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RESUMO 

A mineração de processos provê uma visão real dos processos de negócio a partir de 

eventos dos sistemas de informação. Normalmente, os métodos assumem que os 

processos não mudam, porém, isso é pouco provável em processos reais que mudam para 

atender demandas de mercado, novas regulamentações, ou para melhorias e correções. 

Essas mudanças são chamadas de concept ou process drifts e a sua detecção é relevante 

por diferentes razões: melhorar a análise de processos fornecendo um modelo mais 

aderente a realidade; melhorar a ação de gestores por atuar a partir das mudanças; 

melhorar a acurácia de mecanismos de predição e recomendação. Diferentes propostas 

foram apresentadas para detecção de process drifts; entretanto, elas são muito sensíveis a 

escolha dos parâmetros e muitas vezes a análise de acurácia não utiliza métricas objetivas, 

ou as métricas não estão claras. Essa pesquisa buscou superar esses desafios a partir da 

apresentação de uma nova ferramenta para detecção de process drifts, o Interactive 

Process Drift Detection (IPDD) framework, que define uma arquitetura genérica para 

implementação de métodos de detecção de drifts. Essa arquitetura permitiu a 

implementação de três abordagens: (i) Fixed IPDD for control-flow drifts; (ii) Adaptive IPDD 

for time and data drifts; e (iii) Adaptive IPDD for control-flow drifts, que buscaram reduzir a 

quantidade de parâmetros – aplicando o ADWIN change detector – e facilitar a verificação 

dos drifts pelo usuário. O Fixed IPDD for control-flow drifts foi validado em uma base 

sintética. Detectou 17 dos 18 padrões de mudança da base e permitiu a localização dos 

drifts no modelo de processo e a visualização de suas versões ao longo do tempo. O 

Adaptive IPDD for time and data drifts foi aplicado em um estudo de caso no contexto 

industrial para condition-based maintenance e validado em bases sintéticas e uma base 

real. O Adaptive IPDD for control-flow drifts foi validado em bases sintéticas com duas 

abordagens (trace by trace e windowing) e comparado com o Apromore ProDrift e Visual 

Drift Detection (VDD). O Adaptive IPDD for control-flow drifts windowing é estatisticamente 

equivalente ao Apromore para detecção de drifts, mas supera o Apromore considerando o 

mean delay. Já o Adaptive IPDD for control-flow drifts trace by trace é estatisticamente 

equivalente ao Apromore no dataset 2 e supera o mean delay do Apromore AWIN no 

dataset 1 e o mean delay do Apromore FWIN no dataset 2. VDD apresentou os resultados 

mais baixos de F-score e mean delay para ambos os datasets. O Adaptive IPDD for control-

flow foi aplicado em um log real e detectou três drifts, localizando os mesmos e 

apresentando as versões do processo ao longo do tempo. A aplicação do IPDD em 

processos reais é promissora devido a validação realizada e a interface de usuário que 

permite uma facilidade para visualização dos drifts detectados pelo especialista de negócio.  

Palavras-chave: process drifts, concept drift, modelo de processo, ADWIN.   



 

 

  



 

 

ABSTRACT 

Process mining provides an objective view of business processes from events collected from 

the information systems. Usually, the methods assume that processes do not change; 

however, this is not probable in real-life processes that change to meet market demands, 

new regulations, or improvements and corrections. These changes are called concept or 

process drifts. Their detection is relevant for different reasons: to improve process analysis 

by providing a model more adherent to reality; to improve the action of managers by acting 

based on the detected changes; improve the accuracy of prediction and recommendation 

mechanisms. Different proposals were presented for detecting process drifts; however, they 

are susceptible to the parameter configuration, and often the accuracy analysis does not use 

objective metrics, or the metrics are not clear. This research aims to overcome these 

challenges by presenting a new tool for process drift detection, the Interactive Process Drift 

Detection (IPDD) framework, which defines a generic architecture for implementing drift 

detection methods. Three implementations based on this architecture were presented: (i) 

Fixed IPDD for control-flow drifts; (ii) Adaptive IPDD for time and data drifts; and (iii) Adaptive 

IPDD for control-flow drifts, aiming to reduce the number of parameters – by applying the 

ADWIN change detector – and facilitate the verification of drifts by the user. Fixed IPDD for 

control-flow drifts was validated on a synthetic dataset. It detected 17 of the 18 change 

patterns, allowing the drift localization in the process model and the visualization of their 

versions over time. The Adaptive IPDD for time and data drifts was applied in a case study in 

the industrial context for condition-based maintenance and validated on synthetic datasets 

and a real-life event log. The Adaptive IPDD for control-flow drifts was validated on synthetic 

datasets with two approaches (trace by trace and windowing) and compared with Apromore 

ProDrift and Visual Drift Detection (VDD). Adaptive IPDD for control-flow drifts windowing is 

statistically equivalent to Apromore for drift detection but outperforms Apromore in mean 

delay. The Adaptive IPDD for control-flow drifts trace by trace is statistically equivalent to 

Apromore in dataset 2 and surpasses the mean delay of Apromore AWIN in dataset 1 and 

the mean delay of Apromore FWIN in dataset 2. VDD presented the lowest F -score and 

mean delay results for both datasets. The Adaptive IPDD for control-flow was applied to a 

real-life log and detected three drifts, localizing them and presenting the process versions 

over time. The application of the IPDD in real processes is promising because of the 

validation performed and the focus on providing a simple user interface for the business 

analyst to verify the detected drifts and the evolution of the process over time.  

Keywords: process drifts, concept drift, process models, ADWIN. 
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1 INTRODUCTION 

Process mining is a growing research area that links the process analysis and modeling 

techniques with data mining. The goal is to obtain valuable information about processes from 

data collected from the information systems’ event logs. Business analysts and companies 

can then improve their business processes based on what is happening instead of trying to 

understand reality based on assumptions or interviews. Process mining provides powerful 

tools and methods for understanding, analyzing, and improving business processes to 

achieve better performance, customer experience, or any other aspect that may raise an 

advantage in the competitive business world. 

Process mining includes three main branches: process discovery, conformance 

checking, and enhancement (van der Aalst, 2016). Process discovery automatically derives a 

process model from an event log without any a priori information. The techniques compare 

the event logs and a process model (discovered or designed) to detect deviations in 

conformance checking. In process enhancement, the discovered process model can be 

extended by adding additional perspectives obtained from event logs, e.g., performance, and 

data. The enhancement also includes repairing or improving a business process based on 

the discovery, conformance, and extension analysis. Process mining also includes social 

network/organizational mining, automated construction of simulation models, case prediction 

(Choueiri et al., 2020), and history-based recommendations (van der Aalst et al., 2011). 

Nowadays, we can find different process mining tools available. Some of them are 

designed for commercial use, e.g., Disco1 (Günther & Rozinat, 2012), Apromore2 (La Rosa et 

al., 2011), Upflux3, Celonis4, and, in addition, provide academic licenses for academics to 

support their research. Some tools are designed for research purposes, e.g., ProM 

Framework5 (van der Aalst et al., 2009) and bupaR6 (Janssenswillen et al., 2019). A more 

recent tool, the PM4Py7 (Berti et al., 2019), started as an open-source framework including 

several state-of-the-art process mining algorithms for researchers, mainly because of their 

programmatic user interface. However, the same research group recently released the 

 

 

1 Disco: https://fluxicon.com/disco/  

2 Apromore: https://apromore.org/platform/editions/  

3 Upflux: https://upflux.net/pt/  

4 Celonis: https://www.celonis.com/process-mining/what-is-process-mining/  

5 ProM Framework: https://www.promtools.org/   

6 bupaR: https://www.bupar.net/index.html  

7 PM4Py: https://pm4py.fit.fraunhofer.de/  

https://fluxicon.com/disco/
https://apromore.org/platform/editions/
https://upflux.net/pt/
https://www.celonis.com/process-mining/what-is-process-mining/
https://www.promtools.org/doku.php
https://www.bupar.net/index.html
https://pm4py.fit.fraunhofer.de/
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PMTK, a web-based process mining tool built on the open-source PM4Py project, providing a 

user-friendly interface for commercial and academic purposes. 

The starting point for any process mining technique is the event data, accessed as an 

event log or an event stream. Event logs contain historical information about processes, 

represented by sequentially recorded events related to a process instance (case). A case id 

identifies each process instance, and each event refers to an activity, which is a well-defined 

step in the process (van der Aalst et al., 2011). An event stream is a potentially infinite 

sequence of events emitted as they occur and are executed in the context of a business 

process (van Zelst et al., 2018). Any event in the stream must be related to a case and an 

activity, as in an event log. Event streams allow process mining online analysis, but include 

additional challenges such as dealing with incomplete traces and memory consumption. 

Regardless of the format (event log or event stream), the event data contains information 

about the execution of a single business process, such as buying items online.  

The process model in Figure 1.1 shows the sequence of activities executed from the 

order request to the shipping or canceling order activities from an online store using the Petri 

Net notation. The possible events in the process are (a) order request, (b) credit card 

validation, (c) shipping address validation, (d) decision, (e) shipping order, and (f) cancel the 

order. 

 

Figure 1.1. E-commerce process model using Petri Net notation. 

Figure 1.2 shows an example of an event log recorded for the e-commerce process 

described in Figure 1.1. Each case has an identifier and represents the execution of one 

instance of the process, storing what is called a trace in the event data. A trace indicates the 

sequence of events performed by a specific case, i.e., a path in the process. In the described 

cases, the trace < 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 > is stored for cases 1 and 2; but case 3 generates a different 

trace < 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 >. The event log in Figure 1.2 contains the minimum information needed 

for process mining techniques (case identifier, activity, and timestamp), but other case or 

event attributes can be included in the process analysis if available. Since several cases can 

record the same trace (cases 1 and 2), a simple representation of the event log can describe 
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each trace and its frequency (hereafter denoted as a superscript coupled with each trace): 

𝐿 = [< 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 >2,  < 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 >1, . . . ]. 

 

Figure 1.2. Event log recorded for the e-commerce process. 

The process model in Figure 1.1 shows only the control-flow perspective, i.e., the possible 

sequence of activities. However, additional perspectives can be included when extending 

process models through enhancement. For example, one can discover the average sojourn 

time for the “Shipping order” activity by applying a replay technique on the discovered 

process model and assigning performance information to the activities and paths. Therefore, 

we can identify different perspectives when applying process mining techniques, e.g., time 

and resource. 

Most existing process mining methods and techniques are designed to work with 

event logs and consider the processes in a “steady-state”. In other words, they assume the 

process does not change during the recording of the event log, i.e., all traces are related to 

the same version of the process. This assumption is naive as real-life processes are likely to 

change over time in response to market dynamics, new regulations, or improving/repairing 

the current process. For instance, most process discovery algorithms have difficulties when 

an event log contains a drift: causal relations between events may appear, disappear, and 

vice-versa (Carmona & Gavaldà, 2012). This scenario imposes a new challenge: dealing with 
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these changes in the process analysis. A change inside a process can be planned or 

unexpected, and the situation where the process is changing while being analyzed is defined 

as a concept drift (Bose et al., 2014). 

Mechanisms for detecting concept drifts in process models are essential for different 

reasons, such as: 

▪ Improving the process analysis by deriving process models more adherent to 

reality; 

▪ Minimizing the complexity of process discovered models by avoiding a mixed 

model; 

▪ Improving managers’ actions by explicitly identifying changes in the processes; 

▪ Improving the accuracy of prediction or recommendation mechanisms, which 

usually degrade performance over time because of concept drifts;  

▪ Implementing triggers in case of changes in the process. 

The process mining manifesto (van der Aalst et al., 2011) also indicated that dealing 

with concept drift in process mining is one of the area’s challenges, confirming the topic’s 

importance.  

We identified different approaches to handle the concept drift situation in processes, 

especially for detecting concept drifts in the control-flow perspective of the process models. 

Section 2 of this thesis describes the concept drift problem in process mining in further detail 

and provides a structured review of the current approaches for dealing with it. Based on this 

review, we identified that the current approaches have some issues that still need to be 

addressed in real-world business analyses. The following sections provide a brief overview of 

the main topic and the open challenges for applying the current approaches.  

1.1 CONCEPT DRIFT IN PROCESSES 

Concept drift in processes refers to the process changes that may happen when the process 

is being analyzed (Bose et al., 2014). Few processes are in a “steady-state,” and 

understanding, detecting, and analyzing concept drift in processes is essential for business 

process management. The changes can affect the different perspectives of the process, e.g., 

control-flow, time, and resources. For instance, one activity may be removed or added, 

affecting the control-flow perspective; in another change, one can automate a previously 

manually performed activity, reducing the sojourn time of the process, which affects the time 

perspective. 

The changes in the processes can affect the current instances suddenly or gradually.  

Furthermore, versions of the processes can reappear, or the new version can be 
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implemented using small changes over time. Therefore, the concept drift in processes can be 

classified into sudden, gradual, recurrent, and incremental, as described in Figure 1.3.  

 

Figure 1.3. Four types of concept drift in processes. 

The analysis of concept drift in processes may occur offline or online. In an offline 

analysis, the input is an event log representing the historical information about the process 

over a period containing complete traces. The offline analysis of concept drift improves the 

process analysis by highlighting unknown and probably unexpected changes. As a 

complementary analysis, we can apply the online concept drift detection when the changes 

need to be uncovered in real-time or near real-time, e.g., if the organization is interested in 

reacting to a change when it is happening, using real-time alarms. For this purpose, the 

online analysis requires an event stream, representing an infinite sequence of events 

generated over time (van Zelst et al., 2018).  

The concept drift detection in process models includes five challenges: drift detection, 

change point detection, change localization, change characterization, and unraveling process 

evolution or change process discovery (Sato et al., 2022). Drift detection means reporting 

that a drift occurred and change point detection complements this information by reporting 

the point in the time where it occurred. The change localization identifies the region in the 

process model where the change occurred, and the characterization reports the nature of the 



22 

 

 

change by informing its type and perspective. Finally, the unravel the process evolution 

challenge allows the business analyst to visualize the complete change process based on 

the identification, localization, and characterization of a change. 

1.2 APPROACHES FOR DETECTING CONCEPT DRIFT IN PROCESSES 

Section 2 describes the identified approaches for dealing with concept drift in processes in 

more detail, as published in (Sato et al., 2022). However, we included this section to position 

the research aim against what was already found in the literature. Here we only report a brief 

overview of the main aspects of the identified approaches. Most papers for handling concept 

drift in process mining aim to detect the drifts (38 papers from 45) in the control-flow 

perspective (29 papers from 38) of the process offline. Most detection approaches apply 

statistical hypothesis tests over features calculated from the event log (Bose et al., 2014, 

2011; A Maaradji et al., 2017; Abderrahmane Maaradji et al., 2015; Manoj Kumar et al., 

2015; Martjushev et al., 2015; Ostovar et al., 2020, 2017, 2016; Pauwels & Calders, 2019; 

Seeliger et al., 2017), and some apply change point detection or change detector algorithms 

(Carmona & Gavaldà, 2012; Hassani, 2019; Impedovo et al., 2020; Yeshchenko et al., 2021; 

Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 2019; Yeshchenko, 

Mendling, et al., 2020). We also identified trace clustering approaches considering the time 

component (Rafael Accorsi et al., 2012; Barbon Junior et al., 2018; Luengo & Sepúlveda, 

2012; Mora et al., 2020; Richter & Seidl, 2017; Tavares et al., 2019; Zellner et al., 2020). 

Some approaches provided visual analysis: performance spectrum (Denisov et al., 2018), 

plots providing similarity matrices over time (Hompes et al., 2017), or heat maps plotting the 

Earth Mover’s Distance (EMD) value to identify potential drifts (Brockhoff et al., 2020). Some 

other approaches are clustering over intervals obtained from a relation matrix (Zheng et al., 

2017), comparing footprint matrices over time (N. Liu et al., 2018), and discovery and 

conformance checking analysis of process histories for online environments (Stertz & 

Rinderle-Ma, 2018, 2019).  

Some of the approaches are part of the process mining tools: ProM – Concept Drift 

plugin (Bose et al., 2014, 2011; Martjushev et al., 2015), Trace Clustering plugin (Hompes et 

al., 2017), PSM plugin (Denisov et al., 2018); and Apromore – ProDrift plugin (A Maaradji et 

al., 2017; Abderrahmane Maaradji et al., 2015; Ostovar et al., 2020, 2016, 2017). Other 

approaches have the source code available on GitHub8: Process Drift Detector plugin for 

 

 

8 Source code repository: https://github.com/  

https://github.com/
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ProM9 (Seeliger et al., 2017), Tsinghua Process Concept Drift Detection –  TPCDD10 (Zheng 

et al., 2017), Concept Drift in Event Stream Framework –  CDESF11 (Barbon Junior et al., 

2018; Mora et al., 2020; Tavares et al., 2019), Visual Drift Detection System – VDD12 

(Yeshchenko et al., 2021; Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 

2019; Yeshchenko, Mendling, et al., 2020), Dynamic Outlier Aggregation13 (Zellner et al., 

2020), and OTOSO14 (Richter et al., 2020). However, eight approaches do not provide the 

source code nor the experimental tool developed for download.  

Analyzing the available approaches, we still find some challenges.  

(i) Accuracy is sensitive to the parameter configuration 

The methods are susceptible to parameter configuration, such as window size for statistical 

approaches or even specific parameters for the clustering approaches. Even the adaptive 

approaches show this dependency.  

(ii) Lack of objective evaluation metrics reports  

The available tools do not report the evaluation metrics (e.g., F-score, mean delay) in the 

user interface. The evaluation metrics are also not reported in all proposed approaches, and 

when they are reported, it is sometimes unclear how the authors calculate them. As the 

current methods are sensitive to the parameter configuration, comparing distinct approaches 

and performing parameter tuning is challenging. We did not identify the possibility of 

changing the parameters and obtaining the drift detection accuracy results based on an 

objective metric in the available tools.  

(iii) Absence of a simple visualization of the evolution of the process 

Most approaches only deal with drift and change point detection, localization, and 

characterization. We identified only one approach, the VDD (Yeshchenko et al., 2021; 

Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 2019; Yeshchenko, 

Mendling, et al., 2020), which addresses all the challenges. However, the visualization of the 

changing process mixes a directly-follows graph with constraints derived from the Declare 

 

 

9 Source code available at https://github.com/alexsee/processdriftdetector  

10 Source code available at https://github.com/THUBPM/process-drift-detection  

11 Source code available at https://github.com/gbrltv/CDESF and https://github.com/gbrltv/CDESF2 

12 Source code available at https://github.com/yesanton/Process-Drift-Visualization-With-Declare  

13 Source code available at https://github.com/zellnerlu/DOA  

14 Source code available at https://github.com/Skarvir/OTOSO  

https://github.com/alexsee/processdriftdetector
https://github.com/THUBPM/process-drift-detection
https://github.com/gbrltv/CDESF
https://github.com/gbrltv/CDESF2
https://github.com/yesanton/Process-Drift-Visualization-With-Declare
https://github.com/zellnerlu/DOA
https://github.com/Skarvir/OTOSO
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models (van der Aalst et al., 2009) applied in the approach, which does not provide a simple 

visualization of the changes in the process. 

Applying the available tools in real-world situations is an arduous and, sometimes, not 

a viable task because of the identified problems.  

1.3 RESEARCH AIM 

This research aims to develop a tool for concept drift detection in process models that 

address the previously identified issues. In other words, the developed tool aims to minimize 

the impact of the parameter configuration on the detection accuracy, providing an objective 

evaluation metric report for supporting the user to evaluate the results quickly and supplying 

the user with a simple visualization of the process evolution. 

1.4 RESEARCH OBJECTIVES AND CONTRIBUTIONS 

The following objectives support the aim of this research: 

1. Identify and understand the tools and approaches for concept drift detection in 

process models.  

2. Propose and validate a sudden concept drift detection tool that allows the user to 

change the parameters and quickly evaluate the results based on an objective, 

showing the process’ evolution over time.  

3. Extend the tool, including an adaptive approach for the control-flow perspective, 

aiming to reduce the impact of user-defined parameters on detection accuracy.  

The first contribution of this research is the structured revision of the topic of concept 

drift in process mining (Section 2), describing the main concepts and the existing 

approaches. Based on the performed review, it was possible to identify the current 

challenges to applying concept drift detection analysis in real-world scenarios.  

Another contribution is the proposed tool for concept drift detection (Sections 3 and 

4), which detects drift in process models with a simplified parameter configuration, outputting 

the result of the detection mechanism using the process models (process evolution replay) 

and showing evaluation metrics. Also, the tool performs drift detection in the control-flow 

based on an adaptive windowing mechanism (Section 5), aiming to reduce the dependency 

of the parameter configuration.  

We extended the concept drift detection tool to handle drifts in the time and data 

perspectives based on an adaptive approach. Although this is not included in the research 

objectives, the extension provided information about time drifts for maintenance decision-

making in the condition-based maintenance policy. Tests on synthetic databases and a case 

study with a real-life dataset were conducted to validate the method and prove its 
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effectiveness by numerical evaluation. The main contribution is applying the developed tool 

to a real problem in the industry, showing promising results in a practical problem with a 

structured process. Section 6 contains the paper addressing the case study applied in a 

maintenance process.  

1.5 RESEARCH METHODOLOGY 

We applied the design science research process (Peffers et al., 2014) in this research. Table 

1.1 shows the description of each step of the process.  

Table 1.1. Design Science Research Process Description 

Process step Description 

Identify problem & 
motivate 

Identify the pros and cons of the current tools for concept drift detection in 
process models.  

Define Objectives of 
a Solution 

Develop a tool for concept drift detection in process models that handles 
some of the issues of the current approaches. 

Design & 
Development 

Tool for concept drift detection in process models. 

Demonstration Evaluate the accuracy of the developed tool using a synthetic dataset. 

Evaluation Compare the accuracy of the developed tool with other available tools. 

Communication Publish the papers (one per research objective) and the thesis. 

Publicize the source code of the developed tool.  
 

1.6 DOCUMENT STRUCTURE 

The following sections of this document are written as a research paper, each addressing 

one research objective. At the beginning of each section, the problem of concept drift in 

process models and the related works may become repetitive. After reading Section 2, which 

contains the literature review about the topic and details of the current approaches, the 

reader may skip the introduction and related work topics from the following sections.  

Section 1 introduces the problem addressed by this research and presents the 

research goals and methodology. Section 2 describes a systematic literature review of the 

concept drift in process mining, explaining the main concepts and the current approaches for 

dealing with concept drift in processes. Sections 3 and 4 present the Interactive Process Drift 

Detection (IPDD) framework with the first implementation and validation. Section 5 extends 

the IPDD to detect control-flow drifts using an adaptive approach and compares it to other 

available tools. Section 6 describes the application of the IPDD to support condition-based 

maintenance policies by detecting time and data drifts. Finally, Section 7 concludes this 

thesis by highlighting the main results and future work. Figure 1.4 shows the structure of this 

document graphically.  
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Figure 1.4. Thesis structure. 
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2 PAPER #1: A SURVEY ON CONCEPT DRIFT IN PROCESS MINING 

Concept drift in process mining (PM) is a challenge as classical methods assume processes 

are in a steady-state, i.e., events share the same process version. We conducted a 

systematic literature review on the intersection of these areas, and thus, we review concept 

drift in process mining and bring forward a taxonomy of existing techniques for drift detection 

and online process mining for evolving environments. Existing works depict that (i) PM still 

primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in 

processes is cumbersome due to the lack of common evaluation protocol, datasets, and 

metrics. 

CCS Concepts: • General and reference → Surveys and overviews; • Computing 

methodologies →Artificial intelligence; 

Additional Key Words and Phrases: Concept drift, process mining, drift detection, change 

point detection, adaptive process discovery 

2.1 INTRODUCTION: BACKGROUND AND MOTIVATION 

Process Mining (PM) is a growing research area that provides techniques to understand and 

improve processes in different application domains (Garcia et al., 2019). PM’s goal is to 

extract non-trivial process-related information from event data (observed behavior) recorded 

by the information systems available. The PM area is drawing more attention because of the 

increasing availability of data events (more data is being generated and recorded) and the 

need to develop and improve business processes in fast-changing environments. In (van der 

Aalst, 2016), van der Aalst defines three types of PM: discovery, conformance, and 

enhancement. Discovery aims at producing a process model that generalizes the observed 

behavior from the event data without any a priori information. The discovered process model 

may describe only the control-flow of events or other aspects, e.g., organizational or time. In 

conformance, the goal is to compare the event data with a process model (discovered or 

designed) to reveal discrepancies. Enhancement focuses on improving or extending the 

current process model based on information obtained from event data. The key elements for 

any PM technique are the event data and the process model. 

The event data are usually recorded by information systems and can be accessed in 

event logs or event streams. An event log contains a historical record of occurred events for 

a specific process, providing information for the PM techniques in an offline manner. Event 

streams allow the PM techniques to operate online, accessing the events as they occurred. 

When comparing event streams to event logs, the main differences are that the event stream 

is potentially infinite, and the cases inside it can be incomplete (van Zelst et al., 2018). 

Regardless of the format, the event data contain information about the execution of a single 
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business process, e.g., buying items online. The process model in Figure 2.1 shows the 

sequence of activities executed in an online store using the Petri Net notation (van der Aalst, 

2016). 

 

Figure 2.1. Petri net model for the e-commerce process. 

The process contains the following activities: order request (a), credit card validation (b), 

shipping address validation (c), decision (d), shipping order (e), and cancel the order (f). 

Activities a to d are sequentially executed, then there is a choice between e and f. 

Each event refers to a single process instance (case), is linked to some activity of the 

process (e.g., order request), and must be ordered within a case. Figure 2.2 shows an 

example of event data recorded for the e-commerce process (Figure 2.1). Each case has an 

identifier and represents one execution of the process, recording what is called a trace in the 

event data, i.e., the sequence of events for the specific case. In the described cases, the 

trace < 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 > is recorded for cases 1 and 2; but case 3 generates a different trace <

𝑎, 𝑏, 𝑐, 𝑑, 𝑓 >. The event data in Figure 2.2 contains the minimum information needed for PM 

techniques (case identifier, activity, and timestamp), but other case or event attributes can be 

recorded and included in the process analysis. Because several cases can record the same 

trace, a simple representation of the event log contains the traces and its frequency, denoted 

as a superscript: 𝐿 = [< 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 >2, < 𝑎, 𝑏, 𝑐, 𝑑, 𝑓 >1, . . . ]. 
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Figure 2.2. Example of event data. 

Most existing PM methods are designed to work with event logs and consider the processes 

in a steady-state, i.e., all traces are related to the same version of the process. However, 

real-life processes are likely to change over time in response to market dynamics, new 

regulations, or even improving or repairing the current process. This scenario imposes a new 

challenge: dealing with these changes in the process analysis. A change inside a process 

can be planned or unexpected, and the situation where the process is changing while being 

analyzed is named concept drift (Bose et al., 2014).  

Concept drift is a relevant problem in different domains, e.g., business process 

analysis. Companies are always trying to adapt and evolve their business process to (van 

der Aalst et al., 2011) handle different situations, e.g., changes in regulations and seasonal 

demands, so PM techniques should consider the concept drift challenge to allow process 

analysis in evolving business. The PM manifesto also highlights dealing with concept drift in 

PM as one of the core challenges for the area. However, there is no structured review of the 

topic describing the available published methods. This survey covers different aspects of 

dealing with concept drift in PM, providing an overview of the current techniques and the 

challenges as a contribution to the area.    
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The paper is organized as follows. In Section 2.2, we introduce the concept drift in the 

PM context, presenting its main challenges. Sections 2.3 and 2.4 overview current methods 

that can be applied to evolving processes. Section 2.5 discusses the main achievements of 

the existing approaches and highlights open challenges. Finally, Section 2.6 concludes the 

survey.    

2.2 CONCEPT DRIFT IN PROCESS MINING 

Concept drift is a well-known problem in data mining, and it refers to an online supervised 

learning scenario when the relation between the input data and the target variable changes 

over time (Ditzler et al., 2015; J. Lu et al., 2019). In this situation, the learning algorithms 

need to adapt themselves on the fly to react to concept drifts appropriately (Gama et al., 

2014). In PM, we also have a relationship between the input data, i.e., the event data, and 

the target variable, i.e., the process model. Nevertheless, data mining techniques, including 

techniques to deal with concept drift, handle structures as the target variable, as categorical 

or continuous values in the form of a vector as input. PM techniques deal with process 

models, which contain more complex structures, like concurrency, choices, and loops. 

Therefore, it is not possible to use the same methods developed for data mining in 

PM, and thus, it motivates the development of new strategies and techniques to handle 

concept drift in PM. To understand the proposed approaches for dealing with concept drift in 

PM, we conducted a Systematic Literature Review (SLR) to sustain the discoveries of this 

survey. 

2.2.1 RESEARCH METHOD 

The SLR’s goal is to identify the current approaches for dealing with concept drift in PM. We 

only included peer-reviewed documents and defined the following research questions (RQ): 

• RQ1: Which approaches authors proposed to deal with concept drift detection in 

processes? 

• RQ2: Which approaches provide tools for concept drift detection in processes? 

• RQ3: How did the authors validate the proposed approaches? 

The first author executed the search protocol by applying the search strings in the databases 

of four digital libraries, as described in  

Table 2.1. We have also included the workshops from the International Conference on PM 

Series (ICPM) because of their relevance to the PM area. 
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Table 2.1. Searches in Digital Libraries and proceedings from ICPM Workshops. 

Origin Search String Results 

ACM Digital Library [[All: “concept drift”] OR [All: “process drift”]] AND [All: 
“process mining”] 

20 

IEEE Xplore ((“All Metadata”: “concept drift” OR “process drift”) AND “All 
Metadata”: “process mining”) AND [All: “process mining”] 

13 

Scopus (TITLE-ABS-KEY ( “concept drift”  OR  “process drift”)  AND  
TITLE-ABS-KEY ( “process mining” )) 

56 

Springer Link (“concept drift” OR “process drift”) AND “process mining” - 
LIMITED TO ENGLISH 

140 

ICPM Workshops “concept drift” 2 

Total  231 

After obtaining the first set of papers from the digital libraries, the next step was to read and 

classify them based on the inclusion (IC) and exclusion criteria (EC). The ICs define the 

relevant studies, while the ECs guarantee the quality of the selected ones based on the pre-

defined RQs (Kitchenham & Charters, 2007): 

• IC1: Peer-reviewed documents written in English describing approaches for dealing 

with concept drift in process models using only event data as input - 88 papers. 

• IC2: Peer-reviewed documents written in English comparing approaches or tools for 

dealing with concept drift in process models - 2 papers. 

• EC1: Duplicated documents - 35 papers. 

• EC2: Papers published before 2015 with less than five citations - 5 papers. 

• EC3: Approaches dealing with concept drift in a business process that do not 

consider changes in a complete perspective of the model, e.g., control-flow or time. 

For instance, a predictive model for a specific time difference in the process, e.g., 

delivery time as the target adapted when a concept drift occurred - 6 papers. 

• EC4: Approaches for dealing with concept drift in processes but reporting 

experiments without complete detailing, e.g., without describing the dataset 

configuration - 2 papers. 

Finally, we applied backward snowballing (Wohlin, 2014) while following the ICs and 

ECs, including three papers summing up a total of 45 papers. After reading the selected 

papers, we organized an overview of the concept drift in PM, thus providing its main 

concepts. Sections 2.3 and 2.4 describe the identified approaches for dealing with concept 

drifts. 

2.2.2 CONCEPT DRIFT DEFINITION 

Concept drift research in PM focused on two directions: (i) detecting drifts and providing 

information for its analysis, and (ii) offering online PM techniques for dealing with evolving 

environments. We have also identified two papers (P. Ceravolo et al., 2020; Omori et al., 
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2019) comparing approaches for concept drift detection in process models, which are 

included in the first branch. 

The concept drift in PM, also named business process drift in (Abderrahmane 

Maaradji et al., 2015), is the situation when the process changes while being analyzed (van 

der Aalst, 2016). Therefore, we cannot assume that the event log or stream contains traces 

of a unique version of the process. Process models may include different perspectives of the 

process: control-flow, data, timing, or others, and the changes can also occur in any of these 

perspectives. Several notations exist to model business processes, and we will refer to them 

as process models. The concept drift in process models includes different aspects reported 

in the related works, summarized in Figure 2.3. The following topics illustrate and explain the 

aspects depicted above. 

 

Figure 2.3. Different aspects of defining and characterizing concept drift in process mining. 

2.2.3 PERSPECTIVES OF CHANGE 

A process model typically contains information about different perspectives; therefore, the 

changes can occur in one or more of them. Authors in (Bose et al., 2014, 2011) highlighted 

three essential perspectives in business processes: control-flow, data, and resource –  also 

named as organizational perspective by (van der Aalst, 2016). Another vital view in PM is the 

time perspective, which provides performance indicators as lead, waiting, service, and 

synchronization times. Despite this perspective being widely explored for process analysis, 

we found fewer papers exploring it for concept drifts (Barbon Junior et al., 2018; Brockhoff et 

al., 2020; Mora et al., 2020; Richter & Seidl, 2019, 2017; Tavares et al., 2019). 

2.2.3.1 Control-flow 

Changes in this perspective represent behavioral or structural changes in the process model. 

Process models can be imperative, e.g., Petri nets or BPMN, or declarative, e.g., Declare 

models (van der Aalst et al., 2009). Authors in (B. Weber et al., 2008) suggest a set of 13 

structural change patterns for imperative business process models, organized into 
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adding/deleting fragments, moving/replacing fragments, adding/removing levels (sub-

processes), adapting control dependencies, and changing transition conditions. In a 

declarative process model, a structural change can be adding or deleting a constraint.  

Figure 2.4 shows two structural changes in the e-commerce process: two activities for 

delivery are included within a choice construction (regular or express), and the activity 

shipping address validation can now be executed in parallel with credit card validation. 

(a) Process model before the drift. 

(b) Process model after the drift. 
Figure 2.4. Concept drift in the control-flow perspective. 

 

The process behavior can also change without any structural modification on the model. In 

the e-commerce process example, customers can be classified as silver or gold, depending 

on their purchase history. Gold customers may start having express deliveries without extra 

charges. The process structure remains intact, but the routing of cases changes as all orders 

from gold customers are routed to the express delivery activity. 

2.2.3.2 Time 

This perspective concerns the timing and frequency of events in the process. Events 

recorded with timestamps make it possible to identify bottlenecks or measure service levels 

(van der Aalst, 2016). A change in this perspective deals with significant changes in process 

performance over time (Barbon Junior et al., 2018; Brockhoff et al., 2020; Mora et al., 2020; 

Tavares et al., 2019). An example can be an activity that is manually executed, e.g., credit 

card validation, and after a specific date is changed to be automatically performed by the 
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system. The automatic activity can reduce its time of execution, changing the time 

perspective of the process. 

2.2.3.3 Resource 

A change in the resource perspective regards the influence of the resources on the execution 

of activities, including changes in the organization structure, roles, and resource availability. 

An activity may not be active until a specific resource, e.g., a machine on a production line, is 

available. A situation like this can change the execution paths of the process. In another 

process, some activities can be redirected to be executed by a different department. In the e-

commerce process example, we can change the department responsible for the decision 

activity, for instance, changing the resource perspective. 

2.2.3.4 Data 

This perspective concerns the data produced or consumed by the process during the 

execution of its activities. A change in this perspective represents a change in the data 

related to the case or the event. In the e-commerce process example, it may no longer be 

required to attach the credit card image to execute the credit card validation activity.  

The proposals depicted in (Hompes et al., 2017; Pauwels & Calders, 2019; Stertz & 

Rinderle-Ma, 2019) explicitly deal with this perspective. 

2.2.4 DURATION, TYPE, AND DYNAMIC OF THE CHANGE 

Changes can be classified as momentary or permanent, depending on the period the change 

is active. Momentary changes are short-lived and affect only a few cases, whether 

permanent changes are persistent and stay for a while (Schonenberg et al., 2008). In PM, a 

momentary change can be understood as an outlier (or blip) that represents an unusual 

behavior. Typically, PM techniques filter out the outliers. Thus, the approaches to deal with 

concept drift usually focus only on permanent drifts. Authors in (Bose et al., 2014, 2011) 

identified four distinct types of drifts: sudden, gradual, recurring, and incremental. 

2.2.4.1 Type of Drift 

Figure 2.5 shows: (a) a sudden drift, (b) a gradual drift, (c) a recurring drift, and (d) an 

incremental drift. The x-axis represents the time component, while the y-axis indicates 

distinct process models. A line inside the shaded rectangles represents a case. 
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Figure 2.5. Four different types of drift. Adapted from (Bose et al., 2014). 

Sudden drift. When a sudden drift occurs, a new version of the process model starts to 

handle all the ongoing cases. It represents a complete substitution of the current process 𝑀1 

with a new one  𝑀2, as shown in Figure 2.5 (a). This type of drift can occur in emergencies or 

even when new regulations must be followed. In a sudden drift, incomplete cases should be 

redirected to the new process, especially in real situations; this is also named intra-trace drift 

by (Ostovar et al., 2016). In this situation, a case can contain events related to different 

versions of the process. Several approaches handle sudden drifts, but the synthetic logs 

used for validation do not always contain intra-trace drifts.    

Gradual drift. A gradual drift occurs when the current process 𝑀1 is replaced by a new 

one 𝑀2, but instances of both processes coexist for a while. For instance, if only the new 

customers of the e-commerce process should provide a photo of the identification document. 

As indicated in Figure 2.5 (b), after some time, only instances of 𝑀2 will exist. Figure 2.6 

illustrates different gradual drifts showing the probability of a process model emanating 

instances in the y-axis and time in the x-axis. We can artificially model gradual drifts in 

different ways by using distinct functions to describe how things grow or decay as time 

passes. Figure 2.6 (a-b) shows a gradual drift characterized by a linear change between 𝑀1 

and 𝑀2, i.e., the cases from both processes continuously decrease and increase. The slope 

defines the degree of decrease/increase (Figure 2.6 a-b), and after 𝑡2, all cases emanate 

only from 𝑀2. Another common approach is to follow an exponential rate of 

increase/decrease of cases from two processes, such as depicted in Figure 2.6 (c-d).  

In this example, between 𝑡1 and 𝑡2, which define the beginning and the end of the drift 

region, 𝑀1 emanates cases with 𝑃[𝑀1] = 𝑒−𝜆𝑡 probability and 𝑀2 follows 𝑃[𝑀2] = (1 − 𝑃[𝑀1]) 

(Martjushev et al., 2015). 
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Figure 2.6. (a) and (b) shows variants of gradual linear drift, with slope defining the rate of change. (c) 

and (d) shows variants of exponential gradual drift, characterized by the function 𝑒−𝜆𝑡 for 𝑀1. Adapted 
from (Martjushev et al., 2015). 

Recurring drift. Recurring drifts represent situations where a process 𝑀1 is replaced by the 

process 𝑀2, but after some time, 𝑀1 reappears, as in Figure 2.5 (c). If a model, or a set of 

models, reappears after a while, we have a recurrent drift. It is also noteworthy to mention 

that models’ replacements in recurring drifts can be either sudden or gradual. Furthermore, a 

process that changes based on seasonal influences is an example of a recurring drift. 

Incremental drift. Incremental drifts represent the situation where a model 𝑀1 is 

replaced to the model 𝑀𝑛 by incremental minor changes, as illustrated in Figure 2.5 (d). As in 

the recurring drift, each change inside an incremental drift can represent a sudden or gradual 

drift.  

Summing up, the sudden and gradual drifts can be considered basic patterns of 

change. Recurring and incremental can combine gradual, sudden, or even both types of 

drifts. In Figure 2.5, they are shown as discrete sudden changes. 

2.2.4.2 Dynamic of change 

In (Martjushev et al., 2015) authors described multi-order dynamic, i.e., a situation where 

process changes happen at different time granularity levels. For instance, let us assume a 

problem where a company changes its process after a four week span. Nonetheless, during 

such a period, the company has two variants of the process both before and after the drift. 

Approaches for dealing with concept drift in PM must consider multi-order dynamics, which 

indicates a different time scale for the changes. In the example, we can identify micro-level 

changes every week and macro-level changes after four weeks. This situation is complicated 

when the approaches use fixed-time windows. Adaptive time windows can be more suitable 

for this scenario. However, in both cases, the window size hyperparameter affects drift 

identification. 

2.2.5 TYPE OF ANALYSIS 

PM techniques can be executed either online or offline. In an offline analysis, data are 

collected in event logs, representing historical information from a time period and afterward 
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analyzed. Most PM techniques are designed for offline analysis, and concept drift is also 

explored in this scenario. Possible applications for offline concept drift analysis are: (i) 

splitting the event log into smaller parts for a better understanding of the process, thus 

avoiding more complex and imprecise models; (ii) indicating unknown and probably 

unexpected changes in the processes, improving the process analysis; and (iii) using the 

results of the analysis for redesigning the processes. In an offline setting, the time for drift 

detection is not a vital issue, and thus, the approaches can consider data after the drift on the 

analysis, and the event logs can be filtered to maintain only complete traces. 

An online analysis (also known as operational support (van der Aalst, 2016)) provides 

a way to influence and to react to the ongoing cases by accessing the events as they 

occurred, usually as event streams, which are an infinite sequence of events generated over 

time (van Zelst et al., 2018). An online setting usually requires some assumptions inherited 

from the data mining domain: data should have a fixed and small number of attributes; 

algorithms should be able to process unlimited data without exceeding memory restrictions; 

algorithms should consider a finite amount of available memory in a reasonable time; there is 

a small upper bound on time allowed to process an event, e.g., usually algorithms work with 

one pass of the data; and stream “concepts” may be stationary or evolving (Buttazzo, 2011). 

We need to address the concept drift problem in online mode when the presence of changes 

or the occurrence of drifts needs to be uncovered in real-time or in near real-time. The online 

analysis is appropriate if the organization is interested in reacting to a change when it is 

happening, using real-time alarms. For concept drift detection in PM, this means identifying 

the process changes as soon as possible but with confidence that the change is significant. 

Therefore, we can highlight two main constraints for online drift detection: accuracy and time. 

The online methods should handle both constraints to find a good trade-off between them. 

The approaches to online detect concept drift usually define a period where events 

are collected to determine a reference model. After defining the reference model, the drift 

mechanism starts to process new events. Concept drift detection approaches should not 

store all events from the stream, so it is essential to define a forgetting mechanism. The 

methods can forget events by adopting a windowing strategy (considering the recent events 

on the analysis) or applying additional methods, e.g., the aging factor. Some authors 

proposed concept drift online detection using a stream of traces (N. Liu et al., 2018; 

Abderrahmane Maaradji et al., 2015). However, we only considered online strategies when 

event streams are the input, as a stream of traces requires waiting for traces to be complete 

before its inclusion into the stream. 
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2.2.6 DEALING WITH CONCEPT DRIFTS IN PROCESSES 

We identified two branches in the 45 identified papers: (i) concept drift detection; and (ii) 

online PM dealing with evolving environments (Table 2.2). Sections 2.3 and 2.4 detail the 

approaches. 

Table 2.2. Classification of papers dealing with concept drift in PM. 

Approach Papers Number of 
papers 

Concept drift 
detection 

(Rafael Accorsi et al., 2012; Barbon Junior et al., 2018; Bose et al., 
2014, 2011; Brockhoff et al., 2020; Carmona & Gavaldà, 2012; P. 
Ceravolo et al., 2020; Hassani, 2019; Hompes et al., 2017; Impedovo 
et al., 2020; Kurniati et al., 2020; Kurniati A.P., McInerney C., Zucker 
K., Hall G., Hogg D., 2019; L. Lin et al., 2020; N. Liu et al., 2018; 
Luengo & Sepúlveda, 2012; A Maaradji et al., 2017; Abderrahmane 
Maaradji et al., 2015; Manoj Kumar et al., 2015; Martjushev et al., 
2015; Mora et al., 2020; Omori et al., 2019; Ostovar et al., 2020, 
2017, 2016; Pauwels & Calders, 2019; Richter et al., 2020; Richter & 
Seidl, 2019, 2017; Seeliger et al., 2017; Stertz & Rinderle-Ma, 2019, 
2018; Tavares et al., 2019; Yeshchenko et al., 2021; Yeshchenko, 
Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 2019; Yeshchenko, 
Mendling, et al., 2020; Zellner et al., 2020; Zheng et al., 2017) 

38 

Online PM 
dealing with 
evolving 
environments 

(Anatoliy Batyuk & Voityshyn, 2020; A Burattin et al., 2015, 2014; 
Andrea Burattin et al., 2015; Maggi et al., 2013; Redlich et al., 2014; 
van Zelst et al., 2018) 

7 

2.3 CONCEPT DRIFT DETECTION 

The approaches for concept drift detection usually addressed one or more challenges 

described in (Bose et al., 2014, 2011). We differentiate drift detection from change point (CP) 

detection because some approaches only detect the drift without reporting the CP (Carmona 

& Gavaldà, 2012; Hassani, 2019; Kurniati et al., 2020; Kurniati A.P., McInerney C., Zucker 

K., Hall G., Hogg D., 2019). We also separate “Change localization and characterization”, 

defined in (Bose et al., 2014, 2011), as such approaches usually focus on localization. 

(1) Drift detection. Detects that a process has changed without providing exact information 

about the time period or the trace/event the change occurred. 

(2) Change point detection. Detects that a process has changed and identifies the time 

period or the exact point (event or trace) where the drift occurred. These approaches 

usually report the case or event identifier as the CP, but we have also identified one 

approach (Yeshchenko et al., 2021; Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di 

Ciccio, et al., 2019) , named VDD, which reports the day as the CP. 

(3) Change localization. Identifies the region(s) of change in the process model.  The 

method that deals with change localization should identify the exact point inside the 
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model where the drift occurs, e.g., between activities A and B, without needing a process 

model as input. 

(4) Change characterization. Characterizes the nature of the change, defining the 

perspective of change and the type of drift, e.g., sudden or gradual. As several 

approaches deal with a specific perspective and type, e.g., sudden drifts in the control-

flow perspective, this challenge is unusually reported. 

(5) Unravel process evolution or change process discovery. Reveals the complete 

change process based on the identification, localization, and characterization of a 

change. Process analysts need tools to explore and relate all the discoveries, resulting in 

discovering the change process describing the drift dynamics. 

Table 2.3 provides an overview of the drift detection approaches in PM. If the link of the 

public dataset is not available anymore, we do not classify it as publicly available. When the 

authors validate the approaches using synthetic datasets, we also reported if an objective 

metric is calculated. We identified two metrics in the papers: F-score and detection delay. 

The F-score is the most common metric and reports the geometric mean of the precision and 

recall, which rely on true positives (TP), false positives (FP), and false negatives (FN). Yet, 

the definition of a TP, FP, and FN is unclear in 14 papers. In Table 2.3 only the papers with 

the F-score clearly defined are marked with CD. For instance, if the method returns the trace 

index as the CP, a TP can consider a range of indexes around the actual drift, and this 

should be specified. In (L. Lin et al., 2020; Martjushev et al., 2015), the authors clearly define 

the evaluation mechanism (Figure 2.7). The difference from other papers is that the authors 

apply a lag period l surrounding a detected or an actual drift. In (Zheng et al., 2017), the 

same idea is applied with the name Error Tolerance ET. Techniques able to detect drifts with 

high precision and recall are preferred over others. The detection, average or mean delay 

indicates the average number of traces/events processed by the method between the actual 

drift and the moment the drift is alerted (Abderrahmane Maaradji et al., 2015). It points out 

how early the approach is able to detect an actual change (Seeliger et al., 2017). For the 

sake of homogeneity, hereafter, we use the detection delay term. 

 

Figure 2.7. Definition of evaluation metrics. Adapted from (Martjushev et al., 2015). 

The authors in (Luengo & Sepúlveda, 2012) report the percentage of correctly classified 

traces based on the known process version. The approach is based on trace clustering, and 
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the idea is to verify if the clustering strategy correctly classifies the traces. It is not exactly a 

generic metric, but it works on trace clustering approaches. In (Tavares et al., 2019), the 

authors compare the total number of detected drifts with the actual number of drifts. We do 

not consider this an accurate metric because it can evaluate detection accuracy with a bias; 

however, we reported it in Table 2.3. The authors in (Impedovo et al., 2020) report an 

accuracy value (from 0 to 1) without defining the metric, so we did not include it in Table 2.3. 

We only considered online approaches those that use event streams as input. The 

authors in (Carmona & Gavaldà, 2012) propose a method that can be applied online. 

However, the validation applied used a stream of traces. Each trace is converted into several 

Parikh vectors (complete traces, one by one). The Parikh vectors should be created based 

on an event stream for online use. The method proposed in (N. Liu et al., 2018) is classified 

as offline because the event stream defined is, in fact, a stream of traces. 

We grouped the papers by approach, and, in this case, we identified the 

characteristics addressed in some of the papers using citation. The two papers comparing 

tools for drift detection are not included and are described in Section 2.3.8. The papers are 

organized by the year of publication and title (when there is more than one paper, the 

ordering considers the first one), in ascending order. 

Table 2.3 highlights that synthetic datasets containing artificially injected drifts are 

scarce. We only found three publicly available datasets that we further detail in Appendix 

2.A. 

We organized the approaches to detect concept drift in processes based on the 

strategy for drift detection: statistical hypothesis testing, trace clustering, visual analysis, CP 

detection, change detection, trend detection, and other approaches. We classified the 36 

papers in Table 2.4, and the most common approach is statistical hypothesis testing. 

The two papers (P. Ceravolo et al., 2020; Omori et al., 2019) that compare drift 

detection approaches are excluded from this classification. It is important to highlight that 

some of the proposed methods combine other strategies before or after applying the drift 

detection, e.g., clustering. 

The following sections describe each approach in detail. Different aspects from the 

distinct addressed challenge(s) addressed by each approach are also described. Section 

2.3.8 describes the two papers that compare drift detection approaches. 
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Table 2.3. Drift detection papers in PM grouped by approach. SD means synthetic datasets, RD means real-world datasets, PA means publicly available, NA 
means not available, and CD means clearly defined. 

Paper(s) Challenge(s) Perspective(s) Type(s) Analysis Software Dataset SD evaluation 

(Bose et al., 
2014, 2011; 
Martjushev et al., 
2015) 

1,2,3 Control-flow Sudden, Gradual 
(Bose et al., 
2014; Martjushev 
et al., 2015) 

Offline ProM 
(ConceptDrift) 

SD, RD (PA) F-score CD 
(Martjushev et 
al., 2015) 

(Luengo & 
Sepúlveda, 
2012) 

3 Control-flow Gradual Offline Tool NA SD % of correctly 
classified traces 

(Rafael Accorsi 
et al., 2012) 

1,2,3 Control-flow Sudden Offline Tool NA SD - 

(Carmona & 
Gavaldà, 2012) 

1 Control-flow Sudden Online Tool NA SD - 

(Manoj Kumar et 
al., 2015) 

1,2 Control-flow Sudden Offline Tool NA SD (PA) - 

(A Maaradji et 
al., 2017; 
Abderrahmane 
Maaradji et al., 
2015; Ostovar et 
al., 2020, 2016, 
2017) 

1,2,3 Control-flow Sudden, 
Gradual(A 
Maaradji et al., 
2017) 

Offline(A 
Maaradji et al., 
2017; 
Abderrahmane 
Maaradji et al., 
2015), Online 
(Ostovar et al., 
2020, 2016, 
2017) 

Apromore 
(ProDrift) 

SD (PA), RD 
(PA) 

F-score, 
detection delay 

(Hompes et al., 
2017) 

1,2 Control-flow, 
Data 

Sudden Offline ProM 
(TraceClustering) 

SD, RD (PA) - 

(Seeliger et al., 
2017) 

1,2,3 Control-flow Sudden Offline Experimental 
ProM plug-in15 

SD (PA) F-score, 
detection delay 

(Zheng et al., 1,2 Control-flow Sudden Offline TPCDD16 SD F-score CD 

 

 

15 Source code available at https://github.com/alexsee/processdriftdetector. 

https://github.com/alexsee/processdriftdetector
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Paper(s) Challenge(s) Perspective(s) Type(s) Analysis Software Dataset SD evaluation 

2017) 

(Richter & Seidl, 
2019, 2017) 

1,2,3 Time Sudden, 
Incremental, 
Recurring 

Online ProM (Tesseract) SD, RD (PA) Detection delay 

(Barbon Junior et 
al., 2018; Mora et 
al., 2020; 
Tavares et al., 
2019) 

1,2 Control-flow and 
time combined 

Not defined, 
Sudden (Tavares 
et al., 2019) 

Online CDESF17 SD (PA), RD 
(PA) 

N. of detected 
drifts 

(N. Liu et al., 
2018) 

1,2 Control-flow Sudden, 
Recurring 

Offline Tool NA RD (PA) F-score 

(Stertz & 
Rinderle-Ma, 
2018, 2019) 

1,2 Control-flow 
(Stertz & 
Rinderle-Ma, 
2018), data 
(Stertz & 
Rinderle-Ma, 
2019) 

Sudden, 
Gradual, 
Incremental, 
Recurring 

Online Tool NA SD - 

(Kurniati et al., 
2020; Kurniati 
A.P., McInerney 
C., Zucker K., 
Hall G., Hogg D., 
2019) 

1 Control-flow Not defined Offline Manual method RD - 

(Pauwels & 
Calders, 2019) 

1,2 Control-flow and 
data combined 

Not defined Offline EDBN18 RD (PA) - 

 

 

16 Source code available at https://github.com/THUBPM/process-drift-detection. Event logs are not made available. 

17 Source code available at https://github.com/gbrltv/CDESF (Barbon Junior et al., 2018). Updated version available in https://github.com/gbrltv/cdesf2 (Mora et al., 2020; 
Tavares et al., 2019). 

18 Source code available at https://github.com/StephenPauwels/edbn. 

https://github.com/THUBPM/process-drift-detection
https://github.com/gbrltv/CDESF
https://github.com/gbrltv/cdesf2
https://github.com/StephenPauwels/edbn
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Paper(s) Challenge(s) Perspective(s) Type(s) Analysis Software Dataset SD evaluation 

(Hassani, 2019) 1 Control-flow Sudden Online StrProMCDD NA SD, RD (PA) F-score, 
detection delay 

(Yeshchenko et 
al., 2021; 
Yeshchenko, 
Ciccio, et al., 
2019; 
Yeshchenko, Di 
Ciccio, et al., 
2019; 
Yeshchenko, 
Mendling, et al., 
2020) 

1,2,3,4 
(Yeshchenko et 
al., 2021; 
Yeshchenko, 
Mendling, et al., 
2020) 

Control-flow Sudden, 
Gradual, 
Incremental, 
Recurring 

Offline VDD19 SD (PA), RD 
(PA) 

F-score 
(Yeshchenko et 
al., 2021; 
Yeshchenko, Di 
Ciccio, et al., 
2019) 

(Zellner et al., 
2020) 

1,2 Control-flow Recurring Offline DOA20 SD, RD 
(adapted) 

F-score 

(Richter et al., 
2020) 

1,2 Control-flow Not defined Online OTOSO21 RD (PA) - 

(Brockhoff et al., 
2020) 

1,2 Control-flow and 
time combined 

Sudden Offline ProM SD - 

(L. Lin et al., 
2020) 

1,2 Control-flow Sudden Offline LCDD22 SD (PA), RD 
(PA) 

F-score CD 

(Impedovo et al., 
2020) 

1,2,3 Control-flow Sudden Offline Tool NA SD, RD (PA) - 

 

 

19 Source code available at https://github.com/yesanton/Process-Drift-Visualization-With-Declare. Web client available at https://yesanton.github.io/Process-Drift-Visualization-
With-Declare/client/build/. 

20 Source code available at https://github.com/zellnerlu/DOA. 

21 Source code available at https://github.com/Skarvir/OTOSO. 

22 Source code available at https://github.com/lll-lin/THUBPM. 

https://github.com/yesanton/Process-Drift-Visualization-With-Declare
https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/
https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/
https://github.com/zellnerlu/DOA
https://github.com/Skarvir/OTOSO
https://github.com/lll-lin/THUBPM
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Table 2.4. Classification of papers dealing with concept drift detection in PM based on the detection 
approach. 

Approach for Drift 
Detection 

Papers Number of papers 

Statistical hypothesis 
testing 

(Bose et al., 2014, 2011; A Maaradji et al., 2017; 
Abderrahmane Maaradji et al., 2015; Manoj Kumar 
et al., 2015; Martjushev et al., 2015; Ostovar et al., 
2020, 2017, 2016; Pauwels & Calders, 2019; 
Seeliger et al., 2017) 

11 

Trace clustering (Rafael Accorsi et al., 2012; Barbon Junior et al., 
2018; Luengo & Sepúlveda, 2012; Mora et al., 
2020; Richter & Seidl, 2017; Tavares et al., 2019; 
Zellner et al., 2020) 

7 

CP detection (Yeshchenko et al., 2021; Yeshchenko, Ciccio, et 
al., 2019; Yeshchenko, Di Ciccio, et al., 2019; 
Yeshchenko, Mendling, et al., 2020) 

4 

Visual analysis (Brockhoff et al., 2020; Hompes et al., 2017; 
Kurniati et al., 2020; Kurniati A.P., McInerney C., 
Zucker K., Hall G., Hogg D., 2019) 

4 

Change detection (Carmona & Gavaldà, 2012; Hassani, 2019; 
Impedovo et al., 2020) 

3 

Trend detection (Richter & Seidl, 2019, 2017) 2 

Other approaches (L. Lin et al., 2020; N. Liu et al., 2018; Stertz & 
Rinderle-Ma, 2018, 2019; Zheng et al., 2017) 

5 

 

2.3.1 STATISTICAL HYPOTHESIS TESTING 

Several papers use statistical-based approaches to detect concept drifts in processes. In this 

section, we group these approaches by the challenge addressed and the type of drift 

detected. 

2.3.1.1 Detecting sudden drifts 

The majority of the papers bring forward techniques that apply statistical hypothesis testing 

to identify significant changes in the event data, process model, or both over time, thus 

indicating a potential concept drift. These approaches assume that there should be a 

statistically significant difference in traces, process models, or both; before and after the CPs 

(Bose et al., 2014, 2011). The main idea is to apply a hypothesis test to confirm if there is 

statistical evidence indicating the two samples are equal or not. Most of the approaches 

using statistical hypothesis testing are tailored to deal with the first two challenges of process 

drift detection: drift detection and CP detection. 

Figure 2.8 shows an overview of the papers’ steps to explain the approach to detect 

and pinpoint a process drift (challenges 1 and 2 from Section 2.3) based on statistical 

hypothesis testing. The grey rectangles are the main steps for any standard statistical 

hypothesis testing that is based on event data. The options for each step were described 

based on the papers identified in this survey. 
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Figure 2.8. Steps of statistical hypothesis testing approaches to detect concept drift in processes. 
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Figure 2.8 overviews the possible combinations that a method can choose to identify process 

drifts. The following topics describe each of the main steps explaining how the authors apply 

the proposed approach. Finally, Table 2.5 details the choice for each step per paper. 

Define what to compare. The statistical-based approaches for detecting drifts in processes 

need to define what information the statistical test should compare. This information can be 

obtained from event data, discovered process models, or a combination of both. Most of the 

approaches (Bose et al., 2014, 2011; A Maaradji et al., 2017; Abderrahmane Maaradji et al., 

2015; Manoj Kumar et al., 2015; Martjushev et al., 2015; Ostovar et al., 2020, 2016, 2017; 

Pauwels & Calders, 2019) use a representation of the event data (complete traces or sets of 

events) to obtain relevant information about them, which is named features in some works. In 

this paper, we use the term feature to represent any abstraction calculated from event data 

or process model. Only one approach uses the actual process model as input for the 

statistical test. In (Seeliger et al., 2017), the authors obtain graph metrics from discovered 

process models (discovered applying the Heuristics Miner algorithm (Weijters et al., 2006): (i) 

number of nodes/edges; (ii) graph density; (iii) in and out-degree of each node; and (iv) 

occurrence of node/edges. The method summarizes the computed metrics in two vectors 

(reference and detection) with the size specified by the number of nodes in the graph. For 

drift detection, the approach uses only the occurrence of edges. The other graph metrics are 

used to determine the structure of the change.   

In the approaches that use a representation of the event data, we identified several 

distinct features that somehow capture some characteristics from the traces or the events. 

Authors in (Bose et al., 2014, 2011) define the concepts of local and global features. The 

former is calculated per trace, while the latter is calculated over a log or part of it. Both 

papers describe the global features relation type count (RC) and relation entropy (RE); and 

the local window count (WC) and J measure features. One drawback of the proposed 

method is that the user has to manually pick the feature to be used, implying that one has 

some a priori knowledge about the possible characteristics of the drifts to be detected. 

Another issue is that the defined features generate a potentially large set of high-dimensional 

vectors, affecting the scalability of the method for complex real-life logs or even for real-time 

drift detection (Abderrahmane Maaradji et al., 2015). The approach defined in (Martjushev et 

al., 2015) used the J measure feature former defined by (Bose et al., 2014, 2011), so it 

shares the same drawbacks aforementioned. Authors in (Manoj Kumar et al., 2015) define 

one global feature named event class correlation (ecc), which indicates if two event classes 

are linked. A higher ecc indicates that the two events commonly happen closely in the traces 

from the event log. On the other hand, authors in (A Maaradji et al., 2017; Abderrahmane 

Maaradji et al., 2015) proposed a run-based representation of the traces and the notion of 
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run-equivalence, derived from the field of concurrency theory (van Glabbeek & Goltz, 1989). 

The set of runs and frequencies are calculated for a given sub-log, indicating this is a global 

feature. A run can be understood as a representation of a set of traces considering 

concurrency. In (Ostovar et al., 2020, 2016, 2017), authors inherit the 𝛼+ relations defined by 

the 𝛼+ algorithm (De Medeiros et al., 2004) to generate a contingency matrix containing the 

frequencies of each identified relation, obtained from sub-logs derived from a set of events. 

The 𝛼+ relations matrix can be considered a global feature because it is calculated over a 

sub-log containing a set of events, which may contain uncompleted traces. The scalability of 

this feature is validated using one real-life log containing 42 activities and 1,121 traces. 

Authors in (Pauwels & Calders, 2019) calculates a score for all the cases (after an initial 

period of training) based on an Extended Dynamic Bayesian Networks (EDBN) proposed in 

the same study. The case score is the mean score calculated overall events within the case 

and can be classified as a local feature. 

Organize the data. The approaches that use the traces or discovered process models to 

identify the drifts must organize the input data to generate the samples for applying the 

statistical test. In the case of comparing complete traces, the methods consider the traces as 

a time series based on the timestamp of the first event. Next, the features obtained from the 

traces represent a dataset ordered by the trace arrival time (Bose et al., 2014, 2011; Manoj 

Kumar et al., 2015; Martjushev et al., 2015; Pauwels & Calders, 2019). The method applied 

in (A Maaradji et al., 2017; Abderrahmane Maaradji et al., 2015) also organizes the traces as 

time series by their arrival time. Next, it converts the traces into runs, i.e., a representation 

that groups together traces with concurrent activities. As the run represents the trace, we 

consider it a feature obtained from the traces. The process models from (Seeliger et al., 

2017) are also discovered based on the traces as time series. In contrast, the approach for 

drift detection applied in (Ostovar et al., 2020, 2016, 2017) uses an event stream, where the 

events are emitted according to their timestamp without the need for any particular 

organization. The features are calculated on a set of events ordered by their arrival time. 

Organizing the event log as a time series may give rise to a tricky situation when 

dealing with drifts. A case may start with a version of the process, and during its execution, 

another version can take place (intra-trace drifts). If the traces have a long duration, they can 

be placed next to each other based on their arrival time, but they can be related to different 

versions of the process. This situation can confuse the method when identifying the exact 

point in time where a change begins. 

Define how to generate the samples. Next, the methods should define how to generate the 

event samples using a windowing strategy over the dataset of features. The windows can be 

fixed or adaptive, overlapping or non-overlapping, continuous or non-continuous. The 
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statistical hypothesis test is then applied in two adjacent windows to detect if and when the 

features significantly change (using a two-sample test), which is the drift detection itself. 

Usually, the two windows used by the test are named reference and detection windows. The 

definition of the window size, when set by the user, directly affects the accuracy of the 

results. The choice of the window size is critical in any drift detection approach because a 

small window size may lead to false positives, and a large one may lead to false negatives, 

thus rendering the identification of the drift location challenging (Abderrahmane Maaradji et 

al., 2015). This can be explained by the stability-plasticity dilemma, where the main idea is 

that learning a concept requires plasticity for the integration of new knowledge, but also 

stability in order to prevent the forgetting of previous knowledge (Mermillod et al., 2013). 

Even the adaptive window approach proposed in (Martjushev et al., 2015) requires the user 

to establish a minimum and maximum window size, resulting in false positives or negatives, 

depending on the values selected. The adaptive window proposed in (A Maaradji et al., 

2017; Abderrahmane Maaradji et al., 2015) dynamically changes the window size based on 

the variation observed in the event log, inspired by the ADWIN method proposed in (Bifet & 

Gavaldà, 2007). The method needs an initial window size (defined by the user), and despite 

the authors describe that this parameter can be empirically set, this is not well explored in the 

paper. When the authors compared the fixed-size window versus the adaptive-size window, 

they set the initial value for the adaptive approach with the same value of the fixed-window 

size. Still, there is an open question on how one should define this initial value. In (Ostovar et 

al., 2016), the authors use the same adaptive window approach without specifying the initial 

window size. In Table 2.5 we detail the windowing approach for each paper, describing if the 

window size is a parameter or not. Unfortunately, the authors in (Pauwels & Calders, 2019) 

do not explicitly describe how the samples are generated. 

Choose the statistical test. The statistical hypothesis testing method’s choice depends on the 

feature (scalar or vector) and the data distribution. Since the event data distribution is not a 

priori known, the authors usually choose non-parametric tests. The only exception is the 

Hotelling T2 used in (Bose et al., 2014, 2011). The statistical test provides the p-value, which 

is the evidence against the null hypothesis. The null hypothesis indicates that the two 

samples are equal; i.e., there is no drift between them: the smaller the p-value, the more 

substantial the evidence that the null hypothesis should be rejected. The rejection of the null 

hypothesis indicates a drift. Because the p-value may be under the threshold (indicating a 

drift) in case of noise, some approaches include a filter to discard abrupt stochastic 

oscillations in the p-value. Authors in (A Maaradji et al., 2017; Abderrahmane Maaradji et al., 

2015; Ostovar et al., 2016) named this filter as the “oscillation filter”, which allows the method 

to detect a drift only if a given number of successive statistical tests have a p-value less the 
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typical threshold. The main idea is that a persistent p-value under the threshold is much 

more reliable than a sporadic value happening abruptly. 

Show the results. The most common way to report the results is to plot the p-value calculated 

by the statistical method (often named Drift Plot), with the trace/event index in the x-axis. The 

Drift Plot may also highlight the CP in the x-axis. The paper (Seeliger et al., 2017) only 

reports the CPs, and the paper (Pauwels & Calders, 2019) plots the case scores instead of 

the p-value, highlighting the drift points. 

Table 2.5 reports the details for each of the steps defined in Figure 2.8 for the papers 

using a statistical hypothesis testing approach to detect concept drift in processes. 

Both approaches (Ostovar et al., 2020, 2017) applied the same drift detection 

mechanism proposed in (Ostovar et al., 2016). The papers are organized by their year of 

publication and title, using ascending order. 

Detecting gradual drifts. Detect gradual drifts are more challenging than sudden drifts 

because there is no specific point when the cases start emanating from a different version of 

the process. We identified three statistical-based approaches addressing gradual drifts (Bose 

et al., 2014; A Maaradji et al., 2017; Martjushev et al., 2015). The method implemented in the 

Concept Drift plugin (Bose et al., 2014) tailored for ProM (van der Aalst et al., 2009) was 

validated using synthetic logs containing linear gradual changes. The experiments have 

shown the potential to identify the gradual drifts in the Drift Plot. This approach was extended 

in (Martjushev et al., 2015), using a noncontinuous sliding window to generate the samples 

for the statistical hypothesis testing. Therefore, there is a gap between each pair of 

subsequent windows, allowing for the statistical test to easily identify the drift. The main idea 

is that the gap will cover when both versions of the process co-exist. The maximum size of 

the gap has to be manually initialized by the user. This approach assumes the gap period 

between the samples will cover the time period where both versions of the process coexist. If 

this assumption is true, a statistical hypothesis test on these two samples should yield a 

significantly lower p-value, thus facilitating the detection of a change. Yet, defining a proper 

value for the gap parameter is not easy because, depending on how this parameter is set, 

some drifts may be missed. 

Another drawback of this approach is that the detection of sudden and gradual drifts 

is not integrated, i.e., the user has to choose the type of drift to be detected. When applying 

the gradual drift detection in event logs containing only sudden drifts, the detected drifts are 

reported as gradual ones (A Maaradji et al., 2017). Thus, it is not possible to use this method 

to identify the type of the detected drift.   
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Another approach that deals with gradual drifts is (A Maaradji et al., 2017), 

implemented in the Apromore Tool (La Rosa et al., 2011). Apromore integrates the detection 

of sudden and gradual drifts without the need for the user to specify a priori the kind of drift 

he wants to detect. The method relies on the idea that a gradual drift (between M1 and M2) is 

an interval between two sudden drifts. The first drift indicates the point in time M2 starts to 

emanate instances, and the second drift is when there are no more instances from M1. The 

approach implements a post-processing stage after the detection of the sudden drifts to 

identify the gradual drifts. For each consecutive pair of sudden drifts detected, the approach 

applies another statistical test to check whether the distribution of runs inside the interval is a 

mixture of runs before the first drift and after the second drift. The authors assume that the 

distribution in the interval is a linear combination of the distributions before and after the 

interval and apply the Chi-square goodness-of-fit statistical test to confirm it. This test checks 

if a set of observations is consistent with a hypothesized distribution. The method uses the 

histogram of runs as a proxy for the statistical test instead of the full statistical distribution of 

runs over a given time interval, which is unknown. The validation uses 18 artificial logs that 

include the gradual drift using a linear probability function with a slope of 0.2 percent. 

The performance is determined by the F-score and detection delay. A TP is computed 

if its detected interval includes the central point of the interval of the actual gradual drift. One 

drawback of this validation scheme is that the distribution of traces during the period when 

both process models coexisting can be other than linear, which is not validated. However, 

the method is also applied in a real-life log, the same log used by (Martjushev et al., 2015). 

The results of the real-life log are validated by the business analyst, confirming the detected 

drift. In (A Maaradji et al., 2017), the authors reported that the business analyst did not 

recognize the gradual drift reported in (Martjushev et al., 2015), meaning that the detected 

drift is a FP. 
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Table 2.5. Statistical hypothesis testing papers. CP means change point, DP means Drift Plot, WS means window size, and FT means feature. 

Paper Data Organization Samples (windowing strategy) Statistical Test Results 

(Bose et al., 2011) Traces FTs from traces as time 
series (local or global) 

Non-overlapping, continuous, fixed-
size (parameter) 

Kolmogorov-Smirnov, Mann-
Whitney U (univariate data), 
Hotelling T2 (multivariate data) 

DP (trace) 

(Bose et al., 2014) Traces FTs from traces as time 
series (local or global) 

Non-overlapping, continuous, fixed-
size (parameter) 

Kolmogorov-Smirnov, Mann-
Whitney U (univariate data), 
Hotelling T2 (multivariate data) 

Interactive DP 
(trace) 

(Manoj Kumar et al., 
2015) 

Traces FTs from traces as time 
series (global) 

Non-overlapping, continuous, fixed-
size (parameter) 

Mann-Whitney U, Moses for equal 
variability 

DP (trace) 

(Abderrahmane 
Maaradji et al., 2015) 

Traces Runs as time series 
(global) 

Non-overlapping, continuous, fixed-
size (parameter) and adaptive-size 
(initial WS as parameter) 

Chi-square DP (trace) with 
CP 

(Ostovar et al., 2016) Events 𝛼+ relations (events 
within a window build a 
sub-log) 

Non-overlapping, continuous, 
adaptive-size (initial WS as 
parameter) 

G-test DP (trace, 
event) with CP 

(Ostovar et al., 2017) Events 𝛼+ relations (events 
within a window build a 
sub-log) 

Non-overlapping, continuous, 
adaptive-size (initial WS as 
parameter) 

G-test DP (trace, 
event) with CP 

(Seeliger et al., 2017) Process 
Models 

Graph-metrics as time 
series 

Non-overlapping, continuous, 
adaptive-size (estimated) 

G-test CPs 

(A Maaradji et al., 
2017) 

Traces Runs as time series 
(global) 

Non-overlapping, continuous, fixed-
size (parameter) and adaptive-size 
(initial WS as parameter) 

Chi-square, Chi-square goodness-
of-fit 

DP (trace) with 
CP 

(Pauwels & Calders, 
2019) 

Traces Case scores based on 
the EDBN 

Not defined Kolmogorov-Smirnov Case scores 
plot with CP 

(Ostovar et al., 2020) Events 𝛼+ relations (events 
within a window build a 
sub-log) 

Non-overlapping, continuous, 
adaptive-size (initial WS as 
parameter) 

G-test DP (trace, 
event) with CP 
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2.3.1.2 Change localization 

The methods for dealing with concept drift proposed in (Bose et al., 2014, 2011) provide an 

approach for localizing the drifts. The user can interact with the ProM software (van der Aalst 

et al., 2009), using the Concept Drift plugin, and select two activities to identify whether there 

is a drift between them. 

Authors in (Ostovar et al., 2017) proposed a fully automated method for 

characterizing drifts in a process. In the pre-processing step, the approach obtains two sets 

of data points containing the 𝛼+ relations - defined by 𝛼+ algorithm (De Medeiros et al., 

2004) - from two windows, one before and another after the drift using the drift detection 

approach from (Ostovar et al., 2016). The size of the data points’ set is based on the 

characterization delay n, which is automatically defined to 500, based on performed and 

reported experiments. In the first stage, the approach performs a statistical test to measure 

the association between the detected drift and the distribution of the 𝛼+ relations before and 

after it. K-sample permutation test (KSPT), as suggested in (Frank & Witten, 1998), 

measures the association between each 𝛼+ relation (attributes) and the label indicating pre 

or post-drift (target), to discard irrelevant relations. Next, the method ranks the remaining 𝛼+ 

relations by using the relative frequency change (RFC), calculated for each relation. There is 

also a filter based on the percentage of total relative frequency change (TRFC), which 

considers only a part of the ordered relations, defined as 95% based on the reported 

experiments. The second stage of the method matches the considered relations with their 

RFC with a set of pre-defined change templates and reports the best matches to the user in 

natural language. The approach was validated using 25 synthetic logs and using a real-life 

log (BPIC 2011). One limitation is that the method does not characterize simultaneous 

changes if they have overlapping activities. The characterization delay (n) also limits the 

inter-drifts distance that the method can detect. The authors preferred to provide a fully 

automated method, not allowing the user to change the parameters, which can also be 

considered a limitation. Another drawback is that the set of pre-defined templates describes 

changes in a low level of abstraction, e.g., adding an activity, which results in reporting a lot 

of low-level changes. The main consequence of the identified limitations is that the drift 

characterization method hardly works in a real-world environment (Stertz & Rinderle-Ma, 

2019). 

In (Ostovar et al., 2020), the authors propose a new method for characterizing the 

drifts, also based on the drift detection mechanism presented in (Ostovar et al., 2016), to 

overcome the limitations to handle overlapping and nested changes. First, the approach 

discovers two process trees from an event stream (pre and post-drift) applying the Inductive 

Miner – partial traces (IMpt) proposed by the authors. Next, it discovers the sequence of edit 
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operations with minimal cost to convert the pre-drift tree (P) into the post-drift tree (P’) by 

applying a process tree transformation technique. This technique first determines the valid 

mappings to convert P into P’, then applies the A* algorithm (described by the authors for the 

specific application) to find the valid mapping with minimal cost. The authors also implement 

an option to apply a greedy algorithm to choose the valid mapping, which is faster but 

provides a non-optimal approach. The implementation is available in the Apromore ProDrift 

plugin (Ostovar et al., 2020), and it was extensively validated using 365 artificial logs and two 

real-life logs. 

2.3.2 TRACE CLUSTERING 

Approaches to detect concept drift in processes based on trace clustering analyze different 

cluster compositions over time.  The main idea is to consider the time information obtained 

from traces (or events) in the clustering stage to follow the different compositions of clusters 

over time.  New or missing clusters indicate a change in behavior, i.e., concept drift. Usually, 

some traces (or events) are processed as a training step (also named “grace period” or 

“burnout window”) to determine the default behavior before monitoring different clusters 

compositions. Sometimes this training step is not explicitly defined; in (Richter et al., 2020), 

for instance, the authors recommend, as a rule of thumb, neglecting insights from the first k 

cases, where k indicates the size of the hash table used to store the events. 

Authors in (Barbon Junior et al., 2018; Mora et al., 2020; Tavares et al., 2019) 

proposed the Concept-Drift in Event Stream Framework (CDESF), which monitors the cluster 

composition over time using time windows to define checkpoints (CPs). When a CP has 

reached, the information about activities and time intervals from the traces are updated. The 

method applies a forgetting mechanism to define the traces that should be considered in the 

update. If the cluster composition changes at the checkpoint, the method triggers a drift. For 

instance, if the method clusters a case previously identified as anomalous within instances of 

standard behavior. CDSEF combines frequency of activities and time intervals from traces as 

features for the clustering strategy, detecting drift in the control-flow and time perspectives 

combined. Authors in (Rafael Accorsi et al., 2012) proposed a new clustering strategy 

applied to the activity distance feature to detect drifts. The strategy checks each trace over 

time, thus identifying a potential drift when a new cluster is created (cluster cut). The activity 

distance is calculated between a pair of activities, so a cluster cut between two activities 

indicates a local drift. The authors proposed a graph showing the combined cluster cuts to 

provide information about more general drifts to the business analyst. In (Luengo & 

Sepúlveda, 2012), the authors include the starting time of each process instance as an 

additional feature used by the clustering approaches. In (Zellner et al., 2020), the authors 

apply the Local Outlier Factor (LOF) to measure non-conforming traces’ distance. Next, 
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traces are aggregated based on a sliding windowing strategy and the calculated LOF. 

Finally, authors in (Richter et al., 2020) propose a monitoring tool based on OPTICS to plot 

density-based trace clusters in process’ event streams over time. It identifies temporal 

deviation clusters in a time-dependent graph. We identified the relevant aspects of the 

approaches for detecting drifts in processes based on trace clustering: defining the features, 

the clustering strategy, including the time component in the clustering, and the output. Table 

2.6 describes each aspect for the identified papers. The papers are organized according to 

their publication year and title, in ascending order. 

Table 2.6. Trace clustering considering the time component. 

Paper Features Clustering 
strategy 

Time Output 

(Luengo & 
Sepúlveda, 
2012) 

Maximal Repeat 
Feature Set (MR) 

Agglomerative 
Hierarchical 
Clustering (AHC) 
(Crc, 2014) 

Timestamp of the 
1st event within the 
trace as a feature. 

Clusters 

(Rafael 
Accorsi et al., 
2012) 

Activity distance Cluster cuts 
algorithm (defined 
by the authors) 

After training, each 
trace is processed 
by the clustering 
algorithm 

Combined 
cluster cuts 
graph 

(Barbon 
Junior et al., 
2018) 

Edit and time weighted 
distances (EWD, 
TWD) and time (last 
event's timestamp) 

DBSCAN (Ester 
et al., 1996) 

Time interval 
triggers the 
clustering, and time 
composes features 
for clustering 

Flow analysis 
graph and 
snapshots of 
clusters 

(Mora et al., 
2020; Tavares 
et al., 2019) 

Graph-distance trace 
and time (GDtrace, 
GDtime) 

DenStream (F. 
Cao et al., 2006) 

Time interval 
triggers the 
clustering, and time 
is a feature 

Drift plot and 
snapshots of 
clusters 

(Richter et al., 
2020) 

Z-scoring of temporal 
deviation signature 
(TDS) 

OPTICS (Ankerst 
et al., 1999) 

Events stored in a 
hash table using 
the Cuckoo-
Hashing 

OTOSO plot 
(time-
dependent 
graph) 

(Zellner et al., 
2020) 

Local outlier factor 
(LOF) (Breuniq et al., 
2000), calculated for 
non-conforming traces  

Aggregate traces 
with LOF scores 
below (T) in one 
micro-cluster, 
when the no of 
traces exceeds K 

The LOF 
computation is 
performed in the 
latest traces by 
using a fixed-size 
sliding window 

Clusters plotted 
in a Gantt Chart 

 

2.3.2.1 Features 

Trace clustering techniques define a set of features obtained per trace, then group traces 

with similar features together, calculating the similarity between them using a metric, e.g., 

Euclidian distance. Thus, the approaches should define how to translate the trace into a 

feature vector. Authors in (Luengo & Sepúlveda, 2012) used the Maximal Repeat Feature 

Set (MR) (Bose & van der Aalst, 2010), obtained by counting the maximal repeats in the 

entire log (concatenating all the traces with a different delimiter) followed by a grouping task 
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of traces with a similar sequence of activities incurring in drift detection on the control-flow 

perspective. Authors in (Rafael Accorsi et al., 2012) defined a feature named activity 

distance that indicates the distance between a pair of activities within a trace. This feature is 

calculated over the whole log as a pre-processing step and allows drift detection on the 

control-flow perspective. A limitation is that it cannot be used in processes containing loops. 

The authors in (Barbon Junior et al., 2018) defined three features that do represent the trace: 

edit weighted distance (EWD), time-weighted distance (TWD), and Time (timestamp of the 

last event of the trace). Both EWD and TWD are calculated using trace and time histograms. 

These histograms represent the current behavior in terms of frequency of activities (trace 

histogram) and time differences (time histogram). Both features indicate the difference 

between the new trace and histogram information regarding the frequency of activities or 

time difference. In (Mora et al., 2020; Tavares et al., 2019), the authors updated CDESF to 

use graph-distance trace (GDtrace) and graph-distance time (GDtime) because histograms 

do not consider the order relation between activities. CDESF calculates GDtrace and GDtime 

comparing the new trace (obtained from the arrived event) and the process graph (PMG) 

normalized. In (Richter et al., 2020), the method uses z-scoring for the temporal deviation 

signature (TDS), calculated based on the mean and variance of all time intervals from each 

relationship obtained from the cases. The distance between the two traces is calculated 

using the Euclidean distance. Finally, the authors in (Zellner et al., 2020) calculate the (LOF) 

(Breuniq et al., 2000), which describes its “outlierness” concerning the surrounding 

neighborhood. A difference from other approaches is that the LOF is only calculated for non-

conforming traces. 

2.3.2.2 Clustering strategy 

Clustering algorithms group sets of data based on their similarity, maximizing intra-cluster 

similarity, and minimizing inter-cluster similarity (Crc, 2014). They can use different 

techniques: partitioning, hierarchical, density-based, grid-based, and model-based. Authors 

in (Luengo & Sepúlveda, 2012) apply the Agglomerative Hierarchical Clustering (AHC) (Crc, 

2014) with the minimum variance criterion, using the Euclidian distance between feature 

vectors. In (Rafael Accorsi et al., 2012), the authors define a new algorithm to get the cluster 

cuts based on the variations of the activity distance (defined as an interval), a feature also 

defined by the authors. The metric to calculate the similarity is defined by rules based on the 

four possible interval changes: interval border outrun, smaller interval, no boundary changes, 

and observation changes. In (Barbon Junior et al., 2018), the authors use DBSCAN (Ester et 

al., 1996), an algorithm that starts with an arbitrary instance and expands its cluster 

according to density-based metrics. The algorithm expands regions until all instances are 

contained in a cluster, or they are considered outliers (an outlier has its density monitored). 
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The main idea is that an increase in the number of instances within the radius of an outlier 

over time indicates a concept drift. The updated CDESF (Mora et al., 2020; Tavares et al., 

2019) applies DenStream (F. Cao et al., 2006) because it is a density-based clustering 

method suitable for online scenarios. In (Richter et al., 2020), the proposed monitoring tool 

applies OPTICS (Ankerst et al., 1999) to derive the density-based clusters. Authors (Zellner 

et al., 2020) aggregate traces with similar LOF values together without using a previously 

defined clustering method. They check the traces with a LOF score below a threshold T, 

which indicates the affiliation of a trace to a micro-cluster. When the number of traces 

exceeds a user-given number K, these traces are aggregated into a micro-cluster. 

2.3.2.3 Time 

The trace clustering approaches must consider the timestamp of the trace in the cluster 

definition to detect drifts. In (Luengo & Sepúlveda, 2012), the authors included the timestamp 

of the first event within the trace as an additional feature on the definition of clusters. In the 

clustering strategy defined by (Rafael Accorsi et al., 2012), each trace is processed as a time 

series (based on its timestamp), and after each trace, a new cluster may be declared. 

Authors in (Barbon Junior et al., 2018) provided a framework where the amount of 

anomalous traces can be obtained over time. The time component is firstly considered by 

retrieving events inside a time horizon (TH) defined by a hyperparameter. By the end of the 

TH, the framework updates its memory component and triggers the trace and time 

histograms update. Each case is represented by a triplet [EWD – edit-weighted distance, 

TWD – time-weighted distance, Time – global time], used in the clustering strategy. EWD is 

calculated using the trace histogram and TWD the time histogram. Global time concerns the 

last event of a given case. The first CDESF version (Barbon Junior et al., 2018) also includes 

time by the feature vector [EWD, TWD, Time]. In the CDESF updated version, the end of the 

TH triggers the update of the process graph, indicating the current behavior. The tuple 

[GDtrace – trace distance, GDtime – trace time distance] represents each case, and it is 

used in the clustering strategy. Both GDtrace and GDtime are calculated from graph distance 

metrics applied between the new processed trace and the current process graph. Then, the 

feature vector [GDtrace, GDtime], also considers time for clustering. The Cuckoo-Hashing is 

applied in the hash table containing cases as a helpful discarding technique for considering 

the time component in (Richter et al., 2020). The hash table represents a finite set of recent 

cases, but some older behavior is potentially maintained because the swap operations 

partially regard the table. The authors in (Zellner et al., 2020) include the time component by 

reading the traces from a stream using a fixed-size sliding window. Gradually, the latest 

incoming non-conforming traces have the LOF calculated. 
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2.3.2.4 Output 

The output of this type of approach can be the clusters (Luengo & Sepúlveda, 2012), a plot 

indicating the CP (Rafael Accorsi et al., 2012), or the set of cases representing the concept 

drift (Barbon Junior et al., 2018). In (Luengo & Sepúlveda, 2012), the clusters are presented, 

each one indicating a set of traces sharing the same behavior over time. A plot indicating the 

trace or event where the clustering strategy decides to insert a new cluster is provided in 

(Rafael Accorsi et al., 2012). And the CDESF framework (Barbon Junior et al., 2018) plots all 

the cases considering three monitored dimensions (EWD, TWD, and Time), highlighting the 

anomalous cases. The clusters that had an increase in the number of samples within the 

radius of an anomalous one can be identified by the user interaction, indicating a concept 

drift. In (Mora et al., 2020; Tavares et al., 2019) CDESF outputs a drift plot and a snapshot of 

the cluster formation. The OTOSO plot is the output provided in (Richter et al., 2020), which 

is a time-based graph that allows the detection of different structural changes in an event 

stream by analyzing the clusters and their connections over time. Authors in (Zellner et al., 

2020) show the micro-clusters using a Gantt chart. The drifts can be visualized when new 

micro-clusters appeared in the plot, and the x-axis reports the CP. 

CDESF (Barbon Junior et al., 2018; Mora et al., 2020; Tavares et al., 2019) is an 

approach based on trace clustering that detects concept drifts in the control-flow and time 

perspectives online. The following aspects support online analysis: the input is an event 

stream, it handles incomplete traces, it defines a forgetting mechanism, and it is update 

version uses DenStream clustering algorithm (F. Cao et al., 2006), which is suitable for 

online scenarios (Tavares et al., 2019). OTOSO (Richter et al., 2020) is also a method for 

online concept drifts detection in the control-flow perspective. Authors apply a Cuckoo-

Hashing forgetting mechanism and handle incomplete traces. They apply OPTICS (Ankerst 

et al., 1999) to derive the clusters and use a time-based graph to show the different structural 

changes. On the other hand, the approach proposed in (Rafael Accorsi et al., 2012) is offline. 

It relies on the user-given window size choice, as a low window size leads to false positives, 

and larger windows lead to false negatives (undetected drifts). Besides, the method is not 

designed to deal with loops (Abderrahmane Maaradji et al., 2015). The Dynamic Outlier 

Aggregation (Zellner et al., 2020) is also classified as offline because it assumes that the 

streaming events are already gathered to traces in a stream of traces. The validation of 

CDESF using synthetic datasets does not apply an accuracy metric, e.g., F-score. In (P. 

Ceravolo et al., 2020), the authors evaluate CDESF applying MSE and RMSLE. These 

metrics are not suitable for evaluating concept drift detection accuracy in our understanding 

because they only indicate if the number of drifts detected is close to the number of actual 

drifts, while their actual positions are disregarded. 
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2.3.3 CHANGE POINT DETECTION 

CP detection methods identify the points in which multivariate time series, showing changes 

in their values (Truong et al., 2020). Authors in (Yeshchenko et al., 2021; Yeshchenko, 

Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 2019; Yeshchenko, Mendling, et al., 2020) 

apply a CP detection method named Pruned Exact Linear Time (PELT) (Killick et al., 2012), 

which is indicated for datasets with limited size when the number of CPs is not a priori 

known. The Visual Drift Detection (VDD) applies PELT in a pre-defined measure calculated 

over Declare constraints derived from the log. Firstly, the method mines the log deriving the 

complete Declare constraints alphabet (#cns is the total of constraints). Next, it splits the log 

using a fixed-size sliding window and calculates the confidence (or other measure) of each 

Declare constraint for each window, generating several time series 𝑇𝑖 = 𝐶𝑜𝑛𝑓𝑖,1, … , 𝐶𝑜𝑛𝑓𝑖,#𝑤𝑖𝑛. 

𝑇𝑖 contains the confidence value for the constraint i over time (#win is the total of windows). 

Other metrics can be used, as the support metric, defined in (Yeshchenko, Di Ciccio, et al., 

2019). The method derives a multivariate time series 𝐷 = {𝑇1, 𝑇2, … 𝑇#𝑐𝑛𝑠} representing the full 

spectrum of constraints’ confidence. 

For drift and CP detection, the method applies the PELT algorithm in D, identifying 

the CPs where a general change in the constraints’ behavior occurred. Another option is 

combining a clustering strategy (hierarchical clustering) for splitting D into groups of 

constraints with similar confidence trends, then apply PELT. The resulting clusters indicate 

similar behavior and allow VDD to identify local behavior changes within the clusters. The 

method reports the detected CPs in one Drift Map (describing the behavior in all clusters) 

and several Drift Charts (showing the behavior for each cluster). The Drift Chart allows the 

user to localize the constraints related to change and visually characterize the local drifts 

(Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 2019) into sudden, gradual, 

recurring, or incremental (challenges 3 and 4). The user can also inspect if the detected CP 

has an outlier behavior. In (Yeshchenko et al., 2021; Yeshchenko, Mendling, et al., 2020), 

the tool reported different measures to complement the visual analysis of Drift Charts for 

identifying the type of the reported drifts. VDD shows the PELT results for sudden drifts, 

stationarity analysis (Augmented Dickey-Fuller test) for identifying gradual and incremental 

drifts, and autocorrelation plots for recurring drifts. VDD also allows the visualization of the 

changes identified in the drifts within the process model. The tool shows the process map 

(graph) for the complete event log enriched with the different constraints identified for each 

cluster (Yeshchenko et al., 2021; Yeshchenko, Mendling, et al., 2020), providing a mixed 

visualization. 

VDD requires three parameters: window size (to split the event log), window step 

(value for shifting the sub-log window), and cut threshold (for the clustering strategy). One 
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drawback of this method is that the detected CPs are sensitive to the parameter 

configuration because the window size determines the granularity of analysis. The method 

suggests values for the window size and window step in (Yeshchenko et al., 2021; 

Yeshchenko, Di Ciccio, et al., 2019), but this suggestion is based on a good visualization of 

the plots, not on tuning the accuracy of the tool. In (Yeshchenko et al., 2021; Yeshchenko, Di 

Ciccio, et al., 2019), the authors conclude that the window size does not introduce a 

significant difference in the results; however, this conclusion is not supported by the 

performed experiments. 

The evaluation of VDD using synthetic datasets performed in (Yeshchenko et al., 

2021; Yeshchenko, Di Ciccio, et al., 2019) is unclear.The authors compare VDD with 

Apromore (Ostovar et al., 2016), but the experiments do not include the complete dataset 

(datasets are also described using different names), and it is not clear how the authors 

calculate the F-score. The evaluation using real-world datasets (Yeshchenko et al., 2021; 

Yeshchenko, Di Ciccio, et al., 2019) reported that VDD described all types of process drifts 

comprehensively. Using the BPIC 2011 dataset, the experiment detected all the drifts 

reported in (A Maaradji et al., 2017). All the experiments using real-world datasets in 

(Yeshchenko et al., 2021; Yeshchenko, Di Ciccio, et al., 2019) provided an overview of the 

tool and its user interface, which is complemented in (Yeshchenko et al., 2021) by a user 

study performed with PM experts reporting that the “visualizations are easy to interact with 

and useful”. 

2.3.4 VISUAL ANALYSIS 

Some authors propose to compare traces (or process models) using a windowing strategy 

and plotting the differences for visual analysis. Comparing the current time window with the 

previous one is performed by comparing some specific aspects from the traces without using 

any statistical test. These works’ output is usually a plot with the aspect calculated for a set 

of traces over time. As a result, the business analyst must analyze the plot to identify the 

drifts. We have considered studies able to detect drifts in a complete perspective of the 

process, e.g., control-flow or time. Works comparing a specific attribute, e.g., the time 

interval between two activities, were not considered. 

Authors in (Hompes et al., 2017) propose to split the event log based on non-

overlapping time windows (by events or minutes) and calculate a similarity matrix for each 

sub-log. One advantage of this approach is that the matrix can consider any attribute of the 

event log (from case or event), and an age-decay factor corrects the similarity values. The 

age factor is applied to reduce the similarity of events apart in time. The differences between 

adjacent matrices are plotted over time, and the spikes indicate potential drifts. After 
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identifying the drifts, the authors use a clustering strategy to explain them based on 

previously chosen attributes. This approach is not listed in the clustering approaches 

because clustering is not used to detect the drift but to analyze the effect of the changing 

behavior. 

The method proposed in (Brockhoff et al., 2020) calculates the Earth Mover’s 

Distance (EMD) based on the trace descriptors obtained for sub-logs using a sliding fixed-

size window. The approach plots the EMD value in a heatmap showing the values for 

different window sizes. The user can also inspect the EMD value in a plot for a specific 

window size. Based on the EMD values, the user can identify potential drifts. A differential of 

this approach is that EMD can be calculated using the control-flow perspective considering 

frequencies, time perspective (service and sojourn), and a holistic combination of control-flow 

with time. This drift detection approach allows different perspectives on the process models 

because of EMD’s flexibility regarding the choice of the representation and the distance 

measure. The approach was experimentally evaluated using one synthetic log, showing that 

different control-flow types and time-dependent control-flow drifts can successfully be 

detected. However, further evaluation is needed for applying the approach in real-world 

scenarios. 

In (Kurniati A.P., McInerney C., Zucker K., Hall G., Hogg D., 2019), the authors 

proposed a manual structured method for concept drift analysis based on the PM2 method 

(van Eck et al., 2015). The method compares processes in three levels: process model, 

trace, and activity levels. The comparison between process models generates a plot showing 

replay fitness, precision, and generalization metrics over time. Using this plot, users can 

identify potential drifts (without the exact location). All the metrics are calculated using a 

process model discovered by the interactive Data-Aware Heuristics Miner (iDHM). In 

(Kurniati et al., 2020), the authors extended the work applying four miners for performance 

comparison: Integer Linear Programming, the interactive Data-Aware Heuristics Miner 

(iDHM), the Inductive Miner (IM), and the Inductive Miner Infrequent (IMf). The trace and 

activity analysis can provide information about time and data perspectives but not 

considering the whole perspective. The authors applied the method to the route to the 

diagnosis of patients with endometrial cancer over fifteen years. The outputs graphical data 

visualizations supported discussions about process evolution and changes with domain 

experts. 

2.3.5 CHANGE DETECTION 

Authors in (Carmona & Gavaldà, 2012) report the use of a change detection algorithm, 

ADWIN (Bifet & Gavaldà, 2007), to identify a drift in event data. The method translates the 
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events into an abstract representation by converting the initial traces from a stream into 

Parikh vectors (Parikh, 1966). From the Parikh vector, it is possible to derive the polyhedron 

(𝑃�̂�). Next, the polyhedra 𝑃𝜎1̂, 𝑃𝜎2̂, … , 𝑃𝜎�̂� can be derived from the k traces. Finally, the 

approach learn the convex-hull of the points represented by the polyhedra𝑃𝜎1̂, 𝑃𝜎2̂, … , 𝑃𝜎�̂�, 

which is a representation of the log (the learned concept). The detection of the drift is then 

estimated by the ADWIN method, which maintains a window W of variable size of instances, 

that is compared at a certain point in time with a previous window. The algorithm 

automatically grows its window when no change is apparent and shrinks it when data 

changes. The mass of the polyhedra identifies drifts by updating the W with 1s (ones) or 0s 

(zeroes). If the polyhedra (initial concept learned) include the new point observed in the 

detection stage, its internal window W is updated with 1, otherwise with 0. When the mass of 

the polyhedra changes significantly, ADWIN algorithms flags a change with no need to 

evaluate other parameters. ADWIN also provides rigorous guarantees of its performance, 

bounding the rates of both false positives and false negatives (Bifet & Gavaldà, 2007). 

The main drawback of this approach is that it only detects the first drift without 

identifying the CP. Furthermore, its validation was performed on a small dataset with no 

considerably set of change patterns. However, this is the first online method to detect 

concept drifts in processes. This method is also complex and time-consuming since each 

trace is transformed into multiple prefixes, which are then randomly selected to derive the 

polyhedron (N. Liu et al., 2018). Another consideration should be highlighted as, despite 

being an online method by definition, the validation performed on the paper considers a 

stream of traces as each trace is converted into several Parikh vectors instead of events. 

Therefore, to verify the method in an online setting, the Parikh vectors should be created 

based on an event stream. 

In (Hassani, 2019), the authors propose StrProMCDD, which applies the ADWIN 

method (Bifet & Gavaldà, 2007) to detect drift in an event stream. StrProMCDD collects a 

batch of events in a pruning period (fixed size defined by the user), computes the frequency 

list for these events, and includes the new frequency list in a temporally ordered list used by 

ADWIN. A frequency list is a structure containing each pair of activities observed with the 

respective directly follows relation’s frequency. A directly follows relation indicates that an 

event follows another event within a trace (van der Aalst, 2016). Because ADWIN builds its 

observation window based on real numbers, the authors proposed different distance 

measures derived from the frequency lists: relation frequency distance, dependency and 

edge distances, activity frequency distance, routing distance, and relative importance 

distance. 
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An advantage of StrProMCDD is that it reads events in a stream in a single pass and 

inherits the time and memory efficiency from the ADWIN method (Bifet & Gavaldà, 2007). 

However, the method reads the events in batches, and no validation about the impact of 

different sizes of these batches is reported. Also, the authors report the F-score metric in 

(Hassani, 2019) without clearly defining what is considered as a drift in the method. The plots 

indicate the size of the adaptive window, and a sharp drop indicates a drift, but it is not 

clearly defined what threshold triggers a drift. The method also solely addresses the drift 

detection challenge without reporting the CPs. 

Another approach based on a change detection method is proposed in (Impedovo et 

al., 2020). The authors adapted a pattern-based change detection (PBCD) algorithm, named 

KARMATree, to detect and characterize drifts on event logs. The events are encoded as a 

dynamic network to be consistent with the data representation requirements of the PBCD, 

which represents a sequence of graphs obtained from the traces in the log (treated as time 

series). Each graph snapshot (G) represents a trace (T), having an edge for each activity 

name. One advantage of this representation is that more perspectives of the process model 

can be included. Yet, the authors only validate the approach using control-flow changes. The 

authors in (Impedovo et al., 2020) validate the accuracy of the KARMATree approach 

compared with Apromore ProDrift fixed/adaptive using Runs (Abderrahmane Maaradji et al., 

2015), and ProM adaptive (Martjushev et al., 2015) using synthetic logs. The comparison 

considers F-score and running times with a well-defined experimental protocol (clearly 

reporting that parameter minMC was tuned for the proposed approach). However, neither the 

synthetic dataset nor the source code is made publicly available. 

2.3.6 TREND DETECTION 

Authors in (Richter & Seidl, 2019, 2017) applied a trend detection method called Tesseract 

adapted from the text mining area for temporal drift detection in event streams.  

Tesseract contains three main parts: (i) monitoring the event stream for collecting the 

activities’ completion times; (ii) calculating a significance score based on the calculated times 

and an indicator function; and (iii) visualizing the results. The significance score indicates 

how far a new observation (time interval between activities) is from the mean value, and it is 

an adaption from the SigniTrend (Schubert et al., 2014) approach (trend detection method 

from text mining area). However, because of the non-stationary stream environment, the 

proposed score has exponentially decaying means and variances, and then it is smoothed 

again (second decay factor) to be a stable indicator. Both decay factors are defined by the 

user and affect the drift detection. Choosing much smoothing allows the method to rely on 
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significant drift alerts but increases the detection delay and makes it hard to detect short-term 

anomalies. 

Tesseract is implemented as a ProM (van der Aalst et al., 2009) plugin and considers 

the stream requirements: proposes an adapted Cuckoo hash-table (Fan et al., 2014) as a 

data structure with fast performance for look-up, updating, and deleting; controls memory 

consumption; deal with a stream of events; minimizes the detection delay. A limitation of 

Tesseract is that the approach only detects drifts in the time perspective. The reported 

experiments validate the approach using synthetic and real datasets, indicating that 

Tesseract is robust to noise and can detect sudden, incremental, and recurring drifts (only by 

visual inspection). The authors do not evaluate the accuracy of the method using a metric 

like the F-score. They evaluate the drift in the synthetic dataset by calculating the detection 

delay, which is the number of events between the start of the drift and the event that triggers 

the detection. 

The Tesseract is not classified as a visual analysis approach because it adapts a 

trend detection method to automatically triggers the drifts when the significance score is of a 

minimum number of events shift the value out of the in-control limits, addressing both drift 

and CP detection. The output of the method is a Control chart with Tesseract values and a 

Gantt-Chart that plots the Tesseract values exceeding the thresholds, indicating the temporal 

drifts. The user has to select a pair of activities to visualize both plots, which also provides 

the change localization of the drift. 

2.3.7 OTHER APPROACHES 

Some authors propose different approaches to deal with concept drift in processes that do 

not fit into any of the previous categories. These approaches are detailed below. 

2.3.7.1 Tsinghua Process Concept Drift Detection (TPCDD) 

TPCDD (Zheng et al., 2017), is a three-stage approach based on two process similarity 

algorithm, TAR (Zha et al., 2010) and BP (Weidlich et al., 2011), and a clustering strategy. 

TPCDD handles both drift and CP detection. First, TPCDD creates a relation matrix 

containing all relations on the traces in the lines and one column for each trace of the event 

log. This is a limitation of the method to handle complex and large logs. In the second stage, 

each line of the matrix is inspected to identify intervals containing a stable same frequency 

level, classified in always, never, and sometimes intervals. The intervals have a minimum 

size defined by a parameter named minimum relation invariance distance (MRID). Each cut 

between intervals is defined as a candidate CP. In the third stage, TPCDD applies DBSCAN 

(Ester et al., 1996) in the set of candidates CPs to identify the points to be reported as 

change. DBSCAN parameters: the maximum radius of a neighborhood (eps), and the 
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minimum number of points required to form a dense region (minPts), are also TPCDD 

parameters. 

The validation of the approach uses the process models from (Abderrahmane 

Maaradji et al., 2015) but with different configurations. The authors generated 32 mixed logs 

with different models and sizes that were not made publicly available. The accuracy of the 

method is highly affected by the MRID and the DBSCAN main parameters (eps, and minPts), 

and the authors did not provide insights on how to define them. Another drawback is that the 

reported CP indicates the center of the cluster, which can be an invalid trace index. The 

authors described a TP when the CP detected is inside a neighborhood of the precise drift 

timestamp regarding the F-score metric. Yet, by analyzing the plots with the results, the 

neighborhood is defined by a number of traces defined by the Error Tolerance (ET) 

parameter. Even though the paper describes the validation using the F-score compared to 

the baseline in (Abderrahmane Maaradji et al., 2015), there is a lack of information that does 

not support the validation process. The authors define two types of relations: direct 

succession relation (DSR) and weak order relation (WOR), and TPCDD uses both; however, 

the experimental protocol did not define which one is applied. The hyperparameters used 

during the comparison against the baseline (MRID, eps or minPts) were left undefined. We 

consider this approach relevant as it uses a simplification of the process model (graph) to 

extract the relations, avoiding the bias of the discovery algorithm. Also, the clustering 

strategy in the candidate CPs differentiates this approach from the others identified in this 

survey. However, the variation trend analysis has a lack of statistical foundation. 

2.3.7.2 Local Complete-based Drift Detection (LCDD) 

The approach proposed in (L. Lin et al., 2020) applies the local completeness (LCO) property 

of event logs defined in (Yang et al., 2012) for drift detection. The idea is that it is possible to 

assert (with a defined confidence level K) that a log satisfies LCO in a limited length. Based 

on this assumption, LCDD defines the minimal length (ML), i.e., the minimal number of traces 

for a log L to assure LCO with K. The detection approach starts by obtaining the direct 

succession (DS) relations in a complete window (CW), which can be defined based on the 

calculated ML values. Then, it reads traces of the next detection window (DW), obtains the 

DSs, and identifies two features: new DSs and disappeared DSs. A new DS or a 

disappeared one after CW in the DW indicates a drift. The CW and DW have the same effect 

as applying sliding windows. LCDD defines the trace with the new DS as a CP. If a pre-

existent DS disappears in the DW, LCDD considers the initial trace of DW as a candidate 

CP. LCDD combines the stable period (sp) to define the exact CP. The value of sp indicates 

the number of traces to be considered a stable period (configured by parameter). After 

reading sp traces, if there are no more disappeared DSs, the start of sp period is declared as 
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a CP. LCDD also implements an adaptive window based on increasing the complete window 

size by minWin (parameter) in each round. 

The authors in (L. Lin et al., 2020) performed several experiments to evaluate the 

accuracy of LCDD using the ML equation to support the definition of the CW parameter. The 

accuracy of the fixed windows obtained using synthetic logs is considerably higher than other 

approaches: Runs and Alpha options from Apromore ProDrift (Abderrahmane Maaradji et al., 

2015; Ostovar et al., 2016), and TPCDD (Zheng et al., 2017). However, all the compared 

approaches apply sliding window strategies, but the window size parameter was set to the 

default value. In LCDD, the CW parameter was defined based on the ML value. 

Unfortunately, the papers do not report experiments applying the value calculated for LCDD 

(200) as the parameter for the compared approaches. There is an interesting statistical 

foundation in the definition of ML, which is a differential of LCDD when comparing it with 

other fixed sliding window approaches. However, the synthetic datasets used in the 

validation contain a fixed interval between drifts, which may not represent the real-world 

behavior. The adaptive approach experiment shows that the accuracy of LCDD is sensitive 

to the minWin parameter. Yet, tuning this parameter can result in higher accuracy when 

comparing to the default parameters applied to the compared approaches. Authors in (L. Lin 

et al., 2020) also report a real-world experiment comparing LCDD performance against the 

same methods applied to the synthetic datasets. Because LCDD proved to be not robust to 

noise, the authors apply the method defined in (Conforti et al., 2017) to obtain similar results 

to the compared methods. In summary, the accuracy of LCDD is sensitive to the CW 

parameter (but the ML equation addressed this drawback), LCDD is not robust to noise, and 

the accuracy of the proposed adaptive window is sensitive to the parameter minWin. 

2.3.7.3 Framework for “online” process concept drift detection 

In (N. Liu et al., 2018), the authors proposed an approach based on the footprint matrixes 

containing the 𝛼 relations between each pair of activities. First, the method generates a 

process model from initial traces (a parameter defines the number of traces). Then, the 

approach checks each new trace by extracting its footprint matrix. Next, the framework 

compares the matrix of the new trace with the matrix of the current model to identify 

differences, classified in adding existent or nonexistent activities, removing activities, and 

altering adjacent relationships between activities. The method applies a metric named 

process model precision to identify the need to remove process model activities. A difference 

between the matrixes indicates a drift, and the method returns the activities and the 

difference to localize and characterize the drift, indicating if the drift is sudden or recurring. 

There is a filter to consider a trace when it appears more times than a threshold set by the 

user to avoid noise traces. 
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Despite being reported as an online method, the definition of an event stream 

represents a stream of traces. Consequently, the method is not suitable for an online setting. 

The paper reports that the method is able to identify incremental and gradual drifts, but there 

are no details about the types of drifts handled by the algorithms or in the validation protocol. 

Besides, the localization and characterization returned by the algorithms are not validated by 

the reported experiments. The validation process is not clearly defined; the F-score definition 

is provided, yet, it is limited for assessment of single-drift scenarios, and the detection error is 

not explained in the paper. Despite the shortcomings, the approach shows a distinct method 

to detect drifts based on the footprint matrix and the precision of the process model. 

2.3.7.4 Detecting concept drifts based on process histories from event streams 

The approach proposed in (Stertz & Rinderle-Ma, 2018) is based on the discovery of process 

models providing what the authors named a process history. After reading a new event, the 

method calculates the fitness of the updated trace (from the case of the new event) for the 

current model in the process history; a small fitness value (under a pre-defined threshold) 

triggers the discovery of a new process model, which represents a concept drift. The 

approach uses an adaptation of the Inductive Miner (Leemans et al., 2013) for streams for 

discovering the process models, based on the Stream-based Process Discovery (S-BAR) 

architecture defined in (van Zelst et al., 2018). The proposed algorithm handles memory 

restriction by delimiting the 𝑡𝑟𝑎𝑐𝑒𝑚𝑎𝑝 structure, which is responsible for storing the k last 

traces updated with an event. For conformance checking, the algorithm applies the fitness 

based on alignments, using the cost for move on log only. One drawback of using the 

proposed fitness calculation is that if the algorithm discovers a generic model, the fitness will 

stay with high values, not triggering the insertion of a new process model in the history (no 

drift will be detected). This is acknowledged by the authors, which propose a periodical 

model discovery using all traces in the 𝑡𝑟𝑎𝑐𝑒𝑚𝑎𝑝, to detect a stricter model, but this could 

lead to big mixed process models. Another drawback of this approach is that the validation 

indicates that there is no initial setup of the process history. When the first event is received 

from the stream, a new model is mined. As a result, the method identifies incremental 

concept drifts during the initial events processing, potentially generating false alarms. The 

method does not report the CPs, just the drift indication and its type (sudden, gradual, 

incremental, or recurring). 

The validation of the method shows that the four types of drift have been detected. 

Nonetheless, the validation also indicates that the approach misses some concept drifts 

injected in the synthetic dataset (for the online environment). The dataset used contains a 

small process with simple control-flow changes, and authors do not evaluate the processing 

time for mining a new model or calculating the fitness after each new event is received. 
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Despite the identified drawbacks, authors in (Stertz & Rinderle-Ma, 2018) present an entirely 

distinct approach to detect drifts based on discovery and conformance for online 

environments. This work is extended in (Stertz & Rinderle-Ma, 2019) to identify concept drifts 

from the data perspective, validated using a real-world dataset. 

2.3.8 COMPARING TOOLS FOR DRIFT DETECTION 

We identified two papers addressing drift detection without proposing a new technique. They 

compare existing drift detection tools and report the results. It is essential to highlight that we 

did not find any paper comparing online PM approaches considering evolving environments. 

In the first paper (Omori et al., 2019), the authors compare Apromore ProDrift and the 

Concept Drift plugin from ProM considering a set of characteristics: detection method, 

windowing, feature selection, sensitivity, noise handling, type of drift, type of input (log or 

stream), and user interface. The qualitative analysis of each aspect helps describe both 

tools. However, there is no accuracy evaluation for the methods based on objective metrics, 

e.g., F-score. Both methods were applied to a real-world dataset. 

Authors in (P. Ceravolo et al., 2020) discuss the properties needed for online PM 

techniques by defining a set of evaluation goals and evaluate the fulfillment of the defined 

goals for identified techniques from the state-of-the-art. The paper identified the following 

goals for online PM: (i) minimize memory consumption, (ii) minimize response latency, (iii) 

minimize the number of runs, and (iv) optimize accuracy. A set of online process discovery 

and online conformance checking techniques have been evaluated considering the defined 

goals. It is essential to highlight that the papers selected in  (P. Ceravolo et al., 2020) do not 

follow the same criteria defined in our SLR, which is that the online PM approach should 

report a validation scenario containing drifts. An exciting conclusion of the study proposed in  

(P. Ceravolo et al., 2020) is that concept drift detection is a central issue for online PM. 

However, concept drift techniques are usually not integrated with online PM tasks. This 

conclusion corroborates with the low number of papers identified on the branch named online 

PM dealing with evolving environments. Because of the importance of concept drift detection 

for the online PM, the authors compared different concept drift detection tools, limited to 

open-source software or tools that provide the source code. The paper reports the fulfillment 

of the goals defined for online PM for each tool and reports a performance evaluation, 

applying two metrics (from regression methods): mean squared error (MSE) and root mean 

squared logarithmic error (RMSLE). We argue that both metrics are not adequate to measure 

the accuracy of the drift detection because they consider the presence of the drift but not the 

CP. So, the conclusions mainly concern the drift detection challenge. The paper publicizes a 

new dataset including the four drift types identified in the literature (sudden, gradual, 
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incremental, and recurring), articulated according to control-flow and time perspectives (G. 

M. T. S. B. J. . P. Ceravolo, 2019). 

2.4 ONLINE PM DEALING WITH EVOLVING ENVIRONMENTS 

PM techniques are usually classified into discovery, conformance checking, and 

enhancement (van der Aalst, 2016). All these tasks can be executed online or offline, and in 

both situations, concept drift can introduce a challenge. In our SLR, we identified several 

approaches for detecting concept drifts that can be combined with offline techniques for 

discovery, conformance checking, or enhancement. When the analyst identifies the drift 

point, it is possible to split the event log and apply traditional offline techniques on the 

resulted sub-logs. However, in online analysis, drift detection may not be enough. For 

instance, in a process discovery scenario, even if some online drift detection technique 

reports a drift in an event stream, there still some open issues, i.e., is it possible to mine the 

model from scratch considering response time limitations? How many events should be used 

to mine or update the new model? Some papers dealing with concept drift in PM focus on 

proposing online PM techniques in an evolving environment because of questions like these. 

We have only found seven papers classified into this branch, and we justified this number of 

studies (fewer than concept drift detection) because PM research still mainly focuses on 

offline analysis. Yet, the identified papers only describe process discovery techniques that 

handle concept drift in online analysis. In the approaches to adapt discovery algorithms after 

a drift, the challenge may not explicitly detect the drift but enhance the algorithms with 

adaptive or incremental abilities. We name this challenge as streaming process discovery 

dealing with evolving environments. We have considered solely the works that validate the 

streaming discovery approach with a scenario involving concept drifts. 

2.4.1 STREAMING PROCESS DISCOVERY DEALING WITH EVOLVING ENVIRONMENTS 

In (A Burattin et al., 2014), the authors propose different versions of the Heuristics Miner 

(HM) (Weijters et al., 2006) to deal with event streams, adapting the algorithm using a 

moving window. Three approaches are designed for evolving environments: HM with Sliding 

Window (SW), HM with Lossy Counting (LC), and HM with Lossy Counting with Budget 

(LCB). HW with SW is the simplest approach: first, the process collects events for a given 

time window, derives an event log, and then applies the classical version of HM. Besides the 

simplicity, this approach can apply any existing PM algorithm. However, in this approach, 

only the more recent events are considered, with equal importance. The model update is not 

constantly triggered, and the algorithm must handle each event at least two times: to store it 

in the event log and for deriving a model update (not desired for online analysis). The HM 

with LC applies an adaptation of the standard LC approach (Manku & Motwani, 2002), where 
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the batch version of the directly-follows measure is calculated over an event stream. The 

algorithm interacts with three data structures: one to count the frequencies of the activities 

(DA), one to count the frequencies of the direct succession relations (DRS), and another one 

to keep track of distinct cases running at the same time (DC). Because of the concept of 

“buckets” and the cleanup procedure (based on the maximum approximation error allowed) 

from LC, the algorithm forgets the old behavior. The LC strategy does not limit memory 

usage, which can be a problem in streaming environments. The LCB (Martino et al., 2013) 

addresses this issue by adapting the approximation error according to the stream and the 

available budget, i.e., the maximum memory that the algorithm can use. The authors 

compared the three algorithms using a synthetic event log simulating two concept drifts. The 

HM with SW reports almost always the worst model-to-model similarity. HM with LC and HM 

with LCB are basically equivalent, showing the capability to detect the drifts and the 

corrected model. Experimental results show the effectiveness of control-flow discovery 

algorithms for streams on a real dataset.  

In (Maggi et al., 2013), the authors also propose a framework for the online discovery 

of declarative process models from streaming event data. Two algorithms for frequency 

counting are implemented in ProM (van der Aalst et al., 2009): SW and LC. The authors 

validate both algorithms using a synthetic log containing sudden drifts. The authors designed 

three algorithms, each tailored to identify one kind of change template in the Declare 

constraints: response and not response constraints, precedence and not precedence 

constraints, and responded existence and not responded existence constraints. The 

approach is extended in (A Burattin et al., 2015), by including the LCB algorithm for 

frequency counting. The discovery algorithms are also adapted to apply two different notions 

of constraint support: event-based and trace-based, and they are now able to discover the 

entire Declare language. The output of the updated discovery algorithms is also enhanced by 

providing an updated picture of the process model at runtime (LTL-based business 

constraints) and information about the most significant concept drifts identified during the 

process execution. The authors performed different experiments with a larger set of synthetic 

logs and with a real-life event log (public available). The complete implementation is 

available in the StreamDeclareDiscovery plugin in the ProM framework (van der Aalst et al., 

2009). Another study (Andrea Burattin et al., 2015) complements the approaches mentioned 

above by focusing on the dynamic visualization of the Declare models over time. The 

concept drifts can be visually inspected using the trend line plot containing the total of 

Declare rules discovered over time. 

Authors in (van Zelst et al., 2018) proposed a generic architecture, named stream-

based abstract representation (S-BAR), which allows the adaptation of conventional 
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discovery algorithms for online analysis. Any discovery algorithm that maps events into an 

abstract representation to derive a process model can be adapted by two steps: defining a 

function for mapping an event log to the abstract representation needed for the algorithm and 

maintaining a data structure tracking the abstraction’s information. S-BAR architecture 

defines some options for the data structure, which should be combined with a forgetting 

mechanism because of the stream requirements. Several instantiations of the S-BAR are 

implemented in plugins in ProM (van der Aalst et al., 2009): 𝛼-Miner, Inductive Miner, 

Heuristics Miner, Transition System Miner (state-based regions), and ILP (language-based 

regions). The Inductive Miner-based instantiation of S-BAR (based on LC) is validated using 

an event stream containing one gradual drift with two change patterns. The validation 

showed that the algorithm is able to adapt the model to the new concept, which is indicated 

by the replay fitness calculated over time. The experiment also showed that a data structure 

with more capacity implies the drift being reflected longer. 

In (Anatoliy Batyuk & Voityshyn, 2020), the authors adapted the Fuzzy Miner 

algorithm (Günther & van der Aalst, 2007) to the streaming scenario. The implementation of 

the streaming Fuzzy Miner is integrated into the real-time business process monitoring 

(RTBPM) software (A Batyuk et al., 2018), following the steps: (i) receive and store event into 

the database; (ii) classify the events; (iii) check if the cases are completed; and (iv) calculate 

log-based metrics. Specifically, one step of the original Fuzzy Miner is adapted: measuring 

log-based metrics. The adaptation consisted of organizing calculations to show the changes 

in a process model in near real-time mode (using as minimal computational resources as 

possible) to the user. For dealing with drifts, the authors include new metrics: drift unary 

significance metric, drift binary significance metric, and drift binary correlation metric. The 

included metrics were calculated between the log-based and derivate metrics (from the 

original Fuzzy Miner), so the logic for the other metrics remained almost the same. The 

validation applies the new method to a real-world dataset, comparing the process model 

generated from the original Fuzzy Miner with the one obtained with the new algorithm. The 

original Fuzzy Miner derives a process model with an infinite loop, which is not present in the 

model derived from the streaming Fuzzy Miner. Nonetheless, neither the source code or 

executable files were made available by the authors (A Batyuk et al., 2018). 

Another streaming process discovery algorithm is proposed in (Redlich et al., 2014). 

The authors adapted the Constructs Competition Miner (CCM) algorithm to the streaming 

environment, considering changes in the behavior. The original CCM applies a divide-and-

conquer strategy to mine a block-structured process model from the footprint matrix 

describing directly-follow relations. In CCM, distinct calculated global relations between 

activities compete with each other for the most suitable solution. The discovery process also 
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handles noise and not-supported behavior. The proposed Dynamic CCM (DCCM) (Redlich et 

al., 2014) splits up the original CCM into two parts: (i) footprint update and (ii) the footprint 

interpretation. For every event, the footprint update module updates the dynamic footprints. 

DCMM can then compute the dynamic footprints at any point in time be compiled to a 

business process by the footprint interpretation, scheduled based on a configured number of 

completed traces. Older behavior is handled by an aging approach applied by the footprint 

update module. It is created an individual trace footprint (TFP) for each trace and adds it 

multiplied by the trace influence factor 𝑡𝑖𝑓 ∈ 𝑅 to the current dynamic overall footprint (DFP) 

multiplied by 1 − 𝑡𝑖𝑓. With this mechanism the influence of a trace completed 60 traces ago 

became almost irrelevant for 𝑡𝑖𝑓 = 0.1. New activities are added to the overall footprint as the 

trace terminates. Activities that do not appear anymore are removed from the dynamic 

footprint based on a removal threshold tr. The authors (Redlich et al., 2014) validate DCMM 

in a scenario with a sudden drift in the control-flow perspective. They analyze the change to 

the business process and report the behavior of the DCCM, the change detection (comparing 

the trace with actual drift and the detected one), and the change transition period. The 

reported conclusions indicate that the trace influence factor is a pre-specified value, but it 

depends on how many traces one must consider representing all the behavior of the process 

model, which renders the definition of an optimum or even fair value challenging. We did not 

find any paper comparing the online PM approaches focusing on concept drift scenarios. 

2.5 ACHIEVEMENTS AND CHALLENGES 

Drift detection is a hot research topic, and the authors address different challenges: drift 

detection, CP detection, change localization, change characterization, and revealing the 

changing process. Of the 45 selected papers, 38 of them (approximately 84%) deal with 

process drift detection, and the most addressed challenge is CP detection (29 papers). 

Seven papers propose adaptive process discovery techniques for dealing with evolving 

environments, thus depicting that the PM area is still focused on offline analysis. The most 

addressed problem is CP detection (Figure 2.9 b) in the control-flow perspective (Figure 2.9 

a). Papers addressing more than one perspective are counted for each perspective; the 

same applies to the challenges plot (Figure 2.9 b). Regarding the drift perspective, most 

approaches deal with drifts in the control-flow perspective. The data perspective is explored 

in (Hompes et al., 2017; Pauwels & Calders, 2019; Stertz & Rinderle-Ma, 2019), and the time 

perspective is explored in (Barbon Junior et al., 2018; Brockhoff et al., 2020; Mora et al., 

2020; Richter & Seidl, 2019, 2017; Tavares et al., 2019). 
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(a) Counted by perspective. 

 

(b) Counted by challenge. 

Figure 2.9. Drift detection papers. 

 

Despite being the most addressed problem, it is difficult to compare the distinct 

approaches for drift detection in PM. The validation of the detected CP is not always 

performed using an objective and well-defined metric. Even when the papers report a metric, 

there are some open questions about how they are computed or regarding the validation 

protocol. For instance, from the 29 papers that propose a new technique for CP detection, 

only 14 papers (Hassani, 2019; L. Lin et al., 2020; N. Liu et al., 2018; A Maaradji et al., 2017; 

Abderrahmane Maaradji et al., 2015; Martjushev et al., 2015; Ostovar et al., 2020, 2017, 
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2016; Seeliger et al., 2017; Yeshchenko et al., 2021; Yeshchenko, Di Ciccio, et al., 2019; 

Yeshchenko, Mendling, et al., 2020; Zellner et al., 2020) use the F-score to validate their 

results. Yet, the definition of what a TP, TN, FP, or FN stands for is overlooked or different 

from the definition provided in other papers. We understand that the F-score metric properly 

describes the accuracy of the detected CPs if the authors define how the true/false positives 

are counted. We suggest that the TPs can only score CPs detected after the real CP inside a 

neighborhood pre-defined. The idea of an Error Tolerance (ET), described in (Zheng et al., 

2017), similar to the objective evaluation using a lag period proposed in (L. Lin et al., 2020; 

Martjushev et al., 2015), can be adapted to define this neighborhood. The main difference 

between the current proposals is that we argue that the lag period should be considered only 

after the real drift position and not before it, as drift detection is a reactive process rather than 

a preemptive one. 

The two leading software that provide a tool for drift detection, Apromore (La Rosa et 

al., 2011), and ProM (van der Aalst et al., 2009), do not report validation metrics in the user 

interface, e.g., F-score. This hardens the comparison between different methods. We 

identified only two papers (P. Ceravolo et al., 2020; Omori et al., 2019) that compare tools for 

drift detection in PM. The authors in (Omori et al., 2019) do not report a metric for comparing 

the accuracy of the detected drifts and perform the experiments using a real-life dataset, 

which is not the best choice when comparing approaches because the real drift points are 

not known a priori. In (P. Ceravolo et al., 2020), the drift detection accuracy is compared 

using two metrics applied to regression models (MSE) and (RMSLE). In our understanding, 

by calculating these metrics, the authors could verify if the approaches detected the correct 

number of drifts, but the detected drift can be very distant from the actual one. Therefore, we 

were unable to find any tool available to compare different approaches for drift detection. 

Providing an easy and common way of comparing different approaches is a challenge in the 

area. Another challenge is the set of synthetic event logs publicly available. We only 

identified three datasets (Appendix 2.A) with concept drifts in event logs, and their 

configuration does not reproduce different drift intervals or a mixed combination of different 

types of drift expected in real life. The approaches can evaluate their accuracy based on 

real-world datasets when experts are available for validation to overcome this issue. 

However, we argue that the tools for generating synthetic datasets should be improved 

considering changes in processes for future research. 

In several approaches for drift detection, the user must set different parameters, and 

these parameters affect the accuracy of the results. Another challenge is to provide an 

intuitive and interactive interface, where one can easily change the parameters to tune the 

results. Some approaches intend to be fully automated, using pre-defined values for the 
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parameters (A Maaradji et al., 2017; Abderrahmane Maaradji et al., 2015; Ostovar et al., 

2016). However, for different datasets, it should be interesting to provide a way to tune the 

hyperparameters’ values. 

Most papers propose statistical tests over some features extracted from event logs or 

streams considering the adopted approaches. They apply the statistical tests using fixed or 

adaptive windows. However, the authors usually propose the adaptive approaches without 

rigorous guarantees of performance as bounds on the rates of false positives and false 

negatives. Only two approaches (Carmona & Gavaldà, 2012; Hassani, 2019) for adaptive 

windows use the ADWIN method (Bifet & Gavaldà, 2007), which provides such guarantees. 

We understand that statistical-based approaches can also enhance adaptive windowing 

strategies. Also, the application of change detector algorithms (PELT) is reported only in one 

approach (Yeshchenko et al., 2021; Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di Ciccio, 

et al., 2019; Yeshchenko, Mendling, et al., 2020). 

 The validation of online and offline approaches should follow different experimental 

protocols. The online setting requires an event stream and has other limitations, e.g., 

memory consumption and processing time. The experimental protocol of some online 

approaches only considers the processing time or fails to validate the complete online 

scenario of analysis. We argue that an event stream is a proper input for online methods 

because of the restrictions of the online setting, and the experimental protocol should 

explicitly detail how the method handles: memory, time, and accuracy restrictions. For 

dealing with concept drifts, the online setting imposes new challenges: the time for drift 

detection is a critical factor, the number of events needed after the drift occurred is essential, 

the number of events stored for the analysis must be considered, and the approaches should 

consider incomplete traces. Besides that, some approaches for online concept drift detection 

in PM deal with a stream of traces, waiting until the trace is complete and thus, violating the 

restriction to deal with incomplete traces. We classified these approaches for offline analysis. 

2.6 CONCLUSION 

Despite being a relatively new research topic in the PM community, we found different 

approaches to deal with concept drift in processes. We categorize the approaches into two 

main branches: explicitly detect the drift and adapt process mining techniques to deal with 

event streams in an evolving environment. The primary efforts concern the detection of the 

concept drift, usually handling the drift and the CP detection in the control-flow perspective. 

Seven studies have been found on stream process discovery dealing with evolving 

environments. We believe this reflects that the PM area is still focused on offline analysis, 

especially when the need is for understanding the real processes. The IC defined for the SLR 
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only considers papers with online process mining approaches that evaluate the method using 

a scenario containing drifts. We identify few synthetic datasets for this type of validation, and 

real-world datasets are not suitable because we do not know a priori if there is a concept 

drift. We summarize the following challenges for concept drift in PM: 

• Enhance the experimental protocol. The use of a detailed metric to evaluate the 

approaches, either for online and offline analysis, is required. Our suggestion is the use 

of the F-score, yet, following a precise and clear definition on how to count the true/false 

positives/negatives, considering an error tolerance, and applying the metric in artificial 

datasets. 

• Enhance the online experiment protocol, considering the restrictions of the online 

environment: detection delay, memory usage, the processing time for each event, and 

input as an event stream, for instance. 

• Include validation in datasets without drifts. The methods are highly sensitive to 

parametrization, which may lead to false positives. The validation of different thresholds 

for avoiding the false positives for the proposed parameter can improve the evaluation 

and robustness of the proposed methods. 

• Develop tools for easily comparing the results of different approaches within distinct 

datasets. Such tools should provide an easy interface to change the parameters and 

evaluate results. Also, these tools may provide synthetic datasets. 

We are in the fourth industrial revolution, Industry 4.0, where one of the five 

significant features is automation and adaptation. Business process management (BPM) is 

one of the industrial information integration methods needed, fulfilling the continuous 

improvement of business processes (Y. Lu, 2017). In the context of Industry 4.0, the 

business process is even more automated and flexible, increasing the need for tools for 

monitoring and improving the business process in evolving environments. PM provides 

powerful tools for analyzing, monitoring, and improving the processes; however, the main 

state-of-the-art techniques do not focus on online and evolving environments. Dealing with 

concept drift in PM can improve the benefits of this application in the Industry 4.0 context, 

thus allowing the application of PM techniques in evolving environments.   

APPENDIX 2.A - SYNTHETIC DATASETS DESCRIPTION 

(1) Business Process Drift – (Abderrahmane Maaradji et al., 2015) – 72 event logs 

Link: https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436  

Type of drift: sudden. Perspective: control-flow (12 simple and 6 complex patterns). 

https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
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Size and interval between drifts (traces): 2500(250); 5000(500); 7500(750); 10000(1000). 

Number of drifts: 9 drifts in each log 

(2) Logs Characterization – (Ostovar et al., 2020) –  375 event logs 

Link: https://drive.google.com/file/d/1xYuai8-HBrCZLSAuZMGPv7IJzOjbEsaY/view 

Type of drift: sudden. Perspective: control-flow (65 logs with single changes, 30 logs with 

composite changes, and 30 logs with nested changes) 

Size and interval between drifts (traces): 3000 (1000) 

Number of drifts: 2 drift in each log 

Noise: two variants with 2.5% and 5% noise (inserting random events into the traces) 

Complementary information: Highly variable logs with trace variability around 80%. 

(3) Synthetic Event Streams - (P. Ceravolo et al., 2020) - 942 event streams 

Link: https://ieee-dataport.org/open-access/synthetic-event-streams 

Type of drift: sudden, gradual, incremental, recurring. Perspective: control-flow (16 change 

patterns), time. 

Size (traces): 100, 500, and 1000 

Number of drifts. Sudden: 1 drift injected in the middle of the stream. Recurring: 2 drifts – 

for streams with 100 traces, cases follow the division 33–33–34 (the initial and the last 

groups come from the baseline, and the inner one is the drifted behavior); for 500 and 1000 

traces, the division is 167–167–166 and 330–330–340. Gradual: 1 drift (20% of the stream 

represents the transition between concepts). Incremental: 2 drifts (an intermediate model 

between the baseline and the drifted model is required; 20% of the stream contains the 

intermediate behavior, so the division was 40–20–40, baseline–intermediate model–

incremental drift)  

Time drifts. Baseline behavior: the meantime is 30 min, standard variation is 3 min. Drifted 

behavior: the mean and standard variations were 5 and 0.5 min. Incremental drift: the 

transition state (20% of the stream) was split into 4 parts where standard time distribution 

decreases 5 min between them, following the incremental change of time. 

Noise: 4 variants with 5%,10%,15%, and 20% (removing the first or the last half of the trace) 

Complementary information: The arrival rate of events fixed to 20 min, the time distribution 

between events of the same case follows a normal distribution. For time drift, the change 

affects only the time perspective. 

https://drive.google.com/file/d/1xYuai8-HBrCZLSAuZMGPv7IJzOjbEsaY/view
https://ieee-dataport.org/open-access/synthetic-event-streams
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2.7 RECENT PAPERS 

We identified two more papers dealing with concept drift detection in process mining: (Adams 

et al., 2021) and (De Sousa et al., 2021). The former presented a Framework for Explainable 

Concept Drift Detection in Process Mining and can be classified as CP  detection because it 

applies the PELT (Killick et al., 2012) algorithm for the change point detection. The method 

splits the event log using a tumbling time window (defined in days), extracts some features 

from each time window, then apply the PELT algorithm for obtaining the change points. One 

advantage of this method is the definition of the generic framework, which allows the 

application of different functions to construct a real-valued representation of different 

perspectives of the process. The authors evaluate the drift detection using a synthetic and a 

real dataset against Apromore ProDrift (Abderrahmane Maaradji et al., 2015) and VDD 

(Yeshchenko, Di Ciccio, et al., 2019), even the drift detection is not the final goal of the 

proposed framework. However, there is no objective metric reported in the evaluation, and 

the parameters applied in the software are not explicitly defined. The detection accuracy was 

also not evaluated considering distinct window sizes, probably because the drift detection is 

one part of the framework which aims to explain a root cause for the concept drift.  

In (De Sousa et al., 2021), the authors apply a trace clustering approach to different 

traces profiles obtained from windows of traces of fixed size (the traces are ordered by their 

timestamp), and combine drift detection and localization. The authors in (De Sousa et al., 

2021) stated that the proposed approach is based on an online setting; however, we classify 

it as offline analysis because it handles a stream of traces. The trace clustering is applied on 

two trace profiles: trace – based on the occurrence of activities (Actv-Occ) or the frequency 

of activities (Actv-Frq), and control-flow – based on the occurrence of transitions between 

activities (Trns-Occ). The clustering applies centroid-based clustering algorithms, using the 

Euclidean distance between all centroids in a cluster. The concept drift detection verifies 

whether a significant variation occurs in the current value of a feature when comparing the 

clusters. The authors proposed the following cluster evolution features: intra-cluster distance, 

inter-cluster distance, silhouette coefficient, Davies-Bouldin index (DBi), MSE, and the 

distance between centroid positions average. The approach is evaluated using the synthetic 

dataset from (Abderrahmane Maaradji et al., 2015), considering the log sizes of 5,000, 7,500, 

and 10,000 traces, and compared with the approach (Apromore ProDrift) from the same 

paper (however it is not specified if the fixed or adaptive setting is selected). The approach 

does not outperform the Apromore ProDrift method in all cases; however, it was able to 

localize the drifts in most cases. The detection’s accuracy is limited to trace vector 

representation, clustering algorithms, and parametrization. 
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Table 2.7. Classification for the recent papers with concept drift detection approaches for PM. SD 
means synthetic datasets, RD means real-world datasets, PA means publicly available, NA means not 

available, and CD means clearly defined. 

Paper(s) Challenge(s) Perspective(s) Type(s) Analysis Software Dataset SD 
evaluation 

(Adams 
et al., 
2021) 

1,2 All – depend 
on the 
function, SD 
(time and 
control-flow), 
RD (time and 
resource) 

Sudden Offline Explainable 
Concept Drift 
PM23 

SD (PA), 
RD (PA) 

- 

(De 
Sousa 
et al., 
2021) 

1,2,3 Control-flow Sudden Offline Experimental 
tool NA 

SD (PA) F-score 

 

2.8 SECTION NOTES 

This section is published in (Sato et al., 2022). Topic 2.7 describes recent papers related to 

the topic published after the SLR publication’s date. Changes from the original paper: 

- We correctly cite the paper that describes the ADWIN method by the end of the first 

paragraph of Section 2.3.5 

- Appendix 2.A – the first log contains 72 event logs (not 75).  

  

 

 

23 Source code available at: https://github.com/niklasadams/explainable_concept_drift_pm.git  

https://github.com/niklasadams/explainable_concept_drift_pm.git


79 

 

 

3 PAPER #2: INTERACTIVE PROCESS DRIFT DETECTION FRAMEWORK 

This paper presents a novel tool for detecting drifts in process models. The tool targets the 

challenge of defining the better parameter configuration for detecting drifts by providing an 

interactive user interface. Using this interface, the user can quickly change the parameters 

and verify how the process evolved. The process evolution is presented in a timeline of 

process models, simulating a “replay” of models over time. One instantiation of the 

framework was implemented using a fixed-size sliding window, discovering process maps 

using directly-follows graphs (DFGs), and calculating nodes and edges similarities. This 

instantiation was evaluated using a benchmarking dataset of simple and complex drift 

patterns. The tool correctly detected 17 from the 18 change patterns, thus confirming its 

potential when an adequate window size is set. The user interface shows that replaying the 

process models provides a visual understanding of the changing process. The concept drift 

is explained by the similarity metrics’ differences, thus allowing drift localization. 

Keywords: Process drift, Concept drift, Drift detection, Evolving environment. 

3.1 PROCESS MINING IN EVOLVING ENVIRONMENTS 

Process Mining (PM) is gathering more enthusiasts in recent years. The growing interest can 

be explained by the current availability of process data recorded by the informatics systems 

(big data) and the increasing development of tools to provide easy access to different PM 

techniques. The primary input of any PM technique is event data, which contains information 

about business process executions, and can be accessed in the form of event logs (historical 

information about the process) or event streams (continuous flow of events associated with 

processing instances). The event data must include at least an identifier of the process 

instance (case), the event (indicating the occurrence of activity), and the timestamp in which 

the event occurred. 

There are three types of PM: discovery, conformance checking, and enhancement 

(van der Aalst, 2016). Discovery aims at learning what is happening with the processes by 

automatically discovering process models from the event logs without any a priori 

knowledge. Conformance checking compares a discovered or designed process model to 

the event log to pinpoint possible deviations. The goal is to help business analysts to 

understand problems or even unexpected behavior to support improvements. In the 

enhancement, an existent process model is extended (including new perspectives, e.g., 

performance) or improved using information from the event logs. Business analysts can then 

change the process model to reflect better reality based on the information provided by 

discovering or conformance. Discovery, conformance checking, and enhancement are 
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usually applied offline by analyzing an event log, but PM techniques can also perform online 

analysis. 

Regardless of the type of analysis, the business processes are not static. Companies 

and their analysts are always trying to improve the processes to minimize costs or maximize 

customer satisfaction. The processes also change when there is a new regulation or in case 

of unexpected events. Recently, the whole world had to adapt roughly every process to 

address the COVID-19 pandemic situation. So, it is naïve to assume that models do not 

change when business processes are placed in evolving environments. Besides, most state-

of-the-art PM techniques consider the processes to be in a “steady-state”, i.e., thus assuming 

that an event log contains information about a single version of the process. This assumption 

does not consider the existence of process drifts. 

A process drift, or concept drift in processes, occurs when the business process 

changes while being analyzed (van der Aalst et al., 2011). The correct identification of the 

process drifts is critical when conducting process analysis in evolving environments. By 

detecting process drifts, the analysts should better understand the actual process model 

without facing a mixed model from different versions of the process. Process drift detection 

can improve reporting and diagnosis analysis, predictions, recommendations, and 

operational support by assuring that a more adherent version of the process model is 

considered. In online analysis, the process drift detection can help discovery or conformance 

checking techniques to maintain an up-to-dated process model, without the need to 

continually rediscover it. 

Process drift was one of the challenges cited in the Process Mining Manifesto (van 

der Aalst et al., 2011). Since 2011, researchers have developed different process drift 

detection tools, such as ProM ConceptDrift plugin (Bose et al., 2014, 2011; Martjushev et al., 

2015), Apromore ProDrift (A Maaradji et al., 2017; Abderrahmane Maaradji et al., 2015; 

Ostovar et al., 2020, 2016, 2017), and other experimental tools (Barbon Junior et al., 2018; 

Mora et al., 2020; Richter et al., 2020; Seeliger et al., 2017; Yeshchenko, Di Ciccio, et al., 

2019; Yeshchenko, Mendling, et al., 2020; Zellner et al., 2020; Zheng et al., 2017). However, 

specific issues make it difficult to compare the tools affecting the adoption in real scenarios. 

We identified the following experimental tools for process drift detection: Process Drift 

Detector Plugin (PDD) for ProM (Seeliger et al., 2017), Tsinghua Process Concept Drift 

Detection (TPCDD) (Zheng et al., 2017), Concept-Drift in Event Stream Framework (CDESF) 

(Barbon Junior et al., 2018; Mora et al., 2020), Visual Drift Detection (VDD) (Yeshchenko, Di 

Ciccio, et al., 2019; Yeshchenko, Mendling, et al., 2020), Dynamic Outlier Aggregation (DOA) 

(Zellner et al., 2020), Online Trace Ordering for Structural Overviews (OTOSO) (Richter et 



81 

 

 

al., 2020). These tools share the drawback of ProM and Apromore, i.e., drift detection 

accuracy is highly affected by the hyperparameter configuration. Some of them are 

essentially affected by the window size: TPCDD, CDESF (the window size is defined by the 

time-horizon parameter, controlling model updates), and VDD. The approaches based on 

clustering, i.e., TPCDD, CDESF, VDD, DOA, and OTOSO, are also sensitive to the 

clustering hyperparameters. The PDD applies an adaptive window approach aiming to solve 

the window size choice, but the adaptation is limited to user-given upper and lower bounds. 

This paper proposes the Interactive Process Drift Detection (IPDD) Framework to 

provide a practical tool for process drift detection that can be easily applied in real scenarios. 

Section 3.2 describes process drifts and explores the available tools. In Section 3.3, the new 

framework is described. Section 3.4 presents results obtained with an instantiation of the 

proposed framework. Finally, Section 3.5 concludes the paper and indicates next steps for 

IPDD enhancement. 

3.2 PROCESS DRIFT 

A process drift indicates a point in time where the process changes for a reason. The 

changes can be planned and documented or unexpected. A change in the process reflects a 

change in its process model, meaning a new one replaces the existing process model’s 

version. The new process model can affect the ongoing process instances in different ways: 

sudden or gradual (Bose et al., 2014, 2011). 

In a sudden drift, all the ongoing process instances start to emanate from the new 

process model when the drift occurs. It can occur when a new regulation should be followed 

or even within an epidemic situation. In a gradual drift, the new process starts emanating 

process instances, but both versions coexist for some time, indicating a gradual replacement 

of the model. The authors in (Bose et al., 2014, 2011) also describe two different dynamics 

for the changes: recurring and incremental. In the recurring drift, the current model is 

replaced by a new one, but the new model is replaced by the previous one after some time. 

The incremental drift represents minor incremental changes implemented during some time. 

The recurring drift can indicate seasonal changes, for instance. An incremental drift can 

occur in companies to minimize risks for significant changes. In each process model 

transition, we can have a sudden or a gradual drift. 

Process drifts can occur at different time granularities. For instance, we can have a 

recurring drift that occurs every season, e.g., summer, winter, fall, and spring; and another 

drift occurring at the last week of the month, e.g., for specific accounting tasks. Both drifts 

coexist, yet they occur at different time granularities. In (Martjushev et al., 2015), the authors 
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named this situation as multi-order dynamics, reinforcing that any drift detection mechanism 

should deal with different time granularities when identifying process drifts. 

A process drift can affect one or more perspectives of the model, which are partially 

overlapping. The most common perspectives described in (van der Aalst, 2016) are: 

(1) Control-flow. It represents the process model's behavior based on the structure of 

activities (sequential, parallel, choice, loops). 

(2) Organizational. Resources related to the process activities, which can be people, 

systems, departments, or others. 

(3) Data. It is related to the information relevant to the process associated with the case, 

e.g., supplier, or to a specific activity, e.g., a machine. 

(4) Time. Time and frequency of activities. Tools and methods form handling process drifts 

should consider the types and perspectives of change and can also address different 

problems (Bose et al., 2014, 2011): 

(1) Change point detection. Identify the point in time (timestamp) that the drift occurred. 

The change point can be reported by the case index, the event index, or the date/time 

where the change starts. Change point detection is the most common problem addressed 

by the available tools. 

(2) Change localization. Report the process model region which has changed, e.g., 

between activities A and B. This problem partially overlaps with “unravel process 

evolution”, however, ProM and Apromore addressed this challenge without providing the 

process evolution. This problem is more about local changes and not the global picture of 

the drift. 

(3) Change characterization. Specify the type of change and in which perspective it 

occurred. This problem is less explored because few methods detect different process 

drifts or consider different perspectives.  

(4) Unravel process evolution. Relate and explore the former discoveries, putting 

everything together to understand the process’ evolution over time. We did not identify 

any tool that explored this problem. 

We focus on problems 1, 2, and 4. We propose IPDD, a framework for detecting change 

points and visually presenting its localization and process model evolution. IPDD deals with 

sudden drifts in the control-flow perspective. Incremental, recurring drifts, or multi-order 

dynamics are addressed by the user interface, allowing to check the detected drifts with 

different parameters. 
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3.2.1 PROCESS DRIFT DETECTION TOOLS 

Process drift detection tools can be divided into two categories: academic and experimental 

tools. We did not find any commercial tool with a process drift detection mechanism. We only 

report the tools that provide the source code or an executable interface due to space 

limitations. 

The first identified tool for process drift detection is the Concept Drift plugin in ProM24. 

Different approaches have been implemented in this plugin (Bose et al., 2014, 2011; 

Martjushev et al., 2015) to address change point detection for sudden and gradual drifts and 

multi-order dynamics. The user can also se.arch for change localization by selecting a pair of 

activities; in this case, the tool checks if there is a change between the selected activities. 

The user has to select many options for using the plugin: log configuration (join logs, split the 

log or not), feature to be compared (global or local), parameters of the feature, window 

strategy (fixed or adaptive, sliding over traces or time periods) with parameters, type of drift 

to detect (gradual or sudden), and the statistical test applied along its parameters. The user 

is required to set many configurations before even know if there is potential drift in the event 

log. Furthermore, the two types of drifts detected (sudden and gradual) must be separately 

checked. The plugin is designed for offline analysis, and it is not working if any global feature 

is selected, thus raising an exception. The results are highly sensitive to the parameters 

chosen, and there is no user-friendly interface to compare the results from different 

configurations. It is not possible to obtain the accuracy of the method, e.g., F-score, for 

synthetic logs in the plugin’s interface. 

Apromore25 is another academic tool that provides a plugin for concept drift detection 

reporting change points, change characterization, and localization (ProDrift). ProDrift has 

different approaches implemented (A Maaradji et al., 2017; Abderrahmane Maaradji et al., 

2015; Ostovar et al., 2020, 2016, 2017) and can detect drifts from a stream of traces (based 

on runs, which is an abstraction for the traces) or event streams. The tool can detect sudden 

and gradual drifts from event streams in an integrated way, i.e., the user does not have to 

specify the type of drift to be detected. ProDrift also has different types of parameters: 

approach (runs or events), windowing strategy (fixed or adaptive), and window size. The 

event-based approach includes a noise filter threshold, drift detection sensitivity, 

 

 

24 ProM is an open source framework that provides a big set of tools for the discovery and analysis of process 
models from event logs: http://www.processmining.org.  

25 Apromore is a collaborative business process analytics platform with distinct editions. The ProDrift is an 
experimental plugin: https://apromore.org/platform/tools/.  

http://www.processmining.org/
https://apromore.org/platform/tools/
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characterization (on/off), characterization method (activity-based or fragment-based), and 

characterization noise filter threshold. The accuracy of the detection method is highly 

sensitive to the chosen parameter values. An advantage of Apromore is that it has default 

values for each parameter. Yet, a drawback is that it is not possible to quickly check the 

differences in the process model before and after a detected change point. The adaptive 

window approach uses an initial window size value as input, but the plugin applies an 

algorithm to initialize it if the user does not specify. However, this initial size definition is not 

explained in the papers supporting the implementation (A Maaradji et al., 2017; 

Abderrahmane Maaradji et al., 2015; Ostovar et al., 2020, 2016, 2017). 

The identified experimental tools for process drift detection are: Process Drift Detector 

Plugin for ProM (Seeliger et al., 2017), Tsinghua Process Concept Drift Detection (TPCDD) 

(Zheng et al., 2017), Concept-Drift in Event Stream Framework (CDESF) (Barbon Junior et 

al., 2018; Mora et al., 2020), Visual Drift Detection (VDD) (Yeshchenko, Bayomie, et al., 

2020; Yeshchenko, Di Ciccio, et al., 2019), Dynamic Outlier Aggregation (DOA) (Zellner et 

al., 2020), Online Trace Ordering for Structural Overviews (OTOSO) (Richter et al., 2020). 

These tools share the drawback of ProM and Apromore, i.e., drift detection accuracy is highly 

affected by the hyperparameter configuration. Some of them are essentially affected by the 

window size: TPCDD, CDESF (the window size is defined by the time-horizon parameter, 

controlling model updates), and VDD. The approaches based on clustering, i.e., TPCDD, 

CDESF, VDD, DOA, and OTOSO, are also sensitive to the clustering hyperparameters. The 

Process Drift Detector Plugin for ProM applies an adaptive window approach aiming to solve 

the window size choice, but the adaptation is limited to user-given upper and lower bounds. 

The remaining issue for the available tools is hyperparameter setup. The choice of 

the window size is critical in any drift detection approach because a small window size may 

lead to false positives, and a large one may lead to false negatives making it challenging to 

pinpoint the exact location of the drift (Abderrahmane Maaradji et al., 2015). Hyperparameter 

tuning is essential for providing a tool for detecting drifts in real-world scenarios. The current 

tools do not provide accuracy metrics neither reveal process evolution, turning the 

hyperparameter tuning an arduous task. By default, the tools focus on reporting the change 

points and leaving the user to understand the process model’s change by splitting the log 

and applying discovery techniques in all the resulted sub-logs. Our proposal (IPDD) fills this 

gap by providing an interactive process drift detection tool, easy to use, and a reduced 

number of parameters. The interface allows the user to quickly verify the detection results by 

visualizing the process models over time. 
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3.3 INTERACTIVE PROCESS DRIFT DETECTION FRAMEWORK 

The proposed framework (IPDD) aims at overcoming the reported issues of the available 

tools: a not so user-friendly interface, the difficulty in comparing results obtained by different 

parameter configurations (not allowing hyperparameter tuning), complex configuration, and 

not reporting the accuracy metrics in a common manner. Figure 3.1 an overview of the 

proposed framework. 

 

Figure 3.1. Overview of Interactive Process Drift Detection Framework. 

The definition of the parameters’ values is challenging when starting a process drift analysis 

because the user has to determine a priori what will be a “good” parameter for each situation. 

We propose to solve this issue by providing an interactive and easy user interface, leaving 

the user free to test different parameters quickly. The commercial tools for process discovery 

(e.g., Disco) inspired this format, as they usually present a simplified version of the process 

model in which the user can navigate by zooming in or out to understand the process. The 

goal is to allow the user to navigate between different granularities of change and inspect the 

process evolution. The hyperparameter tuning is allowed by the user interface, which 

provides the process evolution for each tested parameter configuration. The user can also 

verify the chosen parameters’ accuracy by checking the evaluation module. 
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3.3.1 WINDOWING STRATEGY 

An event log in XES format26 can be uploaded into the IPDD. Next, by applying a windowing 

strategy, the events are split into separated windows. The window strategy can consider the 

event log as time series of traces, i.e., a stream of traces, by ordering the traces by the first 

event’s timestamp. The windows can also be defined based on events, sorted by their 

timestamp, i.e., time series of events. The size of the window can be fixed or adaptive. Using 

fixed-size windows, the user must specify the size as the number of traces or event or as a 

time window, e.g., hours, days. The windows can be overlapping or non-overlapping, 

continuous, or non-continuous. All of the identified options can be implemented in the 

windowing strategy step of the framework. The window slots containing a set of 

traces/events are forward to the next step, named process discovery. 

3.3.2 PROCESS DISCOVERY 

For each window slot provided in the first step, IPDD applies a process discovery algorithm 

to derive a process model. Several algorithms have been proposed for process discovery, 

and any discovery technique has its own representational bias, i.e., the process model that 

can be discovered (van der Aalst, 2016). The resulted process models can be declarative or 

imperative, and several notations are available (van der Aalst, 2016). Another option is to 

use a DFG, also named process map, for simplicity and scalability. This option simplifies the 

mined process models but still shows relevant insights about the process paths with metrics. 

The discovery algorithm’s choice is related to the resulted process model, its ability to 

filter noise, its performance, etc. In the process discovery step, any implemented discovery 

algorithm can be called, like a black-box. The derived models are forward to the next step. 

An advantage of using the process model is that the framework can quickly show the 

process changes over time to the user. 

3.3.3 MODEL-TO-MODEL COMPARISON 

In the previous step, IPDD derives a process model for each window slot. Comparing models 

from adjacent windows allow identifying differences. Any difference can be a potential drift, 

and the type of change that can be detected is related to the metric chosen for this 

comparison. There are several metrics for comparing process models (Becker & Laue, 

2012), and they are related to the notation of the process model mined. In this step, IPDD 

calculates the implemented similarity metrics between adjacent models. 

 

 

26 See www.xes-standard.org for detailed information about the standard. 

http://www.xes-standard.org/
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The metric should be adherent to the process model derived by the chosen discovery 

algorithm. There is no limitation about the number of metrics that can be included, and the 

user can select one or more of the available metrics. IPDD implements a timeout mechanism 

for avoiding freezing the user interface when calculating the metrics. If the timeout is 

reached, only the finished metric results are shown. The result of this stage is reporting each 

metric’s value. If a metric has a value bounded in the [0,1] interval, with one indicating that 

the two models are similar, a potential drift can be considered when this metric value is 

below one. Any metric with a value indicating dissimilarity triggers an update in the user 

interface, marking the window as a potential drift. 

We choose to use a model-to-model comparison instead of trace comparison 

scheme, e.g., applying statistical or clustering approaches, because we can identify drifts 

that affect the process model. The chosen process model notation can provide the detection 

of different drifts. For instance, if we choose to generate a model with the frequencies 

annotated in the path between activities, IPDD can implement a metric for comparing these 

frequencies. In this example, IPDD can handle control-flow drifts that do not affect the 

structure of the process model but affects the routing of cases. It is also possible to localize 

the drift in the process model by checking the similarity metrics’ differences. 

3.3.4 EVALUATION 

IPDD receives the real drift position as trace/event indexes or date/time values. It can then 

calculate an accuracy metric to measure if the windows reported as potential drifts include 

the real drifts. We identified two metrics for measuring the accuracy of concept drift in 

process models: F-score and mean delay, reported in (A Maaradji et al., 2017; 

Abderrahmane Maaradji et al., 2015; Martjushev et al., 2015; Ostovar et al., 2020, 2017, 

2016; Seeliger et al., 2017; Zheng et al., 2017). IPDD reports a drift by indicating the window 

that renders a model dissimilar to the one obtained in the previous window, so the F-score 

can be applied to evaluate the accuracy of the detected drifts. 

The F-score represents the harmonic mean of recall and precision, calculated based 

on the true positives (TP), false positives (FP), and false negatives (FN). It is critical to define 

that a TP should consider an interval of indexes because the detection mechanism cannot 

detect the drift by the time it has occurred. In other words, if the real drift initiates in the i-th 

trace, a TP occurs when the detection method reports a drift in the interval [𝑖, 𝑖 + 𝑒𝑡], where 

et indicates an error tolerance and should be configured. The FPs and FNs should also be 

consistent with the definition of the TP. The mean delay represents the distance between the 

occurrence of the real drift and the drift flagged. This distance relates to the windowing 
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strategy adopted. For instance, if the instantiation used a window over traces, this distance is 

the difference between the trace index of the real drift and the detected one. 

3.4 RESULTS 

We implemented a prototype to validate the IPDD and its user interface27. This prototype is 

an instantiation of the framework that encompasses the following: 

(1) Windowing strategy. Non-overlapping and continuous windows of traces (ordered as 

time series, based on the first activity’s timestamp). The windows have a fixed size of 

traces defined by the user. 

(2) Process discovery. We applied the PM4Py28 framework to discover the DFG, with the 

frequencies of activities and paths. 

(3) Model-to-model comparison. We calculated the node similarity (NS) and edge similarity 

(ES) scores between two consecutive process maps P and Q. NS is calculated using 

Equation (3.1) (Akkiraju & Ivan, 2010), where np and nq are the number of activities in 

process maps P and Q, respectively, and ncs indicates the number of common activities 

between P and Q. ES is calculated using Equation (3.2), which is similar to NS, however 

using: ep is the number of edges P, eq is the number of edges in Q, and ecs indicates the 

number of common edges in both P and Q. 

 𝑁𝑆 = 2 ∗ 𝑛𝑐𝑠/(𝑛𝑝 + 𝑛𝑞) (3.1) 

 𝐸𝑆 = 2 ∗ 𝑒𝑐𝑠/(𝑒𝑝 + 𝑒𝑞) (3.2) 

The prototype calculates both metrics, and if one or both is less than zero, IPDD marks 

the current window as a drift. 

(4) Evaluation. There is no evaluation metric already implemented, but we have the F-score 

metric defined to measure the detected drifts’ accuracy. Because of the window strategy 

choice, a TP represents a window reported as a drift containing a trace inputted as a real 

drift. An FP should be counted when a window reporting a drift does not contain any of 

the traces inputted as real drifts. Finally, an FN should be incremented when a window 

that does not report a drift contains any traces inputted as real drifts.  

 

 

27 Available at https://github.com/denisesato/InteractiveProcessDriftDetectionFW. 

28 PM4Py is a python open source PM platform: https://pm4py.fit.fraunhofer.de/.  

https://github.com/denisesato/InteractiveProcessDriftDetectionFW
https://pm4py.fit.fraunhofer.de/
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Figure 3.2 shows a snapshot of the prototype. After setting the window size, the prototype 

mine the models and calculate the similarity metrics between adjacent models (NS and ES). 

The window with a similarity metric value below one is marked in red, indicating a drift. The 

user can check the process mined for this window and verify the metric value and the 

differences. In Figure 3.2 (displayed in the lower-left corner), the edges from activity “Assess 

eligibility” to “Send acceptance pack” and to “Send home insurance” are included, indicating 

what has changed in the model. In this example, the activities “Prepare acceptance pack” 

and “Check if home insurance quote is requested” are optional after the drift; the new edges 

allow skipping both activities after performing “Assess eligibility”. 

 

Figure 3.2. Snapshot of the prototype implementation. 

To validate the tool’s usage, we apply the drift detection in some of the logs publicized in 

(Abderrahmane Maaradji et al., 2015). The dataset contains 72 logs with different change 

patterns and inter-drift distances (distance between each injected drift). The authors use a 

business process for assessing loan applications containing 15 activities and different 

control-flow structures as the base model. Next, they injected different types of control-flow 

changes, simulating sudden recurring drifts (9 drifts in each log). The base model was 

changed using 12 simple change patterns - described in (P. Weber et al., 2012) and 6 

complex patterns (the composition of 3 simple patterns). Each change pattern is injected 

using 4 inter-drift distances (250, 500, 750, and 1,000). We select all change patterns with 

the inter-distance of 500 to validate IPDD (Table 3.1). For the change patterns lp and re, we 

used the files named 2.5k as these files contain inter-drift distance of 500. Each pattern is 
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categorized as Insertion (I), Resequentialization (R), and Optionalization (O). For the 

complex pattern, the authors randomly apply one pattern from each category in a nested 

way. 

Table 3.1. Experiments description. 

Change pattern Category Drifts 
detected? 

Metric that 
detects the drifts 

cb: make fragment skippable/non-skippable O Yes ES 

cd: synchronize two fragments R Yes ES 

cf: make two fragments conditional/sequential R Yes ES 

cm: move fragment into/out of the conditional branch I Yes ES 

cp: duplicate fragment I Yes ES 

fr: change branching frequency O No - 

lp: make two fragments loopable/not-loopable O Yes ES 

pl: make two fragments parallel/sequential R Yes ES 

pm: move fragment into/out of parallel branch I Yes ES 

re: add/remove fragment I Yes NS and ES 

rp: substitute fragment I Yes NS 

sw: swap two fragments I Yes ES 

IOR IOR Yes NS and ES 

IRO IRO Yes NS and ES 

OIR OIR Yes NS and ES 

ORI ORI Yes NS and ES 

RIO RIO Yes ES 

ROI ROI Yes ES 

To validate the tool’s usage, we apply the drift detection in some of the logs publicized in 

(Abderrahmane Maaradji et al., 2015). The dataset contains 72 logs with different change 

patterns and inter-drift distances (distance between each injected drift). The authors use a 

business process for assessing loan applications containing 15 activities and different 

control-flow structures as the base model. Next, they injected different types of control-flow 

changes, simulating sudden recurring drifts (9 drifts in each log). The base model was 

changed using 12 simple change patterns - described in (P. Weber et al., 2012) and 6 

complex patterns (the composition of 3 simple patterns). Each change pattern is injected 

using 4 inter-drift distances (250, 500, 750, and 1,000). We select all change patterns with 

the inter-distance of 500 to validate IPDD (Table 3.1). For the change patterns lp and re, we 

used the files named 2.5k as these files contain inter-drift distance of 500. Each pattern is 

categorized as Insertion (I), Resequentialization (R), and Optionalization (O). For the 

complex pattern, the authors randomly apply one pattern from each category in a nested 

way. 

Table 3.1 shows that the implemented instantiation for IPDD correctly detects drifts for 17 out 

of the 18 patterns using NS and ES. The detection is possible when configuring a window 

size equal to the inter-drift distance (500). The fr pattern is not detectable because there is 
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no structural difference between the models; the drift only changes the frequencies in one 

branch of the process. The choice of the window size is still an issue. If the window size is 

configured with a value higher than the inter-drift distance, the drift will not be detected. 

3.5 CONCLUSION 

IPDD has been validated by a prototype implementation that demonstrates its use for 

detecting sudden drifts in the control-flow perspective. The main contribution of the novel 

approach is the interactive user interface, which provides the user with a tool for quickly 

checking different values for window sizes. The drift can be visually checked by analyzing the 

process models from adjacent windows and the metrics’ value describing the detected 

differences. The implemented metrics (NS and ES) can detect 17 (from 18) change patterns 

in the public dataset. The window size choice is still a challenge, but the interactive user 

interface provides an easy way of testing different values. We plan to extend IPDD by 

including new instantiations implementing the defined evaluation metric (F-score) and a 

similarity metric related to the frequencies between activities. 

3.6 ADITIONAL INFORMATION ABOUT THE EVALUATION 

We evaluated the IPDD implementation using only part (event logs with 5,000 traces) of the 

complete dataset defined in (Abderrahmane Maaradji et al., 2015). The reason for not 

evaluating IPDD with other log sizes (2,500; 7,500; and 10,000) is that some event logs do 

not follow the specification described in the paper concerning log size, the position of the 

drift, and the adopted change pattern. Appendix 5.A describes the issues of this dataset in 

more detail.  

The fixed tumbling window strategy identifies the drifts by setting the window size 

equal to the interval between drifts, e.g., 500 for the selected event logs. Other window sizes 

can also correctly detect the drifts, e.g., 50, 100, 125, 250; values less than 500 and result in 

rest zero when 500 is divided by the value. This behavior occurs because the windows do 

not overlap; thus, the chosen window size directly impacts the detection accuracy. However, 

the current implementation’s main contribution is providing an interface allowing the user to 

test and adjust the window size value interactively, verifying the detected changes in the 

model and in the similarity metric information.  

Another consideration is the change pattern that IPDD was unable to detect: the 

change branching frequency pattern (fr). This change pattern does not change the structure 

of the process model, only the routing of cases, i.e., behavioral drift. The current IPDD 

implementation cannot identify behavioral control-flow drifts because the similarity metrics 

implemented in the Model-to-Model comparison do not consider the frequency information in 
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the nodes or edges, which is a limitation of the current implementation. To overcome this 

limitation, similarity metrics that consider the frequency of nodes and edges may be included.  

3.7 SECTION NOTES 

This section (from 3.1 to 3.5) is published in (Sato, Barddal, et al., 2021). Changes from the 

original paper: 

- We correctly cite the paper that describes the Process Drift Detector Plugin (PDD) for 

the ProM in Section 3.1.  

Section 3.6 describes the evaluation process in more detail, including additional information 

about the scenarios and limitations. This section is not included in the original paper due to 

space limitations.  
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4 PAPER #3: INTERACTIVE PROCESS DRIFT DETECTION: A FRAMEWORK FOR 

VISUAL ANALYSIS OF PROCESS DRIFTS (EXTENDED ABSTRACT) 

Interactive Process Drift Detection (IPDD) is a framework for visual analysis of process drifts. 

A process drift indicates a change in the process model occurred at some point in time. IPDD 

firstly generates process models for subparts of the event log using a sliding window 

approach. Then, it detects the drifts by evaluating similarity metrics calculated between 

adjacent process models; a difference in some of the metrics indicates a drift. The current 

implementation of IPDD generates the process models using the directly-follows graph 

(DFG) and applies two metrics: nodes and edges similarity. The user interface shows the 

drifts in the process models over time, allowing the user to visually understand the model 

changes. Also, the user can easily change the hyperparameters for the analysis and verify 

the results on the interface. The user interface of IPDD allows the user to evaluate the 

detected drifts by calculating the F-score metric, which is useful when using artificial 

datasets. The underlying idea is to ease the choice of a “good” value for the hyperparameter 

configuration, which is critical for almost any drift detection tool. 

Keywords: process drift detection, visual process analysis, process drift, concept drift. 

4.1 INTRODUCTION 

Process mining aims at creating valuable knowledge about business processes obtained 

from information systems event data. Usually, process mining techniques assume the 

processes to be steady-state, i.e., the event data contains information from a unique version 

of the process. However, this assumption does not reflect the reality of the business 

processes, which constantly adapt to new regulations, improve performance, or enhance 

user experience. The situation where a process changes while being analyzed is named 

concept drift or process drift (van der Aalst et al., 2011). 

The change in the process can affect the ongoing instances, sudden or gradually. A 

sudden drift occurs when all the ongoing instances start to follow the new process model 

immediately. In a gradual drift, there is a period of time where instances from both versions 

of the process model coexist. The process drifts can also follow recurrent or incremental 

patterns. A recurrent drift indicates that a replaced process model can occur again. In an 

incremental drift, minor changes of the process model are implemented during some time. 

Sudden, gradual, incremental, and recurring are considered process drift types (Bose et al., 

2014). The process drift can also affect one or more perspectives of the process model. 

However, the most common perspective considered in the available tools is the control flow. 

Identifying and understanding the process drifts is relevant for business analysts because it 

improves their knowledge about the processes and enhances the quality of process mining 
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analysis. Even when analysts perform offline process mining analysis, process drift detection 

can provide benefits, e.g., avoid complex discovered process models, improve conformance 

checking, or enhance processes based on their current state.  

Different tools for detecting process drifts from event logs have been proposed, but 

the accuracy of the detection is usually related to the hyperparameter configuration (Sato et 

al., 2022). The ProDrift plugin in Apromore (A Maaradji et al., 2017; Abderrahmane Maaradji 

et al., 2015) and the ConceptDrift plugin in ProM (Bose et al., 2014) can detect different 

types of drifts (sudden and gradual); however, the focus is the change point and information 

about it. The user has to complement the drift analysis by executing a more exploratory 

mining slicing the event log based on the reported change points to understand the evolution 

of the process. A more recent tool, named VDD (Yeshchenko et al., 2021), detects the four 

types of drifts and allows the user to explore the drift using the process model. However, the 

tool is based on constraints mined over Declare models, and it mixes DFGs with the 

constraints to explain the dynamic of the process over time. None of the identified tools 

calculate an accuracy metric in the user interface. 

Tunning the hyperparameter configuration to enhance the detection accuracy 

imposes a challenge to the proposed tools because the different approaches are affected by 

the hyperparameter configuration. IPDD aims to overcome this issue by providing an 

interactive user interface where the user quickly changes the parameter and visually 

evaluates the results. The tool provides visual process drift detection analysis by showing the 

distinct process models over time, in what we can consider a “replay” of the process models. 

IPDD also provides information about the differences against the previous model for each 

process model, enhancing the analysis. IPDD’s current implementation detects sudden drifts 

in the control-flow perspective offline, which is a limitation.  

4.2 IPDD MAIN FEATURES 

The IPDD framework detects the process drifts by analyzing the event log using a sliding 

window strategy. First, the user defines the window size based on the number of traces, and 

IPDD splits the log using tumbling windows. Then, it generates a model for each window and 

calculates the similarity metrics between adjacent models. The idea is to compare models 

mined from adjacent time slots using similarity metrics; when they are not similar, IPDD 

identifies a drift and characterizes the change based on the information provided by the 

metric.  

The IPDD’s current implementation mines the DFGs (process maps) from the traces 

in the time slots using the PM4Py (Berti et al., 2019). Then, the adjacent derived graphs are 

compared using the Nodes (NS) and Edges similarity (ES) metrics. NS is calculated using 
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Equation (4.1), where np and nq are the number of activities in the process maps P and Q 

(derived from adjacent windows) respectively, and ncs indicates the number of common 

activities between P and Q. ES is calculated using Equation (4.2), similar to NS: ep is the 

number of edges in P, eq is the number of edges in Q, and ecs indicates the number of 

common edges in both P and Q. 

 𝑁𝑆 = 2 ∗ 𝑛𝑐𝑠/(𝑛𝑝 + 𝑛𝑞) (4.1) 

 𝐸𝑆 = 2 ∗ 𝑒𝑐𝑠/(𝑒𝑝 + 𝑒𝑞) (4.2) 

IPDD calculates both metrics, and if one or both is less than 0, it marks the window as 

a drift. The F-score metric uses the True Positives (TP), False Positives (FP), and FN (False 

Negatives). A TP indicates a window reported as a drift containing a trace inputted as a real 

drift; an FP is counted when a window reporting a drift does not contain any trace informed 

as real drifts, and an FN is incremented when a window that does not report a drift contains 

any traces inputted as actual drifts.  

Figure 4.1 shows the tool’s main screen, allowing users to easily change parameters 

and visually check the results. The parameter configuration panel is on top, where users 

must define the hyperparameter configuration before starting the analysis. After clicking on 

“Analyze Process Drifts”, users can follow the current status in the “Status” area below the 

parameters panel. When the analysis finishes, IPDD shows the process drift analysis panel. 

There is a timeline of windows in the upper part of this panel, where users can click to 

inspect specific windows of the process model. The similarity metrics information (on the left 

side) is updated for each window selected, providing information about the differences 

between the current and the previous model. In the example, the ES indicates a drift that is 

characterized by two edges added. After IPDD finishes the analysis, the user can show the 

evaluation panel to calculate the F-score metric by clicking “Evaluate results”. IPDD 

framework is described in more detail in (Sato, Barddal, et al., 2021). Its source code is 

available in a public repository29, the deployed application is available in a public node30, and 

a demo video is available on YouTube31. 

 

 

29 https://github.com/denisesato/InteractiveProcessDriftDetectionFW  

30 https://visual-pro-drift.com.br/  

31 Demonstration video at: https://youtu.be/8feKd6jr8Gs  

https://github.com/denisesato/InteractiveProcessDriftDetectionFW
https://visual-pro-drift.com.br/
https://youtu.be/8feKd6jr8Gs
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Figure 4.1. Screenshot from the main window. 

4.3 CASE STUDIES 

Authors have proposed different tools for process drift detection. However, the methods are 

usually sensitive to the hyperparameter configuration. Moreover, almost all approaches apply 

windowing strategies – and defining a “good” value for the window size is still a challenge. 

Also, the adaptive approaches have some drawbacks; other parameters affect the detected 

drifts (Sato et al., 2022). Our IPDD approach gives users the freedom to check different 

hyperparameter configurations to overcome this challenge visually.  

The tool was presented to our research group in Curitiba (Brazil), including 

researchers from three post-graduate programs (Informatics, Production and Systems 

Engineering, and Health Technology). Firstly we have conducted a usability assessment for 

redesigning the user interface. Currently, we are working on a case study on a manufacturing 

scenario. The idea is to detect drifts in the temporal perspective of the process (sojourn 

time). The information about drifts will be used as input for planning the maintenance 

intervals on the production line. 

4.4 USER INTERFACE 

The tool described in this Section is an extension of the first implementation of the IPDD 

Framework described in Section 3. However, after the initial implementation, we evaluated 
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the usability of the IPPD user interface by presenting the tool to a group of process mining 

experts (researchers that work with process mining tools) from PUCPR (Brazil). While 

preparing the tool for the presentation and based on the collected answers, we have 

enhanced the tool to provide a more straightforward and intuitive user interface. The user 

interface presented in this extended abstract results from this process.   

4.5 SECTION NOTES 

This section (from 4.1 to 4.3) is published in  (Sato, Fontana, et al., 2021). The current 

implementation of IPDD extends the options described in this extended abstract and is 

available at the address: https://visual-pro-drift.com.br/. Section 5 describes the new 

approaches included in the tool.  

 

  

https://visual-pro-drift.com.br/
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5 PAPER #4: SUDDEN PROCESS DRIFT DETECTION IN PROCESS MODELS: AN 

ADAPTIVE APPROACH 

Process mining provides methods for obtaining valuable information about business 

processes from the actual data collected from the information systems. However, most 

process mining techniques still assume that the process does not change while being 

analyzed, which does not reflect the reality in many situations. Detecting and understanding 

the changes, i.e., process drifts, allows a more reliable process analysis by understanding 

when and what has changed. An open challenge for process drift detection is that the 

detection accuracy is very sensitive to the parameter configuration, and there is no standard 

protocol for comparing the results for different tools. In this paper, we propose the Adaptive 

Interactive Process Drift Detection (IPDD), which applies the ADWIN change detector to 

quality metrics of the process model over time. The core idea is to collect a minimum number 

of traces, discover an initial process model, and continuously evaluate two quality metrics 

(fitness and precision) using the following traces. If a process drift occurs, the values of the 

metrics will change. The fitness metric decreases when the new traces raise a behavior not 

allowed by the current process model. The precision metric measures how much behavior is 

allowed by the process model and not observed in the event log; thus, if the precision 

decreases, some behavior allowed by the current model is not observed in the traces 

anymore. The method inputs the metrics in the ADWIN change detector, which detects a 

change in the values providing rigorous guarantees of performance as bounds on false 

positives and false negatives rates. Therefore, a process drift is only detected if the 

increasing or decreasing of the metric value is significant, thus avoiding false alarms in case 

of noise. We described and evaluated two approaches, Adaptive IPDD trace by trace, and 

Adaptive IPDD windowing. We applied the same experimental protocol in two synthetic 

datasets and compared it with other tools (F-score and the mean delay metrics). Adaptive 

IPDD windowing is statistically equivalent to Apromore for drift detection but overcomes 

Apromore considering the mean delay. Adaptive IPDD trace by trace is statistically 

equivalent to Apromore for drift detection only in dataset 2 and overcomes Apromore AWIN’s 

mean delay for dataset 1 and Apromore FWIN’s mean delay for dataset 2. The Visual Drift 

Detection (VDD) System performed the lowest F-score and mean delay values for both 

datasets. We have also evaluated our approach using a real-world dataset, and the results 

show that Adaptive IPDD trace by trace can detect and localize process drifts and show the 

process versions over time with a fair value for window size.  

Keywords: process drift, process drift detection, ADWIN. 
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5.1 INTRODUCTION 

Process mining aims to obtain valuable knowledge from business processes based on actual 

data collected from the information systems. The event data must contain at least the activity 

performed (step in the process), the case identifier (identify the process instance), and the 

timestamp, usually stored as an event log. Each process execution for a specific case 

generates a trace in the event log, representing the sequence of activities performed for the 

case in the analyzed business process. The most common tasks in process mining are 

discovery, conformance, and enhancement. Using a discovery algorithm, we can obtain a 

process model from the event log without any a priori information. In conformance checking, 

we compare the event log with a process model (designed or discovered) to understand 

deviations in the behavior of the process executions. Moreover, it is possible to extend the 

discovered model by applying enhancement by including additional perspectives from the 

event log, e.g., resources and time (van der Aalst, 2016).  

 Most process mining techniques are designed to deal with event logs and assume 

that the recorded events are related to the same process version. However, business 

processes are constantly changing due to new regulations, improving customer experience, 

and dealing with urgent or other situations. Therefore, detecting these changes in the 

behavior of the process may raise relevant information for the business analysts, e.g., when 

the process changed, what are the differences in the distinct versions of the process, and 

what is the current version of the process. The situation where the process changes while 

being analyzed is called concept drift or process drift (van der Aalst et al., 2011). In (Bose et 

al., 2014), the authors define three challenges for dealing with process drifts:  

• change point detection – define the point in time where the change occurred; 

• change localization and characterization – characterize the change (type and 

perspective) and localize the change in the model, and; 

• change process discovery – discover the change process by putting the previously 

discovered information into perspective. 

Usually, a process describes the control-flow perspective, which indicates the allowed 

sequence of activities for achieving the goal of the process. However, if available in the event 

log, more perspectives can be included, such as time, resources, and data. The process drift 

may occur in all the available perspectives. A process drift in the control-flow perspective 

might represent a structural change in the process, e.g., adding or removing an activity, 

changing two activities from a sequential structure to a parallel structure; and also may 

represent a change in the behavior of the process, i.e., in the routing of cases (Bose et al., 
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2014). However, for our approach, we only considered process drifts in the control-flow 

perspective, the ones that affect the structure of the process.  

The process drifts can occur sudden, gradual, recurrent, and incremental, based on 

the pattern of change between the different versions of the process (Bose et al., 2014), as 

illustrated by Figure 5.1. 

 

Figure 5.1. The four types of process drifts. Adapted from (Bose et al., 2014). 

The process drifts may be analyzed offline to apply the results for understanding, designing, 

or improving processes. However, an online analysis is more indicated when the changes 

need to be discovered in near real-time. 

In this paper, we presented a new process drift detection tool for offline analysis that 

addresses the three challenges previously described for sudden drifts in the control-flow 

perspective of the processes. The tool extends the Interactive Process Drift Detection (IPDD) 

framework using an adaptive windowing approach named Adaptive IPDD.  

5.2 RELATED WORK 

(Sato et al., 2022) presented a survey describing the current approaches for dealing with 

process drifts, highlighting that most approaches focus on offline process drift detection, 

usually detecting the changing points for sudden drifts in the control-flow perspective. 

Despite being the most addressed topic, sudden drift detection still faces challenges, such as 

the lack of a standard protocol for comparing results from different tools and the impact of the 

parameter configuration on the detection accuracy. As described in the introduction, the 

proposed method deals with offline process drift detection (event log as the input) from the 

control-flow perspective. Therefore, we only considered the recent tools with the same goal, 

which provided the source code or an executable version.  

The Apromore ProDrift plugin (A Maaradji et al., 2017; Abderrahmane Maaradji et al., 

2015; Ostovar et al., 2020, 2016, 2017) implements a statistical grounded approach for 

detecting process drifts in event logs (runs approach) and streams (events approach). For 

our comparison, we only considered the approach for event logs, named runs approach, 

which is designed for offline analysis because it handles a stream of traces (Abderrahmane 
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Maaradji et al., 2015). The approach applies statistical hypothesis testing over the 

distributions of runs or alpha relations (events approach) observed in adjacent time windows. 

If a change occurs at a given time point, the distribution of runs or alpha relations before and 

after this time point will be statistically different when the time window is sufficiently large for 

statistical testing. The plugin also provides an adaptive approach for addressing the 

challenge of defining the window size.  

The Apromore ProDrift handles the change point detection (A Maaradji et al., 2017; 

Abderrahmane Maaradji et al., 2015; Ostovar et al., 2016) and provides two methods for 

change characterization and localization (Ostovar et al., 2020, 2017) that explain the drift 

using natural language statements (available when applying the events approach). The main 

challenge in ProDrift is to define a suitable window size for the runs approach because even 

the adaptive window is affected by the initial window size. The method needs an initial 

window size (defined by the user), and despite the authors stating that this parameter can be 

empirically set, this is not well explored in the paper. Furthermore, the user interface does 

not allow visualizing the different version of the process model and do not provide the 

evaluation metrics (f-score and mean delay). However, this tool handles gradual drifts, which 

is not included in our tool.  

Another tool for process drift detection is the Visual Drift Detection (VDD) System 

(Yeshchenko et al., 2021; Yeshchenko, Ciccio, et al., 2019; Yeshchenko, Di Ciccio, et al., 

2019; Yeshchenko, Mendling, et al., 2020), which provides a user interface for visual 

analysis of the changes. VDD applies a change point detection algorithm (PELT) in a 

multivariate time series containing pre-defined measures calculated over Declare constraints 

(van der Aalst et al., 2009), derived from the event log. Firstly, the method mines the log 

obtaining the complete Declare constraints alphabet (#𝑐𝑛𝑠 is the total of constraints). Then, 

the event log is subdivided into temporal windows of fixed size, with #𝑤𝑖𝑛 indicating the total 

of windows. For each window, VDD calculates the confidence (or another measure) from the 

traces considering  the Declare constraints alphabet, generating a set of time series 𝑇𝑖 =

𝐶𝑜𝑛𝑓𝑖,1, … , 𝐶𝑜𝑛𝑓𝑖,#𝑤𝑖𝑛, where 𝑇𝑖 represents the confidence value for the constraint 𝑖 over time. 

Then, the method groups the derived time series into the multivariate time series 𝐷 =

{𝑇1, 𝑇2, … 𝑇#𝑐𝑛𝑠}, where 𝐷 represents the full spectrum of constraints’ confidence. It is also 

possible to combine a clustering strategy (hierarchical clustering) for splitting 𝐷 into groups of 

constraints with similar confidence trends before applying PELT. The resulting clusters 

indicate similar behavior and allow VDD to identify local behavior changes within the clusters. 

VDD can detect sudden, gradual, recurring, or incremental drifts and provide plots for visual 

analysis of the drift characterization and localization. Another advantage is that VDD also 

handles the change process discovery, using a process map (graph) of the complete event 



103 

 

 

log annotated with the constraints that vary over time (Yeshchenko et al., 2021; Yeshchenko, 

Mendling, et al., 2020). However, the provided mixed visualization (process map with 

constraints) is not that simple, and the user may identify the change point by inspecting other 

visualizations, e.g., by inspecting each cluster’s Drift Chart.  

VDD requires three parameters: window size (to split the event log), window step 

(value for shifting the sub-log window), and cut threshold (for the clustering strategy). One 

drawback of this method is that the detected change points are sensitive to the parameter 

configuration because the window size determines the granularity of analysis. The method 

suggests values for the window size and step (Yeshchenko et al., 2021; Yeshchenko, Di 

Ciccio, et al., 2019). However, this suggestion is based on a good visualization of the plots, 

not on tuning the tool’s accuracy. Furthermore, the tool does not provide the evaluation 

metrics, e.g., f-score and mean delay on the user interface. 

Because of the described issues in the recent approaches, we propose a new sudden 

drift detection tool for the control-flow perspective based on evaluating the fitness and 

precision metrics over time using the ADWIN change detector (Bifet & Gavaldà, 2007).  

5.3 SUDDEN PROCESS DRIFT DETECTION 

A discovered process model represents the behavior of the process obtained from the event 

data recorded by the information systems. The quality of the process model, i.e., how well 

the model describes the behavior of the event log, can be described by four dimensions: 

fitness, precision, generalization, and simplicity (van der Aalst, 2016). The fitness dimension 

measures how much of the behavior in the event log is allowed by the model. Fitness is 

usually the first dimension of analysis because it does not make sense to evaluate other 

quality dimensions for a model that does not describe the behavior observed in the event log; 

however, we can evaluate other aspects of a fitting model. Because the event log represents 

a snapshot of the complete process, the generalization dimension indicates that the model 

should generalize the example behavior to represent situations not recorded in the log. 

However, the process model should not allow for behavior completely unrelated to the one 

observed in the event log, measured by the precision dimension. Finally, the simplicity 

dimension indicates that the process model should be as simple as possible. The available 

discovery algorithms pursue a trade-off between these four quality criteria (van der Aalst, 

2016).  

After collecting a minimal number of traces, it is possible to apply a discovery 

algorithm to obtain a process model and then evaluate some quality metrics, e.g., fitness and 

precision. In a steady-state situation, i.e., the process does not change; we can re-evaluate 

the same quality metrics after collecting more traces, and they should stay stable. However, 
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in a process drift situation, where the process model changes, the traces represent a 

different behavior after the change point. Therefore, we believe the values for the same 

quality metrics evaluated using the previously discovered process model and the new traces 

(after the drift) will change. The proposed method aims to identify the moment when the 

process change by applying a change detector algorithm to the fitness and precision metrics.  

The proposed sudden concept drift detection method extends the Interactive Process 

Drift (IPDD) Framework (Sato, Barddal, et al., 2021) for detecting process drifts in the 

control-flow perspective, based on adaptive windows (Figure 5.2). The motivation is to 

minimize the impact of the parameters for defining the windows by applying an adaptive 

windowing approach for splitting the event log. The new approach changes the Windowing 

strategy module from the framework by implementing a strategy using the ADWIN change 

detector algorithm (Bifet & Gavaldà, 2007) in two quality metrics for process models: fitness 

and precision (Buijs et al., 2014).  

 

Figure 5.2. Overview of the IPDD Framework. 

We assume that the quality metrics stay stable if the process model does not change over 

time. Based on this assumption, the new windowing strategy contains two stages: the setup 

and detection phases. In the setup phase, the method first discovers an initial process model 

(using the initial traces), calculates the fitness and precision for the initial traces, and inputs 

the ADWIN detector with the calculated values. In the detection phase, the method reads the 
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following trace and calculates the fitness and precision using the initial model. Next, it 

updates the ADWIN change detector with the new values and checks for a change. If a drift 

is detected, the method reports the change point and returns to the setup phase, discovering 

a new model using the traces after the change point. If no drift is detected, the method 

continues on the detection phase by reading the following trace in the event log.  

We consider two quality metrics in this method: fitness and precision (Buijs et al., 

2014). Evaluating the fitness over time allows the detection of new behavior in the log, e.g., 

adding a new activity or path or removing activities or paths. However, if there is a behavior 

in the model, e.g., a path that allows skipping some activities or removing a loop after a drift, 

the fitness metric will stay unaffected because the observed behavior will still fit the model. 

We included the precision metric for situations like this, where the model included behavior 

not observed in the log. The precision metric measures the amount of unobserved behavior 

in the event log present in the process model (Buijs et al., 2014). If a behavior is not 

observed in the event log after some time, the precision will decrease. Therefore combining 

precision and fitness, the method can identify changes that include or remove behavior in the 

process. The following modules from IPDD apply the same as described in (Sato, Barddal, et 

al., 2021; Sato, Fontana, et al., 2021): 

• Process discovery. DFGs miner discovering process maps from the traces in the 

windows using the PM4Py (Berti et al., 2019).  

• Model-to-Model comparison. The adjacent process maps are compared using the Nodes 

(NS) and Edges similarity (ES) metrics. NS is calculated using Equation (5.1), where np 

and nq are the numbers of activities in the process maps P and Q (derived from adjacent 

windows), respectively, and ncs indicates the number of common activities between P and 

Q. ES is calculated using Equation (5.2), similar to NS: ep is the number of edges in P, eq 

is the number of edges in Q, and ecs indicates the number of common edges in both P 

and Q. IPDD calculates both metrics, and if one or both is less than 0, it marks the 

window as a drift. 

 𝑁𝑆 = 2 ∗ 𝑛𝑐𝑠/(𝑛𝑝 + 𝑛𝑞) (5.1) 

 𝐸𝑆 = 2 ∗ 𝑒𝑐𝑠/(𝑒𝑝 + 𝑒𝑞) (5.2) 

We enhanced the Evaluation module from IPDD, including the F-score and mean delay 

metrics based on the detected change points. In the former implementation of IPDD (fixed 

window as the Windowing strategy), the F-score metric is calculated based on the windows 

reported because the tool does not report a trace as the change point. 
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The F-score is the harmonic mean between precision and recall which relies on true 

positives (TP), false positives (FP), and false negatives (FN). A TP indicates a reported drift 

related to a real drift (we only consider the first reported drift after a real one); an FP is a 

reported drift unrelated to a real drift, and an FN is a real drift not detected. We consider an 

interval for the TPs [𝑟𝑑, 𝑟𝑑 + 𝑒𝑡], where 𝑟𝑑 is the trace of the informed real drift and 𝑒𝑡 is the 

number of traces to the next known drift. If there is only one drift in the event log, a TP is 

counted if the methods report a change point after the real drift point. The F-score reports a 

value between 0 and 1, measuring the drift detection accuracy. However, the F-score does 

not measure if the change point reported is “close” to the real change point. The mean delay 

complements the F-score analysis by measuring the distance between the reported change 

points and the real change points for the reported drifts considered a TP. 

Figure 5.3 shows an example of the two metrics. In the x-axis, we can see the traces 

ordered by timestamp (t1, t2, …, tn). The event log contains three drifts at change points: t3, 

t6, and t20. The detection method reports three drifts in the example: t12, t24, and t37. The 

F-score will count a TP only if a process drift is reported after a real drift and before the 

following know drift. In the example, only t12 and t24 are assumed as TP. The distance 

between the reported drift and the real one is the number of traces between the reported and 

the real drift.  

 

 

 

Figure 5.3. Example of the evaluation metrics implemented in IPDD. 

The following topics describe two approaches to include the described adaptive window 

procedure in the Windowing strategy module of the IPDD.   

5.3.1 ADAPTIVE IPDD: TRACE BY TRACE APPROACH 

In the trace by trace approach, the detection phase of the windowing strategy reads and 

evaluates the fitness and precision metrics using the last read trace. The complete process 

applied to the trace by trace approach is described in Figure 5.4. In the setup phase, the 

approach derives the first process model and inputs the initial values for fitness and precision 
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into the ADWIN detector. Then in the detection phase, this approach reads the following 

trace from the event log and calculates the fitness and precision metrics using the new trace 

and the model discovered in the setup phase. The approach uses the PM4Py framework32 

(Berti et al., 2019) for calculating the fitness and precision metrics, and it is possible to apply 

one of the available methods. We choose to calculate the fitness using token-replay (Berti & 

van der Aalst, 2019) and precision using token-replay (Muñoz-Gama & Carmona, 2010) 

because they are less computation expensive than the alignments based metrics. 

The ADWIN change detector (Bifet & Gavaldà, 2007) detects drifts in data sequences 

that may vary with time. In the IPDD approach, we input two data series into the detector: 

fitness and precision. ADWIN maintains a window of variable size with recently seen items 

consistent with the hypothesis that “there has been no change in the average output value 

inside the window according to a confidence bound 𝛿” (Bifet & Gavaldà, 2007). The 𝛿 

parameter indicates the confidence level, and increasing this parameter will also increase the 

false positives rate (Bifet & Gavaldà, 2007). We apply the ADWIN change detector because 

it has upper on false positives and negatives. Also, ADWIN is parameter assumption-free 

since it automatically detects and adapts to the current rate of change without defining a 

window size. Despite its theoretical bounds, ADWIN is known for triggering too many false 

positives (Huang et al., 2015), i.e., it reports changes when they do not occur. We use the 

implementation of the ADWIN change detector from the scikit-multiflow library33 (Montiel et 

al., 2018).   

The token-replay fitness implementation available in PM4Py better handles invisible 

transitions and improved intermediate storage techniques, outperforming the original token-

based approaches and the alignment-based approaches for Petri nets with visible and 

invisible transitions (Berti & van der Aalst, 2019).  

The precision metric calculated using token-replay is faster and provides a value that 

estimates the effort to obtain an accurate model, focusing on the detected discrepancies. 

The calculation of the precision metric avoids the potential state explosion that might arise 

when dealing with large and highly concurrent process models by only focusing on the 

behavior present in the log (Muñoz-Gama & Carmona, 2010).  

 

 

32 PM4Py is an open source process mining platform: https://pm4py.fit.fraunhofer.de/  

33 Scikit-multiflow is a machine learning package for streaming data in Python: https://scikit-multiflow.github.io/. In 
the available implementation of the library, ADWIN reports different change points when comparing to MOA 
(https://moa.cms.waikato.ac.nz/). We changed the source code based on MOA’s source code and included the 
modified library at: https://github.com/denisesato/InteractiveProcessDriftDetectionFW.  

https://pm4py.fit.fraunhofer.de/
https://scikit-multiflow.github.io/
https://moa.cms.waikato.ac.nz/
https://github.com/denisesato/InteractiveProcessDriftDetectionFW
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Figure 5.4. Description of the trace by trace approach for detecting control-flow drifts. 

The trace by trace approach receives two inputs: the event log and the number of initial 

traces, also named window size (w). After detecting a drift, the change point and the window 

used to derive the process model are saved. After reading the complete event log, the 

adaptive windowing approach reports all the saved windows to the next step of IPDD, which 

performs the process discovery and the model-to-model comparison. It is essential to 

highlight that the saved windows do not include all traces between change points. The 

reason is that the process drift detection is a reactive procedure, so the change point is 

always identified after the drift occurs. Thus, applying the discovered algorithm on a sub log 

from the initial trace to the change point will derive a process model containing some traces 

after the drift. 

The user can then verify the evolution of the process over time by visualizing the 

process models for each window, which addresses the change process discovery challenge. 

Also, after selecting a window, the user can localize the change by checking the similarity 

metrics information. Furthermore, the user can evaluate the drifts detected using a synthetic 

dataset by evaluating the two implemented metrics: F-score and mean delay.  
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5.3.2 ADAPTIVE IPDD: WINDOWING APPROACH 

The windowing approach differs from the trace by trace approach in the precision metric 

calculation. Evaluating precision estimates how much behavior is allowed by the model and 

not observed in the event log (Muñoz-Gama & Carmona, 2010). However, when precision is 

computed using only one trace (the last one), we are not exactly providing the expected 

information because one trace does not represent an event log, which motivates using a 

sliding window for calculating the precision metrics, as defined in Figure 5.5.  

 

Figure 5.5. Description of the windowing approach for detecting control-flow drifts. 
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In the windowing approach, the setup phase saves the initial window. After reading a trace 

(detection phase), the window is updated by adding the new trace and removing the oldest, 

maintaining a fixed-size window. The approach calculates the precision metric using the 

window and the current process model. We apply precision based on footprints because it 

provides a simple and scalable technique for comparing the behavior between the model and 

the event log (van der Aalst, 2016).  

 

Figure 5.6. Precision metric using a sliding window. 

 

Because the precision detects a “forgotten” behavior, i.e., something in the model that stops 

being observed in the traces, the change point reported is the initial of the current window. 

Figure 5.6 shows a situation where the precision metric detects a drift. In this case, the path 

from “a” to “d”, which allows escaping performing activities “b” or “c”, is removed. In the 

windowing approach, the decrease in the precision metric will start only after the current 

window contains only traces after the drift change point. Then, the ADWIN change detector 

needs more inputs of a small precision to report the change and ensure it is not noise. 

Finally, when the method reads t31, ADWIN reports a drift. As we know that some behavior 

has been forgotten, we report the initial trace of the window as the change point.  

5.4 EXPERIMENTAL SETUP FOR SYNTHETIC EVENT LOGS 

We choose two synthetic datasets to assess the accuracy of the two proposed 

approaches. The first dataset, name dataset 1, was initially created for the Apromore ProDrift 
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Runs approach (Abderrahmane Maaradji et al., 2015), and it is publicly available34. However, 

some of the logs from the original dataset do not follow the specification described in the 

paper. Appendix 5.A details the event logs in this situation. Also, the event logs are not in the 

XES format35. Because of these issues, we simulated new event logs for the cases where the 

original ones were not fitting the paper’s description and converted all the event logs to the 

XES format – using the ProM framework (van der Aalst et al., 2009). The new dataset, the 

Petri nets for the change patterns, and the source code for simulating an event log with 

sudden and recurrent drifts are publicly available36. We do not include the fr (change 

branching frequency) change pattern from the original dataset because it only affects the 

routing of cases and does not change the structure of the process.  

Table 5.1 describes the change patterns applied to dataset 1 and presents some 

highlighted modifications from the original table (Abderrahmane Maaradji et al., 2015). There 

are 11 simple patterns and six complex patterns derived from simple patterns. We maintain 

the same classification proposed in (Abderrahmane Maaradji et al., 2015) for the simple 

patterns: I – insertion, R – resequentialization, and O – optionalization. We changed the 

classification of the sw (swap two fragments) pattern to R because it better fits the 

description and was used in the OIR pattern. We also changed the name o RIO pattern to RI, 

because there is no optionalization included in the altered model defined in the dataset (we 

considered the BPMN model provided in the original dataset). For each of the 17 change 

patterns, the dataset included 4 log sizes (2,500; 5,000; 7,500; and 10,000 traces). Each log 

contains nine drifts injected after 10% of the size (250, 500, 750, and 10,000 traces), 

changing from the base model to the altered model and vice-versa. Consequently, we 

simulated nine sudden recurrent drifts. All the event logs start from the base model and 

change to the altered model, as described in Table 5.1. 

Table 5.1. Change patterns of the event logs. Adapted from (Abderrahmane Maaradji et al., 2015). 

Code Change pattern Category Description 

cb Make fragment 
skippable/non-skippable 

O “Prepare acceptance pack” and “Check if home insurance 
quote is requested” turned skippable.  

cd Synchronize two 
fragments 

R “Assess loan risk” can only be performed after both 
“Appraise property” and “Check credit history”. 

cf Make two fragments 
conditional/sequential 

R “Send acceptance pack” and “Send home insurance quote” 
from conditional to sequential. 

cm Move fragment into/out I “Prepare acceptance pack” moved into conditional branch 

 

 

34 https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436  

35 See www.xes-standard.org for detailed information about the standard. 

36 Source code available at: https://github.com/denisesato/SimulateLogsWithDrifts/  

https://data.4tu.nl/articles/dataset/Business_Process_Drift/12712436
http://www.xes-standard.org/
https://github.com/denisesato/SimulateLogsWithDrifts/
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of conditional branch containing “Send acceptance pack” and “Send home 
insurance quote”. 

cp Duplicate fragment I Fragment “Check credit history” and “Assess loan risk” 
duplicated after “Verify repayment agreement”. 

IOR I: re  

O: cb 

R: cd 

IOR I: “Added activity” included. 

O: “Reject application” turned skippable. 

R: “Added activity” e “Reject application" synchronized.  

IRO I: re 

R: cd 

O: lp 

IRO I: Fragment containing “Added activity”, “Verify repayment 
agreement”, “Prepare acceptance pack” included. 

R: “Added activity” synchronized with “Verify repayment 
agreement”, “Prepare acceptance pack”. 

O: Fragment containing “Approve application”, “Verify 
repayment agreement”, “Prepare acceptance pack”, “Added 
activity” turned loopable. 

lp Make fragment 
loopable/non-loopable 

O “Assess eligibility” turned loopable.  

OIR O: lp 

I: re 

R: sw 

OIR O: Fragment “Check credit history”, “Assess loan risk”, 
“Appraise property” turned loopable. 

I: “Added activity” included. 

R: “Check credit history” and “Assess loan risk” swapped.  

ORI O: lp 

R: cf 

I: re 

ORI O: Fragment “Check if home insurance quote is requested”, 
“Send home insurance quote”, “Send acceptance pack”, 
“Verify repayment agreement” turned loopable. 

R: Change “Send home insurance quote”, “Send acceptance 
pack” from conditional to sequential. 

I: “Added activity” included.  

pl Make two fragments 
parallel/sequential 

R Fragment “Appraise property”, “Check credit history”, 
“Assess loan risk” from parallel to sequential. 

pm Move fragment into/out 
of parallel branch 

I “Prepare acceptance pack” moved into a parallel branch 
with “Send home insurance quote” 

re Add/remove fragment I “Assess eligibility” removed. 

RI R: cf 

I: cp 

RI R: Fragment “Prepare acceptance pack”, “Check if home 
insurance quote is requested” from sequential to conditional 
after “Send home insurance quote”. 

I: Fragment “Prepare acceptance pack”, “Check if home 
insurance quote is requested” duplicated after “Assess 
eligibility” 

ROI R: pl 

O: lp 

I: rp 

ROI R: Fragment “Check credit history”, “Assess loan risk” and 
“Appraise property ” from parallel to sequential (“Appraise 
property” first”). 

O: Fragment “Appraise property”, Check credit history” 
turned loopable. 

I: “Check credit history” replaced by “Replaced activity”. 

rp Substitute fragment I “Verify repayment agreement” replaced by “Replaced 
activity” 

sw Swap two fragments R Swap fragments “Prepare acceptance pack” followed by 
“Check if home insurance is requested” with “Verify 
repayment agreement”. 

 

We simulated the second dataset using the same change patterns defined in Table 5.1 and 

the same proposal of changing from a base to an altered model. However, we simulated 

different log sizes and intervals between drifts. Dataset 2 contains three log sizes, and the 

interval between the drifts varies to avoid the bias of a fixed interval between drifts: 
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• 3,000 traces: 4 drifts (250, 750, 1500, 2500) 

• 4,500 traces: 7 drifts (250, 750, 1500, 2500, 3250, 3750, 4000) 

• 8,000 traces: 13 drifts (250, 750, 1500, 2500, 3250, 3750, 4000, 4500, 5250, 6250, 7000, 

7500, 7750)  

5.5 ADAPTIVE IPDD TRACE BY TRACE ON SYNTHETIC EVENT LOGS 

Firstly, we analyzed the trace by trace approach using the datasets defined in Section 5.4.  

5.5.1 IMPACT OF THE DELTA PARAMETER AND WINDOW SIZE ON ACCURACY 

The first analysis evaluates if different configurations of the ADWIN’s delta parameter will 

affect the detection accuracy. We calculated the F-score metric for the two synthetic datasets 

using a window varying from 25 to 300 traces (with a step of 25). We decided to vary the 

window size parameter because one of the motivations of the Adaptive IPDD approach is to 

reduce the sensitivity of the accuracy given different hyper-parameter values. We apply four 

delta values: 0.002, 0.05, 0.1, and 0.3 (0.002 is the default value in the ADWIN 

implementation; the other values were applied to investigate the rate of false positives in 

(Bifet & Gavaldà, 2007)). 

 (a) Dataset 1  (b) Dataset 2 

Figure 5.7. Impact of the delta parameter on the F-score (mean) – trace by trace approach. 

In Figure 5.7, we plot the average F-score considering the 17 change patterns, the four sizes 

for dataset 1 (2,500; 5,000; 7,500; 10,000 traces), and the three sizes of dataset 2 (3,000; 

4,500; 8,000 traces). Visually we can observe that the default value of 0.002 results in better 

F-score rates. The F-score values decrease when we increase the delta parameter. 

Furthermore, the F-score drops after the window size of 200. This behavior is 

expected because both datasets contain drifts with an interval of 250 traces. Using a window 

size higher than 200, we are probably considering traces after a drift (in case of an interval 
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between drifts of 250 traces) for mining the process model. However, the accuracy of the 

approach is not affected by smaller window sizes.  

 (a) Dataset 1 F-score  (b) Dataset 1 Mean delay 

 (c) Dataset 2 F-score  (d) Dataset 2 Mean delay 

Figure 5.8. Impact of the window size on the F-score and mean delay – trace by trace approach. 
Event logs are grouped by size. 

We can visualize the drop in the F-score for dataset 1 with delta=0.002 when the interval 

between drifts is 250 (2.5k traces) in Figure 5.8 (a). In the other log sizes, containing drifts 

with intervals of 500, 750, and 1,000 traces, the F-score values maintain above 0.8 for all the 

selected window sizes. Figure 5.8 (b) shows the mean delay metric, which complements the 

F-score by indicating how “close” to the actual change point IPDD detects the drifts. We can 

observe that for the event logs 5k, 7.5k, and 10k, the mean delay is below 30 traces. In log 

2.5k, the mean delay increases after the window size of 200, following the decrease of the F-

score. In dataset 2, all the logs include an interval between drifts of 250 traces, which 

explains the drop of the F-score after a window size of 225 (Figure 5.8 c). The mean delays 

stay stable before the window size of 225, showing that the reported change points are close 

to the real ones.    
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5.5.2 DETECTION ACCURACY PER CHANGE PATTERN 

We analyze the accuracy per change pattern to understand better why the F-score does not 

reach 1.0 even in the “best” parameter configuration. Figure 5.9 plots the average F-score for 

both datasets, grouping all the event log sizes for window size=75 and delta=0.002.  

 (a) Dataset 1  (b) Dataset 2 

Figure 5.9. Accuracy per change pattern window=75 and delta-0.002 – trace by trace approach. 

We can observe that the approach never detects the pattern cd. This changing pattern 

includes a control dependency in the baseline model by synchronizing the “Assess loan risk” 

with two activities: “Check credit history” and “Appraise property” (Figure 5.10).  

 

(a) Base model 
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(b) Altered model (cd – Synchronize two fragments) 

Figure 5.10. Change pattern cd in the model (Petri net). 

The fitness metric does not detect the change to the cd model because all possible traces in 

the cd process are also allowed by the base model, i.e., the base model is more generic than 

cd. In this case, we expect the precision metric detects the change. However, because we 

evaluate precision using only the last read trace in the trace by trace approach, the decrease 

in the precision is not enough to report the change in this situation (Figure 5.11 a). When we 

compare the precision of the cb model (Figure 5.11 b), which creates a path to skip two 

activities, we can see that the precision decreases by adding the new paths.  

(a) cd – Synchronize two fragments (b) cb – Make fragment skippable/non-skippable 

Figure 5.11. Fitness and precision time series window=75 delta=0.002 trace by trace approach. 

We assume that when evaluating precision using only one trace, the precision stays stable if 

both models (pre-drift and pos-drift) are similar in the simplicity dimension. The precision 

metric evaluates how much behavior is allowed by the model and not observed in the log. 
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When evaluating only one trace, the precision will change if the model changes to a more 

complex or straightforward model. The change applied in the cd model does not reflect in a 

more complex model. We verify this assumption by calculating the simplicity metric (Blum, 

2015) for all change patterns using PM4Py (Table 5.2). We can observe that the pattern cd 

does not change the simplicity metric. For the pattern re, the simplicity metric is the same. 

However, the activity “Assess eligibility” is removed, thus, reflecting a decrease in the 

precision metric. The fitness metric detects the drifts for the other change patterns (ROI, rp, 

sw).  

Table 5.2. Simplicity metric for each change pattern. 

Code Change pattern Simplicity 

base Base model 0.83 

cb Make fragment skippable/non-skippable 0.80 

cd Synchronize two fragments 0.83 

cf Make two fragments conditional/sequential 0.87 

cm Move fragment into/out of conditional branch 0.79 

cp Duplicate fragment 0.92 

IOR I: re, O: cb, R: cd 0.79 

IRO I: re, R: cd, O: lp 0.86 

lp Make fragment loopable/non-loopable 0.81 

OIR O: lp, I: re, R: sw 0.78 

ORI O: lp, R: cf, I: re 0.85 

pl Make two fragments parallel/sequential 0.85 

pm Move fragment into/out of parallel branch 0.81 

re Add/remove fragment 0.83 

RI R: cf, I: cp 0.92 

ROI R: pl, O: lp, I: rp 0.83 

rp Substitute fragment 0.83 

sw Swap two fragments 0.83 

 

5.6 ADAPTIVE IPDD WINDOWING ON SYNTHETIC EVENT LOGS 

The limitation of the trace by trace approach to detect the control dependency pattern (cd) 

and the concept of evaluating the precision of a model related to an event log (and not a 

trace) motivated the implementation of the windowing approach.  

5.6.1 IMPACT OF THE DELTA PARAMETER AND WINDOW SIZE ON ACCURACY 

We apply the same evaluation performed for the trace by trace approach about the impact of 

the delta parameter and window size on the accuracy of the approach, i.e., F-score metric,  

window from 25 to 300 traces (step of 25), and delta values 0.002, 0.05, 0.1, and 0.3. 
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(a) Dataset 1  (b) Dataset 2 

Figure 5.12. Impact of the delta parameter on the F-score (mean) windowing approach. 

The windowing approach is more affected by window sizes 25 and 50 (Figure 5.12); 

however, after the window size of 75 F-score increases (close to 1.0). Again, we can observe 

a drop in the F-score after window size 200 for dataset 1 (Figure 5.12 a), which is compatible 

with the behavior of the trace by trace approach. However, the decrease in the F-score is not 

as accentuated as the trace by trace approach for dataset 2 (Figure 5.12 b). Another 

interesting observation is that the delta parameter does not affect the detection accuracy.  

We plot the F-score and mean delay for both datasets, showing the results for each 

log size for delta=0.002 in Figure 5.13. We can observe that the drop in the F-score after the 

window size of 200 occurs in the 2.5k event logs, which contain a drift after 250 traces. 

However, when applying a window of traces, the reported change point is not so “close” to 

the real one compared to the trace by trace approach. We can observe this in Figure 5.13 b 

and Figure 5.13 d.  
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 (a) Dataset 1 F-score  (b) Dataset 1 Mean delay 

 (c) Dataset 2 F-score  (d) Dataset 2 Mean delay 

Figure 5.13. Impact of the window size on the F-score and mean delay – windowing approach. Event 
logs are grouped by size. 

 

5.6.2 DETECTION ACCURACY PER CHANGE PATTERN 

We analyze the accuracy per change pattern to understand the windowing approach’s 

behavior and verify if the cd pattern can be accurately detected. We selected window 

size=175 and delta=0.002 based on the analysis performed in Section 5.6.1. We can 

observe that the windowing approach can detect the cd pattern, and the F-score stays above 

0.8 for all change patterns.  
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 (a) Dataset 1  (b) Dataset 2 

Figure 5.14. Accuracy per change pattern window=175 and delta-0.002 – windowing approach. 

5.7 COMPARING IPDD AGAINST APROMORE PRODRIFT AND VDD 

We analyzed datasets 1, and 2 using the same window configuration (25 to 300, step of 25) 

in the Apromore ProDrift runs approach, applying the fixed (FWIN) and adaptive (AWIN) 

approaches. The window size is set to the initial window size parameter in the AWIN 

approach.  

We also analyzed the VDD using datasets 1 and 2 and the window configuration (50 

to 300, step of 25). We do not include the results using a window size of 25 because VDD 

takes too much time in the execution (e.g., more than 10 hours for the lo cb10k in an I5-9500 

with 8GB RAM). VDD requires another parameter, named window step, defined as 

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 / 2 (integer division). We chose this configuration of the window step because in 

(Yeshchenko et al., 2021), the authors suggested a 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 =  2 ∗  𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑡𝑒𝑝. We 

performed the experiments using the clustering option (default), where the change points are 

derived for every cluster. VDD does not inform the trace as the change point in the Drift Map, 

so we calculated the trace of the drift based on the outputted information from the console 

(indicating the number of the window with a drift) and the window size parameter.  

In Figure 5.15, we plot the average of the F-score and mean delay calculated over the 

different log sizes and change patterns (mean value) from both synthetic datasets. For IPDD, 

we apply a delta=0.002, which is the default value in the ADWIN implementation. We can 

observe that VDD performed the lowest F-score rates (Figure 5.15 a and Figure 5.15 c) 

when calculating the average of all the event logs for both datasets.  IPDD and Apromore 

ProDrift achieve higher F-score results, however the visual analysis can not define if the 

differences are significant. VDD reports the highest values for the mean delay (Figure 5.15 b 

and Figure 5.15 d), indicating that VDD also reports change points with a considerably 
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distance from the real ones. Also, we can observe that the IPDD approaches performed 

better than Apromore ProDrift considering the mean delay.  

 (a) Dataset 1 F-score  (b) Dataset 1 Mean delay 

 (c) Dataset 2 F-score  (d) Dataset 2 Mean delay 

Figure 5.15. Comparing tools considering F-score and mean delay. 

To understand the difference between the compared tools, we apply the Friedmann test for 

each dataset for the F-score and mean delay (𝛼 = 0.05). We excluded window 25 of the 

Friedmann analysis because we do not have this configuration for VDD. The Friedmann test 

rejects the null hypothesis for both datasets and metrics, indicating that the results are 

significantly different considering F-score and mean delay.  

We performed a Nemenyi post hoc test, presenting the results in the significance 

plots in Figure 5.16, showing different significance levels and NS indicating that the result 

indicates a non-significant difference. Figure 5.16 (a) shows that VDD F-score results are 

significantly lower than Apromore and IPDD for dataset 1. However, IPDD and Apromore 

performed similar results statistically. The mean delay reported for Adaptive IPDD trace by 
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trace is better than the Apromore ProDrift AWIN and VDD. Furthermore, Adaptive IPDD 

windowing also reports better mean delays compared to VDD.  

For dataset 2, we have a slightly different result for F-score (Figure 5.16 c). Only 

Adaptive IPDD windowing and Apromore ProDrift overcome VDD results. The reason is the 

accentuated drop of the F-score after a window size of 250 (Figure 5.15 c). IPDD and 

Apromore ProDrift FWIN presented significantly better results than the mean delay metric for 

Apromore ProDrift AWIN and VDD. Also, IPDD trace by trace is better than Apromore 

ProDrift AWIN, considering the mean delay.  

 (a) Dataset 1 – F-score  (b) Dataset 1 – Mean delay 

 (c) Dataset 2 – F-score  (d) Dataset 2 – Mean delay 

Figure 5.16. The significant plot of the Nemenyi post hoc comparing the evaluated tools. 
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5.8 EVALUATION OF ADAPTIVE IPDD ON REAL-LIFE EVENT LOG 

We further evaluated Adaptive IPDD on a public real-life event log representing a ticketing 

management process of an Italian Company37. The original CSV file was converted to XES 

using the Disco software38 (academic license). The event log contains 4,580 cases and 14 

activities from January 2010 to January 214. The same event log was evaluated for drift 

detection in (Yeshchenko et al., 2021; Yeshchenko, Ciccio, et al., 2019) and drift 

characterization in (Ostovar et al., 2020).  

Firstly we applied the Adaptive IPDD trace by trace using a window size of 100, the 

same configuration applied in (Yeshchenko et al., 2021). IPDD reports 3 drifts, at traces 

1,695, 2,239, and 3,743. VDD reports three overall drifts in traces 1,000, 1,750, and 3,750. 

The authors discarded the first drift reported because it reports an outlier behavior (by 

evaluating the Drift Plot). The following drifts are the same as the first and third change point 

reported by IPDD and are also reported in (Ostovar et al., 2020). However, in the VDD 

system visualization of the changes in the DFG, we cannot identify which change occurs at 

which change point. The user has to inspect cluster by cluster based on the erratic measure. 

It is unclear why clusters 9, 11, and 4 are selected in the table reporting the erratic measure. 

The autocorrelation results presented other clusters: 9, 12, and 15.   

In (Ostovar et al., 2020), the authors apply the event stream approach (Ostovar et al., 

2016) with an adaptive window (initial window=1,000 events), reporting the drifts at events 

8,757 and 17,307. We read the event log as an event stream to identify the reported event’s 

trace using PM4Py. The events belong to traces 1,716 and 3,754. It is interesting to verify 

that both reported drifts are also identified by Adaptive IPDD trace by trace. Furthermore, as 

expected by the synthetic dataset analysis, IPDD is able to identify the drift early: 21 traces 

and 11 traces. For the first drift (1,695), IPDD reports the same change characterized by 

Apromore ProDrift, which indicates a new edge in the DFG from “Assign seriousness” to 

“Resolve ticket”. However, our approach also reports similarity metrics between the DFGs 

(before and after the drift), and identify more changes (Figure 5.17). Furthermore, IPDD 

shows the different versions of the process over time.  

 

 

37 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb  

38 https://fluxicon.com/disco/  

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://fluxicon.com/disco/
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Figure 5.17. IPDD shows the differences for the first drift detected for the real-life event log. 

The validation applied in (Ostovar et al., 2020) derives a DFG before and after the 

change point. As we already stated, as the change point is always reported after the drift, the 

validation approach derives a pre-drift DFG containing traces after the real drift. In IPDD, we 

derive the DFG using the initial windows reported by the adaptive windowing approach. 

Using the initial windows, IPDD derives different DFGs, which explains why we find out more 

changes related to the first drift point. IPDD detected the second drift reported by (Ostovar et 

al., 2020). However, we cannot compare the characterizations between both approaches 

because IPDD characterizes the change by comparing the drift reported at trace 2,239, not 

detected by Apromore ProDrift.  

As we do not know the ground truth, we considered the second drift reported by 

Adaptive IPDD trace by trace because the following changes occurred in the process model: 

• Nodes similarity: 77%.  

Removed: “Insert ticket”, “Resolve SW anomaly”, “Create SW anomaly”. 

• Edges similarity: 76%. 

Added: “Resolve ticket” → “Wait”. 

Removed: “Take in charge ticket” → “Create SW anomaly”, “Take in charge ticket” →  

“Take in charge ticket”, “Closed” → “Closed”, “Resolve SW anomaly” → “Resolve 

ticket”, “Insert ticket” → “Assign seriousness”, “Create SW anomaly” → “Resolve SW 

anomaly”.  

Different versions of 

the process over time 

Characterization of 

the change 
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We also analyzed the real-life event log with Adaptive IPDD windowing using different 

window sizes (100, 200, 500, 800). Adaptive IPDD windowing reports more change points 

than expected in all scenarios, as informed in Table 5.3.  

Table 5.3. The number of change points reported for Adaptive IPDD windowing on the real-life event 
log. 

Window size Number of reported 
change points 

100 28 

200 17 

300 12 

500 6 

800 5 

 

Analyzing process drift detection tools in real-life event logs raises the challenge of 

evaluating the results using an objective metric.   

5.9 CONCLUSION 

We presented two approaches for detecting process drifts in the control-flow perspective: the 

Adaptive IPDD trace by trace and Adaptive IPDD windowing. We extensively evaluated both 

approaches using two publicly available synthetic datasets containing 17 change patterns 

and different sizes and intervals between drifts. The accuracy results are evaluated using F-

score and mean delay metrics, the former measuring the number of correct detections and 

the second indicating the accuracy of the reported change point in case of correct detection.  

Both approaches overcome VDD considering F-score and mean delay metric for dataset 1. 

IPDD windowing presented better F-score results than VDD and Apromore for dataset 2. The 

reason is the accentuated drop in the F-score values using window sizes larger than 200. We 

conclude that Adaptive IPDD trace by trace approach accuracy is affected by larger window 

sizes, i.e., values larger than the interval between drifts. Another promising result is that 

IPDD overcomes VDD’s mean delay in both datasets. Furthermore, Adaptive IPDD trace by 

trace performed better mean delays than Apromore AWIN for dataset1, and better mean 

delays than Apromore FWIN in dataset 2.  

Based on the performed experiments on synthetic datasets, Adaptive IPDD 

windowing is statistically equivalent to Apromore for drift detection but overcomes Apromore 

considering the mean delay. Adaptive IPDD trace by trace is statistically equivalent to 

Apromore for drift detection only in dataset 2 and overcomes Apromore AWIN’s mean delay 

for dataset 1 and Apromore FWIN’s mean delay for dataset 2. VDD performed the lowest F-

score and mean delay values for both datasets.  
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Another important aspect is to reduce the detection sensitivity related to the 

parameter configuration. Adaptive IPDD trace by trace is more robust to small window sizes, 

decreasing accuracy with window sizes larger than 200 traces. On the other hand, the 

windowing approach shows a lower accuracy with window sizes of 25 and 50, another 

decrease after 225 (similar to the Apromore ProDrift results). However, the trace by trace 

approach cannot detect change patterns that apply a subtle change in the process, like the 

cd pattern.  

We also evaluate the two Adaptive IPDD trace by trace in a real-life event log, 

showing that another contribution of the tool is to localize the drifts and reveal the changing 

process (addressed only by VDD). We could detect the two drifts reported by Apromore 

ProDrift and VDD, also characterizing the first drift with more changes than the one reported 

in ProDrift. IPDD also detects another drift, which was explained by the differences between 

the models. The characterization method of IPDD provides two metrics, indicating the 

similarity between nodes and edges between the different versions of the process. The VDD 

user interface localizes the changes by the derived cluster instead of indicating the change in 

an imperative model, e.g., process graph. Revealing the changing process in IPDD allows 

the user to check the process versions over time. However, IPDD only detects sudden drifts, 

while VDD can detect the four types of drifts, and Apromore ProDrift can detect sudden and 

gradual drifts.  Adaptive IPDD windowing does not report interesting results using the real-life 

event log. Thus, Adaptive IPDD trace by trace is more suitable for real-life event logs based 

on the performed experiments. However, it is important to highlight that Adaptive IPDD trace 

by trace approach lows accuracy when applying larger window sizes, which was confirmed 

by the experiments performed on the synthetic datasets. Another drawback is that the 

processing time increases if the process model is complex, because of the fitness and 

precision calculation. 

APPENDIX 5.A – DETAILS OF DATASET 139 

This appendix describes the event logs from the original dataset, which do not follow the 

description considering the log’s size, interval between drifts, and change pattern (Table 5.4). 

 

 

39 Original dataset from (Abderrahmane Maaradji et al., 2015) 
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Table 5.4. Details of dataset 1. 

Event log Problem Description Solution 

cb10k.xes Contain only one drift after 5000 traces. New event log created 
using simulation. 

cd2.5k.xes Contain 9 drifts after 250 traces; however, the altered 
model is completely different from the base model (also 
different from the BPMN specification). 

New event log created 
using simulation. 

cd7.5k.xes Contain 9 drifts after 750 traces; however, the altered 
model is completely different from the base model (also 
different from the BPMN specification). 

New event log created 
using simulation. 

cm2.5k.xes Contain 9 drifts after 250 traces; however, the altered 
model is the same from cb instead of the defined in the 
BPM specification. 

New event log created 
using simulation. 

cm7.5k.xes Contain 9 drifts after 750 traces; however, the altered 
model is the same from cb instead of the defined in the 
BPM specification. 

New event log created 
using simulation. 

lp2.5k.xes Contain 5000 traces with a drift after 500 traces. Renamed to lp5k.xes. 

lp5k.xes Contain 10000 traces with a drift after 1000 traces. Renamed to lp10k.xes. 

 

lp7.5k.xes Contain 15000 traces with drifts not following the 
specification; drifts at: 1000; 3500; 4000; 6500; 7000; 9500; 
10000; 12500; 13000 

New event log created 
using simulation. 

lp10k.xes Contain 15000 traces with drifts not following the 
specification; drifts at: 1000; 3500; 4000; 6500; 7000; 9500; 
10000; 12500; 13000 

New event log created 
using simulation. 

re2.5k.xes Contain 5000 traces with a drift after 500 traces. Renamed to re5k.xes. 

re5k.xes Contain 10000 traces with a drift after 1000 traces. Renamed to re10k.xes 

re7.5k.xes Contain 15000 traces with drifts not following the 
specification drifts at: 1000; 2000; 2500; 3500; 4000; 5000; 
5500; 6500; 7000; 8000; 8500; 9500; 10000; 11000; 11500; 
12500; 13000 

New event log created 
using simulation. 

re10k.xes Contain 20000 traces with a drift after 2000 traces, and the 
log contains a loop (the same of the lp logs) instead of a re. 

New event log created 
using simulation. 

 

Also, as reported in Section 5.4, we changed the classification of the sw pattern to R, and 

renamed the pattern RIO to RI.  

APPENDIX 5.B – ADWIN DETECTION BEHAVIOR USING A DIFFERENT SCALE  

We applied the ADWIN change detector for reporting changes in the two temporal series 

collected: fitness and precision. Both metrics are calculated using PM4Py, which reports the 

fitness and precision values in an interval between 0 and 1. However, when evaluating the 

two implemented methods for drift detection (trace by trace and windowing), we identified 

that ADWIN’s detection considers the scale of values inputted into the detector. Thus, using 

an interval between 0 and 1, we cannot detect the desired changes in the behavior of fitness 

or precision. To illustrate the problem, Figure 5.18 (a) plots the fitness and precision time 

series calculated based only on the first derived model (using the initial 100 traces) for the 
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scenario cb2.5k (dataset1). We plot the values using the interval between 0 and 1, as 

calculated by the PM4Py40 framework. We can visually observe a considerable change in the 

fitness and precision behavior; however, the ADWIN change detector (Bifet & Gavaldà, 

2007) does not report any changes. When we change the input value using a scale of 100, 

i.e., the fitness and precision values are multiplied by 100, we get a new outcome from 

ADWIN, indicated in Figure 5.18 (b).  

 

(a) Original fitness and precision - no drift is 
detected by ADWIN. 

 

(b) Fitness and precision multiplied by 100 - 
vertical lines indicate the drifts reported by 

ADWIN. 

Figure 5.18. Temporal series for dataset 1, scenario cb2.5k, without updating the process model. 

We can verify that both plots show the same curve using a different scale. The ADWIN 

change detector can only detect a change when we input the fitness and precision values 

multiplied by 100. We apply this multiplication factor in both strategies: trace by trace and 

windowing. The reported ADWIN behavior was unexpected; thus, we believe further 

investigation can be performed on the detector.  

 

 

40 https://pm4py.fit.fraunhofer.de/ 

https://pm4py.fit.fraunhofer.de/
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6 PAPER #5: INTERACTIVE PROCESS DRIFT DETECTION FOR CONDITION-BASED 

MAINTENANCE USING PROCESS MINING TECHNIQUES 

The paper addresses problems related to the difficulty of detecting anomalies in 

manufacturing equipment as soon as they start, and this issue is recurrent in condition-based 

maintenance (CBM) policies. CBM policies use the P-F curve to estimate the equipment’s 

residual useful life (RUL). The point P of the P-F curve indicates the moment from which a 

given anomaly that is in progress can be detected by analyzing the monitored parameters. 

Then, we can consider the actions performed before point P as proactive, close to the exact 

moment when the anomaly started. Therefore, we present a new approach to concept drift 

detection in process models called Interactive Process Drift Detection (IPDD) to detect 

potential failures in advance. In addition to detecting changes in the patterns of the monitored 

parameters, this tool can also detect variations in the process pattern through process mining 

techniques, identifying changes in the sequencing of activities and events. Tests on synthetic 

databases and a case study with a real-life dataset were conducted to validate the method 

and prove its effectiveness by numerical evaluation. 

Keywords: Condition-based maintenance, P-F curve, Interactive process drift detection, 

Proactive maintenance, Process mining. 

6.1 INTRODUCTION 

Industries are constantly seeking to improve their manufacturing process by balancing costs, 

quality, and delivery times (Y. Cao et al., 2012). For these goals to be achieved, the 

machinery must work in perfect conditions or, at least, in the best possible conditions 

(Ruschel et al., 2021). Maintaining equipment performance and availability indicators at high 

levels requires adequate maintenance policies (Ruschel et al., 2020); and among them, the 

Condition-Based Maintenance (CBM) stands out, which requires constant monitoring of the 

equipment conditions, using, for this, various information to calculate indicators, such as oil 

and vibration analysis, temperature, noise and velocity (Bousdekis et al., 2015; Mehta et al., 

2015; Tang et al., 2015). One of CBM’s premises is that it is possible to act proactively, 

performing maintenance actions in advance (early actions) when the reading of some data 

indicates a malfunction of a certain equipment (Bousdekis et al., 2015). 

Further, (Bengtsson & Lundström, 2018) point to the need to combine basic concepts 

and traditional maintenance policies with emerging technological elements of Industry 4.0, 

e.g., predictive maintenance, cyber-physical systems, connectivity through the internet of 

things, self-management of assets, and big data. For the authors, considering only the tools 

conceived with the advancement of technology without looking at “the old”, is not enough to 

obtain maximum effectiveness. Therefore, the combination of these elements is essential. 
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Furthermore, to correctly read and analyze the data, there is a need for a robust and 

reliable technological structure to collect and store information and well-defined frameworks 

and analysis procedures to make decisions coherently and effectively (Ruschel et al., 2017). 

Therefore, when considering this need and applying the CBM policy, we need to list relevant 

fundamental tools that can provide the necessary support for the proposition of methods. 

According to (Bousdekis et al., 2015), one of the most important principles of CBM is the P-F 

curve, which is used to estimate the remaining useful life (RUL) of the equipment and/or its 

components. P-F curve shows how and when a malfunction starts and, over time, moves to a 

stage at which it can be detected as a potential failure (point P); however, if the anomaly is 

not detected or no maintenance action is taken, it will progress at an accelerated rate to a 

functional failure (point F). 

In an ideal CBM policy scenario, maintenance should occur before point P (at the 

exact moment the anomaly started), thus ensuring maximum effectiveness of this action and 

making it possible to keep equipment availability at the best possible level (Prajapati & 

Ganesan, 2013). Very early maintenance actions, intuitively, may seem beneficial, but the 

cost tends to be higher if performed long before the failure starts and late actions (Bousdekis 

et al., 2015). In addition, it is not possible to predict the onset of potential failure (point P) with 

100% accuracy (Bousdekis et al., 2020), so the effort of most techniques and methods 

proposed for the CBM policy is to detect the point P as soon as possible so that maintenance 

actions can be performed soon after. 

Several ways and methods can assist in analyzing shop floor information for decision-

making in maintenance and manufacturing, and one of them is process mining (Choueiri et 

al., 2020; Choueiri & Portela Santos, 2021). We can analyze the process behavior from an 

event log and check for changes or anomalies that could indicate the imminence of a failure 

(Ruschel et al., 2021). In this context, this paper presents a method based on concept drift 

detection (Dries & Rückert, 2009), with an extension of the Interactive Process Drift 

Detection (IPDD) Framework (Sato, Barddal, et al., 2021). Our method uses process mining 

techniques applied to process data (event log), performing analysis and signaling to the 

manager or maintainer any change or variation in the monitored parameters of the 

equipment. Further, the IPDD framework also uses process mining techniques to identify 

changes in the sequencing of activities and events present in the manufacturing process 

(control-flow perspective) and monitor the operating cycle times and process activities 

duration (time perspective) also signaling if there are significant changes. 

Thus, the framework proposed in this paper contributes to the insertion of these two 

elements (control-flow and time perspectives) that can also indicate the presence of 
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anomalies in the equipment (P-F curve), increasing the amount of information available for 

maintenance decision-making in the CBM policy. 

The present paper is structured as follows: Section 6.2, we present more in-depth 

concepts of CBM policy, P-F curve, concept drift, and process mining, as well as previous 

proposals from the literature; in Section 6.3, we present the IPDD framework for its 

application and a synthetic datasets validation; Section 6.4 presents a case study with a real-

life dataset from a manufacturing process and an evaluation of the results; Section 6.5 

concludes the paper, addressing contributions, limitations, and prospects. 

6.2 BACKGROUND 

In order to introduce the IPDD as a support tool for the maintenance actions of the CBM 

policy, initially, we need to understand the evolution and structure of the concept drift 

detection and of the CBM itself, gathering information from the literature about its concepts, 

as well as the previously proposed methods. 

6.2.1 MAINTENANCE STRATEGIES AND CBM POLICIES 

As stated by (Bousdekis et al., 2015), based on studies carried out by (Jardine et al., 2006), 

there is still no absolute agreement in the literature regarding the types of maintenance, their 

policies, and strategies. The difficulty of a definitive classification that is accepted by the 

entire scientific community due to the high variation perceived in how these policies are 

applied, where there is not a well-defined integration between different techniques and 

strategies that should be specific to each one of them (Huynh et al., 2015; Zhou et al., 2015). 

Further, (Ruschel et al., 2017) conducted an extensive literature review on industrial 

maintenance decision-making, pointing out a certain deficiency in the proposed methods 

where, in general, there are still difficulties in optimizing maintenance results without 

negatively and significantly impacting the performance of the production process. In this 

context, four distinct types of maintenance can be listed based on these works: 

• Corrective Maintenance (CM): performed after the occurrence and detection of a 

functional failure in the equipment. 

• Preventive Maintenance (PM): normally, this type of maintenance is time-based, in which 

inspections are pre-scheduled, considering regular intervals (time windows) calculated 

through prior analysis of the historical equipment’s behavior. 

• Predictive Maintenance (PdM): as well as PM, it performs prior analysis of historical data 

on equipment’s behavior, as well as real-time analysis to predict future behavior, 

enabling early decision-making based on forecasts. Some techniques of this type of 

maintenance are combined with those present in the CBM mentioned below. 
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• Condition-Based Maintenance (CBM): maintenance actions are triggered according to 

the current and future state of the equipment, based on the monitored parameters data, 

e.g., temperature, vibration, cycle time, and noises. 

According to (Jardine et al., 2006), Preventive Maintenance (PM) is an evolution of 

Corrective Maintenance (CM), widely used in the industry. However, within these same 

industries, other authors (Riccardo Accorsi et al., 2017; Do et al., 2015; Shin & Jun, 2015; 

Tang et al., 2015; Tian et al., 2012) also point to significant growth in Predictive Maintenance 

(PdM) and, mainly, Condition-Based Maintenance (CBM). Further, the correct application of 

techniques that guide this policy is also necessary (Gulledge et al., 2010; Peng et al., 2010), 

and the P-F curve concepts are typically used as support tools (Bousdekis et al., 2015, 2020; 

Prajapati & Ganesan, 2013), considering the possibility of carrying out diagnoses and 

prognoses about the monitored state of the equipment, thus allowing proactive maintenance 

actions. However, maintenance proactiveness is not something new addressed in CBM 

policies (Jardine et al., 2006). (Bousdekis et al., 2015) developed a framework for proactive 

CBM decision making after conducting an extensive literature review. The authors identified 

possibilities for proactive online recommendations, considering the use of real-time data 

extracted from the machinery through sensors. The main contributions were structuring the 

CBM framework and concepts into two components: information space and decision space, 

and defining different tools and methods for each one. However, for condition-based 

maintenance policies, these components need to be well-defined. 

According to (Voisin et al., 2010), condition-based maintenance (CBM) has three 

main steps: diagnosis, prognosis, and decision support. Diagnosis occurs during equipment 

condition monitoring and failure detection, while the prognosis is performed based on failure 

mode information and RUL predictions (Jardine et al., 2006; Peng et al., 2010). Figure 6.1 

presents in a simplified way the CBM structure presented by (Voisin et al., 2010). 

 

Figure 6.1. Diagnosis, prognosis, and decision support in CBM. Adapted from (Voisin et al., 2010). 
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CBM structure requires supporting technologies for data acquisition of monitored parameters 

and adequate tools for their correct implementation (Riccardo Accorsi et al., 2017). 

According to (Peng et al., 2010), there is a relationship between equipment reliability and 

maintenance cost, as shown in Figure 6.2. In addition to maintenance costs being related to 

reliability, there is also a relationship with the equipment availability (Ruschel et al., 2020), as 

the P-F curve, shown in Figure 6.3, is an essential principle of CBM, used to calculate and 

estimate the RUL (Bousdekis et al., 2015, 2020; Prajapati & Ganesan, 2013). 

 

Figure 6.2. Reliability and maintenance cost relationship. Adapted from (Peng et al., 2010). 

 

Figure 6.3. The P-F curve. 

According to (Bousdekis et al., 2015; Prajapati & Ganesan, 2013), the main elements of the 

P-F curve are: 

• The point where the failure starts — this event is not detected at the exact moment it 

occurs since it takes time for the monitored parameters to undergo sufficient 

modifications so that such detection can be performed. 
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• Point P — is the point where, after a certain time has elapsed after the failures start, the 

condition monitoring tools are able to detect the anomaly indicated by the monitored 

parameters variation. 

• Point F — when no maintenance action is taken beforehand, point F determines the 

occurrence of a functional failure, forcing immediate maintenance intervention to avoid a 

catastrophic failure. 

Point P can have different positions along the operating timeline and can be detected soon 

after the onset of failure or at later periods. This detection moment depends exclusively on 

the quality of the monitoring and detection methods and tools used, the behavior of the 

equipment, and the failure mode, presenting milder anomalies (increasing the time to 

detection) or more critical (allowing a faster detection) (Veldman et al., 2011). Further, 

(Bousdekis et al., 2015, 2020) consider the functional failure (point F) as the last stage of the 

P-F curve evolution, not addressing the catastrophic failure (J. Liu et al., 2018) shown in 

Figure 3. As we are interested in proactive maintenance actions (before point P or 

immediately after it), such a difference in the P-F curve interpretation is irrelevant since it 

does not impact the proposal of this paper. 

6.2.2 PROCESS MINING AND INDUSTRIAL MAINTENANCE 

Process mining is a research area between data mining and business process management 

to turn event data into insights and actions by combining traditional model-based process 

analysis and data-centric analysis techniques (van der Aalst, 2016). The critical assets of 

process mining tasks are the event data and the process models. As shown in Table 6.1, the 

event data is usually recorded in an event log, containing at least an identifier of the case 

(i.e., a unique process instance), the activity performed, and the timestamp, but it can contain 

more information about the events recorded for the business process. The process model 

indicates the allowed sequence of activities that should be performed for each process 

instance. The three main types of process mining are discovery, conformance, and 

enhancement. In discovery, we can derive a process model from the event data containing 

the historical records of business process events. We can compare the event data and a 

process model (discovered or designed) to identify discrepancies or deviations in the 

conformance. Moreover, the process model is extended in the enhancement by adding 

different perspectives from the event data, e.g., performance or resources (van der Aalst, 

2016). 
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Table 6.1. A sample of an event log. 

Case (Instance) Activity or Event Timestamp 

Start Complete 

1 A 01/01/2022 08:05 am 01/01/2022 08:07 am 

1 B 01/01/2022 08:07 am 01/01/2022 08:10 am 

1 C 01/01/2022 08:10 am 01/01/2022 08:13 am 

1 D 01/01/2022 08:13 am 01/01/2022 08:15 am 

2 A 01/01/2022 08:15 am 01/01/2022 08:27 am 

2 B 01/01/2022 08:27 am 01/01/2022 08:36 am 

2 D 01/01/2022 08:36 am 01/01/2022 08:49 am 

3 A 01/01/2022 08:49 am 01/01/2022 08:51 am 
 

One of the most recurrent applications in several areas is the use of heuristic mining 

algorithms. We can obtain a causal net (dependency graph) that represents the process 

model with them. Figure 4 shows an example of a dependency graph, where: rectangles 𝐴 

and 𝐵 are process activities or events; 𝑖𝑠 and 𝑖𝑓 represent the number of cases started and 

finished, respectively; 𝑓
𝑎

(𝐴) and 𝑓
𝑎

(𝐵) indicate the number of times activities 𝐴 and 𝐵 

occurred (absolute frequency); the directed arc |𝐴 >𝐿 𝐵| indicates the number of times 

activity 𝐴 was followed directly by 𝐵 in the event log 𝐿; and |𝐵 >𝐿 𝐵| indicates how many 

times activity 𝐵 was followed by itself (Rozinat & van der Aalst, 2008). From this information, 

it is possible to extract perspectives of process performance, analyzing task time in the 

activity’s statistics and queues and bottlenecks in the directed arcs. 

 

Figure 6.4. A dependency graph example. 

Although process mining concepts are broad and complex (van Der Aalst et al., 2010), 

applications of these techniques are widespread in manufacturing but still little applied in 

industrial maintenance (Ruschel et al., 2020). One of these applications can be found in 

(Ruschel et al., 2020). The authors present process mining techniques integrated with 

prediction and probabilistic models developed in Bayesian networks to determine preventive 

maintenance intervals. The authors developed two functions: one for maintenance costs; and 

another for equipment availability. The proposed method calculates the best time for 

maintenance that provides the lowest cost and the best time for greater availability. The 

decision maker can choose between one interval or another; or, still, an intermediate interval 

that allows balancing the two criteria. 

Further, (Ruschel et al., 2021) uses methods to create Bayesian networks from event 

log mining developed by (Kurscheidt Netto et al., 2015; Kurscheidt et al., 2015). The 
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probabilistic model developed by the authors makes it possible to estimate the completion 

time of process instances, calculating the probability of activities and failure events to occur. 

Thus, it is also possible to analyze the process performance. 

6.2.3 CONCEPT DRIFT IN PROCESS MINING 

Most techniques for process mining still consider that the process model does not change 

when being analyzed. However, this assumption does not reflect the reality of the business 

processes, which are usually in constant change for distinct reasons, e.g., adapting to new 

regulations and improving performance. The concept drift indicates a change in the process 

when being analyzed (van der Aalst et al., 2011). The process models can represent 

different business process perspectives, e.g., control-flow and time; concept drift may also 

occur in all perspectives (Sato et al., 2022). Detecting and understanding the concept drifts in 

process mining can help better understand the business process dynamics and may help 

business managers proactively act. The four most common types of concept drift are listed 

below and, according to (J. Lu et al., 2019): 

• Sudden drift: when a change occurs in a short period of time. 

• Gradual drift: A new pattern gradually takes the place of an older one over time. 

• Recurring drift: an old pattern may reoccur after a certain time. 

• Incremental drift: an old pattern changes to a new pattern over time. 

Figure 6.5 presents these four scenarios for the process changes according to (Sato et al., 

2022). The y-axis indicates different versions of the process, and the x-axis indicates the 

time. Figure 6.6 presents the same scenarios from a time perspective. The y-axis indicates 

different durations of the process activities, and the x-axis indicates the time. 

 

Figure 6.5. Different types of concept drifts in processes from a workflow perspective. Adapted from 
(Sato et al., 2022). 
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Figure 6.6. Different types of concept drifts in processes from a time perspective. Adapted from (Sato 
et al., 2022). 

Authors proposed distinct approaches for concept drift detection in processes to balance 

good detection accuracy with few false alarms. However, the accuracy of the detections is 

sensitive to the parameter configuration, and defining a good value for the request 

parameters is still a challenge (Sato et al., 2022). Most concept drift detection approaches 

apply a windowing strategy to split the event log into sub-logs to detect the drift in the control-

flow perspective, and the definition of the window size critically affects the accuracy of the 

detection. Besides this dependency of the parameter configuration, fewer methods have 

been proposed for dealing with concept drifts in the time perspective.  

(Brockhoff et al., 2020) calculated the Earth Mover’s Distance (EMD) using trace 

descriptors derived from sub-logs extracted using a sliding fixed-size window. The user can 

then inspect the EMD values calculated for a window size to identify potential drifts. This 

approach can detect drifts in the time perspective (service and sojourn times); however, the 

window size parameter is critical to the accuracy of the detected drifts. Furthermore, the 

author only experimentally evaluated the approach using one synthetic log. 

CDESF is another concept drift detection approach for the time perspective (Mora et 

al., 2020; Tavares et al., 2019). It derives the graph-distance trace (GDtrace) and graph-

distance time (GDtime) by comparing the new trace (obtained from the arrived event) and the 

process graph (PMG) normalized, representing the current behavior – the method updates it 

after the end of the time horizon (TH) defined by a parameter, which is a sliding window. 

Then, using DenStrean, it clusters the feature vector [GDtrace, GDtime] and outputs a drift 

plot showing the position of the detected drifts in case new core micro-clusters are detected. 

If a new behavior is dense enough to form a new core micro-cluster, it indicates a drift. The 

definition of the TH parameter is still a challenge because it affects the accuracy of the 

detected drifts; a larger TH will miss drifts that may occur inside the interval, and in real-world 

event logs, the interval between drifts probably will not be fixed. 
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The Tesseract method (Richter & Seidl, 2017), is an online temporal drift detection. 

The main advantage of this method is that it calculates a significance score based on the 

calculated times (time interval between activities), indicating how far a new observation is 

from the mean value. The two decay factors applied in the method allow the user to define 

how much the method relies on detecting significant drift alerts but increases the detection 

delay and makes it hard to detect short-term anomalies. However, the implementation of the 

method only detected drifts in the time interval between activities.  

There is still a significant gap regarding proposals that integrate process mining, 

concept drift detection, and industrial maintenance in the literature. However, the potential for 

integrating these tools in industrial maintenance becomes clear when we analyze the 

proposals and results presented by the authors. Considering these methods allow identifying: 

(i) performance loss, (ii) variations in production cycle times, and (iii) changes in the 

sequencing of process activities; it is plausible to relate these indicators to anomalies in the 

machinery, indicating a malfunction and the consequent onset of a failure. Therefore, this is 

the premise of our proposal. Further, we believe a method for concept drift detection using 

information about the time perspective of the production process, e.g., sojourn activity time, 

can provide valuable information for the CBM, considering that different variations on the 

time perspective of the process may be related to the need of maintenance tasks. 

6.2.4 CONCEPT DRIFT AND MANUFACTURING PROCESSES 

Concept drift detection has also been applied in the data mining area, usually when a 

supervised learning model loses accuracy because the relation between the input data and 

the target variable changes over time (Gama et al., 2014). The main difference from the 

detection in the context of processes is that the target variable is more straightforward than 

categorical or continuous values in a vector (Sato et al., 2022). In many cases, changes are 

difficult to detect and measure; therefore, many studies have been carried out with proposals 

for different and varied detection methods (Sun et al., 2020). (J. Lu et al., 2019) carried out a 

literature review to help understand these techniques, considering three main components: 

detection, understanding, and adaptation. 

Even though concept drift detection based on data variables has been applied in 

manufacturing processes, few proposals have been aimed at industrial maintenance 

(Zenisek et al., 2019), especially in CBM. As much as some companies have the necessary 

technology to monitor equipment conditions and store data properly, one of the biggest 

problems in CBM raised by (C. C. Lin et al., 2019) is the imbalance present in these data 

since the data that indicate potential failures are a minority within the huge datasets 

generated, making anomaly detection a non-trivial task. The authors present a proposal for 
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joint learning between concept drift and imbalance data, creating new classifiers using the 

SMOTE method and improving detection with the LFR (Linear Four Rates) method. 

(Jayaratne et al., 2021) present a method for continuous drift detection in industrial 

cyber-physical systems (CPS), using closed-loop incremental machine learning. The 

algorithm presented is based on the unsupervised IKASL learning approach and was applied 

to a synthetic database obtained with the Streaming Ensemble Algorithm (SEA). Afterward, 

two experiments were conducted on two industrial CPS applications. However, drift detection 

was conducted only on activity monitoring and energy consumption data streams. Further, 

the authors point out future opportunities to be able to determine causalities of the concept 

drift and, in this case, it may also be useful in maintenance. The authors in (Altendeitering & 

Dübler, 2020) also present learning techniques for drift detection to apply in Industry 4.0 

scenarios. However, the authors also claim that there are still difficulties given the small 

number of samples or resources for effective solutions. 

In (Zenisek et al., 2019), the authors present a drift prediction method based on 

Machine Learning (ML) for Predictive Maintenance (PdM). The author uses Linear 

Regression (LR), Random Forest Regression (RF), and Symbolic Regression (SR) 

algorithms after a series of preprocessing steps that include filters and the consolidation of 

data from different monitoring sources. A case study was carried out on radial fans, 

monitoring vibration, speed, temperature, pressure, etc. However, the method’s effectiveness 

cannot be fully verified due to the absence of adequate measurements of the equipment 

deterioration progression. In (Jimenez-Cortadi et al., 2020), the authors present an improved 

method, structuring all the steps (acquisition, preprocessing, processing, analysis, and 

decision making) to transform a preventive maintenance policy into predictive maintenance. 

However, as much as the process includes drift detection, RUL estimates, and diagnostics 

and prognostics for decision making, it was applied to a single monitored parameter: spindle 

load. The authors do not address the concepts of proactive maintenance actions, P-F curve, 

or strategies for CBM policies. 

6.3 PROPOSAL 

This section presents the IPDD concepts used in our approach, the proposed framework, 

and the details for model validation and application in the CBM. The shortcomings perceived 

in the literature and pointed out by the authors themselves are considered in this paper, as 

well as the lack of a more careful and well-defined integration between the elements listed 

above provides a relevant contribution from the use of the concept drift detection within CBM 

policies. 
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6.3.1 INTERACTIVE PROCESS DRIFT DETECTION FOR DETECTING TIME DRIFTS 

The Interactive Process Drift Detection (IPDD) is a generic framework for process drift 

detection (Sato, Barddal, et al., 2021). According to the implementation, the framework can 

detect process drifts in the different perspectives of the process models. This paper 

developed a new instantiation of the framework for detecting time drifts in the activity cycle-

time, based on an adaptive windowing approach. We also combined the detection of time 

drifts with control-flow drifts, which indicate a change in the structure of the process model in 

our implementation, activities, or paths added or removed. 

•  Windowing strategy. We collected each activity’s sojourn time from the traces (sorted 

based on the first activity’s timestamp). For each activity, we derived a time series, which is a 

sequence of ordered data points 𝑇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =< 𝑡1, 𝑡2, … , 𝑡𝑛 >, containing all the sojourn time 

values in seconds for the specific activity, extracted from each trace reporting the activity – 

using the PM4Py framework41 (Berti et al., 2019). For every time series 𝑇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, we applied 

the ADWIN change detector, which detects concept drift from data sequences that may vary 

with time, providing rigorous guarantees of performance as bounds on the rates of false 

positives and false negatives (Bifet & Gavaldà, 2007). Then, we split the event log based on 

the ADWIN detected drifts for each derived 𝑇𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 providing distinct window cuts for each 

activity reporting a temporal drift. ADWIN receives the 𝛿 ∈ (0,1) parameter as input, which 

affects the sensitivity of the detection, i.e., a higher 𝛿 will increase the rate of false positives 

(Bifet & Gavaldà, 2007). We used the scikit-multiflow42 implementation of the ADWIN 

detector (Montiel et al., 2018) to obtain the change points. 

•  Process discovery. We applied the PM4Py framework (Berti et al., 2019) to discover the 

directly-follows graph (DFG) with the frequencies of activities and paths. 

•  Model-to-model comparison. We calculated the nodes and edges similarity between the 

models derived from each window (Sato, Barddal, et al., 2021). If one of the metrics indicates 

a drift, we also reported it as drift in the control-flow perspective. 

•  Evaluation. We calculated the F-Score metric as suggested in (Sato et al., 2022) for 

evaluating the detected drifts for the non-stationary synthetic event logs. We calculated the 

false positive rate (FPR) for evaluating the false alarms for the stationary synthetic event log. 

 

 

41 https://pm4py.fit.fraunhofer.de/  

42 https://scikit-multiflow.github.io/  

https://pm4py.fit.fraunhofer.de/
https://scikit-multiflow.github.io/
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The implementation of the IPDD with the option of detecting temporal drifts in the activity’s 

sojourn time is available for download43. 

6.3.2 IPDD APPLIED TO INDUSTRIAL MAINTENANCE 

The present work considers the concepts of CBM and uses the P-F curve as a support tool 

to define the proactive maintenance actions according to the IPDD drift detections. In this 

way, a new drift detection will provide information that can be compared with the historical 

data of previous detections, allowing to assess whether or not the currently detected drift is 

related to the beginning of a potential failure. Furthermore, we make it clear that the role of 

the expert manager’s knowledge will always be essential in the evaluation of results for 

decision-making. 

We present the P-F curve elements in more detail in Figure 6.7. Any maintenance 

action taken after point F will be within the reactive domain interval; time-based and 

condition-based actions between points P and F (P-F interval) correspond to the corrective 

domain but are already part of preventive and predictive maintenance policies (Bousdekis et 

al., 2020). Finally, even needing prediction methods, actions taken before point P will be in 

the proactive domain, allowing the execution of maintenance closer to the moment 

considered ideal when a failure starts (Prajapati & Ganesan, 2013). 

 

Figure 6.7. Maintenance strategies linked to the P-F curve concepts. 

 

 

43 https://github.com/denisesato/InteractiveProcessDriftDetectionFW  

https://github.com/denisesato/InteractiveProcessDriftDetectionFW
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Figure 6.8 presents all the steps of the framework proposed in this paper. The IPDD is 

responsible for processing data from different sources related to the production system, e.g., 

event logs from the manufacturing process, temperature, and vibration data. Both 

manufacturing process data (event log) and equipment condition monitoring parameters, 

e.g., vibration, temperature, and noise level, can be input into the tool, identifying existing 

patterns in these data and pointing out any drift that may occur. 

 

Figure 6.8. Proposal for the application of IPDD in Condition-Based Maintenance. 

So that we can make any decision from this point on, we need to identify which anomaly was 

detected and store the information in a database. Expert judgment is essential at this stage 

of application, given that current mathematical models still suffer from the difficulty of 

identifying the cause of a particular anomaly in a clear, objective, and assertive manner. This 

information is confirmed in the literature (Bennane & Yacout, 2009), where many cited 

authors claim that almost identical variations of a given parameter may indicate different 

potential failures in the equipment. With information about the anomaly related to the 

detected drift, it is possible to carry out early maintenance actions within the corrective 

domain (time-based preventive maintenance rescheduling or condition-based maintenance). 

Further, we may collect information related to the equipment’s failure modes and compare it 

with the detected anomalies. This comparison is performed to verify the quality and hit rate 

related to the anomaly identification. From the drift detection and failures historical data, such 

information can be used with expert knowledge to obtain predictions and prognoses to 

promote proactive maintenance actions. The main idea is to refine the knowledge at each 

detection cycle, enabling safer maintenance decision making. 
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Considering that the manufacturing systems and the equipment that compose them 

have different behaviors, it is safe to say that the variations of the monitored parameters are 

also different. Therefore, the sensitivity of the IPDD model will be distinct for each monitored 

process or equipment. Thus, the models can be improved over time by adjusting the 𝛿 

parameter, always aiming at reducing the false positive rate (FPR). An evaluation of the 

results based on historical data of drift detection, failure occurrences, and maintenance 

interventions can be carried out for adjustments and constant refinement of the model. 

6.3.3 SYNTHETIC DATASET VALIDATION 

We apply IPDD in different artificial manufacturing datasets containing drifts in the time 

perspective with different sizes and configurations. The drift occurred in the sojourn time 

(activity duration) of the activity “Machine Working”, and, in all cases, we simulated an 

increase in the activity’s sojourn time, indicating a possible problematic situation in the 

production line. Thus, we only report the time drifts detected in the “Machine Working” 

activity. Table 6.2 describes the configuration of the event logs; some configurations combine 

a period of stability (no increase in the sojourn time) followed by one or more periods where 

the time increases. The change point indicates where the drift starts, i.e., the trace index 

where the sojourn time of the activity starts increasing. The interval of values indicates the 

amplitude randomly selected for stationarity and the period of increasing sojourn time. We 

applied a linearly increasing function with a slope (“Increase function” column). 

Table 6.2. Description of the synthetic event logs. 

Dataset Characteristic Size 
(traces) 

Interval of 
values 

(in seconds) 

Change 
points 

Increase function 

ST Stationary 250 60 - - 

DR 

 

Drift without 
maintenance 
stop 

500 

 

1,000 

 

349 

 

+1% for each trace, after 
trace 349 

 

DR_MS 

 

Drift with 
maintenance 
stop 

250 

 

60 

 

0;26; 100; 
148; 215 

 

+1% for each trace, with 
random return to original 
value 

DR_MS_ST 

 

Drift with 
maintenance 
stop combined 
with stationary 
periods 

2,500 

 

3 

 

205; 858; 
1246; 1,555; 
2,006 

 

Random stationary 
period; +1% for each 
trace after random 
triggering of the 
increment; random return 
to original value 

TD Temperature 
Data 

2,500 3 351; 475; 
575; 751; 
805; 1,210; 
1,212; 1,350; 
1,520; 1,600; 
1,997; 2,189 

Random stationary 
period; +1% for each 
trace after random 
triggering of the 
increment; random return 
to original value 
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Table 6.3 shows the F-score – Equation 1 – and the False Positive Rate (FPR) – Equation 4 

– using different values of 𝛿 parameter from the ADWIN detector. We can observe that we 

can tune the parameter based on the detected drifts and the false alarms. Figure 6.9 shows 

the activity’s sojourn time (activity duration) for each event log, which the detected drifts 

(vertical red lines) for the selected configuration of 𝛿 parameter.  

 
𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

(1) 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2) 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3) 

 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

(4) 

The F-score (Equation 1) evaluates the accuracy of the detected drifts (𝑑𝑑) compared to the 

real ones (𝑟𝑑) using the harmonic mean between precision and recall. We considered a true 

positive (TP) when a detected drift is reported in the interval [𝑟𝑑, 𝑟𝑑 + 𝑒𝑡], where 𝑒𝑡 defines 

an error tolerance, as suggested in (Sato et al., 2022). A false positive (FP) is a detected drift 

not in the interval [𝑟𝑑, 𝑟𝑑 + 𝑒𝑡], and a false negative FN is a real drift not considered for any 

TPs. In our experiments, we set the 𝑒𝑡 = 100.  

The FPR (Equation 4) indicates the probability that a false alarm will be raised. The 

FPR is important when the cost of incorrectly identifying a drift is high, and in our case, we 

apply it to confirm that increasing the 𝛿 parameter will also increase the number of false 

alarms. Therefore, there should be a trade-off between detecting the drift as soon as it 

occurred (by increasing 𝛿) and the cost of generating too many false alarms. Even the ST 

dataset may report a drift when increasing the 𝛿 to 1. A true negative (TN) is any trace not 

informed as a real drift and not detected as a drift by IPDD.  

Table 6.3. F-score and FPR for the synthetic datasets using different 𝛿 configurations. 

Dataset F-score FPR 

𝜹 = 𝟎. 𝟎𝟓 𝜹 = 𝟎. 𝟏 𝜹 = 𝟎. 𝟑 𝜹 = 𝟏  𝜹 = 𝟎. 𝟎𝟓 𝜹 = 𝟎. 𝟏 𝜹 = 𝟎. 𝟑 𝜹 = 𝟏  

ST 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 

DR 

 

1.000 

 

1.000 

 

0.500 

 

0.400 

 

0.000 

 

0.000 

 

0.004 

 

0.006 

 

DR_MS 

 

0.750 

 

0.750 

 

0.888 

 

0.600 

 

0.000 

 

0.000 

 

0.000 

 

0.008 

 

DR_MS_ST 

 

0.417 

 

0.417 

 

0.370 

 

0.303 

 

0.006 

 

0.006 

 

0.007 

 

0.010 

 

TD 0.417 0.417 0.350 0.295 0.008 0.008 0.010 0.012 
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Figure 6.9. Change points detected for each selected scenario. 

Figure 6.9 (a) has no change points, which was expected as it is a stationary dataset. The 

process represented in Figure 6.9 (b) has only one change point, which was identified by the 

IPDD as expected. Likewise, the tool identified the changes present in the process in Figure 

6.9 (c). Although, when comparing Table 6.3 with Figure 6.9 (d), we can see that there are 

many change points detected for the DR_MS_ST scenario and the F-score is the lowest for 

all 𝛿 values (F-score = [0.417; 0.417; 0.370; 0.303]), as well the false positive rate is the 

highest one (FPR = [0.006; 0.006; 0.007; 0.010]). However, it is important to note that we 

consider the model validation step. In other words, there are still no actions (maintenance 

interventions) being performed after the detection of the first change point to stop the 

increase. Therefore, the values continue to be incremented, and, naturally, the IPDD 

continues to periodically detect new change points after the first detection in a given series. 

Thus, even if it seems counterintuitive, given the prior knowledge of the synthetic scenario, 

we can say that such behavior of the IPDD only demonstrates its drift detection potential. 

We also perform the model validation based on detecting a temperature parameter 

change, shown in Figure 6.10. This synthetic dataset represents random increases in 

equipment temperature, and the return to normal values (from 49 to 52°C) is obtained after 
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simulated maintenance occurrences in the equipment. The vertical red lines indicate the 

detection of drift, and the model’s functioning is similar to that applied to the duration of the 

process activities. 

 

Figure 6.10. Drift detection in the temperature parameter (TD) with 𝛿 = 0.05. 

6.4 CASE STUDY 

The IPDD was applied to a real-life dataset containing 29,998 records in 7,479 distinct cases 

(about one month of production) from a manufacturing process performed by a CNC lathe 

machine in one automobile industry in Brazil. In this process, each unit produced by the 

equipment corresponds to an instance (trace in the log). The event log contains the activity 

“Machine Working”, which reports the time the machine effectively produces the product, and 

it is the aim of our study. This activity’s mean sojourn time and the median sojourn time are 

2m 26s. Table 6.4 shows the statistics of the dataset used, presenting the meaning of each 

term and the maximum, minimum, and mean duration, in seconds, of each activity or event. 

Figure 6.11 shows the number of occurrences of each activity or event. 

Table 6.4. Real-life dataset statistics. 

Meaning Max Duration 
(sec) 

Min Duration (sec) Mean duration 
(sec) 

Machine loading 43 25 34 

Short stoppage 25 15 20 

Machine working 171 126 146 

Finished Part - - - 

Awaiting maintenance 6046 3482 5172 

Equipment failure - - - 

Electrical maintenance 6328 6328 6328 

Mechanical maintenance 5981 5341 5648 

Preventive maintenance 2066 2046 2056 

Readjustments 484 136 301 
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Figure 6.11. The number of occurrences of each activity. 

As shown in Figure 6.12, the IPDD method detected and reported a process drift (vertical red 

lines) in the time duration of the activity “Machine Working” in the traces [543; 798; 1,150; 

1,597; 2,077; 2,941; 3,581; 3,997; 4,445; 5,117; 5,276; 5,596; 5,820; 6,556; 6,971]. Note that 

drifts were also detected where there was a reduction in the duration of the activity “Machine 

Working”. This reduction in the production activity duration usually occurs after a 

maintenance activity, as shown in Figure 6.13. Therefore, as we are interested in detecting 

anomalies to carry out proactive maintenance actions, we will only consider drift detection 

during the increase in the cycle times since the reduction of activities duration and cycle 

times is precisely one of the expected improvements of this method. In this way, the descent 

drifts detected soon after the maintenance event will be disregarded in the traces [798; 

1,597; 2,941; 4,445; 5,276; 5,820]. 

 

Figure 6.12. Time drift detection in the production activity for the real-life dataset with 𝛿 = 0.05. 
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Figure 6.13. Reduction in the mean duration of production activity after maintenance occurrence. 

To analyze the results, we performed the calculations listed below and shown in Figure 6.14. 

• �̅�𝑚→𝑑: Mean duration of production activities performed between a maintenance 

event and the next drift detection. 

• �̅�𝑑→𝑓: Mean duration of production activities performed between a drift detection 

and the next failure or maintenance event (whichever comes first). 

• 𝐿𝑃 = (�̅�𝑑→𝑓 − �̅�𝑚→𝑑) × 𝑚: Performance losses (according to the time unit used) 

will be considered as the difference between the two previous variables multiplied 

by the number of machine activity occurrences (𝑚) between a drift detection and 

the next failure or maintenance event (whichever comes first), since the 

maintenance actions proposed by the IPDD method include interventions right 

after drift detections. 

• 𝐿𝑇𝑜𝑡𝑎𝑙 =  ∑ 𝐿𝑃: The total of performance losses is the sum of all periods calculated 

for 𝐿𝑃 used as a parameter to measure the efficiency of the IPDD.  

The event log interval analyzed has 4 occurrences of equipment failure (cases [714; 1,545; 

5,235; 6,846]), followed by 1 electrical maintenance (case [714]) and 3 mechanical 

maintenances (cases [1545; 5,235; 6,846]). In addition, it also has the occurrence of 2 time-

based preventive maintenance (cases [2,887; 5,779]). For the analysis of the proposed 

method, we will pay attention to the drifts detected slightly before the 4 failures (cases [543; 
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1,150; 5,117; 6,556]) and the 2 preventive maintenance (cases [2,077; 5,596]). Table 6.5 

details this information. 

 

Figure 6.14. Results evaluation method for the IPDD case study. 

Table 6.5. Statistics of equipment failures, maintenance occurrences and detected drifts. 

Event Case where the event 
occurred 

Case where drift was 
detected 

Equipment failure (electrical maintenance) 714 543 

Equipment failure (mechanical maintenance) 1,545 1,150 

Preventive maintenance 2,887 2,077 

Equipment failure (mechanical maintenance) 5,235 5,117 

Preventive maintenance 5,779 5,596 

Equipment failure (mechanical maintenance) 6,846 6,556 
 

Using process mining techniques, we identified the cases where failures and maintenance 

events occurred. Then, according to the evaluation method described in Figure 6.14 we 

calculated the mean durations between drifts and failures or maintenance. Additionally, we 

also calculate the amount (𝐿𝑃) corresponding to increases in production times, from the case 

of drift detection to the case of a failure or preventive maintenance event. Table 6.6 presents 

these values and all cases referring to the respective intervals. 
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Table 6.6. Cases with equipment failures, maintenance occurrences, detected drifts, and performance 
losses. 

Last 
maintenance 
event on 
case 

Parts 
produced 
(𝑷𝒎→𝒅) 

�̅�𝒎→𝒅 

(sec) 

Drift 
detected 
on case 

Parts 
produced 
(𝑷𝒅→𝒇) 

�̅�𝒅→𝒇 

(sec) 

Failure (F) or 
maintenance 
event (M) on 
case 

𝑳𝑷 

in 
minutes 

- 543 143 543 171 149 714 (F) 17,1 

714 436 146 1,150 396 149 1,545 (F) 19,8 

1,545 532 143 2,077 810 149 2,887 (M) 81,0 

2,887 2,230 148 5,117 118 154 5,235 (F) 11,8 

5,235 362 144 5,596 183 148 5,779 (M) 12,2 

5,779 777 143 6,556 290 147 6,846 (F) 19,3 
 

The total sum of machine activity durations above the mean considered normal (between a 

maintenance event and a drift detection) was approximate 161.2 minutes (𝐿𝑃 = 161.2 𝑠𝑒𝑐𝑠), 

or about 2.69 hours, within the 1-month interval considered in the event log (276 hours of 

total production). This corresponds to about 1.01% of the production time, as shown in 

Figure 6.15. Considering the individual percentages of each period (Figure 6.16), all of them 

exceeded 2% of losses due to a drop in performance, with three reaching close to 4%. 

 

Figure 6.15. Total duration of machine work. 

 

Figure 6.16. Percentage of performance losses. 

Considering the performance improvements that the real-life dataset itself presents after the 

maintenance occurrences, it is safe to say that such improvements could still be achieved, 

even if the times when the maintenance took place were changed. Therefore, applying the 

information gathered in this case study to the proposal of this paper, the six maintenance 

interventions considered could be anticipated, as shown in Table 6.7, with estimates of 

significant improvements in the production performance. 
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Table 6.7. Suggested anticipations for maintenance occurrences in the case study. 

Maintenance occurrence Estimated improvement 

for the period 

Total estimated 
improvement 

Real date and time Suggested 
anticipation date 

Minutes Percentage 

May 11 11:44 PM May 11 02:01 PM 17.1 3.86% 0.10% (0.10%) 

May 14 01:18 AM May 13 02:38 AM 19.8 2.32% 0.12% (0.22%) 

May 17 08:35 AM May 15 09:44 AM 81.0 3.88% 0.49% (0.71%) 

May 22 10:01 PM May 22 03:09 PM 11.8 3.73% 0.07% (0.78%) 

May 24 08:34 AM May 23 09:35 PM 12.2 2.63% 0.07% (0.86%) 

May 26 08:15 PM May 26 03:56 AM 19.3 2.64% 0.15% (1.01%) 
 

The drifts in the cases [3,581; 3.997; 6,971] were not addressed since the process has 

readjustment activities, which could be considered one autonomous maintenance, as they 

also influence, although more subtly, the machine performance. In this way, a more profound 

expert judgment would be necessary to evaluate the detected anomalies in these cases. 

However, the non-treatment of these drifts did not impact the results presented. 

6.5 CONCLUSION 

This paper presents a new approach to concept drift detection, called Interactive Process 

Drift Detection (IPDD), for application in condition-based maintenance policies. Elements of 

the P-F curve were used as support parameters so that we could suggest proactive 

maintenance actions based on drift detections. The proposed method was validated through 

its application in five different synthetic datasets, and a case study was conducted on a real-

life dataset. 

Several deficiencies related to the applicability of effective methods in CBM are 

pointed out in the literature. One of them is the scarcity of adequate real-life datasets, making 

it impossible to evaluate and validate the methods better. These gaps are also noticed when 

information on concept drift detection is sought, directly impacting the proposed models’ 

results. Further, proposals that work with the integration of concept drift and CBM are still 

rare, making the challenge of proposing effective methods in this area even more difficult. 

However, as much as we have faced all these difficulties mentioned, the IPDD proved 

to be very promising in assisting industrial maintenance decision-making. Three points can 

be highlighted in the contributions of this proposal: 

• The models can be easily configured, changing the sensitivity so that the FPR is 

reduced and, thus, presenting reliable detections. 

• The use of process mining techniques to detect process drift and changes in cycle 

times and machine activities duration allows these elements to also be used as 
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indicators of equipment condition, as long as it is possible to relate these drifts to 

potential failures. 

• We can integrate different models using the IPDD, one for each parameter to be 

monitored, with its different sensitivity settings. Applying them in parallel provides 

robust monitoring of machinery conditions. 

It is important to note that the suggested maintenance must occur immediately to achieve the 

estimated improvements. We are not considering the waiting times for it to occur. Further, 

the lack of adequate real-life datasets prevented us from conducting a more in-depth and 

detailed evaluation of this method. In addition, it is directly dependent on technologies not yet 

present in all companies, e.g., effective sensing systems for collecting data from machinery, 

reliable expert knowledge, skilled labor for data processing, and subsequent application of 

proposed methods. The windowing strategy and 𝛿 parameter also need to be rigorously 

tested during model validation, directly impacting drift detection. Another point we list as an 

opportunity for future work is the need to investigate prediction techniques and models that 

can be integrated with the results obtained from the IPDD, enabling more effective and 

reliable proactive maintenance actions. Finally, the application of this method in CBM can 

also be very promising if we consider the possibility of creating a multi-criteria decision-

making model (MCDM) or a framework for maintenance decision-making that uses the IPDD 

information. 

6.6 SECTION NOTES 

This section describes the application of the extension of IPDD for handling time and data 

drifts in condition-based maintenance policies. This extension was not originally one 

objective of this thesis; however, the application scenario appears as a practical problem 

where we could validate the effectiveness of the developed tool in a real situation. The IPDD 

application in condition-based maintenance policies has been developed in partnership with 

the Graduate Program in Production and Systems Engineering (PUCPR).  
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7 CONCLUSIONS AND FUTURE WORK 

Handling concept drift detection in process models raises different challenges. The first one 

is that despite the different approaches for detecting process drifts developed, most have the 

detection’s accuracy sensitive to the parameter configuration. Some methods aim to reduce 

the number of parameters, minimizing this situation (A Maaradji et al., 2017; Abderrahmane 

Maaradji et al., 2015; Yeshchenko et al., 2021). However, the evaluation of the accuracy of 

proposed approaches lacks an objective experimental protocol with public datasets and 

clearly defined metrics, which characterizes another challenge for drift detection. This thesis 

extensively evaluates three tools (IPDD, Apromore ProDrift, and VDD) for sudden drift 

detection using two synthetic datasets and two metrics: F-score and mean delay. The 

applied experimental protocol and the defined metrics can be applied to compare other future 

approaches. We also publicize the two synthetic datasets, their process models (Petri nets), 

and a source code for simulating event logs containing sudden drifts (using distinct intervals 

between drifts). Even with the experimental protocol for synthetic datasets, there is a lack of 

validation methods for real-life event logs, where the ground truth about the drifts is 

unknown. 

To verify the applicability of IPDD in real scenarios, we applied the Adaptive IPDD 

trace by trace in a real-life event log from a ticketing management process of an Italian 

Company44 . We also performed a case study application of Adaptive IPDD for time and data 

drifts in condition-based maintenance policies. Based on both applications, we believe that 

the tool can be applied to different contexts of processes to identify process drifts. However, 

the validation of the detected drifts in real situations cannot follow objective metrics such as 

F-score or mean delay because we do not a priori know if a change occurred and when. In 

these cases, other strategies may be applied for validating the detected drifts, such as: 

monitoring metrics of the process (KPIs - Key Performance Indicators) or validating  

It is essential to highlight that the current tools usually neglect to discover the 

changing process, described earlier as the absence of a simple visualization of the evolution 

of the process. Only VDD handles this issue; however, we obtained a low detection accuracy 

in the synthetic datasets evaluation. IPDD contributes to characterizing the process drifts 

based on similarity metrics between the process versions over time. The web interface 

implemented in IPDD provides a simple visualization of the process models using DFGs, 

where the user can visually compare the process versions supported by the description of 

 

 

44 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb  

https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
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the change. Furthermore, showing the different versions of the process applied by IPDD is 

not the same as splitting the event log based on the change points and mining the process 

models. As change point detection is a reactive task, the change point is reported after the 

real drift. Thus, mining the models based on the reported change point derives models 

mixing traces before and after the drift.  

The results from VDD highlight another interesting challenge related to the applied 

experimental protocol; the chosen datasets or metrics sometimes bias the reported results. 

The Apromore ProDrift, which is a relatively “old” approach (papers from 2015 to 2020), still 

shows the analysis more reliable considering the experimental protocol adopted (two 

evaluation metrics, different window sizes, and evaluation considering the complete dataset).  

Most approaches still detect process drifts offline. Some approaches based on an 

online setting consider a stream of traces, which do not correctly represent the online 

situation. Another important aspect is that when dealing with event streams, we can consider 

also live event streams, where the event is added to the stream where it occurs. The 

identified online approaches deal only with event streams by reading the events ordered by 

their timestamps and handling incomplete traces, and sometimes this is not clearly defined.  

Besides IPDD contributes with an adaptive approach based on the ADWIN change 

detector, its accuracy is still related to the window size parameter. However, the performed 

experiments showed that using a small window with Adaptive IPDD trace by trace can 

provide promising results. Also, discovering the changing process may help business 

analysts validate the drift detection results. Furthermore, IPDD provided a generic framework 

architecture that can be enhanced for other windowing approaches, similarity metrics, etc. 

The limitations of the implemented IPDD approaches are: 

• IPDD does not detect behavioral control-flow drifts; 

• If the user sets a window size larger than the interval between drifts, the drifts are not 

accurately detected; 

• The Adaptive IPDD processing time increases if the process model is complex 

because of the fitness and precision calculation;  

• Data drift detection (reported in Section 6) is only available for the CLI or massive 

user interface.   

For future work, we plan to extend IPDD to include an adaptive approach based on 

quality metrics using a window of adaptive size for the precision dimension. We also plan to 

evaluate other change detector algorithms for drift detection. Another necessary extension is 

to detect concept drifts online. Furthermore, as we have defined an experimental protocol for 
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comparing different tools, we plan to compare IPDD with other experimental tools which 

provide that source code, e.g., DOA (Zellner et al., 2020), CDESF Toolkit (Mora et al., 2020; 

Tavares et al., 2019), and LCDD (L. Lin et al., 2020). Another future work is to evaluate the 

user interface of the IPDD to verify its simplicity and usability for showing the process drifts.  
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