.2

S2.4

S2.5

S2.6

S2.7

S2.8

S1 = Using MLTL as a Undersampling Method S2 = Using MLTL as a Cleaning Step

Adjusted Hamming Distance

Distance > TH

Model

Tomek Link

Figure 38 – Graphical Overview of the Multi-Label Tomek Link.

4.2 Experimental Analysis

This section shows the experimental evaluation of the Multi-Label Tomek Link
algorithm. The following subsections present the datasets, parameters configuration, results
and discussion related to our proposed method.

4.2.1 The Datasets

We have tested the proposed method over seven well-known multi-label datasets
from the literature from different domains: Cal500 (TURNBULL et al., 2008), Emotions

Chapter 4. The Multi-Label Tomek Link 117

(TROHIDIS et al., 2008), Enron (KLIMT; YANG, 2004a), FMA (DEFFERRARD et
al., 2017), Medical (CRAMMER et al., 2007), Scene (BOUTELL et al., 2004), Yeast
(ELISSEEFF; WESTON, 2002). These datasets were chosen since they are present in
many multi-label classification works from the literature, which will enable future results
comparison. Table 11 shows the main characteristics of these datasets. We may observe
the variety of imbalanceness level in the datasets, which were chosen precisely in order to
represent different levels of mean imbalance rate.

While Scene, Emotions and Yeast are the least imbalanced datasets, with a meanIR
of 1.25, 1.48, and 7.20, respectively, FMA dataset is, by far, the most imbalanced one,
with a meanIR of 1,403.81. Moreover, we may note that CAL500, Enron and Medical
datasets also present a considerable imbalance level.

Table 11 – Characteristics of the datasets used in the experiments.

Dataset Domain #Samples #Labels Cardinality Density MeanIR MaxIR
CAL500 Audio Tagging 502 174 26.044 0.150 20.58 88.8
Emotions Music Sentiments 593 6 1.869 0.311 1.48 1.78
Enron E-mail Analysis 1,702 53 3.378 0.064 73.95 913.00
FMA Music Genres 90,410 160 2.4667 0.0153 1,403.81 21,897.00

Medical Medical 978 45 1.245 0.028 89.50 266.00
Scene Event Detection 2,407 6 1.074 0.179 1.25 1.46
Yeast Biological 2,417 14 4.237 0.303 7.20 53.41

4.2.2 Algorithms and Parameters

For the classification task we used the eight previous presented algorithms: Binary
Relevance (BR) (BRINKER; FÜRNKRANZ; HÜLLERMEIER, 2006), Label Powerset
(LPS) (TSOUMAKAS; VLAHAVAS, 2007), Classifier Chains (CCH) (READ et al., 2009),
Calibrated Label Ranking (CLR) (FÜRNKRANZ et al., 2008), Hierarchy of Multi-label
Classifiers (HOMER) (TSOUMAKAS; KATAKIS; VLAHAVAS, 2008), Random k-labelsets
(RAkEL) (TSOUMAKAS; KATAKIS; VLAHAVAS, 2011), MLkNN (ZHANG; ZHI-HUA,
2007) and BRkNN (SPYROMITROS; TSOUMAKAS; VLAHAVAS, 2008).

Table 12 shows the parameters used in the algorithms for the experiments, which
were obtained using a grid search. The Problem Transformations algorithms were executed
on SVM with a linear kernel and the complexity constant C equal to 1.

All experiments were conducted using five-fold cross-validation, applying the MLTL
resampling technique only in the training folds. The Mulan3 (TSOUMAKAS et al., 2011)
open source library for multi-label learning was used to train and evaluate each of the
classifiers.
3 mulan.sourceforge.net

Chapter 4. The Multi-Label Tomek Link 118

Table 12 – Parameter settings of the classifiers used in this work.

Algorithm Parameters
Binary Relevance Base Classifier SVM

BRkNN
Extension Type None
Neighbors 10
Distance Function Euclidean

Calibrated Label
Ranking

Base Classifier SVM
Voting Mode Standard
Type of Output Binary

Classifier Chain Base Classifier SVM

HOMER

Multi-Label Learner Binary Relevance
Base Classifier SVM
Number of Clusters 3
Method Balanced Clustering

Label Powerset Base Classifier SVM

MLkNN
Smooth 1
Neighbors 10
Distance Function Euclidean

RAkEL

Multi-Label Learner Binary Relevance
Base Classifier SVM
Size of Subset 3
Threshold 0.5
Number of Models 314

Concerning the resampling algorithms, the resize rates were set to 25% (over-
sampling and undersampling). In MLSMOTE we used a ranking label combination and
MLeNN used a threshold of 0.5, besides, both were set to work with five neighbors. In
addition, the threshold parameter (TH) for the MLTL algorithm was calculated with
Equations 4.3 and 4.4 for each one of the datasets.

4.2.3 Results and Discussion

In this section we present the discussion of the results achieved with the proposed
MLTL method. In order to analyze the results from different perspectives, we split the
results into five tables, which are divided according to the following criteria:

• MeanIR of the datasets before/after resampling (Table 13);

• Experimental results using the micro F-Score metric (Tables 14, 15, 16, 17, 18, 19
and 20);

• Wilcoxon statistical tests for the results considering the different resampling algo-
rithms (Table 21); and

• Ranking of the classification algorithms using the Friedman test ranking (Table 22).

Chapter 4. The Multi-Label Tomek Link 119

Following the same strategy proposed in Batista, Prati & Monard (2004) for the
single-label scenario, besides testing the resampling algorithms by themselves, we have also
tested the Tomek Link removal technique as a post-process cleaning step after applying the
SMOTE resampling method. In our case, as we are dealing with a Multi-Label scenario,
we have tested the use of the Multi-Label Tomek Link (MLTL), proposed in this work,
after applying the Multi-Label SMOTE (MLSMOTE).

Table 13 – MeanIR of the datasets before/after apply the resampling methods.
Resampling Method CAL500 Emotions Enron FMA Medical Scene Yeast
Original (no resampling) 20.58 1.48 73.95 1,403.81 89.50 1.25 7.20
LPROS 15.25 1.35 47.23 582.83 50.32 1.21 4.86
LPRUS 17.82 1.44 50.64 689.90 55.45 1.23 7.01
MLROS 16.93 1.45 52.87 784.76 60.12 1.24 3.37
MLRUS 22.30 1.24 78.93 821.42 63.76 1.20 7.13
MLeNN 16.21 1.48 51.41 611.69 53.12 1.26 7.20
REMEDIAL 20.58 1.48 73.90 1,350.20 90.39 1.30 7.20
REMEDIAL-HwR-ROS 13.49 1.15 26.70 454.14 30.91 1.18 3.13
REMEDIAL-HwR-HUS 12.06 1.46 47.68 493.29 39.36 1.15 7.21
REMEDIAL-HwR-SMT 13.95 1.37 71.95 637.67 82.51 1.66 7.16
MLSMOTE 13.66 1.56 43.68 509.43 45.82 1.50 3.62
MLTL 14.13 1.48 48.92 551.23 47.95 1.49 7.39
MLSMOTE + MLTL 5.21 1.57 25.84 437.72 28.34 1.52 3.66
Lower imbalance ratios are highlighted in bold and the proposed methods results are in italic.

Table 13 shows the mean imbalance ratio (MeanIR) for the seven datasets after
applying each one of the resampling techniques and the combination, hereafter referred
to as MLSMOTE + MTLT. First, we may observe that as Emotions and Scene datasets
already have low imbalanceness, none of the resampling methods changed much of their
MeanIR. Second, we may note that REMEDIAL-HwR-ROS reduced Yeast imbalanceness
from 7.20 to 3.13, followed by MLROS (3.37) and MLSMOTE (3.62). In relation to
CAL500, Enron, FMA and Medical datasets, the combination of MLSMOTE with MLTL
was by far the most successful resampling technique to reduce the mean imbalance ratio
(MeanIR). It is important to observe that MLTL by itself was also effective, achieving
satisfactory results in three of the datasets: CAL500, FMA and Medical.

The classification results are shown in Tables 14, 15, 16, 17, 18, 19 and 20. These
results correspond to the micro-averaged F-Score, measured from the classification experi-
ments after applying the resampling techniques. The values in italic represent the results
for the proposed method, and the best results are highlighted in bold.

Concerning the evaluation metric, we choose to use F-score because it is still one
of the most important and used metrics in the imbalanced learning literature, as we can
see in works such as (CHARTE et al., 2014), (CHARTE et al., 2015a), (CHARTE et al.,
2015b), (CHARTE et al., 2013) and (CHARTE et al., 2015c).

Observing the results from Tables 14, 15, 16, 17, 18, 19 and 20, three main questions
are raised: (1) Which resampling methods improved the classification results? (2) Which

Chapter 4. The Multi-Label Tomek Link 120

Table 14 – Experimental results for the CAL500 dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.3515 0.3091 0.3354 0.3541 0.3366 0.3354 0.3205 0.3354
LPROS 0.4823 0.3651 0.4821 0.4732 0.4712 0.4541 0.3615 0.4924
LPRUS 0.3625 0.3151 0.3522 0.3642 0.3656 0.3422 0.3312 0.3751
MLROS 0.4913 0.3625 0.5653 0.4545 0.5721 0.5653 0.3423 0.5413
MLRUS 0.3581 0.3042 0.3255 0.3106 0.3249 0.3255 0.3079 0.3255
REMEDIAL 0.3371 0.3167 0.3270 0.3077 0.2971 0.3126 0.3435 0.2951
REMEDIAL-HwR-ROS 0.3097 0.2676 0.2270 0.2537 0.2490 0.2451 0.2906 0.2503
REMEDIAL-HwR-HUS 0.2321 0.2331 0.1296 0.2137 0.1293 0.1084 0.2616 0.1293
REMEDIAL-HwR-SMT 0.2754 0.2425 0.1538 0.1565 0.1574 0.1499 0.2855 0.1542
MLeNN 0.3665 0.3169 0.3466 0.3393 0.3442 0.3466 0.3173 0.3466
MLSMOTE 0.3690 0.3268 0.3861 0.3772 0.3527 0.3858 0.3706 0.3839
MLTL 0.3766 0.3518 0.3720 0.3528 0.3736 0.3720 0.3717 0.3720
MLSMOTE + MLTL 0.6303 0.4328 0.6123 0.6104 0.6002 0.6321 0.4526 0.6652

Table 15 – Experimental results for the Emotions dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.5635 0.6123 0.5848 0.5885 0.5926 0.5407 0.6248 0.6210
LPROS 0.6116 0.6630 0.6114 0.6317 0.6216 0.6356 0.6795 0.6814
LPRUS 0.5593 0.5998 0.5638 0.5610 0.5503 0.5411 0.6188 0.5838
MLROS 0.6135 0.6504 0.6591 0.6276 0.6256 0.6639 0.6511 0.6395
MLRUS 0.5520 0.5660 0.5305 0.5808 0.5249 0.5196 0.5966 0.5846
REMEDIAL 0.3574 0.3638 0.4278 0.3734 0.4225 0.4015 0.3927 0.3250
REMEDIAL-HwR-ROS 0.5266 0.4554 0.4599 0.5144 0.5061 0.4772 0.4583 0.5111
REMEDIAL-HwR-HUS 0.3854 0.3625 0.3126 0.3510 0.3495 0.3193 0.3849 0.3490
REMEDIAL-HwR-SMT 0.3400 0.3132 0.3071 0.3047 0.3029 0.2972 0.3106 0.3056
MLeNN 0.5635 0.6423 0.5848 0.5885 0.5926 0.5407 0.6548 0.6210
MLSMOTE 0.5023 0.5116 0.4197 0.4265 0.4244 0.4073 0.5210 0.4265
MLTL 0.5850 0.6450 0.6209 0.6209 0.6206 0.6209 0.6617 0.6409
MLSMOTE + MLTL 0.5361 0.5134 0.4208 0.4354 0.4262 0.4102 0.5375 0.4306

Table 16 – Experimental results for the Enron dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.5496 0.2812 0.5378 0.5683 0.5270 0.4340 0.4670 0.5496
LPROS 0.6306 0.3277 0.6070 0.6408 0.6355 0.4959 0.5194 0.6306
LPRUS 0.5158 0.2753 0.4962 0.5414 0.4944 0.4182 0.4490 0.5158
MLROS 0.6678 0.4860 0.6640 0.6930 0.6626 0.5837 0.5932 0.6694
MLRUS 0.5259 0.2856 0.5147 0.5594 0.5417 0.4372 0.4806 0.5259
REMEDIAL 0.2135 0.1417 0.2465 0.2527 0.2333 0.2004 0.1010 0.1135
REMEDIAL-HwR-ROS 0.3043 0.1896 0.2828 0.2822 0.2925 0.2674 0.1394 0.2822
REMEDIAL-HwR-HUS 0.6244 0.5890 0.6742 0.4668 0.4912 0.6805 0.5896 0.6841
REMEDIAL-HwR-SMT 0.2564 0.0888 0.1849 0.1851 0.1907 0.1517 0.0733 0.1851
MLeNN 0.6489 0.5337 0.6438 0.4017 0.6259 0.5857 0.5621 0.6489
MLSMOTE 0.6052 0.3085 0.6041 0.6108 0.6012 0.4997 0.5108 0.6125
MLTL 0.6494 0.5376 0.6520 0.4027 0.6290 0.5870 0.5677 0.6499
MLSMOTE + MLTL 0.6711 0.4841 0.6655 0.7012 0.6639 0.5886 0.5952 0.6704

Chapter 4. The Multi-Label Tomek Link 121

Table 17 – Experimental results for the FMA dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.0514 0.1442 0.0348 0.0515 0.1827 0.1646 0.1375 0.0964
LPROS 0.1422 0.2317 0.3987 0.1454 0.3986 0.3987 0.2105 0.2022
LPRUS 0.0921 0.1001 0.2289 0.0912 0.2289 0.2289 0.0944 0.1765
MLROS 0.1153 0.2122 0.3375 0.1167 0.3512 0.3636 0.2003 0.2088
MLRUS 0.0833 0.1039 0.2366 0.0821 0.2359 0.2549 0.0860 0.1634
REMEDIAL 0.0213 0.0461 0.1301 0.0209 0.1308 0.1219 0.0449 0.0765
REMEDIAL-HwR-ROS 0.1034 0.2045 0.3149 0.0937 0.3241 0.3520 0.1852 0.1828
REMEDIAL-HwR-HUS 0.0934 0.1176 0.2301 0.0937 0.2367 0.2391 0.1042 0.1321
REMEDIAL-HwR-SMT 0.1182 0.1620 0.3318 0.1152 0.3509 0.3214 0.1739 0.1632
MLeNN 0.1012 0.1284 0.2512 0.1054 0.2519 0.2512 0.1190 0.1543
MLSMOTE 0.1345 0.1717 0.3609 0.1376 0.3713 0.3409 0.1868 0.1775
MLTL 0.1430 0.1520 0.3933 0.1423 0.3873 0.3470 0.1752 0.1553
MLSMOTE + MLTL 0.1530 0.2540 0.4170 0.1487 0.4231 0.4233 0.1988 0.1989

Table 18 – Experimental results for the Medical dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.8130 0.5753 0.8127 0.6194 0.7944 0.7603 0.6648 0.8132
LPROS 0.8760 0.5477 0.8743 0.8771 0.8586 0.8536 0.6744 0.8761
LPRUS 0.7857 0.5539 0.7881 0.6093 0.7586 0.7400 0.6301 0.7853
MLROS 0.8358 0.5331 0.8347 0.8320 0.8252 0.7947 0.6086 0.8354
MLRUS 0.8348 0.6424 0.8360 0.8351 0.8349 0.8028 0.7126 0.8345
REMEDIAL 0.6373 0.4073 0.6337 0.3234 0.6536 0.5787 0.4920 0.6370
REMEDIAL-HwR-ROS 0.6722 0.3480 0.5046 0.5064 0.5052 0.4896 0.4275 0.5064
REMEDIAL-HwR-HUS 0.8713 0.6762 0.7714 0.2933 0.4913 0.7737 0.7524 0.7841
REMEDIAL-HwR-SMT 0.6452 0.3287 0.4151 0.3253 0.4127 0.3818 0.4807 0.4114
MLeNN 0.8776 0.7113 0.8808 0.8673 0.8469 0.8522 0.7800 0.8774
MLSMOTE 0.8532 0.5351 0.8387 0.8209 0.8241 0.8392 0.6412 0.8546
MLTL 0.8780 0.7125 0.8812 0.8671 0.8478 0.8555 0.7817 0.8798
MLSMOTE + MLTL 0.8762 0.7132 0.8798 0.8794 0.8612 0.8610 0.7822 0.8804

Table 19 – Experimental results for the Scene dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.6237 0.6984 0.6018 0.6380 0.6911 0.5881 0.7300 0.6237
LPROS 0.7617 0.7741 0.7506 0.7619 0.8038 0.7306 0.7989 0.7617
LPRUS 0.6339 0.6783 0.6344 0.6395 0.6771 0.5728 0.7311 0.6339
MLROS 0.6500 0.6992 0.6197 0.6632 0.7077 0.6298 0.7451 0.6500
MLRUS 0.6363 0.6964 0.6919 0.6933 0.6904 0.6919 0.7413 0.6919
REMEDIAL 0.5648 0.6635 0.5524 0.5705 0.6144 0.5541 0.6948 0.5648
REMEDIAL-HwR-ROS 0.5897 0.6704 0.6376 0.6369 0.6365 0.6339 0.7061 0.6361
REMEDIAL-HwR-HUS 0.6554 0.7234 0.7176 0.7207 0.7180 0.7176 0.7593 0.7176
REMEDIAL-HwR-SMT 0.4327 0.4428 0.3772 0.3915 0.3891 0.3676 0.5343 0.3888
MLeNN 0.6415 0.7138 0.6282 0.6462 0.7042 0.6103 0.7502 0.6415
MLSMOTE 0.4994 0.5039 0.4474 0.4541 0.4529 0.4357 0.5821 0.4532
MLTL 0.6751 0.7442 0.7102 0.7305 0.7692 0.7002 0.7554 0.7502
MLSMOTE + MLTL 0.5994 0.6817 0.6755 0.6740 0.6735 0.6727 0.7173 0.6735

Chapter 4. The Multi-Label Tomek Link 122

Table 20 – Experimental results for the Yeast dataset.

Resampling Classification Algorithm
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Original (No Resampling) 0.5807 0.6355 0.5526 0.6165 0.6019 0.5355 0.6504 0.5812
LPROS 0.6532 0.6436 0.6848 0.6698 0.6764 0.6722 0.6562 0.6721
LPRUS 0.5810 0.6221 0.5507 0.6130 0.6016 0.5302 0.6373 0.5823
MLROS 0.6822 0.6611 0.6708 0.6807 0.6822 0.6563 0.6702 0.6671
MLRUS 0.5671 0.6146 0.5402 0.6072 0.5863 0.5281 0.6386 0.5677
REMEDIAL 0.4560 0.4141 0.3463 0.4462 0.3806 0.3290 0.4871 0.4560
REMEDIAL-HwR-ROS 0.4483 0.3820 0.4194 0.4296 0.4255 0.4145 0.3391 0.3929
REMEDIAL-HwR-HUS 0.4935 0.4271 0.3825 0.3858 0.3802 0.3591 0.4932 0.3849
REMEDIAL-HwR-SMT 0.3740 0.3938 0.3808 0.3769 0.3766 0.3641 0.3842 0.3772
MLeNN 0.5842 0.6347 0.5405 0.6194 0.6017 0.5327 0.6485 0.5846
MLSMOTE 0.5717 0.5932 0.5738 0.5761 0.5723 0.5722 0.6099 0.5794
MLTL 0.5834 0.6371 0.6016 0.6074 0.5998 0.6016 0.6497 0.6348
MLSMOTE + MLTL 0.5917 0.6053 0.5845 0.5880 0.5870 0.5841 0.6179 0.5903

is the best resampling method? (3) Which is the best algorithm for classification?

In order to answer the first two questions with statistical significance, we applied the
Wilcoxon test stating as hypothesis that the F-score is higher after using each resampling
method. The z-score and p-value outputs for the test are shown in Table 21.

Table 21 – Wilcoxon statistical tests for F-score results.

Z-score p-value
LPROS -2.790 0.0026
LPRUS 0.274 0.6078
MLeNN -1.312 0.0947
MLROS -3.035 0.0012
MLRUS 0.064 0.5255
MLSMOTE 1.030 0.8485
REMEDIAL 3.625 0.9999
REMEDIAL-HwR-ROS 3.212 0.9993
REMEDIAL-HwR-HUS 1.123 0.8693
REMEDIAL-HwR-SMT 5.156 1.0000
MLTL -2.398 0.0083
MLSMOTE+MLTL -2.109 0.0175

Considering the p-value threshold as 0.05, we are able to answer the first question:
LPROS, MLROS, MLTL and MLSMOTE + MLTL algorithms significantly improved the
classification results, since the z-score is negative and the p-value is below the threshold.
On the other hand, the tests were not able to define a real improvement in the results
with the algorithms LPRUS, MLRUS, MLSMOTE and REMEDIAL, as their z-score
were positive and their p-values crossed the threshold. Regarding MLeNN, even though
the wilcoxon test concluded that the null hypothesis is not rejected, there is not enough
evidence to claim that the method did not increase the results, since its z-scores are
negative.

Furthermore, through the wilcoxon test, we may also conclude that, in general,
MLROS is the most effective resampling method, since it achieved the lowest p-value and

Chapter 4. The Multi-Label Tomek Link 123

z-score. However, it is important to observe that in the four most imbalanced datasets
(CAL500, Enron, FMA, Medical), the best result was achieved using MLTL, either by
itself or in combination with MLSMOTE. This fact indicates that, although the answer
for the second question should be MLROS (because of the wilcoxon test), MLTL obtained
success in the most imbalanced datasets.

It may be asked why the combination of MLSMOTE and MLTL significantly
outperforms either MLSMOTE or MLTL in three datasets (CAL500, Enron and FMA).
The reason for that can be grounded in the fact that, after applying MLSMOTE, the
new synthetic samples were introduced somewhere along the feature space that made
the classes groups become overlapped, i.e., some samples from the majority classes were
invading the minority classes spaces or vice versa. Then, when MLTL is applied as a
cleaning method, some of these noises were removed, leading to a better model built by
the classifier. This same phenomenon was also identified in the single-label classification
scenario by Batista et al. (BATISTA; PRATI; MONARD, 2004).

To answer the third question, i.e., to define the best classifier, we used the statistical
evaluation protocol proposed in Charte et al. (CHARTE et al., 2015b). Using this protocol,
we calculate the ranking principle from the Friedman statistical test, in which the algorithms
classification results are ranked and an average rank is calculated for each dataset. Table
22 presents the results for this test. We may observe that, while for Emotions, Yeast and
Scene datasets the best classifier was MLkNN, for CAL500, Enron and Medical datasets
the best was BR classifier, and for FMA dataset it was HOMER. Furthermore, in general,
considering all datasets the best overall classifier was RAkEL.

Table 22 – Ranking for the classification algorithms using the Friedman test.
BR BRkNN CCH CLR HOMER LPS MLkNN RAkEL

Emotions 4,85 3,38 5,31 4,46 5,54 6,15 2,15 3,85
Yeast 4,77 3,46 5,38 3,69 4,62 7,08 2,38 4,38
Cal500 2,54 6,31 3,77 4,69 4,54 4,38 5,15 3,54
FMA 7,38 4,77 2,54 7,46 1,69 1,77 5,23 4,77
Enron 2,46 7,38 3,62 3,08 3,92 6,00 6,38 2,62
Medical 2,15 7,69 2,77 4,92 4,54 5,15 6,23 2,46
Scene 5,92 2,31 5,92 3,92 3,69 7,08 1,15 5,00
Average Rank 4,30 5,04 4,19 4,60 4,08 5,37 4,10 3,80

Table 23 shows the time complexity of the resampling algorithms using the “big
O” notation (CORMEN et al., 2009), i.e., considering the superior limit for the execution
time. In Table 23, the variable n stands for the number of samples in the dataset, x is the
number of samples which will be increased/decreased by the method, y is the number of
labels in the dataset, s is the number of different labelsets and f is the number of features
in the dataset. It is important to note that the proposed method (MLTL) was analyzed
in two different contexts: as an undersampling method and as a cleaning step. We may

Chapter 4. The Multi-Label Tomek Link 124

observe that, the most computationally costly algorithms are LPROS and LPRUS, since
they have quadratic time complexities. On the other hand, we may observe that MLTL,
when used as a cleaning step, is the least computationally costly technique, being only
dependent on the number of instances in the dataset.

Table 23 – Time complexity of the multi-label resampling algorithms.

Resampling Method Time Complexity
LPROS (CHARTE et al., 2013) O(n2s log s)
LPRUS (CHARTE et al., 2013) O(n2s log s)
MLROS (CHARTE et al., 2015a) O(yn+ x)
MLRUS (CHARTE et al., 2015a) O(yn+ x)
MLeNN (CHARTE et al., 2014) O(yn)
MLSMOTE (CHARTE et al., 2015b) O(ynf)
REMEDIAL (CHARTE et al., 2015c) O(y + n)
REMEDIALHwR-HUS (CHARTE et al., 2019) O(yn)
REMEDIALHwR-ROS (CHARTE et al., 2019) O(yn+ x)
REMEDIALHwR-SMT (CHARTE et al., 2019) O(ynf)
MLTL (Undersampling) O(yn+ s)
MLTL (Cleaning) O(n)

We can also observe that our results corroborate with previous work in the field
done by Charte et al. (CHARTE et al., 2014), who stated that undersampling methods
should not be applied to MLDs which are not truly imbalanced. Hence, since for the most
imbalanced datasets (CAL500, Enron, FMA and Medical) the best results were achieved
by using MLTL, we may consider our technique as a promising approach.

We may note that it is difficult to define a criterion for the use of MLTL by itself
or MLSMOTE in combination with MLTL in a certain dataset, since the success of both
techniques depends on the intrinsic characteristics of the dataset, such as the distribution
of the samples features along the feature space.

Moreover, analyzing the advantages and disadvantages of using MLTL or MLSMOTE
+ MLTL, we may consider the performance factor as a possible issue. By using only MLTL,
the processing time spent to build the classification model may be lower than using
MLSMOTE + MLTL, since MLSMOTE technique may increase the number of instances
in the dataset. On the other hand, looking at Table 13, we may note that one advantage
of MLSMOTE + MLTL is that, in general, it reduced the datasets mean imbalanceness
better than using only MLTL.

4.3 The Imb-Mulan Framework

Is is important to note that, to the best of our knowledge, the Multi-Label Clas-
sification Frameworks from the literature do not provide implementations for all the

Chapter 4. The Multi-Label Tomek Link 125

multi-label resampling algorithms, such as the official Mulan library. Thus, in order to
compare our proposed method with other state-of-the-art methods, all resampling methods
were implemented and are freely available for free download as a Mulan extension in the
GitHub 4, which may also be considered as a contribution of this Chapter.

4.4 Final Considerations

MLTL is a Multi-Label approach to the classic Tomek Link resampling algorithm.
This method may be used as an undersampling technique or a post-process cleaning step.
For the first case, MLTL is anchored by a multi-label imbalanceness measure (MeanIR) to
find the samples from the majority classes which will be resized. Besides, MLTL leans on
the Adjusted Hamming Distance to calculate the difference between the nearest neighbors
labelsets.

Moreover, we also proposed a formula to calculate the threshold (TH), which MLTL
uses to define whether or not two instances have different labelsets. This formula is also
based in the MeanIR metric and the more imbalanced is the dataset the lower TH is, i.e.,
more samples from the majority classes will be removed.

The experimental results with seven well-known datasets from the literature showed
that MLTL is a competitive method, reducing the imbalanceness and beating all resampling
techniques in four of the datasets. Therewithal, these datasets in which MLTL performed
the best are the most imbalanced ones (higher MeanIR), showing that our technique is
successful in a valuable scenario.

The proposal of MLTL was an important step in this thesis project, since it allowed
us to better comprehend two scenarios: (1) The imbalance learning problem in the multi-
label classification context; (2) How to organize and define a new method to deal with the
imbalanceness problem.

In order to define and analyze the imbalanceness problem in hierarchical datasets
we have to define baselines experiments using the existing resampling techniques. Keeping
this in mind, in the following chapter we present the first studies towards the application
of resampling techniques in hierarchical datasets.

4 https://github.com/rodolfomp123/imb-mulan

126

C
ha

pt
er

5
Using Flat Resampling Tech-
niques in Imbalanced Hierarchi-
cal Datasets

Although dataset imbalanceness in a well-known problem in the machine learning
community, there are few works in the literature that studied the imbalanceness issue in
Hierarchical Datasets somehow. Thus, as stated before, the main objective of this Thesis
is to investigate the imbalanceness problem in Hierachical Datasets and propose novel
resampling solutions. However, before proposing novel solutions, we have first to define
baselines experiments for further analysis and comparison. In this chapter we provide an
experimental analysis concerning the application of the existing binary/multi-class and
multi-label resampling algorithms into hierarchical datasets with single and multi-paths,
respectively, in order to give baseline results for the further proposed techniques.

It is important to observe that there are no concerns regarding the depth of the
prediction at this point, i.e., the resampling algorithms do not distinguish hierarchical
classification problems with partial or full depth of prediction, since they deal with the
label paths ignoring their hierarchical structure. It means that the resampling methods
will totally ignore that two labels can be somehow related (Ex.: A/B and A/B/C).

5.1 Binary Resampling in Hierarchical Datasets with Single Paths

Figure 39 presents the resampling schema for the application of binary resampling
algorithms in single paths hierarchical datasets. This schema represents a baseline for
the application of resampling algorithms in hierarchical classification datasets with single
paths.

In this resampling scenario, the imbalanced hierarchical problem is handled by
applying binary resampling techniques in the training set. Here, each label path of the
sample is considered as an whole individual label. Thus, in order to be able to apply
these binary resampling algorithms, in Phase 1 we first use an O-A-A or O-A-O approach
together with the binary resampling algorithm. Then, in Phase 2 we use the resampled
training to train the hierarchical classifier, creating the learning model. In Phase 3 we
predict the test set labels with the learned model and in Phase 4 we analyze the prediction
results with a hierarchical measure. In the example from Figure 39, three new samples
were created by the binary resampling algorithm: Sx, Sy and Sz.

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 127

S1
S2
S3
S4
S5
S6

S7
S8
S9

TRAIN

TEST

D/E/H

A/B/C

D/F/I

D/E

D/E
D/E

A/B/C

D/E
A/B

RESAMPLED
TRAIN

2 3

Model

S7
S8
S9

PREDICTED
TEST

Pred. 1

Pred. 2

Pred. 3

Prediction
Results

Binary Resampling
with O-A-A or O-A-O

Approaches

Hierarchical
Classifier

1

4

S1
S2
S3

S5
S6

D/E/H
A/B/C

D/F/I

D/E
D/E

S4 D/E

Sx A/B/C
Sy D/E/H
Sz D/F/I

Single Path
Hierarchical

Dataset

Figure 39 – Resampling schema for the application of binary resampling algorithms in
Hierarchical problems with single paths.

5.2 Multi-Label Resampling in Hierarchical Datasets with Multiple
Paths

Figure 40 shows the resampling schema used to apply multi-label resampling algo-
rithms in hierarchical datasets with multiple paths. As well as in the previous schema, this
resampling schema also represents a baseline for the application of resampling techniques
in hierarchical classification problems, however considering only datasets with multiple
paths.

In this scenario, the hierarchical problem is considered by the resampling algorithm
as a multi-labelled classification problem. Here, each label path of the sample is considered
as an whole individual label. Thus, in Phase 1 we apply the multi-label resampling
algorithms in the training set. In Phase 2 we train the hierarchical classifier in the
resampled training set, creating the learning model. In Phase 3 we predict the test set
labels with the learned model and in Phase 4 we analyze the prediction results with a
hierarchical measure. In the example from Figure 40, two new samples were created by
the multi-label resampling method: Sx and Sy.

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 128

S7
S8
S9

TEST

A/B/C, D/F

D/E
A/B RESAMPLED

TRAIN

2 3

Model

S7
S8

S9

PREDICTED
TEST

Pred. 1

Pred. 2

Pred. 3

1

Multi-Label
Resampling

S1
S2

S3

S5
S6

S4

Sx A/B, D

A/B, D/E/H

A/B/C, D/F
D/F/I
D/E, A/B/C

D/F
D

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F
D Sy D/E/H

Multiple Path
Hierarchical

Dataset

Hierarchical
Classifier

Prediction
Results

4

Figure 40 – Resampling schema for the application of multi-label resampling algorithms
in Hierarchical problems with multiple paths.

5.3 Experimental Setup

In this section we present the datasets, algorithms and parameters, experimental
setup and classification results regarding the proposed resampling algorithms.

5.3.1 The Datasets

In order to cover different aspects of hierarchical classification problems, we per-
formed computational experiments in a total of 18 datasets: 11 with multiple paths and 7
with single paths.

Table 24 presents a detailed description of the datasets with Single and Multiple
Paths used in the experimental analysis of this Chapter. The table is composed of the
following columns (respectively): The name of the dataset; the multiplicity of paths in the
dataset (single paths or multiple paths); the depth of the prediction of the problem (partial
or full); the application domain; the number of samples in the training set; the number
of the samples in the testing set; the number of attributes of the dataset; the number of
labels/classes in the datasets. Looking at the datasets characteristics, we may observe
that FMA-MFCC is the largest one, while Hglass is the smallest one. Furthermore, Hglass
is the dataset with the lowest number of attributes, while Exp, Sequence and Diatoms
datasets have the most.

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 129

Table 24 – Hierarchical Datasets with Single and Multiple Paths.

Name Paths
Depth
of

Pred.
Domain Train Test Attr. Lbl Reference

Cell-cycle 2484 1281 78 180
Church 2474 1281 24 180
Derisi 2450 1275 62 180
Eisen 1587 837 80 170
Exp 2488 1291 544 180
Gasch-1 2480 1284 174 180
Gasch-2 2488 1291 53 180
Phenotype 1009 582 64 168
Sequence 2580 1339 437 180
SPO

Multi Biology

2437 1266 79 180

(CLARE; KING, 2003)

FMA-MFCC 33259 14274 13 97
FMA-SL-LBP Audio 15331 7000 59 135 (DEFFERRARD et al., 2017)

Diatoms

Partial

Image 2065 1054 371 398 (DIMITROVSKI et al., 2012)
Actinopterygii 15705 6739 15 30
Diptera Biology 15194 6528 33 29
Instrument Audio 6583 2836 30 46

(PARMEZAN; SOUZA; BATISTA, 2018)

Hglass Glass 144 70 9 11 (METZ et al., 2011)
ImCLEF07D

Single
Full

Image 10000 1006 80 24 (DIMITROVSKI et al., 2011a)

5.3.2 Algorithm and Parameters

For the hierarchical classification task we used the Clus-HMC framework. Clus-HMC
was chosen because it is considered in the literature as the state-of-the-work hierarchical
classification framework (CERRI; BARROS; CARVALHO, 2015; WEHRMANN; CERRI;
BARROS, 2018; PEREIRA; GABRIEL; CERRI, 2019).

Clus-HMC is based on Predictive Cluster Trees (PCT) and generates a single
Decision Tree (DT) considering an entire class hierarchy. In Clus-HMC, DTs are seen as
a hierarchy of clusters where the root node contains all the training instances, while the
remaining are recursively divided into smaller groups as the hierarchy is traversed towards
the leaves. The classification is performed using a distance-based metric which calculates
how similar an instance is to some tree.

The parameter configurations used in the algorithm were obtained after applying
an extensive Grid Search, as proposed in Bergstra & Bengio (2012), and are reported in
Table 25.

In the experiments, we have tested all the binary and multi-label resampling
algorithms presented in Chapter 3 of this thesis. Moreover, the binary resampling algorithms
were used with the O-A-A approach.

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 130

Table 25 – Clus-HMC execution parameters.

Parameter Value
Type Tree
ConvertToRules No
HSeparator “/”
FTest [0.001, 0.005, 0.01, 0.05, 0.1, 0.125]
EnsembleMethod RForest
Iterations 10
VotingType Majority
EnsembleRandomDepth No
SplitSampling None
Heuristic Default
PruningMethod Default
CoveringMethod Standard

5.4 Results

In order to evaluate the experimental results we have used the weighted-AUPRC
measure. In all tables presented in this section, the values um bold represent the best
result achieved for the given dataset.

Table 26 shows the experimental results for the hierarchical classification datasets
with single paths before and after applying binary resampling. We may observe that
Diptera was the only dataset in which the binary resampling method did not improved the
classification results. Morever, we may also note that SMOTE+ENN was the most effective
in improving the classification results in four out of the seven single paths datasets.

Table 26 – Results for the hierarchical classification datasets with single paths before and
after applying binary resampling.

FMA-SL-LBP Diatoms Actinopterygii Diptera Instrument Hglass ImCLEF07D
Original 0.3268 0.2582 0.7570 0.6027 0.7656 0.8145 0.7151
ROS 0.3278 0.2449 0.7407 0.5933 0.7529 0.8287 0.6924
SMOTE 0.3324 0.2630 0.7613 0.6014 0.7626 0.8389 0.7024
SMOTE-B1 0.3173 0.2596 0.7428 0.6012 0.7623 0.8324 0.7017
SMOTE-B2 0.3285 0.2613 0.7423 0.6003 0.7633 0.8228 0.7016
ADASYN 0.3144 0.2623 0.7433 0.5829 0.7624 0.8224 0.7028
RUS 0.2924 0.2433 0.7419 0.5724 0.7529 0.8024 0.6928
CC 0.3043 0.2436 0.7428 0.5833 0.7424 0.8014 0.7092
CNEN 0.3245 0.2328 0.7387 0.5925 0.7424 0.8276 0.7018
ENN 0.3234 0.2613 0.7498 0.5741 0.7529 0.8382 0.7016
RENN 0.3327 0.2640 0.7217 0.5833 0.7572 0.8382 0.7161
AllKNN 0.3148 0.2568 0.7388 0.5733 0.7372 0.8229 0.7014
NearMiss1 0.2722 0.2298 0.7383 0.5429 0.7176 0.7937 0.6724
NearMiss2 0.2890 0.2127 0.7314 0.5433 0.7226 0.7838 0.6882
NearMiss3 0.2789 0.2398 0.7228 0.5328 0.7228 0.7776 0.6874
TomekLinks 0.3283 0.2433 0.7424 0.5928 0.7738 0.8387 0.7213
SMOTE+ENN 0.3328 0.2698 0.7626 0.6023 0.7693 0.8476 0.7117
SMOTE+TL 0.3293 0.2617 0.7433 0.6005 0.7524 0.8279 0.7017

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 131

The classification results for the hierarchical classification datasets with multiple
paths were divided into two tables. Thus, Tables 27 and 28 present the results before and
after applying multi-label resampling. We may observe that, unlike the previous resampling
context, in this resampling scenario the multi-label methods were not able to improve
the classification results in five out of the eleven multiple paths datasets. Besides, we do
not have one resampling method ahead of the other in terms of effectivity, since different
techniques were able to improve the classification results in different datasets.

Table 27 – Results for the hierarchical classification datasets with multiple paths before
and after applying multi-label resampling (Part 1).

Cell-cycle Church Derisi Eisen Expr Gasch-1
Original 0.1307 0.1222 0.1309 0.1483 0.1606 0.1544
LPROS 0.1232 0.1225 0.1213 0.1265 0.1473 0.1584
LPRUS 0.1117 0.1124 0.1134 0.1156 0.1499 0.1410
MLROS 0.1173 0.1211 0.1178 0.1133 0.1318 0.1467
MLRUS 0.1166 0.1138 0.1276 0.1276 0.1303 0.1418
MLeNN 0.1207 0.1297 0.1355 0.1265 0.1493 0.1418
REMEDIAL 0.1238 0.1198 0.1276 0.1195 0.1330 0.1430
MLSMOTE 0.1335 0.1298 0.1340 0.1419 0.1492 0.1576
MLTL 0.1325 0.1231 0.1376 0.1361 0.1497 0.1423
MLSMOTE+MLTL 0.1355 0.1237 0.1374 0.1448 0.1519 0.1434

Table 28 – Results for the hierarchical classification datasets with multiple paths before
and after applying multi-label resampling (Part 2).

Gasch-2 Phenotype Sequence SPO FMA-MFCC
Original 0.1410 0.1256 0.1683 0.1342 0.2803
LPROS 0.1377 0.1150 0.1417 0.1397 0.2646
LPRUS 0.1343 0.1128 0.1481 0.1298 0.2569
MLROS 0.1330 0.1271 0.1483 0.1355 0.2570
MLRUS 0.1403 0.1224 0.1479 0.1316 0.2488
MLeNN 0.1365 0.1247 0.1472 0.1322 0.2645
REMEDIAL 0.1385 0.1233 0.1586 0.1336 0.2646
MLSMOTE 0.1353 0.1264 0.1593 0.1386 0.2728
MLTL 0.1344 0.1105 0.1583 0.1377 0.2733
MLSMOTE+MLTL 0.1339 0.1105 0.1672 0.1337 0.2615

5.5 Discussion

The discussion concerning the results presented in the previous section is grounded
in these two questions: (i) Which binary resampling algorithms improved the classification
results in the hierarchical datasets with single paths? (ii) Which multi-label resampling
techniques improved the classification results in the hierarhical datasets with multiple
paths? Both questions are answered with statistical significance in the following.

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 132

Which binary resampling algorithms improved the classification results in the
hierarchical datasets with single paths?

In order to answer this question we have applied the Wilcoxon statistical test for
each binary resampling algorithm stating that the classification results are different after
applying each specific technique in the training sets. Table 29 presents the z-scores and
p-values for the test results. Considering a threshold of 0.05 for the p-value, the only
resampling technique that did changed the classification results with statistical significance
was the combination of SMOTE with ENN.

Table 29 – Wilcoxon test for the hierarchical datasets with single paths.
z-score p-value

ROS 22.0 0.9119
SMOTE 9.0 0.1990
SMOTE-B1 20.0 0.8448
SMOTE-B2 18.0 0.7505
ADASYN 23.0 0.9359
RUS 28.0 0.9910
CC 28.0 0.9910
CNEN 25.0 0.9685
ENN 21.0 0.8816
RENN 16.0 0.6323
AllKNN 26.0 0.9787
NearMiss1 28.0 0.9910
NearMiss2 28.0 0.9910
NearMiss3 28.0 0.9910
TomekLinks 15.0 0.5671
SMOTE+ENN 3.0 0.0315
SMOTE+TL 17.5 0.7233

Which multi-label resampling algorithms improved the classification results in
the hierarchical datasets with multiple paths?

This questions is also answered applying the Wilcoxon statistical test for each
multi-label resampling algorithm stating that the classification results are different after
applying each specific technique in the training sets. Table 30 shows the z-scores and
p-values for the test results. Also considering a threshold of 0.05 for the p-value, we can
observe that none of the resampling algorithms have statistically improved the classification
results.

Chapter 5. Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets 133

Table 30 – Wilcoxon test for the hierarchical datasets with multiple paths.
z-score p-value

LPROS 58.0 0.9869
LPRUS 66.0 0.9983
MLROS 61.0 0.9936
MLRUS 66.0 0.9983
MLeNN 57.0 0.9836
REMEDIAL 66.0 0.9983
MLSMOTE 42.0 0.7882
MLTL 55.0 0.9748
MLSMOTE+MLTL 52.0 0.9544

5.6 Final Considerations

In this Chapter we have presented the first approaches to deal with imbalanceness
in hierarchical classification datasets. As we have different types of hierarchical datasets
regarding the number of paths assigned to each sample, we have suggested two resampling
schemas. The first one deals with the application of binary resampling algorithms using
O-A-A or O-A-O approaches in the hierarchical datasets with single paths of labels.
The second one is aimed in the application of multi-label resampling techniques in the
hierarchical datasets with multiple paths of labels.

The resampling schemas presented in this Chapter are considered the baselines for
the application of resampling algorithms in hierarchical classification, since we apply the
existing resampling techniques in the hierarchical datasets with the only concern being
the number of labels per paths in the dataset.

The experimental analysis with seven hierarchical classification datasets with single
paths of labels and eleven with multiple paths of labels, supported by statistical significance,
shown that the use of standard resampling approaches do not lead to improvements in the
classification performance, mainly of the multiple paths problems. The bad performance
of the schema may be explained by the fact that it does not considers the depth of the
prediction of the problems, which is a crucial point in hierarchical classification problems.

In the next Chapters, we present specific approaches proposed in this Thesis in
order to handle imbalanceness in hierarchical classification datasets considering different
strategies and heuristics, which somehow consider the relationship between the label
paths. In this context, the next Chapter present a label conversion strategy to deal with
imbalanceness in hierarchical multi-label datasets with multi-label resampling algorithms.

134

C
ha

pt
er

6
A Label Path Conversion Strat-
egy for Imbalanced Hierarchical
Datasets

In this chapter we present the first contributions towards the resampling of hierar-
chical datasets, which are:

• Two new metrics to measure imbalanceness in Hierarchical Datasets.

• A novel approach to deal with imbalanceness in hierarchical scenarios using Multi-
Label Resampling Techniques.

The proposed approach is focused in the conversion of the hierarchical into a multi-
label dataset, applying well-known multi-label resampling algorithms, and then converting
the dataset back to its hierarchical taxonomy. The technique is detailed explained in the
following sections.

It is important to observe that a paper describing the main findings of this
Chapter were published at the 30th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI) (PEREIRA; COSTA; SILLA JR, 2018).

6.1 Measuring Imbalanceness in HMDs

The measurement of imbalanceness in datasets, known as Imbalance Ratio (IR), is
usually obtained by computing a ratio between the number of samples in the majority
classes and the ones associated to the minority classes. A high IR leads to a highly
imbalanced dataset (JAPKOWICZ; STEPHEN, 2002).

In the multi-label imbalanceness scenario, the authors of (CHARTE et al., 2013)
proposed important metrics such as IRLbl and MeanIR. IRLbl measure calculates the IR
for each label as a ratio between the frequency of the most common label in the labelsets
and the frequency of the given label. Meanwhile, MeanIR measure the average level of
imbalance in a Multi-Label Dataset (MLD) as the average IRLbl.

However, as shown in Figure 41, in Hierarchical Multi-Label Datasets (HMDs)
the labels are represented as paths through the labels hierarchical taxonomy, instead of
only sets of labels. Thus, we may define a IR measure for each label path. It is important
to observe that in multi-label classification problems we consider as majority/minority

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 135

F

A

B C

D E

Hierarchical Taxonomy

p1 : A/B/D

p2 : A/B/E

p3 : A/C/F

Label Paths

P = {p1, p2, p3}

Figure 41 – Example of Label Paths in a Hierarchical Taxonomy.

labels the ones which appears the most/least in the samples. Nevertheless, in the following
measures, we are proposing to consider as majority/minority the label paths, instead of
individual labels.

Following the same line of reasoning of the authors from (CHARTE et al., 2013),
in Formula 6.1 we define IRLP (p), which represents the imbalance level of a certain Label
Path p. In this context, P is the set of all possible Label Paths that has at least one
occurrence in any samples, Pi is the i-th label path, and the dataset is represented as D.

IRLP (p) =
max
p′∈P (∑|D|i=1 h(p′, Pi))∑|D|

i=1 h(p, Pi)

h(p, Pi) =

1, p ∈ Pi
0, p /∈ Pi

(6.1)

In Formula 6.1, the value is 1 for the most frequent Label Path, and a greater value
for the others. The higher IRLP is, the larger will be the imbalance level for the Label
Path.

Formula 6.2 defines the Mean Imbalanceness of a Hierarchical Dataset (HMeanIR)
based on the average between the imbalanceness per label path previously presented.

HMeanIR = 1
|P |

P|P |∑
p=P1

IRLP (p) (6.2)

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 136

6.2 Using Multi-Label Techniques to Deal with Imbalanceness

In order to give a general view, Figure 42 presents a visual schema of the proposed
approach to tackle the imbalance problem in Hierarchical Multi-Label Datasets (HMD).
As can be observed in Figure 42, the idea is mainly focused in three phases:

1. Convert the HMD into a Multi-Label Dataset (MLD);

2. Apply the well-known multi-label resampling algorithms; and

3. Convert the resampled ML dataset back to a HMD.

Original
Hierarchical

Dataset

Converted
MLD

Apply ML
Resampling

Methods

Resampled
Hierarchical

Dataset

(1) Conversion

(3) Conversion

Resampled
MLD

(2
) R

es
am

pl
in
g

Convert
HMD to

MLD

Convert
MLD to
HMD

Figure 42 – Schema of the Proposed Resampling Approach.

Figure 43 shows an example of HMD↔MLD Conversion. In this example each Sn
represents the nth sample/instance from the dataset, the letters (A, B, C, D, E, F, and
G) are the labels and the hierarchy between them is represented by “/”. In the following
subsections we give a detailed explanation regarding the HMD↔MLD conversion.

6.2.1 Hierarchical to Multi-Label Conversion

The first phase of Figure 42, i.e., the conversion from a HMD to a MLD, can be
seen through the steps of Algorithm 33. The main idea is to group (for each instance) its
labels paths into an unique labelset. For example, looking at Figure 43, we may note that
instance S1 has the hierarchy labels {A/B/E, A/B/D} and it would be converted to a
labelset {A, B, D, E}.

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 137

S1) A/B/E, A/B/D

Hierarchical Dataset Multi-Label Dataset
S1) A, B, D, E

S2) A, B, C, D, F, G

S3) A, B, D

S4) A, B

S5) A, B, C

S2) A/C/F, A/B/D, A/C/G

S3) A/B/D

S4) A/B

S5) A/C, A/B

Conversion

Sn) A/C, A/C/G Sn) A, C, G

...

...

Figure 43 – Example of HMD↔ML Conversion.

Algorithm 33 HMD→MLD Conversion
Inputs: D: A Hierarchical Dataset
Output: D′: A Multi-Label Dataset
1: D′ ← new empty list of instances
2: for each h_sample in D do
3: ml_samplefeatures ← h_samplefeatures
4: labels ← empty set
5: for each label_path in h_samplelabels do
6: labels ← labels ⋃ label_pathlabels
7: end for
8: ml_samplelabels ← labels
9: D′ ← D′ + ml_sample
10: end for
11: return D′

In details, Algorithm 33 works as follows: The main for loop (lines 2 to 10) pass
through each one the instances (named h_sample) of the hierarchical dataset D. Then, in
line 3, all features (excluding the labels) are cloned to the new sample (ml_sample), which
will represents the converted sample. The internal for loop (lines 5 to 7) group each one of
the individual labels in h_sample label paths, which are later set as ml_sample labels
(line 8). Finally, in line 9, the converted sample is attached to the converted multi-label
dataset D′ .

6.2.2 Multi-Label to Hierarchical Conversion

The third phase of Figure 42, i.e., the conversion of the resampled MLD back to a
HMD, is shown in Algorithm 34. The first important observation regarding this conversion
is that the algorithm needs the label hierarchy as input (represented as H in Algorithm
34). The main idea is: For each label in the instance labelset, the algorithm will “walk
through” the labels hierarchy, identifying the longest label path ending with the given
label.

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 138

A

B C

D E F G

A, B, C, D, E

Labels HierarchyMulti-Label Dataset

A/B/D, A/B/E and A/C

Hierarchical Dataset

... ...
L1

L1

L2

L2

L3 L1 L2 L3

Figure 44 – Longest Paths Identification.

Figure 44 shows an example of the longest label path identification task (represented
for line 6 in Algorithm 34). The paths are identified thought a pre-order traversal search in
the labels hierarchy. In the example, LN shows the path to identify the Nth hierarchical
label.

It is worth to highlight line 9 of Algorithm 34, which presents the removeRepeated-
Paths function. The goal of this function is to remove the label paths already included
in longer paths. For example, in Figure 44 the algorithm would create the following
hierarchical labelset: {A, A/B, A/C, A/B/D, A/B/E}. However, we may note that the
labels A and A/B are already contemplated in the label paths A/B/D, A/B/E. Thus,
removeRepeatedPaths function is used to remove these labels.

Algorithm 34 MLD→HMD Conversion
Inputs: D: Multi-Label Dataset, H: Labels Hierarchy
Output: D′: Hierarchical Dataset
1: D′ ← new empty list of instances
2: for each h_sample in D do
3: ml_samplefeatures ← h_samplefeatures
4: labels ← empty set
5: for each label in h_samplelabels do
6: path ← findLongestPath(H, label)
7: labels ← labels ⋃ path
8: end for
9: labels ← removeRepeatedPaths(labels)
10: ml_samplelabels ← labels
11: D′ ← D′ + ml_sample
12: end for
13: return D′

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 139

6.2.3 Approach Limitations

It is important to observe that this proposed approach have two main limitations,
which means that the conversions only work on hierarchical datasets in which: (i) There is
the possibility of multiple paths, i.e., Hierarchical Multi-Label Datasets; (ii) The labels are
disposed in a Tree taxonomy, i.e., will not work in datasets with Directed Acyclic Graph
(DAG) taxonomy.

6.3 Experimental Evaluation and Discussions

In this section we present the dataset, parameters and configuration, results and
discussion regarding the proposed method.

The dataset used in the experiments is the FMA-MFCC dataset, which is the same
presented in Section 5.3.1. However, in the experiments presented in this Chapter, we have
performed 10-fold cross-validation in the dataset, joining the training and test sets and
subdividing them into folds. The features were extracted from the songs’ audio signals and
are one of the most well-known features for audio recognition tasks: The Mel Frequency
Cepstral Coefficients (MFCC), which is a representation of the short-term power spectrum
of a sound, based on a discrete cosine transform of the log power spectrum on a mel-scale
frequency. More details can be found in (MERMELSTEIN, 1976).

The experiments were conducted using the Clus-HMC framework (TODOROVSKI;
BLOCKEEL; DZEROSKI, 2002; BLOCKEEL et al., 2006; VENS et al., 2008). Clus is an
algorithm to perform Hierarchical Multi-Label Classification based on predictive cluster
trees. The main idea of the method is to build a set of classification trees to predict a set
of classes, instead of only one class. To do this, the authors transform the classification
output into a vector with Boolean components corresponding to the possible classes. They
also need to take into account a distance-based metric to calculate how similar the training
examples are in the classification tree. Clus-HMC was chosen for the task presented in this
Chapter because it is considered the state-of-the-art hierarchical classification algorithm
in some works from the literature (CERRI; BARROS; CARVALHO, 2015; WEHRMANN;
CERRI; BARROS, 2018; PEREIRA; GABRIEL; CERRI, 2019).

Table 31 show the execution parameters of the Clus-HMC algorithm. These param-
eters were chosen after an exhaustive analysis in a set of experiments using the classifier
in the dataset.

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 140

Table 31 – Clus-HMC execution parameters.

Parameter Value
Model Testing Method Cross-Validation
Number of Folds 10
Attributes Weights Normalize
Model Minimal Weight 2
Tree Heuristic Gain Ratio
Pruning Method Default
Beam Size Penalty 0.1
Beam Width 10
Beam Max Size Infinity
Constraints Syntactic None
Constraints Max Size Infinity
Constraints Max Error Infinity
Constraints Max Depth Infinity
WType Exp Avg Parent Weight
WParam 0.75
Optimize Error Measure Average AUROC
Classification Threshold 0.5
MEstimate No

6.3.1 Results

Table 32 presents the values of the proposed imbalance measures for FMA before
and after applying the proposed resampling approach for six different ML resampling
techniques: LPROS, LPRUS, MLROS, MLRUS, MLSMOTE and MLeNN. In this Table,
MaxIRLP represents the highest value of IRLP in the dataset. The best rate, i.e, the
methods which achieved the lowest HMeanIR and MaxIRLP are highlighted in bold.

Table 32 – Imbalanceness features of FMA before/after resampling.

Dataset MaxIRLP HMeanIR
Original (No Resampling) 8,254 347.60
LPROS 10,291 185.93
LPRUS 6,097 262.14
MLROS 10,422 203.42
MLRUS 6,524 352.37
MLSMOTE 7,273 243.62
MLeNN 7,940 289.08

Table 33 shows the experimental results for the Averaged Area Under Receiver
Operating Characteristic (AUROC) and the Weighted Averaged Area Under the Precision
Recall Curve (AUPRC) metrics of the proposed approach using the same six ML resampling
algorithms. The best result, i.e., the resampling technique which reached the best result
using the proposed method, is highlighted in bold.

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 141

Table 33 – Experimental results for the proposed resampling approach.

Avg. AUROC Avg. AUPRC
(Weighted)

Original (No Resampling) 0.5409 0.1898
LPROS 0.7746 0.3842
LPRUS 0.5375 0.1835
MLROS 0.7255 0.3550
MLRUS 0.5509 0.1910
MLSMOTE 0.6151 0.2587
MLeNN 0.5727 0.2018

6.3.2 Analysis and Discussion

In this section we give a detailed analysis concerning the experimental results
performed in this work. In this discussion we mainly intend to answer three questions:

1. Which Multi-Label resampling technique was the most effective in reducing the
imbalance on the HMD?

2. Which Multi-Label resampling technique achieved the best results in the HMD?

3. May the proposed HMeanIR measure the dataset imbalanceness?

The Imbalanceness Reduction

Firstly, looking at Table 32 we may observe that, with exception of MLRUS, all
the ML resampling algorithms could reduce the dataset mean imbalanceness, calculated
thought the proposed metric HMeanIR. Moreover, the techniques which reduced the
imbalanceness the most were the oversampling methods. While LPROS decreased the
dataset HMeanIR from 347.60 to 185.93, MLROS reduced it to 203.42, and MLSMOTE
could decrease it to 243.62.

Secondly, we may note that LPRUS technique achieved the lowest result consider-
ing the MaxIRLP value. On the other hand, we may observe that the techniques which
reduced the HMeanIR the most (LPROS and MLROS) were also the methods in which
the MaxIRLP achieved the higher result. This apparently controversial result might be
explained by the fact that, when the oversamplig methods create new instances to increase
the number of samples in the minority classes, reducing its imbalanceness, it indirectly
increases the imbalanceness of some label paths from the majority classes which were
already imbalanced, generating high individual IRLPs for specific label Paths.

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 142

The Best Resampling Technique

The experimental results from Table 33 shown that using LPROS to resample the
dataset before the classification phase improved the results from 0.5409 to 0.7746 (for Avg.
AUROC measure) and from 0.1898 to 0.3842 (for Avg. AUPRC metric), i.e., LPROS could
increase 0.2337 (AUROC) and 0.1844 (AUPRC) of the baseline result, proving to be the
most promising resampling technique in this scenario.

In its turn, LPRUS was the unique technique that could not improve the classifica-
tion results, decreasing the AUROC result (in relation to the original dataset) from 0.5409
to 0.5275 and AUPRC from 0.1898 to 0.1835. In fact, we may note that the best results
were achieved by the oversampling techniques (LPROS, MLROS and MLSMOTE), which
improved the classification results in at least 0.07 points.

The relation between HMeanIR and the imbalanceness

In order to analyze the relationship between HMeanIR and the dataset imbal-
anceness, we plotted HMeanIR rate and AUROC / AUPRC classification results side by
side in Figure 45. Looking at the graphics, we may observe that there is a relationship
between HMeanIR and the classification results. The three curves follow practically the
same behavior for all resampling algorithms: When HMeanIR decreases, the results of
AUROC and AUPRC increase.

Thus, the graphics suggest that: (1) The proposed HMeanIR metric can indeed
measure the imbalanceness of the dataset; (2) The imbalanceness directly influences the
classification results.

Figure 45 – Results Comparison Graphics.

Chapter 6. A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets 143

6.4 Final Considerations

In this chapter we presented two metrics to evaluate how imbalanced a Hierarchical
Multi-Label Dataset is. While the first metric (IRLP) is focused on calculating the
imbalance level of a certain Label Path, the second metric (HMeanIR) calculates the
general imbalance by averaging all the IRLPs from the dataset.

Moreover, we proposed a novel approach to deal with imbalanceness in Hierarchical
Multi-Label Datasets. This method is aimed at converting HMD ↔ MLD, in order to
allow the use of well known Multi-Label resampling algorithms in the dataset to deal with
the imbalanceness. The experimental results in one of the biggest hierarchical classification
datasets from the literature showed promising results, in which its HMeanIR decreased from
347.60, using the original dataset, to 185.93, using the LPROS technique. Furthermore,
the LPROS oversampling method increased the classification results from 0.5409 to 0.7746,
i.e., an improvement of 0.2337 points using the Avg. AUROC metric, and from 0.1898 to
0.3842 using the Weighted Avg. AUPRC measure. Moreover, the lowest value of MaxIRLPs
was achieved by LPRUS method.

Based on these results, there is still room for improvement by creating new strategies
that deal specifically with the hierarchical taxonomy. In the next Chapter we present an
approach to deal with imbalanced hierarchical classification datasets through the use of
resampling algorithms during the training phase of different local classifiers approaches.

144

C
ha

pt
er

7
Dealing with Imbalanced Hierar-
chical Datasets on Local Classifi-
cation Approaches

Among the techniques to deal with hierarchical classification, the Local Classifiers
are one of the most used approaches in the literature (SILLA JR; FREITAS, 2011). Taking
these techniques into consideration, a study concerning the application of well-known
resampling algorithms in these contexts was proposed and is presented in this chapter,
which regards the following contributions:

• Three new metrics to measure imbalanceness in hierarchical classification datasets
considering the different local classification scenarios.

• Novel approaches to deal with the imbalanceness in hierarchical classification prob-
lems using local classification approaches.

• A comprehensive set of experiments using the proposed approaches for eleven
hierarchical classification datasets from the literature.

The contributions of this chapter are under evaluation for publication in the Data
Mining and Knowledge Discovery Journal.

7.1 Measuring the Imbalanceness with Local Perspectives

In order to investigate if the dataset imbalanceness may be affecting the classifiers
learning process, the calculation of a concrete imbalanceness level can be used. This
measure is an useful information that can be used either to justify a classifier’s bad
performance or to help to choose a suitable classifier. Furthermore, this imbalance measure
is commonly used by the resampling algorithms as a borderline information to decide
which labels have to be tackled: the most imbalanced in case of an oversampling algorithm
or the least imbalanced in case of an undersampling algorithm.

The measurement of imbalanceness in datasets is known as Imbalance Ratio (IR)
and is usually obtained by computing a ratio between the number of samples in the
majority classes and the ones associated to the minority classes. A high IR leads to a
highly imbalanced dataset (JAPKOWICZ; STEPHEN, 2002).

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 145

In the binary and single-label classification scenarios, the dataset imbalaceness
level can be computed by simply counting the number of samples belonging to each label
of the dataset. While the most frequent label will be associated as the majority class, the
less frequent is the minority class. However, in the multi-label scenarios, the possibility of
association of more than one label per sample turns the IR calculation in a non-trivial
task. Moreover, in the hierarchical scenario, besides the possibility of multiple labels per
sample, their specific hierarchical taxonomy brings another challenge to the IR calculation
task.

To solve the IR calculation issue in the Multi-Label scenario, Charte et al. (2013)
proposed metrics such as Imbalance Ratio per Label (IRLbl) and Mean Imbalance Ratio
(MeanIR). While the IRLbl measure calculates the IR for each label as a ratio between
the frequency of the given label and the most common label in the labelsets, MeanIR is
the average level of imbalance in a multi-label dataset as the average IRLbl.

The measures proposed by Charte et al. (2013) are fitted to work with multi-label
dataset, but not hierarchically organized. To do so, in Pereira, Costa & Silla Jr (2018)
we proposed a new metric, so-called Imbalance Ratio per Label Path (IRLP), in order to
measure the imbalanceness in hierarchical datasets by adapting IRLbl to consider paths
through the label’s hierarchical taxonomy, instead of only sets of labels. In this case, the
value 1 for IRLP represents for the most frequent Label Path. The higher the IRLP is, the
larger the imbalance level for the given Label Path will be. Meanwhile, a HMeanIR was
also proposed as the mean imbalance ratio for the hierarchical dataset.

Although the HMeanIR metric was experimentally tested and showed that is able
to measure the imbalanceness of a hierarchical dataset, it may be considered as a global
approach, since it measures the labels paths frequency in the dataset as a whole. In other
words, it means that when using local classifiers to build the classification models per
node or level (such as the ones presented in section 2.2), the IRLP metric will not be
able to detect the imbalanceness in a local perspective. Given that the local classifiers
approaches are one of the most used techniques to deal with hierarchical classification
problems, it is necessary to define specific metrics to measure the imbalanceness in these
local contexts. Thus, if we are able to identify when the imbalanceness issue is affecting
the local classifiers, we may use the resampling approaches proposed in this work in order
to tackle this problem.

Considering the previously described context, in the following subsections we
present novel metrics that can be used to measure imbalanceness in hierarchical datasets
taking into account the local imbalance information. The idea behind these measures
is to create a mechanism that can summarize and quantify the imbalanceness in the
subsets created in the training step of each local classifier, considering the different local
approaches (LCN, LCPN or LCL) and policies (Fig. 9). Thus, we have defined three

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 146

different Imbalance Ratio equations: IRLCN ; IRLCPN ; and IRLCL.

For all equations, let us consider D as the hierarchical classification dataset, p
as the policy chosen to select the positive/negatives samples in order to build the local
classification model, n as a node/label from the hierarchy, |L| as the total number of
nodes/labels from the hierarchy, Sj as the jth instance of the dataset, ni as the ith node
from the labels hierarchy, Cn as the set of immediate children of node n, Cni

as the ith

immediate child of n, LV as the set of levels in the label hierarchy, and Nlv as the set of
nodes of the level lv. Moreover, for all metrics the h formulas are used in order to identify
if a certain sample Sj is labeled with the given label x when using the given local approach
with that specific policy p.

7.1.1 Imbalance Metrics for the LCN Approach

The LCN approach is focused on building a classification model for each node
on the labels hierarchy, which will decide whether or not a new sample belongs to that
specific node. During the training step, the dataset is “binarized” using a chosen policy
(as presented in Figure 9) and we may raise the following question: How imbalanced is
each one of these binary subsets during the training phase? In the following we present a
metric that can be used to measure these local imbalanceness. The LCN Imbalance Ratio
for the node n with policy p, named IRLCN , is defined as:

IRLCN(n, p) =
max
x∈0,1

(∑|D|j=1 h(Sj, x, p))

min
x∈0,1

(∑|D|j=1 h(Sj, x, p))
(7.1)

where:

h(Sj, x, p) =

1 if Sj is labeled with x when using policy p,

0 otherwise.
(7.2)

The goal of IRLCN (n, p) is to define the proportion of number of positive/negative
samples that will be considered to build the binary classification model for the label node
n when using the policy p. In other words, the higher IRLCN(n, p) is, the larger will be
the imbalance level when building the classification model for label node n using policy p.

Furthermore, we may define the Mean Imbalance Ratio (MeanIRLCN) when using
the local classifiers per node approach with the policy p as the average between the
IRLCN(n, p) for all label nodes:

MeanIRLCN(p) =
∑|L|
i=1 IRLCN(ni, p)

|L|
(7.3)

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 147

7.1.2 Imbalance Metrics for the LCPN Ppproach

The LCPN approach builds a multi-class classification model for each parent node
on the labels hierarchy, which will decide from which one of a node’s children a new sample
belongs to. During the training phase, the dataset is transformed into a series of multi-class
subsets using a chosen policy (e.g: siblings or exclusive siblings) and we may raise the
same question: How imbalanced is each one of these subsets? In the following we present a
metric to measure these local imbalanceness. The LCPN Imbalance Ratio for the node n
with policy p, named IRLCPN(n, p), is defined as:

IRLCPN(n, p) = 1
|Cn|2

|Cn|∑
i=1

∑|D|
j=1 h(Sj, Cn, p)∑|D|
j=1 h(Sj, Cni

, p)
(7.4)

where:

h(Sj, x, p) =


1 if p = sib. and Sj is labeled with x or a descendant of a label in x,

1 if p = exc. siblings and Sj is labeled with a label x (or in x),

0 otherwise.
(7.5)

The goal of IRLCPN(n, p) is to define the proportions of numbers of samples
labelled with children of node n when using the policy p that will be considered to build
the multi-class classification model for node n.

The higher IRLCPN(n, p) is, the larger will be the imbalance level when building
the classification model for label node n using policy p. It is important to observe that
we may have two different policies to define the children of a node n in order to calculate
the proportions: (1) Exclusive Siblings, which considers only the samples labelled with
immediate children of node n; (2) Siblings, which considers samples labelled with the
children of node n in addition to all its descendants.

Moreover, we may define the mean Imbalance Ratio when using the local classifiers
per parent node approach with the policy p, named MeanIRLCPN , as:

MeanIRLCPN(p) =
∑|PN |
i=1 IRLCPN(ni, p)

|PN |
(7.6)

7.1.3 Imbalance Metrics for the LCL Approach

The LCL approach is aimed into building a multi-class classification model for
each level of the labels hierarchy, which will associate a new sample to one label from

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 148

each hierarchy levels. Like the LCPN approach, during the training step, the dataset is
transformed into a series of multi-class subsets and we may also raise the question: How
imbalanced is each one of these subsets? In the following we present a metric to measure
these local imbalanceness. The LCL Imbalance Ratio for the level lv, named IRLCL, is
defined as:

IRLCL(lv) = 1
|Nlv|2

|Nlv |∑
i=1

∑|D|
j=1 h(Sj, Nlv)∑|D|
j=1 h(Sj, ni)

(7.7)

where:

h(Sj, x) =

1 if Sj is labeled with label x (or in x),

0 otherwise.
(7.8)

The idea of IRLCL(lv) is to define the proportions of number of samples labelled
with the nodes in the level lv of the labels hierarchy that will be considered to build the
multi-class classification model for level lv. The higher IRLCL(lv) is, the larger will be the
imbalance level when building the classification model for level lv.

Therewithal, we may define the mean Imbalance Ratio when using the local
classifiers per level approach with the policy p, named MeanIRLCL, as:

MeanIRLCL =
∑|LV |
lv=1 IRLCL(lv)
|LV |

(7.9)

7.2 Proposed Approaches

In this Chapter we propose three different resampling approaches to couple with
the three different strategies of hierarchical classification using local classifiers: The Local
Classifier per Node; Local Classifier per Parent Node; and Local Classifier per Level.

We have visually designed resampling schemas for all the proposed approaches,
which will be detailed in the following subsections. In all proposed schemas we are
considering an arbitrary example dataset (presented in Figure 46). Furthermore, in all
Figures, the blue colored samples exemplify the use of oversampling techniques, while
red colors samples with a dashed line are used to exemplify the use of undersampling
techniques.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 149

S7
S8
S9

TEST

A/B/C, D/F

D/E
A/B

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F
D

Hierarchical
Dataset

Figure 46 – An example of a hierarchical classification dataset subdivided into train and
test.

7.2.1 Resampling Using the LCN Approach

The first resampling schema was designed for the Local Classifiers per Node
approach (LCN), which according to (SILLA JR; FREITAS, 2011), is the most used
hierarchical classification technique in the literature.

The main idea here is to resample each binarized dataset before building the
classification model for each node. Figure 47 presents a general schema for the classification
process using the proposed resampling step. In this figure, the orange cubes represent the
classification models, which are built for each label node (Mx stands for the classification
model of node x).

The classification schema is composed of three main steps: (1) Building one binary
classifier per label node in the hierarchy; (2) Classifying the test dataset; (3) Measuring
the classification results with a hierarchical measure. Even though these steps are already
commonly used in order to classify a hierarchical dataset with the LCN approach, the
first step is further subdivided into three substeps: (1.1) Applying a previously defined
policy to choose the positive/negative samples when building the classification model for
a given node n; (1.2) Applying a flat binary classification resampling algorithm in the
binarized training dataset; (1.3) Using a flat single-label classification algorithm to build
the classification model for node n. It is important to observe that the proposed approach
is specifically embedded into the step 1.2, in which a binary resampling process is applied
into the training dataset.

During the testing phase (step 2 of Figure 47), we use a top-down approach to
predict the hierarchy of labels for a new sample, avoiding inconsistencies in class prediction
at the different levels. It means that given an unknown sample, the idea is to walk down
into the model tree predicting if the sample belongs to each label from the hierarchy. This

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 150

S7
S8
S9

TEST

A/B/C, D/F

D/E
A/B

1

A

B

D

E

Root

F

C

LABEL TREE

Root

MODEL TREE

2

S1
S2
S3
S4...
Sn

BIN-TRAIN
+

-

-

+

+

MA

MB

MC

MD

MF

MNN

Root

...

...

S1
S2
S3
S4

Sn

S6S6

RESAMPLED
BIN-TRAIN

+
-
-
+

+
Sn+1 -

Policies to Choose
Positive/Negative

Samples

Binary
Resampling
Algorithms

Single-Label
Classification

Algorithms

S7
S8

S9

HIERARCH.
PREDICTED

TEST
Pred. 1

Pred. 2
Pred. 3

3

Hierarachical
Measurement

1.1 1.2 1.3

...

...

...

G H I MG MH

ME

MI

...

... ...

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F/I
D

Figure 47 – The general classification schema for the LCN approach.

way, we have to use a threshold to define if we must consider a sample belonging to a
certain label or not. It is important to note that we only keep moving down the next node
of the model tree if the sample is labeled with the previous node.

In substep 1.1 of Figure 47 we may use six different policies to choose the posi-
tive/negative samples from the train dataset in order to build the classification model
for a certain node n. To illustrate this process considering a certain policy, in Figure 48
we present two examples of the substeps 1.1, 1.2 and 1.3 for the Less Inclusive (Figure
48(a)) and Less Exclusive (Figure 48(b)) policies when applied to the node “E” of the
example train dataset from Figure 46. It is important to observe that depending on the
policy, some instances may not be used to train the model.

7.2.2 Resampling Using the LCPN Approach

This resampling schema is proposed to the Local Classifiers per Parent Node
approach (LCPN), which consists into creating a multi-class classifier per parent node in
order to distinguish between its child nodes.

The goal is to resample the multi-class datasets before building the classification

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 151

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F/I
D

A

B

D

E

Root

F

C

LABEL TREE

ME

S1
S2
S3
S4
S5
S6

RESAMPLED
BIN-TRAIN

+

-

-

+

-
-

SX +

1 2 3S1
S2
S3
S4
S5
S6

BIN-TRAIN
+

-

-

+

-
-G H I

Less Inclusive
Policy

Binary Resampling
Algorithms

Single-Label
Classification Algorithms

(a) Less Inclusive.

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F/I
D

A

B

D

E

Root

F

C

LABEL TREE

ME

S2
S3
S4
S5
S6

RESAMPLED
BIN-TRAIN

-

-

+

-
-

SX +

1 2 3
S2
S3
S4
S5
S6

BIN-TRAIN

-

-

+

-
-

G H I

Sy +

Less Exclusive
Policy

Binary Resampling
Algorithms

Single-Label
Classification Algorithms

S1 - S1 -

(b) Less Exclusive.

Figure 48 – Example of resampling schema for hierarchical datasets using LCN with two
different policies.

model for each parent node. Figure 49 presents a general schema for the classification
process using the proposed resampling step. In this figure, the orange cubes represent the
classification models, which are built for each parent node of the label tree (Mxy stands
for the classification model of node which is parent of x and y).

Similarly to LCN, the classification schema is also composed of three main steps: (1)
Building a classification model for each parent node in the labels hierarchy; (2) Classifying
the test dataset using a top-down approach; (3) Measuring the results with a hierarchical
measure. Such as in LCN, there are three substeps in the model building phase, where in
substep 1.1 a policy has to be chosen (in this scenario only siblings or exclusive siblings
are allowed). The proposed resampling phase is also embedded into substep 1.2. It might
be observed that, as the LCPN approach creates multi-class problems for each parent
node and the classic resampling approaches are used to work in binary class problems, we
have to apply an O-A-A or an O-A-O approach. These techniques decompose a multi-class
classification problem into a series of binary sub-problems, so we can apply a binary
resampling algorithm in each one of them. Finally, on substep 1.3, the parent node model
is built considering a single-label classification algorithm.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 152

1
MODEL TREE

S1
S2
S3
S4

MULTI-CLASS
TRAIN

Ch1
Ch2

Ch1

Ch1

MB

MC

MEF

MPParent

Root

... S1
S2
S3
S4

RESAMPLED
MC TRAIN

Ch1

Ch2

Ch1

Ch1

Sn Ch1

Policy:
- Siblings; or
- Exclusive Siblings.

Binary Resampling
with O-A-A or O-A-O

Approaches

Single-Label
Classification

Algorithms

...

...

MAD

Ch1

... ...
Ch2

...

2

1.1 1.2 1.3

A

B

D

E

Root

F

C

LABEL TREE

G H I
MIMGH

Sn Ch1

... ...

Sn+1 Ch2

... ...

S7
S8
S9

TEST

A/B/C, D/F

D/E
A/B

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F/I
D

S7
S8

S9

HIERARCH.
PREDICTED

TEST
Pred. 1

Pred. 2
Pred. 3

3

Hierarachical
Measurement

Figure 49 – The general classification schema using the LCPN approach.

In substep 1.1 of Figure 49, differently to the LCN approach, we may use only
two different policies to choose the samples from the train dataset in order to build the
classification model for a certain parent node n. To illustrate this process considering the
chosen policy, we present Figure 50, which shows examples of the substeps 1.1, 1.2 and 1.3
for the Exclusive Siblings (Figure 50(a)) and Siblings (Figure 50(b)) when applied to the
parent node “D” from the example train dataset presented in Figure 46.

7.2.3 Resampling Using the LCL Approach

The third and last resampling schema is proposed to the Local Classifiers per Level
approach (LCL), which consists into creating a multi-class classifier per level of the label’s
hierarchy.

The idea here is similar to the LCPN approach, in which we resample the multi-class
datasets before building the classification model for each level. Figure 51 presents a general
schema for the classification process using the proposed resampling step.

Similarly to the previously schemas, the classification is composed of three main

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 153

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F
D

A

B

D

E

Root

F

C

LABEL TREE

MD

RESAMPLED
MC-TRAIN

Exclusive
Siblings Policy

Binary Resampling
with O-A-A or O-A-O

Approaches

1 2 3

G H I

S4
S5

E

F

S2 F

SX E

S4 E

S2 F

S5 F

MULTI-CLASS
TRAIN

Single-Label
Classification Algorithms

(a) Exclusive Siblings.

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F
D

A

B

D

E

Root

F

C

LABEL TREE

MD

Siblings Policy Binary Resampling
with O-A-A or O-A-O

Approaches

1 2 3

G H I

S4
S5

E

F

S2 F

SX E

S1 E

S3 F
S4
S5

E

F

S2 F

S1 E

S3 F

MULTI-CLASS
TRAIN

RESAMPLED
MC-TRAIN

Single-Label
Classification Algorithms

(b) Siblings.

Figure 50 – Example of resampling schema for hierarchical datasets using LCPN with the
two different policies.

steps: (1) Building a classification model for each level in the labels hierarchy; (2) Classi-
fying the test dataset; (3) Measuring the results with a hierarchical measure. The first
important difference from the other approaches is that even using a top-down technique,
the classification may predict labels with an inconsistency between the classes from different
levels, which has to be removed later.

Step 1 is also subdivided into three substeps and, such as in LCN and LCPN
approaches, the proposed resampling schema is embedded into substep 1.2. In this substep
we have also an O-A-A or an O-A-O approach to decompose the multi-class classification
problems per level into a series of binary sub-problems and then apply the classic binary
resampling algorithms.

On the contrary of the LCN and LCPN approaches, we do not have different
policies to apply on substep 1.1, since we must select all samples labelled with the labels
from the level that we are building the classifier to. To exemplify the resampling process
in LCL approaches, we present Figure 52, which shows an example of the substeps 1.1, 1.2
and 1.3 applied to the second level of the label hierarchy from the example train dataset
presented in Figure 46.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 154

1 Root

MODEL TREE

S1
S2
S3
S4

MULTI-CLASS
TRAIN

Ch3

Ch2

Ch1

Ch1

MAD

MBEF

MCGHI

MLNCh1

Root

...

...

S1
S2
S3
S4

S6S6

RESAMPLED
MC TRAIN

Ch3
Ch2

Ch1

Ch1

Sn+1 Ch2

Single-Label
Classification

Algorithms

...

...

Ch2 Ch3

... ...
Sn Ch1

Level LN
1.1 1.2 1.3

Binary Resampling
with O-A-A or O-A-O

Approaches

A

B

D

E

Root

F

C

LABEL TREE

G H I

... ... Sn Ch1

... ...

Sn+2 Ch3

S7
S8
S9

TEST

A/B/C, D/F

D/E
A/B

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F/I
D

2

S7
S8

S9

HIERARCH.
PREDICTED

TEST
Pred. 1

Pred. 2
Pred. 3

3

Hierarachical
Measurement

Figure 51 – The general classification schema using the LCL approach.

S1
S2
S3
S4
S5
S6

TRAIN
A/B, D/E/H

A/B/C, D/F

D/F/I

D/E, A/B/C

D/F
D

A

B

D

E

Root

F

C

LABEL TREE

ML2

RESAMPLED
LV2 TRAIN

Binary Resampling
with O-A-A or O-A-O

Approaches

Single-Label
Classification Algorithms

1 2 3

G H I

S2 F

LV 2
TRAIN

S1 B

SX B

S4 E

S2 F

S5 F

Level 2

S4 E
S5 F

S1 B

SY E

S3 F

S3 F

Figure 52 – Example of resampling schema for hierarchical datasets using LCL.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 155

7.3 Experimental Protocol and Results

In this section we present the dataset, algorithms and parameters, imbalanceness
measures, classification results and discussion regarding the experimental analysis of the
proposed approaches presented in this work.

7.3.1 The Datasets

In the computational experiments, we used a total of eight datasets from four
different domains: Biology, Music Information Retrieval, Image Classification and Text
Categorization.

Table 34 shows a general review of these datasets. We may observe that DMOZ-2010
dataset is the largest one, while Eisen is the smallest one. Furthermore, DMOZ-2010 is by
far the dataset with the largest number of attributes and labels.

Table 34 – General review of the datasets used in the experiments.
Name Domain #Samples #Attr. Labels Depth Reference

Cell-cycle biological 1,711 78 180 4 (RUEPP et al., 2004)
Eisen biological 1,163 80 170 4 (RUEPP et al., 2004)
Exp biological 1,688 544 180 4 (RUEPP et al., 2004)
FMA-MFCC music 90,393 13 161 4 (DEFFERRARD et al., 2017)
Gasch-1 biological 1,660 174 180 4 (RUEPP et al., 2004)
CLEF image 10,000 80 97 3 (DIMITROVSKI et al., 2011b)
DMOZ-2010 text 128,710 381,580 12,294 5 (PARTALAS et al., 2015)
LSHTC-small text 6,323 51,033 2,388 5 (PARTALAS et al., 2015)

The biological datasets, published in Ruepp et al. (2004) and frequently named
as FunCat Datasets5, describes a set of Saccharomyces cerevisiae fungus and were used
in the experiments in order to predict the functional class of yeast, in which the classes
were taken from the Munich Information Center for Protein Sequences (MIPS) functional
catalog.

The musical dataset6, firstly introduced by Defferrard et al. (2017), is composed of
ninety thousand songs extracted from the Free Music Archive (FMA) repository, having
thirteen attributes referred to the Mel-Frequency Cepstral Coefficients (MFCC) labeled
with 161 genres.

We have used three datasets from the large scale hierarchical classification domain.
The image dataset (CLEF)7 consists of medical X-ray images from the ImageCLEF2009
5 Available at http://sites.labic.icmc.usp.br/jeanmetz/datasets.html
6 Available at https://github.com/mdeff/fma
7 Available at https://www.imageclef.org/2009/medanno

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 156

annotation task. The DMOZ-2010 and LSHTC-small8 are document datasets released
from the Large Scale Hierarchical Text Classification challenges.

7.3.2 Proposed Approaches

For our proposed approaches presented in Section X, each approach (LCN, LCPN
and LCL) are employed using Random Forest as the base classifier with the following binary
resampling algorithms: Random Oversampling (ROS), Synthetic Minority Oversampling
Technique (SMOTE), SMOTE Borderline-1 (SMOTE-B1), SMOTE Borderline-2 (SMOTE-
B2), Adaptive Synthetic Resampling (ADASYN), Random Undersampling (RUS), Cluster
Centroids (CC), Condensed Nearest Neighbors (CNEN), Edited Nearest Neighbors (ENN),
Repeated Edited Nearest Neighbors (RENN), All k-Nearest Neighbors (AllKNN), NearMiss-
1 (NM1), NearMiss-2 (NM2), NearMiss-3 (NM3), TomekLinks (TL), apply ENN after
SMOTE (SMOTE+ENN) and apply TL after SMOTE (SMOTE+TL). Since we are
dealing with multiple path prediction problems, it should be noted that for the testing
phase of the LCPN and LCL approaches, we have adapted the classic top-down approach
(DUMAIS; CHEN, 2000) to consider as output classes, all the classes that have a probability
higher than a given threshold. In the reported experiments the value of 0.2 was used.

7.3.3 Baseline Approaches

In this Chapter we employ thirteen different approaches as baseline for the proposed
methods:

• The first baseline approaches, named Top-Down (TD) are exactly the same local
hierarchical classification approaches with the only different of not using any resam-
pling method. Therefore, each local approach has its own baseline TD approach,
hereafter named as TD-LCN, TD-LCPN and TD-LCL.

• We also employ a flat classification approach (Flat-ML) that uses the RAKEL
(TSOUMAKAS; VLAHAVAS, 2007) multi-label classification approach with binary
relevance.

• The last baseline approach, the Flat Classification with Multi-Label Resampling
(Flat-MLRS) uses Flat-ML with the following multi-label resampling algorithms:
Label PowerSet Random Oversampling (LPROS), Label PowerSet Random Un-
dersampling (LPRUS), Multi-Label Random Oversampling (MLROS), Multi-Label
Random Undersampling (MLRUS), Multi-Label Edited Nearest Neighbors (MLeNN),

8 Available at http://lshtc.iit.demokritos.gr/

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 157

Resampling Multi-label Datasets by Decoupling highly Imbalanced Labels (REME-
DIAL), Multi-label SMOTE (MLSMOTE), Multi-label Tomek Link (MLTL) and
apply MLTL after MLSMOTE (MLSMOTE+MLTL).

7.3.4 State-of-the-art Approaches

In order to evaluate the performance of the proposed methods with respect to the
state of the art, we have chosen to employ the following approaches:

• Clus-HMC: As presented in subsection 2.2, this is a global classifier based on
Predictive Clustering Trees. This approach is used because represents the state-of-
the-art hierarchical classification ensemble approach in the literature (NAKANO;
LIETAERT; VENS, 2019).

• HMC↔ML: As presented in section 3, this is an indirect solution to the hierarchical
imbalanceness issue, proposed earlier in (PEREIRA; COSTA; SILLA JR, 2018),
which converts the hierarchical dataset to a multi-label dataset in order to apply
well-known multi-label resampling algorithms and after resampling converts the
dataset to a hierarchical dataset again. This method was used in conjuntion with
Clus-HMC and all the multi-label resampling approaches also used in the Flat-MLRS
approach.

• HierCost9: Presented in subsection 2.2, it is a cost-sensitive approach for the large
scale hierarchical classification problem and can be considered as another state-of-the-
art solution (NAIK; RANGWALA, 2018). This is a particularly interesting approach
since it uses a cost-sensitive solution according to the label distribution,therefore
dealing with the imbalanceness issue in a different approach.

7.3.5 Parameters and Configurations

The parameter configurations used in the classification algorithm were obtained
after applying a Grid Search, as proposed in (BERGSTRA; BENGIO, 2012), and are
reported in Table 35.

All classification experiments were conducted using a five-fold cross-validation
scheme over the exact same folds. Moreover, the Random Forest and RAkEL algorithms
were executed using the implementations from the scikit-learn library10. For the binary
9 Available at https://cs.gmu.edu/~mlbio/HierCost/
10 Available at http://scikit-learn.org/ and http://scikit.ml/

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 158

Table 35 – Parameter settings of the Classification algorithms.
Algorithm Parameter Value

Random Forest

Max Depth None
Max Leaf Nodes None
Number of Estimators 50
Bootstrap True
Criterion Entropy
Min Samples Leaf 1
Max Features 3
Min Samples Split 2

RAkEL

Multi-Label Learner Binary Relevance
Base Classifier SVM
Size of Subset 3
Threshold 0.5
Number of Models 314

Clus-HMC

Type Tree
ConvertToRules No
FTest [0.001, 0.005, 0.01, 0.05, 0.1, 0.125]
EnsembleMethod RForest
Iterations 10
VotingType Majority
EnsembleRandomDepth No

HierCost
Cost Type Exponetiated Tree Distance
Imbalance Yes
Regularization Parameter 1

resampling tasks we used the implementations of imbalance-learn library11, while for the
multi-label resampling tasks we used the implementation of Imb-Mulan.

Concerning the configurations for the resampling algorithms, the resize rates were
set to 25% (oversampling and undersampling), which is a common and well-tested value in
the imbalance learning community (HAIXIANG et al., 2017). The Multi-class resampling
experiments were made through an O-A-A design. In MLSMOTE we used a ranking label
combination and in MLeNN we used a threshold of 0.5. To complete, all the resampling
algorithms that used a nearest neighbors technique in their internal logic were set to work
with three neighbors, which is also a common pattern in the resampling community.

7.3.6 Hierarchical Local Imbalanceness Metrics Results

In this section we present the results for the imbalanceness metrics proposed in
section 2 of this work. In order to support a better visualization, the results of the proposed
imbalanceness metrics are summarized in charts, in which x-axis represents the resampling
algorithms and y-axis represents the IR metrics. These measures can help to comprehend
the classification results, since the difficulty in the learning process may be associated with
the dataset imbalanceness.
11 Available at https://github.com/scikit-learn-contrib/imbalanced-learn

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 159

In Figure 53 we show eight charts, one for each dataset, plotting the IRLCN values
before (original dataset) and after applying each resampling algorithm using the proposed
approach to perform LCN. Each chart plots the six different policies to select the samples
in different formats and colors. We may observe that the exclusive siblings policy generates
the lowers IRs, while the exclusive policies tends to generate the higher IRs.

On a similar way, Figure 54 shows the charts for the eight datasets in relation
to the values of IRLCPN metric before (original) and after applying each resampling
algorithm using the proposed approach to perform LCPN. The charts also shows the
different IRLCPN values that are generated with the two different policies (Exclusive and
Exclusive Siblings).

Finally, in Figure 55 we show the eight charts for the IRLCL measures before
(original) and after apply the resampling algorithms using the proposed approach to
perform LCL.

Looking at the charts, it is important to observe the variations of the measures
results when using the different resampling approaches. One can notice that, in general, the
resampling algorithms involving the SMOTE techniques (SMOTE, SMOTE-B1, SMOTE-
B2, SMOTE+ENN and SMOTE+TL) were the most efficient in reducing the imbalanceness
of the hierarchical datasets. Moreover, we may also observe that the different policies
can directly impact the imbalancenes factor of the datasets. For instance, the Exclusive
Siblings policy seems to generate the lower imbalanceness in the datasets, which is logical
since it uses the lowest number of samples to build the training sets during the local
classification.

7.3.7 Classification Results

Following the same reasoning of the subsection 6.3, in this section we will only
present a summarized version of the best results achieved with each one of the proposed
approaches and related techniques. All the detailed results are presented in the Appendix
A of this Thesis.

It is important to observe that all classification results were measured with the
Hierarchical F-Score metric, as suggested in the study of Sokolova, Japkowicz & Szpakowicz
(2006). The Figure 56 shows the best F-Score results for each technique and dataset. The
information bellow the method’s name and inside the brackets represents the configuration
used to achieve the best result. We may observe that our proposed approaches outperformed
the related techniques in half of the datasets: cell-cycle, FMA MFCC, Gasch-1 and CLEF.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 160

(a) Cell-cycle. (b) Eisen.

(c) Exp. (d) FMA MFCC.

(e) Gasch-1. (f) CLEF.

(g) DMOZ-2010. (h) LSHTC-small.

Figure 53 – Mean Imbalance Ratio for Local Classifiers per Node (IRLCN) for each dataset
before (original dataset) and after resampling.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 161

(a) Cell-cycle. (b) Eisen.

(c) Exp. (d) FMA MFCC.

(e) Gasch-1. (f) CLEF.

(g) DMOZ-2010. (h) LSHTC-small.

Figure 54 – Mean Imbalance Ratio for Local Classifiers per Parent Node (IRLCPN) for
each dataset before and after resampling.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 162

(a) Cell-cycle. (b) Eisen.

(c) Exp. (d) FMA MFCC.

(e) Gasch-1. (f) CLEF.

(g) DMOZ-2010. (h) LSHTC-small.

Figure 55 – Mean Imbalance Ratio for Local Classifiers per Level (IRLCL) for each dataset
before and after resampling.

7.4 Analysis and Discussion

The analysis and discussion concerning the experimental results of the approaches
and metrics proposed in this work is grounded in seven questions:

1. Which resampling techniques improved the classification results in each one of the
local classifiers approaches?

2. Which resampling technique is the best in each local classification scenario?

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 163

(a) Cell-cycle. (b) Eisen.

(c) Exp. (d) FMA MFCC.

(e) Gasch-1. (f) CLEF.

(g) DMOZ-2010. (h) LSHTC-small.

Figure 56 – Charts with the best F-Score results for all techniques in each dataset.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 164

3. Are the local classifiers with resampling approaches (proposed in this work) able to
surpass the results obtained by the flat classification using multi-label resampling
algorithms baselines (Flat-MLRS)?

4. Are the proposed imbalanceness metrics measure the datasets imbalanceness in each
local classification scenario?

5. Are the proposed resampling approaches able to deal with imbalanceness in large
scale hierarchical datasets?

6. Can the proposed approaches enhance the local classifiers in order to outperform a
global classification approach?

In the following sections we presents the responses to each one of the questions
raised before with statistical significance.

Which resampling techniques improved the classification results in each one
of the local classifiers approaches?

To answer this question we have also applied the Wilcoxon test in the classification
results for each one of the local classifiers approaches, i.e., we applied the test crossing the
results of the classic TD approach (Table 96 from the Appendix A) against the results
with each local classifier approach (considering each given policy). The results for this test
are presented in Table 102 (Local Classifiers per Node), Table 103 (Local Classifiers per
Parent Node) and Table 104 (Local Classifiers per Level), which are also in the Appendix
A of this Thesis. We must highlight that, even though none of the approaches statistically
improved the classification results, SMOTE, SMOTE-B1, SMOTE-B2 and the hybrid
techniques (SMOTE+ENN and SMOTE+TL) achieved interesting results in all tests,
regardless the local classifiers approach, since they all reached a negative z-score and a
p-value close to the threshold. On the other hand, we may also observe that NM1, NM2
and NM3 are the worst techniques, since their z-scores are positive and p-value above
the threshold in all tests. Moreover, the other resampling techniques seem to improve the
classification results with some of the policies, but not all of them.

Which resampling technique is the best in each local classification scenario?

To answer the second question, i.e., define the best classifier, we used the statistical
evaluation protocol proposed in (CHARTE et al., 2015b). Using this protocol, we calculate
the ranking of the classification results using resampling algorithms based on the Friedman
statistical test. In other words, the algorithms performances are ranked (from first to last)
and an average rank is calculated for each dataset and approach. Then a general average
is computed for each approach. While Tables 105, 106 and 107 presents the results of this

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 165

test for the resampling schemas in LCN, LCPN and LCL approaches, respectively, Table
108 shows the average rank for all local classifiers approaches. To avoid visualization issues,
all of these Tables are presented in the Appendix A of this Thesis. In average, the SMOTE
and hybrid techniques are the most effective, since SMOTE + ENN is the best ranked
method (3.06), followed by SMOTE (4.67), SMOTE + TL (5.06) and then SMOTE-B1
(5.91). On the other hand, NM2 (15.84), NM3 (15.43), NM1 (15.15), RUS (11.66) and
AllKNN (11.44) are the less effective techniques. It is also important to note that there is a
slight difference among the ranking of the algorithms in each local approach. For example,
the second best resampling technique in the LCN scenario is SMOTE + TL, however in
LCPN and LCL it is SMOTE by itself. Moreover, we may note that RENN and TL are
much more effective in the LCL scenario than in LCN and LCPN.

It may be asked why the combination of SMOTE with ENN or TL significantly
outperforms either SMOTE, ENN or TL by their selves. The reason for that can be
grounded in the fact that, after applying SMOTE, the new synthetic samples were
introduced somewhere along the feature space that made the classes groups become
overlapped, i.e., some samples from the majority classes were invading the minority classes
spaces or vice versa. Then, when ENN or TL is applied, some of these noises were removed,
leading to a better model built by the classifier. This phenomenon was already identified
in the experiments proposed by (BATISTA; PRATI; MONARD, 2004).

Are the local classifiers with resampling approaches able to surpass the results
obtained by the flat classification using multi-label resampling algorithms base-
lines?

To answer the third question we applied the Kruskal Wallis Statistical Test in
order to compare Table 98 to Tables 88-95. We stated as null hypothesis that there is
no difference between the results with the flat resampling approach (Flat-MLRS) and
all the proposed local approaches with resampling (LCN, LCPN and LCL). The Kruskal
Wallis test resulted in a value of 15336.5 and a p-value of 0, which means that we reject
the null hypothesis and, thus, there are differences between the results (considering a
significance of 0.05). Since the results are statistically different, we may apply the Post-Hoc
Mannwhitney test to find which pairs of results tables are different. The results of the
Post-Hoc Mannwhitney test are shown in Table 109 (Appendix A), which shows the
comparison between the flat resampling results and the local strategies. Considering a
threshold of 0.005, the test confirms that there are significant differences between the flat
and all local classifiers approaches, except for LCL. Besides, the low values indicate that
the flat resampling approach is outperformed by LCN and LCPN approaches.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 166

Are the proposed imbalanceness metrics measure the datasets imbalanceness
in each local classification scenario?

The answer to this question is grounded in the Pearson Correlation Statistical Test.
This test is used to define whether or not there is a correlation between two sequences of
variables. In this context, we applied the Pearson test comparing the metrics calculated
using each approach with the classification results achieved in the same approach. Tables
110, 111 and 112 (Appendix A) presents the results for the statistical test considering
all scenarios (metric versus classification results). While the first column represents a
value between -1 and 1, which indicates the correlation between the two sequences (a
negative value shows an inverse correlation and a positive otherwise), the second column
(p-value) indicates the reliability of the correlation: the less is the p-value, more reliable
the correlation is. It is important to state that, according to (MUKAKA, 2012), we may
associate the following correlations to the value of ρ:

• ρ >= 0.9→ very strong correlation;

• 0.7 >= ρ < 0.9→ strong correlation;

• 0.5 >= ρ < 0.7→ medium correlation;

• 0.3 >= ρ < 0.5→ week correlation; and

• ρ < 0.3→ despicable correlation.

Taking the above information into account, we may calculate that in the LCN
scenario, from a total of 48 Pearson tests, 19 of them (40%) indicated a strong correlation
between the classification results and the imbalance ratio (IR) measures, 22 a medium
correlation (46%), 6 a week correlation (12%) and 1 a despicable correlation (2%). Moreover,
considering the tests in the LCPN scenario, from a total of 16 Pearson tests, 4 indicated a
strong correlation (25%), 9 a medium correlation (56%) and 3 a week correlation (19%).
Finally, in the LCL context, from a total of 8 Pearson tests, 3 indicated a strong correlation
(38%), 3 a medium correlation (38%), 1 a week correlation (12%) and 1 a despicable
correlation (12%). We may note that all correlations are inverse, i.e., when the IR measure
is high, in general, the classification results are low. Thus, due to the fact that most of the
Pearson tests indicated a strong or medium correlation between the IR measures and the
classification results and, in general, the tests are reliable (presented low p-values), we
may affirm that the proposed metrics, i.e.,MeanIRLCN ,MeanIRLCPN ,MeanIRLCL, can
indeed measure the datasets imbalanceness in the different local classification perspectives.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 167

Are the proposed resampling approaches able to deal with imbalanceness in
large scale hierarchical datasets?

To answer the fifth question, we have to look specifically at Tables 91, 93, 93, 95.
These Tables shows the summary of the results for the Large Scale Hierarchical Datasets
experimentally tested in this work. It can be observed that our approach beat all the other
techniques in two of these four datasets: FMA MFCC and CLEF. These datasets have a
common characteristic: both have a considerable number of samples (90,393 and 10,000,
respectively). However, these same datasets do not have a large number of attributes and
labels, such as DMOZ-2010 and LSHTC-small. This fact leads us to the conclusion that
our approach may not be suitable to solve imbalanceness in hierarchical datasets with
large number of attributes and labels.

Can the proposed approaches enhance the local classifiers in order to outper-
form a global classification approach?

To answer this question we applied again the Wilcoxon Statistical Test, comparing
the best F-Score results obtained with each global classification approach (HMC↔ML, Clus-
HMC and HierCost) with the best F-Score result obtained with the proposed approaches
for all datasets. The results for this test are presented in Table 113, which is also in
Appendix A. Considering a threshold of 0.1, we could observe that the best proposed
approach significantly improved the results when compared to Clus-HMC. Furthermore,
when the best proposed approach is compared to the HMC↔ML method, although it is
not statically higher, it did got a negative z-score and a p-value really close to the threshold
(0.1038), indicating that it could statically improve the results in other scenarios. Finally,
when comparing the best proposed approach to the HierCost technique, we concluded that
it did not statically improved the results, since the z-score is positive.

7.5 Final Considerations

This chapter presented novel resampling schemas to handle imbalanceness in
hierarchical classification problems when using the local classification approaches. We
proposed three different methods to deal with each one of the local classification approaches:
Local Classifiers per Node (LCN); Local Classifiers per Parent Node (LCPN); and Local
Classifiers per Level (LCL). The proposed techniques handle the imbalanceness by applying
classic binary resampling methods locally in the training datasets before building each
individual classification model. Besides, in order to experimentally test and compare the
proposed approaches, we also presented results for baselines, related works and state-of-
the-art approaches from the literature.

Chapter 7. Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches 168

Moreover, we proposed novel metrics to calculate the average imbalanceness
(MeanIR) in the three different local classification contexts: MeanIRLCN , MeanIRLCPN ,
MeanIRLCL. These measures are mainly based in the average proportions between the
number of instances labeled with the label nodes.

The experimental results and statistical analysis with eight well-known datasets
from the biological, musical, text and image domains showed that the proposed resampling
schemas may indeed increase the classification results for all datasets when compared
to the original classification scenarios. Furthermore, using the Pearson statistical test
we were able to identify an inverse relation between the proposed imbalance measures
and the classification results, showing that the proposed metrics are able to measure the
hierarchical datasets imbalanceness.

Concerning the large scale hierarchical classification datasets, we could observe that
our proposed techniques were not able to deal with the imbalanceness and improve the
results of the datasets with large number of attributes and labels, although it could improve
the results of two large datasets that do not have a large number of attributes/labels.

After investigate the imbalanceness issue in hierarchical classification problems
considering local perspectives, the next step is to analyze the problem in a global fashion-
way. In the next Chapter we present the first contributions of this Doctoral Research towards
the resampling of hierarchical classification datasets as a whole. The Hierarchical Random
Oversampling (HROS) and Hierarchical Random Undersampling (HRUS) algorithms are
able to pre-process a hierarchical dataset considering the labels hierarchy and the different
possibilities of depth among the label paths.

169

C
ha

pt
er

8
Global Approaches: The Hier-
archical Random Resampling
Algorithms

So far, it was presented in this thesis alternative approaches to deal with the
imbalanceness in hierarchical classification problems with existing resampling techinques,
i.e., binary/multi-class and multi-label resampling algorithms. In this chapter we present
the first studies towards the development of a global resampling approach for hierarchical
classification datasets which considers the labels hierarchy as a whole.

Dealing with the imbalanceness issue in hierarchical classification datasets is a
challenging task, because there are different kinds of hierarchical classification problems,
which have different types of properties, such as the type of labels taxonomy, the depth of
the prediction and the number of paths associated to each sample (SILLA JR; FREITAS,
2011). Given this context, the contributions of this chapter are three-fold:

• A novel approach to find sets of majority/minority label paths in a hierarchical
classification dataset;

• Novel resampling algorithms for hierarchical classification problems with partial and
full depth label prediction; and

• A diversified set of hierarchical classification datasets allowing testbeds for the
research community.

It is worth mentioning that the contributions of this chapter were submitted for
publication and are under review in the Information Sciences journal.

8.1 The Proposed Random Resampling Algorithms

Although we are only concerned with hierarchical classification problems in which
the labels are organized in a tree-based taxonomy, in order to design the novel resampling
algorithms, we have considered other two different variants described in Silla Jr & Freitas
(2011): number of paths (defined in the literature as Ψ) and depth of the paths (defined
in the literature as Φ). We propose two groups of resampling algorithms considering the
depth of the labels in the hierarchical classification problem. Each group is composed by
an Oversampling and an Undersampling algorithm.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 170

8.1.1 Finding the Majority and Minority Classes

When resampling a dataset, we first have to define the target samples of the resam-
pling process. When we are applying an oversampling algorithm, the samples belonging to
the minority classes have to be increased, and when applying an undersampling algorithm,
the instances from to the majority classes are decreased.

In binary and multi-class datasets, the majority/minority classes can be identified
by considering the most/less frequent labels among the samples. Moreover, for the identifi-
cation of majority and minority labels in multi-label datasets, Charte et al. (2013) defined
and suggested the use of the IRLbl and MeanIR imbalance measures. Their idea was to
consider the labels with an imbalance ratio (IRLbl) below the average imbalance ratio
(MeanIR) as belonging to the set of majority classes (named as majority bag), otherwise
the classes belong to the minority bag.

Thus, before proposing a new resampling algorithm for hierarchical datasets, we
first have to establish a mechanism to identify the majority and minority classes considering
the class hierarchy. In hierarchical problems the classes are represented by label paths in
the tree taxonomy instead of individual labels, we used the imbalance ratio per label path
(IRLP) and hierarchical mean imbalance ratio (HMeanIR), earlier presented in Section 6.1
and published in Pereira, Costa & Silla Jr (2018). Our idea here is to find the majority
and minority paths in the dataset based on their imbalance ratio, which were calculated
with Formulas 6.1 and 6.2.

Algorithm 35 shows the pseudocode for the imbalance ratios calculations. Further-
more, the pseudocode of the proposed methods to retrieve the set of majority and minority
label paths in hierarchical datasets are presented in Algorithms 36 and 37, respectively.

Algorithm 35 Pseudocode for Imbalance Ratios Calculations
Inputs: D: The hierarchical dataset
Output: IRLP: The imbalance ratio per label paths in D
HMeanIR: The average imbalance ratio in D
1: labelPaths ← label paths from dataset D
2: for each path in labelPaths do
3: countDict[path] ← number of samples in D laballed with path
4: end for
5: maxCount ← max number of labelPaths in countDict
6: IRLP ← empty dictionary
7: for each path in labelPaths do
8: pathCount ← countDict[path]
9: IRLP[path] ← maxCount/pathCount

10: end for
11: hMeanIR ← (∑|labelPaths|i=1 IRLP [pathi])/|labelPaths|
12: return IRLP, hMeanIR

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 171

Algorithm 35 receives as input the hierarchical dataset (D) and returns two outputs:
The imbalance ratio per label path (IRLP) and the average imbalance ratio (HMeanIR).
The looping from lines 1-3 counts the number of samples belonging to each label path from
dataset D. It is important to state that we are considering all samples that are labeled
with the given path, for example, if the path is “A/B”, samples labeled with “A/B/C”
and “A/B/D” are taken into account. In lines 5-10 the imbalance ratio per label path is
calculated and then in line 11 the average imbalance ratio is obtained.

Algorithms 36 and 37 receive the dataset D as input and outputs the set of majority
(MajPaths) or minority (MinPaths) paths. First, in line 1 both algorithms use Algorithm
35 to get the imbalance ratios and then, in lines 2-7, the algorithms make a looping over
the label paths, filtering the ones whose IRLbl are below hMeanIR (majority paths) or
above hMeanIR (minority paths).

Algorithm 36 Pseudocode for Retrieving Majority Paths
Inputs: D: The hierarchical dataset
Output: MajPaths: The label paths from the set of majority paths
1: IRLP, hMeanIR ← Calculate Imbalance Ratios
2: majPaths ← empty list
3: for each path in labelPaths do
4: if IRLblP[path] < hMeanIR then
5: append path into majPaths
6: end if
7: end for
8: return majPaths

Algorithm 37 Pseudocode for Retrieving Minority Paths
Inputs: D: The hierarchical dataset
Output: MinPaths: The label paths from the set of minority paths
1: IRLP, hMeanIR ← Calculate Imbalance Ratios
2: minPaths ← empty list
3: for each path in labelPaths do
4: if IRLblP[path] > hMeanIR then
5: append path into minPaths
6: end if
7: end for
8: return minPaths

Given the target samples, which can be obtained with Algorithms 35, 36 and 37, we
are able to oversample or undersample the hierarchical dataset. In the following subsections,
we present details of the novel resampling algorithms. In order to contemplate the different
kinds of hierarchical problems, we proposed two different oversampling/undersampling
algorithms, considering the depth of label paths in the dataset (based on the Φ definition -
Full or Partial Depth), one oversampling/undersampling for each type.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 172

8.1.2 Resampling Full Depth Hierarchical Classification Problems

In this kind of problem, the instances may be associated with one or more label
paths, but always with full depth in the label tree. Considering this, we propose the
Random Oversampling/Undersampling for Full Depth Hierarchical Classification Problems
(HROS-FD/HRUS-FD). The pseudocodes of these methods are presented in Algorithms
38 and 39, respectively.

Both algorithms are very similar and receive the dataset to oversample/undersample
(represented as D) and the percentage of samples to increase/decrease (S) and outputs
the resampled Dataset (D′). The main idea of the algorithms is to obtain the set of
majority/minority label paths and randomly remove/create samples from/for these paths
until the number of removed/created samples reach the percentage determined by the S
parameter. Since the procedure followed by HROS-FD and HRUS-FD is analogous, in the
following we will only describe HROS-FD in details.

Algorithm 38 Pseudocode for HROS-FD
Inputs: D: The hierarchical dataset, S: Percentage of samples to increase
Output: D′: An oversampled dataset
1: samplesToCreate ← |D| × S
2: minPaths ← getMinorityPaths(D)
3: maxIncrease ← samplesToCreate / |minPaths|
4: meanSize ← calculate the average number of samples per labelPaths
5: for labelPath in minPaths do
6: numSamples ← samplesWithLabelPath(D, labelPath)
7: increased ← 0
8: while increased < maxIncrease and numSamples < meanSize do
9: D′ ← randomly duplicate sample labeled with labelPath

10: numSamples ← numSamples + 1
11: increased ← increased + 1
12: end while
13: end for
14: return D′

First, we calculate the exact number of samples to be created (line 1) and then
retrieve the set of minority paths using Algorithm 37 (line 2). In order to force a distribution
of the number of samples to be increased among the minority label paths, in line 3 a
maximum increase per label path is calculated. In line 4 the average number of samples per
label path is obtained to establish another limit in the sample’s duplication distribution.
Into the algorithm’s main loop (lines 5-12) the samples from each minority path are
randomly duplicated until reach the maximum increase, which is determinate between
the division between the total number of samples to increase and the number of minority
paths, or until reach the mean size of the label paths in the dataset.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 173

Algorithm 39 Pseudocode for HRUS-FD
Inputs: D: The hierarchical dataset, S: Percentage of samples to decrease
Output: D′: An undersampled dataset
1: samplesToRemove ← |D| × S
2: maxPaths ← getMajorityPaths(D)
3: maxDecrease ← samplesToRemove / |maxPaths|
4: meanSize ← calculate the average number of samples per labelPaths
5: for labelPath in minPaths do
6: numSamples ← samplesWithLabelPath(D, labelPath)
7: decrease ← 0
8: while decrease < maxDecrease and numSamples > meanSize do
9: D′ ← randomly remove sample labeled with labelPath

10: numSamples ← numSamples - 1
11: decrease ← decrease + 1
12: end while
13: end for
14: return D′

8.1.3 Resampling Partial Depth Hierarchical Classification Problems

In this type of hierarchical classification problems, the instances may be associated
with one or more label paths with full or partial depth in the label tree. The challenge of
resampling this kind of data is that when creating or removing samples from children nodes,
the number of samples from parent label nodes will be indirectly increased or removed.
This problem does not affect full depth hierarchical classification problems because there
are no samples labeled exclusively with internal nodes. Figure 57 presents an example of
this issue for a given training set with 6 samples (S1...S6). We simulated the duplication
of 3 samples labeled with node H to shown how it impacts on the internal nodes. We may
observe that when we created these samples for node H, we indirectly created samples for
nodes E and D.

A

B

D

E

Root

F

C G H I
12 1 1

3 3 1

5 5S1
S2
S3
S4
S5
S6

A, D/F/I
A/B
A/B/C, D/E
D/E/H
D/E/G, A/B/C
A, D

TRAINING SET

A

B

D

E

Root

F

C G H I
12 4 1

3 6 1

5 8
S1
S2
S3
S4
S5
S6

A, D/F/I
A/B
A/B/C, D/E
D/E/H
D/E/G, A/B/C
A, D

TRAINING SET

S7 D/E/H
S8 D/E/H
S9 D/E/H

Resample
node H

2

Figure 57 – An example of the main issue when creating samples in leaf nodes. The numbers
on the top left of the nodes symbolize the number of samples belonging to
each node.

In order to deal with this issue, we propose a technique to process the instances

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 174

in a “bottom-up order”, recalculating the Majority/Minority Paths in each loop of the
resampling process. Figure 58 shows a visual example of the proposed method. For this
specific example the resample process takes a total of 3 steps. The example dataset is
composed of 85 samples and a label tree with 9 nodes. We simulated the application of an
oversampling method with an increase rate of 15%, i.e., 12 samples.

A

B

D

E

Root

F

C G H I
43 12 3

5 17 3

40 45
A

B

D

E

Root

F

C G H I
76 12 6

8 20 6

43 51

Step 1 Step 2 Step 3

A

B

D

E

Root

F

C G H I
7 12 6

8 20 9

43 54

6

Figure 58 – An example of application of the HROS-PD in a dataset with 85 instances.
The nodes marked with a circled dashed are being processed at the certain
step and the red nodes represent the label paths belonging to the minority
set.

Table 36 shows the variation of the imbalance ratio (IRLP) during the resampling
steps. The numbers in bold are above the HMeanIR, which is 8.45. In the first step, the
proposed method process nodes C, G and I, since they belong to the set of minority paths,
randomly duplicating 3 samples from each of these label paths. The number of samples
to be duplicate is calculated by dividing the 12 - 15% of increase rate - to the total of
minority label paths in the dataset, which is 5 for this example. In step 2 only node F is
resampled. It is important to observe that in step 1 node B belonged to the set of minority
paths (with an IRLP of 11.25), however, since node C was resampled, node B was also
indirectly resampled (IRLP changed to 7.29) and thus does not belong to the minority set
anymore (HMeanIR is 8.45). In the third and last step, no nodes are resampled.

Table 36 – The imbalance ratios after each step from Figure 6. Numbers in bold are above
the mean imbalance ratio - HMeanIR.

A B C D E F G H I
Step 1 1.13 11.25 15.00 1.00 2.65 15.00 11.25 3.75 15.00
Step 2 1.19 7.29 8.50 1.00 2.55 8.50 7.29 4.25 8.50
Step 3 1.26 7.71 9.00 1.00 2.70 6.00 7.71 4.50 9.00

Considering the previous example, we propose the Random Over/Under-sampling
for Partial Depth Hierarchical Classification Problems (HROS-PD/HRUS-PD). The pseu-
docodes of these methods are presented in Algorithms 40 and 41, respectively. Since the
procedure followed by HROS-PD and HRUS-PD is similar, we will present a detailed
explanation concerning HROS-PD and then will highlight the main differences in relation
to HRUS-PD.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 175

Algorithm 40 Pseudocode for HROS-PD
Inputs: D: The hierarchical dataset, S: Percentage of samples to increase
Output: D′: An oversampled dataset
1: samplesToCreate ← |D| × S
2: labelTree ← retrieve label tree from D
3: minPaths, hMeanIR ← getMinorityPaths(D)
4: meanSize ← calculate the average number of samples per labelPaths
5: maxIncrease ← samplesToCreate / |minPaths|
6: while labelTree is not empty do
7: for each leafNode in labelTree do
8: if leafNode in minPaths then
9: numSamples ← samplesWithLabelPath(D, leafNode)

10: increased ← 0
11: while increased < maxIncrease and numSamples < meanSize do
12: D′ ← randomly duplicate sample (lastly labeled with leafNode)
13: numSamples ← numSamples + 1
14: increased ← increased + 1
15: end while
16: end if
17: remove leafNode from labelTree
18: end for
19: minPaths ← getMinorityPaths(D, hMeanIR)
20: end while
21: return D′

The first five lines of the algorithm represent the preparation phase and are similar
to HROS-FD, with only a few differences. The first difference is on line 2, in which
the dataset label tree is obtained. The second difference is when calculating the set of
minority paths, in which the mean imbalancenss (hMeanIR) also has to be obtained by the
algorithm. The main process of the algorithm is made thought the while looping from lines
6 to 20. The idea is to resample each leaf node that belongs to the set of minority paths,
re-calculating the set of minority paths in each looping step. The duplicating process is
also similar to HROS-FD. An important difference is that in line 12, in which a sample is
randomly duplicated, the chosen sample is preferably lastly labeled with the target leaf
node, i.e., if the algorithm is resampling an internal label path x/y/z, the sample chosen
to be duplicated has also to be labeled with x/y/z, save exceptions in which there are no
samples under this circumstance. This procedure avoids that the duplication of samples
from internal nodes affects children nodes already processed by the algorithm. Another
important issue in the proposed algorithm is that when re-calculating the set of minority
paths (line 19) the hMeanIR first obtained from the dataset (on line 3) has to be used as
the threshold for the selection of the minority label paths.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 176

Algorithm 41 Pseudocode for HRUS-PD
Inputs: D: The hierarchical dataset, S: Percentage of samples to decrease
Output: D′: An undersampled dataset
1: samplesToRemove ← |D| × S
2: labelTree ← retrieve label tree from D
3: maxPaths, hMeanIR ← getMajorityPaths(D)
4: meanSize ← calculate the average number of samples per labelPaths
5: maxDecrease ← samplesToRemove / |maxPaths|
6: while labelTree is not empty do
7: for each leafNode in labelTree do
8: if leafNode in maxPaths then
9: numSamples ← samplesWithLabelPath(D, leafNode)

10: decreased ← 0
11: while decreased < maxDecrease and numSamples > meanSize do
12: randomly remove sample (preferably lastly labeled with leafNode)
13: decreased ← decreased + 1
14: numSamples ← numSamples - 1
15: end while
16: end if
17: end for
18: remove leafNode from labelTree
19: maxPaths ← getMajorityPaths(D, hMeanIR)
20: end while
21: return D′

8.2 Experimental Protocol and Results

In this section we present the datasets, algorithms and parameters, experimental
setup and classification results regarding the proposed resampling algorithms.

8.2.1 The Datasets

In order to cover the different aspects of hierarchical classification problems, we
performed computational experiments in a total of 23 datasets: 9 with full depth problems
and 14 with partial depth problems. As some of these datasets were adapted and hence
are somehow novel, presenting characteristics concerning the different taxonomies of
hierarchical classification problems as defined by Silla Jr & Freitas (2011), they form
a testbed for hierarchical classification researchers and, thus, may be also considered
a contribution of this Chapter. It is important to state that all datasets, algorithms
implementations and detailed results can be obtained in this link12.

Tables 37 and 38 present a detailed description of the datasets with Full Depth
problems and Partial Depth problems, respectively. The datasets marked with (*) and
12 https://sites.google.com/view/hierarchical-imblearn/

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 177

(**) are somehow novel. The datasets marked with (*) were originally proposed as flat
multi-label classification datasets in the literature and in this work were adapted to a
hierarchical taxonomy. The datasets marked with (**) were extracted as single-label
subsets from the original multi-label dataset and were also adapted to a hierarchical
taxonomy. The hierarchical adaptations were manually made considering the intrinsic
characteristics of the each problem domain. For instance, in the Enron dataset, which
is composed of e-mail subjects classification examples, the subjects were hierarchically
organized according to the subjects.

Table 37 – Datasets with Full Depth Hierarchical Classification Problems.
Name Paths Domain Train Test Attr. Labels Labels p/ level Reference

Enron*

Multiple

Text 988 660 1001 57 3, 40, 14 (KLIMT; YANG, 2004b)
CAL500* Music 351 151 68 164 7, 76, 78, 3 (TURNBULL et al., 2007)
Emotions* 392 203 72 9 3, 6 (TROHIDIS et al., 2008)
Birds*

Biology
272 79 260 49 13, 17, 19 (BRIGGS et al., 2013)

Actinopterygii

Single

15705 6739 15 30 2, 6, 12, 15
(PARMEZAN; SOUZA; BATISTA, 2018)Diptera 15194 6528 33 29 4, 6, 9, 10

Instrument Audio 6583 2836 30 46 5, 10, 31
Hglass Glass 144 70 9 11 2, 3, 5, 1 (METZ et al., 2011)
ImCLEF07D Image 10000 1006 80 24 4, 9, 11 (DIMITROVSKI et al., 2011a)

Table 38 – Datasets with Partial Depth Hierarchical Classification Problems.
Name Paths Domain Train Test Attr. Labels Labels p/ level Reference

Cell-cycle

Multiple Biology

2484 1281 78 180 4, 22, 70, 84

(CLARE; KING, 2003)

Church 2474 1281 24 180 4, 22, 70, 84
Derisi 2450 1275 62 180 4, 22, 70, 84
Eisen 1587 837 80 170 4, 22, 66, 78
Exp 2488 1291 544 180 4, 22, 70, 84
Gasch-1 2480 1284 174 180 4, 22, 70, 84
Gasch-2 2488 1291 53 180 4, 22, 70, 84
Phenotype 1009 582 64 168 4, 22, 66, 76
Sequence 2580 1339 437 180 4, 22, 70, 84
SPO 2437 1266 79 180 4, 22, 70, 84
FMA-MFCC*

Music
33259 14274 13 97 12, 66, 19

(DEFFERRARD et al., 2017)FMA-SLLBP**
Single

15331 7000 59 135 25, 91, 19, 1
FMA-SLSSD** 15631 6700 161 135 25, 91, 19, 1
Diatoms Image 2065 1054 371 398 82, 313, 3 (DIMITROVSKI et al., 2012)

(a) Full Depth. (b) Partial Depth.

Figure 59 – Mean Imbalance Ratios for the Datasets.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 178

Looking at the datasets characteristics we may observe that FMA-MFCC is by far
the largest one, while Hglass is the smallest one. Furthermore, Hglass is the dataset with
the lowest number of attributes, while Enron dataset has the most.

Figure 59 presents graphics of the Hierarchical Mean Imbalance Ratio (HMeanIR)
for the datasets used in the experimental analysis. We may observe that the datasets
present a large variety of imbalanceness. The full depth classification problems datasets
are much less imbalanced than the datasets with partial depth, with Emotions dataset
reaching a HMeanIR of only 1.49. On the other hand, Church, Derisi, Exp, Gasch-1,
Gasch-2, Sequence and SPO are the most unbalanced datasets, with HMeanIR close to
800.00.

It is important to observe that all datasets presented in Tables 37 and 38 have labels
in a Tree taxonomy, since we are not dealing with Directed Acyclic Graphs taxonomies in
this work.

8.2.2 Classification Algorithm and Parameters

For the hierarchical classification task we used the Clus-HMC framework. Clus-HMC
was chosen because it is considered in the literature as the state-of-the-work hierarchical
classification framework (CERRI; BARROS; CARVALHO, 2015; WEHRMANN; CERRI;
BARROS, 2018; PEREIRA; GABRIEL; CERRI, 2019).

Clus-HMC is based on Predictive Cluster Trees (PCT) and generates a single
Decision Tree (DT) considering an entire class hierarchy. In Clus-HMC, DTs are seen as
a hierarchy of clusters where the root node contains all the training instances, while the
remaining are recursively divided into smaller groups as the hierarchy is traversed towards
the leaves. The classification is performed using a distance-based metric which calculates
how similar an instance is to some tree.

The parameter configurations used in the algorithm are reported in Table 39.

8.2.3 Experimental Setup

In this work we used the weighted Area Under the Precision-Recall Curve (AUPRC)
metric (details presented in subsection 2.2.3.3) to measure the classification results and we
have tested seven increase/decrease rates commonly used by researchers in the resampling
tasks: 5%, 10%, 15%, 20%, 25%, 30% and 35%.

The results presented in the tables of subsection 8.2.4 are the average of 10
executions of Clus-HMC after re-applying the proposed resampling algorithms in the
training sets.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 179

Table 39 – Clus-HMC execution parameters.

Parameter Value
Type Tree
ConvertToRules No
HSeparator “/”
FTest [0.001, 0.005, 0.01, 0.05, 0.1, 0.125]
EnsembleMethod RForest
Iterations 10
VotingType Majority
EnsembleRandomDepth No
SplitSampling None
Heuristic Default
PruningMethod Default

8.2.4 Results

Table 40 presents the classification results before and after applying HROS-FD
and HRUS-FD algorithms in the training sets of the full depth hierarchical datasets with
single paths prediction. In this table we may highlight Hglass dataset, which was the
most benefited from the resampling algorithms and being able to reach an AUPRC of
0.9394 after applying HROS-FD with 10% of samples increase (0.1249 more than the
original dataset). On the other hand, Diptera dataset showed to be the least affected by
the resampling algorithms, with the best result achieving only an increasement of 0.0079.

Table 40 – Results for the full depth hierarchical datasets with single paths.

Actinopterygii Diptera ImCLEF07D Hglass Instrument
Original 0.7570 0.6027 0.7151 0.8145 0.7656

HROS-FD

5% 0.7746 0.6003 0.7041 0.8394 0.7698
10% 0.7869 0.6042 0.7292 0.9394 0.7873
15% 0.7658 0.6094 0.7042 0.8880 0.7692
20% 0.7530 0.5977 0.7069 0.8759 0.7584
25% 0.7505 0.5969 0.6927 0.8485 0.7625
30% 0.7502 0.5863 0.6835 0.8706 0.7602
35% 0.7571 0.5953 0.6941 0.8646 0.7499

HRUS-FD

5% 0.7680 0.6086 0.7185 0.8222 0.7726
10% 0.7541 0.6026 0.7210 0.7944 0.7633
15% 0.7512 0.6033 0.7182 0.8910 0.7569
20% 0.7516 0.6089 0.6937 0.8161 0.7222
25% 0.7520 0.6106 0.6882 0.8214 0.7280
30% 0.7397 0.6082 0.6880 0.7783 0.7152
35% 0.7312 0.6042 0.6623 0.7868 0.7090

Table 41 shows the classification results for the datasets with full depth prediction
and multiple paths. We may observe that, in general, the resampling algorithms were not
very effective, with the best result being reached after applying HROS-FD with 10% of
increase in the Emotions dataset, in which the results were 0.0436 greater than using the
original dataset.

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 180

Table 41 – Results for the full depth hierarchical datasets with multiple paths.

Birds Enron CAL500 Emotions
Original 0.4536 0.5693 0.4942 0.6843

HROS-FD

5% 0.4327 0.5720 0.4874 0.7114
10% 0.4498 0.5990 0.4938 0.7279
15% 0.4333 0.5789 0.5043 0.6951
20% 0.4454 0.5656 0.5174 0.6980
25% 0.4459 0.5516 0.4925 0.6888
30% 0.4475 0.5578 0.4942 0.6931
35% 0.4444 0.5628 0.4874 0.7101

HRUS-FD

5% 0.4308 0.5672 0.4874 0.6943
10% 0.4224 0.5690 0.4945 0.7012
15% 0.4645 0.5630 0.4941 0.6922
20% 0.4301 0.5635 0.4945 0.6954
25% 0.4365 0.5676 0.4874 0.6821
30% 0.4106 0.5585 0.4945 0.6856
35% 0.3952 0.5623 0.4947 0.6890

Table 42 shows the classification results before and after applying HROS-PD and
HRUS-PD in the partial depth prediction hierarchical datasets with single paths. In these
results, a highlight is that the best results with HROS-PD overperformed all HRUS-PD
results. Another consideration that can be made is how bad performed was HRUS-PD on
Diatoms dataset, decreasing the classification results for all resampling rates.

Table 42 – Results for the partial depth hierarchical datasets with single paths.

Diatoms FMA-SL-LBP FMA-SL-SSD
Original 0.2582 0.3268 0.2700

HROS-PD

5% 0.2445 0.3173 0.2717
10% 0.2646 0.3204 0.2776
15% 0.2659 0.3484 0.2918
20% 0.2887 0.3307 0.2754
25% 0.2728 0.3277 0.2760
30% 0.2544 0.3107 0.2668
35% 0.2623 0.3159 0.2633

HRUS-PD

5% 0.2243 0.3271 0.2721
10% 0.2401 0.3293 0.2726
15% 0.2431 0.3200 0.2663
20% 0.2393 0.3371 0.2716
25% 0.2206 0.3376 0.2697
30% 0.2333 0.3238 0.2659
35% 0.2223 0.3248 0.2717

Tables 43 and 44 presents the classification results for the datasets with partial
depth and multiple paths prediction. We may note in these tables that while Cell-cycle
was the dataset most benefited by the resampling methods, reaching an increasement of
0.0429 using HROS-PD with 10% of resampling rate, SPO dataset was the least affected

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 181

by the resampling algorithms, achieving a maximum increasement of only 0.0034.

Table 43 – Results for the partial depth hierarchical datasets with multiple paths (Part 1).

Cell-cycle Church Derisi Eisen Exp FMA-MFCC
Original 0.1307 0.1222 0.1309 0.1483 0.1606 0.2803

HROS-PD

5% 0.1654 0.1347 0.1404 0.1590 0.1672 0.2890
10% 0.1736 0.1352 0.1586 0.1719 0.1585 0.2628
15% 0.1632 0.1304 0.1425 0.1603 0.1753 0.2592
20% 0.1594 0.1264 0.1450 0.1513 0.1660 0.2588
25% 0.1415 0.1279 0.1366 0.1557 0.1660 0.2572
30% 0.1424 0.1230 0.1261 0.1642 0.1526 0.2533
35% 0.1465 0.1204 0.1264 0.1625 0.1600 0.2560

HRUS-PD

5% 0.1458 0.1217 0.1330 0.1589 0.1634 0.2908
10% 0.1425 0.1287 0.1307 0.1578 0.1636 0.2783
15% 0.1471 0.1221 0.1312 0.1797 0.1553 0.3022
20% 0.1481 0.1264 0.1310 0.1486 0.1642 0.2820
25% 0.1422 0.1217 0.1311 0.1465 0.1585 0.2910
30% 0.1446 0.1304 0.1307 0.1473 0.1597 0.2812
35% 0.1411 0.1254 0.1229 0.1501 0.1486 0.2817

Table 44 – Results for the partial depth hierarchical datasets with multiple paths (Part 2).

Gasch-1 Gasch-2 Phenotype Sequence SPO
Original 0.1544 0.1410 0.1256 0.1683 0.1342

HROS-PD

5% 0.1590 0.1492 0.1318 0.1655 0.1357
10% 0.1868 0.1654 0.1303 0.1679 0.1359
15% 0.1733 0.1549 0.1272 0.1598 0.1277
20% 0.1636 0.1469 0.1237 0.1637 0.1265
25% 0.1581 0.1466 0.1256 0.1761 0.1376
30% 0.1596 0.1415 0.1294 0.1886 0.1264
35% 0.1611 0.1480 0.1297 0.1597 0.1317

HRUS-PD

5% 0.1560 0.1411 0.1240 0.1665 0.1344
10% 0.1585 0.1540 0.1260 0.1674 0.1347
15% 0.1510 0.1399 0.1276 0.1675 0.1348
20% 0.1569 0.1388 0.1344 0.1626 0.1337
25% 0.1496 0.1301 0.1326 0.1620 0.1343
30% 0.1521 0.1410 0.1370 0.1626 0.1346
35% 0.1451 0.1368 0.1255 0.1587 0.1352

8.3 Analysis and Discussion

Observing the previously described results, four main questions are raised: (i) May
the proposed resampling algorithms increase the classification results? (ii) Which one is the
most/least effective resampling algorithm? (iii) Does the increase/decrease rate influence
in the classification results? (iv) Does the dataset HMeanIR influence the resampling and
classification results?

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 182

In order to answer the first question with statistical significance, we applied
the Wilcoxon Statistical Test, stating as hypothesis that the weighted-AUPRC of the
classification is different after using the resampling methods. The test was applied for
each one of the seven different increase/decrease rates and the p-values outputs for the
Full Depth (HROS-FD and HRUS-FD) and Partial Depth algorithms (HROS-PD and
HRUS-PD) are shown in Tables 45 and 46, respectively. Considering the threshold as 0.05,
we may observe that in a certain way all resampling algorithms improved the results in
particular scenarios. While HROS-FD statistically improved the classification results of
the single path datasets when using a 10% of increase rate, HRUS-FD improved the results
of the single path datasets with a decrease rate of 5%. Moreover HROS-PD significantly
improved the classification results for the datasets with multiple paths when using 5%
and 10% of increase rate, and HRUS-PD improved the results also for the multiple paths
datasets with a decrease rate of 10%. Interestingly, it is possible to note that while the
FD resampling algorithms performed better with single paths datasets, the PD methods
were better in the multiple path classification problems.

Table 45 – P-values of the Wilcoxon signed-rank statistical test for the Full Depth Random
Resampling Algorithms.

HROS-FD HRUS-FD
(%) Single Path Multiple Path Single Path Multiple Path

5 0.3452 1.0000 0.0431 0.4652
10 0.0431 0.4652 0.3452 0.7150
15 0.3452 0.7150 0.8927 0.4652
20 0.5002 0.4652 0.3452 0.7150
25 0.5002 0.2733 0.5002 0.0679
30 0.5002 0.5930 0.0796 0.4652
35 0.6858 0.7150 0.0796 0.4652

Numbers in bold are below the threshold and in italic are close to the threshold.

Table 46 – P-values of the Wilcoxon signed-rank statistical test for the Partial Depth
Random Resampling Algorithms.

HROS-PD HRUS-PD
(%) Single Path Multiple Path Single Path Multiple Path

5 0.2850 0.0058 1.0000 0.0828
10 0.2850 0.0409 1.0000 0.0409
15 0.1088 0.1307 0.1088 0.4769
20 0.1088 0.3281 1.0000 0.1549
25 0.1088 0.0743 0.5930 0.8589
30 0.1088 0.6566 0.1088 0.5751
35 0.2850 0.7897 0.2850 0.4236

Numbers in bold are below the threshold and in italic are close to the threshold.

Moreover, although the Wilcoxon tests were not able to identify a significant
improvement at threshold 0.05, we cannot affirm that HRUS-FD (using a decrease of 25%,

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 183

30% and 35%), HROS-PD (using an increase rate of 25%) and HRUS-PD (using a decrease
rate of 5%), certainly did not improved the results, since their p-values are so close to the
threshold. In fact, if we observe the classification results in Tables 40, 41, 42, 43 and 44,
we may note some improvements in terms of AUPRC for these cases.

To answer the second question, we may also analyze Tables 45 and 46. We may note
that HROS-PD was the only one that statistically overperformed the original classification
results when using two different rates: 5% and 10%. Furthermore, HROS-PD was also
close to the threshold when using 25% of increase rate. And, finally, although in the single
path datasets HROS-PD did not statistically overperformed the original results using any
increase rate, we may observe that in four of the seven p-values the value was 0.1088,
i.e., only 0.05 above the threshold. In contrast, we may note that HRUS-PD was the only
one that got exact 1.0 of p-value for three decreasing rates (5%, 10% and 15%), which
shows a sign to be the less effective resampling method. Moreover, HROS-FD also poorly
performed for all scenarios, with exception of single paths with 10% of increasing rate.

The third question may be answered by looking at the different ranges of p-
values presented in Tables 45 and 46. It is notable that the post-resampled results that
overperformed the original classification results were obtained with increase/decrease rates
of 5% and 10%, despite of resampling algorithm or type of dataset. Thus, we can indeed
affirm that the increase/decrease rate does influence the classification results.

The answer to the fourth and last question is first grounded at Figure 59. We may
note that Enron, IMCLEF07D, Church, Derisi, Exp, Gasch-1, Gasch-2, Sequence and SPO
are the most imbalanced datasets regarding HMeanIR, in contrast with Birds, Emotions,
Diptera, Hglass and Diatoms, which are the least imbalanced ones. However, if we look at
Tables 40, 41, 42, 43 and 44, it can be observed that the most imbalanced datasets were
not necessarily the most benefited by the resampling algorithms. As a counter-example,
let’s consider the Hglass datasets, which has HMeanIR of only 4.04. In this case, the result
with the original datasets (0.8145) had the largest improvements (0.9394) between all
datasets (after applying HROS-FD with an increase of 10%). Therefore, although the
hierarchical dataset imbalanceness does influence the resampling and classification results,
we may not conclude that this relation is necessarily inverse, i.e., when the imbalanceness
is low, the resampling algorithms will not really impact in the classification results.

8.4 Final Considerations

In this Chapter we proposed novel global random resampling methods to handle
imbalanceness in hierarchical classification problems. The proposed methods can be sub-
divided in four algorithms: Random Oversampling and Undersampling for Hierarchical

Chapter 8. Global Approaches: The Hierarchical Random Resampling Algorithms 184

Datasets with Full Depth Prediction (HROS-FD and HRUS-FD); and Random Over-
sampling and Undersampling for Hierarchical Datasets with Partial Depth Prediction
(HROS-PD and HRUS-PD). These algorithms are, to the best of our knowledge, the first
ones to deal with imbalanceness in hierarchical datasets handling and resampling the data
in a direct-way.

In order to retrieve the set of majority/minority label paths in a given hierarchical
dataset, we have used the Imbalance Ratio per Label Path (IRLP) and Hierarchical
Mean Imbalance Ratio (HMeanIR) metrics, defined in Chapter 6. While the Full Depth
resampling algorithms deal with the data in unique looping though the majority/minority
label paths, the Partial Depth algorithms handle the data walking through the label tree
in a bottom-up order, resampling their instances and re-calculating the IRLPs to retrieve
the updated sets of majority/minority paths.

Experimental results with twenty three datasets ranging a different broad of
characteristics, such as partial/full depth prediction and single/multiple paths, showed
that the proposed algorithms can statically improve the classification results, in relation
to the weighted-AUPRC, for all scenarios.

In the next Chapter we present the Hierarchical Synthetic Oversampling Technique
(HSMOTE), the first heuristic global resampling method for hierarchical classification
datasets. HSMOTE uses the same minority samples selection approach proposed in this
Chapter in order to obtain the set of samples that will be processed by the algorithm.

185

C
ha

pt
er

9
Global Approaches: The Hierar-
chical Synthetic Oversampling
Algorithm

As state in Chapter 8, dealing with imbalanceness in hierarchical classification
problems is a challenging task, since there are different kinds of hierarchically organized
problems, with different types of properties, such as the labels taxonomy, the depth of the
prediction and the number of paths associated to each example (SILLA JR; FREITAS,
2011). Moreover, in Chapter 8, we have presented HROS and HRUS, the first resampling
methods that are able to deal with a hierarchical classification dataset as a whole. However,
these methods aim to rebalance the dataset by randomly creating or removing samples
from the dataset.

The main contribution of this Chapter is an adapted version of the SMOTE
algorithm, that is able to tackle the imbalanceness problem in hierarchical classification
datasets. The adapted version, named Hierarchical Synthetic Oversampling Technique
(HSMOTE), was designed considering the different properties of hierarchical classification
datasets regarding the depth of the prediction (partial or full depth) and the number of
label paths associated with each sample (single paths or multiple paths).

The contributions of this chapter were submitted to the journal Knowledge-Based
Systems and are under review for publication.

9.1 The Synthetic Oversampling Techniques

Among all the resampling techniques, the Synthetic Oversampling Technique
(SMOTE), first proposed in Chawla et al. (2002), is by far the most important and well-
known resampling method in the literature (KRAWCZYK, 2016). The SMOTE technique
was proposed both in the binary/multi-class and multi-label scenarios. In the multi-label
context, the proposed algorithm is named Multi-Label Synthetic Oversampling Technique
(MLSMOTE) and was proposed by Charte et al. (2015b).

As shown in Chapter 3, SMOTE/MLSMOTE proposes the creation of new synthetic
samples for the minority class(es) by interpolation of nearest instances. After selecting a
sample from the minority class, two of its k nearest neighbors are randomly chosen and
one new sample will be created in the direction of each one.

The main differences between SMOTE and MLSMOTE are: (i) the minority samples

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 186

selection and (ii) the labels interpolation. In the classic SMOTE, the selection of minority
samples is quite natural, since we only have to rank the number of samples per label in
the dataset and choose the least present one. Moreover, in classic SMOTE, the labels
interpolation do not exist, inasmuch we are dealing with samples which are always labeled
with the same labels. However, in MLSMOTE, the minority labels have to be selected
based in a pre-defined metric, which measures the least frequent labels among all the label
sets in the dataset. Furthermore, when creating a new sample, MLSMOTE interpolate the
neighbors’ labelsets by using Ranking, Union and Intersection techniques.

Other well-known variations of SMOTE are the SMOTE Borderline-1 and SMOTE
Borderline-2, proposed by Han, Wang & Mao (2005). In these variations, the algorithm
creates synthetic samples taking into account the borderlines between the classes, forcing
the synthetic process to avoid the creation of samples close to these areas.

In Sharma et al. (2018) the authors have proposed another SMOTE solution
specifically for extreme classification scenarios named Sampling With the Majority (SWIM).
Their method uses the information inherent in the majority class to synthesize minority
class data. To do so, the algorithm generates synthetic data that is at the same Mahalanbois
distance from the majority class as the known minority instances.

An important observation to state here is that SMOTE algorithm has already been
proposed in the binary, multi-class, multi-label and extreme classification scenarios. Thus,
in this Chapter, we propose an adaptation of the SMOTE algorithms in order to deal with
the specificities of the hierarchical classification problems.

9.2 The Proposed HSMOTE Technique

The SMOTE and MLSMOTE algorithms were designed to work with data organized
in a flat taxonomy, i.e., without hierarchical relationship between the labels. However, in
the hierarchical classification scenario, instead of simply producing synthetic samples for
single or multiple classes, the resampling algorithm has to deal with the labels hierarchy,
i.e., when creating a synthetic sample for a certain label “A/B/C”, for example, the method
has to be aware that it will automatically create a new sample to the class A/B as well,
since they belong to the same path.

As defined in Silla Jr & Freitas (2011), there are different types of hierarchical
classification problems that have to be considered by the resampling algorithm: number of
paths (defined in the literature as Ψ) and depth of the paths (defined in the literature
as Φ). Besides, as in all oversampling algorithms, we have to define and select the set of
samples belonging to the minority classes. And finally, as in the SMOTE technique and its
adaptions, we also have to define how to select the nearest neighbors, how to generate the

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 187

synthetic feature set and how to combine the labelsets. Thus, there are five main aspects
to solve:

1. Minority instances selection: A criterion to define and select which label paths belong
to the minority set of paths has to be established.

2. Different kinds of hierarchical problems and relationship between the labels: The
resampling process has to be investigated in each hierarchical classification scenario
(full or partial depth prediction and single or multiple paths) and a mechanism to
deal with the labels hierarchy (mainly in partial depth problems) has to be defined.

3. Nearest neighbor search: Given an instance that belongs to a minority label path,
the algorithm has to search its nearest neighbors which will be used to generate the
synthetic sample.

4. Feature set generation: After selecting the neighbors, the set of features for the
synthetic sample is obtained through interpolation techniques.

5. Synthetic labelset production: Since we have different kinds of hierarchical classifica-
tion problems, the production of synthetic path(s) also depends on the type of the
problem.

In the following subsections we detail each one of the previously mentioned aspects.

9.2.1 Minority Instances Selection

When oversampling a dataset, the first task is to define the target samples of this
resampling process. When we are applying an oversampling algorithm, such as HSMOTE,
the samples belonging to the minority classes have to be defined and selected. To do so in
the binary and multi-class contexts (such as in the classic SMOTE), the majority/minority
classes can be identified by considering the most/less frequent labels among the samples.
Moreover, for the identification of majority and minority labels in multi-label datasets
(as in MLSMOTE), Charte et al. (2013) defined and suggested the use of the IRLbl and
MeanIR imbalance measures. Their idea was to consider the labels with an imbalance ratio
(IRLbl) below the average imbalance ratio (MeanIR) as belonging to the set of majority
classes (named as majority bag), otherwise the classes belong to the minority bag.

Thus, before proposing an oversampling method for hierarchical datasets, we first
have to establish a mechanism to identify the minority classes considering the class
hierarchy. As in hierarchical problems the classes are represented by label paths in the
tree taxonomy instead of individual labels, we used the imbalance ratio per label path
(IRLP) and hierarchical mean imbalance ratio (HMeanIR), proposed in Pereira, Costa &

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 188

Silla Jr (2018) and presented in Chapter 6 of this Thesis. Our idea here is to find the set
of minority paths in the dataset based on their imbalance ratio, which can be calculated
with Equations 9.1 and 9.2.

As presented in Chapter 6, Formula 9.1 defines the imbalance ratio for a certain
label path p as IRLP (p), where p is the set of all possible Label Paths that have at least
one occurrence, Pi is the i-th label path, and the dataset is represented as D.

IRLP (p) =
max
p′∈P (∑|D|i=1 h(p′, Pi))∑|D|

i=1 h(p, Pi)

h(p, Pi) =

1, p ∈ Pi
0, p /∈ Pi

(9.1)

Furthermore, in Pereira, Costa & Silla Jr (2018) Equation 9.2 is also defined in
order to retrieve the mean imbalanceness of a hierarchical dataset (named as HMeanIR)
based on the average of the imbalanceness per label path, previously presented by IRLP .

HMeanIR = 1
|P |

P|P |∑
p=P1

IRLP (p) (9.2)

Based on Equations 1 and 2 we are able to retrieve the minority paths of a given
dataset. In this context, the set of minority paths will contain the label paths with an
IRLP above the HMeanIR.

9.2.2 Dealing with different kinds of hierarchical classification problems

Although in this work we are only concerned with hierarchical classification problems
with labels organized in a tree-based taxonomy, in order to design an oversampling method
to hierarchical datasets, we have to consider two other problems variants, as described in
Silla Jr & Freitas (2011): number of paths (defined in the literature as Ψ) and depth of
the paths (defined in the literature as Φ).

In full depth classification problems, the samples may be associated with one or
more label paths, but always with full depth in the label tree. As in this type of problem
there are no samples labeled with sub-paths of paths (for example, some samples labeled
with “A/B” and others with “A/B/C”), the resampling process is similar to the classic
SMOTE (when dealing with a single path prediction problem) and to MLSMOTE (when
dealing with a multiple path prediction problem).

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 189

In partial depth classification problems, the samples may also be associated with
one or more label paths, however these paths can achieve full or partial depth in the label
tree hierarchy. One of the main challenges of resampling this kind of samples is that, when
creating samples from children labels, the number of samples belonging to parent labels
nodes will be also indirectly increased. This issue does not affect full depth problems, since
there are no instances labeled exclusively with internal nodes labels. In Figure 60 we show
an example of this issue for an example training set with 6 samples (S1...S6). In this case,
we simulated the creation of 3 samples labeled with node H to show how it can impact in
the internal label nodes. We may note that, when we created these samples for node H,
we indirectly created samples for nodes E and D.

A

B

D

E

Root

F

C G H I
12 1 1

3 3 1

5 5S1
S2
S3
S4
S5
S6

A, D/F/I
A/B
A/B/C, D/E
D/E/H
D/E/G, A/B/C
A, D

TRAINING SET

A

B

D

E

Root

F

C G H I
12 4 1

3 6 1

5 8
S1
S2
S3
S4
S5
S6

A, D/F/I
A/B
A/B/C, D/E
D/E/H
D/E/G, A/B/C
A, D

TRAINING SET

S7 D/E/H
S8 D/E/H
S9 D/E/H

Resample
node H

2

Figure 60 – An example of the main issue when creating samples in leaf nodes. The numbers
on the top left of the nodes symbolize the number of samples belonging to
each node.

In order to deal with the previously presented issue, we used a method to process
the instances in a “bottom-up order”, in which we recalculate the set of minority paths
in each loop during the resampling process. In Figure 61 we present a visual example of
this “bottom-up order” process. In the example, the dataset is composed of eighty five
instances and a label tree with ten nodes. Besides, since we have a label tree with depth
of three, the resample process occurs in three steps. We simulated the application of an
oversampling method (such as HSMOTE). We may observe that initially we had five label
paths belonging to the set of minority paths: “A/B”, “A/B/C”, “D/E/G”, “D/F” and
“D/F/I”. However, after applying the first looping of the resampling, which considers the
labels with depth 3 (“A/B/C”, “D/E/G” and “D/F/I”), the label path “A/B” do not
belongs to the set of minority paths anymore. This happens because we have created
samples to “A/B/C” and, indirectly for “A/B”, making it achieve an IRLP higher than
HMeanIR.

Moreover, in order to deal with the Ψ variants, i.e., hierarchical classification prob-
lems with single and multiple paths, we have designed different types of label combinations
for the synthetic samples creation process, which are detailed explained in subsection 9.2.5.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 190

A

B

D

E

Root

F

C G H I
43 12 3

5 17 3

40 45
A

B

D

E

Root

F

C G H I
76 12 6

8 20 6

43 51

Step 1 Step 2 Step 3

A

B

D

E

Root

F

C G H I
7 12 6

8 20 9

43 54

6

Figure 61 – An example of the application of an oversampling method in a dataset with
85 instances. The nodes marked with a circled dashed are being processed at
the certain step and the red nodes represent the label paths belonging to the
minority set.

9.2.3 Nearest neighbor search

The solution to this issue leans on the same strategy used in SMOTE and
MLSMOTE algorithms. After selecting a sample from the set of minority label paths, we
select a set of its k nearest neighbors, in which k is an entry parameter of the HSMOTE
algorithm. These neighbors will be used in the interpolation phase to create the synthetic
sample. In order to execute the nearest neighbors’ process, we have to obtain the distances
between the selected sample and its neighbors. As well as in SMOTE and MLSMOTE
techniques, for the numeric features, the well-known Euclidean Distance metric is used
to calculate the distances between the samples, while for the nominal features the Value
Difference Metric (VDM) is used (STANFILL; WALTZ, 1986; COST; SALZBERG, 1993).

9.2.4 Feature set generation

This issue is also solved with a strategy similar to SMOTE and MLSMOTE
algorithms. After selecting the two samples that will be used to generate the synthetic
sample, i.e., a sample from the minority set of label paths and a reference nearest neighbor
(which is randomly selected from the k nearest neighbors), an interpolation technique is
used to generate the feature set of the synthetic sample. When a given feature is nominal,
instead of interpolating the values, the method selects the most frequent values among the
sample and all its nearest neighbors as the value for the synthetic sample.

9.2.5 Synthetic labelset production

Regarding the association of label(s) to the synthetic instance, in the classic SMOTE,
as it deals with binary/multi-class problems, the label of the sample selected from the
minority set is cloned to the synthetic sample. In MLSMOTE, as it handle multi-label

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 191

problems, Charte et al. (2015b) proposed the use of three label combinations techniques
with the neighbors labels to solve the issue producing a new labelset: Intersection, Union
and Ranking. As HSMOTE deals with hierarchical classification problems, which can has
single or multiple paths (defined as Ψ) and be either full or partial depth (defined as
Φ), we designed the following possibilities for the label(s) generation, according to the
problem’s taxonomy:

• Single Path Problems:

– Full Depth:

∗ Clone: The label path of the seed sample, i.e., the instance selected from
the set of minority paths, is cloned to the synthetic sample.

– Partial Depth:

∗ Clone: The same as in FD, i.e., the label path of the seed sample is cloned.
∗ Longest Common Path: The longest common path among the neighbors is

chosen as the label path for the synthetic sample.

• Multiple Path Problems (FD or PD):

– Union: All label paths that appear in the reference instance or any of its
neighbors are used as the synthetic labelset.

– Intersection: The label paths that appear in the reference instance and the
neighbors are used as the synthetic labelset.

– Ranking: We count the number of occurrences of each label path in the reference
sample and its neighbors and those which are present in half or more of the
instances are considered as labelset of the synthetic sample.

In Table 47 we present a visual example of the label combination process for a
partial depth problem with single paths, i.e., the Clone and Longest Common Paths
combinations. In the table, Neighi is the ith neighbor of the Selected Sample (which
belongs to the minority set of label paths). Moreover, the example from Table 47 considers
the use of five neighbors. As in the clone method we only copy the same label path from
the selected sample, the combination is “A/B/C”. Moreover, the Longest Common Path
between the selected sample and the neighbors is “A/B”, since it is present in all the
samples’ label paths. It is worth to mention that the Clone combination method is exactly
the same for the full depth problems with single paths.

Even though in the multi-label classification scenario the possibilities of union,
intersection and ranking criterion were already introduced by Charte et al. (2015b) as
combinations for the MLSMOTE technique, it is important to observe that when we are

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 192

Table 47 – Example of Label Paths Combinations for a partial depth problem with single
paths considering the minority label path “A/B/C” and five neighbors.

Label Paths
Selected Sample A/B/C

Neigh1 A/B
Neigh2 A/B/C
Neigh3 A/B
Neigh4 A/B/C
Neigh5 A/B

Combinations
Clone A/B/C

Longest Common Path A/B

dealing with hierarchical classification problems with partial depth, we also have to keep
in mind this partial depth of the label paths during the combination analysis.

In order to visually explain how considering partial depth label paths can affect
the multiple paths combinations, we present Tables 48 and 49, which show examples of
label paths combination using the Union, Intersection and Ranking criteria for FD and
PD problems, respectively. In both tables, LPi represents the ith label paths of the sample
and Neighi the ith neighbor of the Selected Sample.

Table 48 shows an example of label combination for a given FD problem in which
the selected sample had label paths “A/B/C” and “D/F/I” and the minority path was
“A/B/C”. We may observe that the combinations are somehow similar to MLSMOTE.
Using the union combination process we choose all the label paths present in the samples
(selected samples plus neighbors), which lead us to all label paths (“A/B/C”, “D/F/I”,
“D/E/H” and “D/E/G”). In the intersection process we have only the label paths present
in all samples (in this case, “A/B/C”). Moreover, during the ranking combination process,
the most frequent label paths are computed as “A/B/C” - 6, “D/E/H” - 4, “D/F/I” -
2, and “D/E/G” - 2, thus, we choose “A/B/C” and “D/E/H” as the label paths for the
synthetic sample (half of the top ranked).

However, in Table 49, which presents the combination for a PD problem in which
the selected sample had the paths “A/B/C” and “D/F” and the minority path was “D/F”,
we have to handle the following issues in each label combination criteria:

• Union: The combination of a partial depth path and its full depth path results in the
full depth path, since the partial depth path belongs to the full path. As example,
we can note in Table 49 that the union of the label paths resulted in all the full label
paths, so the union of “A/B/C” and “A/B” lead to “A/B/C”, as well as the union
of “D/F/I” and “D/F” lead to “D/F/I”, and so on.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 193

Table 48 – Example of Label Paths Combinations for a FD problem with multiple paths
considering the minority label path “A/B/C” five neighbors.

Label Paths
LP1 LP2 LP3 LP4

Selected Sample A/B/C D/F/I
Neigh1 A/B/C D/F/I
Neigh2 A/B/C D/E/G D/E/H
Neigh3 D/E/H A/B/C
Neigh4 D/E/H A/B/C
Neigh5 D/E/H D/E/G A/B/C

Combinations
Union A/B/C D/F/I D/E/H D/E/G

Intersection A/B/C
Ranking A/B/C D/E/H

• Intersection: The combination of two label paths can lead to a common partial
depth path between them. As example, in Table 49 we can note that the intersection
between the six instances (selected sample plus the five neighbors) resulted in two
partial depth paths: “D/F” and “A/B”. In this case, it should be noted that the
intersection of “A/B/C” and “A/B” lead to “A/B”, as well as the intersection of
“D/F/I” and “D/F” lead to “D/F”.

• Ranking: All label paths present in the samples (partial and full depth) are ranked
according to their frequency and, during this ranking step we have to take into
account when a partial depth path is present in a full depth path. In the example of
Table 49, the rankings are computed as “A/B” - 6, “D/F” - 6, “A/B/C” - 3, “D/F/I”
- 2, “D/E/H” - 2 and “D/E/G” - 1, thus, we would choose “A/B”, “A/B/C” and
“D/F” as the top ranked label paths. However, when joining the top label paths,
we have to use the same reasoning of the union process, i.e., as “A/B” belongs to
“A/B/C”, the output label paths are only “D/F” and “A/B/C”.

It is important to observe that when using the intersection strategy in multiple
path problems, the label sets combination may lead to an empty set. In theses cases, the
solution adopted is to copy the label set from the selected sample.

9.2.6 HSMOTE Pseudocode

Considering all the aspects previously discussed, we have designed the HSMOTE
algorithm through a series of nine pseudocodes:

• Algorithm 42: Presents the main procedure of the HSMOTE method.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 194

Table 49 – Example of Label Paths Combinations for a PD problem with multiple paths
considering the minority label path “D/F” five neighbors.

Label Paths
LP1 LP2 LP3 LP4

Selected Sample A/B/C D/F
Neigh1 A/B D/F
Neigh2 A/B D/F D/E/H
Neigh3 D/F/I D/E/G A/B
Neigh4 D/F/I A/B/C
Neigh5 D/F D/E/H A/B/C

Combinations
Union A/B/C D/F/I D/E/H D/E/G

Intersection D/F A/B
Ranking D/F A/B/C

• Algorithms 43 and 44: Present the oversampling procedure for the full depth and
the partial depth hierarchical classification problems, respectively.

• Algorithm 45: Shows the calculations for the hierarchical mean imbalance Ratio
(HMeanIR).

• Algorithm 46: Shows the calculations for the imbalance ratio for a given label path
(IRLP).

• Algorithm 47: Shows the hierarchical resample internal procedure.

• Algorithm 48: Shows the synthetic samples creation procedure.

• Algorithms 49 and 50: Present the procedures to create the label paths for single
path and multiple paths problems, respectively.

The main procedure of HSMOTE (Algorithm 42) has the following inputs:

• D - the hierarchical training set to be processed.

• TypeOfPred - the depth of the prediction in the hierarchical classification problem.

• TypeOfLP - the multiplicity of paths in the prediction.

• LComb - the type of label combination used to generate the synthetic samples.

• k - the number of neighbors to use.

With exception of the D and k parameters, which represent, respectively, the
hierarchical training set and the number of neighbors used to build the synthetic sample,

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 195

Algorithm 42 HSMOTE main procedure
Inputs:

D: The hierarchical training set
depthPred: Full depth or partial depth
pathType: Single path or multiple path
lcomb: clone, longest common, ranking, union or intersection
k: Number of nearest neighbors

1: if depthPred = “full depth” then
2: hsmote_fd(D, pathType, lcomb, k)
3: else if depthPred = “partial depth” then
4: hsmote_pd(D, pathType, lcomb, k)
5: end if

Algorithm 43 Full Depth Oversampling
6: function hsmote_fd(D, pathType, lcomb, k)
7: HMeanIR ← calculateHMeanIR(D)
8: P ← labelPathsInDataset(D)
9: for each labelPath in P do
10: IRLP_labelPath ← calculateIRLP(D, labelPath)
11: if IRLP_labelPath > HMeanIR then
12: hierarchical_resample(D, labelPath, k, pathType, lcomb)
13: end if
14: end for
15: end function

Algorithm 44 Partial Depth Oversampling
16: function hsmote_pd(D, pathType, lcomb, k)
17: labelTree ← retrieve label tree from D
18: HMeanIR ← calculateHMeanIR(D)
19: while labelTree is not empty do
20: leafNodesSet ← getLeafNodes(labelTree)
21: for each node in leafNodesSet do
22: labelPath ← getPath(node)
23: IRLP_labelPath ← calculateIRLP(D, labelPath)
24: if IRLP_labelPath > HMeanIR then
25: hierarchical_resample(D, labelPath, k, pathType, lcomb)
26: end if
27: end for
28: remove leafNodesSet from labelTree
29: HMeanIR ← calculateHMeanIR(D)
30: end while
31: end function

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 196

Algorithm 45 Calculating the average imbalance ratio of the dataset
32: function calculateHMeanIR(D)
33: P ← labelPathsInDataset(D)
34: IRLP ← empty dictionary
35: for each labelPath in P do
36: IRLP[labelPath] ← calculateIRLP(D, labelPath)
37: end for
38: hMeanIR ← sum(IRLP)/|IRLP |
39: return hMeanIR
40: end function

Algorithm 46 Calculating the imbalance ratio for a label path
41: function calculateIRLP(D, lp)
42: countDict ← empty dictionary
43: P ← labelPathsInDataset(D)
44: for each labelPath in P do
45: countDict[labelPath] ← numOfSamples(D, labelPath)
46: end for
47: maxCount ← max(countDict)
48: IRLPlp ← maxCount/countDict[lp]
49: return IRLPlp
50: end function

Algorithm 47 Hierarchical Resample for a given minority Label Path
51: function hierarchical_resample(D, labelPath, k, pathType, lcomb)
52: minBag ← getAllInstancesOfLabelPath(labelPath)
53: for each sample in minBag do
54: neighs ← getKNearestNeighbors(sample, minBag, k)
55: refNeigh ← getRandNeighbor(neighs)
56: synth ← newSample(sample, refNeigh, neighs, pathType, lcomb)
57: D ← D + synth
58: end for
59: end function

the inputs of the HSMOTE algorithm are directly related to the type of hierarchical
classification problem being resampled.

In the following we have divided the pseudocode explanation into four subsections,
which explain how HSMOTE works when dealing with each specific type of hierarchical
classification problem: (i) Full Depth with Single Paths; (ii) Full Depth with Multiple
Paths; (iii) Partial Depth with Single Paths; and (iv) Partial Depth with Multiple Paths.

9.2.6.1 How HSMOTE deals with Full Depth problems with Single Paths

Lines 1-5 of the HSMOTE main procedure (Algorithm 42) are aimed to choose the
kind of problem regarding the depth of the prediction. In this case, depthPred parameters

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 197

Algorithm 48 Creating new synthetic sample
60: function newSample(sample, refNeigh, neighbors, pathType, lcomb)
61: synth ← new Sample
62: for each feat in synthSmpl do
63: if typeOf(feat) is numeric then
64: diff ← refNeigh.feat - sample.feat
65: offset ← diff * randomize(0,1)
66: value ← sample.feat + offset
67: else
68: value ← mostFrequentValue(neighbors, feat)
69: end if
70: synth.feat ← value
71: end for
72: if pathType = “single path” then
73: synth.labelPath ← buildSinglePath(sample, neighbors, lcomb)
74: else if pathType = “mutiple path” then
75: synth.labelPaths ← buildMultiPaths(sample, neighbors, lcomb)
76: end if
77: return synth
78: end function

Algorithm 49 Building the label path for single path problems
79: function buildSinglePath(sample, neighbors, lcomb)
80: if lcomb = “clone” then
81: return sample.labelPath
82: else if lcomb = “longest common” then
83: return getLongestCommonPath(sample, neighbors)
84: end if
85: end function

Algorithm 50 Building the set of label paths for multiple paths problems
86: function buildMultiPaths(sample, neighbors, lcomb)
87: if lcomb = “ranking” then
88: rankedPaths ← rankMostFrequentPaths(sample, neighbors)
89: labelPaths ← getHalf(rankedPaths)
90: else if lcomb = “union” then
91: labelPaths ← union(sample, neighbors)
92: else if lcomb = “intersection” then
93: labelPaths ← intersection(sample, neighbors)
94: end if
95: return labelPaths
96: end function

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 198

needs to be set as “full depth” and hsmote_fd function is called (represented by Algorithm
43). The first task of hsmote_fd, is to calculate the mean hierarchical imbalance ratio of
the training set by using the calculateHMeanIR function (Algorithm 45).

In order to calculate HMeanIR, Algorithm 45 retrieves all label paths in the
training set D and named it P (line 33). Thus, in lines 34-37, Algorithm 45 calculates the
individual IRLP for each label path in P by calling the calculateIRLP function (presented
in Algorithm 46) and then calculates the average of all these IRLPs (line 38). By its turn,
Algorithm 46 calculates the imbalance ratio for a given label path (lp) by counting the
number of samples belonging to each label path in the training dataset (Lines 42-46). It
is important to state that we are considering all samples that are labeled with the given
path, for example, if the path is “A/B”, samples labeled with “A/B/C” and “A/B/D” are
taken into account. Then, in line 47 the algorithm gets the maximum number of samples
of a label path in the dataset (maxCount) and in line 49 the IRLP for the label path lp
is calculated using the maxCount.

Going back to line 9 of Algorithm 43, after retrieving the HMeanIR value, the
algorithm retrieves the label paths in the dataset (line 8) and, in lines 9-14, makes a loop
for each one of these label paths, calculating their IRLP and verifying if they belong to
the minority set by checking if their IRLP is above the average (HMeanIR). If a given
label path belongs to the minority set, the algorithm calls the hierarchical_resample
function (Algorithm 47) in line 12, which will, in fact, create the new synthetic samples for
the given label path. It is important to observe that HSMOTE will create one synthetic
sample for each sample labeled with a minority label path.

In line 52 of Algorithm 47, the minority bag of instances (minBag), which contains
all the samples labeled with the minority label path is retrieved. Moreover, in the loop
from lines 53-58, for each sample from the minBag, a new synthetic sample is created. To
do so, in line 54 the algorithm obtains the k-nearest neighbors of the selected sample in
relation to the other samples from the minBag. It should be noted that these distances are
calculated ignoring the label paths, i.e., considering only the feature values. Besides, the
value of k is an input parameter of HSMOTE. In line 56 a reference neighbour (refNeigh)
is randomly selected, and will be used in the interpolation step. In line 56 the newSample
function is called (presented in Algorithm 48) to create the synthetic sample considering
its neighbors.

In line 61 of Algorithm 48 the new Synthetic sample is instantiated as synth. Then,
in the looping from lines 62-71, each feature of synth, with exception of the label path,
is created. At each step, if the given feature is numeric, the new feature is generated
by interpolating the features from the selected sample and the refNeigh. However, if the
feature is nominal, the most frequent value among all neighbors is chosen for the synthetic
sample. In lines 72-76 the synthetic label path is generated. As we are dealing with a single

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 199

path problem, the pathType parameter should be set to “single path” and, thus, line 73
will be executed in order to call the buildSinglePath function (Algorithm 49), which will
create the label path for the synthetic sample synth.

In Algorithm 49, when dealing with full depth hierarchical classification problems
with single paths of labels, the only possible label combination (represented by lcomb
parameter) is to clone the same label path from the selected sample to the synthetic
instance, since the selected sample and its neighbors are all labeled with the same label
path, which belongs to the minority set. Thus, in line 81 the label path from the selected
sample is returned.

Back to algorithm 48, the synthetic sample is fully created and, in line 77, it is
returned to Algorithm 47. By its turn, in line 57 of Algorithm 47 the new synthetic sample
is added to the training set and Algorithm 43 continues the looping process until there are
no more samples belonging to minority label paths to process.

9.2.6.2 How HSMOTE deals with Full Depth problems with Multiple Paths

When dealing with full depth problems with multiple paths, in Algorithm 42 the
depthPred parameter needs to be set as “full depth” and the pathType parameter should
be set to “multiple path”. By doing this, the main difference between HSMOTE’s flow in
relation to the detailed explanation presented in section 9.2.6.1 is the synthetic label paths
generation. This difference begins in lines 72-76 of Algorithm 48. As the pathType is set as
“multiple path”, buildMultiPaths function (Algorithm 50) is called in line 76.

In Algorithm 50, the lcomb parameter is used to decide which kind of label
combination should be used to combine the label paths from the selected sample and
the neighbors in order to generate the synthetic set of label paths. The ranking, union
and intersection criteria can be chosen as input of HSMOTE for this kind of hierarchical
classification problem. Using the ranking criteria, in line 88, the most frequent paths are
ranked and, in line 89, the half (plus 1 if dealing with an odd number of label paths) is
selected as the synthetic set of label paths. When using the union or intersection criteria,
the union or intersection between the samples label paths are computed. These combination
strategies are exemplified in Table 48.

9.2.6.3 How HSMOTE deals with Partial Depth problems with Single Paths

To deal with this kind of hierarchical classification problem, in Algorithm 42, the
depthPred and pathType parameters should be set as “partial depth” and “single path”,
respectively. Therefore, in line 4 of Algorithm 42, the hsmote_pd function (presented in
Algorithm 44) is called in order to handle the partial depth problem, which is the main

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 200

flow difference between sections 9.2.6.1 and 9.2.6.2.

The first step of Algorithm 44, in lines 17, is to retrieve the tree representing the
label paths of the training set D. In line 18, the HMeanIR value is calculated following
almost the same flow as presented in section 9.2.6.1, with the only difference being regarding
the labelPathsInDataset fuction (used in line 33 of Algorithm 45 and line 43 of Algorithm
46). As we have a partial depth problem, this function has to take into account these
“partial” label paths. In the loop from line 19-30, the label tree is walked in a bottom-up
order. In line 20, the set of leaf nodes is retrieved. Then, in the loop from line 21 to
26, each node from the set of leaf nodes is processed, retrieving its full path (line 22),
calculating its IRLP (line 23) and checking if it belongs to the set of minority label paths.
When the leaf node label path belongs to the set of minority label paths, in line 25 the
hierarchical_resample function (Algorithm 47) is called, which will work almost in the
same way as presented section 9.2.6.1. After creating the synthetic samples for the leaf
nodes belonging to the minority set, the algorithm removes this set of leaf nodes from the
label tree (line 28), recalculating the HMeanIR of the training set (line 29). It is important
to highlight the importance of this bottom-up process for the partial depth problems,
recalculating the HMeanIR at each step, since the imbalanceness of the internal nodes
may change during the resampling process.

The other difference when dealing with partial depth problems is regarding the
creation of the label path for the synthetic sample. As we are dealing with a single path
problem, function buildSinglePath (Algorithm 49) is called from line 73 of Algorithm 48.
However, differently from the process presented in section 9.2.6.1, the label paths from the
neighbors may be slightly different, since some neighbors label paths may be deeper than
others into the label tree hierarchy. Thus, besides the “clone” label combination, lcomb
parameter we may be also set as “longest common path”, as the example shown in Table
47.

9.2.6.4 How HSMOTE deals with Partial Depth problems with Multiple Paths

Finally, to deal with partial depth problem with multiple paths, in Algorithm 42,
the depthPred and pathType parameters should be set as “partial depth” and “multiple
paths”. As well as in section 9.2.6.3, which also presents a partial depth flow for HSMOTE,
in line 4 of Algorithm 42, the hsmote_pd function (presented in Algorithm 44) is called.
The main difference here is related to the label combination process, which happens inside
the buildMultiPaths function (Algorithm 50). Although there are no visual differences in
the pseudocode if compared to the full depth with multiple paths problems flow (section
9.2.6.2), it should be noted that these label combinations, i.e., the ranking, union and
intersection, has to take into account the issues presented in Table 49. This means that
the functions of lines 88, 91 and 93 has to be aware of subpaths of paths during the

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 201

combinations.

9.3 Experimental Protocol and Results

In this section we present the datasets, algorithms and parameters, experimental
setup and classification results regarding the proposed resampling algorithms.

9.3.1 The Datasets

In order to cover the different aspects of hierarchical classification problems, we
performed computational experiments in a total of 23 datasets: 9 with full depth of
prediction and 14 with partial depth of prediction. It is important to state that all datasets,
algorithms implementations and detailed results can be obtained in this link12.

Tables 50 and 51 present a detailed description of the datasets with FD problems
and PD problems, respectively. The datasets marked with (*) were originally proposed as
flat multi-label classification datasets in the literature and in this work were adapted to
a hierarchical taxonomy. The datasets marked with (**) were extracted as single-label
subsets from the original multi-label dataset and were also adapted to a hierarchical
taxonomy. The hierarchical adaptations were manually made considering the intrinsic
characteristics of the each problem domain. For instance, in the Enron dataset, which
is composed of e-mail subjects classification examples, the subjects were hierarchically
organized according to the subjects.

Table 50 – Hierarchical Classification Datasets with FD Problems. Datasets marked with
(*) were originally proposed as flat datasets and were adapted to a hierarchical
taxonomy.

Paths Domain Name Train Test Attr. Lbls HMeanIR Reference

Multiple

Text Enron* 988 660 1001 57 84.30 (KLIMT; YANG, 2004b)

Music CAL500* 351 151 68 164 22.06 (TURNBULL et al., 2007)
Emotions* 392 203 72 9 1.48 (TROHIDIS et al., 2008)

Biology
Birds* 272 79 260 49 5.41 (BRIGGS et al., 2013)

Single

Actinopterygii 15705 6739 15 30 21.52
(PARMEZAN; SOUZA; BATISTA, 2018)Diptera 15194 6528 33 29 2.05

Audio Instrument 6583 2836 30 46 11.28
Glass Hglass 144 70 9 11 3.91 (METZ et al., 2011)
Image ImCLEF07D 10000 1006 80 24 55.97 (DIMITROVSKI et al., 2011a)

Looking at the datasets characteristics we may observe that FMA-MFCC is by
far the largest one, while Hglass is the smallest one. Furthermore, Hglass is the dataset
with the lowest number of attributes, while Enron dataset has the most. We can also
observe the Hierarchical Mean Imbalance Ratio (HMeanIR) for the datasets. We may
12 https://sites.google.com/view/hierarchical-imblearn/

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 202

Table 51 – Hierarchical Classification Datasets with PD Problems. Datasets marked with
(*) and (**) were originally proposed as flat datasets and were adapted to a
hierarchical taxonomy.

Paths Domain Name Train Test Attr. Lbls HMeanIR Reference

Multiple Biology

Cell-cycle 2484 1281 78 180 410.69

(CLARE; KING, 2003)

Church 2474 1281 24 180 1022.80
Derisi 2450 1275 62 180 1038.41
Eisen 1587 837 80 170 727.79
Exp 2488 1291 544 180 1025.75
Gasch-1 2480 1284 174 180 1024.47
Gasch-2 2488 1291 53 180 1025.75
Phenotype 1009 582 64 168 587.17
Sequence 2580 1339 437 180 1016.30
SPO 2437 1266 79 180 1027.81

Music
FMA-MFCC* 33259 14274 13 97 179.97

(DEFFERRARD et al., 2017)
Single

FMA-SLLBP** 15331 7000 59 135 539.07
FMA-SLSSD** 15631 6700 161 135 539.07

Image Diatoms 2065 1054 371 398 118.20 (DIMITROVSKI et al., 2012)

note that the datasets present a large variety of imbalanceness. Furthermore, the FD
datasets are less imbalanced than the PD datasets, with Emotions dataset, for example,
reaching a HMeanIR of 1.48. On the other hand, Church, Derisi, Exp, Gasch-1, Gasch-2,
Sequence and SPO are the most imbalanced datasets, with HMeanIR higher than 1000.
It is important to inform that the HMeanIR values presented in Tables 50 and 51 were
calculated considering the full dataset, i.e., with all sample from both training and testing
sets.

It is important to observe that all datasets presented in Tables 50 and 51 have labels
in a Tree taxonomy, since we are not dealing with Directed Acyclic Graphs taxonomies in
this work.

9.3.2 Classification Algorithm and Parameters

For the hierarchical classification task we used the Clus-HMC framework. Clus-HMC
was chosen because it is considered in the literature as the state-of-the-work hierarchical
classification framework (CERRI; BARROS; CARVALHO, 2015; WEHRMANN; CERRI;
BARROS, 2018; PEREIRA; GABRIEL; CERRI, 2019).

Clus-HMC is based on Predictive Cluster Trees (PCT) and generates a single
Decision Tree (DT) considering an entire class hierarchy. In Clus-HMC, DTs are seen as
a hierarchy of clusters where the root node contains all the training instances, while the
remaining are recursively divided into smaller groups as the hierarchy is traversed towards
the leaves. The classification is performed using a distance-based metric which calculates
how similar an instance is to some tree.

The parameter configurations used in the algorithm are reported in Table 52.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 203

Table 52 – Clus-HMC execution parameters.

Parameter Value
Type Tree
ConvertToRules No
HSeparator “/”
FTest [0.001, 0.005, 0.01, 0.05, 0.1, 0.125]
EnsembleMethod RForest
Iterations 10
VotingType Majority
EnsembleRandomDepth No
SplitSampling None
Heuristic Default
PruningMethod Default
CoveringMethod Standard

In these experiments, we have used the weighted Area Under the Precision-Recall
Curve (AUPRC) metric to measure the classification results. According to Davis & Goadrich
(2006), the Precision-Recall curve is more informative when there is a high-class imbalance
in the data. Furthermore, we have used the holdout technique, with an approximated
proportion of 70/30 between training and testing.

The results presented in Tables 53, 54, 55 and 56 are the average of ten executions
of Clus-HMC before and after applying the proposed resampling algorithms in the training
sets. Moreover, we have tested the values of three and five as the number of neighbors in
HSMOTE (represented by the k parameter in the algorithm).

9.3.3 Results

In the following we present Clus-HMC classification results with the AUPRC
measure for all the experimentally tested datasets. In all the results tables, the values in
bold represent the best results achieved among the original training set and the resampled
ones. We have divided the results into four tables, according to the type of hierarchical
classification problem:

• Full Depth with Single Paths (Table 53);

• Full Depth with Multiple Paths (Table 54);

• Partial Depth with Single Paths (Table 55); and

• Partial Depth with Multiple Paths (Table 56).

Table 53 presents the AUPRC results for the FD with Single Paths problems. One
can note that, since the datasets of this table are single labeled paths with full depth of

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 204

prediction concerning the tree hierarchy, the only possible label combination is to clone
the same label path of the selected sample. In this prediction context, from the five tested
datasets, the only one in which the classification model did not benefit from the resampling
was the actinopterygii.

Table 53 – AUPRC classification results for the datasets with FD and single paths before
and after applying HSMOTE in the training set.

Dataset Before After
k = 3 k = 5

actinopterygii 0.7570 0.7514 0.7484
diptera 0.6027 0.6039 0.6164
ImCLEF07D 0.7151 0.7333 0.7086
Hglass 0.8145 0.8779 0.8950
instrument 0.7656 0.7898 0.7750

Table 54 shows the AUPRC results for the FD with Multiple Paths problems. In
this classification scenario, as we are dealing with multi-labeled problems, there are three
possible label combinations: Ranking - “R”; Union - “U”; and Intersection - “I”. We may
note that, for this specific classification scenario, HSMOTE increased the results for all
four datasets. Moreover, we can also observe that all these best results were obtained with
five neighbors during the interpolation phase (k = 5).

Table 54 – AUPRC classification results for the datasets with FD and multiple paths
before and after applying HSMOTE in the training set.

Dataset Before
After

k = 3 k = 5
R U I R U I

Birds 0.4536 0.4562 0.4419 0.4329 0.4206 0.4480 0.4708
Enron 0.5693 0.5676 0.5713 0.5699 0.5865 0.5561 0.5709
CAL500 0.4942 0.4918 0.5038 0.4950 0.5259 0.4864 0.4955
Emotions 0.6843 0.6770 0.7013 0.6635 0.7040 0.6717 0.6777

Table 55 shows the AUPRC results for the PD with Single Paths problems. In this
classification context, there are two possible label combinations: Clone - “C” and Longest
Common Path - “LC”. As well as in the previous classification scenario, in this context all
datasets were benefited by HSMOTE during the training step. However, in this case, there
was no unanimity between the best results in terms of k value and Label Combination.

Finally, Table 56 presents the AUPRC results for the PD with Multiple Paths
problems. It can be noticed that, as it is also a multi-labeled problem, there are three
types of label combination: Ranking - “R”; Union - “U”; and Intersection - “I”. In this
scenario, the HSMOTE algorithm improved the classification results for all the eleven
datasets. Furthermore, with exception of the Union, the best results were obtained with
different values for the k parameter and different types of label combinations.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 205

Table 55 – AUPRC classification results for the datasets with PD and single paths before
and after applying HSMOTE in the training set.

Dataset Before
After

k = 3 k = 5
C LC C LC

Diatoms 0.2582 0.2720 0.2581 0.2552 0.2524
FMA-SL-LBP 0.3268 0.3306 0.3283 0.3269 0.3493
FMA-SL-SSD 0.2700 0.2663 0.2803 0.2692 0.2855

Table 56 – AUPRC classification results for the datasets with PD and multiple paths
before and after applying HSMOTE in the training set.

Dataset Before
After

k = 3 k = 5
R U I R U I

Cell-cycle 0.1307 0.1391 0.1406 0.1480 0.1513 0.1341 0.1491
Church 0.1222 0.1203 0.1186 0.1214 0.1203 0.1167 0.1226
Derisi 0.1309 0.1221 0.1331 0.1354 0.1284 0.1277 0.1341
Eisen 0.1483 0.1826 0.1599 0.1722 0.1616 0.1572 0.1697
Exp 0.1606 0.1797 0.1562 0.1723 0.1659 0.1478 0.1650
FMA-MFCC 0.2803 0.2802 0.2793 0.2809 0.2822 0.2798 0.2804
Gasch-1 0.1544 0.1731 0.1625 0.1669 0.1896 0.1581 0.1675
Gasch-2 0.1410 0.1470 0.1446 0.1615 0.1710 0.1509 0.1461
Phenotype 0.1256 0.1259 0.1215 0.1249 0.1290 0.1254 0.1299
Sequence 0.1683 0.1597 0.1378 0.1623 0.1625 0.1270 0.1731
SPO 0.1342 0.1276 0.1191 0.1434 0.1221 0.1155 0.1440

9.4 Analysis and Discussion

Observing the previously described results, four main questions are raised: (i)
Is HSMOTE able to decrease the HMeanIR of the datasets? (ii) Can the HSMOTE
resampling algorithm increase the classification results? (iii) Which datasets were the
most/least benefited by the HSMOTE algorithm in the classification? (iv) Which ones are
the best/worst label combination strategies and number of neighbors parameter?

Each one of these questions are answered in the following subsections.

The impact of HSMOTE in the HMeanIR

In order to investigate this task, in Table 57 we present the HMeanIR measures of
training sets used in the experiments before and after applying the HSMOTE technique.
It is important to cite that, as we have tested different parameters in the experiments
(such as k neighbors and label combinations), in order to calculate the “after” HMeanIR
value, we have considered the resampled training sets which obtained the best classification

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 206

results.

We can observe that HSMOTE was able to reduce the mean imbalance ratio in
eighteen out of the twenty-three datasets, with a percentage of decrement (represented as
%∆) between ≈14% and ≈43%. Thus, we can affirm that, in general, HSMOTE has a
positive impact in the HMeanIR reduction.

Table 57 – HMeanIR values before and after applying HSMOTE in the training datasets.

Depth of
Prediciton Labedness Datasets hmeanir-hsmote

Before After %∆

FD

Single Path

actinopterygii 20.28 11.67 -42.45
diptera 2.07 1.62 -21.49
ImCLEF07D 55.64 33.81 -39.23
Hglass 4.04 2.40 -40.64
instrument 10.99 6.89 -37.29

Multiple Path

Birds 6.21 4.04 -34.99
Enron 75.96 53.36 -29.75
CAL500 21.78 17.52 -19.57
Emotions 1.49 1.56 5.11

PD

Single Path
Diatoms 107.85 82.46 -23.54
FMA-SL-LBP 496.51 389.21 -21.61
FMA-SL-SSD 508.74 398.51 -21.67

Multiple Path

Cell-cycle 339.55 421.48 24.13
Church 768.00 865.21 12.66
Derisi 773.01 873.28 12.97
Eisen 582.73 445.75 -23.51
Exp 769.76 517.55 -32.77
FMA-MFCC 181.01 104.54 -42.25
Gasch-1 769.83 545.49 -29.14
Gasch-2 769.76 570.93 -25.83
Phenotype 430.64 367.83 -14.58
Sequence 765.21 535.44 -30.03
SPO 769.96 882.74 14.65

The impact of HSMOTE in the classification results

In order to investigate the impact of HSMOTE with statistical significance, we have
applied the Wilcoxon Statistical Test, stating as hypothesis that the weighted-AUPRC of
the classification is higher after using the HSMOTE resampling method in the training sets.
The test was applied for the classification results in the original training sets against the
best results achieved in each dataset with the HSMOTE algorithm. The p-values outputs
are shown in Table 58. Considering the threshold as 0.10, we can conclude that HSMOTE
is statically able to improve the classification results when applied in the training sets in
all hierarchical classification contexts, i.e., Single and Multiple Paths with FD or PD.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 207

Table 58 – P-values of the Wilcoxon signed-rank statistical test for the best results with
HSMOTE.

Depth of
Prediction labeldness p-value

FD Single Path 0.0398
Multiple Path 0.0544

PD Single Path 0.0328
Multiple Path 0.0017

The most and least benefited datasets

In order to accomplish this task, which leans on the datasets most/least benefited
by HSMOTE, we have presented in Table 59 the results before applying the resampling
and the best result achieved in each dataset after applying HSMOTE in the training set.
Moreover, the table also presents two points of view for this task: (i) the percentage of
change (represented by %∆) and (ii) the raw difference in the results.

Considering the first criteria, i.e., the percentage of change in the results, we have
Eisen (18.76%) and Gasch-1 (18.57%) as the datasets most benefited by the proposed
technique. Nevertheless, if we consider the difference between the raw results as the criteria,
Hglass dataset is by far the most benefited, with an increment of 0.0804 in the results.

Finally, looking at the least benefited datasets, independent of criteria, actinoptery-
gii was the worst one with a negative changing percentage of 0.74% and a decrement of
0.0056 in the raw value.

The best/worst label combination and number of neighbors strategies

To investigate this issue, i.e., define the best and worst label combination and
number of neighbors strategies, we have used the statistical evaluation protocol proposed
in Charte et al. (2015b). In this protocol, we calculate the ranking of the classification
results after the resampling using the different parameters (label combinations and number
of neighbors) based on the Friedman statistical test. In other words, the performances of
the different parameters are ranked (from first to last) and an average rank is calculated
for each dataset and type of problem. Tables 60, 61, 62 and 63 present the results of this
test for the FD with Single Path, FD with Multiple Paths, PD with Single Paths and PD
with Multiple Paths, respectively. In these tables, the strategies are grouped together and
“C-3”, for example, stands for the use of the Clone (“C”) label combination strategy in
conjunction with k = 3 for the neighborhood selection parameter.

It is important to observe that in the FD with SP scenario, we have to clone the
label path of the selected sample and, thus, there is only the k parameter as variant, which
in our experiments was tested as 3 or 5. In this context, the statistical test presented in
Table 60 indicated that the use of 3 neighbors (represented by C-3) usually generates

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 208

Table 59 – The best classification results before and after applying HSMOTE in each
training set and its variances against the original results.

Depth of
Prediciton Labedness Datasets AUPRC

Before After %∆ Diff.

FD

Single Paths

actinopterygii 0.7570 0.7514 -0.74 -0.0056
diptera 0.6027 0.6164 2.21 0.0136
ImCLEF07D 0.7151 0.7333 2.48 0.0182
Hglass 0.8145 0.8950 8.99 0.0804
instrument 0.7656 0.7898 3.06 0.0241

Multiple Paths

Birds 0.4536 0.4708 3.65 0.0172
Enron 0.5693 0.5865 2.93 0.0172
CAL500 0.4942 0.5259 6.02 0.0317
Emotions 0.6843 0.7040 2.80 0.0197

PD

Single Paths
Diatoms 0.2582 0.2720 5.05 0.0137
FMA-SL-LBP 0.3268 0.3493 6.45 0.0225
FMA-SL-SSD 0.2700 0.2855 5.45 0.0156

Multiple Paths

Cell-cycle 0.1307 0.1513 13.59 0.0206
Church 0.1222 0.1226 0.37 0.0005
Derisi 0.1309 0.1354 3.32 0.0045
Eisen 0.1483 0.1826 18.76 0.0342
Exp 0.1606 0.1797 10.65 0.0191
FMA-MFCC 0.2803 0.2822 0.67 0.0019
Gasch-1 0.1544 0.1896 18.57 0.0352
Gasch-2 0.1410 0.1710 17.53 0.0300
Phenotype 0.1256 0.1299 3.33 0.0043
Sequence 0.1683 0.1731 2.76 0.0048
SPO 0.1342 0.1440 6.78 0.0098

a better classification result, since it got an average ranking of 1.4 considering all five
datasets.

Table 60 – Ranking of the results for the strategies used in the FD with SP datasets.

Dataset Strategy Ranking
C-3 C-5

actinopterygii 1 2
diptera 2 1
ImCLEF07D 1 2
Hglass 2 1
instrument 1 2
Avg. 1.4 1.6

In the FD with MP datasets, we may note through the average rankings presented
in Table 61 that, in general, the best classification results were obtained with the Ranking
label combination when using 5 neighbors (represented by R-5), since it got an average
ranking of 2.25.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 209

Table 61 – Ranking of the results for the strategies used in the FD with MP datasets.

Dataset Strategy Ranking
R-3 U-3 I-3 R-5 U-5 I-5

Birds 2 4 5 6 3 1
Enron 5 2 4 1 6 3
CAL500 5 2 4 1 6 3
Emotions 4 2 6 1 5 3
Avg. 4 2.5 4.75 2.25 5 2.5

Furthermore, looking at Table 62, we may note that, with an average raking of 2,
the best strategy for the PD with SP datasets was using the Longest Common Path as
label combination with 5 neighbors (represented by LC-5).

Table 62 – Ranking of the results for the strategies used in the PD with SP datasets.

Dataset Strategy Ranking
C-3 LC-3 C-3 LC-5

Diatoms 1 2 3 4
FMA-SL-LBP 2 3 4 1
FMA-SL-SSD 4 2 3 1
Avg. 2.33 2.33 3.33 2

Considering the PD with MP datasets, we may observe in Table 63 that two out of
the six different strategies got the same average ranking value (2.36): R-5 and I-5. Thus,
the ranking and intersection strategies generated the best classification results for this
kind of hierarchical classification problem.

Table 63 – Ranking of the results for the strategies used in the PD with MP datasets.

Dataset Strategy Ranking
R-3 U-3 I-3 R-5 U-5 I-5

Cell-cycle 5 4 3 1 6 2
Church 4 5 2 3 6 1
Derisi 6 3 1 4 5 2
Eisen 1 5 2 4 6 3
Exp 1 5 2 3 6 4
FMA-MFCC 4 6 2 1 5 3
Gasch-1 2 5 4 1 6 3
Gasch-2 4 6 2 1 3 5
Phenotype 3 6 5 2 4 1
Sequence 4 5 3 2 6 1
SPO 3 5 2 4 6 1
Avg. 3.36 5 2.55 2.36 5.36 2.36

Finally, as a last analysis in this context, we may observe that among all datasets
and strategies, with the exception of the FD with SP, the best classification results were
obtained with 5 neighbors in the neighborhood selection phase.

Chapter 9. Global Approaches: The Hierarchical Synthetic Oversampling Algorithm 210

9.5 Final Considerations

Usually, imbalanced class distribution in datasets imposes a difficult task for many
classification algorithms. Resampling the training set towards a more balanced class
distribution is one of the most common and effective ways to address this issue. Although
this issue has been widely studied in the literature, the authors usually focus on flat
classification contexts, i.e., binary/multi-class and multi-label scenarios, ignoring problems
where there is a hierarchical relationship between the classes. As far as we known, no
works in the literature have investigated the proposal of resampling algorithms capable
of pre-processing a hierarchical classification ataset as a whole. Considering the lack of
studies in the literature, in this work we proposed the Hierarchical Synthetic Oversampling
Technique (HSMOTE).

The HSMOTE technique is an adaptation of the classic SMOTE and MLSMOTE
oversampling algorithms tailored to deal with hierarchical classification problems. The
proposed resampling algorithms is composed of eight functions, in which the different
types of hierarchical classification problems are handled based on given parameters, such
as depth of the prediction in the label tree and labeldness of samples paths (single and
multiple paths). In order to find the minority sets of paths, we use the HMeanIR measure,
pre-processing the samples which have an IRLP above the HMeanIR. Then, depending
on the dataset characteristics, the minority label paths are pre-processed in a bottom-up
approach (in PD problems) or a leaf-node only way (in FD problems).

In order to create the synthetic set of label paths, we have proposed different
label combinations possibilities, according to the dataset characteristics: (i) FD with SP -
Cloning; (ii) FD with MP - Ranking, Union or Intersection; (iii) PD with SP - Cloning or
Longest Common Path; (iv) PD with MP - Ranking, Union or Intersection, considering
the match of sub-paths in the combinations.

Experimental results with twenty three datasets with different characteristics, such
as partial/full depth prediction and single/multiple paths, showed that the proposed
HSMOTE resampling algorithm can statically improve the classification results, in relation
to the weighted-AUPRC, in all hierarchical classification scenarios.

In order to experimentally test and compare the contributions of this Chapter and
the previously ones, in the next Chapter we present a main case study concerning an
important hierarchical medical application: Identification of pneumonia pathogens, such
as the SARS-COV-2, in x-ray chest images.

211

C
ha

pt
er

10
A Case Study of Imbalanceness
in COVID-19 Identification in
Chest X-ray Images

The most recent novel coronavirus, officially named Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), causes the Coronavirus Disease 2019 (COVID-19)
(ORGANIZATION, 2020). The COVID-19 can cause illness to the respiratory system,
fever and cough and in some extreme cases can lead to severe pneumonia (GUAN et al.,
2020). Pneumonia is an infection that causes inflammation primarily in the lungs’ air sacs
responsible for the oxygen exchange (GUAN et al., 2020).

Pneumonia can be caused by other pathogens besides SARS-CoV-2, such as
bacterias, fungi and other viruses. Several characteristics can influence its severity: weak
or impaired immune system, chronic diseases like asthma or bronchitis, elderly people
and smoking. The treatment depends on the organism responsible for the infection, but
usually requires antibiotics, cough medicine, fever reducer and pain reliever. Depending
on the symptoms, the patient may need to be hospitalized; in severe cases the patient
must be admitted into an intensive care unit (ICU) to use a mechanical ventilator to help
breathing (MUSHER; THORNER, 2014).

The COVID-19 pandemic can be considered severe due to its high transmissibility
and seriousness (TOLKSDORF et al., 2020). The impact in the healthcare system is also
high due to the amount of people that needs ICU admission and mechanical ventilators for
long periods (GRASSELLI; PESENTI; CECCONI, 2020). In this scenario, early diagnosis
is crucial for correct treatment to possibly reduce the stress in the healthcare system. In
this context, artificial intelligence (AI) based solutions can provide a cheap and accurate
diagnosis for COVID-19 and other types of pneumonia.

The standard image diagnosis tests for pneumonia are chest X-ray (CXR) and
computed tomography (CT) scan. The CXR is the primary radiographic exam to evaluate
pneumonia, but it not as precise as the CT scan and has higher misdiagnosis rates.
Nevertheless, the CXR is still useful because it is cheaper, faster, expose the patient to
less radiation and is more widespread than CT scan (SELF et al., 2013). The task of
pneumonia identification is not easy, the professional reviewing the CXR needs to look
for white patches in the lungs, the white patches are the lungs’ air sacs filled with pus or
water. However, these white patches can also be confused with tuberculosis or bronchitis,
for example.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 212

In this Chapter, we aim to explore the identification of different types of pneumonia
caused by multiple pathogens using only CXR images. Despite the CT scan being the gold
standard for the pneumonia diagnosis, we focused only on CXR images due to its reduced
cost, fast result and its general availability, since the CT scan machines are still scarse and
costly. Specifically, we considered pneumonia caused by viruses (COVID-19, SARS, MERS
and Varicella), bacteria (Streptococcus) and fungi (Pneumocystis). Moreover, because of
the recent pandemic which is ravaging the world, the main focus of this Case Study is to
identify the pneumonia caused by the COVID-19 among the pneumonia caused by other
pathogens and healthy lungs, and our main goal is to reach the best possible identification
rate for the COVID-19. To support that, we have taken into account two perspectives in
the results’ evaluation: first, we considered all classes mentioned above and summarized
the results using a macro-avg f-score; second, we considered only the COVID-19 class and
summarized the results using f-score.

In order to achieve our objectives, we composed a database, named RYDLS-20,
using CXR images from the open source GitHub repository shared by Dr. Joseph Cohen
(COHEN; MORRISON; DAO, 2020), images from the Radiopedia encyclopedia13 and
healthy CXR images from the NIH dataset, also known as Chest X-ray14 (WANG et al.,
2017). The distribution of the classes reflects a real world scenario in which healthy cases
are the majority, followed by viral pneumonia, bacterial and fungi pneumonia being the
least frequent, in this order. The RYDLS-20 database, which is presented in Section 10.8.1,
was made freely available also as a contribution of this Chapter.

We address the problem as a hierarchical classification problem, since we can
structure the different kinds of pneumonia based on the kind of pathogens that caused it.
Furthermore, we are dealing with a naturally imbalanced problem, since some types of
pneumonia are much more likely than others, and even pneumonia itself is less frequent
than healthy cases. Thus, the use of prediction schemas that does not take into account
this imbalance issue usually leads to bad performances. Besides, the main focus of this task
is to identify the COVID-19 pneumonia among pneumonia caused by other pathogens, so
we are aiming to increase the prediction scores for a class belonging to the set of minority
labels. In this context, the use of resampling algorithms may increase the identification
rate for the main target label of the task (COVID-19).

By analyzing CXR images, we could observe that texture is one of the main visual
attributes present in those images. So, we decided to extract features from CXR images by
exploring some popular texture descriptors, and also a pre-trained Convolutional Neural
Networks (CNN) model, not to neglect the power of representation learning approaches.
Thus, for the flat classification, using the extracted features, we applied some well-known
multi-class classification algorithms. In parallel, we also applied a hierarchical classification
13 https://radiopaedia.org/articles/pneumonia

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 213

approach on the same set of extracted features. It is worth mentioning that we also tried
a pure deep learning (end-to-end CNN) approach, however the results were very bad,
probably due to the small sample size and the class imbalance.

It is worth mentioning that some of the contributions from this Chapter were
published in the Computer Methods and Programs in Biomedicine Journal (PEREIRA et
al., 2020).

10.1 COVID-19 Pandemic and the Pneumonia Disease

The COVID-19 outbreak was first reported in Wuhan, China at the end of 2019,
it spread quickly around the World in a matter of months. The evidence points to an
exponential growth in the number of cases, as of right now there are more than 2 million
confirmed cases worldwide (ORGANIZATION, 2020).

The epidemiological characteristics of COVID-19 are still under heavy investigation.
The evidence so far shows that approximately 80% of patients are in mild conditions
(some are even asymptomatic) and 20% are in serious or critical conditions. Moreover,
around 10% need to be admitted into an ICU unit to use mechanical ventilators. The
fatality rate seems to be 2%, but some specialists estimated it to be lower around 0.5%
(SURVEILLANCES, 2020; REMUZZI; REMUZZI, 2020). The ICU admission is the main
concern since there are a limited number of units available.

One of the main complications caused by COVID-19 is pneumonia. Pneumonia is
an infection of the portion of the lung responsible for the gas transfer (the alveoli, alveolar
ducts and respiratory bronchioles), called pulmonary parenchyma, that can be caused by
different organisms, such as viruses, bacteria or fungi. Pneumonia cannot be classified as a
single disease, but rather as a group of different infections with different characteristics
(MACKENZIE, 2016).

Given that pneumonia is considered a group of diseases, the diagnosis for each one
is also different. However, radiologic images, such as CXR and CT scan, are commonly
used as one of the first exams to diagnose pneumonia of any kind. This happens because
all kinds of pneumonia causes inflammation in the lungs, and that is captured by the
radiologic images (O’GRADY et al., 2014).

Both CXR and CT scan are radiologic images that can be used aiming at the
identification of pneumonia inflammation. CT scan is considered the gold standard over
CXR since it is more precise. However, it has some drawbacks: it is more expensive, slower
to be obtained and to an extent still rare (SELF et al., 2013). Some CT scan machines
can cost up to millions of dollars, and X-ray machines cost roughly ten times less than
that. So, there are still reasons to use CXR images to diagnosis pneumonia.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 214

Following that, pneumonia detection in CXR images can be difficult even for
experienced radiologists. The inflammation appear as white patches in the lungs, they can
be vague, overlapped with other diseases (asthma for example) and can even be confused
with benign patches. In this context, artificial intelligence solutions can be very useful to
aid the diagnosis.

10.2 Hierarchical Structure of the Problem

The problem of identifying types of pneumonia based on features extracted from
CXR images can be naturally casted as multi-class classification problem, since we have
one label associated to each sample. However, if we look at this same problem from another
perspective, we may conclude that there is a hierarchy between the pathogens that causes
pneumonia.

Figure 62 shows how the types of pneumonia caused by different micro-organisms can
be hierarchically organized. We may observe that there is a total of fourteen labels, in which
seven are leaf nodes, i.e., which are the actual type of pneumonia. There are pneumonia
caused by micro-organisms Acelullar/Virus and Cellular. By its turn, the Acelullar/Virus
pneumonia can be subdivided into Coronavirus and Varicella, and the Celullar into
Bacteria/Streptococcus and Fungus/Pneumocystis. Furthermore, the Coronavirus can
be further subcategorized into COVID-19, SARS and MERS. This hierarchy is based on
the structure developed in 10th revision of the International Statistical Classification of
Diseases and Related Health Problems (ICD-10) (ASSOCIATION, 2019).

Figure 62 – The hierarchical class structure of pneumonia caused by micro-organisms.

Furthermore, following the 3-tuple definitions proposed in Silla Jr & Freitas (2011),
we can define this hierarchical problem as (T, SPL, FD), i.e., the problem is proposed over

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 215

a Tree (T) hierarchy with Single Paths Labels (SPL) and Full Depth prediction (FD).

10.3 Related Works

In this section, we describe some remarkable works presented in the literature which
address one of the following topics, and that have directly influenced the development of
this work: texture descriptors in medical images, pneumonia detection in CXR images, and
COVID-19 pneumonia detection on CXR or CT scan images using artificial intelligence.
The works will be described predominantly in chronological order, and we try to highlight
the main facts related to each of them, such as: the feature extraction step, whether it
is performed using handcrafted features or automated feature learning, the classification
model, the database used in the experiments, the type of image used in the experiments
(CXR or CT), and the types of pneumonia investigated (COVID-19 among others).

The first work we are going to describe was presented by Nanni, Lumini & Brahnam
(2010) in 2010. In that work, the authors compared a series of handcrafted texture
descriptors derived from the Local Binary Pattern (LBP), considering their use specifically
in medical applications. The variants of LBP evaluated were Local Ternary Pattern (LTP),
Eliptical Binary Pattern (EBP), and Elongated Quinary Pattern (EQP). These descriptors
were evaluated on three different medical applications: i) pain expression detection, starting
from facial images of the COPE database (BRAHNAM; NANNI; SEXTON, 2007), taken
from 26 neonates categorized into five different classes (i.e. rest, cry, air stimulus, friction,
and pain); ii) Cell phenotype image classification using the 2D–Hela dataset (CHEBIRA
et al., 2007), a dataset composed of 862 single-cell images distributed into ten different
classes (i.e. Actin Filaments, Endsome, Endoplasmic Reticulum, Golgi Giantin, Golgi
GPP, Lysosome, Microtubules, Mitochondria, Nucleolus, and Nucleus); and iii) Pap smear
(Papanikolaou test) aiming to diagnose cervical cancer. They used a dataset composed of
917 images collected at the Herlev University Hospital (JANTZEN et al., 2005) using digital
camera and microscope. The images were labeled according to seven different classes, being
three of them related to normal states, and four of them related to abnormal states. After
a comprehensive set of experiments using the Support Vector Machine (SVM) classifier,
the authors verified that the EQP descriptor, or ensembles created using variations of EQP
performed better for all the addressed tasks. For this reason, we decided to investigate the
performance of EQP in the experiments accomplished in this work.

Still in 2010, Parveen & Sathik (2011) addressed pneumonia detection in CXR
images. The authors suggested that the feature extraction could be properly made, at that
time, by using Discrete Wavelet Transform (DWT), Wavelet Frame Transform (WFT),
or Wavelet Packet Transform (WPT), followed by the use of fuzzy c-means classification
learning algorithm. Looking backward, we can easily note that the feature extraction was

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 216

still strongly coupled up to the handcrafted perspective. However, the efforts made by
the authors aiming at find useful descriptors to properly capture the information about
different kinds of lung infections is worth mentioning.

Scalco & Rizzo (2017) performed texture analysis of medical images for radiother-
apy applications. In this sense, the authors applied texture analysis as a mathematical
technique to describe the grey-level patterns of an image aiming at characterize tumour
heterogeneity. They also carried out a review of the literature on texture analysis on the
context of radiotherapy, particularly focusing on tumour and tissue response to radiations.
In conclusion, the authors point out that texture analysis may help to improve the charac-
terization of intratumour heterogeneity, favouring the prediction of the clinical outcome.
Some important open issues concerning the interpretation of radiological images have been
raised in that work. Among these issues, we can highlight the lack of a proper biological
interpretation of the models that could predict the tissue response to radiation.

Although the COVID-19 outbreak is a quite recent event, it has been attracting a
lot of attention from the society and also from the image analysis research community in
particular, in view of the urgency of this matter. In this sense, Zhou et al. (2020) have just
published a study describing a deep learning model for differentiating novel coronavirus
pneumonia (NCP) and influenza pneumonia in chest computed tomography (CT) images.
The work is one of the pioneering works that has brought to light some scientific evidences
concerning the challenging pandemic which has been dramatically affecting the world. By
this way, it can be taken as an important reference, mainly if we take into account that the
study was developed by scientists from the country from where the outbreak has emerged.

The first point to be highlighted regarding that work is that, differently from the
study presented in this work, Zhou et al. (2020) adopted CT images in their study. It
is particularly important to emphasize this difference, because in one hand, CT images
are much better than CXR images due to its better capacity to show details from the
pulmonary infection. On the other hand, CXR images are much cheaper and can be
obtained in much less time, as already pointed in the introduction of this Chapter.

In the experimental protocol, Zhou et al. (2020) composed the training set using CT
images scanned from 35 confirmed NCP patients, enrolled with 1,138 suspected patients.
Among these images, 361 images from confirmed viral pneumonia patients were included,
being 156 of them influenza pneumonia patients. In summary, the study showed that
most of the NCP lesions (96.6%) are larger than 1 cm, and for 76.6% of the lesions the
intensity was below -500 Hu14, showing that these lesions have less consolidation than
those provoked by influenza, whose nodes size ranges from 5 to 10 mm. Regarding the
classification results, the deep model created obtained a rate above 0.93 for distinguishing
between NCP and influenza considering the AUROC metric.
14 Hounsfield unit, more details can be found in https://en.wikipedia.org/wiki/Hounsfield_scale

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 217

The authors also handle the transferability problem, aiming to avoid that the
well-trained deep learning model performs poorly on data from unseen sources. In this
way, Zhou et al. (2020) proposed a novel training schema, which they call Trinary schema.
By this way, the model is supposed to better learn device independent features. The
Trinary schema performed better than the Plain schema with specialists regarding the
device-independence and consistence, achieving a f-score of 0.847, while the Plain schema
obtained 0.774, specialists 0.785, and residents 0.644.

Li et al. (2020) also addressed COVID-19 identification on chest CT images using
artificial intelligence techniques. For this purpose, the authors used a database composed
of CT images collected from COVID-19 patients, other viral pneumonia patients, and also
from patients not diagnosed with pneumonia. The images were provided by six Chinese
hospitals, and the created database is composed of 2,969 images on the training set, being
400 from COVID-19 patients, 1,396 from other viral pneumonia patients, and 1,173 from
non-pneumonia patients. In addition, it was created an independent test set with images
from 68 COVID-19 patients, 155 other viral pneumonia patients, and 130 non-pneumonia
patients, totaling 353 CT images.

A 3D deep learning model, which the authors call COVNet, was created using
the ResNet-50 (HE et al., 2016) as a backbone. The model is fed by a series of CT slices
and generates a classification prediction for the CT image considering the following three
classes: COVID-19, other viral pneumonia, and non-pneumonia. After experimentation,
the authors reported an AUROC value of 0.96 obtained for COVID-19, and 0.95 for other
viral pneumonia.

Narin, Kaya & Pamuk (2020) evaluated COVID-19 detection on CXR images using
three different deep neural network models (i.e. ResNet50, Inception-V3, and Inception-
ResNetV2). The dataset was composed using images taken from the open source GitHub
repository shared by Dr. Joseph Cohen (COHEN; MORRISON; DAO, 2020), in which we
can find CXR radiographs of individuals with the following kinds of pneumonia: COVID-19,
Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS).
In addition, fifty normal CXR images were selected from Kaggle repository called “Chest
X-Ray Images (Pneumonia)”15. The results were obtained using 5-fold cross validation,
and they are as follows: 98% of accuracy using the ResNet50 model, 97% of accuracy using
the Inception-V3 model, and 87% of accuracy for Inception-ResNetV2.

Gozes et al. (2020) addressed COVID-19 detection and patient monitoring using
deep learning models on CT images. By patient monitoring, the authors mean the evolution
of the disease in each patient over time using a 3D volume, generating what they call
“Corona score”. The authors claim that the work is the first one developed to detect,
characterize and track the progression of COVID-19. The study was developed using
15 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 218

images taken from 157 patients, from China and USA. The authors make use of robust
2D and 3D deep learning models, they also modified and adapted existing AI models,
combining the results with clinical understanding. The classification results, aiming at
differentiate coronavirus images vs. non-coronavirus images obtained 0.996 of AUROC.
Gozes et al. also claim that they successfully performed quantification and tracking of the
disease burden.

Wang & Wong (2020) created the COVID-Net, an open source deep neural network
specially created aiming to detect COVID-19 on chest radiography images. To accomplish
that, the authors curated the COVIDx, a dataset created exclusively to support the
COVID-Net experimentation. The dataset is composed of 16,756 chest radiography images
from 13,645 different patients taken from two distinct repositories.

The initial network design prototype was created based on human-driven design
principles and best practices, combined with machine-driven design exploration to produce
the network architecture. The authors claim that the developed model obtained a good trade
off between accuracy and computational complexity. In terms of recognition performance,
they obtained 92.4% of accuracy for the COVIDx test dataset as a whole. They also
reported the following sensitivity rate for each kind of infection/non-infection image: 95%
for “normal” patients, 91% for non-COVID-19 infection, and 80% for COVID-19 infection.
More details regarding the results, the created model, and the dataset can be found in
Wang & Wong (2020).

Khan, Shah & Bhat (2020) designed the CoroNet, a Convolutional Neural Network
(CNN) for detection of COVID-19 from CXR images. The CNN model is based in Xception
(Extreme Inception) and contains 71 layers trained on the ImageNet dataset. The authors
also developed a balanced dataset to support and test their neural network configuration,
which is composed of 310 normal, 330 bacterial, 327 viral and 284 COVID-19 resized CXR
images. According to the authors, the proposed CoroNet achieved an average accuracy
of 0.87 and a f-score of 0.93 for the COVID-19 identification. We can highlight the
following main differences between their work and ours: (i) Their dataset do not consider
an unbalanced realistic scenario, thus they do not use resampling techniques; (ii) Their
dataset have only four classes and it is not publicly available for download; (iii) They did
not use both handcraft and representation learning features. (iv) They did not investigate
a hierarchical classification approach.

Ozturk et al. (2020) proposed a deep model for early detection of COVID-19 cases
using X-ray images. The author accomplished the classification in both binary (COVID vs.
No-findings) and multi-class (COVID vs. No-Findings vs. Pneumonia) modes. The created
model achieved an accuracy of 98.08% for binary classes and 87.02% for multi-class cases.
The model setup was built with the DarkNet and named as YOLO classifier, a object
detection system. The authors made the codes available and they claim that they can be

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 219

used to create a tool to assist radiologists in validating their initial screening.

It is important to mention that as the identification of COVID-19 in CXR images
is a hot topic nowadays due to the growing pandemic, it is unfeasible to represent the real
state-of-the-art for this task, since there are new works emerging every day. However, we
may observe that most of these works are aiming to investigate configurations for Deep
Neural Networks, which is already somehow different from our proposal.

Table 64 presents a summary of the studies described in this section, focusing
on their most important characteristics. The main purpose of this table is to provide a
practical way to find some important information regarding those works at a glance.

10.4 General Classification Schema

As aforementioned in this Chapter, we focus on exploring data from CXR images
considering different feature extraction methods to classify the different types of pneumonia
and, consequently, identify COVID-19 among pneumonias caused by other micro-organisms.
Thus, we chose specific approaches that could lead us to obtain the best benefit in terms
of the classification performance for this specific class.

The first step towards the analysis of the resampling effects into this specific
hierarchical classification problem is to define the baseline classification schema. For this
purpose, we employed the flat resampling algorithms in the dataset (Chapter 5). Moreover,
we have tested two of the hierarchical resampling approaches proposed in this thesis:
(i) Resampling with Local Classifiers Approach (Chapter 7); (ii) Global Hierarchical
Resampling Algorithms (Chapters 8 and 9). The only approach that cannot be used in
this classification problem is the label path conversion (Chapter 6), since it can only be
applied in hierarchical problems with multiple paths prediction.

To better understand the general idea, Figure 63 shows a general overview of the
classification schema, considering: The feature extraction process (Phase 1), the Early
Fusion technique (Phase 2), the data resampling (Phase 3), the classification (Phase 4)
and Late Fusion technique (Phase 5). It should be noted the reasoning behind this naming
schema is as follows: Phases 1 and 2 are the same though all configurations, while Phases 3,
4 and 5 may change according to the resampling approach (that is why they are presented
in dashed lines in the Figure 63. In the next Sections, Phases 3 and 4 are described in
details for each specific resampling approach.

It is important to inform that we did not performed a pre-processing step aiming
to standardize the images before the feature extraction. Thus, we are dealing with CXR
images with different sizes. More information concerning the dataset are described in
Section 10.8.1. In the following subsections we describe in details Phases 1, 2 and 5

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 220

Table 64 – Summary of the works described in this section.

Reference Image Type Database/applications Computational/ML∗

techniques

Nanni, Lumini & Brahnam (2010)

Neonatal facial,
fluorescence
microscope
and smear
cells images

Three databases:
Neonatal facial images,
2D-HeLa dataset and
Pap smear datasets

LBP, LPQ, EQP,
LTP, EBP, ILBP
CSLBP and SVM

Parveen & Sathik (2011) CXR Pneumonia detection
DWT, WFT, WPT
and fuzzy C-means

clustering

Scalco & Rizzo (2017) CT, PET
and MR

Tumour heterogeneity
characterization

Grey-level
histogram, GLCM,
NGTDM, GLRLM

and GLSZM

Zhou et al. (2020) CT

NCP/influenza
differentiation images
from 1,138 suspected
patients, being 361
viral pneumonia,

35 confirmed NCP and
156 confirmed influenza

YOLOv3,
VGGNet

and AlexNet

Li et al. (2020) CT

2,969 images obtained
in Chinese hospitals
400 NCP images

1,396 other viral pneumonia
and 1,173 non-pneumonia

COVNet
deep learning
model based on

ResNet-50

Narin, Kaya & Pamuk (2020) CXR

Non-pneumonia and
pneumonia images including
SARS, MERS and NCP

Dr. Joseph Cohen
github repository

ResNet50,
Inception-V3 and
InceptionResNetV2

Gozes et al. (2020) CT

NCP detection
and analysis

using images taken
from 157 patients

2D and 3D deep
learning models,

and other
AI models

Wang & Wong (2020) CXR

NCP detection
using 16,756 images

taken from
13,645 patients

COVID-Net
a deep neural

network created
to detect NCP

Khan, Shah & Bhat (2020) CXR
NCP detection

using 1,251 images
from four classes

CoroNet
a CNN created
to detect NCP

Ozturk et al. (2020) CXR
NCP detection using
500 pneumonia images

and 500 non-pneumonia images

DarkNet
and YOLO

∗ Machine Learning

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 221

Inception
v3

BSIF

EQP

LBP

LDN

LPQ

LETRIST

OBIF

LDN & EQP
LBP & LPQEQP &

LETRIST LDN & EQP
& OBIF

Early
Fusion

Chest X-Rays

Possible Feature
Combinations

Phase 1 Phase 2

R
es

am
pl

in
g

Phase 4

C
la

ss
ifi

ca
tio

n

Phase 3

La
te

 F
us

io
n

Phase 5

Figure 63 – A general classification schema for the COVID-19 identification in CXR images.
While the blue lines represents the early fusion connections, the pink lines are
used for the late fusion and results without fusion.

presented in Figure 63.

10.4.1 Feature Extraction (Phase 1)

By analyzing the CXR images, we can observe that texture is probably the main
visual attribute that we can find in these images. Thus, we have explored some of the most
well-successful texture descriptors described in the literature, including one automated
feature learning approach.

In this section, we briefly describe the texture descriptors used in this work. The
texture descriptors selected were chosen either because they presented good performance
in general applications, or specifically in medical image analysis related applications.

Local Binary Pattern (LBP)

Presented by Ojala, Pietikäinen & Harwood (1996), LBP is a powerful texture
descriptor, successfully experimented in several different applications which involve texture
classification. LBP is found by calculating a binary pattern for the local neighborhood for
each pixel of the image. The pattern has one position to each neighbor i involved in the

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 222

calculation, and it is calculated by subtracting the values of gray intensity of the central
pixel (gc) from the gray intensity of each neighbor (gi) to get a distance d, such a way that
if d is greater or equal to zero, that position in the binary pattern assumes the value 1,
otherwise it assumes 0, like shown in equation 10.1.

d =

1, if gi − gc ≥ 0

0, otherwise.
(10.1)

The final texture descriptor for the image corresponds to a histogram which
counts the occurrences of the binary patterns along the image. The number of possible
binary patterns varies according to the setup previously defined to get pixels from the
neighborhood, considering the neighborhood topology and number of neighbors for example.
Regardless these details, this texture descriptor has been presenting impressive results
on several different application domains for more than one decade (BERTOLINI et al.,
2013; COSTA et al., 2012; FILHO et al., 2014). The details about how the patterns can be
defined, and how we can set the parameters of the neighborhood can be found in (OJALA;
PIETIKÄINEN; HARWOOD, 1996).

Elongated Quinary Patterns (EQP)

Elongated Quinary Pattern (EQP) (NANNI; LUMINI; BRAHNAM, 2010) is
basically a variation of LBP and LTP descriptors. The great difference from EQP to
LBP and LTP descriptors is that the EQP uses a quinary pattern, not binary or ternary
encoding, like LBP and LTP respectively. From a given grayscale image, let us denote x as
the central pixel using a given topology, and u as the gray value of the neighboring pixels.
In the EQP descriptor, we can assume five different values, instead of two or three, as
proposed in the LBP and LTP respectively. Thus, in quinary encoding the difference d is
encoded using five values according to two thresholds τ1 and τ2, as described in Equation
10.2.

d =



2, u ≥ x + τ

1, x + τ1 ≤ u < x + τ2

0, x− τ1 ≥ u < x + τ1

−1, x− τ2 ≤ u < x− τ1

−2, otherwise.

(10.2)

The creators of EQP evaluated different topology patterns for the neighborhood
of the central pixel, instead of considering only the circular neighborhood, as originally
done for LBP and LTP. The elliptical topology showed better results. Moreover, the EQP

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 223

proved to be a robust descriptor for different medical image problems, presenting results
superior to other descriptors.

Local Directional Number (LDN)

LDN was originally experimented for the assessment of the face recognition task
(RIVERA; CASTILLO; CHAE, 2013). This technique tries to capture the texture structure,
by encoding the information about the texture direction in a compact way. In this sense,
this descriptor is supposed to be more discriminative than other methods. The directional
information is obtained by using a compass mask and the prominent direction indices are
used to encode this information. Sign-which is also used to distinguish between similar
pattern with different intensity transitions. More details about this descriptor can be find
in (RIVERA; CASTILLO; CHAE, 2013).

Locally Encoded Transform Feature Histogram (LETRIST)

The LETRIST descriptor, proposed by Song et al. (2018) aims to present a simple
and efficient texture descriptor. The authors describe some important characteristics that
all texture descriptor must have: Discriminative, Invariant, Intense, Low-dimensional and
Efficient. Basically, the histogram which corresponds to the LETRIST descriptor is based
on the across feature and scale space of the image. The authors describe three main
steps for generating the representation histogram. In the first step, from multiple input
image scales and using Directional Gaussian Derivative Filters, extremum responses are
computed. These extremum responses are used to feed linear and non-linear operators to
quantitatively construct a set of transform features. This characterizes structures of local
textures and their correlations with the input image. In the second step, the quantization
is performed using various levels or binary threshold schemas. This step aims at greater
robustness in terms of changes in lighting and rotation. Finally, in the third step, a joint
cross-scale coding schema is carried out. In this way, it is possible to add discrete texture
codes in a compact histogram representation. The authors describe LETRIST as a robust
descriptor for different texture classification tasks (SONG et al., 2018). We can also point
out that it is robust to Gaussian noise, changes in scale, rotation and lighting. In this way,
LETRIST becomes a very interesting texture descriptor.

Binarized Statistical Image Features (BSIF)

Proposed by Kannala & Rahtu (2012), the BSIF texture descriptor was initially
proposed for texture classification particularly on face recognition tasks. The BSIF de-
scriptor is based both on LBP and LPQ descriptors. However, the authors emphasize that
BSIF uses a schema based on statistics of natural images and not on heuristics, such as
the descriptors LBP and LPQ. That is, from a small set of samples of natural images, the

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 224

descriptor learns a fixed set of filters using Independent Component Analysis (ICA). For
the generation of BSIF descriptors, the value of each pixel from an input image M ×N is
transformed into a binary string. In this work, the feature vectors generated using BSIF
have 56 dimensions. An interesting study evaluating the robustness of 27 descriptors in
palmprint recognition (IDRSSI; RUICHEK, 2020) describes that the BSIF descriptor was
among the Top-3 best descriptors evaluated.

Local Phase Quantization (LPQ)

Proposed by Ojansivu & Heikkilä (2008), LPQ was originally proposed aiming to
provide a good texture description for noised images, affected by blur. However, surprisingly
LPQ has shown to be quite effective also to describe the textural content even for images
not affected by blur. This descriptor is constructed by taking the coefficients that reveal
the blur intensity of the image. It is done by using the phase of 2D Short Term Fourier
Transform (STFT) over a window with a previously defined size, which is slid over the
image. The mathematical details regarding the LPQ can be obtained in Ojansivu &
Heikkilä (2008).

Oriented Basic Image Features (OBIF)

The BIF descriptor was originally designed for texture classification (CROSIER;
GRIFFIN, 2010), but it also performs well in other tasks (NEWELL; GRIFFIN, 2014).
Gattal et al. (2018) proposed an extension of the BIF descriptor. The main idea is to
categorize each location in the image into one of seven possible local symmetry classes.
These types of local classes are the following: flat, slope, dark rotational, light rotational,
dark line on light, light line on dark or saddle-like. To categorize each part of the image,
six Derivative-of-Gaussian filters are used, which is determined by the α parameter. The
parameter ε classifies the location probability as flat. The feature vector generated through
the OBIF descriptor has 23 dimensions. The orientations were quantified at four levels
(n = 4). Gattal et al. (2018) and Newell & Griffin (2014) propose a change in the OBIF
descriptor aiming to improve its performance. In this sense, the rationale is that from two
different OBIF descriptors (using different parameters σ and ε), it is possible to produce
OBIF column features with (5n+ 2)2 dimensions. Thus, the number of dimensions was
increased from 23 to 484.

Automatically Learned Features with Inception-V3

In the non-handcrafted scenario, we used the Inception-V3 (SZEGEDY et al., 2016)
to perform feature extraction. This architecture proved to be more robust than other
deep architectures, presenting low error rates in the ILSVRC-2012 challenge16. It also also
16 http://image-net.org/challenges/LSVRC/2012/

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 225

presented results better than previous architectures, such as GoogleLeNet (SZEGEDY et
al., 2015), PReLU (HE et al., 2016), and VGG (SIMONYAN; ZISSERMAN, 2014). We
have used zero padding to fill the images and keep their size in the standard. After the
training of the Inception-V3, we used the 2,048 weights values of the penultimate layer
of the net as feature vector. Before extracting the features, we applied transfer learning
using the weights of an Inception-V3 trained on the IMAGENET Dataset (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012).

All codes employed in this Chapter can be found through links in their respective
papers. In Table 65 we describe the dimensions of the feature vectors and also the values
set to their main parameters, aiming to facilitate the reproducibility by other researchers.

Table 65 – Features dimensions and main parameters.

Feature Parameters Dimensions
LBP LBP8,2 59
EQP loci = ellipse 256
LDN mSize = 3; mask = kirsch; σ = 0.5 56

LETRIST sigmaSet = 1, 2, 4; noNoise 413
BSIF filter = ICAtextureFilters-11×11-8bit 256
LPQ winSize = 7 256
OBIF α = 2, 4; ε = 0.001 484

Inception-V3 default parameters 2,048

10.4.2 Early Fusion (Phase 2)

This fusion technique was first used in Snoek, Worring & Smeulders (2005) and its
main idea is to group the different features as a unique set of features to feed the learner.
Thus, the method generates a unique dataset with all the chosen characteristics together.
In our method, as we are using eight different features, we have decided to use 2×2 and
3×3 combinations, which lead us to a total of eighty four different feature sets.

10.4.3 Late Fusion (Phase 5)

In opposition to early fusion strategies, the Late Fusion technique combines the
output of the learners (SNOEK; WORRING; SMEULDERS, 2005). In general, this
combination is achieved by calculating a only prediction involving all the predicted scores.

According to Kittler et al. (KITTLER et al., 1998), the Late Fusion may achieve
promising results in scenarios in which there is complementarity between the outputs. In
these cases, the classifiers do not make the same misclassification and thus, when combined,
they can help each other to give the best label prediction.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 226

Among the most used fusion strategies, we can highlight the rules introduced by
Kittler et al.(KITTLER et al., 1998) and which were used in this work:

• Sum rule (SUM): Corresponds to the sum of the predictions probabilities provided
by each classifier for each label.

• Product rule (PROD): Corresponds to the product between the predictions proba-
bilities provided by each classifier for each label.

• Voting rule (VOTE): We contabilize the votes of the classifiers in the each possible
label (considering the higher probability prediction) and choose the label with the
most votes.

Another aspect regarding the predictions integration is the criteria adopted to
select the classifiers that will be used in the fusion. In this sense, we have tested the Top-N
and Best-per-Feature fusion criteria. The Top-N consists of selecting the N tested scenarios
(feature + resampling) with the best overall performance. The Best-on-Feature consists of
using the best results for each feature. In our method, we have used N=5 in the Top-N
approach. In the Best-on-Feature we have tested the combination 2×3, 3×3, 4×4 and 5×5
of the best result per feature.

10.5 Hierarchical Classification with Flat Resampling

The Hierarchical Classification with Flat Resampling (proposed in Chapter 5) can
be considered as the baseline schema for the task proposed in this Chapter. The details
for this schema applied in the proposed task are presented in Figure 64.

In Figure 64, besides the two first Phases explained in the previous section (feature
extraction - Phase 1 and early fusion - Phase 2), we also have the resampling step (Phase
3), in which we use binary resampling algorithms with the O-A-A approach. In Phases 4.1
and 4.2 we use a hierarchical learner to generate the predictions for the early fusion and
late fusion techniques.

10.6 Local Classifiers with Resampling

The details for the Hierarchical Classification using Local Classifiers with Resam-
pling (proposed in Chapter 7) are presented in Figure 65.

The first two Phases are the same as described in the previous classification schema
(baseline). Phase 3 presents the classification step, in which the results are generated for

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 227

Inception
v3

BSIF

EQP

LBP

LDN

LPQ

LETRIST

OBIF

Fl
at

 R
es

am
pl

in
g

Hierarchical
Learner

LDN & EQP
LBP & LPQEQP &

LETRIST LDN & EQP
& OBIF

Fl
at

 R
es

am
pl

in
g

Hierarchical
Learner

Late
Fusion

Results with
Late Fusion

Results with
Early Fusion

Early
Fusion

Chest X-Rays

Possible Feature
Combinations

Phase 1 Phase 2 Phase 3

Phase 4.1

Phase 4.2

Figure 64 – The baseline resampling schema for the COVID-19 identification in CXR
images.

the early and late fusion techniques. Phase 3 is subdivided into the three local classifiers
approach: Local Classifiers per Parent Node (Phase 3.1); Local Classifiers per Node (Phase
3.2); and Local Classifiers per Level (Phase 3.3). As described in Chapter 6, the resampling
proposed for the local classifiers is embedded in the model building step for each local
node/level. It is important to observe that, in this classification approach, we did not
performed the late fusion technique into the predictions.

10.7 Resampling with Global Algorithms

The details of the hierarchical classification schema using the Global Hierarchical
Resampling algorithms are presented in Figure 65. This schema is similar to the one
presented in the baseline approach, however, instead of using flat resampling algorithms,
we use the Hierarchical Random Undersampling/Oversampling (HROS/HRUS) and the
Hierarchical Synthetic Oversampling Technique (HSMOTE), presented in Chapters 8 and
9.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 228

Phase 3.2

Inception
v3

BSIF

EQP

LBP

LDN

LPQ

LETRIST

OBIF

LDN & EQP
LBP & LPQEQP &

LETRIST

Results with
Early Fusion

Early
Fusion

Chest X-Rays

Possible Feature
Combinations

Phase 1 Phase 2

Phase 3.1

Phase 3.3

 LDN & EQP
& OBIF

Results
without Fusion

Local Classifiers per
Parent Node

Results with
Early FusionLocal Classifiers per Node

Results with
Early FusionLocal Classifiers per Level

Results
without Fusion

Results
without Fusion

D
is

tri
bu

ite
 to

 a
ll

Ap
pr

oa
ch

es

Figure 65 – The resampling schema with local classifiers for the COVID-19 identification
in CXR images.

10.8 Experimental Setup

In this section we present the proposed database, algorithms, parameters and
metrics used in this Chapter. It is important to observe that the database, as well as the
experimental scripts used in this work are all freely available for download17.

10.8.1 The Database

Table 66 presented the main characteristics of the proposed database, which was
named RYDLS-20. As it can be noted, the database is composed of 1,144 CXR images,
17 https://drive.google.com/open?id=1J9I-pPtPfLRGHJ42or4pKO2QASHzLkkj

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 229

Inception
v3

BSIF

EQP

LBP

LDN

LPQ

LETRIST

OBIF G
lo

ba
l H

ie
ra

rc
hi

ca
l

R
es

am
pl

in
g

Hierarchical
Learners

LDN & EQP
LBP & LPQEQP &

LETRIST LDN & EQP
& OBIF

G
lo

ba
l H

ie
ra

rc
hi

ca
l

 R
es

am
pl

in
g

Hierarchical
Learners

Late
Fusion

Results with
Late Fusion

Results with
Early FusionEarly

Fusion
Chest X-Rays

Possible Feature
Combinations

Phase 1 Phase 2 Phase 3

Phase 4.1

Phase 4.2

Figure 66 – The classification schema with global resampling for the COVID-19 identifica-
tion in CXR images.

with a 70/30 percentage of split between train/test. Moreover, there are seven labels,
which can be further hierarchically organized into fourteen label paths.

Table 66 – RYDLS-20 main characteristics.
Characteristic Quantity
Samples 1,144
Train 802
Test 342
Label Nodes 14
Label Paths 7

The CXR images have different sized and were obtained from three different sources:

• COVID-19, SARS, Pneumocystis and Streptococcus images were obtained in the
open source GitHub repository shared by Dr. Joseph Cohen (COHEN; MORRISON;
DAO, 2020).

• Varicella and MERS images were obtained from the Radiopedia encyclopedia18.

• The Normal lung images were all obtained from NIH dataset, also known as Chest
X-ray14 (WANG et al., 2017).

18 https://radiopaedia.org/articles/pneumonia

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 230

Figure 67 presents image examples for each class retrieved from the RYDLS-20
database. It is worth to mentioning that we have no further information concerning the
CXR images with regards to CXR machine used to take the image, as well as the origin,
age and ethnicity of the people whose these images belong to.

Another important aspect concerning the database is that we have manually cut
the edges of the images in order to avoid the recognition of undesirable patterns. In
order to confirm the importance of this preprocessing step, we must cite the work of
Maguolo & Nanni (2020), in which the authors have made a critical evaluation regarding
the combination of different databases for the COVID-19 automatic detection from CXR.
In their work, they have cut off the lungs from the x-ray images and have experimentally
proved that a classifier can identify from which database the images came from. Thus, the
authors highlight that joining different databases may add bias to the classification results,
since the classifiers may be recognizing patterns from the origin database and not from
the lung injuries. However, as we have manually cut the images edges in RYDLS-20, we
have minimized this issue in our experiments.

(a) Normal. (b) COVID-19. (c) SARS. (d) MERS.

(e) Pneumocystis. (f) Streptococcus (g) Varicella.

Figure 67 – RYDLS-20 image samples.

Table 67 presents RYDLS-20 samples distribution for the label paths in the dataset.
Though the table, it is possible to observe the major imbalanceness of the dataset between
the pneumonia labels. In most cases, we have seven–nine samples in the training set and
only three samples in the test dataset, which makes the learning process much more
difficult than in a balanced context.

It is important to reinforce the statement that RYDLS-20 labels distribution reflect
a real world scenario in which healthy cases are much more frequent (majority class),

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 231

Table 67 – RYDLS-20 samples distribution for the hierarchical scenario.
Label Path #Samples #Train #Test
Normal 1,000 700 300
Pneumonia/Acellular/Viral/Coronavirus/COVID-19 90 63 27
Pneumonia/Acellular/Viral/Coronavirus/MERS 10 7 3
Pneumonia/Acellular/Viral/Coronavirus/SARS 11 8 3
Pneumonia/Acellular/Viral/Varicella 10 7 3
Pneumonia/Celullar/Bacterial/Streptococcus 12 9 3
Pneumonia/Celullar/Fungus/Pneumocystis 11 8 3

followed by viral pneumonia (mainly caused by COVID-19), bacterial and fungi pneumonia
being the least frequent, in this order.

The experiments were conducted with a 70/30 split between training and test,
which means that we are using the holdout validation technique. It may be asked why do
not use a cross-validation schema, since it brings robustness to the experimental results.
The answer to this question is mainly grounded in the size of the database. As shown
in this section, we are dealing with a highly imbalanced database, in which half of the
labels have between 10-12 samples. Thus, if we use a 10-fold or 5-fold cross-validation (the
most recommended values by the research community), most labels will have only one or
two examples into each fold. This division would have a high impact in the testing phase,
which may lead to misleading results regarding the evaluation measures.

10.8.2 Algorithms, Parameters and Metrics

In this subsection we present the main information concerning the algorithms,
parameters and metrics used in the experiments of this work.

As the Local Classifiers approaches uses flat classifiers (binary and multi-class)
to distinguish among the label nodes, we have to define which algorithm will be used in
this task. Thus, in order to perform this task, we have used the Random Forests (RF)
algorithm. Table 68 reports the parameter used in this classification algorithm.

Table 68 – Random Forest parameter settings.
Parameters Value
Number of Trees 10
Class Weight Balance
Criterion Gini
Splitter Best
Min Samples Leaf 10
Min Samples Split 20
Max Leaf Nodes None
Max Depth 10

For the hierarchical classification task we used the Clus-HMC framework. The

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 232

parameter configurations used in the Clus-HMC algorithm are presented in Table 69.

Table 69 – Clus-HMC parameter settings.
Parameter Value

Type Tree
ConvertToRules No
FTest [0.001, 0.005, 0.01, 0.05, 0.1, 0.125]
EnsembleMethod RForest
Iterations 10
VotingType Majority
EnsembleRandomDepth No
SplitSampling None
Heuristic Default
PruningMethod Default

Moreover, as we are dealing with a full depth hierarchical classification problem,
the LCN approach was executed with a “Less Inclusive” policy (Section 2.3.1), since there
are no samples labelled with internal nodes. Following this same reasoning, the LCPN
approach was executed with the “Siblings” policy (Section 2.3.1).

Regarding the resampling methods, for both hierarchical classification scenarios
in which we have used binary resampling algorithms (baseline and local classifiers), we
have tested a total of 16 methods, considering oversampling, undersampling and hybrid
approaches. However, we present in Results sections (10.9) only the methods that somehow
improved the individual classification results: ADASYN, SMOTE, SMOTE-B1, SMOTE-
B2, AllKNN, ENN, RENN, Tomek Links (TL) and SMOTE+TL. All this binary resampling
method were tested with their default parameters in the imbalanced-learn framework19.

In the global resampling scenarios, we have tested the increase/decrease rates of
5%, 10%, 15%, 20% and 25% for HROS and HRUS. Moreover, in the HSMOTE algorithm,
we have tested 3 and 5 neighbors as the k value.

10.8.3 Evaluation Metric

In order to analyze the performance of the experimental results, the f-score measure
was chosen. Moreover, in order to analyze the general classification performance, we have
chosen the macro-avg evaluation, which makes an averaging calculation by class. This is a
crucial point in the experimental setup, since evaluation measures such as accuracy may
neglect the real performance of the learners for the imbalanced classes, which in our case
is the main objective. Following this reasoning, the use of a metric that can really consider
the imbalanceness of the different labels is necessary, and, according to Goutte & Gaussier
(2005), f-score is a good alternative to deal with this issue.
19 Available at https://imbalanced-learn.readthedocs.io/en/stable/api.html

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 233

As well known in the machine learning community, f-score is the harmonic average
between precision and recall calculations. Moreover, we have used the macro-avg f-score
evaluation in order to calculate the mean f-score between the classes and not the samples.
It is important to observe that we have used the same f-score measure in both multi-class
and hierarchical classification scenarios.

10.9 Experimental Results

As we have experimentally tested three hierarchical classification scenarios, we have
sub-divided the experimental results into three subsections: (i) Baseline (Flat resampling);
(ii) Local Classifiers with Resampling; (iii) Global hierarchical resampling.

We must highlight that we present the results considering two perspectives:

• The general macro-avg f-score for the evaluated scenarios, i.e., the average f-score
for all classes in the classification task; and

• The f-score obtained specifically for the COVID-19 label, given that this is our main
interest here.

Due to the large number of experimental results, in this Chapter we present only
the best results achieved in each prediction schema. A detailed version of the results is
shown in the Appendix B.

10.9.1 Baseline Results

Table 70 presents the best macro-avg f-score results for each prediction schema in
the baseline approach. It can be noted that the best macro-avg f-score was achieved in the
early fusion prediction schema without the use of resampling algorithms. Moreover, it is
possible to observe that SMOTE resampling technique (and its variations) appears in all
the other best classification scenarios.

Table 70 – Best macro-avg results for each prediction schema in the Baseline approach.
Prediction Schema Feature Resampling F-Score

Individual LPQ SMOTE-B1 0.4428
Early Fusion BSIF & EQP & OBIF - 0.4996
Late Fusion (Top-5) LETRIST and LPQ SMOTE-B1/B2 0.4428
Late Fusion (Top-Features) BSIF, EQP and LPQ SMOTE-B1/B2 0.4428

Table 71 presents the best f-score results for the COVID-19 identification in each
prediction schema in the baseline approach. It can be noticed that the best result was also

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 234

achieved in the early fusion prediction schema. Besides, SMOTE resampling technique
appears in most of the classification schemas.

Table 71 – Best COVID-19 results for each prediction schema in the Baseline approach.
Prediction Schema Feature Resampling F-Score

Individual OBIF ENN 0.7463
Early Fusion LETRIST & OBIF SMOTE-B1 0.7931
Late Fusion (Top-5) BSIF, EQP and OBIF ADASYN and SMOTE-B1/B2 0.7547
Late Fusion (Top-Features) BSIF, EQP and OBIF SMOTE-B1/B2 0.7869

Figure 68 presents a chart of the individual f-score results per label for the best
macro-avg case scenario, which was achieved in the early fusion schema with BSIF, EQP
and OBIF features without the application of resampling algorithms. We may observe that
the classifier achieved very different performances for each type of pneumonia, including
zero f-scores for the “Varicella” and “Streptococcus” labels, However, we may note that
it reached interesting and close performances for the Pneumonia caused by the different
Coronavirus pathogens, i.e., COVID-19, SARS and MERS.

Figure 68 – F-scores per label in the best macro-avg scenario using the baseline approach.

Figure 69 presents a chart of the individual f-score results per label for the best
COVID-19 identification scenario, which was also achieved in the early fusion schema,
but with LETRIST and OBIF features and the SMOTE-B1 resampling algorithm. It may
be noticed that, as well as in the macro-avg scenario, the classifier also achieved zero
f-scores for the “Varicella” and “Streptococcus” labels. Furthermore, as it achieve a better
performance for the COVID-19, the classifier reduced the prediction results for the SARS,
MERS and Pneumocystis labels.

Figure 70 shows the confusion matrix for the same macro-avg best case scenario in
the baseline schema as presented in Figure 68 (Early Fusion of BSIF, EQP and OBIF).

Figure 71 shows the confusion matrix for the same best case scenario for the
COVID-19 identification in the baseline schema as presented in Figure 69 (Early Fusion of
LETRIST and OBIF with SMOTE-B1).

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 235

Figure 69 – F-scores per label in the best COVID-19 identification scenario using the
baseline approach.

Figure 70 – Confusion Matrix in the best macro-avg scenario using the baseline approach.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 236

Figure 71 – Confusion Matrix in the best COVID-19 identification scenario using the
baseline approach.

Table 72 shows the IRLP measure results (Section 6.1) for the baseline datasets
with different feature sets. It can be noted that the original dataset has an IRLP of 66.31
and five of the resampling algorithms achieved the best imbalance ratio value (52.27):
SMOTE, SMOTE-B1, SMOTE-B2, ADASYN and SMOTE+TL.

Table 72 – IRLP measure results for the baseline experiments.

Original SMOTE SMOTE
B1

SMOTE
B2 ADASYN ENN RENN AllKNN TL SMOTE

+ TL
BSIF 66.41 52.27 52.27 52.27 52.34 64.14 63.67 64.05 66.22 52.27
EQP 66.41 52.27 52.27 52.27 52.27 64.99 64.90 64.99 66.32 52.27

INCEPTION 66.41 52.27 66.41 66.41 52.27 62.15 61.30 61.68 66.03 52.27
LBP 66.41 52.27 52.27 52.27 52.27 64.99 64.71 64.71 66.41 52.27
LDN 66.41 52.27 52.27 52.27 52.27 64.80 64.80 64.80 66.13 52.27

LETRIST 66.41 52.27 52.27 52.27 52.34 63.95 63.19 63.38 65.94 52.27
LPQ 66.41 52.27 52.27 52.27 52.27 64.52 64.24 64.24 66.22 52.27
OBIF 66.41 52.27 52.27 52.27 52.27 63.19 62.25 62.34 66.13 52.27

10.9.2 Local Classifiers with Resampling

Table 73 presents the best macro-avg f-score results for each prediction schema in
the local classifiers with resampling approaches. The best macro-avg f-score was achieved
with an early fusion technique over the LDN, LETRIST and LPQ features after applying
the SMOTE-B2 resampling technique. Besides, LCPN was used to achieve the best results
in both classification schemas. It is important to observe that, with a f-score of 0.6642, the

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 237

classification scenario obtained the best macro-avg rate for the classification task among
all experiments from this Chapter.

Table 73 – Best macro-avg results for each prediction schema in the local classifiers with
Resampling approaches.

Prediction Schema Feature Resampling Approach F-Score
Individual LETRIST SMOTE-B2 LCPN 0.5332
Early Fusion LDN & LETRIST & LPQ SMOTE-B2 LCPN 0.6643

Table 74 presents the best COVID-19 identification f-scores for each prediction
schema in the local classifiers with resampling approaches. As well as in the macro-avg
scenario, the best f-score was also achieved with the early fusion schema classified with an
LCPN approach, however using the LETRIST, EQP and OBIF features with the SMOTE-
B2 algorithm. It is worth to mention that, with a f-score of 0.9333, this classification
scenario obtained the best rate for the COVID-19 identification among all experiments
from this Chapter.

Table 74 – Best COVID-19 results for each prediction schema in the local classifiers with
Resampling approaches.

Prediction Schema Feature Resampling Approach F-Score
Individual LETRIST SMOTE LCPN 0.8936
Early Fusion LETRIST & EQP & OBIF SMOTE-B2 LCPN 0.9333

Figure 72 shows a chart of the individual f-score results per label for the best macro-
avg case scenario, which was obtained in the early fusion schema with LDN, LETRIST
and LPQ features after applying the SMOTE-B2 resampling technique and LCPN. Even
though “Pneumocystis” label achieved a zero f-score, it is interesting to observe that
MERS reached a perfect score of 1.

Figure 72 – F-scores per label in the best macro-avg scenario using the local classifiers
with Resampling approaches.

Figure 73 presents a chart of the individual f-score results per label for the best
COVID-19 identification case scenario, which was obtained in the early fusion schema with

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 238

LETRIST, EQP and OBIF features with the SMOTE-B2 algorithm and LCPN approach.
Moreover, such as in the previous scenario, “Pneumocystis” achieved a zero f-score.

Figure 73 – F-scores per label in the best COVID-19 identification scenario using the local
classifiers with Resampling approaches.

Figure 74 shows the confusion matrix for the same best macro-avg case scenario in
the local classifiers with resampling schema as presented in Figure 72 (Early Fusion of
LDN, LETRIST and LPQ with SMOTE-B2 and LCPN approach).

Figure 74 – Confusion Matrix in the best macro-avg scenario using the local classifiers
with Resampling approaches.

Figure 75 shows the confusion matrix for the same best case scenario for the
COVID-19 identification in the local classifiers with resampling schema as presented in
Figure 73 (Early Fusion of LETRIST, EQP and OBIF with SMOTE-B2 using the LCPN
approach).

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 239

Figure 75 – Confusion Matrix in the best COVID-19 identification scenario using the local
classifiers with Resampling approaches.

Table 75 presents the IRLCN measure results for the local classifiers per node
approach (7.1.1) in the different feature sets. It can be observed that the original dataset
has an IRLCN of 6.60 and the best imbalance ratio value (3.64) was obtained by the
LETRIST feature set with the SMOTE+TL resampling method.

Table 75 – IRLCN measure results for the local classifiers per node experiments.

Original SMOTE SMOTE
B1

SMOTE
B2 ADASYN ENN RENN AllKNN TL SMOTE

+ TL
BSIF 6.60 4.46 4.46 3.99 3.94 4.39 4.04 4.01 4.37 4.01
EQP 6.60 4.91 4.99 5.27 3.74 5.07 5.38 5.17 4.19 4.05

INCEPTION 6.60 4.86 4.02 3.99 5.47 4.72 5.34 4.93 5.07 5.09
LBP 6.60 3.89 4.70 4.19 4.37 5.11 5.47 5.37 5.60 5.46
LDN 6.60 5.51 5.03 5.36 5.49 4.03 5.01 4.41 4.58 5.33

LETRIST 6.60 4.01 3.69 4.62 3.80 4.18 4.14 4.00 3.84 3.64
LPQ 6.60 3.77 3.76 5.22 3.67 5.26 5.28 4.53 3.81 5.38
OBIF 6.60 4.49 5.06 4.17 4.72 5.24 4.40 4.52 4.35 4.98

Table 76 shows the IRLCPN measure results for the local classifiers per parent
node (7.1.2) with the different feature sets. We can be note that the original dataset has
an IRLCPN of 6.36 and the best imbalance ratio value (3.41) was obtained by the LBP
feature with the RENN resampling method.

Table 77 presents the IRLCL measure results for the local classifiers per level (7.1.3)
with different feature sets. We can note that the original dataset has an IRLCL of 35.96
and the best imbalance ratio value (27.39) was obtained by the BSIF feature with the
ADASYN resampling method.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 240

Table 76 – IRLCPN measure results for the local classifiers per parent node experiments.

Original SMOTE SMOTE
B1

SMOTE
B2 ADASYN ENN RENN AllKNN TL SMOTE

+ TL
BSIF 6.36 4.63 4.27 4.46 3.76 4.99 4.57 5.14 4.62 3.58
EQP 6.36 4.21 4.80 4.74 4.58 3.82 3.49 5.17 4.92 3.90

INCEPTION 6.36 3.89 4.61 4.43 3.80 3.76 4.40 4.38 5.22 4.11
LBP 6.36 4.03 5.21 4.87 4.59 4.01 3.41 4.16 4.31 5.20
LDN 6.36 4.79 3.50 4.88 3.62 4.18 5.24 3.66 4.96 4.90

LETRIST 6.36 3.96 3.96 3.96 5.26 5.19 3.84 4.16 4.44 4.15
LPQ 6.36 3.96 3.53 4.51 3.59 4.50 4.14 4.54 4.78 3.87
OBIF 6.36 4.26 3.40 4.04 4.30 4.44 4.31 3.42 4.67 4.44

Table 77 – IRLCL measure results for the local classifiers per parent node experiments.

Original SMOTE SMOTE
B1

SMOTE
B2 ADASYN ENN RENN AllKNN TL SMOTE

+ TL
BSIF 35.96 30.55 29.40 28.13 27.39 28.84 27.24 29.78 30.14 29.77
EQP 35.96 31.08 29.09 29.82 29.83 31.02 29.92 31.14 31.67 32.88

INCEPTION 35.96 33.19 33.17 31.38 29.39 30.18 30.18 30.14 29.22 28.44
LBP 35.96 30.25 29.24 28.14 29.14 32.38 31.37 33.13 28.73 27.78
LDN 35.96 31.61 32.90 29.84 29.15 32.90 30.52 29.91 29.82 30.37

LETRIST 35.96 30.69 31.86 32.89 31.36 30.91 32.27 31.00 29.14 32.29
LPQ 35.96 29.32 30.56 30.44 29.50 31.03 31.02 31.87 29.67 30.68
OBIF 35.96 30.60 31.01 29.10 31.50 32.23 32.73 32.24 32.23 31.63

10.9.3 Global Hierarchical Resampling

Table 78 shows the best macro-avg f-score results for each prediction schema in
the global hierarchical resampling approach. It is important to mention that, in all tables
of this subsection, the values after the resampling algorithms represent the configuration
used for the resampling, i.e., the resize rate (for the random algorithms) and the number of
neighbors (for the HSMOTE technique). As in all the previous schemas, the best macro-avg
f-score was obtained with an early fusion technique. This result was achieved with the
combination of EQP and LPQ features after applying the HROS resampling technique
with an increase rate of 5%.

Table 78 – Best macro-avg results for each prediction schema in the global hierarchical
resampling approach.

Prediction Schema Feature Resampling F-Score
Individual LDN HROS-15 0.4662
Early Fusion EQP & LPQ HROS-5 0.5524
Late Fusion (Top-5) BSIF and LETRIST HRUS-5 and HSMOTE-3 0.4272
Late Fusion (Top-Features) BSIF, EQP and LDN HRUS-5, HROS-20 and HROS-10 0.4548

Table 79 presents the best COVID-19 identification f-score for each prediction
schema in the global hierarchical resampling approach. The best score was obtained in
exactly the same scenario as the macro-avg f-score with an early fusion of EQP and LPQ
features after applying the HROS resampling technique with an increase rate of 5%.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 241

Table 79 – Best COVID-19 identification results for each prediction schema in the global
hierarchical resampling approach.

Prediction Schema Feature Resampling F-Score
Individual OBIF HROS-5 0.7692
Early Fusion EQP & LPQ HROS-5 0.8235
Late Fusion (Top-5) EQP, LBP, and OBIF HRUS-10 and HROS-5 0.7692
Late Fusion (Top-Features) BSIF, EQP and LBP HRUS-5, HROS-20 and HROS-5 0.7692

Figure 76 shows a chart of the f-score results per label for the best macro-avg and
COVID-19 identification scenarios, which was obtained in the early fusion schema with
EQP and LPQ features and HROS-5 algorithm. It can be noted that, in this classification
scenario, the “SARS” label achieved the perfect f-score of 1, while the “Streptococcus”
label reached the a zero f-score.

Figure 76 – F-scores per label in the best macro-avg and COVID-19 identification scenarios
using the global resampling approach.

Figure 77 shows the confusion matrix for the best case scenario (both macro-avg
and COVID-19 identification) in the global resampling approach as presented in Figure 76
(Early Fusion of EQP and LPQ features after applying the HROS-5).

Table 80 presents the IRLP measure results for the global hierarchical resampling
with the different feature sets. We can observe that the original dataset has an IRLP of
66.41 and the best imbalance ratio value (11.98) was achieved by the HROS resampling
method with 25% of increasing rate.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 242

Figure 77 – Confusion Matrix in the best macro-avg and COVID-19 identification scenarios
using the global resampling approach.

Table 80 – IRLP measure results for the global hierarchical resampling experiments.

Original HROS HRUS HSMOTE5% 10% 15% 20% 25% 5% 10% 15% 20% 25%
BSIF 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 34.07
EQP 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 34.15

INCEPTION 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 32.34
LBP 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 33.45
LDN 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 31.25

LETRIST 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 32.45
LPQ 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 32.45
OBIF 66.41 31.55 21.91 16.98 13.99 11.98 64.21 60.37 50.8 45.6 41.63 31.35

10.10 Discussions

Aiming to evaluate the obtained results from different points of view, we guide our
discussion in this research answering the following questions:

• Which feature representation provided the best results?

• Did the resampling approaches proposed in this Doctoral Research improve the
classification results?

• Which resampling algorithms improved the results the most in each classification
schema?

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 243

• Did the fusion strategies contribute to improve the results?

• Which kinds of labels are easier/harder to predict?

• Which labels were confused in the best case scenario for each classification schema?

• What may be happening in the misclassified cases?

In the following subsections, we answer each question taking into account the
statistical significance, when it is suitable.

Which feature representation provided the best results?

To answer this question, i.e., define the best feature representation, we have used
the statistical protocol proposed in Charte et al. (2015b) (already used in some discussions
of the previous Chapters). As we have twelve different measurement contexts, i.e., the
general macro-avg f-scores results and the COVID-19 identification f-scores for the baseline,
local classifiers and global approaches, we have performed this protocol twelve times, one
in each classification context and measurement. The test results in relation to the ranking
of the features for the macro-avg f-Score and the COVID-19 identification f-scores are
shown in Table 81. It is worth mentioning that, since this test is composed of rankings,
which ranges from the first to the last, the lower the ranking score is, the better is the
performance.

We can observe that, LETRIST was the best ranked feature set in the baseline
classification schema for both scenarios: COVID-19 identification and macro-avg f-score.
In the local classifiers scenario, the best ranked feature set for the COVID-19 identification
was tied between LETRIST and OBIF, while for the macro-avg f-score, the best ranked
feature set was LETRIST. Finally, in the global resampling schema, the best feature set
for the COVID-19 identification was OBIF and for the macro-avg f-score was LETRIST.
Moreoever, analyzing the overall average ranking, we have, by far, LETRIST as the best
feature set considering all classification schemas and evaluation scenarios.

Table 81 – Ranking of the results per feature set in all classification scenarios.
Baseline Local Classifiers Global Resampling Overall

Avg. Rank.Resampling COVID-19 Macro-Avg COVID-19 Macro-Avg COVID-19 Macro-Avg
BSIF 3.33 3.67 6.50 7.50 6.33 3.33 5.25

INCEPTION 7.33 7.33 4.50 7.00 7.00 6.00 6.54
LBP 6.33 5.33 5.50 4.50 5.33 4.67 5.42
LDN 5.33 3.33 6.50 2.00 2.67 4.33 4.29

LETRIST 1.33 2.67 3.50 1.00 4.33 2.33 2.13
EQP 4.67 3.67 5.00 6.50 2.33 3.67 4.96
LPQ 3.67 3.33 6.00 2.50 3.33 2.67 3.88
OBIF 1.67 4.33 3.50 3.50 1.67 6.33 3.25

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 244

Did the resampling approaches proposed in this Doctoral Research improve
the classification results?

The first important observation is that, as stated in the Results section (10.9.2), the
best nominal macro-avg (0.66) and COVID-19 identification (0.93) results were obtained
using one of the proposed resampling approaches, which was the local classifiers with
resampling using the LCPN classification schema with the SMOTE-B2 resampling method.

In order to make a deeper analysis regarding the possible improvement of the
classification results by each particular proposed approach, we performed the Wilcoxon
Statistical Test stating as hypothesis that the classification results improve with the
resampling algorithms in each proposed approach (Baseline, Local and Global). In order
to calculate the test scores, we have grouped all the results in each classification approach
per resampling method. Thus, Tables 82, 83 and 84 presents the p-values scores for the
baseline, local classifiers and global hierarchical resampling approaches, respectively.

Analyzing Table 82 and considering a threshold of 0.1, we can observe that only
the resampling algorithms that involves the use of the SMOTE method, i.e., SMOTE,
SMOTE+TL, SMOTE-B1 and SMOTE-B2, could improve the classification results in
baseline resampling schema, since their p-values are below the threshold.

Table 82 – Wilcoxon test results for the baseline approach.
Resampling p-value
ADASYN 0.7123
AllKNN 0.3897
ENN 0.5000
RENN 0.6103
SMOTE 0.0250
SMOTE+TL 0.0344
SMOTE-B1 0.0059
SMOTE-B2 0.0059
TL 0.6425

Furthermore, analyzing Table 83 and also considering a threshold of 0.1, we may
observe that, besides the SMOTE related methods, ENN and TL methods also statistically
improved the classification results. It is worth to mention that we are considering the three
local approaches: LCN, LCPN and LCL.

Finally, looking at Table 84 and still considering the threshold of 0.1, we may
observe that HROS method could statistically improve the classification results using three
different resize rates (10, 15 and 20), while HRUS only improved the results in two of the
resize rates (5 and 10). Moreover, HSMOTE method could improve the results with two
different number of neighbors (3 and 5).

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 245

Table 83 – Wilcoxon test results for the local classifiers approach.
Resampling p-value
ADASYN 0.1760
AllKNN 0.6792
ENN 0.0604
RENN 0.3208
SMOTE 0.0247
SMOTE+TL 0.0604
SMOTE-B1 0.0002
SMOTE-B2 0.0193
TL 0.0991

Table 84 – Wilcoxon test results for the global hierarchical resampling approach. The
configuration values for the random algorithms represent the resize rate in %,
while the values for the HSMOTE represent the number of neighbors used in
the sample section stage.

Resampling Parameter
Configuration p-value

HROS

5 0.1038
10 0.0059
15 0.0250
20 0.0125
25 0.1038

HRUS

5 0.0086
10 0.0059
15 0.9914
20 0.9941
25 0.9941

HSMOTE 3 0.0464
5 0.0125

Which resampling algorithms improved the results the most in each classifica-
tion schema?

To answer this question, we have used the same statistical protocol from the
first questions. However, in this case, we have ranked the resampling methods for each
classification schema, considering the resampling methods used in each case scenario.

Table 85 presents the ranking results for the statistical test in the baseline clas-
sification schema. We may observe that for both measuring scenarios, i.e., COVID-19
identification and macro-avg f-score, SMOTE-B1 resampling method achieved by far the
best average ranking (overall ranking of 1.33), while ADASYN and AllKNN were the worst
resampling algorithms with overall average ranking of 7.50 and 7.17, respectively.

Table 86 shows the ranking results for the statistical test in the local classifiers
schema. For the COVID-19 identification measurement the best ranked resampling al-
gorithm was tied between SMOTE and TL (3.5), while for the macro-avg measurement
scenario the best ranked resampling method was SMOTE-B2. Moreover, SMOTE-B2

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 246

Table 85 – Ranking of results per resampling method in the baseline classification schema.

Resampling COVID-19 Macro-Avg Overall
Avg. Rank

ADASYN 6.67 8.33 7.50
AllKNN 6.67 7.67 7.17

ENN 3.67 5.67 4.67
RENN 6.33 6.67 6.50

SMOTE 4.33 2.67 3.50
SMOTE-B1 1.67 1.00 1.33
SMOTE-B2 5.33 3.00 4.17

TL 5.00 4.33 4.67
SMOTE+TL 5.00 5.67 5.33

obtained the best overall average ranking (3.50), while RENN and TL were tied as the
worst resampling methods with an overall average rankings of 6.25.

Table 86 – Ranking of results per resampling method in the local classifiers schema.

Resampling COVID-19 Macro-Avg Overall
Avg. Rank

ADASYN 6.00 2.50 4.25
AllKNN 4.50 6.00 5.25

ENN 5.50 5.50 5.50
RENN 6.50 6.00 6.25

SMOTE 3.50 4.00 3.75
SMOTE-B1 5.00 5.00 5.00
SMOTE-B2 6.00 1.00 3.50

TL 3.50 9.00 6.25
SMOTE+TL 4.50 6.00 5.25

Table 87 presents the ranking results for the statistical test in the global resampling
schema. We may note that in both measurement scenarios, HROS algorithm obtained the
best average ranking.

Table 87 – Ranking of results per resampling method in the global resampling schema.

Resampling COVID-19 Macro-Avg Overall
Avg. Rank

HROS 1.67 1.00 1.33
HRUS 2.00 2.00 2.00

HSMOTE 2.00 2.00 2.00

Did the fusion strategies contribute to improve the results?

Yes, the early fusion strategy was particularly important to provide better results for
the COVID-19 identification and macro-avg f-score results in all classification approaches.
Besides, the early fusion technique also provided the best f-scores among all experiments.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 247

However, it is worth to mention that, in general, the late fusion technique was not able to
increase the classification results in all approaches.

Which kinds of labels are easier/harder to predict?

The answer to this question is grounded in the charts of the individual f-scores per
labels presented in the Results section (10.9). Analyzing all classification and measurement
scenarios, the fist easily observation is that “Normal” label has the remarkably best f-scores
results compared to the pneumonia labels. In this case, this performance leans on the fact
that “Normal” label is by far the most frequent in the database.

Considering the “Coronavirus” labels, i.e., “COVID-19”, “SARS” and “MERS”,
their individual f-score results have a large variety among the different classification scenar-
ios. In the baseline experiments, the ‘MERS” label achieved slightly better results in the
macro-avg measurement scenario, while in the COVID-19 identification scenario it achieved
the worst result. In the local classifiers experiments, “MERS” and “SARS” achieved a
score of 1 in the macro-avg and the COVID-19 measurement scenarios, respectively. In
the global resampling scenario, “SARS” also achieved a f-score of 1.

Furthermore, another important observation is concerning the “Varicella”, “Strep-
trococcus” and “Pneumocystis” labels, which were the hardest ones to predict in general.
In the baseline experiments “Varicella” and “Streptrococcus” labels achieved zero f-scores
in both measurement scenarios. In the local classifiers experiments “Pneumocystis” label
reached a zero f-score, while in the global resampling experiments “Streptococcus” got
zero f-scores.

Which labels were confused in the best case scenario for each classification
schema?

The answer to this question is made by analyzing the confusion matrices in each
classification approach. Thus, looking at the confusion matrix for the best case in the
baseline experiments (Figures 70 and 71), we may observe that in both measurement
scenarios, a variety of “COVID-19” samples were incorrectly predicted as all the other
labels. Among these, it is important to observe that “Varicella”, “Streptococcus” and
“Pneumocystis” were all confused with “Normal” and “COVID-19” labels.

In relation to the confusion matrices for the local classifiers approach experiments
(Figures 74 and 75), we may observe that in the COVID-19 identification measurement
scenario, the “COVID-19” samples were only confused with “Normal” and “MERS”, while
only two “Normal” samples were incorrectly labeled with “COVID-19” and “Streptococcus”.
Moreover, in the macro-avg scenario, there were some “COVID-19” samples misclassified
as a variety of other labels.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 248

Finally, in the confusion matrix for the global hierarchical resampling experiments
(Figure 77), we may note that few “COVID-19” samples were misclassified as “Normal”
and “MERS”, while all “Pneumocystis” samples were incorrectly classified as “Varicella”.

What may be happening in the misclassified cases?

This is probably the most tricky question in this discussion so far, since CXR
images are not always the medical standard to diagnose pneumonia pathogens. Figure
78 presents two examples of samples with the “COVID-19” label that were misclassified
as “Normal” in the best case scenario of the multi-class classification approach. In these
examples, it is really difficult to identify what could make the learner recognize “Normal”
patterns instead of “COVID-19”. However, in the following we present other examples that
can bring some thoughts into the light of this issue.

(a) Example 1. (b) Example 2.

Figure 78 – Examples of samples with “COVID-19” label that were predicted as “Normal”.

In order to give a direction regarding what may be happening in some of the
misclassified CXR cases, we present in Figure 79 four examples of CXR images from
“normal” lungs, which were also extracted from RYDLS-20.

(a) Normal Example 1. (b) Normal Example 2. (c) Normal Example 3. (d) Normal Example 4.

Figure 79 – Different examples of CXR with “normal” lungs.

When we think about a “normal” CXR, i.e., a CXR of a person without pneumonia,
we may immediately think in a CXR similar to Figures 79(a) and 79(b), in which the

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 249

image is pretty clear and we may see that there are no white spots whatsoever. However,
in practice, due to variate factors such as the patient lung characteristics, type of x-ray
scan machine, and even due to the protocol followed by the professional radiologist which
operates the scan machine, there might be visual variations between the x-rays captured in
this different circumstances that still belongs to the same class. Considering this context,
it is common to observe in the database samples from people without pneumonia but
with CXR images similar to the ones presented in Figures 79(c) and 79(d). Thus, given as
example the four samples from Figure 79, which belong to the same class but present such
different characteristics, it is comprehensive that an artificial intelligence system, which is
based on similarity patterns, can make recognition mistakes for these images.

10.11 Final Considerations

As the COVID-19 pandemic spreads around the world, the number of cases keeps
growing exponentially. Finding a method that can help in the diagnosis of this disease
in people, using a cheap and fast method, is fundamental to avoid overwhelming the
healthcare system. In this context, the use of machine learning techniques to identify the
pneumonia disease in CXR images has been proposed in the literature and may help in
this diagnosis. However, when we are dealing with images taken from patients stricken of
pneumonia caused by different types of pathogens and we are trying to predict a cause
of a specific pneumonia (in this case, COVID-19), the problem turns into an even more
challenging task.

In a real world context, we have many more people unaffected by pneumonia than
affected. In addition, there is a natural imbalance between the number of people stricken
by pneumonia caused by different pathogens. And due to the COVID-19 outbreak, it is
hard to estimate the precise imbalance between these numbers. Considering this realistic
context, in this Chapter we have presented a case study of the resampling schemas proposed
in this Doctoral research aiming to classify pneumonia caused by different pathogens in
CXR images, and also to identify COVID-19 among them. In order to apply hierarchical
classification into this application domain, we have developed a tree structured taxonomy
in which the pathogens that causes pneumonia are hierarchically organized according to
their biological characteristics.

In this Chapter we have tested three different resampling schemas proposed in this
Doctoral Research: (i) The hierarchical classification with flat resampling (baseline); (ii)
The local classifiers with resampling (iii) The hierarchical global resampling. All these
schemas were experimentally tested with eight different feature sets, which were extracted
from the x-ray images and tested as individual and combined in an early fusion designs.
Besides, the prediction outputs are also tested individually and in a late fusion design.

Chapter 10. A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images 250

We have also proposed the RYDLS-20 database. The database is composed of 1,144
CXR images from seven classes: Normal lungs and lungs affected by COVID-19, MERS,
SARS, Varicella, Streptococcus and Pneumocystis. The dataset is highly imbalanced,
with 1,000 images being from people unaffected by pneumonia, 90 of people affected by
COVID-19 and the rest almost equally divided among the other pathogens. The CXR
images were obtained from three different sources: Dr. Josepth Cohen GitHub repository;
Radiopedia; and NIH dataset.

The local classifiers schema achieved a macro-avg f-score of 0.66 using a LCPN
approach with the early fusion of LDN, LETRIST and LPQ features resampled with
SMOTE-B2. Furthermore, the local classifiers with LCPN was also able to achieve a f-score
of 0.93 for the COVID-19 identification using the early fusion combination of LETRIST,
EQP and OBIF features resampled with SMOTE-B2.

Even though this proposal does not provide a definitive COVID-19 diagnosis, and
this is not the purpose of this work, the good identification rate achieved for COVID-19
can be quite useful to help the screening of patients in emergency medical support services,
that have been severely affected by the pandemic breakthrough.

251

C
ha

pt
er

11 Conclusions

Appreciating a better organization of this Chapter we have subdivided it in two
sections: (i) The final considerations of this Doctoral Research; and (ii) The research gaps
and future work directions after the development of this work.

11.1 Concluding Remarks

Many important real-world classification problems are naturally cast as hierarchical,
in which the predicted labels are organized into a hierarchy, such as protein function
prediction, text categorization, sound signal classification, biological sequence classification,
bioacoustic animal species identification, credit card fraud detection, medical image
classification and so on. On the other hand, the imbalanceness issue affects many of these
problems, specially in critical application domains where the less frequent classes are the
main objective of the prediction, such as in credit card fraud detection and medical image
classification. Although the imbalanceness issue is a well-known problem in the machine
learning community, there were few works in the literature proposing ways to deal with it
for hierarchical classification problems. In this context, this Doctoral Research presented
contributions to the machine learning community mainly focused in how to deal with
imbalanceness in hierarchical classification datasets.

In Chapters 2 and 3 we presented an extensive backbone background concerning
the topics of Machine Learning (Single-Label, Multi-Label and Hierarchical Classifications)
and Imbalance Learning (Metrics and Resampling algorithms). During the studies of these
topics we made four contributions related to the Music Information Retrieval and Movie
Genre Classification research fields.

In Chapter 4, we presented the Multi-Label Tomek Link (MLTL), which adapts
the classic Tomek Link algorithm to deal with multi-label samples by using the adjusted
hamming distance metric to compare the samples sets of labels. Experimental results in
seven well-known datasets showed that MLTL is a competitive technique if compared to
other multi-label resampling methods from the literature. Another important contribution
presented in Chapter 4 is the Imb-Mulan framework, an extension to the well-known
Mulan framework implementing multi-label resampling algorithms. These contributions

Chapter 11. Conclusions 252

were essential to give an overview regarding the design and development of novel resampling
algorithms, which was important to confirm Hypothesis 4 in Chapters 8 and 9.

InChapter 5 we presented the first analysis towards the classification of imbalanced
hierarchical classification datasets using resampling algorithms, which represents the
baseline experiments for this task. We have proposed the use of binary/multi-class and multi-
label resampling algorithms in hierarchical classification datasets with single paths and
multiple paths, respectively. The experimental analysis over eighteen datasets, supported
by statistical analysis, shown that well-known resampling algorithms can partially improve
the classification results of hierarchical classification datasets without further adaptations.
The contributions of this Chapter partially corroborate with Hypothesis 2, showing
that even thought the pre-exiting resampling techniques may improve the results, this
improvement is not statistically enough and, thus, there is room for improvement for novel
and more specific techniques.

Then, in Chapter 6, two metrics to evaluate how imbalanced a Hierarchical Multi-
Label Dataset is proposed. While the first metric (IRLP) is focused on calculating the
imbalance level of a certain Label Path, the second metric (MeanIR) calculates the general
imbalance by averaging all the IRLPs from the dataset. The metrics are a direct contribution
to corroborate with Hypothesis 1. Moreover, In Chapter 6, a novel approach to deal
with imbalanceness in Hierarchical Multi-Label Datasets was also proposed. This method
is based on the conversion of HMD ↔ MLD, in order to apply well-known Multi-Label
resampling algorithms in the dataset to deal with the imbalanceness. The experimental
results in one of the biggest hierarchical classification datasets from the literature, i.e.,
the Free Music Archive (FMA), shown promising results. The label path conversion also
corroborate with Hypothesis 2, showing that the existing resampling approaches may
be used in other ways to reduce the imbalanceness hierarchical dataset.

Chapter 7 presented an approach to deal with different imbalanced hierarchical
classification datasets for different local classification approaches, in which binary/multi-
class resampling algorithms are intrinsically used inside the training step of the local
classification approaches. Besides the classification approaches, we have also proposed
different imbalanceness measures considering each of the local classification approaches,
which helped to corroborate with Hypothesis 1. An extensive experimental analysis
with eight datasets from the literature ranging from different contexts and characteristics
supported by statistical analysis shown that the proposed measures can measure the
imbalanceness in these specific conditions and the proposed resampling approaches can
indeed improve the classification results. The findings of Chapter 7 directly corroborates
with Hypothesis 3.

In Chapter 8 we proposed the first advances towards the proposal of global
resampling algorithms that are able to handle hierarchical classification datasets as a

Chapter 11. Conclusions 253

whole: the Hierarchical Random Oversampling (HROS) and Undersampling (HRUS). In
these algorithms we have designed a way to select the samples from the majority/minority
label paths by using the imbalanceness measures proposed in Chapter 6. We have also
considered the different depth of prediction in the hierarchical classification problems to
design these random resampling algorithms. The experimental results in twenty-three
datasets with different hierarchical characteristics, supported by statistical analysis, have
shown that the proposed global resampling algorithms can improve the classification results.
Furthermore, we have also proposed a testbed of datasets for the research community for
further studies in the hierarchical classification field.

Chapter 9 presented the Hierarchical Synthetic Oversampling Technique (HSMOTE),
the first heuristic global resampling agorithm for hierarchical classification datasets. The
proposed oversampling algorithm is an adapted version of the SMOTE and MLSMOTE
methods that is able to handle different hierarchical classification datasets. The experi-
mental results with the testbed presented in Chapter 8, supported by statistical analysis,
comproved that the proposed HSMOTE method can improve the classification results.
The algorithmic solutions presented in Chapters 8 and 9 directly corroborate with
Hypothesis 4, showing that novel hierarchical resampling methods can indeed improve
the classification results.

Finally, in Chapter 10 we presented the main case study of this Thesis. Using
the knowledge acquired during the development of this work we were able to identify
an important contribution for a real world problem currently affecting our society: The
identification of pneumonia pathogens, such as the SARS-COV-2, in X-ray chest images.
Firstly, we have identified that this problem can be also cast as a hierarchical classification
problem, since there are biological relationships between the pathogens that causes pneu-
monia. Secondly, this is a classification problem that suffers from several imbalanceness,
since there is a natural imbalanceness between the number of people with healthy lungs
and with lungs affected by pneumonia caused by specific types of pathogens, such as
COVID-19. We have employed all the resampling approaches proposed in this Thesis,
with the exception of the HMD ↔ MLD conversion, since the problem is not multi-label.
The findings of Chapter 10 definitively corroborates with Hypothesis 1, 2, 3 and 4,
considering all aspects of this Thesis and its contributions, since the experimental results
have show that the proposed resampling approaches improve the baseline results in all
classification scenarios.

After analyzing this extensive scenario towards the hierarchical classification of
imbalanced data it may be asked what kind of resampling approach should be used when
dealing with a new problem. The answer to this question is not straightforward, but we can
give some hints based on the findings of this Doctoral Research. First, the use of the flat
resampling techniques directly in the hierarchical datasets, mainly studied in Chapters

Chapter 11. Conclusions 254

5 and 6, were the least effective approaches when compared with the techniques from
Chapters 7, 8 and 9. This fact is acceptable and understandable, since they are the
baseline for the hierarchy-based approaches. Secondly, the use of the local classifiers with
flat resampling, proposed in Chapter 6, achieved interesting results in the experiments of
the Chapter but also provided the best classification results in the pneumonia classification
analysis, presented in Chapter 10. Hence, the local classifiers with resampling approaches
should be experimentally analyzed when dealing with a new imbalanced hierarchical
dataset. Finally, although the global resampling techniques (HROS, HRUS and HSMOTE),
proposed in Chapters 8 and 9, did not provide the best classification results in the case
study of Chapter 10, they have shown promising results (proved with statistical analysis)
for other hierarchical classification datasets in the Chapters that they were presented and,
thus, should also be experimentally tested in a new imbalanced hierarchical dataset.

We must highlight that the contributions regarding the hierarchical resampling
approaches were only experimentally tested in datasets with tree taxonomies. Thus,
although some of these contributions might work in hierarchical classification datasets
with DAG taxonomies, as we have not considered them when designing the protocol
of the proposed approaches, we have no further information regarding the performance
of the proposed approaches when applied to hierarchical classification problems which
DAG-structured class taxonomy.

11.2 Research Gaps and Future Work Directions

After the development of this Doctoral Research some gaps were open and the
following future work directions can be considered as further investigations in this context:

• Investigate the use of local classification approaches, i.e., LCN, LCPN and LCL, in
the following hierarchical classification scenarios:

– After resampling the hierarchical classification datasets with binary/multi-class
resampling algorithms (in single path problems) and multi-label resampling
method (in multiple path problems).

– After converting Hierarchical Multi-Label Datasets with the HMD ↔ MLD
conversion, presented in Chapter 6.

– After resampling the hierarchical classification datasets with HROS and HRUS
(proposed in Chapter 8) and the HSMOTE (proposed in Chapter 9).

• Investigate the use of other global classification approaches after resampling the
hierarchical classification datasets with HROS, HRUS and HSMOTE.

Chapter 11. Conclusions 255

• Propose hierarchical adaptations for the multi-label imbalanceness measures CVIR
and SCUMBLE.

• Propose an adapted version of the Tomek Link resampling algorithm for hierarchical
classification problems, which will allow the use of an hybrid resampling approach
combining the HSMOTE with the proposed Hierarchical Tomek Link.

• Investigate the results of applying a hybrid resampling technique using REMEDIAL-
HwR-MLSMOTE with MLTL.

• Investigate the impact of using the One-Against-One decomposition technique in
the multi-class experiments.

• Propose novel and/or adapted versions of heuristic resampling methods for hierar-
chical problems considering the majority/minority samples selection approaches for
hierarchical classification datasets proposed in this Thesis.

• Propose a formula/equation to calculate and suggest an increasement/decreasement
rate for a given imbalanced dataset (hierarchical or not).

• Investigate the impact of the resampling methods in the label paths visibility.

• Investigate the impact of missing data in the heuristic resampling algorithms.

• Propose hierarchical imbalanceness solutions regarding cost-sensitive solutions an
hybrid techniques.

• Investigate the impact of all the proposed approaches in hierarchical classification
problems with DAG taxonomies.

256

Bibliography

ABDULRAZZAQ, M. M.; YASEEN, I. F. T.; NOAH, S. A.; FADHIL, M. A.; ASHOUR,
M. U. XMIAR: X-ray medical image annotation and retrieval. In: Proceedings of the
Science and Information Conference. Las Vegas, USA: SAI, 2019. p. 638–651. Referenced
in page(s) 70.

AHMED, M.; MAHMOOD, A. N.; HU, J. A survey of network anomaly detection
techniques. Journal of Network and Computer Applications, Elsevier, v. 60, p. 19–31,
2016. Referenced in page(s) 70.

ALEKSOVSKI, D.; KOCEV, D.; DZEROSKI, S. Evaluation of distance measures
for hierarchical multilabel classification in functional genomics. In: Proceedings of the
Workshop on Learning from Multi-Label. Bled, Slovenia: ECML, 2009. p. 5–16. Referenced
in page(s) 61.

ALSHAMAA, D.; CHEHADE, F. M.; HONEINE, P. A hierarchical classification method
using belief functions. Signal Processing, Elsevier, v. 148, p. 68–77, 2018. Referenced in
page(s) 54.

ARIAS, J.; MARTINEZ-GOMEZ, J.; GAMEZ, J. A.; HERRERA, A. G. S. de; MÜLLER,
H. Medical image modality classification using discrete bayesian networks. Computer
Vision and Image Understanding, Elsevier, v. 151, p. 61–71, 2016. Referenced in page(s)
70.

ARIYARATNE, H. B.; ZHANG, D. A novel automatic hierachical approach to music
genre classification. In: Proceedings of the IEEE International Conference on Multimedia
and Expo Workshops. Melbourne, Australia: IEEE, 2012. p. 564–569. Referenced in
page(s) 29.

ASSOCIATION, A. M. ICD-10-CM 2020 The Complete Official Codebook. USA: American
Medical Association, 2019. Referenced in page(s) 214.

ATKINSON, A. B. On the measurement of inequality. Journal of Economic Theory,
Elsevier, v. 2, n. 3, p. 244–263, 1970. Referenced in page(s) 99.

BAI, J.; JIANG, H.; LI, S.; MA, X. NHL pathological image classification based on
hierarchical local information and googlenet-based representations. BioMed Research
International, Hindawi, v. 19, n. 3, 2019. Referenced in page(s) 70.

BARANDELA, R.; SÁNCHEZ, J. S.; GARCIA, V.; RANGEL, E. Strategies for learning
in class imbalance problems. Pattern Recognition, Pergamon, v. 36, n. 3, p. 849–851, 2003.
Referenced in page(s) 71.

BATISTA, G.; PRATI, R.; MONARD, M. A study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD Explorations Newsletter, v. 6,
n. 1, p. 20–29, 2004. Referenced 12 time(s) in page(s) 71, 74, 75, 76, 84, 85, 96, 97, 110,
119, 123, and 165.

Bibliography 257

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, v. 13, n. Feb, p. 281–305, 2012. Referenced 2 time(s) in
page(s) 129 and 157.

BERTOLINI, D.; OLIVEIRA, L. S.; JUSTINO, E.; SABOURIN, R. Texture-based
descriptors for writer identification and verification. Expert Systems with Applications,
Elsevier, v. 40, n. 6, p. 2069–2080, 2013. Referenced in page(s) 222.

BEWLEY, M. S.; NOURANI-VATANI, N.; RAO, D.; DOUILLARD, B.; PIZARRO,
O.; WILLIAMS, S. B. Hierarchical classification in auv imagery. In: Proceedings of the
International Conference on Field and Service Robotics. Chamonix, France: Springer,
2015. p. 3–16. Referenced in page(s) 54.

BINDER, A.; KAWANABE, M.; BREFELD, U. Efficient classification of images with
taxonomies. In: Proceedings of the Asian Conference on Computer Vision. Xian, China:
Springer, 2009. p. 351–362. Referenced in page(s) 29.

BLOCKEEL, H.; SCHIETGAT, L.; STRUYF, J.; DŽEROSKI, S.; CLARE, A. Decision
trees for hierarchical multilabel classification: A case study in functional genomics. In:
Proceedings of the European Conference on Principles of Data Mining and Knowledge
Discovery. Berlin, Germany: Springer, 2006. p. 18–29. Referenced 3 time(s) in page(s) 61,
62, and 139.

BONIFAZI, G.; CAPOBIANCO, G.; SERRANTI, S. A hierarchical classification approach
for recognition of low-density (ldpe) and high-density polyethylene (hdpe) in mixed plastic
waste based on short-wave infrared (swir) hyperspectral imaging. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy, Elsevier, v. 198, p. 115–122, 2018.
Referenced in page(s) 29.

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A training algorithm for optimal margin
classifiers. In: Proceedings of the Annual Workshop on Computational Learning Theory.
Pittsburgh, USA: ACM, 1992. p. 144–152. Referenced in page(s) 42.

BOUTELL, M. R.; LUO, J.; SHEN, X.; BROWN, C. M. Learning multi-label scene
classification. Pattern Recognition, v. 37, n. 9, p. 1757–1771, 2004. Referenced 2 time(s)
in page(s) 44 and 117.

BRAHNAM, S.; NANNI, L.; SEXTON, R. Introduction to neonatal facial pain detection
using common and advanced face classification techniques. Springer, p. 225–253, 2007.
Referenced in page(s) 215.

BRANCO, P.; TORGO, L.; RIBEIRO, R. P. A survey of predictive modeling on
imbalanced domains. ACM Computing Surveys, ACM, v. 49, n. 2, p. 31, 2016. Referenced
in page(s) 30.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, n. 1, p. 5–32, 2001.
Referenced in page(s) 41.

BRIGGS, F.; HUANG, Y.; RAICH, R.; EFTAXIAS, K.; LEI, Z.; CUKIERSKI, W.;
HADLEY, S. F.; HADLEY, A.; BETTS, M.; FERN, X. Z. The 9th annual mlsp
competition: New methods for acoustic classification of multiple simultaneous bird species
in a noisy environment. In: Proceedings of the IEEE International Workshop on Machine

Bibliography 258

Learning for Signal Processing. Southampton, United Kingdom: IEEE, 2013. p. 1–8.
Referenced 2 time(s) in page(s) 177 and 201.

BRINKER, K.; FÜRNKRANZ, J.; HÜLLERMEIER, E. A unified model for multilabel
classification and ranking. In: Proceedings of the European Conference on Artificial
Intelligence. Riva del Garda, Italy: AEPIA, 2006. p. 489–493. Referenced 2 time(s) in
page(s) 44 and 117.

BRONZE, G. Estudo brasileiro identifica COVID-19 por raio-x com 90% de eficácia.
Saúde, CNN Brasil, 2020. Available from Internet: https://bit.ly/cnnbrasil-covid19.
Referenced in page(s) 36.

BUNKHUMPORNPAT, C.; SINAPIROMSARAN, K.; LURSINSAP, C. Safe-level-smote:
Safe-level-synthetic minority oversampling technique for handling the class imbalanced
problem. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Bangkok, Thailand: ACM, 2009. p. 475–482. Referenced 3 time(s) in page(s) 71,
90, and 91.

BURRED, J. J.; LERCH, A. A hierarchical approach to automatic musical genre
classification. In: Proceedings of the International Conference on Digital Audio Effects.
London, United Kingdom: DAFx, 2003. p. 8–11. Referenced in page(s) 29.

CECI, M.; MALERBA, D. Classifying web documents in a hierarchy of categories: a
comprehensive study. Journal of Intelligent Information Systems, Springer, v. 28, n. 1, p.
37–78, 2007. Referenced in page(s) 54.

CERRI, R.; BARROS, R. C.; CARVALHO, A. C. D. Hierarchical multi-label classification
using local neural networks. Journal of Computer and System Sciences, Elsevier, v. 80,
n. 1, p. 39–56, 2014. Referenced in page(s) 54.

CERRI, R.; BARROS, R. C.; CARVALHO, A. C. de. Hierarchical classification of gene
ontology-based protein functions with neural networks. In: Proceedings of the International
Joint Conference on Neural Networks. Killarney, Ireland: IEEE, 2015. p. 1–8. Referenced
4 time(s) in page(s) 129, 139, 178, and 202.

CERRI, R.; BARROS, R. C.; CARVALHO, A. C. de; JIN, Y. Reduction strategies for
hierarchical multi-label classification in protein function prediction. BMC Bioinformatics,
BioMed Central, v. 17, n. 1, p. 373, 2016. Referenced in page(s) 55.

CERRI, R.; CARVALHO, A. C. P. F. de. New top-down methods using svms for
hierarchical multilabel classification problems. In: Proceedings of the International Joint
Conference on Neural Networks. Barcelona, Spain: IEEE, 2010. p. 1–8. Referenced 5
time(s) in page(s) 7, 55, 56, 57, and 58.

CERRI, R.; PAPPA, G. L.; CARVALHO, A. C. P.; FREITAS, A. A. An extensive
evaluation of decision tree–based hierarchical multilabel classification methods and
performance measures. Computational Intelligence, Wiley Online Library, v. 31, n. 1, p.
1–46, 2015. Referenced 9 time(s) in page(s) 7, 56, 62, 63, 64, 65, 66, 67, and 68.

CESA-BIANCHI, N.; GENTILE, C.; ZANIBONI, L. Incremental algorithms for
hierarchical classification. Journal of Machine Learning Research, v. 7, n. Jan, p. 31–54,
2006. Referenced 2 time(s) in page(s) 64 and 65.

https://bit.ly/cnnbrasil-covid19

Bibliography 259

CESA-BIANCHI, N.; RE, M.; VALENTINI, G. Synergy of multi-label hierarchical
ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine
Learning, Springer, v. 88, n. 1-2, p. 209–241, 2012. Referenced in page(s) 30.

CHAKRABARTI, S.; DOM, B.; AGRAWAL, R.; RAGHAVAN, P. Scalable feature
selection, classification and signature generation for organizing large text databases
into hierarchical topic taxonomies. The VLDB Journal, v. 7, n. 3, p. 163–178, 1998.
Referenced in page(s) 28.

CHAN, P. K.; STOLFO, S. J. Toward scalable learning with non-uniform class and cost
distributions: A case study in credit card fraud detection. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,
USA: ACM, 1998. p. 164–168. Referenced in page(s) 29.

CHAPELLE, O.; SCHOLKOPF, B.; ZIEN, A. Semi-supervised learning. IEEE
Transactions on Neural Networks, IEEE, v. 20, n. 3, p. 542–542, 2009. Referenced in
page(s) 39.

CHARTE, F.; RIVAS, A. J. R.; JESUS, M. del; HERRERA, F. MLeNN: a first approach
to heuristic multilabel undersampling. In: Proceedings of the International Conference on
Intelligent Data Engineering and Automated Learning. Salamanca, Spain: Springer, 2014.
p. 1–9. Referenced 6 time(s) in page(s) 103, 104, 105, 111, 119, and 124.

CHARTE, F.; RIVERA, A.; JESUS, M. del; HERRERA, F. Addressing imbalance in
multilabel classification: Measures and random resampling algorithms. Neurocomputing,
v. 163, p. 3–16, 2015. Referenced 6 time(s) in page(s) 102, 104, 105, 109, 119, and 124.

CHARTE, F.; RIVERA, A.; JESUS, M. del; HERRERA, F. MLSMOTE: Approaching
imbalanced multilabel learning through synthetic instance generation. Knowledge-Based
Systems, v. 89, p. 385–397, 2015. Referenced 12 time(s) in page(s) 104, 106, 107, 109,
119, 123, 124, 164, 185, 191, 207, and 243.

CHARTE, F.; RIVERA, A.; JESUS, M. del; HERRERA, F. Resampling multilabel
datasets by decoupling highly imbalanced labels. In: Proceedings of the International
Conference on Hybrid Artificial Intelligence Systems. Bilbao, Spain: Springer, 2015. p.
489–501. Referenced 4 time(s) in page(s) 107, 108, 119, and 124.

CHARTE, F.; RIVERA, A.; JESUS, M. del; HERRERA, F. Remedial-hwr: Tackling
multilabel imbalance through label decoupling and data resampling hybridization.
Neurocomputing, v. 326–327, n. 31, p. 110–122, 2019. Referenced 2 time(s) in page(s) 109
and 124.

CHARTE, F.; RIVERA, A.; JESUS, M. J. del; HERRERA, F. A first approach to deal
with imbalance in multi-label datasets. In: Proceedings of the International Conference
on Hybrid Artificial Intelligence Systems. Salamanca, Spain: Springer, 2013. p. 150–160.
Referenced 10 time(s) in page(s) 97, 102, 103, 119, 124, 134, 135, 145, 170, and 187.

CHARTE, F.; RIVERA, A.; JESUS, M. J. del; HERRERA, F. Concurrence among
imbalanced labels and its influence on multilabel resampling algorithms. In: Proceedings
of the International Conference on Hybrid Artificial Intelligence Systems. Salamanca,
Spain: Springer, 2014. p. 110–121. Referenced in page(s) 99.

Bibliography 260

CHARTE, F.; RIVERA, A. J.; JESUS, M. J. del; HERRERA, F. Dealing with difficult
minority labels in imbalanced mutilabel data sets. Neurocomputing, Elsevier, 2017.
Referenced 4 time(s) in page(s) 8, 100, 101, and 109.

CHAWLA, N.; BOWYER, K.; HALL, L.; KEGELMEYER, P. Smote: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, v. 16, p. 321–357,
2002. Referenced 8 time(s) in page(s) 70, 71, 85, 86, 87, 88, 106, and 185.

CHEBIRA, A.; BARBOTIN, Y.; JACKSON, C.; MERRYMAN, T.; SRINIVASA,
G.; MURPHY, R. F.; KOVAČEVIĆ, J. A multiresolution approach to automated
classification of protein subcellular location images. BMC Bioinformatics, Springer, v. 8,
n. 1, p. 210, 2007. Referenced in page(s) 215.

CHEN, B.; DUAN, L.; HU, J. Composite kernel based svm for hierarchical multi-label
gene function classification. In: Proceedings of the International Joint Conference on
Neural Networks. Brisbane, Australia: IEEE, 2012. p. 1–6. Referenced in page(s) 30.

CIESLAK, D. A.; HOENS, T. R.; CHAWLA, N. V.; KEGELMEYER, W. P. Hellinger
distance decision trees are robust and skew-insensitive. Data Mining and Knowledge
Discovery, Springer, v. 24, n. 1, p. 136–158, 2012. Referenced in page(s) 71.

CLARE, A. Machine learning and data mining for yeast functional genomics. Aberystwyth:
The University of Wales (Ph.D. Thesis), 2003. Referenced in page(s) 60.

CLARE, A.; KING, R. D. Predicting gene function in saccharomyces cerevisiae.
Bioinformatics, Oxford University Press, v. 19, n. 2, p. 42–49, 2003. Referenced 4 time(s)
in page(s) 59, 129, 177, and 202.

COHEN, J. P.; MORRISON, P.; DAO, L. COVID-19 image data collection. arXiv
2003.11597, 2020. Referenced 3 time(s) in page(s) 212, 217, and 229.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to
Algorithms. 3. ed. London, United Kingdom: MIT Press, 2009. Referenced in page(s) 123.

COST, S.; SALZBERG, S. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine learning, Springer, v. 10, n. 1, p. 57–78, 1993. Referenced in
page(s) 190.

COSTA, E. P.; LORENA, A. C.; CARVALHO, A. C.; FREITAS, A. A. Top-down
hierarchical ensembles of classifiers for predicting g-protein-coupled-receptor functions. In:
Proceedings of the Brazilian Symposium on Bioinformatics. Santo André, Brazil: SBC,
2008. p. 35–46. Referenced in page(s) 29.

COSTA, H.; GALVÃO, L.; MERSCHMANN, L.; SOUZA, M. A vns algorithm for feature
selection in hierarchical classification context. Electronic Notes in Discrete Mathematics,
Elsevier, v. 66, p. 79–86, 2018. Referenced in page(s) 55.

COSTA, Y. M. G. Pesquisadores do paraná estudam método para diagnosticar COVID-19
com raios x. CBN Maringá: Ciência e Tecnologia, CBN, 2020. Available from Internet:
https://bit.ly/cbn-mga-covid19. Referenced in page(s) 36.

COSTA, Y. M. G.; OLIVEIRA, L.; KOERICH, A. L.; GOUYON, F.; MARTINS, J.
Music genre classification using LBP textural features. Signal Processing, v. 92, n. 11, p.
2723–2737, 2012. Referenced in page(s) 222.

https://bit.ly/cbn-mga-covid19

Bibliography 261

CRAMMER, K.; DREDZE, M.; GANCHEV, K.; TALUKDAR, P. P.; CARROLL, S.
Automatic code assignment to medical text. In: Proceedings of the Workshop on Biological,
Translational, and Clinical Language Processing. Prague, Czech Republic: ACM, 2007. p.
129–136. Referenced in page(s) 117.

CRISTIANINI, N.; SHAWE-TAYLOR, J. An introduction to support vector machines
and other kernel-based learning methods. 1. ed. London, United Kingdom: Cambridge
University Press, 2000. 204 p. Referenced in page(s) 42.

CROSIER, M.; GRIFFIN, L. D. Using basic image features for texture classification.
International Journal of Computer Vision, Kluwer Academic Publishers, USA, v. 88, n. 3,
p. 447–460, 2010. Referenced in page(s) 224.

DAVIS, J.; GOADRICH, M. The relationship between precision-recall and roc curves.
In: Proceedings of the International Conference on Machine Learning. Pittsburgh, USA:
ACM, 2006. p. 233–240. Referenced 2 time(s) in page(s) 71 and 203.

DECORO, C.; BARUTCUOGLU, Z.; FIEBRINK, R. Bayesian aggregation for hierarchical
genre classification. In: Proceedings of the International Society for Music Information
Retrieval Conference. Kobe, Japan: ISMIR, 2007. p. 77–80. Referenced in page(s) 29.

DEFFERRARD, M.; BENZI, K.; VANDERGHEYNST, P.; BRESSON, X. FMA:
A dataset for music analysis. In: Proceedings of the International Society for Music
Information Retrieval Conference. Suzhou, China: ISMIR, 2017. Referenced 5 time(s) in
page(s) 117, 129, 155, 177, and 202.

DIAMANTINI, C.; POTENA, D. Bayes vector quantizer for class-imbalance problem.
IEEE Transactions on Knowledge and Data Engineering, IEEE, v. 21, n. 5, p. 638–651,
2009. Referenced in page(s) 71.

DIMITROVSKI, I.; KOCEV, D.; LOSKOVSKA, S.; DŽEROSKI, S. Hierarchical
annotation of medical images. Pattern Recognition, Elsevier, v. 44, n. 10-11, p. 2436–2449,
2011. Referenced 5 time(s) in page(s) 29, 61, 129, 177, and 201.

DIMITROVSKI, I.; KOCEV, D.; LOSKOVSKA, S.; DZEROSKI, S. Hierarchical
annotation of medical images. Pattern Recognition, v. 44, n. 10, p. 2436–2449, 2011.
Referenced in page(s) 155.

DIMITROVSKI, I.; KOCEV, D.; LOSKOVSKA, S.; DŽEROSKI, S. Hierarchical
classification of diatom images using ensembles of predictive clustering trees. Ecological
Informatics, Elsevier, v. 7, n. 1, p. 19–29, 2012. Referenced 4 time(s) in page(s) 29, 129,
177, and 202.

DOMINGOS, P. Metacost: A general method for making classifiers cost-sensitive. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Paris, France: ACM, 1999. p. 155–164. Referenced in page(s) 71.

DUDA, R. O.; HART, P. E.; STORK, D. G. Pattern classification. New York: John Wiley
& Sons Inc, 2001. Referenced in page(s) 40.

DUMAIS, S.; CHEN, H. Hierarchical classification of web content. In: Proceedings of
the International ACM SIGIR Conference on Research and Development in Information
Retrieval. Athens, Greece: ACM, 2000. p. 256–263. Referenced in page(s) 156.

Bibliography 262

EISNER, R.; POULIN, B.; SZAFRON, D.; LU, P.; GREINER, R. Improving protein
function prediction using the hierarchical structure of the gene ontology. In: Proceedings of
the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational
Biology. La Jolla, USA: IEEE, 2005. p. 1–10. Referenced in page(s) 54.

ELISSEEFF, A.; WESTON, J. A kernel method for multi-labelled classification. Advances
in Neural Information Processing Systems, Springer, v. 15, n. 1, p. 681–687, 2002.
Referenced 2 time(s) in page(s) 100 and 117.

FAGNI, T.; SEBASTIANI, F. On the selection of negative examples for hierarchical text
categorization. In: Proceedings of the Language & Technology Conference. Poznan, Poland:
ACM, 2007. p. 24–28. Referenced 2 time(s) in page(s) 29 and 54.

FELIX, R. Coronavírus: Pesquisadores do paraná criam método para diagnóstico com raio-
x. Inovação, Gazeta do Povo, 2020. Available from Internet: https://bit.ly/gazeta-covid19.
Referenced in page(s) 36.

FERNÁNDEZ, A.; LÓPEZ, V.; GALAR, M.; JESUS, M. J. D.; HERRERA, F. Analysing
the classification of imbalanced data-sets with multiple classes: Binarization techniques
and ad-hoc approaches. Knowledge-Based Systems, Elsevier, v. 42, p. 97–110, 2013.
Referenced 4 time(s) in page(s) 7, 71, 72, and 73.

FILHO, P. L. P.; OLIVEIRA, L. S.; NISGOSKI, S.; BRITTO JR, A. S. Forest species
recognition using macroscopic images. Machine Vision and Applications, Springer, v. 25,
n. 4, p. 1019–1031, 2014. Referenced in page(s) 222.

FUKUNAGA, K. Introduction to Statistical Pattern Recognition. 2. ed. Netherlands:
Academic Press, 2013. Referenced in page(s) 37.

FÜRNKRANZ, J.; HÜLLERMEIER, E.; MENCÍA, E. L.; BRINKER, K. Multilabel
classification via calibrated label ranking. Machine Learning, v. 73, n. 2, p. 133–153, 2008.
Referenced 2 time(s) in page(s) 45 and 117.

GARCÍA-PEDRAJAS, N.; PÉREZ-RODRÍGUEZ, J.; GARCÍA-PEDRAJAS, M.;
ORTIZ-BOYER, D.; FYFE, C. Class imbalance methods for translation initiation site
recognition in dna sequences. Knowledge-Based Systems, Elsevier, v. 25, n. 1, p. 22–34,
2012. Referenced in page(s) 71.

GATTAL, A.; DJEDDI, C.; SIDDIQI, I.; CHIBANI, Y. Gender classification from offline
multi-script handwriting images using oriented basic image features (oBIFs). Expert
Systems with Applications, v. 99, p. 155 – 167, 2018. Referenced in page(s) 224.

GERHARD, B. Pesquisadores maringaenses fazem estudo que pode ajudar a identificar
o COVID-19. Balanço Geral Maringá, RIC TV, 2020. Available from Internet:
https://bit.ly/ric-covid19. Referenced in page(s) 36.

GOUTTE, C.; GAUSSIER, E. A probabilistic interpretation of precision, recall and
f-score, with implication for evaluation. In: Proceedings of the European Conference
on Information Retrieval. Santiago de Compostela, Spain: ACM, 2005. p. 345–359.
Referenced 2 time(s) in page(s) 71 and 232.

https://bit.ly/gazeta-covid19
https://bit.ly/ric-covid19

Bibliography 263

GOZES, O.; FRID-ADAR, M.; GREENSPAN, H.; BROWNING, P. D.; ZHANG, H.;
JI, W.; BERNHEIM, A.; SIEGEL, E. Rapid AI development cycle for the coronavirus
(COVID-19) pandemic: Initial results for automated detection & patient monitoring using
deep learning CT image analysis. arXiv preprint arXiv:2003.05037, 2020. Referenced 2
time(s) in page(s) 217 and 220.

GRASSELLI, G.; PESENTI, A.; CECCONI, M. Critical care utilization for the COVID-19
outbreak in lombardy, italy: early experience and forecast during an emergency response.
JAMA, 2020. Referenced in page(s) 211.

GUAN, W.-j.; NI, Z.-y.; HU, Y.; LIANG, W.-h.; OU, C.-q.; HE, J.-x.; LIU, L.; SHAN, H.;
LEI, C.-l.; HUI, D. S. C. Clinical characteristics of coronavirus disease 2019 in china. New
England Journal of Medicine, Mass Medical Society, 2020. Referenced in page(s) 211.

GUZZONI, J. Pesquisadores se unem para agilizar diagnóstico da COVID-19. Boa
Noite Paraná, RPC TV, 2020. Available from Internet: https://bit.ly/rpc-mga-covid19.
Referenced in page(s) 36.

HA, T. M.; BUNKE, H. Off-line, handwritten numeral recognition by perturbation
method. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 19,
n. 5, p. 535–539, 1997. Referenced in page(s) 85.

HAIXIANG, G.; YIJING, L.; SHANG, J.; MINGYUN, G.; YUANYUE, H.; BING, G.
Learning from class-imbalanced data: Review of methods and applications. Expert Systems
with Applications, Elsevier, v. 73, p. 220–239, 2017. Referenced 2 time(s) in page(s) 30
and 158.

HAN, H.; WANG, W.-Y.; MAO, B.-H. Borderline-smote: A new oversampling method
in imbalanced datasets learning. In: Proceedings of the International Conference on
Intelligent Computing. Hefei, China: Springer, 2005. p. 878–887. Referenced 4 time(s) in
page(s) 71, 86, 89, and 186.

HART, P. The condensed nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, Citeseer, v. 14, n. 3, p. 515–516, 1968. Referenced 3 time(s) in
page(s) 71, 78, and 79.

HASTIE, T.; TIBSHIRANI, R. Classification by pairwise coupling. Advances in Neural
Information Processing Systems, Springer, v. 11, n. 1, p. 507–513, 1998. Referenced in
page(s) 73.

HE, H.; BAI, Y.; GARCIA, E. A.; LI, S. ADASYN: Adaptive synthetic sampling approach
for imbalanced learning. In: Proceedings of the IEEE International Joint Conference
Neural Networks. Hong Kong: IEEE, 2008. p. 1322–1328. Referenced 3 time(s) in page(s)
71, 94, and 96.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las
Vegas, USA: IEEE, 2016. p. 770–778. Referenced 2 time(s) in page(s) 217 and 225.

HERRERA, F.; CHARTE, F.; RIVERA, A. J.; JESUS, M. J. D. Multilabel Classification:
Problem Analysis, Metrics and Techniques. Granada, Spain: Springer, 2016. Referenced 4
time(s) in page(s) 8, 97, 99, and 100.

https://bit.ly/rpc-mga-covid19

Bibliography 264

IDRSSI, A. E.; RUICHEK, Y. Palmprint recognition using state-of-the-art local texture
descriptors: A comparative study. IET Biometrics, IET, 2020. Referenced in page(s) 224.

JANTZEN, J.; NORUP, J.; DOUNIAS, G.; BJERREGAARD, B. Pap-smear benchmark
data for pattern classification. Nature Inspired Smart Information Systems, p. 1–9, 2005.
Referenced in page(s) 215.

JAPKOWICZ, N.; STEPHEN, S. The class imbalance problem: A systematic study.
Intelligent Data Analysis, v. 6, n. 5, p. 429–449, 2002. Referenced 2 time(s) in page(s)
134 and 144.

JELLER, A. Estudo possibilita diagnóstico da COVID-19 via raio-x. Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior, CAPES, 2020. Available from Internet:
https://bit.ly/capes-covid19. Referenced in page(s) 36.

KANNALA, J.; RAHTU, E. BSIF: Binarized statistical image features. In: Proceedings of
the International Conference on Pattern Recognition. Tsukuba, Japan: ACM, 2012. p.
1363–1366. Referenced in page(s) 223.

KHAN, A. I.; SHAH, J. L.; BHAT, M. Coronet: A deep neural network for detection and
diagnosis of COVID-19 from chest x-ray images. arXiv preprint arXiv:2004.04931, 2020.
Referenced 2 time(s) in page(s) 218 and 220.

KHOWAJA, S. A.; YAHYA, B. N.; LEE, S.-L. Hierarchical classification method based on
selective learning of slacked hierarchy for activity recognition systems. Expert Systems
with Applications, Elsevier, v. 88, p. 165–177, 2017. Referenced in page(s) 29.

KIRITCHENKO, S.; MATWIN, S.; FAMILI, F. Hierarchical text categorization as a tool
of associating genes with gene ontology codes. In: Proceedings of the European Workshop
on Data Mining and Text Mining in Bioinformatics. Pisa, Italy: ACM, 2004. p. 30–34.
Referenced in page(s) 63.

KIRITCHENKO, S.; MATWIN, S.; FAMILI, F. Functional annotation of genes using
hierarchical text categorization. In: Proceedings of the ACL Workshop on Linking
Biological Literature. Detroit, USA: ACL, 2005. Referenced 2 time(s) in page(s) 63
and 64.

KITTLER, J.; HATEF, M.; DUIN, R. P. W.; MATAS, J. On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 20, n. 3, p. 226–239,
1998. Referenced 2 time(s) in page(s) 225 and 226.

KLIMT, B.; YANG, Y. The enron corpus: A new dataset for email classification research.
In: Proceedings of the European Conference on Machine Learning. Pisa, Italy: ECML,
2004. p. 217–226. Referenced 2 time(s) in page(s) 99 and 117.

KLIMT, B.; YANG, Y. Introducing the enron corpus. In: Proceedings of the Conference on
Email and Anti-Spam. Mountain View, California, USA: ACM, 2004. p. 1–2. Referenced
2 time(s) in page(s) 177 and 201.

KOLLER, D.; SAHAMI, M. Hierarchically classifying documents using very few words.
In: Proceedings of the International Conference on Machine Learning. San Francisco,
USA: ACM, 1997. Referenced in page(s) 28.

https://bit.ly/capes-covid19

Bibliography 265

KOTSIFAKOS, A.; KOTSIFAKOS, E. E.; PAPAPETROU, P.; ATHITSOS, V. Genre
classification of symbolic music with smbgt. In: Proceedings of the International
Conference on Pervasive Technologies Related to Assistive Environments. Island of Rhodes,
Greece: ACM, 2013. p. 1–7. Referenced in page(s) 40.

KRAWCZYK, B. Learning from imbalanced data: open challenges and future directions.
Progress in Artificial Intelligence, Springer, v. 5, n. 4, p. 221–232, 2016. Referenced in
page(s) 185.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. Springer, p. 1097–1105, 2012. Referenced in page(s) 225.

KUMAR, S.; ROWLEY, H. A.; WANG, X.; RODRIGUES, J. J. M. Hierarchical
classification in credit card data extraction. [S.l.]: Google Patents, 2015. US Patent
9,213,907. Referenced 2 time(s) in page(s) 30 and 70.

LAURIKKALA, J. Improving identification of difficult small classes by balancing class
distribution. In: Proceedings of the Conference on Artificial Intelligence in Medicine in
Europe. Cascais, Portugal: Springer, 2001. p. 63–66. Referenced 2 time(s) in page(s) 82
and 83.

LI, D.; JU, Y.; ZOU, Q. Protein folds prediction with hierarchical structured SVM.
Current Proteomics, Bentham Science Publishers, v. 13, n. 2, p. 79–85, 2016. Referenced
in page(s) 30.

LI, L.; QIN, L.; XU, Z.; YIN, Y.; WANG, X.; KONG, B.; BAI, J.; LU, Y.; FANG, Z.;
SONG, Q. Artificial intelligence distinguishes COVID-19 from community acquired
pneumonia on chest ct. Radiology, Radiological Society of North America, p. 200905, 2020.
Referenced 2 time(s) in page(s) 217 and 220.

LI, X.; KUANG, D.; LING, C. X. Active learning for hierarchical text classification. In:
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Kuala Lumpur, Malaysia: ACM, 2012. p. 14–25. Referenced in page(s) 28.

LIN, C.; ZOU, Y.; QIN, J.; LIU, X.; JIANG, Y.; KE, C.; ZOU, Q. Hierarchical
classification of protein folds using a novel ensemble classifier. PLOS One Journal, v. 8,
n. 2, p. e56499, 2013. Referenced in page(s) 29.

MACKENZIE, G. The definition and classification of pneumonia. Pneumonia, Springer,
v. 8, n. 1, p. 14, 2016. Referenced in page(s) 213.

MADJAROV, G.; KOCEV, D.; GJORGJEVIKJ, D.; DŽEROSKI, S. An extensive
experimental comparison of methods for multi-label learning. Pattern Recognition, v. 45,
n. 9, p. 3084–3104, 2012. Referenced 2 time(s) in page(s) 7 and 46.

MAGUOLO, G.; NANNI, L. A critic evaluation of methods for COVID-19 automatic
detection from x-ray images. arXiv preprint arXiv:2004.12823, 2020. Referenced in
page(s) 230.

MANGOLIN, R. B.; PEREIRA, R. M.; BRITTO JR, A. S.; SILLA JR, C. N.; FELTRIM,
V. D.; GONCALVES, D. B.; COSTA, Y. M. G. A multimodal approach for multi-label
movie genre classification. Multimedia Tools and Applications, Springer, v. 79, n. 43, p.
1–30, 2020. Referenced 2 time(s) in page(s) 34 and 69.

Bibliography 266

MANI, I.; ZHANG, I. knn approach to unbalanced data distributions: a case study
involving information extraction. In: Proceedings of Workshop on Learning from
Imbalanced Datasets. Washington DC, USA: ACM, 2003. v. 126. Referenced 3 time(s) in
page(s) 71, 75, and 78.

MCNAMARA, D. S.; CROSSLEY, S. A.; ROSCOE, R. D.; ALLEN, L. K.; DAI, J. A
hierarchical classification approach to automated essay scoring. Assessing Writing, v. 23,
p. 35–59, 2015. Referenced in page(s) 29.

MELO, A.; PAULHEIM, H.; VÖLKER, J. Type prediction in rdf knowledge bases using
hierarchical multilabel classification. In: Proceedings of the International Conference on
Web Intelligence, Mining and Semantics. Nimes, France: ACM, 2016. p. 14. Referenced in
page(s) 54.

MERMELSTEIN, P. Distance measures for speech recognition, psychological and
instrumental. Pattern Recognition and Artificial Intelligence, v. 116, p. 374–388, 1976.
Referenced in page(s) 139.

MESAROS, A.; HEITTOLA, T.; BENETOS, E.; FOSTER, P.; LAGRANGE, M.;
VIRTANEN, T.; PLUMBLEY, M. Detection and classification of acoustic scenes and
events. IEEE Transactions on Audio, Speech, and Language Processing, v. 26, n. 2, p.
379–393, 2018. Referenced 2 time(s) in page(s) 30 and 70.

METZ, J.; FREITAS, A. A.; MONARD, M. C.; CHERMAN, E. A. A study on the
selection of local training sets for hierarchical classification tasks. Proceedings of the
Encontro Nacional de Inteligncia Artificial, Natal, Brazil, p. 572–583, 2011. Referenced 3
time(s) in page(s) 129, 177, and 201.

MEYER, D. Support vector machines: The interface to libsvm in package e1071. Citeseer,
2004. Referenced 3 time(s) in page(s) 7, 42, and 43.

MITCHELL, T. M. Machine Learning. Burr Ridge, USA: McGraw Hill, 1997. 870–877 p.
Referenced in page(s) 37.

MONARD, M. C.; BARANAUSKAS, J. A. Conceitos sobre aprendizado de máquina.
Sistemas Inteligentes Fundamentos e Aplicações, v. 1, n. 1, p. 32, 2003. Referenced 2
time(s) in page(s) 37 and 38.

MUKAKA, M. M. A guide to appropriate use of correlation coefficient in medical research.
Malawi Medical Journal, Medical Association of Malawi, v. 24, n. 3, p. 69–71, 2012.
Referenced in page(s) 166.

MUSHER, D. M.; THORNER, A. R. Community-acquired pneumonia. New England
Journal of Medicine, Mass Medical Soc, v. 371, n. 17, p. 1619–1628, 2014. Referenced in
page(s) 211.

NAIK, A.; RANGWALA, H. Large-scale hierarchical classification with rare categories
and inconsistencies. AI Matters, ACM, v. 2, n. 3, p. 27–29, 2016. Referenced in page(s)
30.

NAIK, A.; RANGWALA, H. Large Scale Hierarchical Classification: State of the Art.
USA: Springer, 2018. Referenced in page(s) 157.

Bibliography 267

NAKANO, F. K.; LIETAERT, M.; VENS, C. Machine learning for discovering missing
or wrong protein function annotations. BMC Bioinformatics, v. 20, n. 1, p. 485, 2019.
Referenced in page(s) 157.

NAKANO, F. K.; PINTO, W. J.; PAPPA, G. L.; CERRI, R. Top-down strategies for
hierarchical classification of transposable elements with neural networks. In: Proceedings
of the International Joint Conference on Neural Networks. Anchorage, USA: IEEE, 2017.
p. 2539–2546. Referenced in page(s) 55.

NAKANO, F. kenji; MASTELINI, S. M.; BARBON, S.; CERRI, R. Stacking methods
for hierarchical classification. In: Proceedings of the IEEE International Conference on
Machine Learning and Applications. Cancun, Mexico: IEEE, 2017. p. 289–296. Referenced
in page(s) 54.

NANNI, L.; LUMINI, A.; BRAHNAM, S. Local binary patterns variants as texture
descriptors for medical image analysis. Artificial Intelligence in Medicine, Elsevier, v. 49,
n. 2, p. 117–125, 2010. Referenced 3 time(s) in page(s) 215, 220, and 222.

NAPIERAŁA, K.; STEFANOWSKI, J.; WILK, S. Learning from imbalanced data in
presence of noisy and borderline examples. In: Proceedings of the International Conference
on Rough Sets and Current Trends in Computing. Warsaw, Poland: Springer, 2010. p.
158–167. Referenced 3 time(s) in page(s) 71, 91, and 95.

NARIN, A.; KAYA, C.; PAMUK, Z. Automatic detection of coronavirus disease
(COVID-19) using x-ray images and deep convolutional neural networks. arXiv preprint
arXiv:2003.10849, 2020. Referenced 2 time(s) in page(s) 217 and 220.

NEWELL, A. J.; GRIFFIN, L. D. Writer identification using oriented basic image features
and the delta encoding. Pattern Recognition, v. 47, n. 6, p. 2255 – 2265, 2014. Referenced
in page(s) 224.

OJALA, T.; PIETIKÄINEN, M.; HARWOOD, D. A comparative study of texture
measures with classification based on featured distributions. Pattern Recognition, Elsevier,
v. 29, n. 1, p. 51–59, 1996. Referenced 2 time(s) in page(s) 221 and 222.

OJANSIVU, V.; HEIKKILÄ, J. Blur insensitive texture classification using local phase
quantization. In: Proceedings of the International Conference on Image and Signal
Processing. Herbourg-Octeville, France: Springer, 2008. p. 236–243. Referenced in page(s)
224.

ORGANIZATION, W. H. Coronavirus disease 2019 (COVID-19): situation report, 72.
World Health Organization, 2020. Referenced 2 time(s) in page(s) 211 and 213.

OTERO, F. E.; FREITAS, A. A.; JOHNSON, C. G. A hierarchical classification ant
colony algorithm for predicting gene ontology terms. In: Proceedings of the European
Conference on Evolutionary Computation, Machine Learning and Data Mining in
Bioinformatics. Tubingen, Germany: Springer, 2009. p. 68–79. Referenced 3 time(s) in
page(s) 29, 58, and 59.

OTERO, F. E.; FREITAS, A. A.; JOHNSON, C. G. A hierarchical multi-label
classification ant colony algorithm for protein function prediction. Memetic Computing,
Springer, v. 2, n. 3, p. 165–181, 2010. Referenced in page(s) 58.

Bibliography 268

OZTURK, T.; TALO, M.; YILDIRIM, E. A.; BALOGLU, U. B.; YILDIRIM, O.;
ACHARYA, U. R. Automated detection of COVID-19 cases using deep neural networks
with x-ray images. Computers in Biology and Medicine, Elsevier, p. 103792, 2020.
Referenced 2 time(s) in page(s) 218 and 220.

O’GRADY, K.-A. F.; TORZILLO, P. J.; FRAWLEY, K.; CHANG, A. B. The radiological
diagnosis of pneumonia in children. Pneumonia, BioMed Central, v. 5, n. 1, p. 38, 2014.
Referenced in page(s) 213.

PARMEZAN, A. R. S.; SOUZA, V. M.; BATISTA, G. E. Towards hierarchical
classification of data streams. In: Proceedings of the Iberoamerican Congress on Pattern
Recognition. Madrid, Spain: Springer, 2018. p. 314–322. Referenced 3 time(s) in page(s)
129, 177, and 201.

PARTALAS, I.; KOSMOPOULOS, A.; BASKIOTIS, N.; ARTIÈRES, T.; PALIOURAS,
G.; GAUSSIER, É.; ANDROUTSOPOULOS, I.; AMINI, M.; GALLINARI, P. LSHTC: A
benchmark for large-scale text classification. CoRR, abs/1503.08581, 2015. Referenced in
page(s) 155.

PARVEEN, N.; SATHIK, M. M. Detection of pneumonia in chest x-ray images. Journal
of X-Ray Science and Technology, IOS Press, v. 19, n. 4, p. 423–428, 2011. Referenced 2
time(s) in page(s) 215 and 220.

PEREIRA, G. T.; GABRIEL, P. H.; CERRI, R. Hierarchical classification of transposable
elements with a weighted genetic algorithm. In: Proceedings of the EPIA Conference on
Artificial Intelligence. Vila Real, Portugal: Springer, 2019. p. 737–749. Referenced 4
time(s) in page(s) 129, 139, 178, and 202.

PEREIRA, R. M. Novo sistema de diagnóstico por raio-x. PanNews SP, JovemPan, 2020.
Available from Internet: https://bit.ly/jovempan-covid19. Referenced in page(s) 36.

PEREIRA, R. M.; BERTOLINI, D.; TEIXEIRA, L. O.; SILLA JR, C. N.; COSTA, Y.
M. G. COVID-19 identification in chest x-ray images on flat and hierarchical classification
scenarios. Computer Methods and Programs in Biomedicine, Elsevier, v. 194, p. 1–28,
2020. Referenced 6 time(s) in page(s) 29, 30, 33, 35, 70, and 213.

PEREIRA, R. M.; COSTA, Y. M. G.; AGUIAR, R. L.; BRITTO JR, A. S.; OLIVEIRA, L.
E. S.; SILLA JR, C. N. Representation learning vs. handcrafted features for music genre
classification. In: Proceedings of the International Joint Conference on Neural Networks.
Budapest, Hungary: IEEE, 2019. p. 1–8. Referenced 2 time(s) in page(s) 33 and 68.

PEREIRA, R. M.; COSTA, Y. M. G.; SILLA JR, C. N. Dealing with imbalanceness in
hierarchical multi-label datasets using multi-label resampling techniques. In: Proceedings
of the IEEE International Conference on Tools with Artificial Intelligence. Volos, Greece:
IEEE, 2018. p. 818–824. Referenced 6 time(s) in page(s) 33, 134, 145, 157, 170, and 188.

PEREIRA, R. M.; COSTA, Y. M. G.; SILLA JR, C. N. MLTL: A multi-label approach
for the tomek link undersampling algorithm. Neurocomputing, Elsevier, v. 383, p. 95–105,
2020. Referenced 2 time(s) in page(s) 33 and 110.

PEREIRA, R. M.; SILLA JR, C. N. Using simplified chords sequences to classify songs
genres. In: Proceedings of IEEE International Conference on Multimedia and Expo. Hong
Kong: IEEE, 2017. p. 1446–1451. Referenced 2 time(s) in page(s) 33 and 68.

https://bit.ly/jovempan-covid19

Bibliography 269

PUNERA, K.; GHOSH, J. Enhanced hierarchical classification via isotonic smoothing. In:
Proceedings of the International Conference on World Wide Web. Beijing, China: ACM,
2008. p. 151–160. Referenced in page(s) 29.

QUINLAN, J. R. C4.5: Programs for machine learning. Morgan Kaufmann, p. 629, 1993.
Referenced in page(s) 41.

RAMENTOL, E.; CABALLERO, Y.; BELLO, R.; HERRERA, F. Smote-rsb*: a hybrid
preprocessing approach based on oversampling and undersampling for high imbalanced
data-sets using smote and rough sets theory. Knowledge and Information Systems,
Springer, v. 33, n. 2, p. 245–265, 2012. Referenced 2 time(s) in page(s) 8 and 85.

RAMÍREZ-CORONA, M.; SUCAR, L. E.; MORALES, E. F. Hierarchical multilabel
classification based on path evaluation. International Journal of Approximate Reasoning,
Elsevier, v. 68, p. 179–193, 2016. Referenced in page(s) 55.

READ, J.; PFAHRINGER, B.; HOLMES, G.; FRANK, E. Classifier chains for multi-label
classification. In: Proceedings of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Bled, Slovenia: Springer, 2009. p. 254–269. Referenced
2 time(s) in page(s) 45 and 117.

REMUZZI, A.; REMUZZI, G. COVID-19 and italy: what next? The Lancet, Elsevier,
2020. Referenced in page(s) 213.

RIFKIN, R.; KLAUTAU, A. In defense of one-vs-all classification. Journal of Machine
Learning Research, v. 5, n. Jan, p. 101–141, 2004. Referenced in page(s) 73.

RIVERA, A. R.; CASTILLO, J. R.; CHAE, O. O. Local directional number pattern for
face analysis: Face and expression recognition. IEEE Transactions on Image Processing,
v. 22, n. 5, p. 1740–1752, 2013. Referenced in page(s) 223.

ROY, S. B.; TEREDESAI, A.; ZOLFAGHAR, K.; LIU, R.; HAZEL, D.; NEWMAN, S.;
MARINEZ, A. Dynamic hierarchical classification for patient risk-of-readmission. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Sydney, Australia: ACM, 2015. p. 1691–1700. Referenced in page(s) 29.

RUEPP, A.; ZOLLNER, A.; MAIER, D.; ALBERMANN, K.; HANI, J.; MOKREJS,
M.; TETKO, I.; GÜLDENER, U.; MANNHAUPT, G.; MÜNSTERKÖTTER, M. The
funcat, a functional annotation scheme for systematic classification of proteins from whole
genomes. Nucleic Acids Research, Oxford University Press, v. 32, n. 18, p. 5539–5545,
2004. Referenced in page(s) 155.

SAMUEL, A. L. Some studies in machine learning using the game of checkers. Springer, p.
366–400, 1988. Referenced in page(s) 28.

SCALCO, E.; RIZZO, G. Texture analysis of medical images for radiotherapy applications.
The British Journal of Radiology, The British Institute of Radiology., v. 90, n. 1070, p.
20160642, 2017. Referenced 2 time(s) in page(s) 216 and 220.

SELF, W. H.; COURTNEY, D. M.; MCNAUGHTON, C. D.; WUNDERINK, R. G.;
KLINE, J. A. High discordance of chest x-ray and computed tomography for detection of
pulmonary opacities in ed patients: implications for diagnosing pneumonia. The American
journal of emergency medicine, Elsevier, v. 31, n. 2, p. 401–405, 2013. Referenced 2
time(s) in page(s) 211 and 213.

Bibliography 270

SHARMA, S.; BELLINGER, C.; KRAWCZYK, B.; ZAIANE, O.; JAPKOWICZ, N.
Synthetic oversampling with the majority class: A new perspective on handling extreme
imbalance. In: Proceedings of the IEEE International Conference on Data Mining.
Singapore: IEEE, 2018. p. 447–456. Referenced in page(s) 186.

SILLA JR, C. N. COVID-19: estudo desenvolve diagnóstico por raio-x. CBN Curitiba,
CBN, 2020. Available from Internet: https://bit.ly/cbn-covid19. Referenced in page(s) 36.

SILLA JR, C. N. Estudo com inteligência artificial para diagnóstico da COVID-
19 em raio-x. Light News, Transamerica Light, 2020. Available from Internet:
https://bit.ly/lightnews-covid19. Referenced in page(s) 36.

SILLA JR, C. N. Imagens de raio-x no diagnóstico da COVID-19. Meio Dia Paraná, RPC
TV, 2020. Available from Internet: https://bit.ly/rpc-covid19. Referenced in page(s) 36.

SILLA JR, C. N. Radiografia inteligente. Com as armas do conhecimento, SuperAcesso,
2020. Available from Internet: https://bit.ly/3r12JLq. Referenced in page(s) 36.

SILLA JR, C. N.; FREITAS, A. A. A global-model naive bayes approach to the
hierarchical prediction of protein functions. In: Proceedings of the IEEE International
Conference on Data Mining. Miami, USA: IEEE, 2009. p. 992–997. Referenced in page(s)
60.

SILLA JR, C. N.; FREITAS, A. A. Novel top-down approaches for hierarchical
classification and their application to automatic music genre classification. In: Proceedings
of the IEEE International Conference on Systems, Man and Cybernetics. San Antonio,
USA: IEEE, 2009. p. 3499–3504. Referenced 2 time(s) in page(s) 29 and 55.

SILLA JR, C. N.; FREITAS, A. A. A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, v. 22, n. 1-2, p. 31–72, 2011.
Referenced 17 time(s) in page(s) 7, 28, 29, 49, 50, 51, 52, 53, 54, 144, 149, 169, 176, 185,
186, 188, and 214.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. Referenced in page(s) 225.

SNOEK, C. G. M.; WORRING, M.; SMEULDERS, A. W. M. Early versus late fusion
in semantic video analysis. In: Proceedings of the ACM International Conference on
Multimedia. Singapore: ACM, 2005. p. 399–402. Referenced in page(s) 225.

SOKOLOVA, M.; JAPKOWICZ, N.; SZPAKOWICZ, S. Beyond accuracy, f-score and
roc: a family of discriminant measures for performance evaluation. In: Australasian
Joint Conference on Artificial Intelligence. Hobart, Australia: ACM, 2006. p. 1015–1021.
Referenced in page(s) 159.

SOKOLOVA, M.; LAPALME, G. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, v. 45, n. 4, p. 427–437, 2009.
Referenced in page(s) 48.

SONG, T.; LI, H.; MENG, F.; WU, Q.; CAI, J. LETRIST: Locally encoded transform
feature histogram for rotation-invariant texture classification. IEEE Transactions on
Circuits and Systems for Video Technology, v. 28, n. 7, p. 1565–1579, 2018. Referenced in
page(s) 223.

https://bit.ly/cbn-covid19
https://bit.ly/lightnews-covid19
https://bit.ly/rpc-covid19
https://bit.ly/3r12JLq

Bibliography 271

SPYROMITROS, E.; TSOUMAKAS, G.; VLAHAVAS, I. An empirical study of lazy
multilabel classification algorithms. In: Proceedings of the Hellenic Conference on
Artificial Intelligence. Syros, Greece: Springer, 2008. p. 401–406. Referenced 2 time(s) in
page(s) 46 and 117.

SRIVASTAVA, A. N.; ZANE-ULMAN, B. Discovering recurring anomalies in text reports
regarding complex space systems. In: Proceedings of the IEEE Aerospace Conference. Big
Sky, MT, USA: IEEE, 2005. p. 3853–3862. Referenced in page(s) 99.

STANFILL, C.; WALTZ, D. Toward memory-based reasoning. Communications of the
ACM, ACM, v. 29, n. 12, p. 1213–1228, 1986. Referenced 2 time(s) in page(s) 106
and 190.

STEFANOWSKI, J.; WILK, S. Selective pre-processing of imbalanced data for improving
classification performance. In: Proceedings of the International Conference on Data
Warehousing and Knowledge Discovery. Turin, Italy: Springer, 2008. p. 283–292.
Referenced 3 time(s) in page(s) 71, 90, and 92.

SUN, A.; LIM, E.-P. Hierarchical text classification and evaluation. In: Proceedings of the
IEEE International Conference on Data Mining. San Jose, CA, USA: IEEE, 2001. p.
521–528. Referenced in page(s) 66.

SUN, Y.; KAMEL, M. S.; WONG, A. K.; WANG, Y. Cost-sensitive boosting for
classification of imbalanced data. Pattern Recognition, Elsevier, v. 40, n. 12, p. 3358–3378,
2007. Referenced in page(s) 71.

SURVEILLANCES, V. The epidemiological characteristics of an outbreak of 2019 novel
coronavirus diseases (COVID-19) in china. China CDC Weekly, v. 8, n. 2, p. 113–122,
2020. Referenced in page(s) 213.

SZALKAI, B.; GROLMUSZ, V.; HANCOCK, J. Seclaf: A webserver and deep neural
network design tool for hierarchical biological sequence classification. Bioinformatics, v. 1,
p. 3, 2018. Referenced in page(s) 29.

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.;
ERHAN, D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with convolutions.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Boston, USA: IEEE, 2015. p. 1–9. Referenced in page(s) 225.

SZEGEDY, C.; VANHOUCKE, V.; IOFFE, S.; SHLENS, J.; WOJNA, Z. Rethinking the
inception architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. p. 2818–2826.
Referenced in page(s) 224.

TAN, P.-N.; STEINBACH, M.; KUMAR, V. Introduction to Data Mining. 1. ed. India:
Pearson, 2005. 769 p. Referenced 3 time(s) in page(s) 7, 40, and 41.

TING, K. M. An instance-weighting method to induce cost-sensitive trees. IEEE
Transactions on Knowledge and Data Engineering, IEEE, v. 14, n. 3, p. 659–665, 2002.
Referenced in page(s) 71.

TIPTON, K. F. Nomenclature committee of the international union of biochemistry and
molecular biology. European Journal of Biochemistry, v. 223, n. 1, p. 1, 1994. Referenced
in page(s) 29.

Bibliography 272

TODOROVSKI, L.; BLOCKEEL, H.; DZEROSKI, S. Ranking with predictive clustering
trees. In: Proceedings of the European Conference on Machine Learning. Helsinki, Finland:
ECML, 2002. p. 444–455. Referenced in page(s) 139.

TOLKSDORF, K.; BUDA, S.; SCHULER, E.; WIELER, L. H.; HAAS, W. Influenza-
associated pneumonia as reference to assess seriousness of coronavirus disease (COVID-19).
Eurosurveillance, v. 25, n. 11, 2020. Referenced in page(s) 211.

TOMEK, I. An experiment with the edited nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, n. 6, p. 448–452, 1976. Referenced 5 time(s) in page(s)
79, 81, 82, 84, and 110.

TROHIDIS, K.; TSOUMAKAS, G.; KALLIRIS, G.; VLAHAVAS, I. Multi-label
classification of music into emotions. In: Proceedings of The International Society for
Music Information Retrieval Conference. Philadelphia, USA: ISMIR, 2008. p. 325–330.
Referenced 3 time(s) in page(s) 117, 177, and 201.

TSOUMAKAS, G.; KATAKIS, I. Multi-label classification: An overview. International
Journal of Data Warehousing and Mining, v. 3, n. 3, 2006. Referenced 3 time(s) in
page(s) 28, 43, and 44.

TSOUMAKAS, G.; KATAKIS, I.; VLAHAVAS, I. Effective and efficient multilabel
classification in domains with large number of labels. In: Proceedings of the Workshop on
Mining Multidimensional Data. Montpellier, France: ACM, 2008. p. 30–44. Referenced 2
time(s) in page(s) 45 and 117.

TSOUMAKAS, G.; KATAKIS, I.; VLAHAVAS, I. Random k-labelsets for multilabel
classification. IEEE Transactions on Knowledge and Data Engineering, v. 23, n. 7, p.
1079–1089, 2011. Referenced 2 time(s) in page(s) 46 and 117.

TSOUMAKAS, G.; VLAHAVAS, I. Random k-labelsets: An ensemble method for
multilabel classification. Machine Learning: ECML 2007, p. 406–417, 2007. Referenced 2
time(s) in page(s) 117 and 156.

TSOUMAKAS, G.; XIOUFIS, E.; VILCEK, J.; VLAHAVAS, I. Mulan: A java library for
multi-label learning. Journal of Machine Learning Research, v. 12, p. 2411–2414, July
2011. Referenced 2 time(s) in page(s) 34 and 117.

TURNBULL, D.; BARRINGTON, L.; TORRES, D.; LANCKRIET, G. Towards musical
query-by-semantic-description using the CAL500 dataset. In: Proceedings of the Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Amsterdam, The Netherlands: ACM, 2007. p. 439–446. Referenced 2 time(s) in
page(s) 177 and 201.

TURNBULL, D.; BARRINGTON, L.; TORRES, D.; LANCKRIET, G. Semantic
annotation and retrieval of music and sound effects. IEEE Transactions on Audio, Speech,
and Language Processing, v. 16, n. 2, p. 467–476, 2008. Referenced 2 time(s) in page(s)
99 and 116.

VALENTE, J. Universidades desenvolvem apoio a diagnóstico de COVID-19 com raio-x.
Saúde, Agencia Brasil, 2020. Available from Internet: https://bit.ly/agenciabrasil-covid19.
Referenced in page(s) 36.

https://bit.ly/agenciabrasil-covid19

Bibliography 273

VALENTINI, G. True path rule hierarchical ensembles. In: Proceedings of the International
Workshop on Multiple Classifier Systems. Reykjavik, Iceland: Springer, 2009. p. 232–241.
Referenced in page(s) 54.

VALERIO, V. D.; PEREIRA, R. M.; COSTA, Y. M. G.; BERTOINI, D.; SILLA JR, C. N.
A resampling approach for imbalanceness on music genre classification using spectrograms.
In: Proceedings of the International Florida Artificial Intelligence Conference. Melbourne,
USA: AAAI, 2018. Referenced 2 time(s) in page(s) 34 and 69.

VAPNIK, V. N.; CHERVONENKIS, A. Y. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and Its Applications,
v. 16, n. 2, p. 283–305, 1971. Referenced in page(s) 42.

VENS, C.; STRUYF, J.; SCHIETGAT, L.; DŽEROSKI, S.; BLOCKEEL, H. Decision
trees for hierarchical multi-label classification. Journal of Machine Learning, v. 73, n. 2,
p. 185, 2008. Referenced 2 time(s) in page(s) 61 and 139.

WANG, K.; ZHOU, S.; HE, Y. Hierarchical classification of real life documents. In:
Proceedings of the SIAM International Conference on Data Mining. Chicago, USA: SIAM,
2001. p. 1–16. Referenced in page(s) 58.

WANG, L.; WONG, A. COVID-Net: A tailored deep convolutional neural network
design for detection of COVID-19 cases from chest radiography images. arXiv preprint
arXiv:2003.09871, 2020. Referenced 2 time(s) in page(s) 218 and 220.

WANG, S.; YAO, X. Multiclass imbalance problems: Analysis and potential solutions.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), IEEE, v. 42,
n. 4, p. 1119–1130, 2012. Referenced in page(s) 72.

WANG, X.; PENG, Y.; LU, L.; LU, Z.; BAGHERI, M.; SUMMERS, R. M. Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification
and localization of common thorax diseases. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017. p. 2097–2106.
Referenced 2 time(s) in page(s) 212 and 229.

WEHRMANN, J.; CERRI, R.; BARROS, R. Hierarchical multi-label classification
networks. In: Proceedings of the International Conference on Machine Learning.
Stockholm, Sweden: ACM, 2018. p. 5225–5234. Referenced 4 time(s) in page(s) 129, 139,
178, and 202.

WILSON, D. L. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man, and Cybernetics, IEEE, n. 3, p. 408–421, 1972.
Referenced in page(s) 79.

WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, IEEE, v. 1, n. 1, p. 67–82, 1997. Referenced
in page(s) 38.

WOODS, K. S.; DOSS, C. C.; BOWYER, K. W.; SOLKA, J. L.; PRIEBE, C. E.; JR,
W. P. K. Comparative evaluation of pattern recognition techniques for detection of
microcalcifications in mammography. International Journal of Pattern Recognition and
Artificial Intelligence, World Scientific, v. 7, n. 06, p. 1417–1436, 1993. Referenced in
page(s) 70.

Bibliography 274

WRIGHT, K. An ai assist for spotting COVID-19 in x-rays. Physics, American Physical
Society, v. 13, n. 73, 2020. Available from Internet: https://bit.ly/physics-covid19.
Referenced in page(s) 36.

WU, F.; ZHANG, J.; HONAVAR, V. Learning classifiers using hierarchically structured
class taxonomies. In: Proceedings of the International Symposium on Abstraction,
Reformulation, and Approximation. Airth Castle, Scotland, UK: Springer, 2005. p.
313–320. Referenced 2 time(s) in page(s) 29 and 49.

XU, C.; GENG, X. Hierarchical classification based on label distribution learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI,
2019. p. 5533–5540. Referenced in page(s) 30.

YEN, S.-J.; LEE, Y.-S. Cluster-based under-sampling approaches for imbalanced data
distributions. Expert Systems with Applications, Elsevier, v. 36, n. 3, p. 5718–5727, 2009.
Referenced 2 time(s) in page(s) 80 and 81.

ZADROZNY, B.; ELKAN, C. Learning and making decisions when costs and probabilities
are both unknown. In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2001. p. 204–213.
Referenced in page(s) 71.

ZADROZNY, B.; LANGFORD, J.; ABE, N. Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of the IEEE International Conference on Data Mining.
Melbourne, FL, USA: IEEE, 2003. p. 435–442. Referenced in page(s) 71.

ZENG, X.; YANG, C.; TU, C.; LIU, Z.; SUN, M. Chinese liwc lexicon expansion via
hierarchical classification of word embeddings with sememe attention. In: Proceedings
of the AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2018.
Referenced in page(s) 54.

ZHANG, L.; SHAH, S.; KAKADIARIS, I. Hierarchical multi-label classification using
fully associative ensemble learning. Pattern Recognition, Elsevier, v. 70, p. 89–103, 2017.
Referenced in page(s) 54.

ZHANG, M.-L.; ZHI-HUA, Z. Ml-knn: A lazy learning approach to multi-label learning.
Pattern Recognition, v. 40, n. 7, p. 2038–2048, 2007. Referenced 2 time(s) in page(s) 46
and 117.

ZHANG, M.-L.; ZHOU, Z.-H. A review on multi-label learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, v. 26, n. 8, p. 1819–1837, 2014.
Referenced in page(s) 43.

ZHANG, S.; ZHANG, C.; YANG, Q. Data preparation for data mining. Applied Artificial
Intelligence, Taylor & Francis, v. 17, n. 5-6, p. 375–381, 2003. Referenced in page(s) 37.

ZHAO, H. Instance weighting versus threshold adjusting for cost-sensitive classification.
Knowledge and Information Systems, Springer, v. 15, n. 3, p. 321–334, 2008. Referenced
in page(s) 71.

ZHOU, M.; CHEN, Y.; WANG, D.; XU, Y.; YAO, W.; HUANG, J.; JIN, X.; PAN, Z.;
TAN, J.; WANG, L. Improved deep learning model for differentiating novel coronavirus
pneumonia and influenza pneumonia. medRxiv, Cold Spring Harbor Laboratory Press,
2020. Referenced 3 time(s) in page(s) 216, 217, and 220.

https://bit.ly/physics-covid19

Bibliography 275

ZHOU, Z.-H.; LIU, X.-Y. On multi-class cost-sensitive learning. Computational
Intelligence, Wiley Online Library, v. 26, n. 3, p. 232–257, 2010. Referenced in page(s) 71.

Appendix

277

A
P
P
E
N
D
IX

A Experimental Results of Local
Classifiers with Resampling

In the appendix we present all the Tables of classification and metrics results
generated in the experiments of Chapter 7, which were summarized into charts in the
Chapter. Besides the raw results we also present here the Tables of the statistics, which
were applied over the results in order to give statistical background in the responses of the
Analysis and Discussion section. We have subdivided this Appendix in two Sections: (i)
Classification Results; and (ii) Statistical Tests.

A.1 Classification Results

In this sections we present the tables with the classification results of the main
experiments proposed in Chapter 7.

Table 88 – F-Score results for the proposed approaches in the Cell-cycle dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.1372 0.1298 0.1409 0.1183 0.1181 0.1190 0.1074 0.1118 0.0872
SMOTE 0.1542 0.1397 0.1417 0.1422 0.1445 0.1357 0.1147 0.1328 0.0989
SMOTE-B1 0.1427 0.1323 0.1449 0.1453 0.1352 0.1403 0.1106 0.1155 0.0857
SMOTE-B2 0.1413 0.1298 0.1487 0.1416 0.1310 0.1337 0.1013 0.1155 0.0975
ADASYN 0.1532 0.1033 0.1512 0.1424 0.1427 0.1388 0.0759 0.1303 0.0552
RUS 0.1365 0.1017 0.1422 0.1418 0.1112 0.1072 0.0812 0.1143 0.0692
CC 0.1551 0.1058 0.1476 0.1382 0.1067 0.1065 0.0804 0.1307 0.0638
CNEN 0.1613 0.1173 0.1515 0.1324 0.1312 0.1287 0.0924 0.1367 0.0740
ENN 0.1548 0.1359 0.1591 0.1401 0.1329 0.1190 0.1097 0.1264 0.1015
RENN 0.1512 0.1212 0.1507 0.1389 0.1317 0.1324 0.0922 0.1302 0.0768
AllKNN 0.1489 0.0947 0.1480 0.1120 0.1294 0.1313 0.0659 0.1198 0.0631
NM1 0.0966 0.0822 0.0948 0.0928 0.0985 0.0998 0.0536 0.0766 0.0335
NM2 0.0919 0.0898 0.0875 0.0987 0.0999 0.0971 0.0691 0.0646 0.0590
NM3 0.0910 0.0869 0.1025 0.0948 0.1002 0.0928 0.0660 0.0672 0.0513
TL 0.1420 0.1353 0.1460 0.1124 0.0826 0.1084 0.1066 0.1199 0.0961
SMOTE+ENN 0.1708 0.1342 0.1791 0.1438 0.1361 0.1433 0.1135 0.1476 0.1004
SMOTE+TL 0.1609 0.1302 0.1679 0.1342 0.1406 0.1324 0.1045 0.1355 0.0931

APPENDIX A. Experimental Results of Local Classifiers with Resampling 278

Table 89 – F-Score results for the proposed approaches in the Eisen dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.0976 0.1039 0.1069 0.1044 0.1212 0.0935 0.0816 0.0754 0.0669
SMOTE 0.1151 0.1379 0.1433 0.1393 0.1520 0.1174 0.1156 0.0935 0.1003
SMOTE-B1 0.1090 0.1433 0.1327 0.1418 0.1561 0.1085 0.1173 0.0830 0.0987
SMOTE-B2 0.1079 0.1402 0.1414 0.1444 0.1438 0.1133 0.1107 0.0824 0.1094
ADASYN 0.1152 0.1407 0.1406 0.1449 0.1458 0.1099 0.1190 0.0937 0.1002
RUS 0.0961 0.1119 0.1209 0.1156 0.1183 0.1010 0.0912 0.0709 0.0768
CC 0.1171 0.1164 0.1232 0.1124 0.1294 0.1113 0.0941 0.0944 0.0682
CNEN 0.1211 0.1213 0.1376 0.1219 0.1445 0.1130 0.0959 0.1011 0.0746
ENN 0.1209 0.1310 0.1311 0.1395 0.1415 0.1124 0.1108 0.0996 0.0900
RENN 0.1212 0.1213 0.1286 0.1250 0.1338 0.1088 0.1004 0.0956 0.0821
AllKNN 0.1201 0.1042 0.1145 0.1129 0.1395 0.0993 0.0828 0.0901 0.0711
NM1 0.0965 0.0824 0.0919 0.0889 0.1021 0.0790 0.0600 0.0763 0.0448
NM2 0.0898 0.0876 0.0973 0.0890 0.1018 0.0772 0.0668 0.0607 0.0547
NM3 0.0868 0.0887 0.0920 0.0849 0.1060 0.0764 0.0589 0.0640 0.0584
TL 0.1011 0.0992 0.1146 0.0928 0.0878 0.1017 0.0724 0.0810 0.0598
SMOTE+ENN 0.1291 0.1118 0.1573 0.1483 0.1477 0.1138 0.0836 0.1031 0.0748
SMOTE+TL 0.1248 0.1111 0.1499 0.1389 0.1522 0.1224 0.0818 0.0960 0.0679

Table 90 – F-Score results for the proposed approaches in the Exp dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.1280 0.1187 0.1325 0.1074 0.1118 0.1087 0.0892 0.1009 0.0741
SMOTE 0.1324 0.1372 0.1424 0.1059 0.1491 0.1120 0.1110 0.1061 0.0903
SMOTE-B1 0.1321 0.1365 0.1385 0.1090 0.1523 0.1114 0.1153 0.1061 0.0892
SMOTE-B2 0.1313 0.1313 0.1349 0.1070 0.1421 0.1098 0.1032 0.1056 0.0832
ADASYN 0.1336 0.1275 0.1413 0.1046 0.1442 0.1129 0.1030 0.1122 0.0793
RUS 0.1241 0.1210 0.1257 0.0986 0.1151 0.1073 0.0994 0.1023 0.0842
CC 0.1371 0.1223 0.1498 0.1099 0.1221 0.1012 0.0953 0.1135 0.0816
CNEN 0.1412 0.1407 0.1454 0.1125 0.1313 0.1038 0.1127 0.1147 0.1020
ENN 0.1379 0.1428 0.1425 0.1120 0.1403 0.1176 0.1206 0.1095 0.1075
RENN 0.1311 0.1384 0.1329 0.1098 0.1314 0.1035 0.1132 0.1092 0.1068
AllKNN 0.1202 0.1290 0.1356 0.1022 0.1368 0.0931 0.1084 0.0993 0.0862
NM1 0.1057 0.0975 0.0904 0.0882 0.1001 0.0828 0.0729 0.0794 0.0507
NM2 0.0873 0.0916 0.0889 0.0868 0.1009 0.0837 0.0658 0.0670 0.0487
NM3 0.0851 0.0914 0.0885 0.0857 0.1047 0.0893 0.0641 0.0620 0.0512
TL 0.1301 0.1178 0.1303 0.0999 0.1035 0.1094 0.0885 0.1086 0.0877
SMOTE+ENN 0.1420 0.1391 0.1678 0.1229 0.1412 0.1184 0.1099 0.1159 0.1007
SMOTE+TL 0.1308 0.1322 0.1537 0.1199 0.1503 0.1179 0.1078 0.1099 0.0904

APPENDIX A. Experimental Results of Local Classifiers with Resampling 279

Table 91 – F-Score results for the proposed approaches in the FMA MFCC dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.1313 0.1508 0.1868 0.1335 0.2590 0.1573 0.1218 0.1023 0.0767
SMOTE 0.1412 0.1609 0.2067 0.1537 0.2265 0.1723 0.1391 0.1114 0.0862
SMOTE-B1 0.1301 0.1561 0.2094 0.1411 0.2198 0.1989 0.1288 0.1096 0.0810
SMOTE-B2 0.1290 0.1489 0.1929 0.1706 0.1771 0.1824 0.1277 0.1019 0.0811
ADASYN 0.1312 0.1433 0.1923 0.1573 0.2297 0.1612 0.1184 0.1104 0.0804
RUS 0.1272 0.1312 0.1637 0.1506 0.1637 0.1463 0.1074 0.1006 0.0760
CC 0.1322 0.1399 0.1886 0.1574 0.1633 0.1389 0.1169 0.1027 0.0831
CNEN 0.1418 0.1463 0.2037 0.1524 0.1437 0.1483 0.1205 0.1158 0.0702
ENN 0.1299 0.1497 0.2173 0.1533 0.2529 0.2187 0.1278 0.1034 0.0629
RENN 0.1219 0.1512 0.1878 0.1447 0.2393 0.1987 0.1274 0.0993 0.0817
AllKNN 0.1189 0.1372 0.1740 0.1298 0.2317 0.1683 0.1092 0.0907 0.0641
NM1 0.0978 0.0874 0.1174 0.1072 0.1334 0.1114 0.0617 0.0739 0.0484
NM2 0.0890 0.0961 0.1124 0.1024 0.1214 0.1073 0.0698 0.0677 0.0507
NM3 0.0877 0.0915 0.1030 0.1018 0.1376 0.1048 0.0651 0.0621 0.0421
TL 0.1312 0.1489 0.1433 0.1194 0.2190 0.1289 0.1272 0.1103 0.0837
SMOTE+ENN 0.1511 0.1533 0.2373 0.1536 0.2924 0.2249 0.1274 0.1266 0.0865
SMOTE+TL 0.1413 0.1444 0.2133 0.1673 0.2791 0.2359 0.1207 0.1208 0.0974

Table 92 – F-Score results for the proposed approaches in the Gasch-1 dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.1092 0.1033 0.1228 0.1091 0.1440 0.1114 0.0791 0.0801 0.0650
SMOTE 0.1132 0.1087 0.1283 0.1128 0.1685 0.1172 0.0855 0.0867 0.0746
SMOTE-B1 0.1098 0.1063 0.1250 0.1077 0.1614 0.1224 0.0830 0.0805 0.0637
SMOTE-B2 0.1090 0.1090 0.1227 0.1130 0.1587 0.1187 0.0882 0.0805 0.0614
ADASYN 0.1122 0.1112 0.1338 0.1129 0.1656 0.1167 0.0900 0.0844 0.0662
RUS 0.1071 0.1077 0.1118 0.1078 0.1341 0.1014 0.0868 0.0781 0.0619
CC 0.1113 0.1113 0.1299 0.1099 0.1380 0.1017 0.0858 0.0844 0.0679
CNEN 0.1212 0.1214 0.1324 0.1129 0.1282 0.1117 0.0975 0.0990 0.0822
ENN 0.1157 0.1232 0.1374 0.1187 0.1498 0.1174 0.1025 0.0944 0.0853
RENN 0.1118 0.1222 0.1389 0.1139 0.1551 0.1098 0.0978 0.0858 0.0769
AllKNN 0.1109 0.1085 0.1289 0.1033 0.1449 0.1133 0.0884 0.0843 0.0675
NM1 0.1071 0.0822 0.0924 0.0918 0.1022 0.0913 0.0561 0.0846 0.0334
NM2 0.0919 0.0823 0.0917 0.0889 0.1025 0.0899 0.0578 0.0621 0.0459
NM3 0.0901 0.0828 0.0938 0.0878 0.1046 0.0896 0.0597 0.0681 0.0410
TL 0.1109 0.1023 0.1168 0.1109 0.1043 0.1082 0.0788 0.0835 0.0542
SMOTE+ENN 0.1272 0.1274 0.1546 0.1219 0.1718 0.1276 0.0987 0.1037 0.0851
SMOTE+TL 0.1110 0.1177 0.1462 0.1224 0.1654 0.1294 0.0911 0.0820 0.0751

APPENDIX A. Experimental Results of Local Classifiers with Resampling 280

Table 93 – F-Score results for the proposed approaches in the CLEF dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.6902 0.6618 0.7395 0.5799 0.7577 0.6163 0.5711 0.5716 0.4931
SMOTE 0.7153 0.6948 0.7590 0.5953 0.8070 0.6322 0.5905 0.5956 0.5059
SMOTE-B1 0.7147 0.6871 0.7591 0.5880 0.8056 0.6228 0.5868 0.5921 0.5216
SMOTE-B2 0.7192 0.6731 0.7547 0.5858 0.8030 0.6287 0.5800 0.5849 0.5071
ADASYN 0.6733 0.6660 0.7151 0.5553 0.7521 0.6163 0.5483 0.5547 0.4769
RUS 0.6815 0.6551 0.7283 0.5690 0.7437 0.5995 0.5614 0.5684 0.4743
CC 0.6889 0.6550 0.7238 0.5838 0.7616 0.6144 0.5827 0.5893 0.4976
CNEN 0.6912 0.6769 0.7446 0.6042 0.7782 0.6172 0.5987 0.6060 0.5123
ENN 0.6960 0.6800 0.7362 0.6005 0.7790 0.6302 0.5921 0.6009 0.5409
RENN 0.6795 0.6510 0.7206 0.5810 0.7569 0.6021 0.5795 0.5859 0.5337
AllKNN 0.6870 0.6560 0.7240 0.5946 0.7517 0.6252 0.5868 0.5940 0.5020
NM1 0.6704 0.6567 0.7192 0.5424 0.7324 0.5965 0.5370 0.5416 0.4494
NM2 0.6759 0.6508 0.7086 0.5432 0.7313 0.5913 0.5351 0.5367 0.4499
NM3 0.6639 0.6500 0.7138 0.5593 0.7276 0.5782 0.5588 0.5685 0.4437
TL 0.7094 0.6718 0.7478 0.5993 0.7538 0.6238 0.5967 0.5974 0.5259
SMOTE+ENN 0.7186 0.6921 0.7520 0.6008 0.7801 0.6372 0.5965 0.6017 0.5093
SMOTE+TL 0.7376 0.7029 0.7725 0.6119 0.8687 0.6548 0.6085 0.6123 0.5239

Table 94 – F-Score results for the proposed approaches in the DMOZ-2010 dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.3299 0.3100 0.3504 0.3139 0.3980 0.3230 0.3211 0.3310 0.2468
SMOTE 0.3501 0.3318 0.3652 0.3352 0.4139 0.3436 0.3392 0.3394 0.2472
SMOTE-B1 0.3513 0.3379 0.3660 0.3327 0.4189 0.3442 0.3377 0.3450 0.2517
SMOTE-B2 0.3551 0.3356 0.3646 0.3297 0.4167 0.3311 0.3312 0.3401 0.2687
ADASYN 0.3108 0.3090 0.3272 0.2801 0.3868 0.3006 0.2831 0.2899 0.2026
RUS 0.3378 0.3232 0.3385 0.3049 0.3932 0.3204 0.3069 0.3129 0.2132
CC 0.3424 0.3240 0.3412 0.3183 0.3999 0.3220 0.3216 0.3238 0.2369
CNEN 0.3494 0.3190 0.3470 0.3086 0.4018 0.3127 0.3131 0.3221 0.2698
ENN 0.3455 0.3183 0.3435 0.3065 0.4015 0.3165 0.3138 0.3214 0.2323
RENN 0.3378 0.3162 0.3369 0.2976 0.3937 0.3180 0.3074 0.3152 0.2236
AllKNN 0.3305 0.3162 0.3232 0.2882 0.3871 0.3173 0.2951 0.3024 0.2035
NM1 0.3125 0.3053 0.3167 0.2807 0.3754 0.2778 0.2842 0.2859 0.2188
NM2 0.3063 0.2914 0.3339 0.2818 0.3745 0.2760 0.2826 0.2863 0.1891
NM3 0.3113 0.2928 0.3208 0.2783 0.3785 0.2894 0.2799 0.2800 0.2138
TL 0.3404 0.3271 0.3410 0.3246 0.4003 0.3243 0.3311 0.3391 0.2690
SMOTE+ENN 0.3501 0.3512 0.3898 0.3415 0.4387 0.3369 0.3504 0.3602 0.3019
SMOTE+TL 0.3670 0.3425 0.3693 0.3273 0.4210 0.3130 0.3358 0.3397 0.2779

APPENDIX A. Experimental Results of Local Classifiers with Resampling 281

Table 95 – F-Score results for the proposed approaches in the LSHTC-small dataset.

Proposed Approach with LCN Proposed Approach
with LCPN Proposed

Approach
with LCLResampling

Algorithm ES E I LE LI S ES S

ROS 0.3596 0.3335 0.3775 0.3510 0.4180 0.3537 0.3513 0.3544 0.2542
SMOTE 0.3713 0.3651 0.3868 0.3741 0.4471 0.3642 0.3788 0.3822 0.2917
SMOTE-B1 0.3805 0.3652 0.4027 0.3560 0.4549 0.3764 0.3639 0.3709 0.3074
SMOTE-B2 0.3920 0.3681 0.4013 0.3529 0.4367 0.3663 0.3546 0.3613 0.2612
ADASYN 0.3480 0.3463 0.3500 0.3099 0.4099 0.3369 0.3181 0.3240 0.2617
RUS 0.3715 0.3593 0.3654 0.3430 0.4187 0.3544 0.3517 0.3542 0.2566
CC 0.3643 0.3612 0.3702 0.3416 0.4357 0.3573 0.3467 0.3540 0.2761
CNEN 0.3713 0.3457 0.3691 0.3485 0.4245 0.3461 0.3573 0.3655 0.2858
ENN 0.3713 0.3447 0.3822 0.3309 0.4339 0.3369 0.3364 0.3445 0.2592
RENN 0.3618 0.3556 0.3616 0.3338 0.4325 0.3394 0.3348 0.3407 0.2845
AllKNN 0.3555 0.3449 0.3587 0.3086 0.4169 0.3493 0.3174 0.3185 0.2483
NM1 0.3378 0.3445 0.3397 0.3179 0.4051 0.3157 0.3204 0.3269 0.2607
NM2 0.3372 0.3200 0.3637 0.3163 0.4007 0.3013 0.3186 0.3281 0.2217
NM3 0.3384 0.3280 0.3525 0.3145 0.4128 0.3105 0.3229 0.3238 0.2634
TL 0.3720 0.3582 0.3633 0.3514 0.4245 0.3479 0.3574 0.3639 0.3055
SMOTE+ENN 0.3862 0.3816 0.4208 0.3658 0.4559 0.3529 0.3748 0.3725 0.2805
SMOTE+TL 0.3997 0.3722 0.4006 0.3493 0.4732 0.3480 0.3558 0.3603 0.2576

Table 96 – F-Score results for the Top-Down (TD) approaches in all datasets.
LCN LCPN LCLDataset ES E I LE LI S ES S

Cell-cycle 0.1405 0.1374 0.1459 0.1152 0.1448 0.1206 0.1105 0.1148 0.0836
Eisen 0.0979 0.0932 0.1141 0.0937 0.1142 0.1024 0.0649 0.0736 0.0547
Exp 0.1271 0.1176 0.1312 0.1060 0.1157 0.1087 0.0934 0.1054 0.0802
FMA MFCC 0.1290 0.1489 0.1723 0.1160 0.1950 0.1378 0.1246 0.1059 0.0676
Gasch-1 0.1086 0.1021 0.1150 0.1088 0.1094 0.1089 0.0742 0.0828 0.0662
CLEF 0.6812 0.6698 0.7306 0.5602 0.7411 0.6133 0.5539 0.5591 0.4758
DMOZ-2010 0.3183 0.3067 0.3363 0.2879 0.3849 0.2954 0.2883 0.2982 0.2482
LSHTC-small 0.3468 0.3270 0.3702 0.3163 0.4112 0.3252 0.3224 0.3306 0.2533

Table 97 – F-Score results for the Flat-ML approach in all datasets.

Dataset F-Score
Cell-cycle 0.0781
Eisen 0.0971
Exp 0.0444
FMA MFCC 0.1408
Gasch-1 0.0697
CLEF 0.5572
DMOZ-2010 0.2350
LSHTC-small 0.2774

APPENDIX A. Experimental Results of Local Classifiers with Resampling 282

Table 98 – F-Score results for the Flat-MLRS approach with all datasets.
LPROS LPRUS MLROS MLRUS MLeNN REMEDIAL MLSMOTE MLTL MLSMOTE+MLTL

Cell-cycle 0.0796 0.0888 0.0792 0.0834 0.0776 0.0792 0.0794 0.0787 0.0779
Eisen 0.0966 0.1015 0.0970 0.0806 0.0923 0.0969 0.0980 0.0831 0.0918
Exp 0.0427 0.0423 0.0402 0.0406 0.0379 0.0406 0.0431 0.0390 0.0449
FMA MFCC 0.1408 0.1385 0.1413 0.1319 0.1407 0.1413 0.1399 0.1405 0.1392
Gasch-1 0.0695 0.0730 0.0697 0.0728 0.0671 0.0695 0.0871 0.0580 0.0636
CLEF 0.5670 0.5664 0.5549 0.5571 0.5727 0.5546 0.5786 0.5791 0.5798
DMOZ-2010 0.2624 0.2623 0.2713 0.2689 0.2673 0.2525 0.2623 0.2673 0.2739
LSHTC-small 0.3082 0.2743 0.3249 0.2722 0.3047 0.3047 0.3128 0.3034 0.3182

Table 99 – F-Score results for the Clus-HMC approach with all datasets.
Dataset F-Score

Cell-cycle 0.1208
Eisen 0.1271
Exp 0.1418
FMA MFCC 0.2196
Gasch-1 0.1254
CLEF 0.6496
DMOZ-2010 0.2300
LSHTC-small 0.2897

Table 100 – F-Score results for the HierCost approach with all datasets.
Dataset F-Score

Cell-cycle 0.1676
Eisen 0.1973
Exp 0.1766
FMA MFCC 0.2236
Gasch-1 0.1587
CLEF 0.8569
DMOZ-2010 0.5824
LSHTC-small 0.6558

A.2 Statistical Tests

In this sections we present the results for the statistical tests applied into the
classification results (presented before) in order to answer the questions raised in the
discussion of Chapter 7.

Table 101 – Wilcoxon statistical tests for F-score results in the Flat Multi-Label scenarios.
Z-score p-value

LPROS 0.0530 0.4791
LPRUS 0.0000 0.5000
MLROS 0.0525 0.4791
MLRUS 0.2100 0.4168
MLeNN 0.2100 0.4168
REMEDIAL 0.2100 0.4168
MLSMOTE -0.2100 0.4168
MLTL 0.1050 0.4582
MLSMOTE+MLTL 0.1050 0.4582

APPENDIX A. Experimental Results of Local Classifiers with Resampling 283

Table 102 – Wilcoxon statistical tests for F-score results in the resampling for the Local
Classifiers per Node approach.

Exclusive
Siblings Exclusive Inclusive Less

Exclusive
Less

Inclusive Siblings

Z-score p-value Z-score p-value Z-score p-value Z-score p-value Z-score p-value Z-score p-value
ROS -0.210 0.417 -0.315 0.376 -0.210 0.417 -0.525 0.300 -0.420 0.337 -0.158 0.437
SMOTE -0.840 0.200 -0.840 0.200 -0.525 0.300 -0.945 0.172 -1.050 0.147 -0.840 0.200
SMOTE-B1 -0.735 0.231 -0.735 0.231 -0.525 0.300 -1.050 0.147 -1.050 0.147 -0.840 0.200
SMOTE-B2 -0.578 0.282 -0.683 0.247 -0.630 0.264 -1.050 0.147 -0.735 0.231 -0.840 0.200
ADASYN -0.420 0.337 -0.315 0.376 -0.420 0.337 -0.525 0.300 -0.735 0.231 -0.840 0.200
RUS 0.105 0.458 0.105 0.458 0.210 0.417 -0.630 0.264 -0.210 0.417 0.525 0.300
CC -0.630 0.264 -0.105 0.458 -0.473 0.318 -0.945 0.172 -0.210 0.417 0.210 0.417
CNEN -0.945 0.172 -0.525 0.300 -0.630 0.264 -1.050 0.147 -0.420 0.337 -0.525 0.300
ENN -0.630 0.264 -0.735 0.231 -0.630 0.264 -1.260 0.104 -0.735 0.231 -0.630 0.264
RENN -0.315 0.376 -0.630 0.264 -0.420 0.337 -1.050 0.147 -0.735 0.231 -0.315 0.376
AllKNN -0.210 0.417 0.105 0.458 -0.105 0.458 -0.105 0.458 -0.735 0.231 -0.105 0.458
NM1 1.260 0.104 1.260 0.104 1.260 0.104 1.155 0.124 1.155 0.124 1.155 0.124
NM2 1.470 0.071 1.365 0.086 1.470 0.071 1.208 0.114 1.155 0.124 1.365 0.086
NM3 1.470 0.071 1.365 0.086 1.470 0.071 1.260 0.104 1.050 0.147 1.365 0.086
TL -0.525 0.300 -0.368 0.357 0.000 0.500 -0.210 0.417 0.630 0.264 0.210 0.417
SMOTE+ENN -1.260 0.104 -0.735 0.231 -1.260 0.104 -1.575 0.058 -0.945 0.172 -1.050 0.147
SMOTE+TL -0.840 0.200 -0.525 0.300 -1.050 0.147 -1.575 0.058 -1.050 0.147 -0.945 0.172

Table 103 – Wilcoxon statistical tests for F-score results in the resampling for the Local
Classifiers per Parent Node approach.

Exclusive Siblings Siblings
Z-score p-value Z-score p-value

ROS -0.210 0.417 0.000 0.500
SMOTE -0.945 0.172 -0.735 0.231
SMOTE-B1 -0.945 0.172 -0.630 0.264
SMOTE-B2 -0.735 0.231 -0.210 0.417
ADASYN -0.105 0.458 -0.315 0.376
RUS -0.105 0.458 0.210 0.417
CC -0.315 0.376 -0.420 0.337
CNEN -0.525 0.300 -0.735 0.231
ENN -0.840 0.200 -0.420 0.337
RENN -0.630 0.264 -0.420 0.337
AllKNN 0.105 0.458 -0.105 0.458
NM1 1.365 0.086 0.840 0.200
NM2 1.050 0.147 1.470 0.071
NM3 1.050 0.147 1.365 0.086
TL -0.315 0.376 -0.630 0.264
SMOTE+ENN -0.735 0.231 -0.945 0.172
SMOTE+TL -0.420 0.337 -0.735 0.231

APPENDIX A. Experimental Results of Local Classifiers with Resampling 284

Table 104 – Wilcoxon statistical tests for F-score results in the resampling for the Local
Classifiers per Level approach.

Z-score p-value
ROS -0.210 0.417
SMOTE -1.155 0.124
SMOTE-B1 -0.945 0.172
SMOTE-B2 -0.945 0.172
ADASYN -0.263 0.396
RUS -0.210 0.417
CC -0.315 0.376
CNEN -0.840 0.200
ENN -0.945 0.172
RENN -0.735 0.231
AllKNN 0.105 0.458
NM1 1.365 0.086
NM2 1.418 0.078
NM3 1.260 0.104
TL -0.630 0.264
SMOTE+ENN -1.365 0.086
SMOTE+TL -1.155 0.124

Table 105 – Average ranking of the classification results in the resampling for the Local
Classifiers per Node approach.

ROS SMOTE SMOTE
B1

SMOTE
B2 ADASYN RUS CC CNEN ENN RENN All

KNN NM1 NM2 NM3 TL SMOTE
+ ENN

SMOTE
+ TL

ES 11.25 5.50 7.38 7.63 9.63 12.13 6.88 4.38 6.00 9.25 11.00 14.88 16.00 16.50 9.00 1.88 3.63
E 11.13 4.00 4.63 6.00 9.38 10.88 9.38 7.25 5.50 7.63 11.75 15.38 16.00 16.00 9.38 3.25 5.50
I 11.63 5.88 6.13 6.63 8.88 12.63 7.63 6.00 5.25 8.50 11.13 15.75 16.38 15.75 11.38 1.63 1.88
LE 10.25 5.25 6.25 5.13 9.25 10.38 8.25 7.00 6.50 8.75 12.63 15.38 15.25 16.25 9.88 2.25 4.38
LI 10.00 3.50 3.75 6.38 7.75 12.25 10.25 9.13 6.63 8.38 10.13 16.00 16.25 14.63 12.88 3.00 2.13
S 9.63 4.00 4.38 4.63 8.50 11.00 10.38 9.75 7.00 9.63 9.38 15.38 16.25 16.38 9.88 2.63 4.25
Avg.
Rank 10.65 4.69 5.42 6.06 8.90 11.54 8.79 7.25 6.15 8.69 11.00 15.46 16.02 15.92 10.40 2.44 3.63

Table 106 – Average ranking of the classification results in the resampling for the Local
Classifiers per Parent Node approach.

ROS SMOTE SMOTE
B1

SMOTE
B2 ADASYN RUS CC CNEN ENN RENN All

KNN NM1 NM2 NM3 TL SMOTE
+ ENN

SMOTE
+ TL

ES 10.13 3.75 4.25 7.00 10.88 10.88 10.00 6.38 4.75 7.63 11.50 15.75 15.50 15.50 8.50 4.13 6.50
S 11.50 5.13 7.88 9.75 9.13 12.75 7.25 3.25 6.63 8.75 11.63 13.75 16.00 16.00 7.63 1.38 4.63
Avg.
Rank 10.81 4.44 6.06 8.38 10.00 11.81 8.63 4.81 5.69 8.19 11.56 14.75 15.75 15.75 8.06 2.75 5.56

Table 107 – Average ranking of the classification results in the resampling for the Local
Classifiers per Level approach.

ROS SMOTE SMOTE
B1

SMOTE
B2 ADASYN RUS CC CNEN ENN RENN All

KNN NM1 NM2 NM3 TL SMOTE
+ ENN

SMOTE
+ TL

Avg.
Rank 11.13 4.88 6.25 7.38 10.88 11.63 9.25 6.25 5.63 5.63 11.75 15.25 15.75 14.63 6.75 4.00 6.00

Table 108 – Average ranking of the classification results in the resampling for the all the
Local Classifiers approaches.

ROS SMOTE SMOTE
B1

SMOTE
B2 ADASYN RUS CC CNEN ENN RENN All

KNN NM1 NM2 NM3 TL SMOTE
+ ENN

SMOTE
+ TL

LCN 10.65 4.69 5.42 6.06 8.90 11.54 8.79 7.25 6.15 8.69 11.00 15.46 16.02 15.92 10.40 2.44 3.63
LCPN 10.81 4.44 6.06 8.38 10.00 11.81 8.63 4.81 5.69 8.19 11.56 14.75 15.75 15.75 8.06 2.75 5.56
LCL 11.13 4.88 6.25 7.38 10.88 11.63 9.25 6.25 5.63 5.63 11.75 15.25 15.75 14.63 6.75 4.00 6.00
Avg.
Rank 10.86 4.67 5.91 7.27 9.92 11.66 8.89 6.10 5.82 7.50 11.44 15.15 15.84 15.43 8.40 3.06 5.06

Table 109 – Post-Hoc Mannwhitney Test comparing the flat with the local classifier ap-
proaches.

LCN w/ ES LCN w/ E LCN w/ I LCN w/ LE LCN w/ LI LCN w/ S LCPN w/ ES LCPN w/ S LCL
3.12×10−22 3.23×10−18 2.34×10−23 1.14×10−21 4.21×10−25 3.70×10−22 1.18×10−03 3.70×10−04 1.00

APPENDIX A. Experimental Results of Local Classifiers with Resampling 285

Table 110 – Pearson Correlation Statistical Test for the MeanIRLCN measure and the
classification results.

Excl. Siblings Exclusive Inclusive Less Exclusive Less Inclusive Siblings
ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

CellCycle -0.60 0.0086 -0.59 0.0106 -0.81 0.0000 -0.22 0.3850 -0.48 0.0457 -0.61 0.0070
Eisen -0.61 0.0068 -0.77 0.0002 -0.80 0.0001 -0.82 0.0000 -0.60 0.0083 -0.69 0.0014
Exp -0.74 0.0005 -0.68 0.0021 -0.74 0.0004 -0.69 0.0016 -0.65 0.0033 -0.66 0.0032
FMA MFCC -0.56 0.0159 -0.73 0.0006 -0.85 0.0000 -0.84 0.0000 -0.69 0.0017 -0.76 0.0003
Gasch-1 -0.66 0.0027 -0.72 0.0008 -0.81 0.0000 -0.79 0.0001 -0.86 0.0000 -0.85 0.0000
CLEF -0.87 0.0000 -0.32 0.1931 -0.34 0.1607 -0.68 0.0018 -0.55 0.0177 -0.65 0.0037
DMOZ-2010 -0.76 0.0001 -0.57 0.0143 -0.48 0.0423 -0.48 0.0397 -0.67 0.0023 -0.72 0.0006
LSHTC-small -0.65 0.0035 -0.68 0.0020 -0.44 0.0646 -0.68 0.0016 -0.70 0.0011 -0.59 0.0094

Table 111 – Pearson Correlation Statistical Test for the MeanIRLCPN measure and the
classification results.

Exclusive Siblings Siblings
ρ p-value ρ p-value

Cell-cycle -0.49 0.0373 -0.75 0.0003
Eisen -0.41 0.0883 -0.70 0.0011
Exp -0.58 0.0125 -0.68 0.0018
FMA MFCC -0.56 0.0159 -0.57 0.0142
Gasch-1 -0.61 0.0077 -0.59 0.0106
CLEF -0.68 0.0018 -0.72 0.0008
DMOZ-2010 -0.48 0.0461 -0.57 0.013
LSHTC-small -0.73 0.0006 -0.63 0.005

Table 112 – Pearson Correlation Statistical Test for the MeanIRLCL measure and the
classification results.

ρ p-value
Cell-cycle -0.68 0.0020
Eisen -0.65 0.0035
Exp -0.74 0.0004
FMA MFCC -0.67 .0021
Gasch-1 -0.73 .0005
CLEF -0.81 0.0000
DMOZ-2010 -0.29 0.2418
LSHTC-small -0.47 0.0504

Table 113 – Wilcoxon statistical tests comparing the best F-score results from the proposed
approaches (LCN) versus the best results for each global classification approach
considering all datasets.

z-score p-value
vs. HMC↔ML -1.260 0.1038
vs. Clus-HMC -1.365 0.0861
vs. HierCost 0.210 0.4168

286

A
P
P
E
N
D
IX

B
Experimental Results of the
COVID-19 Identification Study
Case

The following tables presents a detailed version of the experimental results achieved
in the COVID-19 Identification Study Case presented in Chapter 10 of this Thesis. This
Appendix is subdivided into three Sections: (i) Baseline Results; (ii) Local Classifiers with
Resampling Results; and (iii) Global Hierarchical Resampling Results.

B.1 Baseline Results

In this section we present the detailed results of the baseline experiments, i.e., the
experiments with the Hierarchical Classification with Flat Resampling algorithms. The
section is further subdivided into three subsections, which presents the results for each
classification schema: (i) No Fusion; (ii) Early Fusion; (iii) Late Fusion.

B.1.1 No Fusion

Table 114 – Top-10 macro-avg f-score using the baseline approach.
Ord. Feature Resampling F-Score

1 LPQ SMOTE-B1 0.4428
2 LDN SMOTE-B2 0.3817
3 LETRIST SMOTE 0.3802
4 LETRIST SMOTE+TL 0.3802
5 LPQ SMOTE 0.3768
6 LPQ ROS 0.3768
7 LPQ SMOTE+TL 0.3768
8 LETRIST ROS 0.3749
9 LETRIST SMOTE-B2 0.3735
10 LETRIST SMOTE-B2 0.3595

APPENDIX B. Experimental Results of the COVID-19 Identification Study Case 287

Table 115 – Top-10 COVID-19 f-score using the baseline approach.
Ord. Feature Resampling F-Score

1 OBIF ENN 0.7463
2 OBIF - 0.7241
3 LETRIST ENN 0.7213
4 LDN SMOTE-B1 0.7200
5 OBIF ADASYN 0.7143
6 OBIF SMOTE-B2 0.6984
7 OBIF SMOTE-B1 0.6800
8 LDN SMOTE 0.6792
9 LDN SMOTE+TL 0.6792
10 LDN ENN 0.6780

Table 116 – Best macro-avg f-score per feature set using the baseline approach.
Feature Resampling F-Score

BSIF ADASYN 0.2921
EQP ROS 0.3341
INCEPTION SMOTE 0.2488
LBP CNEN 0.2937
LDN SMOTE-B2 0.3817
LETIRST SMOTE 0.3802
LPQ SMOTE-B1 0.4428
OBIF SMOTE-B1 0.2898

Table 117 – Best COVID-19 f-score per feature set using the baseline approach.
Feature Resampling F-Score

BSIF ROS 0.5862
EQP - 0.6129
INCEPTION ENN 0.3214
LBP ENN 0.5574
LDN SMOTE-B1 0.7200
LETIRST ENN 0.7213
LPQ SMOTE-B1 0.6545
OBIF ENN 0.7463

B.1.2 Early Fusion

Table 118 – Top-10 macro-avg f-score with the early fusion technique using the baseline
approach.

Ord. Combined Features Resampling F-Score
1 BSIF & EQP & OBIF - 0.4996
2 LETRIST & EQP & OBIF - 0.4733
3 BSIF & OBIF - 0.4484
4 BSIF & LDN - 0.4450
5 INCEPTION & LETRIST & EQP - 0.4150
6 EQP & LPQ SMOTE-B1 0.4150
7 LBP & BSIF SMOTE 0.4143
8 LBP & BSIF SMOTE-B1 0.4143
9 LBP & BSIF SMOTE+TL 0.4143
10 LETRIST & OBIF - 0.4136

APPENDIX B. Experimental Results of the COVID-19 Identification Study Case 288

Table 119 – Top-10 COVID-19 f-score with the early fusion technique using the baseline
approach.

Ord. Combined Features Resampling F-Score
1 LETRIST & OBIF SMOTE-B1 0.7931
2 BSIF & LETRIST & LPQ - 0.7407
3 EQP & LPQ TL 0.7333
4 EQP & LPQ - 0.7333
5 INCEPTION & LETRIST & EQP - 0.7308
6 BSIF & EQP & LPQ - 0.7302
7 INCEPTION & EQP & OBIF - 0.7273
8 LDN & OBIF - 0.7241
9 LETRIST & LPQ & OBIF - 0.7170
10 LBP & EQP & LPQ - 0.7143

B.1.3 Late Fusion

Table 120 – Top-3 macro-avg f-score with the late fusion technique using the baseline
approach.

Choice
Strategy Combination Fusion

Strategy F-Score

Top-5
best of all

(LETRIST, SMOTE-B2), (LPQ, SMOTE-B1) PROD 0.4428
(LETRIST, SMOTE-B2), (LPQ, SMOTE-B1) SUM 0.4428
(LETRIST, SMOTE-B2), (LPQ, SMOTE-B1) VOTE 0.3950

Top
per feature

(BSIF, SMOTE-B1), (EQP, SMOTE-B2), (LPQ, SMOTE-B1) PROD 0.4428
(BSIF, SMOTE-B1), (EQP, SMOTE-B2), (LPQ, SMOTE-B1) SUM 0.4428
(BSIF, SMOTE-B1), (EQP, SMOTE-B2), (LPQ, SMOTE-B1) PROD 0.4428

Table 121 – Top-3 COVID-19 f-score with the late fusion technique using the baseline
approach.

Choice
Strategy Combination Fusion

Strategy F-Score

Top-5
best of all

(BSIF, ADASYN), (EQP, SMOTE-B2), (LPQ, SMOTE-B1) VOTE 0.7547
(BSIF, ADASYN), (EQP, SMOTE-B2), (OBIF, SMOTE-B1) VOTE 0.7547
(BSIF, ADASYN), (INCEPTION, SMOTE), (OBIF, SMOTE-B1) VOTE 0.7547

Top
per feature

(BSIF, SMOTE-B1), (EQP, SMOTE-B2), (LPQ, SMOTE-B1) VOTE 0.7869
(BSIF, SMOTE-B1), (EQP, SMOTE-B2) VOTE 0.7869
(BSIF, SMOTE-B1), (INCEPTION, ENN), (EQP, SMOTE-B2) VOTE 0.7869

B.2 Local Classifiers with Resampling

In this section we present the detailed results of the Local Classifiers with Resam-
pling experiments, i.e., the experiments with the Hierarchical Classification using Local
Classifiers (LCN, LCPN and LCL) with Resampling. The section is further subdivided
into two subsections, which shows the results for each classification schema tested in this
context: (i) No Fusion; (ii) Early Fusion.

APPENDIX B. Experimental Results of the COVID-19 Identification Study Case 289

B.2.1 No Fusion

Table 122 – Top-10 macro-avg f-score using the local classifiers approaches.
Ord. Feature Resampling Approach F-Score

1 LETRIST SMOTE-B2 LCPN 0.5332
2 OBIF SMOTE LCPN 0.5065
3 LDN SMOTE-B2 LCPN 0.5027
4 LPQ SMOTE-B2 LCPN 0.4974
5 LPQ ADASYN LCN 0.4748
6 LBP AllKNN LCPN 0.4712
7 LDN SMOTE-B2 LCN 0.4696
8 LBP RENN LCPN 0.4674
9 LETRIST SMOTE LCPN 0.4650
10 LPQ AllKNN LCPN 0.4515

Table 123 – Top-10 COVID-19 f-score using the local classifiers approaches.
Ord. Feature Resampling Approach F-Score

1 LETRIST SMOTE LCPN 0.8936
2 LDN SMOTE-B2 LCPN 0.8889
3 OBIF - LCN 0.8846
4 OBIF TL LCN 0.8846
5 OBIF ENN LCPN 0.8837
6 LETRIST SMOTE+TL LCPN 0.8750
7 OBIF ENN LCN 0.8621
8 OBIF RENN LCN 0.8475
9 OBIF RENN LCPN 0.8462
10 OBIF TL LCPN 0.8462

Table 124 – Best macro f-score per feature set using the local classifiers approaches.
Feature Resampling Approach F-Score

BSIF ADASYN LCPN 0.4071
EQP ENN LCPN 0.4468
INCEPTION original LCPN 0.2438
LBP AllKNN LCPN 0.4712
LDN SMOTE-B2 LCPN 0.5027
LETRIST SMOTE-B2 LCPN 0.5332
LPQ SMOTE-B2 LCPN 0.4974
OBIF SMOTE LCPN 0.5065

Table 125 – Best COVID-19 f-score per feature set using the local classifiers approaches.
Feature Resampling Approach F-Score

BSIF TL LCPN 0.8077
EQP ENN LCPN 0.8077
INCEPTION original LCPN 0.7500
LBP RENN LCPN 0.8372
LDN SMOTE-B2 LCPN 0.8889
LETRIST SMOTE LCPN 0.8936
LPQ AllKNN LCPN 0.8400
OBIF original LCN 0.8846

APPENDIX B. Experimental Results of the COVID-19 Identification Study Case 290

B.2.2 Early Fusion

Table 126 – Top-10 macro-avg f-score with the early fusion technique using the local
classifiers approaches.

Ord. Approach Combined Features Resampling F-Score
1 LCPN LDN & LETRIST & LPQ SMOTE-B2 0.6643
2 LCPN LBP & LETRIST ADASYN 0.6423
3 LCPN LETRIST & OBIF SMOTE-B2 0.6277
4 LCPN LDN & LPQ & OBIF SMOTE-B2 0.6258
5 LCPN INCEPTION & LPQ & OBIF SMOTE-B2 0.6246
6 LCPN LBP & LETRIST & EQP SMOTE-B2 0.6217
7 LCPN BSIF & LDN & LETRIST SMOTE-B2 0.6190
8 LCPN LETRIST & OBIF SMOTE-B1 0.6188
9 LCPN LDN & LETRIST & EQP SMOTE-B2 0.6111
10 LCPN LETRIST & EQP & OBIF SMOTE-B2 0.6067

Table 127 – Top-10 COVID-19 f-score with the early fusion technique using the local
classifiers approaches.

Ord. Approach Combined Features Resampling F-Score
1 LCPN LETRIST & EQP & OBIF SMOTE-B2 0.9333
2 LCPN LBP & OBIF RENN 0.9231
3 LCPN LBP & LDN & OBIF SMOTE-B2 0.9189
4 LCPN LBP & LETRIST ADASYN 0.9167
5 LCPN LDN & LETRIST& OBIF SMOTE+TL 0.9091
6 LCPN INCEPTION & OBIF SMOTE 0.9057
7 LCPN BSIF & LDN & OBIF SMOTE-B2 0.9048
8 LCPN LETRIST & EQP RENN 0.9048
9 LCPN LETRIST & OBIF SMOTE-B1 0.9048

10 LCPN BSIF & LDN & LETRIST SMOTE-B2 0.9020

B.3 Global Hierarchical Resampling

In this section we shows the detailed results of the experiments using the Global
Hierarchical Classification with Global Resampling Algorithms. The section is also further
subdivided into three subsections, which presents the results for each classification schema:
(i) No Fusion; (ii) Early Fusion; (iii) Late Fusion.

APPENDIX B. Experimental Results of the COVID-19 Identification Study Case 291

B.3.1 No Fusion

Table 128 – Top-10 macro-avg f-score the global resampling approach.
Ord. Feature Resampling F-Score

1 LDN HROS-15 0.4662
2 LDN HROS-10 0.4548
3 LPQ HROS-5 0.4419
4 LPQ HROS-10 0.4326
5 LETRIST HSMOTE-3 0.4272
6 LETRIST HROS-10 0.4225
7 LDN HSMOTE-3 0.4212
8 LDN HROS-20 0.4179
9 LPQ HSMOTE-5 0.4139
10 BSIF HROS-10 0.4132

Table 129 – Top-10 Covid-19 f-score using the global resampling approach.
Ord. Feature Resampling F-Score

1 OBIF HROS-5 0.7692
2 LETRIST HROS-10 0.7458
3 OBIF HROS-15 0.7308
4 LPQ HRUS-5 0.7273
5 OBIF HRUS-5 0.7241
6 LDN HRUS-5 0.7213
7 LDN HSMOTE-3 0.7059
8 LDN HROS-15 0.6977
9 LETRIST HROS-20 0.6786
10 LETRIST HROS-5 0.6765

Table 130 – Best macro-avg f-score per feature set using the global resampling approach.
Feature Resampling F-Score

BSIF HROS-10 0.4132
EQP HROS-20 0.4069
INCEPTION HRUS-10 0.3260
LBP HROS-20 0.3997
LDN HROS-15 0.4662
LETRIST HSMOTE-3 0.4272
LPQ HROS-5 0.4419
OBIF HROS-5 0.3626

Table 131 – Best COVID-19 f-score per feature set using the global resampling approach.
Feature Resampling F-Score

BSIF HRUS-5 0.5926
EQP HRUS-10 0.6383
INCEPTION HSMOTE-5 0.3509
LBP HRUS-10 0.5778
LDN HRUS-5 0.7213
LETRIST HR0S-10 0.7458
LPQ HRUS-5 0.7273
OBIF HROS-5 0.7692

APPENDIX B. Experimental Results of the COVID-19 Identification Study Case 292

B.3.2 Early Fusion

Table 132 – Top-10 macro-avg f-score with the early fusion technique using the global
resampling approach.

Ord. Combined Features Resampling F-Score
1 EQP & LPQ HROS-5 0.5524
2 INCEPTION & LETRIST & EQP HSMOTE-5 0.5110
3 INCEPTION & LPQ HROS-15 0.5017
4 BSIF & EQP & OBIF - 0.4996
5 LBP & LPQ & OBIF HRUS-5 0.4827
6 LETRIST & EQP & OBIF - 0.4733
7 BSIF & LDN & OBIF HROS-10 0.4728
8 LBP & LPQ & OBIF HROS-15 0.4712
9 LDN & LETRIST & LPQ HROS-15 0.4705
10 BSIF & LETRIST & LPQ HRUS-5 0.4597

Table 133 – Top-10 COVID-19 f-score with the early fusion technique using the global
resampling approach.

Ord. Combined Features Resampling F-Score
1 EQP & LPQ HROS-5 0.8235
2 LDN & OBIF HRUS-10 0.8136
3 INCEPTION & EQP & LPQ HRUS-5 0.8070
4 LETRIST & LPQ HSMOTE-5 0.8000
5 LETRIST & OBIF - 0.7931
6 LETRIST & LPQ HRUS-5 0.7931
7 BSIF & LETRIST & LPQ HRUS-5 0.7925
8 LDN & EQP & OBIF HROS-15 0.7755
9 BSIF & EQP & LPQ HRUS-5 0.7719
10 BSIF & EQP & OBIF HROS-10 0.7692

B.3.3 Late Fusion

Table 134 – Top-3 macro-avg f-score with the late fusion technique using the global
resampling approach.

Choice
Strategy Combination Fusion

Strategy F-Score

Top-5
best of all

(BSIF, HRUS-5), (LETRIST, HSMOTE-3) PROD 0.4272
(BSIF, HRUS-5), (LETRIST, HSMOTE-3) SUM 0.4272
(LBP, HROS-20), (LETRIST, HSMOTE-3) PROD 0.4272

Top-1
per feature

(BSIF, HRUS-5), (EQP, HROS-20), (LBP, HROS-20), (LDN, HROS-10) SUM 0.4548
(BSIF, HRUS-5), (EQP, HROS-20), (LDN, HROS-10) PROD 0.4548
(BSIF, HRUS-5), (EQP, HROS-20), (LDN, HROS-10) SUM 0.4548

Table 135 – Top-3 Covid-19 f-score with the late fusion technique using the global resam-
pling approach.

Choice
Strategy Combination Fusion

Strategy F-Score

Top-5
best of all

(EQP, HRUS-10), (LBP, HRUS-10), (OBIF, HROS-5) PROD 0.7692
(EQP, HRUS-10), (LBP, HRUS-10), (OBIF, HROS-5) SUM 0.7692
(EQP, HRUS-10), (LBP, HRUS-10), (OBIF, HROS-5) VOTE 0.7692

Top-1
per feature

(BSIF, HRUS-5), (EQP, HROS-20), (LBP, HROS-20), (OBIF, HROS-5) PROD 0.7692
(BSIF, HRUS-5), (EQP, HROS-20), (LBP, HROS-20), (OBIF, HROS-5) SUM 0.7692
(BSIF, HRUS-5), (EQP, HROS-20), (LBP, HROS-20), (OBIF, HROS-5) VOTE 0.7692

	Title page
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Problem
	Objectives
	Hypothesis Statements
	Outcomes, Contributions and Repercussions
	Scientific Contributions
	Technical Contributions
	Social and Media Impact

	Text Organization

	Machine Learning
	Single-Label Classification
	Bayesian Classifiers
	K-Nearest Neighbors
	Decision Trees
	Support Vector Machines

	Multi-Label Classification
	Database Indicators
	Classification Algorithms
	Evaluation Measures
	Example-Based Metrics
	Ranking-Based Metrics
	Label-Based Metrics

	Hierarchical Classification
	Definitions
	Classification Algorithms
	Evaluation Metrics
	Hierarchy-Based Evaluation Metrics
	Distance-Based Evaluation Metrics

	Final Considerations

	The Imbalanceness Factor
	Evaluating the Classification Results in Imbalanced Scenarios
	Dealing with Imbalanceness
	Classic Resampling Techniques
	Undersampling Algorithms
	Oversampling Algorithms
	Hybrid Resampling Techniques

	Measuring Imbalanceness in Multi-label Datasets
	Imbalance Ratio per Label
	Mean Imbalance Ratio
	Coefficient of Variation of IRLbl
	Score of Concurrence among Imbalanced Labels
	Visually Exploration of the Imbalanceness

	Facing Imbalanced Multi-Label Scenarios
	Multi-Label Resampling Techniques
	Random Algorithms
	MLeNN
	MLSMOTE
	REMEDIAL
	REMEDIAL-HwR

	Final Considerations

	The Multi-Label Tomek Link
	The Proposed Method
	Experimental Analysis
	The Datasets
	Algorithms and Parameters
	Results and Discussion

	The Imb-Mulan Framework
	Final Considerations

	Using Flat Resampling Techniques in Imbalanced Hierarchical Datasets
	Binary Resampling in Hierarchical Datasets with Single Paths
	Multi-Label Resampling in Hierarchical Datasets with Multiple Paths
	Experimental Setup
	The Datasets
	Algorithm and Parameters

	Results
	Discussion
	Final Considerations

	A Label Path Conversion Strategy for Imbalanced Hierarchical Datasets
	Measuring Imbalanceness in HMDs
	Using Multi-Label Techniques to Deal with Imbalanceness
	Hierarchical to Multi-Label Conversion
	Multi-Label to Hierarchical Conversion
	Approach Limitations

	Experimental Evaluation and Discussions
	Results
	Analysis and Discussion

	Final Considerations

	Dealing with Imbalanced Hierarchical Datasets on Local Classification Approaches
	Measuring the Imbalanceness with Local Perspectives
	Imbalance Metrics for the LCN Approach
	Imbalance Metrics for the LCPN Ppproach
	Imbalance Metrics for the LCL Approach

	Proposed Approaches
	Resampling Using the LCN Approach
	Resampling Using the LCPN Approach
	Resampling Using the LCL Approach

	Experimental Protocol and Results
	The Datasets
	Proposed Approaches
	Baseline Approaches
	State-of-the-art Approaches
	Parameters and Configurations
	Hierarchical Local Imbalanceness Metrics Results
	Classification Results

	Analysis and Discussion
	Final Considerations

	Global Approaches: The Hierarchical Random Resampling Algorithms
	The Proposed Random Resampling Algorithms
	Finding the Majority and Minority Classes
	Resampling Full Depth Hierarchical Classification Problems
	Resampling Partial Depth Hierarchical Classification Problems

	Experimental Protocol and Results
	The Datasets
	Classification Algorithm and Parameters
	Experimental Setup
	Results

	Analysis and Discussion
	Final Considerations

	Global Approaches: The Hierarchical Synthetic Oversampling Algorithm
	The Synthetic Oversampling Techniques
	The Proposed HSMOTE Technique
	Minority Instances Selection
	Dealing with different kinds of hierarchical classification problems
	Nearest neighbor search
	Feature set generation
	Synthetic labelset production
	HSMOTE Pseudocode
	How HSMOTE deals with Full Depth problems with Single Paths
	How HSMOTE deals with Full Depth problems with Multiple Paths
	How HSMOTE deals with Partial Depth problems with Single Paths
	How HSMOTE deals with Partial Depth problems with Multiple Paths

	Experimental Protocol and Results
	The Datasets
	Classification Algorithm and Parameters
	Results

	Analysis and Discussion
	Final Considerations

	A Case Study of Imbalanceness in COVID-19 Identification in Chest X-ray Images
	COVID-19 Pandemic and the Pneumonia Disease
	Hierarchical Structure of the Problem
	Related Works
	General Classification Schema
	Feature Extraction (Phase 1)
	Early Fusion (Phase 2)
	Late Fusion (Phase 5)

	Hierarchical Classification with Flat Resampling
	Local Classifiers with Resampling
	Resampling with Global Algorithms
	Experimental Setup
	The Database
	Algorithms, Parameters and Metrics
	Evaluation Metric

	Experimental Results
	Baseline Results
	Local Classifiers with Resampling
	Global Hierarchical Resampling

	Discussions
	Final Considerations

	Conclusions
	Concluding Remarks
	Research Gaps and Future Work Directions

	Bibliography
	Appendix
	Experimental Results of Local Classifiers with Resampling
	Classification Results
	Statistical Tests

	Experimental Results of the COVID-19 Identification Study Case
	Baseline Results
	No Fusion
	Early Fusion
	Late Fusion

	Local Classifiers with Resampling
	No Fusion
	Early Fusion

	Global Hierarchical Resampling
	No Fusion
	Early Fusion
	Late Fusion

