
Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

BioNestedNER: A Two-Phase Method For

Recognizing Nested, Discontinuous, And

Multi-Type Named Entities Using Transformers

And Multi-Label CRF

Elisa Terumi Rubel Schneider

Supervisor

Prof. Dr. Emerson Cabrera Paraiso

Co-Supervisor

Prof. Dr. Cláudia Maria Cabral Moro Barra

Curitiba
2023



Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

BioNestedNER: A Two-Phase Method For

Recognizing Nested, Discontinuous, And

Multi-Type Named Entities Using Transformers

And Multi-Label CRF

Elisa Terumi Rubel Schneider

Thesis Project presented to the Programa de

Pós-Graduação em Informática as a partial

requirement for the degree of Doctor in

Informatics.

Major Field: Computer Science

Supervisor: Prof. Dr. Emerson Cabrera

Paraiso

Co-supervisor: Prof. Dr. Cláudia Maria

Cabral Moro Barra

Curitiba
2023



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        
 
 
 
 

Dados da Catalogação na Publicação 
Pontifícia Universidade Católica do Paraná 

Sistema Integrado de Bibliotecas – SIBI/PUCPR 
Biblioteca Central 

Sônia Maria Magalhães da Silva – CRB 9/1191 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  
 Schneider, Elisa Terumi Rubel 
S358b      BioNestedNer : a two-plase method for recognizing nested, discontinuous, and 
2023 multi-type named entities using transformers and multi-label CRF / Elisa Terumi  
 Rubel Schneider ; supervisor: Emerson Cabrera Paraiso ; co-supervisor: Cláudia  
 Maria Cabral Moro Barra. – 2023 
  xvi, 154 f. ; il.  :  30 cm 
  
  
      Tese (doutorado) – Pontifícia Universidade Católica do Paraná, Curitiba, 2023 
  Bibliografia: f. 139-154 
  
  
      1. Processamento de linguagem natural (Computação). 2. Processamento de  
 eventos (Ciência da computação). 3. Aprendizado do computador. 4. Informática.  
 I. Paraiso, Emerson Cabrera. II. Barra, Cláudia Maria Cabral Moro, 1969-. 
 III. Pontifícia Universidade Católica do Paraná. Programa de Pós-Graduação em  
 Informática. IV. Título. 
                                                                                          CDD. 20. ed. – 004 
                                                                                              



Pontifícia Universidade Católica do Paraná
Escola Politécnica
Programa de Pós-Graduação em Informática

                                                                                                                 

Curitiba, 01 de setembro de 2023.

74-2023

DECLARAÇÃO

Declaro para os devidos fins, que ELISA TERUMI RUBEL SCHNEIDER 

defendeu  a  tese  intitulada  “BioNestedNER:  A  Two-Phase  Method  For 

Recognizing Nested, Discontinuous, And Multi-Type Named Entities Using 

Transformers And Multi-Label CRF”,  na área de concentração Ciência da 

Computação no dia 24 de julho de 2023, a qual foi aprovada.

Declaro  ainda,  que  foram feitas  todas  as  alterações  solicitadas  pela 

Banca Examinadora, cumprindo todas as normas de formatação definidas pelo 

Programa.

Por ser verdade firmo a presente declaração.

_________________________________
Prof. Dr. Emerson Cabrera Paraiso

Coordenador do Programa de Pós-Graduação em Informática

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil
Fone: (41) 3271-1669 e-mail: secretaria@ppgia.pucpr.br



A mente que se abre a uma nova ideia jamais volta ao seu tamanho original. - Albert
Einstein



Abstract

Named Entity Recognition (NER) is a fundamental task in Natural Language
Processing (NLP) that allows relevant information to be extracted from unstruc-
tured data. NER can serve as a foundation for other NLP tasks, such as relation
and event extraction, and has applications in many fields. Although there are
different methods and techniques for entity recognition, the traditional NER
approach assumes that entities are continuous and non-overlapping, which is
not always true in real-world scenarios. Nested and discontinuous entities are
common in texts, such as in clinical and biomedical domains, where multiple en-
tities can be nested within each other, and mentions can have gaps between them.
Moreover, entities can have multiple types, making NER a multi-label classifi-
cation problem. This thesis proposes BioNestedNER, a two-phase method for
nested, discontinuous, and multi-type entity recognition in clinical and biomed-
ical texts. Our method is formed by a) a Transformer-based model utilizing a
Machine Reading Comprehension NER approach, where the NER task is for-
mulated into a Question-Answering similar task (the mention of the entity is the
answer to a question and the sentence, the paragraph), and b) a Conditional Ran-
dom Field trained to address multi-label sequence labeling, particularly useful
as nested entities can be handled as multi-type entities. In nine NER experi-
ments using six corpora (in English and Portuguese), we evaluate our method
in the clinical and biomedical domains, obtaining state-of-the-art results in the
micro F1 score in six experiments. We also found that our method was more
effective in identifying these complex entities than similar methods. We are also
releasing a new clinical corpus in the Brazilian Portuguese language annotated
with nested and discontinuous entities. This corpus is a new resource for de-
veloping and evaluating models that can handle the complexity of these entities
and facilitate the advancement of tools and language models for clinical NER,
which can significantly impact healthcare applications. Our proposed method
provides a flexible and efficient NER solution that can handle nested, discontin-
uous, and multi-type entities. It can benefit many applications, including drug
discovery, biomedical information retrieval, and clinical decision-making.
Key-words: natural language processing, named entity recognition, complex
entities, Transformer architecture, machine learning, conditional random field,
language models
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Resumo

O Reconhecimento de Entidades Nomeadas (REN) é uma tarefa fundamental no
Processamento de Linguagem Natural (PLN) que permite extrair informações
relevantes de dados não estruturados. O REN pode servir como base para outras
tarefas de PLN, como extração de relações e eventos, e tem aplicações em muitos
campos. Embora existam diferentes métodos e técnicas para o reconhecimento
de entidades, a abordagem tradicional de REN assume que as entidades são con-
tínuas e não se sobrepõem, o que nem sempre ocorre no mundo real. Entidades
aninhadas e descontínuas são comuns em textos, como nos domínios clínico e
biomédico, onde múltiplas entidades podem estar aninhadas umas nas outras, e
menções podem ter lacunas. Além disso, as entidades podem pertencer a vários
tipos, tornando o REN um problema de classificação multi-rótulo. Nesta tese,
propomos BioNestedNER, um método de duas fases para o reconhecimento de
entidades aninhadas, descontínuas e multi-tipo em textos clínicos e biomédi-
cos. Nosso método é formado por a) um modelo baseado em Transformer que
utiliza uma abordagem de Compreensão de Leitura de Máquina, no qual a
tarefa de REN é formulada como uma tarefa semelhante a Question-Answering
(a menção da entidade é a resposta a uma pergunta e a sentença, o parágrafo),
e b) um modelo Conditional Random Field treinado para lidar com rotulação de
sequência multirrótulo, particularmente útil uma vez que entidades aninhadas
podem ser tratadas como entidades multi-tipo. Avaliamos nosso método nos
domínios clínico e biomédico, em nove experimentos de REN usando seis corpora
(em inglês e português), obtendo resultados estado-da-arte na métrica F1 micro
em seis experimentos. Nosso método também foi mais eficaz em identificar
essas entidades complexas em comparação com métodos semelhantes. Além
disso, estamos disponibilizando um novo corpus clínico em língua portuguesa
(do Brasil) anotado com entidades aninhadas e descontínuas. Esse corpus é um
novo recurso para desenvolver e avaliar modelos que possam lidar com a com-
plexidade dessas entidades, e facilitar o avanço de ferramentas e modelos de
linguagem para REN clínico, o que pode impactar significativamente aplicações
de saúde. Nosso método proposto oferece uma solução flexível e eficiente de
REN que pode lidar com entidades aninhadas, descontínuas e multi-tipo. O
método tem o potencial de beneficiar muitas aplicações, incluindo descoberta
de medicamentos, recuperação de informações biomédicas e tomada de decisões
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clínicas.
Palavras-chave: processamento de linguagem natural, reconhecimento de enti-
dades nomeadas, entidades complexas, arquitetura Transformer, aprendizagem
de máquina, conditional random field, modelos de linguagem, textos clínicos.
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1
Introduction

Natural Language Processing (NLP) is a field of study that focuses on the in-
teraction between computers and humans using natural language, i.e., the writ-
ten or spoken language that humans use to communicate. NLP tasks deal with
the automatic processing and analysis of human language, enabling computers
to understand, interpret, extract, generate, and utilize human language in a use-
ful way. NLP techniques include language modeling, information extraction (as
named entity recognition), semantic analysis, text classification, machine trans-
lation, and others. With the increasing use of electronic health record (EHR)
systems, NLP techniques are widely used in the medical domain, extracting
patients’ valuable information and supporting decision-making related to the
health area.

Named Entity Recognition (NER) is one of the most used NLP tasks, which
allows the machine to acquire knowledge from unstructured texts by recognizing
and identifying meaningful entities in text passages, such as persons, organi-
zations, and locations. Usually, NER is used as support for other NLP tasks,
like document summarization, question answering, and relationship extraction,
among others. In the clinical domain, NER can identify medical concepts, such
as diseases, symptoms, and drugs, providing a basis for other data analysis like
predicting future clinical events and relation extraction between entities. The
application of NER in the clinical domain can support clinical research, pharma-
covigilance, diagnostic support, biomedical research, treatment customization,
and others.
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Traditionally, the NER task is defined as: given a sequence of tokens 1, return
a list of tuples <Is, Ie, t>, each mentioning an entity. In this work, the "mention
of the entity" is treated as a synonym for the word "entity", and the semantic
groups that define the entity are called "entity types". Is and Ie represent the start
and end indexes of the entity mentioned, respectively, and t is the entity type
from a predefined category. Therefore, we have two premises: 1) a mention of
an entity consists in a continuous sequence, whose words belong to the interval
between Is and Ie, and 2) mentions do not overlap (DAI, 2018). This traditional
entity is called a “flat entity”.

Besides flat entities, the authors of (DAI, 2018) define "complex entities" as
entities that are nested, incorporated, overlapped, discontinuous, and/or multi-
type. These entities do not adhere to the previously mentioned assumptions for
the NER task. Such entities often contain valuable information for downstream
tasks and are very common in clinical and biomedical texts (FINKEL; MAN-
NING, 2009). For instance, various biological entities of interest are frequently
composed of one another, such as proteins, genes, and chemical substances,
forming nested or overlapping entities (WANG; LU, 2018), (ALEX; HADDOW;
GROVER, 2007), (LU; ROTH, 2015). Discontinuous entities occur when entity
mentions consist of non-sequential words in the text. An example from the
GENIA corpus (KIM et al., 2003) is the expression "alpha and beta-globin",
where "alpha-globin" is considered a discontinuous entity. Another scenario in-
volves entities having multiple types simultaneously, referred to as "multi-type"
entities. In this case, each mention can belong to more than one entity type,
resembling a multi-label scenario. As an example, in the fictional sentence "The
patient received insulin", the term "insulin" can be associated with hormone,
pharmacologic substance, and protein-like entity types concurrently, a common
situation in the SemClinBr corpus (OLIVEIRA et al., 2022)

Although the term “complex entities” has been recently used to reference an
entity composed of multiple components, formed by any linguistic constituent
(as titles of creative works), semantically ambiguous, or in some way, difficult
to recognize (as in SemEval-2022 task 11 (MALMASI et al., 2022)), in this work,
we refer to complex entities following the definition of (DAI, 2018), where these

1"Token" refers to a sequence of contiguous characters that represent a semantic unit in a
text. To facilitate understanding, in this work, we consider “word” synonymous with “token”,
although they are different in some situations. A comma, for example, is a token but not a word.
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Figure 1.1: Fictitious examples of complex entities in a clinical text.

entities are formed by: a) nested and overlapping, b) discontinuous, and c)
multi-type mentions.

Figure 1.1 presents examples of complex entities that can occur in clinical
text. Entity 1 refers to "muscle pain", and entity 2, "muscle fatigue". The word
"muscular" in both entities represents an example of mentions with overlapping,
and the expression "muscle fatigue" is an example of a discontinuous entity.

As presented by (LI et al., 2022), four approaches are used to execute the
traditional NER task: rule-based, unsupervised learning, resource-based su-
pervised learning, and deep learning. Deep learning approaches have reached
the state-of-the-art in various corpora for NLP tasks such as NER, discover-
ing data representations with various levels of abstraction necessary for entity
classification.

Among deep learning architectures, Transformer (VASWANI et al., 2017)
proved to better capture the global dependencies of input texts in relation to
other architectures, such as those based on recurrent neural networks (RNN),
performing better in several learning tasks (LI et al., 2022). BERT (Bidirectional
Encoder Representations from Transformers) is an example of a Transformer-
based model, which reached state-of-the-art in 11 NLP tasks and inspired several
models based on its architecture (DEVLIN et al., 2019).

1.1 Motivation

Although nested, discontinuous, and multi-type entities are common in sev-
eral domains, such as clinical and biomedical, the traditional NER methods are
not naturally prepared to deal with the characteristics of these complex entities,
typically requiring the use of advanced NLP techniques and/or sophisticated
applications (WANG et al., 2022).

Approaches to the recognition of complex entities involving incorporated
and discontinuous entities generally present, according to (DAI, 2018):
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• Lack of expressivity, e.g., in token-level approaches, usually the tagging
schema presents some intrinsic restrictions; and/or

• Computational complexity, as in sentence-level approaches since the ex-
haustive enumeration of possible entities is exponential and relative to the
length of the sentence.

Besides, most proposed methods do not consider recognizing all complex
entities, generally focusing on nested entities and leaving the discontinuous and
multi-type ones aside. Some NER methods have been adapted to recognize
nested entities, violating the first premise of the NER task presented above,
guaranteeing the identification of embedded entities. However, the second
premise is still little studied and requires handling with discontinuous mentions,
which are particularly challenging (DAI, 2018). Moreover, few works focus on
recognizing multi-type entities, contributing to their high ambiguity in assigning
the correct label to a mentioned span. Recognizing discontinuous and multi-type
entities represents gaps in recognizing complex entities, a common situation in
clinical and biomedical texts. The failure to identify complex entities can lead
to the loss of relevant information. For instance, within the biomedical corpus
GENIA (KIM et al., 2003), around 31.64% of entities are nested (CHEN et al.,
2020). Neglecting these entities translates to disregarding a significant portion
of potentially valuable information. Furthermore, in the context of the Rare
Disease corpus (MARTíNEZ-DEMIGUEL et al., 2022), which includes clinical
concepts, nested entities are very common in sign, disease, and rare disease
entity types, often with overlapping mentions.

Another gap we identified is the small number of corpora annotated with
complex entities in health sciences. To the best of our knowledge, the Portuguese
language has no corpus with nested and discontinuous entities in the clinical
domain.

This work proposes a two-phase method for recognizing nested, discontin-
uous, and multi-type entities. The first phase employs an MRC-based NER
approach, also called QA-NER, where the NER task is framed as a question-
answer machine reading comprehension task. This approach leverages the
power of machine comprehension techniques to extract entities in a more ac-
curate and context-aware manner. In the second phase, a Conditional Random
Field (CRF) model is trained specifically to handle multi-label sequence labeling,
handling the complexities of identifying entities that can have multiple labels or
be part of nested structures. The final results were obtained by combining the
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outputs of the two different models.
In the MRC-based NER approach, proposed by (LI et al., 2020) and explored

in the works of (ZHANG et al., 2020), (SHEN et al., 2022) and (BANERJEE et al.,
2021), a model is trained similarly to a Question-Answering task, extracting the
entities as answers spans to the question. In the same way as (BANERJEE et al.,
2021), our method differs from (LI et al., 2020) and (SHEN et al., 2022) in the
way the model is trained to return responses. While in the traditional QA task,
the output refers to the index(es) of the entity(ies) found in the sentence, our
method appropriates the process in which the NER task works, returning the
output in a token-level way. We consider a hybrid task between QA and NER,
presenting computational simplicity, flexibility, and reaching the state-of-the-art
in some situations.

The proposed method addresses the two challenges highlighted by (DAI,
2018) in the recognition of complex entities. Firstly, it allows the utilization of
the NER tagging scheme, such as IOBES or IOB2, since each entity found is a
response to a specific query. Secondly, the method does not demand computa-
tional complexity like methods that exhaustively enumerate all regions in the
text.

We further simplified the work of (BANERJEE et al., 2021) by removing the
CNN module, since Transformer models already worked with word context,
and added a layer to handle discontinuous and nested entities of the same type,
in an end-to-end model. Additionally, we improved their method by adding
a treatment to improve class imbalance, as this approach generates more "O"
(non-entity) type tokens than normal NER. In our method, we also trained CRF
models adapted to find multi-type entities, using both syntactic and semantic
characteristics of the words and their context as input features. The final results
are the union of the outputs generated by the QA-NER-based method with
the results from the CRF, helping to increase recall by adding results from two
different methods. Combining methods can improve coverage by leveraging the
complementarity and redundancy of different approaches.

We also use the Transformer architecture (VASWANI et al., 2017), state-of-
the-art to NLP tasks, and the fine-tuning technique to take advantage of the
weights of a generic pre-trained base model on a massive amount of text data,
fine-tuning on a specific downstream task with relatively few labels. As we
focus on finding the complex entities in clinical and biomedical texts (but not
restricted to), we call our method "BioNestedNER".
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Since complex entities are common in health sciences texts, as verified by
(FINKEL; MANNING, 2009) and (WANG; LU, 2018), we implement some ex-
periments with our method (both with complex and flat entities), in clinical and
biomedical domains, and in English and Portuguese languages. Also, to further
validate our method and promote research in this domain, we annotated a small
corpus called "NestedClinBr", containing clinical notes labeled with complex
entities in Brazilian Portuguese.

1.2 Objectives

The main objective of this research is to develop a named entity recognition
method that also considers nested, discontinuous, and multi-type entities, using
state-of-the-art architecture for NLP such as Transformer architecture and deep
learning.

The specific objectives of this project are presented as follows:

• To study existing approaches that address the recognizing of complex
named entities to compare with the proposed method (Chapter 3 - Related
Works);

• To search available NER corpora containing complex entities in English and
Portuguese languages to perform experiments (Chapter 4 - Methodological
Procedures, item 4.2 - Exploratory Phase);

• To develop a two-phase method that combines the QA-NER approach with
CRF to recognize nested, discontinuous, and multi-type entities, while
achieving competitive results without the high computational demands
associated with exhaustive methods (Chapter 5 - Method);

• To develop a guideline for human annotations of nested and discontinuous
entities in clinical texts in Portuguese (Chapter 6 - A New Portuguese-
language Clinical Corpus, item 6.0.4 - Annotation Guidelines);

• To build a corpus with clinical texts in Brazilian Portuguese contain-
ing nested and discontinuous entities (Chapter 6 - A New Portuguese-
Language Clinical Corpus);

• To train clinical and biomedical Transformer-based models for Portuguese
language (Chapter 7 - Portuguese-language Models for Clinical and Biomed-
ical Domains);

• To evaluate the proposed method in both English and Portuguese (a low-
resource language), in clinical and biomedical domains (Chapter 8 - Ex-
periments, Results, and Discussion).
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1.3 Hypotheses

This research presents three hypotheses, each one being discussed and eval-
uated throughout this work:

H1 A new NLP task, which combines aspects of both NER and QA, allows the
successful recognition of nested, multi-type, and discontinuous entities,
yielding competitive results with literature methods;

H2 By incorporating a multi-label CRF model into the Transformer-based
model, the method improves the coverage of nested and multi-type en-
tities;

H3 We hypothesize that our method achieves state-of-the-art performance in
NER task, when performed in corpora containing complex entities.

1.4 Contributions

The scientific contributions of this thesis are:

• A enhanced QA-NER task, with a treatment for class imbalance and also
adapted for recognizing discontinuous entities and nested entities of the
same type;

• A new publicly available Brazilian-Portuguese clinical corpus manually
annotated with nested and discontinuous entities.

The technological contributions of this thesis are:

• The implementation of multi-label CRF models;

• A Wod2vec model trained with Brazilian clinical texts;

• A publicly available clinical Transformer-based POS-tagger model;

• Publicly available pre-trained models for Portuguese in the clinical and
biomedical domains.

The recognition of nested, multi-type, and discontinuous entities is highly
challenging and has received limited attention. Our method addresses this gap
by proposing a new approach to identify and extract these intricate entity struc-
tures. By combining techniques from both QA and NER domains, our method
opens new avenues for more accurate and comprehensive entity recognition in
natural language texts.
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All source code to execute the method is being made publicly available. As a
contribution to the health domain, we can mention that extracting information
from clinical notes and biomedical texts (unstructured data) can contribute to the
clinical practice as an improvement of medical processes and decision support
systems and in biomedical research (e.g., clinical trials, pharmacovigilance),
being integrated into many pipelines and supporting other NLP tasks.

1.5 Scope

The scope of this research is limited to the recognition of flat and complex
named entities using CRF, deep learning, and Transformer architecture, being
evaluated by publicly available datasets for the research community. Although
we focus on clinical and biomedical domains and for English and Portuguese
languages, the method can be helpful in other domains and languages.

1.6 Financial Support

This thesis was financed in part by the "Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil" (CAPES), a research agency from the Ministry
of Education from Brazil (Ministério da Educação – MEC), with Finance Code
001. Also, between September 2021 and January 2022, the Ph.D. candidate stayed
at the Universidad Carlos III de Madrid (UC3M), Spain, under the supervision
of Professor Paloma Martinez, financed by CAPES under the "Programa de
Doutorado-sanduíche no Exterior" (PDSE) program. Finally, for five days in
November 2021, the development of this thesis took place at HES-SO, in Geneva,
Switzerland, under the supervision of Professor Douglas Teodoro, with the
travel expenses financed by the program "Leading House for the Latin American
Region - Seed Money Grants 2019 (SMG nº 1922), Centro Latinoamericano-
Suizo de la Universidad de San Gallen (CLS-HSG)", in the project “Exploring
deep language models to leverage Portuguese and French biomedical semantic
resources”.

1.7 Overview

The research project document is structured as follows:
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• Chapter 1, the current chapter, offers an overview of the context in which
this research work is inserted, identifying the objective, hypotheses, con-
tributions, and other relevant information;

• Chapter 2 introduces all the theoretical foundation, with the main topics,
challenges, and concepts related to the research to understand the work
and support the study development;

• Chapter 3 presents the state-of-the-art and related work on complex entity
recognition, yielding a survey of existing works;

• Chapter 4 presents the methodological procedures adopted in work;

• Chapter 5 presents the proposed method with its assumptions and limita-
tions;

• Chapter 6 exposes the results of experiment E1, which refers to the devel-
opment of a new corpus, NestedClinBr;

• Chapter 7 explains the new resources developed, results of the experi-
ment E2, i.e., the training of Portuguese clinical and biomedical language
models;

• Chapter 8 shows the results of the experiments E3 to E9 with BioNest-
edNER, evaluating and comparing with baseline and literature methods,
presenting a discussion about the results, and revisiting the research goals
and hypothesis;

• Finally, in Chapter 9, the conclusion of this thesis is presented, with the
research contributions and future work.
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2
Background

In this chapter, we first present some characteristics, challenges, and contri-
butions to the use of NLP in the clinical and biomedical domains. Next, the
basic concepts about the named entity recognition task, complex entities, tag-
ging schemas, NER approaches, and class imbalance are presented. We address
the Conditional Random Field model, the contextual language models of word
representation, and the Transformer architecture. We present some pre-trained
language models, as well as the concept of fine-tuning.

2.1 NLP on Clinical and Biomedical Domains

Research on Artificial Intelligence (AI) with a focus on the healthcare sector
has been enabling a wide variety of potential applications that are particularly
valuable in the medical context (DUDCHENKO; GANZINGER; KOPANITSA,
2020). The EHR systems store a large volume of clinical patient data, such as
demographic information, care histories, medical developments, clinical narra-
tives, and hospital discharge summaries, which can support hospital processes,
health services, and clinical research. Access to information is essential to offer
quality healthcare assistance, which has improved the NLP techniques applied
in clinical narratives.

However, besides the clinical texts being written in free text, they have some
particular characteristics that make the extraction of medical information a real
challenge. Usually, these texts do not have a defined formal structure and
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are likely to contain grammatical errors, typos, high use of medical acronyms,
medical jargon, lexical and semantic sparse, noises, and complex dependencies
between variables (DALIANIS, 2018). Also, another challenge working with
clinical narratives is its low availability, given the sensitive nature of health data
and privacy concerns (SCHNEIDER et al., 2020).

Among the information extraction subtasks, NER is one of the most used in
the clinical domain since it automatically extracts and encodes clinical concepts,
entities (such as drugs, diseases, procedures, infections, comorbidities), and
events, as pointed out by (DALIANIS, 2018) and (ZHANG; ELHADAD, 2013),
as well as in biomedical research, providing valuable clinical and biomedical
information.

2.2 Named Entity Recognition

Named entity recognition is an NLP subtask that aims to locate and classify
named entities present in a text into predefined categories such as person names,
organizations, locations, medical codes, and time expressions. The goal of NER
is to extract structured information from unstructured data, according to their
meaning in the text. NER is a token classification task, like the Part-of-Speech
(POS) tagging, in which each token in the sentence has an output, representing
its type of entity (or "O" for non-entity). One of the most important NLP tasks,
as it serves as a basis for other tasks, NER can be divided into two subtasks:
a) identifying mentions of relevant entities in the text, and b) classifying them
into predefined categories of interest. Figure 2.1 presents an example of named
entities identified in a random Spanish text from the NER Conll 2002 corpus
(SANG, 2002), highlighting entities of type Person (in orange), Location (in
green) and Organization (in blue).

Although it seems simple for humans, entity recognition is a challenge for
computational models, since each entity can present ambiguity or different
meanings depending on its context. Relevant entity extraction is useful in
many problems such as machine translation, information retrieval, question-
and-answer systems, and summarization. In biology, for example, the NER task
can extract predefined concepts from raw texts, such as protein names. In clin-
ical text processing, it can be useful to identify adverse drug events in patients
or extract key information from patients’ electronic medical records. These ap-
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Figure 2.1: Examples of entities found in a Spanish text present in the Conll2002
corpus (SANG, 2002)

plications require the identification of specific entities from the biomedical and
clinical domains, respectively (DAI, 2018).

With the adoption of electronic health records (or electronic patient records)
and the growing number of publications in the health domain, a large amount of
clinical and biomedical texts are becoming available. At the same time, the aca-
demic community has devoted significant efforts to the creation of standardized
terminologies and knowledge bases, facilitating the extraction of information
from raw data (ZHANG; ELHADAD, 2013). The barrier in clinical informa-
tion processing, therefore, is no longer collecting data, but using available data
through scalable models to process large amounts of text. The quality of en-
tity recognition in the health area (clinical and biomedical) strongly impacts
the performance of other tasks, fundamental in clinical language processing,
identifying and mapping terms into semantic categories (ZHANG; ELHADAD,
2013).

Complex Entities

While flat entities are mentions in the text formed by one or more continuous
terms that do not overlap, in this work we consider complex entities 1 the entities
that involve nested, overlapping, discontinuous mentions and/or belonging to
more than one semantic type (e.g. caused by polysemy). As an example, in
the sentence "Bill and Hillary Clinton went to Canada", we have the following
references to the entity type "Person": "Bill Clinton" and "Hillary Clinton". The
first mention is an example of a discontinuous entity, formed by non-sequential
words in the text, and the word "Clinton" is an example of an overlapping

1We do not follow the definition adopted by SemEval-2022 task 11, as explained earlier.
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mention, used in two separate mentions. In the text "Bank of China", the word
"China" represents an entity of type "Local" and "Bank of China", "Organization".
This is an example of nested or embedded entities.

Following the definition of (DAI, 2018), in this work, we consider complex
entities the entities formed by mentions:

• Nested or embedded: when a mention of an entity is completely incor-
porated by another. We call the involved mentions "nested mentions". In
Figure 2.2(a) we can see nested entities, a Protein "TNF-alpha" and a DNA
"human TNF-alpha promoter".

• Overlapping: when two mentions overlap but are not completely contained
by each other. Besides other situations, this can occur with discontinuous
entities, as an example in Figure 2.2(b), where the "c-jun early response
genes" and "c-fos early response genes" entities share tokens in common
("early response genes").

• Discontinuous: when the mention consists of discontinuous tokens, i.e.
the mention contains at least one gap or interval between the terms (to-
kens) that compose it. An example can be seen in Figure 2.2(b), where the
expression "c-jun early response genes" is an entity formed by discontinu-
ous terms;

• Multi-type, where a mention may belong to more than one type of entity
(also called a "multi-category" entity in (WANG et al., 2022)). This may be
due to polysemy, when a mention can be classified into different semantic
classes. An example is presented in figure 2.2(c), where "nitric oxide
synthase" is both a Protein and a DNA entity, according to the annotation
in the GENIA corpus.

Figure 2.2: Examples of complex entities, present in the GENIA corpus (KIM et
al., 2003)
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These complex entities can contain useful information for other tasks, for
example, the nested and overlapping structure itself can be a good indicator of
the relationship between the different entities involved. Also, the recognition of
complex mentions can contribute to building a knowledge base, and identifying
discontinuous mentions can improve the performance of a machine translation
system. In addition, complex structures can also exist for other NLP tasks, such
as recognition of multiword phrases (LI et al., 2022). The proposed methods for
recognizing complex entities can be applied to face similar difficulties in tasks
other than NER.

Labeling schemes

As NER is a token-level task, there are some tagging schemes applied in the
labeling of instances to identify the limits of the mention. The most common in
the literature are:

• IO, where I represents an internal token of an entity ("inside") formed by
one or several tokens, and O, a token that does not represent any entity
("outside").

• IOB: proposed by (RAMSHAW; MARCUS, 1995), has a similar format to
the IO with the inclusion of the B that indicates the first token of an entity
("begin") but just when followed by another, delimiting the entities.

• IOB2 (or BIO): a variant of the IOB format, proposed by (SANG; VEEN-
STRA, 1999), where the B tag is used at the beginning of all mentions.

• IOE: in this format, the E indicates the last token ("end") of a mention
involving several tokens (SANG; VEENSTRA, 1999).

• IOE2: similar to IOE, but the E tag is used at the end of all mentions
(SANG; VEENSTRA, 1999).

• IOBES (or BILOU): the B, I, O tags have the same usage as the IOB2 format,
the E tag has the same usage as the IOE format, and S indicates an entity
formed by just one token ("single") (DAI et al., 2015).

Table 2.1 presents an example of the different tagging formats for represent-
ing local (LOC) and person (PER) entities.
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Table 2.1: Example of tagging for NER in the different formats available.

Format The artist was born in Rio de Janeiro , RJ .

IO O I-PER O O O I-LOC I-LOC I-LOC O I-LOC O

IOB O I-PER O O O B-LOC I-LOC I-LOC O I-LOC O

IOB2 O B-PER O O O B-LOC I-LOC I-LOC O B-LOC O

IOE O I-PER O O O I-LOC I-LOC E-LOC O I-LOC O

IOE2 O E-PER O O O I-LOC I-LOC E-LOC O E-LOC O

IOBES O S-PER O O O B-LOC I-LOC E-LOC O S-LOC O

Although these labeling schemes are widely used in the literature, they
cannot represent nested and discontinuous entities.

Approaches

There are four main approaches used in named entity recognition, according
to (LI et al., 2022):

1. Rule-based: Early NER research used rules created by humans to extract
entities, usually with a set of grammatical patterns, linguistic analyses,
and dictionaries. They present reasonable results in restricted domains
but with little portability and robustness and high maintenance cost of the
rules (MANSOURI; AFFENDEY; MAMAT, 2008).

2. Based on unsupervised learning: In the unsupervised approach, NER
systems are cluster-based, extracting named entities from groups based on
context similarity. The lexical features, patterns, and statistics computed
in a large corpus are used to infer mentions of named entities, as in the
work of (ZHANG; ELHADAD, 2013).

3. Based on supervised learning: In the supervised approach, NER is used as
a token classification, or labeling task. Through the data samples, features
are carefully designed to represent each training example, allowing ma-
chine learning algorithms to learn a model to recognize similar patterns.
Added to the machine learning algorithm, the vector representation of
words was widely used in supervised NER systems.

4. Based on deep learning: In recent years, deep learning approaches to
NLP tasks, including NER, have become dominant and have reached the
state-of-the-art in various corpora. Deep learning allows the discovery
of representations of data with various levels of abstraction, with deep
artificial neural networks, discovering necessary representations for the
classification or detection of entities. A traditional use for the NER task
was the combination of BiLSTM (a deep learning neural network, being
a type of recurrent neural network) with Conditional Random Fields, as
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in the work proposed by (MA; HOVY, 2016). The CRF algorithm is a
statistical modeling method often applied in NLP, as it takes into account
the context of the instance to be classified, implementing dependencies
between predictions. There are three strengths of the deep learning appli-
cation: a) the NER benefits from the non-linear transformation, being able
to learn complex data patterns via non-linear activation functions, b) the
deep learning saves significant effort in the generation of labeled data, not
requiring a considerable amount of domain skill and experience; c) NER
models with deep learning can be trained in the end-to-end paradigm,
by gradient descent, allowing to design more complex systems (LI et al.,
2022).

Allied with deep learning, the recent NER methods are being developed
with contextual word embeddings and Transformer architecture, which will be
seen next.

Class Imbalance

Class imbalance is a common problem in NLP tasks where one or more
classes are significantly underrepresented in the data, which usually occurs in
classes rare or infrequent. Class imbalance can negatively impact the perfor-
mance of NLP models, leading to poor recall and precision for the minority
class(es).

The problem of class imbalance is particularly severe in NER tasks, where the
class "O" (corresponding to non-entities) is typically much more frequent than
the other classes. This imbalance can significantly impact the performance of
NER systems, especially in terms of recall, as they tend to prioritize the accuracy
of the majority class at the expense of the minority classes. For example, the
ratio of the class "O" is up to 5 times more common in CoNLL03 corpus and 8
times in Ontonotes5.0 (AMOR; GRANITZER; MITROVIć, 2023).

In Figure 2.3, we have examples of class balancing in GENIA (a), Nested-
ClinBr (b), and Rare Disease (c) corpora. The number of tokens with annotation
of entities vs non-entities (class O) is shown, where we notice that the number
of non-entities is naturally higher.

Several techniques have been proposed in the literature to mitigate the im-
pact of class imbalance in NLP, including sampling techniques (e.g. oversam-
pling, undersampling, and position bias), modified loss functions, and ensemble
methods. The work of (GRANCHAROVA; BERG; DALIANIS, 2020) show that
both undersampling the negative class and oversampling the minority positive
classes can improve recall in NER for class imbalanced data, however with a
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Figure 2.3: Class imbalance (entity vs non-entity) in GENIA, NestedClinBr, and
Rare Disease corpora, in train dataset.

negative impact on precision, since the models have been trained on higher ra-
tios of positive samples than are present in the test data, causing them to tend
towards labeling more samples as positive. A recent work has proposed two
methods to deal with the class imbalance and position bias of positive exam-
ples in token classification tasks, with Random Position Shifting and Context
Perturbation techniques (AMOR; GRANITZER; MITROVIć, 2023). For the NER
task, the authors obtained improvement in results on the CoNLL03 corpus, how-
ever, on OntoNotes5.0 no improvements were achieved, indicating that further
investigations should be performed.

Another approach is to modify the loss function to give more weight to
the minority classes in training, penalizing incorrect classification of samples
from minority classes more than that of samples from majority ones. The loss
function is a key component of training a machine learning model, as Cross
Entropy (CE), a commonly used loss function in classification tasks. It measures
the difference between the predicted probability distribution and the actual
probability distribution of the classes.

In cases where the classes are imbalanced, it can be useful to define weights
for each class to ensure that the model does not prioritize the majority class
and instead learns to predict all classes accurately. The class weights can be
assigned based on the frequency of each class in the training data or based on
the importance of each class to the specific task. By incorporating class weights,
the model can learn to give equal importance to all classes, leading to better
overall performance (PANCHAPAGESAN et al., 2016). Using class weights can
be advantageous in managing the positive-to-negative token ratio, as it preserves
the text structure, unlike undersampling. Oversampling can negatively impact
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precision, possibly due to mismatches between the structure of training and test
data. This implies that utilizing class weights rather than undersampling can
be a potential solution for improvement, as pointed out by (GRANCHAROVA;
BERG; DALIANIS, 2020).

2.3 Conditional Random Field

CRF is a probabilistic model very used for sequence labeling tasks such as
NER. The input sequence is typically a sentence, and the output is a sequence
of entity labels, one for each token in the input. The CRF model learns to
assign a probability to each possible output sequence given the input sequence,
selecting the most likely output sequence as the predicted labels (LAFFERTY;
MCCALLUM; PEREIRA, 2001). Let X = (x1, x2, ..., xn) a sequence of words in
a sentence, to determine the best sequence of labels Y = (y1, y2, ..., yn) for these
words (corresponding to the categories of entities or "O" to non-entity), the
CRF models a conditional distribution p(y|x) that represents the probability of
obtaining the output y given the input x. A linear-chain CRF can be formulated
as Equation (1), where the normalization constant Z(x) is a sum of all possible
state sequences such that the total becomes 1.

𝑝(𝑦 |𝑥) = 1
𝑍(𝑥)

𝑇∑︂
𝑡=1

𝑒𝑥𝑝

{︄
𝐾∑︂
𝑘=1

𝜃k 𝑓 k(𝑦t, 𝑦t-1, 𝑥t)
}︄

(1)

This method can model dependencies between neighboring labels, which is
important in NER since the label of a token is often dependent on the labels of its
neighboring tokens. For example, if the label of the previous token is "B-DNA"
(beginning of an entity), the current token is more likely to be labeled as "I-DNA"
(inside an entity) than "O" (outside).

CRFs are usually trained on labeled data using a maximum likelihood es-
timation approach, maximizing the likelihood of the training data given the
model parameters. The model parameters include feature weights (which cap-
ture the importance of different features in predicting the labels), and transition
weights (which capture the importance of transitioning from one label to an-
other). In NER tasks, the features typically include information about the token
itself, such as its POS tag and its word shape, as well as contextual information
such as the labels of neighboring tokens. The transition features capture infor-
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mation about the likelihood of transitioning from one label to another, based on
patterns observed in the training data.

Despite the recent advances in contextual models such as the Transformer
architecture, CRFs remain an important tool in NLP, providing a way to model
sequential data taking into account the dependencies between labels of adjacent
tokens. This is especially useful for tasks such as NER, where the context of
a token can be critical in determining its label. A comparative study between
CRF and Support Vector Machines (SVM) for clinical NER was presented by
(LI; SAVOVA; KIPPER-SCHULER, 2008). It was evaluated in a set of gold stan-
dard NER and demonstrated that CRFs outperformed SVMs in terms of F-score.
Other studies in biomedical NER task were made by (PONOMAREVA et al.,
2007) and (MADY; AFIFY; BADR, 2022), where the first one compared CRF with
Hidden Markov Models (HMMs), demonstrating that CRF-based models were
superior to HMM in F-score, and the second, achieved satisfactory results in GE-
NIA corpus with SVM and CRF. Outside the biomedical domain, other research
with CRF has also been conducted, such as the study by (PATIL; PATIL; PAWAR,
2020) on electronic newspapers in the Marathi language. For the Portuguese lan-
guage, we highlight the work of (PIROVANI; OLIVEIRA, 2018), (SOUZA et al.,
2019), and (SOUZA; NOGUEIRA; LOTUFO, 2019). While contextualized deep
learning models have achieved state-of-the-art performance on many NLP tasks,
they still have limitations in dealing with long-range dependencies and handling
noisy or incomplete data. CRFs can complement these models by providing a
structured output that is more interpretable, helping improve the overall perfor-
mance by enforcing consistency and coherence in the labeling of the sequence.
Additionally, CRFs can be trained efficiently with small amounts of labeled data,
making them particularly useful in low-resource settings.

2.4 Word Embeddings and Contextual Models

Word representation, a small semantic element in natural language, has
always been a relevant research topic in NLP. In recent years, several vector rep-
resentations of low-dimensional words have been trained, with huge amounts
of unannotated textual data. These vectors, known as word embeddings, have
proven to be effective in various NLP tasks, such as syntactic analysis, entity
recognition, and machine translation (WANG et al., 2020a).
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The development of these traditional word representations can be divided
into two stages. In the first phase, the vectors used to represent words are sparse
and high-dimensional, not indicating the semantic distance between words and
being difficult to use them. In the second phase, the vectors are trained with large
textual data, being dense and of low dimension. The Neural Network Language
Model is a pioneering work that uses deep learning in language modeling,
through a model that predicts the next word (BENGIO et al., 2003). Later,
two prominent Word2Vec architectures were proposed, the Continuous Bag-
of-Words and the Skip-gram models, reducing computational complexity and
being considered a milestone in the development of distributed representation
(MIKOLOV et al., 2013). Several other models have emerged, such as the Global
Vector (GloVe) that uses the statistics of the co-occurrence of words in a corpus
(PENNINGTON; SOCHER; MANNING, 2014) and fastText, an extension of the
Skip-gram model that considers n-gram characters (BOJANOWSKI et al., 2016).

Although these distributed representations have achieved great success in
NLP tasks, each word is represented by a single vector that does not take into
account its context. For example, the word "guard" could mean a person who
guards, like a sentinel, or a solid protective shield, distinguished by its context
in the sentence. With traditional word embeddings, this word is represented
by the same vector representation, although it has different semantic meanings
in the sentences. This static representation does not capture the contextualized
semantic meaning of the words. To deal with the problem of polysemy, dy-
namic representations (contextual word embeddings) emerged, such as ELMo,
ULMFit, BERT, and XLNet.

ELMo (Embeddings from Language Models), released by (PETERS et al.,
2018), uses language modeling to explore unlabeled data, reaching state-of-the-
art in several tasks at the time of its release. ELMo extracts context-dependent
representations of the word using a bidirectional language model, in which
two LSTM are applied to encode the left and right contexts of the word. In
each layer, the contextualized representations are generated by concatenating
the left-to-right and right-to-left representations.

In the same period, Universal Language Model Fine tuning (ULMFit) was
proposed by (HOWARD; RUDER, 2018), which also employs language modeling
based on LSTM to explore large unlabeled data. ULMFiT enables "transfer
learning" through the general pre-training of the model, and fine-tuning the
classifier to the target task. ULMFiT uses a simple 3-layer LSTM, and this
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unique architecture is used throughout the entire process, from pre-training to
fine-tuning.

BERT (Bidirectional Encoder Representations from Transformers) uses a bidi-
rectional transformer (the Transformer encoder, which will be seen later) to
pre-train richer contextualized representations. In training, BERT generates the
representation of each word within the context of the sentence, using attention
mechanisms to store the level of relevance of each word in the sentence. With a
greater ability to capture contextual information from both sides, BERT reached
the state-of-the-art in 11 NLP tasks (DEVLIN et al., 2019) and inspired several
models based on its architecture.

RoBERTa (Robustly Optimized BERT Pretraining Approach) is a language
model developed by (ZHUANG et al., 2021). Similar to BERT, it is based on a
Transformer architecture that utilizes self-attention mechanisms to model the
relationships between words in a sentence. RoBERTa differs from BERT in
using a larger pretraining corpus, over 160GB of text, which allows the model
to learn a more comprehensive representation of the language. Additionally,
RoBERTa uses a different pretraining objective, masking out more words in
each instance, which leads to a robust model. In terms of fine-tuning, it uses
dynamic control over the learning rate schedule and removes the next-sentence
prediction objective used in BERT, resulting in a model less sensitive to the choice
of hyperparameters.

GPT (Generative Pretrained Transformer) is a language model developed
by OpenAI (RADFORD et al., 2019) known to use deep learning techniques to
generate natural language text. The model is also based on the Transformer
architecture, pre-trained on a large corpus of text data using unsupervised
learning, specifically masked language modeling, where the model is trained to
predict missing words in a sentence given the context. GPT-3 is the latest version
of OpenAI’s language model2 that has been trained on a large corpus of text data
using a variant of the Transformer architecture, specifically the Transformer
decoder architecture, which has been shown to be highly effective in a number
of language processing tasks. The model was trained on a massive amount
of diverse text data from the internet, including websites, books, and articles,
which allowed it to learn the patterns and structures of human language. This

2February 2023 information
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massive amount of training data, combined with the highly effective Transformer
architecture, has enabled GPT-3 to generate human-like text with accuracy and
fluency, leading to its widespread use in a variety of applications, including
language translation, text summarization, and conversation modeling.

2.5 Transformer Architecture

The Transformer architecture, proposed by (VASWANI et al., 2017), uses
stacked and connected layers of an individual attention mechanism, building
basic building blocks for the encoder and decoder. The attention mechanism
is a central component of recent deep learning models used to model relation-
ships between words in an input sequence, assigning a weight to each element
in the input sequence, which reflects its relative importance to the current task.
These weights are computed dynamically for each input sequence and are used
to compute a weighted sum of the elements, which serves as an effective rep-
resentation of the input and the relationships between words in a sentence.
The Transformer architecture consists of multi-head self-attention mechanisms,
feed-forward neural networks, and positional encoding, which allows the model
to capture long-range dependencies in the input sequence. The basic neuron of
the architecture is shown in Figure 2.4. Each neuron is formed by an encoder
on the left side and a decoder on the right side. The encoder is composed of a
self-attention layer, which applies the attention mechanism to the received text,
and a feed-forward layer, which converts the result into a shorter-length vector.
The decoder, in addition to having these units, also has an encoder-decoder
attention layer, which maps the result of its self-attention layer with the vectors
generated by the encoder.

As seen previously, several works have been proposed using the Transformer
architecture, such as GPT and BERT.

BERT

According to (LI et al., 2022), language models using the BERT architecture
are becoming a new paradigm for the NER task. As seen in the "Word Represen-
tation and Contextual Models" section, the word representations generated by
BERT are contextualized and can be used to replace traditional representations,
such as Word2vec and GloVe. BERT makes use of the Transformer architecture,
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Figure 2.4: Transformer architecture (VASWANI et al., 2017).

which uses an attention engine that learns contextual relationships between
words in a text, as seen earlier. Whereas the Transformer architecture includes
two separate engines, an encoder that reads the input text and a decoder that
performs the task prediction, BERT uses only the encoder engine to generate the
language model. The Transformer encoder reads the entire sequence of words
at once in a bidirectional way. This allows the model to learn the context of a
word based on the words to the left and right of the word.
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Figure 2.5: BERT architecture for contextual representation of words (DEVLIN
et al., 2019).

In Figure 2.5, it is possible to visualize the architecture used for generating
contextual word representations, as described by the BERT authors (DEVLIN
et al., 2019). In E1, the word is transformed into its embedding representation.
Each layer of the architecture performs a multi-headed attention calculation on
the previous layer’s word representation to create a new intermediate repre-
sentation (Trm), generating the final output (T1). In a 12 layers BERT model, a
token will have 12 intermediate representations, being both the last one and the
combination of the last three generally used.

The BERT authors (DEVLIN et al., 2019) provided some pre-trained models,
which can be used and adjusted (via fine-tuning) for some NLP tasks, as:

• BERT-base, with 12 layers (or transformer blocks), 12 attention heads, and
110 million parameters;

• BERT-large, with 24 layers, 16 attention heads, and 340 million parameters;

• BERT-multilingual-cased, a model that takes uppercase and lowercase
words into account, with support for 104 languages including Portuguese,
with 12 layers, 12 attention heads, and 110 million parameters (called here
mBERT);

• BERT-multilingual-uncased, a model that does not consider uppercase
or lowercase words, which also supports several languages such as Por-
tuguese, with 12 layers, 12 attention heads, and 110 million parameters.
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Also, a wide variety of BERT-based models were trained and released by
several researchers, for various languages and domains. Among them, we can
highlight:

• BERT-base-portuguese-cased, a language model trained in a Brazilian Por-
tuguese massive corpus, called here BERTimbau (SOUZA; NOGUEIRA;
LOTUFO, 2020);

• BERT-large-portuguese-cased, a large version of BERTimbau (SOUZA;
NOGUEIRA; LOTUFO, 2020);

• BioBERT, BERT-based models trained in English biomedical language,
which have achieved state-of-the-art in various biomedical tasks (LEE et
al., 2019);

• ClinicalBERT, BERT models trained with generic clinical texts and dis-
charge summaries, in English (ALSENTZER et al., 2019);

• PubMedBERT, a pre-trained model trained using abstracts and full-text
articles from PubMedCentral (GU et al., 2021);

• Bio-ClinicalBERT, a language model initialized from BioBERT and trained
on all MIMIC notes (ALSENTZER et al., 2019);

• Bio-Discharge-Summary_BERT, a language model initialized from BioBERT
and trained on discharge summaries from MIMIC (ALSENTZER et al.,
2019).

Fine-tuning to downstream NLP tasks

Transfer learning in NLP is a technique where a model pre-trained on a large
dataset in one domain is fine-tuned on a smaller dataset in a different but related
domain. Therefore, the knowledge learned from the large pre-training dataset
can improve the performance of the smaller fine-tuning dataset, as the latter
may not have enough data to train a model from scratch. This approach can
be especially useful for NLP tasks with limited annotated data, such as named
entity recognition or sentiment analysis in a specific language or domain. This
process can be used to specialize a language model for another domain or for a
specific task.

Fine-tuning can be considered a type of transfer learning that involves train-
ing all the layers of the network on the new task, not just the top layers. As the
entire network is updated to minimize the loss on the new task, it makes it more
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specialized to the new task when compared to regular transfer learning, where
only the top layer(s) of the network are pre-trained on the new data.

Hence, the pre-trained models as BERT can be specialized for a wide variety
of NLP tasks, with the addition of an activation layer (e.g. softmax) that calcu-
lates the probabilities of the labels. With this fine-tuning process, the language
model’s architecture also allows the execution of an NLP task trained at the
same time that the word embeddings. As seen, no layer is frozen, as all pre-
trained layers along with task-specific parameters are trained simultaneously.
The final hidden states, i.e. the Transformer output of each token, are fed into
the classification layer to obtain the prediction for each token.

Figure 2.6 shows the BERT fine-tuning architecture for some NLP tasks. In
token-classification tasks, such as NER, a tag (or label) must be provided for
each input word, as seen in 2.6 (d). The final hidden states, i.e. the transformer
output of each token, are fed into the classification layer to obtain the prediction
for each token. The input is a sequence of tokens, which are embedded in arrays
and then processed in a neural network. A classification layer is fed with the
sequence of vectors, in this case, to predict the label of each token.

Moreover, fine-tuning is also widely used to train generic models in a par-
ticular domain, such as clinical and biomedical (where data is scarce), so that
it can better perform in this domain while still leveraging the previous generic
knowledge.
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Figure 2.6: BERT architecture for fine-tuning in the tasks: sentence-pairs classi-
fication (a), text classification (b), question answering (c), and token-level classi-
fication (d). Source: (DEVLIN et al., 2019).

27



3
Related Work

This chapter presents the works related to the scope of this research and
the state-of-the-art (SOTA) methods. To collect the papers, we used the sci-
entific databases: ACM Digital Library (Full text-collection) 1, ScienceDirect2,
Pubmed3, SpringerLink4, IEEE Xplorer5, and ACL Anthology6. Research se-
lected using the "snowballing" technique was also included.

The search string considers the words “nested entity”, “complex entity”, “entity
overlap”, “entity discontinuous”, “multi type entity”, “irregular entity”, “structured
entity” and “cascaded entity”, in addition to “entity recognition” and its variations
and synonyms. To verify similar works in Portuguese, a search was also per-
formed in Portuguese in the same databases, but no relevant results were found.
The search was implemented initially between 05/26/2020 to 06/14/2020 and
performed again on March 9, 2023, to complement with new research published
since then. Only works written in English or Portuguese that contained the
search terms in the title or abstract were selected. Works that do not involve the
NER task or that do not involve complex entities (nested, discontinuous, and/or
multi-type) were discarded. Table 3.1 displays the number of works found in
each indexed base, excluding duplicate articles. The search queries used in each

1https://dl.acm.org/
2https://www.sciencedirect.com/
3https://www.ncbi.nlm.nih.gov/pubmed/
4https://link.springer.com/advanced-search
5http://ieeexplore.ieee.org/
6https://www.aclweb.org/anthology
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base can be found in Appendix 10.1.

Table 3.1: Number of papers searched, discarded, and selected per scientific
database.

Scientific database Total papers Discarded Selected

Pubmed 55 38 17

ACM DL 62 39 23

ScienceDirect 49 35 14

Springer Link 316 287 29

IEEE Explorer 199 177 22

ACL Anthology 146 96 50

ACL Anthology - Portuguese 9 9 0

Snowballing 7 - 7

Total 843 681 162

After discarding unrelated works, in total, 162 scientific papers related to the
recognition of complex named entities were selected.

The nested NER approaches will be introduced according to their model ar-
chitectures, similar to the division proposed by (WANG et al., 2022)7: early rule-
based, layered-based, region-based, hypergraph-based, QA-based, transition-
based, and others approaches, which will be detailed next.

Of the selected papers, 15 use the rule-based approach, 26 use the layered-
based approach, 57 use the region-based approach, 8 use the hypergraph-based
approach, 8 use the QA-based approach, 15 use the transition-based approach,
and 33 use others or hybrid approaches.

In Table 3.2 we summarize these approaches according to the model archi-
tecture, listing some examples of each approach8.

7We added the "QA-based" category
8Due to space constraints and the scope of this work, it was necessary to make a selection of

the most relevant works of each approach, to provide a comprehensive but focused review
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Table 3.2: Selected related works found in the literature review.

Year Title Reference

Rule-based

2003 Effective Adaptation of Hidden Markov Model-based Named
Entity Recognizer for Biomedical Domain

(SHEN et al., 2003)

2004 Recognizing Names in Biomedical Texts: a Machine Learning
Approach

(ZHOU et al., 2004)

2006 Recognizing names in biomedical texts using mutual informa-
tion independence model and SVM plus sigmoid

(ZHOU, 2006)

Layered-based

2004 Enhancing HMM-based biomedical named entity recognition
by studying special phenomena

(ZHANG et al., 2004)

2007 Recognising nested named entities in biomedical text (ALEX; HADDOW;
GROVER, 2007)

2018 A neural layered model for nested named entity recognition (JU; MIWA; ANANI-
ADOU, 2018)

2019 Merge and label: A novel neural network architecture for
nested NER

(FISHER; VLA-
CHOS, 2019)

2020 Dispatched attention with multi-task learning for nested men-
tion recognition

(FEI; REN; JI, 2020)

2020 Pyramid: A layered model for nested named entity recognition (WANG et al., 2020)

2020 Nested named entity recognition via second-best sequence
learning and decoding

(SHIBUYA; HOVY,
2020)

Region-based

2007 Nested named entity recognition in historical archive text (BYRNE, 2007)

2017 A local detection approach for named entity recognition and
mention detection

(XU; JIANG;
WATCHARAWIT-
TAYAKUL, 2017)

2018 Deep exhaustive model for nested named entity recognition (SOHRAB; MIWA,
2018)

2019 Gazetteer-enhanced attentive neural networks for named en-
tity recognition

(LIN et al., 2019a)

2019 A boundary-aware neural model for nested named entity
recognition

(ZHENG et al.,
2019a)
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Table 3.2: Selected related works found in the literature review.

Year Title Reference

2020 Instance-based learning of span representations: A case study
through named entity recognition

(OUCHI et al., 2020)

2020 Joint learning of token context and span feature for span-based
nested NER

(SUN et al., 2020)

2020 Hierarchical region learning for nested named entity recogni-
tion

(LONG; NIU; LI,
2020)

2020 Boundary enhanced neural span classification for nested
named entity recognition

(TAN et al., 2020)

2020 HIT: Nested named entity recognition via head-tail pair and
token interaction

(WANG et al., 2020b)

Hypergraph-based

2015 Joint mention extraction and classification with mention hy-
pergraphs

(LU; ROTH, 2015)

2018 Neural segmental hypergraphs for overlapping mention recog-
nition

(WANG; LU, 2018)

2018 Nested named entity recognition revisited (KATIYAR; CARDIE,
2018)

Transition-based

2009 Nested named entity recognition (FINKEL; MAN-
NING, 2009)

2018 A neural transition-based model for nested mention recogni-
tion

(WANG et al., 2018)

2019 Hierarchical nested named entity recognition (MARINHO et al.,
2019)

2020 Named entity recognition as dependency parsing (YU; BOHNET; POE-
SIO, 2020)

QA-based

2020 A unified MRC framework for named entity recognition (LI et al., 2020)

2020 A Question Answering-Based Framework for One-Step Event
Argument Extraction

(ZHANG et al., 2020)

2021 Bridge Inspection Named Entity Recognition via BERT and
Lexicon Augmented Machine Reading Comprehension Neural
Model

(LI et al., 2021)
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Table 3.2: Selected related works found in the literature review.

Year Title Reference

2021 Biomedical Named Entity Recognition via Knowledge Guid-
ance and Question Answering

(BANERJEE et al.,
2021)

2022 Parallel Instance Query Network for Named Entity Recognition (SHEN et al., 2022)

2022 MRC-based Medical NER with Multi-task Learning and Multi-
strategies

(DU; YUXIANG;
HONGYING, 2022)

2023 Judicial nested named entity recognition method with MRC
framework

(ZHANG et al., 2023)

2023 A novel MRC framework for evidence extracts in judgment
documents

(ZHOU et al., 2023)

Other approaches

2006 Recognizing nested named entities in GENIA corpus (GU, 2006)

2017 Labeling gaps between words: Recognizing overlapping men-
tions with mention separators

(MUIS; LU, 2017)

2018 Neural architectures for nested NER through linearization (STRAKOVÁ;
STRAKA; HAJIC,
2019)

2019 Sequence-to-nuggets: Nested entity mention detection via
anchor-region networks

(LIN et al., 2019b)

2020 Bipartite flat-graph network for nested named entity recogni-
tion

(LUO; ZHAO, 2020)

3.1 Early Rule-based

Early approaches for nested NER mainly rely on hand-craft rules and rule-
based post-processing. In the work of (SHEN et al., 2003), the authors defined
four basic patterns corresponding to types of nested entities, leveraging the
Hidden Markov Models and integrating deterministic, morphological, POS,
and semantic trigger features. Similar approaches were proposed by (ZHOU et
al., 2004) and (ZHOU, 2006), which enhanced the rule-based post-processing to
automatically extract rules from training data for the nested NER task.
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3.2 Layered-based

The Layered-based approach treats nested NER task as multiple flat NER
task, in a cascade structure connected in series. In this solution, the models
generally contain multiple layers according to the hierarchical nature of nested
entities, where each level can identify a group of entities.

An HMM-based approach with a layered structure for recognizing nested
entities was introduced by (ZHANG et al., 2004). The training involved two
models: the first model was used to recognize short embedded entities, and the
second model focused on the extended short entities.

In the work of (ALEX; HADDOW; GROVER, 2007), three CRF models were
used, reducing the nested NER problem into sequence tagging problems, using
inside-out and outside-in layered CRFs. Their work demonstrated the superi-
ority of CRF models over traditional Hidden Markov Models for nested NER,
with the cascaded CRF model achieving the best performance.

A neural layered model for identifying nested entities was proposed by (JU;
MIWA; ANANIADOU, 2018). This model employs the dynamic stacking of flat
NER layers in an inside-out manner, utilizing BiLSTM and a CRF decoder. Each
flat NER layer is composed of a BiLSTM encoder and a CRF decoder. Within
the model, the encoder outputs from the current layer are merged to generate
new entity representations, which are subsequently passed to the subsequent
layer. This approach facilitates the identification of outer entities by capitalizing
on information from corresponding inner entities.

A dispatched attention model with multitask learning for nested NER was
introduced by (FEI; REN; JI, 2020). In this model, each task is responsible for
recognizing entities at a specific level, utilizing BiLSTM and a CRF decoder. Each
layer module contains a position- and syntax-aware attention-based encoder.
Furthermore, a dispatched attention mechanism was introduced to facilitate
the transfer of knowledge inside-out, sequentially capturing information across
layers.

A neural model was developed by (FISHER; VLACHOS, 2019). This model
first merges tokens and/or entities into entities, forming nested structures, and
subsequently classifies them independently. It begins by identifying inner enti-
ties and then proceeds to recognize outer entities.

Another approach was presented by (WANG et al., 2020), involving a neural
layered model for identifying nested entities. This model follows an inside-out
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approach and consists of a stack of interconnected layers, each of which predicts
whether a region is an entity.

In the work of (SHIBUYA; HOVY, 2020), a CRF-based decoding approach
is used, recognizing entities in an outside-in manner. First, they encoded the
input sentence with BiLSTM, then a CRF for each entity category decodes and
extracts outermost entities and inner entities without re-encoding, and finally,
their model recursively extracts inner entities, called the 2nd best path, until no
multi-token entities are detected in each region.

3.3 Region-based

Region-based nested NER approaches treat the nested NER task as a multi-
class classification task, classifying each potential region (entity candidate) into
one of the classes (types of entity).

The work of (MCDONALD; CRAMMER; PEREIRA, 2005) proposed a new
approach to NER as a structured multi-label classification to represent overlap-
ping segments in a sentence. This region-based model is flexible, as it allows
finding mentions made up of discontinuous tokens and overlapping or nested
mentions. The method was developed using CRF. A disadvantage of this model
is the high computational complexity, as the number of labels for classification
is exponential and depends on the number of words in the sentence.

A waterfall approach is employed in the work of (CHAN; LAM; YU, 2008), di-
viding the NER task into segmentation and classification. The segmentation task
resembles the work of (MCDONALD; CRAMMER; PEREIRA, 2005), involving
the segmentation of phrases and identification of possible segments containing
biomedical named entities. Subsequently, the identified segments are classi-
fied into potential named or rejected entity types using a passive-aggressive
algorithm and CRF.

An enumeration-based nested NER model was developed by (BYRNE, 2007).
This model initially enumerates all regions from the input sentence and subse-
quently learns their corresponding region representations. Likewise, the work
of (XU; JIANG; WATCHARAWITTAYAKUL, 2017) introduced a neural nested
NER approach through local detection. They enumerate all regions of a certain
length in a sentence, similar to the approach of (BYRNE, 2007).

The work of (SOHRAB; MIWA, 2018) is also based on regions, where men-
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tions are detected by identifying subsequences of a sentence. They proposed
a simple deep neural model for recognizing nested named entities, looking for
possible regions in the text as potential entities to be classified. However, this
exhaustive method suffers from too many irrelevant regions, in addition to clas-
sifying types and regions individually, not considering contextual information.
In the same direction, a neural network was proposed by (LIN et al., 2019a),
which models the candidate region along with its corresponding contextual in-
formation. This information is then fed into a Multi-Layer Perceptron (MLP)
classifier to achieve entity prediction.

An instance-based nested NER approach was developed by (OUCHI et al.,
2020), treating NER as a multiclass classification problem. All region repre-
sentations are enumerated, and a category label is assigned to each of them.
Similarly, the end-to-end region-based model in the work of (SUN et al., 2020)
jointly learns the token context and region feature in sentences.

A multi-grained model was presented by (XIA et al., 2019), which first detects
all possible regions before categorizing them. This model includes a detector
and a classifier. The work of (LONG; NIU; LI, 2020) proposed a hierarchical
region learning framework that generates a tree hierarchy of candidate regions
and incorporates structure information into region representations for improved
classification.

A boundary-based strategy was introduced by (ZHENG et al., 2019b), where
the candidate boundary of the entity is detected instead of enumerating all
regions in the sentence. This approach locates entities by identifying candidate
boundaries using sequence tagging models. The boundary-relevant regions
are then utilized to predict entity category labels. Furthermore, a region-based
neural classification method that incorporates an additional boundary detection
task for predicting words (entity boundaries) was proposed by (TAN et al., 2020).
This method mitigates the computational complexity associated with the region-
based approach by allowing the model to learn from better representations with
boundary supervision. Bidirectional LSTMs and BERT are employed for word
representation.

The use of graph-based dependency parsing for recognizing named entities
was proposed by (YU; BOHNET; POESIO, 2020). This approach leverages BiL-
STM to acquire contextual representation and subsequently employs two MLPs
to classify the start/end representations.

A biaffine-based head-tail detector was developed by (WANG et al., 2020b)
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to classify each pair of tokens at the boundary of an entity. A token interaction
tagger characterizes the internal token connection within the head-tail pair, and
a region classifier is used for entity recognition.

3.4 Hypergraph-based

These approaches use the hypergraph to represent the nested structure of
the entities in the text, where the hyperarcs naturally express that tokens belong
to several entities.

A directed hypergraph for boundary detection and category prediction was
presented by (LU; ROTH, 2015), consisting of five types of nodes representing
entities of different semantic categories and boundaries.

In the work of (WANG; LU, 2018), a neural segmental hypergraph model is
employed, which utilizes neural networks to acquire distributed feature repre-
sentations. This model addresses the structural ambiguity issue identified in
the study by (LU; ROTH, 2015).

A hypergraph structure based on the IOBES tag scheme was introduced
by (KATIYAR; CARDIE, 2018), along with an LSTM-based model that learns a
hypergraph representation for nested entities within the input sentence.

3.5 Transition-based

These approaches parse a sentence from left to right, building a tree using
greedy decoding one action at a time, like in transition-based parsers.

A discriminative constituent parser for recognizing nested entities was de-
veloped by (FINKEL; MANNING, 2009). They extracted a constituency-based
parsing tree from a sentence to represent its nested structure. This approach
resembled the chart-based PCFG parser but distinguished itself by employing
clique potentials for local subtrees instead of probabilities over rules.

In the work of (WANG et al., 2018), a neural transition-based approach was
proposed to model the nested structure of entities. The sentence with nested
entities was transformed into a forest structure, with each entity serving as
a constituent within the forest. The system utilized three types of transition
actions (SHIFT, REDUCE, UNARY) and employed a stack to temporarily store
processed nested elements. At each step, one of the three action types was
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applied to modify the system’s state.
Similarly, the work of (MARINHO et al., 2019) introduced a neural transition-

based approach named Hierarchical and Nested Named Entity Recognition
(HNNER), model to address various levels of nested entities. Their transition
system integrated a word stack, word buffer, mention stack, and output buffer,
incorporating four system actions (OUT, SHIFT, TRANSITION, and REDUCE).
They also introduced a set of modifier classes introducing specific concepts that
altered the entity’s meaning, such as absence or uncertainty about a given entity.

3.6 Question-Answering-based

In the QA-based approach, the NER task is formulated as a question-answering
problem, where the extraction of the nested entities occurs in response to specific
questions related to the text, tackling naturally the nested structure problem.

The approach was initially proposed by (LI et al., 2020) as a machine reading
comprehension task, where the tagging-style annotated NER dataset was trans-
formed into a set of QUESTION, ANSWER, CONTEXT tuples. In their work,
for each question (entity type), all possible starts and ends of the answer were
identified by the model. Subsequently, all potential combinations of start and
end in candidate answers were classified, considering the possibility of multiple
entities of the same category. The machine reading comprehension framework
was introduced into judicial named entity recognition by (ZHANG et al., 2023),
which also involves nested entities. In a similar way, (LI et al., 2021) proposed
a lexicon-augmented MRC-based NER neural model for identifying both flat
and nested entities from Chinese bridge inspection text, following the same
approach as (LI et al., 2020).

The Parallel Instance Query Network (PIQN) was introduced by (SHEN et
al., 2022), which established global and learnable instance queries to extract
entities from a sentence, similar to the approach in (LI et al., 2020), but utilizing
a parallel approach. Each instance query predicts one entity, and by feeding all
instance queries simultaneously, all entities are recognized in parallel.

An evidence extraction architecture was presented by (ZHOU et al., 2023),
formalized as a QA problem, where all evidence spans were screened as poten-
tial correct answers. To address the data imbalance problem in the judgment
documents, the authors revised the loss function.
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In the work by (ZHANG et al., 2020), a one-step question-answering-based
framework was proposed for simultaneous argument candidate extraction and
argument role classification. Since conventional QA task cannot be directly
applied, the authors designed QA-based Sequence Labeling, referred to as QA-
NER, for this purpose. Although the authors focused on event argument extrac-
tion, to identify arguments of specific events and label their roles, their method
can be applied to nested entities as well. Unlike methods like (LI et al., 2020)
and others based on it, this work merged the NER task with QA, creating a hy-
brid task where the model receives the question (entity type) and the paragraph
(sentence input), and provides outputs for each token instead of the start and
end indexes of the response.

The work of (BANERJEE et al., 2021) also formulated the NER task as a
multi-answer knowledge-guided QA task, specifically focusing on NER. The
authors trained a large biomedical model using a combined dataset of 18 dif-
ferent datasets, achieving state-of-the-art results for 11 of the 18 biomedical
NER datasets. Since this approach naturally allows the extraction of nested
entities without increasing computational complexity, our method follows this
approach, introducing enhancements like handling discontinuous entities and
addressing the class imbalance.

Finally, (DU; YUXIANG; HONGYING, 2022) proposed an MRC-based ap-
proach with multi-task learning and multi-strategies, integrating an MRC-CRF
model for sequence labeling with an MRC-Biaffine model for span boundary
detection, ultimately selecting the more efficient MRC-CRF as the final decoder.

3.7 Other Approaches

Apart from the above mentioned approaches, there are particular works that
use other specific approaches. The work of (GU, 2006) used SVM to classify
nested entities, treating the NER task as a binary classification problem, using
outmost and inner labeling.

A gap-based tag schema was proposed by (MUIS; LU, 2017) to capture nested
entities, with the mention separators representing nested named entities.

Two neural network architectures for nested NER were developed by (STRAKOVÁ;
STRAKA; HAJIC, 2019), where the nested entity multiple labels were concate-
nated into a single multi-label. An LSTM-CRF was used to predict the label of
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each token, followed by a sequence-to-sequence task.
A sequence-to-nuggets architecture (Anchor-Region Networks or ARNs) for

recognizing nested entities was introduced by (LIN et al., 2019b). In this ap-
proach, the anchor words of an entity were first identified, followed by the
determination of entity boundaries for each anchor word.

In the work of (LUO; ZHAO, 2020), a novel bipartite flat-graph (BiFlaG)
network for nested NER was proposed, containing a flat NER module and a
graph module. This system can jointly learn flat entities and recognize the
outermost entities and construct entity graphs.

3.8 Shared Tasks

In addition to the research performed in the scientific databases, we also
searched for shared tasks that encompass nested, multi-type, and/or discontin-
uous NER, as there are relevant works in these venues. Although there have
been numerous shared tasks on related subjects such as entity recognition and
entity relations extraction, most focus on flat entities. In recognition of complex
entities, we find three related shared tasks:

• GermEval 2014 Named Entity Recognition Shared Task: Companion Paper
(BENIKOVA CHRIS BIEMANN; PADO., 2014): This event makes available
German data with NER annotation with the goal of advancing the state
of the art in German NER and nested representations of named entities.
Of the 11 participating teams, 5 used handcraft rules, one was based on a
CRF model, and the others used machine learning approaches.

• RuNNE-2022 Shared Task: Recognizing Nested Named Entities (ARTE-
MOVA et al., 2022): This shared task addresses nested named entity recog-
nition, using the Russian NEREL dataset. It has received 156 submis-
sions, with systems based on MRC, region, layered models, and other ap-
proaches. Although the MRC-based models showed better accuracy than
the mean accuracy, the best result was obtained by a rule-based system.

• NER Shared Task 2023 - Subtask 2: Nested NER (TALAFHA, 2023): This
shared task aims to mitigate the lack of resources in Arabic NER by in-
troducing a comprehensive Arabic NER corpus with 21 annotated entity
types, with a nested version. This shared task is currently in progress as
of the writing of this thesis.

Although the shared task "MultiCoNER: SemEval-2022 Task 11" (MALMASI
et al., 2022) deals with the recognition of complex entities, we do not consider
it here because it uses a concept different from ours about complex entities.
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The shared task is about the challenge of detecting semantically ambiguous
or formed by any linguistic constituent as titles of creative works, difficult to
recognize.

3.9 Final Considerations

In summary, we found 162 related works in the researched scientific bases,
categorized into 6 categories (plus others).

Methods based on early rule-based, which relies on hand-craft rules and
rule-based postprocessing, work well in specific situations, but can be labor-
intensive and less adaptable to complex language patterns. The layered-based
methods provide an intuitive solution for nested NER, with multiple layers
that work in a cascade. A disadvantage of this method is the need to train
more than one model, one for each layer. The region-based method transforms
NER into a multiclass classification problem. It naturally addresses the recog-
nition of nested and discontinuous entities, but can suffer from an imbalance
between entity vs non-entity and computational complexity in the exhaustive
enumeration of all regions. The hypergraph-based method uses a hypergraph
structure to represent nested entities, but it can suffer from structural ambiguity
and also computational complexity. The QA-based formulates the NER task
as a Question-Answering task, naturally addressing the nested structure prob-
lem. However, it needs a treatment to find more than one entity per question
and to recognize discontinuous entities, and can also suffer from an imbalance
between entity vs non-entity. The transition-based method uses discrimina-
tive dependency parsers to represent nested entities, but can also suffer from
computational complexity.

Among these approaches, we selected the QA-based for our work, which
provides a simple solution without requiring great computational complexity
and without the need to train a model for each layer. Our method was based on
the (BANERJEE et al., 2021) method, which already has the ability to return more
than one answer per question. We implemented certain adaptations to enhance
class balancing and enable the model to identify discontinuous entities.
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4
Methodological Procedures

This chapter presents the methodological approach used in the development
of this work. The research structure is divided into four phases: Initial Plan-
ning, Exploratory Phase, Development, and Evaluation. Figure 4.1 presents an
overview of these phases and their respective tasks.

Figure 4.1: Summary of research steps. Although they follow this order, some
steps may have been conducted concurrently.

The following sections present the phases and tasks of the research method
used.
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4.1 Planning

The planning stage refers to all research preparation, involving scope delim-
itation, definition of work objectives and hypotheses, and research planning.

A literature review allowed a better understanding of the problem and the
identification of gaps in the state-of-the-art NER research, identified in this
work as methods capable of working with complex entities. Hence, our general
objective was defined: the development of a method for the recognition of
nested, discontinuous, and multi-type entities. Through literature reviews on
this theme, the potential of Transformer-based models, such as BERT, proved
efficient in several NLP tasks, leading us to follow this path.

In this phase, a challenge faced during our studies was the absence of a clin-
ical corpus in the Portuguese language with nested and discontinuous entities,
motivating us to annotate a new corpus for experiments.

We design a plan of all necessary activities, defining a schedule to be fol-
lowed. One planned stage was the academic exchange lasting almost five
months in Madrid, Spain. During this period, research would be performed
with researchers from the UC3M (Universidad Carlos III de Madrid1) to share
experiences and knowledge about state-of-the-art models in NLP.

4.2 Exploratory Phase

This phase concerns the development of a theoretical framework to support
the research process, achieved by exploring publications in scientific databases.
Exploratory research was executed on related work to verify current gaps and
how the proposed method could contribute. Chapter 3 presents the research
and the related works found.

In the exploratory phase, we also encompass the definition of our approach,
the architecture, the resources, and the experiments necessary to lead this thesis.
We verified that recent works obtained interesting results using the Question
Answering technique, training models that identify entities through machine
reading comprehension. Through several studies, we defined that our approach
would be to take advantage of some concepts of the QA task while maintaining

1https://www.uc3m.es/Home
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the way NER works, as in the work of (BANERJEE et al., 2021). We define
our approach to recognizing nested, discontinuous, and multi-type entities as
a new NLP task, the merge between the QA and NER. We also verified that an
adapted to multi-label version of the CRF could be useful to find the nested and
multi-type entities since the CRF is a machine learning technique that allows
modeling the dependency between the labels of each position in the sequence,
which is particularly useful for tasks like NER.

In this phase, we also research and define the NER corpora that were used
in the work, in addition to the new corpus proposed:

• GENIA (KIM et al., 2003), a collection of biomedical literature compiled
and annotated, containing 2,000 Medline abstracts (from PubMed), with
discontinuous and nested entity annotations;

• SemClinBr (OLIVEIRA et al., 2022), a semantically annotated corpus for
the Portuguese language, containing 1,000 clinical notes humanly labeled
with UMLS- compatible concepts, with multi-type entities;

• RareDisease (MARTíNEZ-DEMIGUEL et al., 2022), a clinical corpus anno-
tated with rare diseases, their signs and symptoms, containing nested and
discontinuous entities 2.

• PortugueseClinicalNER (LOPES; TEIXEIRA; OLIVEIRA, 2019), a collec-
tion of 281 clinical texts in Portuguese, with manually-annotated named
entities, which, although it does not have complex entities, was used to
verify the performance of the method in a biomedical corpus in Portuguese
with flat entities;

• JNLPBA (COLLIER; KIM, 2004), a biomedical dataset created from the
GENIA corpus, by removing all nested and discontinuous entities. As it is
a copy of GENIA that contains only flat entities, it will be interesting to test
this corpus to compare how complex entities interfere with the model’s
efficiency.

The DDI corpus (HERRERO-ZAZO et al., 2013), an annotated corpus with
pharmacological substances and drug-drug interactions, was not considered in
our experiments since it has a low index of nested and discontinuous entities
(0.2% and 0.3%, respectively, according to our analysis).

The Medical Case Report Corpus (SCHULZ et al., 2020) is a very interesting
corpus as it contains nested, discontinuous, and multi-type entities. Still, until

2The experiments executed in this dataset cannot be compared with the baseline as they
have not been evaluated in the original test set, which was not available until the writing date
of this document.

43



CHAPTER 4. METHODOLOGICAL PROCEDURES

the date of writing this thesis, we did not have access to the corpus, by a technical
issue.

Despite ACE 2004 (MITCHELL ALEXIS, 2005), ACE 2005 (WALKER CHRISTO-
PHER, 2006), and NNE (RINGLAND et al., 2019) having related entities, they
were not used in our experiments for not being in clinical or biomedical domains,
and also they do not have free public access.

The NLPMedTerm (CAMPILLOS-LLANOS L., 2021) and CWLCE (Chilean
Waiting List Corpus) (BÁEZ et al., 2020) are corpora available containing entities
annotated in the health domain in Spanish texts. The first one contains 1,200
clinical trials labeled with entities from the UMLS, with 13.98% of nested enti-
ties. The second one consists of 900 referrals for several specialty consultations,
with 9,029 entities, of which 32.2% are nested. Although publicly available,
these two corpora were not selected in this research since they are not in En-
glish or Portuguese, being left for future work. The same goes for NEREL-BIO
(LOUKACHEVITCH et al., 2023), a corpus of PubMed abstracts in Russian and
English, containing nested entities.

Also, although the second version of HAREM (FREITAS et al., 2010), an
initiative to evaluate the identification of proper names in the Portuguese lan-
guage, has discontinuous entities (tagged with the "ALT" attribute), it is outside
the scope of this work for not being in the clinical or biomedical domains.

We did not find any clinical Portuguese corpus containing nested and/or
discontinuous entities.

4.3 Development

This phase can be divided into four tasks: 1) obtaining and preparing the
corpora for the experiments, 2) creating a guideline and annotation of the new
corpus, 3) language models training and implementation of the method, and 4)
execution of experiments.

In this phase, the corpora to be used in the experiments and the annota-
tion of the new corpus proposed in the work, NestedClinBr, were collected
and prepared. The new corpus was annotated in the BRAT rapid annotation
tool (STENETORP et al., 2012), a web-based text annotation tool designed for
structured annotation.

We also detected a lack of trained language models in the clinical and biomed-
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ical domains in the Portuguese language. Therefore, we have developed some
contextual BERT-based models trained with clinical narratives and biomedical
data in Portuguese.

With the method defined, we have implemented our code using Python, the
PyTorch version of the "transformers" Hugging Faces library (WOLF et al., 2020),
and the package "Crfsuite" from "Sklearn" (PEDREGOSA et al., 2011).

We also have executed several empirical tests to define the best settings and
the algorithm used. The developed resources and experiments performed to
validate the method are:

E1 Construction of a corpus with nested and discontinuous entities for the
Portuguese language;

E2 The training of clinical and biomedical language models for the Portuguese
language;

E3 NER experiments in the NestedClinBr corpus, with nested entities (E3.1)
and nested and discontinuous entities (E3.2);

E4 NER experiments in the SemClinBr corpus;

E5 NER experiments in the GENIA corpus, with nested entities (E5.1), nested
and discontinuous entities (E5.2), and a few-shot experiment (E5.3);

E6 NER experiments in the Rare Disease corpus;

E7 NER experiments in the PortugueseClinicalNER.

E8 NER experiments in the JNLPBA corpus.

4.4 Evaluation

This phase consists of evaluating the proposed method, analyzing the results,
and extracting conclusions. After implementing the method, several tests were
performed to define the best configuration and parameters. In addition to these
tests, experiments were conducted with a baseline (using binary relevance) and
some similar methods (employing the same approach) to facilitate comparisons
with the proposed method.

In this section, we present the metrics used to measure the performance of
the method, in order to compare it with other methods, the statistical approach
used to measure whether or not the results are significant, and the agreement
metrics used to measure the level of our corpus annotation.
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4.4.1 Method Performance

In token-level classification tasks, such as NER, when comparing the golden
standard annotations with the output of a system, different scenarios might
occur:

I. Surface string and entity type match;

II. The system hypothesized an entity;

III. The system misses an entity;

IV. The system assigns the wrong entity type;

V. The system gets the boundaries of the surface string wrong;

VI. The system gets the boundaries and entity type wrong.

In the literature, there are several ways to evaluate a NER system, such as the
way used by Conll (SANG; MEULDER, 2003) that considers only scenarios I, II,
and III, discarding the others; the Message Understanding Conference (MUC)
that defines the number of correct, incorrect, partial, missing and spurious
entities (CHINCHOR; SUNDHEIM, 1993); and the one introduced in SemEval
(SEGURA-BEDMAR; MARTÍNEZ; HERRERO-ZAZO, 2013), where it measures
the performance accounts for correct, incorrect, partial, missed and spurious in
different ways.

While traditional named entity recognition systems utilize these NER met-
rics, our study evaluates complex NER as a standard classification task, in align-
ment with other comparable studies such as (LI et al., 2020), (SHEN et al.,
2022), and (SOHRAB; MIWA, 2018). In the context of complex entity recog-
nition, assessment typically adopts an entity-based approach (as opposed to a
token-based one), requiring accurate prediction of both the span and entity type,
while disregarding partial matches. The metrics employed in our experiments
encompass Precision (P), Recall (R), and F1-score (F1).

Precision is a measure of the correct named entities identified by the models,
which is defined by Equation (2). Recall, also known as sensitivity, calculates
the ratio of true positives to the total actual positives in the dataset, as defined
by Equation (3). The F1-measure metric represents the harmonic mean between
precision and recall, defined by Equation (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2)
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (4)

In these equations:

• True positives (TP) refer to the count of accurately predicted entities. This
means the model correctly identifies an entity that exists in the gold stan-
dard.

• False positives (FP) correspond to the count of incorrect predictions clas-
sified as positive. This involves instances where the model incorrectly
identifies an entity that is not present in the gold standard or inaccurately
identifies an entity from the gold standard.

• False negatives (FN) represent the count of incorrect predictions classified
as negative. This occurs when the model fails to identify an entity that is
present in the gold standard.

There are two approaches for evaluating system performance: the micro-
average and the macro-average. In the micro-average, first, we sum all error
types of all documents and then make the average of each metric (Equations (5)
and (6)). In the macro-average, we first calculate the Precision, Recall, and F1-
score for each document and then make the average for all instances (Equations
(7) and (8)). Since the micro-average weighs each instance separately, it can
capture the imbalance between the documents, being more suitable for our
work.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛micro =
𝑇𝑃1 + 𝑇𝑃2 + ... + 𝑇𝑃n

𝑇𝑃1 + 𝑇𝑃2 + ... + 𝑇𝑃n + 𝐹𝑃1 + 𝐹𝑃2 + ... + 𝐹𝑃n
(5)

𝑅𝑒𝑐𝑎𝑙𝑙micro =
𝑇𝑃1 + 𝑇𝑃2 + ... + 𝑇𝑃n

𝑇𝑃1 + 𝑇𝑃2 + ... + 𝑇𝑃n + 𝐹𝑁1 + 𝐹𝑁2 + ... + 𝐹𝑁n
(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛macro =
𝑃1 + 𝑃2 + ... + 𝑃n

𝑛
(7)

𝑅𝑒𝑐𝑎𝑙𝑙macro =
𝑅1 + 𝑅2 + ... + 𝑅n

𝑛
(8)
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4.4.2 Statistical Evaluation

There are some statistical methods in order to verify if the results were statis-
tically significant, such as the non-parametric tests, which do not make assump-
tions about the underlying distribution of the data, as normality. These tests are
usually used when the sample size is small and the distribution of the data is
unknown. Some examples of non-parametric tests include the Wilcoxon rank-
sum test, the Kruskal-Wallis test, the Mann-Whitney U test, the Friedman test,
and Spearman’s rank correlation coefficient, all used for a variety of purposes.

The Friedman test assesses the differences between repeated-measures data,
where the same set of subjects is measured under different conditions or treat-
ments (SHESKIN, 2007). It provides a useful alternative when the assumptions
of the repeated-measures ANOVA are not satisfied. After applying the Fried-
man test, the Nemenyi post-hoc test can determine which pairs of groups are
significantly different from one another. Being a rank-based test, it uses the
concept of the Nemenyi distance (the difference between two groups based on
their ranks in the original data) to determine the significance of the differences
between pairs of groups.

4.4.3 Evaluation Corpus Annotation

There are also specific metrics to assess the consistency and quality of a
new corpus, such as the Inter Annotator Agreement (IAA), to find possible
disagreements between annotators and avoid inconsistencies in the annotation
guidelines. Cohen’s Kappa is a common measure for IAA, however, for NER
annotation the F1-measure has become the standard metric, as the "O" token
has a higher frequency and the Kappa score would be misguidedly too high
(DELEGER et al., 2012). For NER annotation, the F1-measure is used to evaluate
the agreement between two annotators, in a token-based way, checking the
consistency under the exact match criteria of both annotators.
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5
Method

This chapter presents the proposed two-phase method for recognizing nested,
discontinuous, and multi-type named entities. The first phase of the method is
a QA-Based NER task, in which the NER is formulated as a machine reading
comprehension task. Therefore, extracting Protein-like entities, for example,
is formalized as extracting answer spans to the question "Which proteins are
mentioned in the text?". Since the query encodes informative prior knowledge,
this strategy facilitates the entity extraction process. Naturally, it tackles the
overlapping entity issue in nested NER, answering two (or more) independent
questions. Our approach consists of a token-level classification, as in NER, but
sending a query to the model along with the sentence tokens, receiving as out-
put all the entities related to that query. Therefore, the method can deal with
nested and multi-type entities naturally, since the outputs are independent of
the class for each input query. The second phase concerns the training of a CRF
model adapted to deal with multi-label outputs through a predefined threshold.
Finally, the results of the QA-NER model are added to those of the multi-label
CRF, similar to an ensemble technique, generating the final result.

Hence, to address the recognition of complex named entities in the clin-
ical and biomedical domain, we propose BioNestedNER, an ensemble-based
approach formed by a two-phase method, as illustrated in Figure 5.1.
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Figure 5.1: A two-phase method for nested, discontinuous, and multi-type entity
recognition.

5.0.1 Assumptions

Based on the objective and motivation defined at the beginning of this re-
search, the method has the following assumptions:

• It must recognize nested, multi-type, and discontinuous entities in addi-
tion to flat entities;

• It should be flexible and consume less computational resources than ex-
haustive models;

• It must classify the entity type at the same moment of extraction, in a single
step, in a real multi-label approach, without the necessity of training one
model for each class as in binary relevance;

• Should be possible to use it in different domains and languages.

Next, we present the two phases of the method separately.

5.0.2 Phase 1- QA-NER Approach

In the first phase, we create models to recognize named entities using the
QA-NER approach. With this approach, the model can identify nested entities
in the text eliminating the necessity of training multiple models as required by
the layered-based approaches, or enumerate all possible regions in the text as
seen in exhaustive region-based methods. The QA-NER approach enables an
efficient identification of nested entities without the need for computationally
intensive procedures.

Some similar works also apply a QA-NER approach to find nested and flat
entities such as (LI et al., 2020), (SHEN et al., 2022), and(BANERJEE et al., 2021),
but in the same way that (BANERJEE et al., 2021), our model is trained to return
the results in NER format (e.g., IOBES or IOB2), instead of the index of the
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beginning and end of the entity, as occurs in QA tasks. In this way, with a single
query, the model can return all the entities related to the query, token by token, at
once, without the need to call the same query several times to find more entities of
the same type in the sentence, nor to perform post-processing with word indexes.
We have improved the QA-NER model proposed by (BANERJEE et al., 2021) by
implementing some modifications, such as the removal of the CNN layer (for
a simpler architecture, since the Transformer architecture already allows the
contextualization of words), application of treatment for class imbalance, adjust
segments embeddings, and add some specific treatments for discontinuous and
nested entities of the same type.

In this work, we explore BERT-based language models to generate word rep-
resentations and make the final classification for each token, as BERT architecture
has proven efficient for NLP 1.

An overview of the method is presented in Figure 5.2.

Figure 5.2: Overview of phase 1 of the method.

1While we selected BERT for our method, it’s worth noting that other language models can
also be employed.
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Task Formalization

Given an input sequence X = x1, x2, ..., xn where n denotes the length of the
sequence in tokens, the model is trained to assign a label y ∈ Y to each token
x, where Y corresponds to entity boundary tagging label in the sentence. In
IOBES tagging scheme, Y could be defined as Y = B-ENT, I-ENT, E-ENT, S-ENT,
O. For IOB2, Y = B-ENT, I-ENT, O. The output of the model (yn) only indicates
the start, continuation, and end of the entity, without needing to provide the
type of entity, since the tag label is sent in the input text, concatenated with the
sentence as a query (or question).

A query qt, where t ∈ T, is defined as a natural language identifier, in which T
is the predefined list of all possible entity types (e.g. person, location, organiza-
tion). Therefore, to an input (qt, X), the output is y1, y2, ..., yn, indicating that for
the t tag, the entities found are all y that are different from "O". The query must
be represented by a word or a set of words whose semantic meaning is really
close to the label, in most cases, the label itself can be used as a query. Hence,
for each query (i.e. for each t), the same sentence must be sent to the model,
concatenated (with a [SEP] token) with the query corresponding to t (qt).

Training

The method has three steps in the model training stage: a preprocessing step,
the generation of the contextual representation of tokens, and the fine-tuning
for the task. Next, each step of the method will be discussed in detail.

Step 1 Preprocessing the input text
Initially, the training corpus must be converted to NER QA-based format, in

order to be processed in the following steps, as can be seen in Figure 5.3. As we
used BERT-based models, the first token is a special [CLS] token, indicating the
beginning of the sentence. Next, we add the query, i.e., a word (or a small set
of words) that describes the entity type we are looking for (e.g. Protein). We
add a separator token, in this case [SEP], and concatenate the entire sentence,
indicating the entities of this specific type in NER format (as IOB2). This process
is repeated for each type of entity, replicating the same sentence and concate-
nating with the new query. In Appendix 10.2, we have examples of inputs in
the JSON format, expected by the system.
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Figure 5.3: Representation of QA-NER input format, using IOB2 schema.

Step 2 Generation of Word Embeddings
In this step, the contextual representation of each word of the sentence is

generated, using the weights of pre-trained BERT models and their derivatives
as checkpoints.

Firstly, the sentence is tokenized, using tokenizers such as SentencePiece or
Byte-Pair Encoding, for example. The process of tokenization is essential in
NLP tasks, where the stream of text is split into separate, smaller "tokens" (any
meaningful unit that the tokenizer has been programmed to identify). We made
an adjustment so that the special tokens are added in the right places, especially
the sentence separation token ([SEP]).

Figure 5.4: BERT word embedding layer. Source: (DEVLIN et al., 2019)

Next, we adjust the segment embeddings, to indicate to the model that there
has been a sentence break in the input text (EA to tokens of the first sentence,
i.e. the query, and EB to tokens of the second sentence). This is required in
our method, as we use the sentence separator token [SEP] to separate the input
query from the input sentence. The other layers that the encoder receives, the
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token embeddings (matrix of embeddings) and position embeddings (numbers
that give importance to the order of words) were not changed. Figure 5.4 shows
the embedding layers that are summed and sent to the BERT architecture.

Finally, the model generates the word embeddings, vector representations
for each word in a text segment, where each dimension of the vector encodes a
different aspect of the meaning of the word. These word embeddings capture
the semantic relationships between words, in a way that words with similar
meanings have similar embeddings. Transformer-based models can capture the
context-dependent meaning of words, important where the meaning of a word
can change based on the context in which it is used.

Step 3 Fine-tuning for the Task
In this step, the fine-tuning to the new task is performed.

Figure 5.5: Fine-tuning architecture for the hybrid task combining NER and QA.

Fine-tuning refers to the process of adapting a pre-trained machine learning
model to a specific task by training it on a smaller dataset for that task. A
linear layer for token-level classification is added on top of the model, and for
each input token, an output is generated. The linear layer, also known as dense
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layer or fully connected layer, performs a linear operation on its inputs (word
embeddings) and produces a vector of outputs through a matrix multiplication
and an optional bias term.

In our method, as in the traditional QA task, the outputs of the [CLS] token
and of the tokens from the first sentence (the query) were ignored. We leverage
the outputs from the first token of the second sentence, which returns the outputs
in NER format, indicating only the entity’s delimitation (and not the entity’s type,
since it is in the query). The architecture of this step can be seen in Figure 5.5.

Adaptation to Find Discontinuous Entities

As one of the main gaps in the recognition of complex entities is recognizing
discontinuous entities, common in clinical and biomedical texts, we adapted the
QA-NER method in order to also recognize discontinuous entities.

Figure 5.6: Adaptation to find discontinuous entities.

To detect discontinuous entities, separated into non-sequential parts, we
transformed the model into an end-to-end model trained to identify both regular
entities and discontinuous ones simultaneously, sharing the same embeddings
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and loss during training and at the end, the same model weights. We have
experimented with this strategy on GENIA and NestedClinBr corpora.

In the pre-processing step, we need to send two labels for each token, one
for each classifier, in both the training and inference stages. In the training
step, we train two classifiers simultaneously, each one specialized for a sub-task,
i.e. find regular entities and discontinuous entities, as shown in Figure 5.6. At
the end, each classifier will learn to classify its specific sub-task, and during
inference, both types of entities are identified. For extracting the discontinuous
entities, we used the IOB tagging scheme, which marks the beginning (B) and
the continuation (I) of the entity, and with this, it is possible to reconstruct the
entity at the end.

The same applies to nested entities of the same type, as occurs in the GENIA
corpus. With an end-to-end model, it is possible to recognize entities with this
characteristic, as the example shown in Figure 5.7.

Figure 5.7: Adaptation to find nested entities of the same type.
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Treatment for Class Imbalance

As in this technique there is an increase in the number of non-entity ("O")
classes (more than in a traditional NER), which can result in class imbalance,
we have adapted the method by applying class weights to the underrepresented
classes. This approach helps to improve the overall performance of the model
by reducing the impact of the class imbalance on the learning process and
enhancing the model’s ability to correctly identify entities of all types. Given a set
of class labels and the corresponding frequency of each class in the training data,
it was calculated a weight for each class that can be used to adjust the contribution
of each class during the training process. The weights are inversely proportional
to the frequency of each class, which means that the less frequent classes are
assigned higher weights to increase their impact on the learning process. This
helps to improve the overall performance of the model by reducing the impact
of class imbalance on the learning process and improving the model’s ability to
correctly classify minority classes. The formula used can be seen in Equation
(9), where nsamples is the total number of samples in the training data, nclasses is
the total number of unique classes, and np.bincount(y) counts the frequency of
each class label (y) in the training data.

𝑐𝑙𝑎𝑠𝑠weight =
𝑛samples

(𝑛classes ∗ 𝑛𝑝.𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡(𝑦))
(9)

We have used the classweight lib from Sklearn2 to compute the class weights,
using the "balanced" parameter. Besides the traditional method for calculating
a weight for each individual class, based on its frequency in the training data
(ClassWeights), we also proposed a new way to calculate class weights for QA-
NER approaches. This involves computing binary weights that consider weights
for just class and non-class (e.g. "entity" vs "O"), in a smoother way, prioritizing
the search for entities, regardless of their type (BinaryWeights).

In Figure 5.8, we observe the percentage of each entity type present in the
NestedClinBr corpus. In the ClassWeights variant, we calculate the weights for
each class using their individual percentages (e.g., 3.9% for the Anatomy class),
while in the BinaryWeights variant, we calculate the weights for all entities
(using the percentage of 33.2%).

2https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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Figure 5.8: Percentage of each type of entity present in the NestedClinBr corpus.

In Equation (10), we can see the formula of the Cross-entropy loss function:

𝑙(𝑥, 𝑦) = 𝐿 = 𝑙1, ..., 𝑙n = −
𝐶∑︂
𝑐=1

𝑤c𝑙𝑜𝑔
𝑒𝑥𝑝(𝑥n,c)∑︁𝐶
𝑖=1 𝑒𝑥𝑝(𝑥n,i)

𝑦n,c (10)

, where x is the input, y is the target, w is the weight, C is the number of
classes, and N spans the minibatch dimension.

We also test some different reduction parameters in the CE loss function (how
the individual losses are aggregated or averaged across the batch). "Mean" is
the default value, where the individual losses are averaged over all samples
in the batch, minimizing the average loss across the entire training data. We
have tested with "sum" as well, where the individual losses are summed over all
samples in the batch, computing the total sum of the losses (Equation 11 shows
the adapted formulas3). This option is useful to minimize the total loss across
the entire training data, more appropriate to account for the skewed distribution
of samples across the classes.

𝑙(𝑥, 𝑦) =
⎧⎪⎪⎨⎪⎪⎩

∑︁𝑁
𝑛=1 𝑙n
𝑁 𝑖 𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ”𝑚𝑒𝑎𝑛”;∑︁𝑁
𝑛=1 𝑙n, 𝑖 𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ”𝑠𝑢𝑚”.

(11)

3https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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Inference and Test

During inference and testing, the method will also have the same preprocess-
ing and word embeddings generation steps, as shown in Figure 5.2. The only
difference is in step 3, where the previously trained model is used to generate
the outputs. After inference by the model, a post-processing step is necessary
to display the entities found in a user-friendly format. The overview of the
inference process is shown in Algorithm 1.

Algorithm 1 Overview of the inference process
Require: 𝑋: input tokens ( 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛}); 𝑇: entity types ( 𝑇 =

{𝑡1, 𝑡2, ..., 𝑡𝑛}).
1: 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = [𝑡 for 𝑡 in 𝑇]
2: 𝑙𝑖𝑠𝑡𝐴𝑙𝑙𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = [ ] # all entities extracted from the sentence
3: for query 𝑞 in 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 do

4: # Concatenates the query with the input sentence and adds the separator
token

5: 𝑋′ = concatenate(𝑞, 𝑋)

6: # Tokenizes and adjusts the segment embeddings
7: 𝑋′ = tokenize(𝑋′

)

8: # Gets the labels from 𝑋′

9: 𝑌 = NER(𝑋′
)

10: # Gets the entities of type 𝑡 from 𝑌

11: 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = processEntities(𝑌)

12: if 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 != 𝑛𝑢𝑙𝑙 then

13: 𝑙𝑖𝑠𝑡𝐴𝑙𝑙𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠.append(𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠)
14: end if

15: end for

16: # Return the list with all entities found in the input sentence
17: return 𝑙𝑖𝑠𝑡𝐴𝑙𝑙𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠

Parameters

The proposed method includes the following parameters:

• max_length: maximum number of tokens per sentence;

• t: number of entity types (determined from the corpus);

• q: number of queries (determined from t)

• s: number of sentences in the corpus;

• i: number of instances for training.
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The real number of instances for training is i = s * q, since each sentence
will be replicated as many times as the number of queries. Both number of
queries (q) and number of training sentences (s) determine the training velocity,
where the smaller s and q, the faster the model will be trained. The same
applies for max_length, making it challenging to determine the ideal value since
if set too high, can result in increased memory usage and slower performance,
but if it is set too low, it can lead to loss of important information and degraded
performance. The number of queries (q) can interfere with performance, usually
when the fewer classes for the model to learn, the better its efficiency.

The selection of the pre-trained model as a checkpoint to the fine-tuning
process also is an important adoption that could have a large impact on the
results. Usually, applying domain-specific models can generate better results
for tasks in this domain (or similar domain), as well as language-specific models.
Hence, the pre-trained language model to be used as a checkpoint depends on
the experiment to be performed. In addition to the method parameters, there
are some generic hyper-parameters of the architecture, which have been defined
during our experiments (empirically):

• Dropout rate, a regularization technique for reducing overfitting in neu-
ral networks with many layers, where a random number of neurons is
temporarily excluded during training;

• Learning rate, which determines the step size at which the optimizer makes
updates to the model parameters. A high learning rate can lead to fast
convergence, but with the risk of getting stuck in suboptimal minimum,
while a low learning rate can increase the stability of the optimization
process, but slowly;

• Warmup, a technique applied at the start of the training process where
the learning rate is gradually increased from a low value to a higher value
over a few training iterations, to allow the model parameters to gradually
adjust to the optimization process;

• Optimizer, a method for finding the minimum or maximum of the loss
function, finding the best parameters for a machine learning model;

• Weight decay, a regularization technique that adds a penalty term to the
loss function during training to discourage the model from having large
weights, aiming to reduce overfitting and improve the generalization per-
formance of the model;

• Batch size, which defines the number of samples used in one iteration of
training, to update the model’s parameters in one forward and backward
pass, impacting on the model’s convergence speed, memory usage, and
computational cost;
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• Number of epochs, that defines the number of times the entire training
dataset is passed through the model during training, determining how
many times the model will be exposed to the training data;

• Early stop, to prevent overfitting and improve the generalization perfor-
mance of the model, interrupting the training process before the model
has completed all the specified number of epochs, based on a monitoring
metric such as the validation loss or accuracy.

Adjusts to Other Architectures

Although the method is focused on the BERT architecture, it can be adapted
to work with other architectures, such as RoBERTa, Flair, GPT-3, etc. In these
cases, if the tokenizer is not the WordPiece, as the Byte-Pair Encoding used by
RoBERTa and GPT-3, one must change the special tokens (e.g. [SEP] to </s>)
and also the alignment function.

5.0.3 Phase 2- Multi-label CRF Approach

Combining the outputs of a CRF layer with our Transformer-based model
can further improve the general coverage, by combining the strengths of both
models.

In phase 2 of the method, we train CRF models, using as features the Mor-
phological, Orthographical, Context, POS, and Semantic information, frequently
used in Biomedical NER, following the works of (MADY; AFIFY; BADR, 2022),
(ZHANG et al., 2004), and (CAMPOS; MATOS; OLIVEIRA, 2012).

The morphological features analyze the constituents of words and their in-
teractions, examining the structural similarities between words. Orthographic
features group words with similar forms and are often used to capture infor-
mation about word formation. Contextual features consider the words before
and after a token to determine its class label. In our work, we considered a
window of 4 tokens left and right. Part-of-speech features identify named en-
tities based on POS information, e. g. nouns are typically strong candidates
for named entities, whereas verbs and prepositions often indicate named entity
boundaries. In our work, we trained a Transformer-based clinical POS tagger
for Brazilian Portuguese (SCHNEIDER et al., 2022) to extract part-of-speech in-
formation from texts in Portuguese. Semantic features focus on the meaning
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of words and their relationships with each other in a sentence or text. We also
included a clustering-based feature, as in (MADY; AFIFY; BADR, 2022), where
features are extracted from clustering algorithms applied to text data. To create
the clusters, for English we used the Word2vec models provided by (CHIU et al.,
2016), using the K-means algorithm for grouping similar data points and then
creating features for each data point that indicate the distance from the center
of the cluster. For the experiments in the Portuguese language, we trained a
clinical Word2vec using data from a Brazilian Hospital, containing 157,929 de-
identified clinical narratives4. For both English and Portuguese, we have created
five worksheets containing clustered words, with cluster numbers defined as 5,
10, 50, 100, and 300. Table 5.1 shows more details of features utilized in the
proposed approach.

In a multi-label NER task, each token can be associated with multiple labels,
rather than a single label. Nested entities can also be treated as multi-label, since
each token can have more than one label type, as in the example "Bank of Brazil",
where the token Brazil can be a "local" and an "organization" at the same time.

We adapted the CRF training and inference steps, transforming the single-
label problem into a multi-label problem, without the need to train a binary
model for each class. We used the Problem Transformation Method 5 (PT5)
strategy presented by (TSOUMAKAS; KATAKIS, 2009), which decomposes each
example (x, Y) into |Y| examples (x, l) for all l ∈ Y and learns a single-label
coverage-based classifier from the transformed dataset. In other words, for
each existing multi-label token in the input sentence, we replicate the same
information, each with a different label, as can be seen in Figure 5.9.

For each input token, the CRF model returns a probability distribution over
each label, indicating the probability that the token belongs to each label type. To
adapt CRF to a multi-label NER task, we defined a threshold value to classify the
model’s output into binary categories (positive or negative) for each class. We
defined several threshold values (e.g. values between 0.15 to 0.8) and empirically
tested in each corpus to define its ideal value. For example, if the threshold is
set to 0.5, any predicted probability above 0.5 is classified as positive and any
predicted probability below 0.5 is classified as negative. If the threshold is
increased, the model becomes more conservative in its predictions and may

4Approved by the Institutional Review Board with the ethical approval n. 5944847.
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Table 5.1: Features extract to the CRF model training.

Feature type Feature name Description Example

Morphological Prefix Set of characters that are
taken from the leftmost lo-
cation of the words, with
length 3.

"cyc" for the word
"cycloheximide"

Sufix Set of characters that are
taken from the rightmost lo-
cation of the words, with
length 3.

"ide" for the word
"cycloheximide"

Orthographical
Is Upper Check if the word is upper-

case.
"True" for the
word "HB24"

Is title Check if the first letter is up-
percase

"True" for the
word "The"

Has digit Check if all the characters
are digits.

"False" for the
word "HB24"

Semantic UMLS concept A unique identifier assigned
to a concept in the UMLS
Metathesaurus, a compre-
hensive biomedical termi-
nology database.

"chem" for the
word "cyclohex-
imide"

Clustering-
based feature

Cluster number where the
word is found. Similar
words tend to group to-
gether in the same cluster.

"5" for the word
"disorder"

Part of speech POS The POS of each token. "verb" for the
word "was"

Context Context fea-
ture

Refer to tokens and their
information that appear
within a 4-word window
size.

Four tokens to the
right and four to-
kens to the left of
the token
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Figure 5.9: Input example for CRF model with nested entities.

achieve higher precision but lower recall, however, if the threshold is decreased,
the model becomes more liberal in its predictions and may achieve higher recall
but lower precision.

In the training of the CRF models, we employed the following settings: a
maximum of 100 iterations, utilizing the "lbfgs" optimization algorithm, and
the Viterbi algorithm for calculating the energy function, from the "Crfsuite"
package within Scikit-Learn (PEDREGOSA et al., 2011).

5.0.4 Limitations

Although the method does not require as much computational power as
the exhaustive methods, the training time of the Transformer-based model may
vary according to the number of entity types, where the more types, the longer
the time. This occurs because each sentence is sent t times to the model during
training, where t is the number of entity types. For a corpus with many sentences,
the training time can be impactful. The adapted model (end-to-end) to find
discontinuous and nested entities of the same type can also be slower than a
simple QA-NER model. The model also has limitations in finding nested entities
of the same type with multiple levels, limited to two levels of nesting. The same
goes for discontinuous entities. Also, the treatment to deal with class imbalance
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only concerns "entity" vs. "non-entity" and does not consider the imbalance
that can occur between different classes in the corpus, although the ClassWeights
variant we proposed alleviate this situation.

The training of CRF models, in turn, is extremely fast and does not require
GPUs. However, to find the best configuration of the number of clusters, the
number of words per window, and the threshold, several CRF models need to be
trained and evaluated, which can demand more work. Also, the CRF model has
limitations in finding discontinuous entities, only working to find multi-type
and nested entities. The CRF models alone show inferior results compared to
deep learning models trained with Transformer architecture, serving only as a
complement to the method.

5.0.5 Final Considerations

In summary, our method consists of two phases that can be assessed sep-
arately or combined for greater coverage. In Phase 1, the method uses the
QA-NER approach, proposed by (BANERJEE et al., 2021), with some improve-
ments:

• A treatment for class imbalance, assigning different weights to classes to
compensate for imbalances in the data;

• Adjust segments embeddings to separate sentence one (question) from
sentence two (context) during training;

• An adaptation to find discontinuous entities, using an end-to-end model
with two classifiers, one for normal entities and one for discontinuous
entities;

• An adaptation to find nested entities of the same type, a situation that
occurs in some corpora such as GENIA. Since the original method does
not deal with this situation, we also adapted the method providing an end-
to-end model with two classifiers, in which one searches for the outside
entities and the other, the inside ones.

In Phase 2, we propose a multi-label CRF adapted to work in a multi-label
way, using thresholds to define the labels.

The proposed method provides a flexible and efficient NER solution that can
handle nested, discontinuous, and multi-type entities, which can benefit many
clinical applications.
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6
A new Portuguese-language clinical cor-
pus

In this section, we detail the development of NestedClinBr, a new corpus
containing nested and discontinuous entities in Brazilian Portuguese clinical
narratives.

The main goal of NestedClinBr is to provide a human-annotated corpus
that can be used for learning and evaluating different machine learning models
to extract valuable medical information in the Portuguese language, in special
nested and discontinuous entities, an important but less explored task.

In the context of clinical NLP, the recognition of entities is commonly used
for the identification of diseases, body parts, medications, and other relevant
information, facilitating, for example, the detection of risk factors and medi-
cal decision-making (DALIANIS, 2018). As NestedClinBr, although small, can
contribute to the healthcare domain, it will be freely available to the research
community.

6.0.1 Data Acquisition

The data for the construction of the corpus originates from TempClinBr
(GUMIEL et al., 2023), a corpus containing clinical notes on the cardiology
domain in Portuguese, annotated for entity recognition and temporal relations.
Formed by 126 clinical notes from hospitals in Brazil, containing both structured
and unstructured data, the corpus comprises 2,347 sentences and 20,907 tokens.
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These texts were selected according to some criteria, such as being from a single
specialty (in this case, cardiology), which contains mentions of specific problems,
treatments, and diagnostic procedures. This selection approach enhances the
coverage of the guideline with a high degree of entity representativeness. All
the clinical texts have been properly de-identified, to respect patient privacy
and the Brazilian General Data Protection Law (LGPD) 1. The research was
approved by the Ethical Committee databases (Certificate of Presentation for
Ethical Appreciation number 51376015.4.0000.0020).

TempClinBr is originally annotated with entities of the types: "Problem",
"Treatment", "Test", "Evidence", "Occurrence", and "Clinical Department", in ad-
dition to other annotations such as polarity and temporal relations. To generate
NestedClinBr, we have discarded the tag of entities "Evidence", "Occurrence",
and "Clinical Department", as well as the other tags, keeping "Problem", "Treat-
ment", and "Tests". Following the example of (CAMPILLOS-LLANOS L., 2021)
and (BÁEZ et al., 2020) corpora, we added the entity "Anatomy", which refers
to the location of the human body, or "Bodypart" as it is called in (BÁEZ et al.,
2020). Besides its medical relevance, which allows the extraction of relevant
medical information, this entity is important for the study of nested entities as
usually a problem or treatment occurs or is linked to a body part. In addition to
the inclusion of the new entity, the maintained entities ("Problem", "Treatment"
and "Test") were also revised in order to label the discontinuous mentions.

6.0.2 Annotation Tool

To perform the manual annotations, the BRAT rapid annotation tool2 (STENE-
TORP et al., 2012) was used, a web-based tool for text annotation, i.e. the addition
of notes to existing text documents. Designed for structured annotation, where
the notes have a fixed form that can be automatically processed and interpreted
by a computer, allows the visual identification of marked mentions and the
relation between them. We have selected this tool since it allows annotating dis-
continuous, multi-type, and nested entities in an intuitive and user-friendly way,
besides being one of the most comprehensive tools and most popular, regarding
the number of citations according to (NEVES; ŠEVA, 2019).

1https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
2https://brat.nlplab.org/
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For each text file, BRAT creates an ANN file containing the corresponding
annotations for that text, becoming a standard of corpora annotations for NLP
tasks. Figure 6.1 shows an example of text annotated with the BRAT tool. In
(a), we can see the visual interface, and in (b), its corresponding annotation file
is displayed, which stores the type of entity, span indexes, and strings for each
mention.

Figure 6.1: Example of an annotated text with BRAT, from NestedClinBr.

6.0.3 Annotation Process

The NestedClinBr was an end-to-end double annotation project, where all the
texts were annotated by two different annotators. The differences were resolved
by a third annotator (i.e., the adjudicator), who cannot remove annotations made
by both annotators, and neither create new annotations. Performing a double
annotation of a document prevents bias and makes it possible to check the
annotation quality, by measuring the agreement between both annotators. This
process resulted in the creation of a gold standard corpus.

As verified by (GURULINGAPPA et al., 2012), clinically trained annotators
are better than linguists and computer scientists at annotating clinical text. We
have selected annotators with expertise in the health domain: two students
3 from the Medicine course at the Pontifícia Universidade Católica do Paraná
(PUCPR), and a master 4 in Bioinformatics at Universidade Federal do Paraná
(UFPR) for adjudication. We also had the support of two doctors 5 in Informa-

3Carolina de Oliveira Montenegro and Laura Rubel Barzotto
4Elisa Terumi Rubel Schneider
5Yohan Bonescki Gumiel and Lilian Mie Mukai
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tion Technology from PUCPR and a doctor 6 in Biomedical Informatics from
the Università degli Studi di Pavia (UNIPV), who helped with specific knowl-
edge during the creation of the guidelines and to answer questions from the
annotators.

A training phase was provided so the annotators could familiarize themselves
with the annotation tool and the process. The annotation process started with
the release of one-third of the texts for annotation in this phase, performed by
two annotators separately. As the corpus is small, and already pre-annotated
with "Problems", "Treatment" and "Tests", only two round was performed to
resolve doubts and disagreements, check the consistency of annotations, and
improve the guideline. During each iteration, a small set of documents was
subjected to double annotation. After addressing uncertainties and ensuring
consistency, the annotation guidelines were refined. Following the last round,
with all documents double annotated, we had an adjudication step to generate
the gold standard, and the Inter Annotator Agreement was measured using
F1-measure.

6.0.4 Annotation Guidelines

The annotation guidelines provide details on how to annotate each concept,
listing a set of useful examples and serving as a guide to annotators. They are
essential to maintain homogeneity during the annotation process and ensure
the gold standard quality.

Following the works of (MARTíNEZ-DEMIGUEL et al., 2022), (OLIVEIRA et
al., 2022), (GUMIEL et al., 2023), and (DOGAN; LEAMAN; LU, 2014), our guide-
lines provide accurate descriptions of entities, as well as illustrative examples to
help during the annotation phase. Table 6.1 provides the definitions and some
examples of the entity included in NestedClinBr corpus. We chose to maintain
the same descriptions of TempClinBr, for entities of type "Problem", "Treatment",
and "Test", but with the addition of examples of nested and discontinuous men-
tions. The importance of nested and discontinuous mention annotations was
emphasized, showing clear examples, since this would be a differential of the
corpus.

The entities to be marked refer to important events or mentions of the pa-

6Claudia Maria Cabral Moro Barra
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Table 6.1: Event types with their respective description and examples.

Entity type Definition UMLS group Examples (free
translation)

Problem Mentions that differ from nor-
mal expected conditions, in-
cluding the location (body
part), characterization, and
severity, when available in the
text.

Disorders Injury, chest pain,
SAH, severe dysp-
nea on exertion.

Treatment Mentions relating to any pro-
cedure or intervention used to
treat problems, including the
dosage, in the case of drugs,
and the location (body part),
when available in the text.

Chemicals
& Drugs,
Devices, Pro-
cedures

Pacemaker, angio-
plasty, Enalapril 10
mg, mitral valve re-
pair.

Test Used to detect and evaluate
problems (such as diagnostic
procedures and physical exam-
ination), also including the lo-
cation (body part), when avail-
able in the text.

Phenomena,
Physiology

HDL, potassium,
cardiac catheteri-
zation, myocardial
scintigraphy.

Anatomy Refers to body location, region,
organ or organ component.

Anatomy Heart valves, left
hemithorax, mitral.

tient, related to the Unified Medical Language System semantic categories. In
addition, some specific guidelines for each type were defined:

Problem Following the guideline proposed by (GUMIEL et al., 2023), any
patient situation that differs from the normal and/or expected situation should
be marked as a "Problem", including diseases, disorders, syndromes, clinical
findings, signs, symptoms, disorders, injuries, or poisoning.

When labeling Problem-type entities, all the tokens that formed the mention
must be selected, even if they are not sequential in the text. "Problems" should
include, when available: a) location, which refers to the site of the disease or
signal and irradiation pattern (localized or diffused), b) characterization, the
description of what the patient understands by the symptom and its characteri-
zation as acute, constant, etc., c) severity, which describes the degree of severity
or intensity of the signal or symptom.

Normal conditions such as "blushed", "lucid" and test results that indicate
normality should not be marked. Laboratory test results such as “creatinine

70



CHAPTER 6. A NEW PORTUGUESE-LANGUAGE CLINICAL CORPUS

2 mg/dl” should not be marked as "Problem", yet as "Test", as well as “Blood
pressure 145/95”. Some marking examples are shown in Figure 6.2. In example
(a), we have the expression “Tabagista” (smoker) which, despite being subjective,
is related to the patient’s social history and has codes in the International Clas-
sification of Diseases (ICD), and for this reason in our guideline it is considered
a "Problem". In example (b) we have the identification of “queixas” (complaints)
as a "Problem", even though it is denied in the sentence. In example (c), we have
an example of a discontinuous entity, where the mention would be “angina aos
mínimos esforços” (angina on minimal exertion), i.e., angina plus its characteri-
zation. In example (d) we have a mention of a problem “edema agudo” (acute
edema) with its location, “pulmão” (lung), being an example of a nested entity
with an anatomy part.

Figure 6.2: Examples of labeled entities of the "Problem" type (in orange), from
NestedClinBr corpus.

Treatment Still following the guideline by (GUMIEL et al., 2023), the treat-
ment labeling should maintain specific markings, as the location in the case of
procedures (e.g. "stent in the right coronary artery" instead of just "stent") and
the dosage of medicines such as "simvastatin 20 mg". Treatment-like entities
include the measures proposed by the health professional from the diagnosis,
involving pharmacological substances, devices, procedures, and interventions
performed. Figure 6.3 presents some examples of marking "Treatment" entities.
In example (a), we have mentions containing the drug along with the dosage,
very common in the corpus. In (b), we have an example of a treatment, "ablação
de taquicardia atrial" (atrial tachycardia ablation), that contains the location of
the treatment, creating a nested entity with "Anatomy". Example (c) shows a
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treatment with its location, "angioplastia coronária direita" (right coronary angio-
plasty), in non-sequential words in the text, originating an entity that is both
nested and discontinuous. In (d), a more subjective example, where the expres-
sion "atividade física" (physical activity) is a medical recommendation, and for
this reason, it is considered a Treatment.

Figure 6.3: Examples of labeled entities of the "Treatment" type (in blue), from
NestedClinBr corpus.

Test "Test" mentions involve physical, visual, and laboratory examinations, as
well as diagnostic tests, and should also include the most complete term possible,
such as "transesophageal echocardiogram", rather than just "echocardiogram", as
proposed by (GUMIEL et al., 2023). Results should not be marked to the tests nor
mention of verbs related to its performance. Figure 6.4 presents some examples
of test labeling. In (a), we have the generic term "exames laboratoriais" (laboratory
exams) as a "Test", as well as ECG (an acronym for electrocardiogram). In exam-
ple (b), we have the tests identified, "glicemia" and "microalbuminuria", without
considering their results. In (c) and (d), we have examples of test identification
with its location, "raio x de torax" (chest x-ray) and "cateterismo cardíaco" (cardiac
catheterization), configuring nested entities with the "Anatomy" type. Although
granted in our guideline, "Test" entities formed by discontinuous tokens were
not found.

Anatomy Anatomy-like entities are a differential of the new corpus and thence,
they must be labeled from scratch. "Anatomy" is an important concept in medical
texts, presented in various health corpora such as (CAMPILLOS-LLANOS L.,
2021), (BÁEZ et al., 2020), (OLIVEIRA et al., 2022), and (LOPES; TEIXEIRA;
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Figure 6.4: Examples of labeled entities of the "Test" type (in green), from
NestedClinBr corpus.

OLIVEIRA, 2019). "Anatomy" means any region or location of the human body,
which may be organs, components, substances, systems, cell components, tissue,
or other anatomical structures. Also, any expression that refers to the anatomical
location must be labeled, for example, “abdominal” which refers to the abdomen
region. This entity also accepts discontinuous mentions, however only 3% of
the training set contained discontinuous anatomy entities. When the mention
is associated with a "Problem", "Treatment", or "Test", it will usually be nested
within this entity. Figure 6.5 shows some examples of "Anatomy" mentions. In
(a), we have an example where the word “cardiaco” (cardiac) refers to the location
of the treatment, and for this reason, it should be marked as "Anatomy", as
well as in example (b), where “ventricular” goes to the ventricle. In (c) an
example of anatomy formed by several words, “medio basal infero dorsal” (mid-
basal inferodorsal), and in (d) a very common example in texts, involving edema
in the lower limbs (“mmii”).

Generic Guidelines

• Discontinuous entities must always be formed by the same semantic type
and be in the same sentence;

• Nested entities of the same type must not be marked, (e.g. “ventricle” is a
mention of "Anatomy" type, but if in a larger expression as "left ventricle",
the entire expression (more specific) must be marked, with no need to
select only "ventricle");

• "Problems", "Treatments", and "Tests" must be associated with at most one
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Figure 6.5: Examples of labeled entities of the "Anatomy" type (in pink), from
NestedClinBr corpus.

anatomy-type entity. If there’s more than one body location involved, then
two mentions must be labeled, one for each region;

• Abbreviated concepts must also be labeled (e.g. "VE", "mmii"), as well as
concepts with typos or grammatical errors.

6.0.5 Inter-Annotator Agreement

Given that the inter-annotator agreement assesses the consistency and quality
of the corpus, we calculated the IAA of all the data, using the F-1 measure in a
token-level way. As explained in the methodology section, for named entities
annotation tasks, Cohen’s Kappa may not be suitable due to the lack of a fixed
number of negative cases, being the F-measure (not reliant on negative case
count) more appropriate for named entity annotation (DELEGER et al., 2012).

As dealing with a small corpus, this metric was calculated only at the end of
the annotation process, as follows: 1) we considered the annotations made by the
first annotator our gold standard, 2) we calculated the precision, recall, and F1-
measure between the gold standard and the annotations of the second annotator,
under exact match criteria (i.e., the annotations should exactly coincide by entity
type and the mention boundaries). As the work of (MARTíNEZ-DEMIGUEL et
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al., 2022), the "Bratiaa" library 7 was used to compute the F1-measure, a Python
library that computes the agreement under exact match (type and mention) for
entities.

The final IAA value for entity types was 94.08%, a high F1-measure which
represents a substantial agreement between annotators. Figure 6.6 shows the
IAA values per entity type.

Figure 6.6: IAA scores for entities in NestedClinBr.

6.0.6 Corpus Statistics

As the annotations present in our corpus can be very useful to train models
to detect medical information from unannotated texts, we split it into training
and test datasets in the ratio 80:20. Table 6.2 shows some basic statistics about
the number of tokens, sentences, and documents in NestedClinBr.

Table 6.3 shows the numbers of the annotated entities, with some statistics
per entity type.

Figure 6.7 displays in (a) the percentage of entities of each type in the training
corpus, and in (b) the number of tokens per entity, where the minimum is 1 and

7https://pypi.org/project/bratiaa/
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Table 6.2: Number of documents, sentences, and tokens present in NestedClinBr.

Training Test Total
Documents 100 26 126
Sentences 2,273 693 2,966
Tokens 17,154 5,310 22,464

Table 6.3: Statistics of the NestedClinBr corpus.

Item Training Test Total
Problem
Nested 315 (72.92%) 117 (27.08%) 432
Discontinuous 80 (65.04%) 43 (34.96%) 123
Total 1,110 (77.19%) 328 (22.81%) 1,438
Entity avg. length 2.6 2.5 -
Treatment
Nested 50 (76.92%) 15 (23.08%) 65
Discontinuous 4 (100%) 0 (0%) 4
Total 761 (78.05%) 214 (21.95%) 975
Entity avg. length 2.1 2.1 -
Test
Nested 15 (71.43%) 6 (28.57%) 21
Discontinuous 0 (0%) 0 (0%) 0
Total 772 (75.98%) 244 (24.02%) 1,016
Entity avg. length 1.2 1.3 -
Anatomy
Nested 395 (75.38%) 129 (24.62%) 524
Discontinuous 5 (83.33%) 1 (16.66%) 6
Total 543 (73.58%) 195 (26.42%) 738
Entity avg. length 1.4 1.3 -
Overall
Nested 778 (74.45%) 267 (25.55%) 1,045
Discontinuous 89 (66.92%) 44 (33.08%) 133
Total 3,186 (76.46%) 981 (23.54%) 4,167
Percentage of entities vs ’O’
(balancing)

30.8% 30.1% -

Entity avg. length 1.9 1.9 -
Max. tokens per sentence 192 146 -
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the maximum is 27.

Figure 6.7: Percentage of entities and the number of tokens per entity in Nest-
edClinBr.

The code used to generate corpus statistics will also be available in a pub-
licly accessible repository, serving as a resource for generating corpus statistics
annotated in the BRAT standard.

6.0.7 Discussion

We proposed NestedClinBr, a Brazilian-Portuguese corpus that includes the
annotation of clinical concepts, in flat, nested, and discontinuous format, built
from the TempClinBr (GUMIEL et al., 2023) corpus. To the best of our knowl-
edge, this is the first resource for clinical natural language processing contain-
ing nested and discontinuous entities, in Portuguese language. The nested and
discontinuous entities address some NER challenges that have hardly been ad-
dressed.

In our analysis of the development of NestedClinBr corpus, the IAA score
was calculated, to ensure its quality and consistency as well as provide insights
into the quality of the guidelines created. Our IAA values indicate the high
quality of the corpus, showing a high agreement for "Problem" (94.1%), "Treat-
ment" (97.1%), "Test" (99.9%) and "Anatomy" (85.2%) entities. The high value for
the "Problem", "Treatment" and "Test" entities was expected, since the mentions
were already pre-marked, coming from the TempClinBr corpus. It is worth men-
tioning that one of the NestedClinBr annotators participated in the TempClinBr
annotation, as well as two of the researchers who provided support, already
bringing their previously acquired knowledge. However, new markings were
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performed to signalize nested and discontinuous entities, something that did
not exist in the original corpus.

The entity of type "Anatomy", annotated from scratch, had the lowest agree-
ment value between annotators. One of the reasons for this might be the labeling
of words that are not anatomy per see but refer to the location of the "Problem",
"Treatment", or "Test". For example, in the words "cardiac" and "abdominal", as
can be seen in Fig 6.8.Example 1, just the second annotator (b) correctly labeled
it. Some acronyms also went unnoticed, as in 6.8. Example 2, when the mention
of CD, abbreviation for "coronária direita" (right coronary) was missing by the
first annotator (a). Also, mentions of "Anatomy", although representing 17% of
all mentions, represent 51.2% of all nested mentions in the corpus, which may
bring some complexity when labeling it.

Figure 6.8: Comparison between labeled entities of the two annotators.

One of the most important challenges is the accurate annotation of discon-
tinuous entities, as different annotators might produce very similar annotations
but with some small differences. In Figure 6.9.Example 1 we can see that while
the second annotator (b) correctly identified the expression "dor tipo queimação
em hemitorax esquerdo sem relção com exerciciios fisicos" (sic) (burning pain in the
left hemithorax without relation to physical exercises), the first annotator did
not mark the word "sem" (without) in the annotation of this discontinuous en-
tity. Although both annotators correctly detected a problem and its location and
characterization, these small disagreements penalized the global IAA. Another
disagreement example of a discontinuous entity can be seen in Figure 6.9. Ex-
ample 2, where the first annotator did not label the severity of the "Problem",
generating inconsistency ("ICC diastólica melhora importante dos sintomas após início
do tratamento", in English "Diastolic CHF significantly improves symptoms after start-
ing treatment"). In our guideline, all location, characterization, and severity must
be marked united with the problem, when available, even if in non-sequential
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words in the text.

Figure 6.9: Comparison between labeled entities of the two annotators.

Annotating nested and discontinuous entities is a challenging task that in-
volves identifying and marking entities that can occur at different levels of
nesting and can also be interrupted by other entities, causing disagreements
between annotators, as pointed out by (MARTíNEZ-DEMIGUEL et al., 2022).
To overcome these challenges, it is important to have clear guidelines, adequate
training for annotators, and iteration between annotators.

One of the limitations of the corpus is its small size, formed by 126 clinical
notes from Brazilian hospitals. However, as seen in the experiments conducted
with NestedClinBr, it was possible to train machine learning models to recognize
these medical entities with a reasonable level of performance. Also, our corpus
could be used to develop semi-supervised approaches, providing gold-standard
seeds to augment the training data.

NestedClinBr can be considered a gold-standard corpus since it was manu-
ally annotated and its quality was confirmed by the IAA measurement between
different annotators.
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7
Portuguese-language models for clini-
cal and biomedical domains

In this chapter, we will present the clinical models for the Portuguese lan-
guage developed during the research. All language models trained were pub-
licly released 1. More details can be seen in the published paper (SCHNEIDER
et al., 2020).

7.1 Methods

We fine-tuned three BERT-based models on Portuguese clinical and biomed-
ical corpora: a) BioBERTpt(clin), a clinical model, b) BioBERTpt(bio), a biomed-
ical model, and c) BioBERTpt(all), a clinical + biomedical model, using as check-
points the weights provided by multilingual BERT (DEVLIN et al., 2019).

We have used 2,100,546 clinical notes from Brazilian hospitals 2, properly de-
identified, containing multi-specialty information, including cardiology, nephrol-
ogy, and endocrinology. These clinical notes, formed by 3.8 million sentences
and 27.7 million words, were used to train a Portuguese clinical BERT-base
model (BioBERTpt(clin)). For training the biomedical model (BioBERTpt(bio)),
we collect titles and abstracts from Portuguese scientific papers published in
Pubmed and in the Scielo (Scientific Electronic Library Online), obtained from

1https://huggingface.co/pucpr and https://github.com/HAILab-PUCPR/
2Certificate of presentation for Ethical Appreciation number 51376015.4.0000.0020
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Table 7.1: List of text corpora used for BioBERTpt.

Texts Source Sentences Words Domain
Clinical narratives EHR from Brazilian

Hospitals
3.8 million 27.7 million Clinical

Scielo (heath and bi-
ological areas)

Literature titles ab-
stracts

663,018 15.6 million Biomedical

Pubmed Literature titles 74,451 812,711 Biomedical

the Biomedical Translation Task in the First Conference on Machine Transla-
tion (BOJAR et al., 2016); resulting in 16.4 million words. We also have trained
a model with all corpora, BioBERTpt(all). All documents used for training
BioBERTpt models are listed in Table 7.1.

We split the notes and abstracts into sentences and tokenize them with the
default BERT Wordpiece tokenizer (DEVLIN et al., 2019). We trained the models
for 5 epochs on a GPU GTX2080Ti Titan 12 GB, with the hyperparameters: batch
size as 4, learning rate as 2e-5, and block size as 512. We used the PyTorch
implementation of BERT proposed by Hugging Face (WOLF et al., 2020).

In order to validate the in-domain encoded information in the models, we
performed some experiments for the NER task 3 with the following corpora:
SemClinBr (OLIVEIRA et al., 2022) and PortugueseClinicalNER (LOPES; TEIX-
EIRA; OLIVEIRA, 2019). To evaluate the performance, we used as metrics the
micro precision, recall, and F1-measure, and compared them with other BERT-
based models. For both experiments, we used AdamW optimizer, weight decay
as 0.01, batch size as 4, maximum length as 256, learning rate as 3e-5, maximum
epoch as 10, and linear schedule with warm up as 0.1. Figure 7.1 shows an
overview of the method.

7.2 NER Results

Table 7.2 shows the models results on SemClinBr corpus, and Table 7.3, on
PortugueseClinicalNER. BioBERTpt has achieved the highest results for both
corpora, compared to existing models (BERT-multilingual (DEVLIN et al., 2019)
and BERTimbau (SOUZA; NOGUEIRA; LOTUFO, 2020)).

3We evaluated the BioBERTpt models in the traditional NER task, i.e. with flat entities.
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Figure 7.1: Overview of BioBERTpt training.

Table 7.2: The average scores of the NER task in SemClinBr corpus, for each
model evaluated.

Model Precision Recall F1

BERT-based models

mBERT-uncase 0.623 0.566 0.588

mBERT-cased 0.604 0.567 0.582

BERTimbau-base 0.595 0.587 0.585

BERTimbau-large 0.563 0.531 0.541

Ours

BioBERTpt(bio) 0.624 0.586 0.602

BioBERTpt(clin) 0.609 0.603 0.602

BioBERTpt(all) 0.608 0.607 0.604

7.3 Discussion

We developed three new language models for clinical texts in Portuguese: a)
a biomedical, BioBERTpt(bio), b) a clinical, BioBERtpt(clin), and c) a clinical and
biomedical model, BioBERTpt(all). To evaluate the models and assess if they
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Table 7.3: The average scores of the NER task in PortugueseClinicalNER corpus,
for each model evaluated.

Model Precision Recall F1

Baseline

BiLSTM-CRF 0.753 0.745 0.749

BERT-based models

mBERT-uncase 0.903 0.921 0.912

mBERT-cased 0.912 0.931 0.921

BERTimbau-base 0.910 0.922 0.916

BERTimbau-large 0.898 0.927 0.912

Ours

BioBERTpt(bio) 0.917 0.925 0.921

BioBERTpt(clin) 0.917 0.935 0.926

BioBERTpt(all) 0.912 0.929 0.920

are relevant to the medical area, we did two NER experiments using the corpora
SemClinBr and PortugueseClinicalNER. Our models reached state-of-the-art
in both corpora for recall, precision, and F1, including significantly superior
results in terms of F1 to the mBERT, BERTimbau-large, and BERTimbau-base,
on SemClinBr corpus.

These results showed that the in-domain models outperform the general
models in the evaluated metrics, particularly for domains with unique charac-
teristics such as medical, corroborating previous experiments in other languages
such as English as in the works of (LEE et al., 2019), (ALSENTZER et al., 2019),
and (LI et al., 2019)).

Also, by providing a contextualized word representation and using the Trans-
former architecture, BERT-based language models had a positive impact on the
results when compared to traditional machine learning algorithms and word
embeddings, used in the work of (SOUZA et al., 2019) and (LOPES; TEIX-
EIRA; OLIVEIRA, 2019). For example, in (LOPES; TEIXEIRA; OLIVEIRA, 2019)
the authors used BiLSTM-CRF and fastText on the PortugueseClinicalNER cor-
pus, achieving an F1 of 0.759 with an in-domain model, while BioBERTpt(clin)
achieved 0.926. In general, all BERT-based models performed better compared
to the previous baselines, for both corpora, even the generic BERT models (out-
of-domain).
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Figure 7.2: Repository of generated resources, on GitHub.

Our clinical and biomedical BERT-based models have the potential to support
clinical NLP tasks for Portuguese, a language with relatively lower resources,
especially in the health domain. The World Health Organization 4 (WHO) has
released a list of 13 urgent health challenges the world will face over the next
decade, and to face these challenges, access to quality health information is
essential. Since extracting structured information from clinical documents can
provide health care assistance, support other biomedical tasks, and contribute
to urgent health challenges, we release publicly BioBERTpt and all NER models
developed in our research (13 in total), for researchers and for the Portuguese-
speaking community. All models, source code to replicate the work, usage
instructions, and the complete results of the experiments performed are in
our research groups GitHub repository 5 , as shown in Figure 7.2. Also, we
have made the language models available in the Hugging Faces repository, a
community-based repository for open-source machine learning technology, un-

4https://www.who.int/
5https://github.com/HAILab-PUCPR/BioBERTpt
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der the username of our university 6 (PUCPR). Figure 7.3 shows the language
models generated in this work and available on the HuggingFaces platform,
also showing the total accesses (downloads) in the last month. As we can see,
the models are being useful to the community, with the BioBERTpt(clin) model
having approximately 3.6 thousand accesses in the last month (March 2023 in-
formation).

Figure 7.3: Repository of generated resources, on HuggingFaces.

6https://huggingface.co/pucpr
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8
Experiments, Results, and Discussion

In this chapter, we detail the experiments performed with BioNestedNER,
in the selected corpora. First, we present the architecture, tools, and parameters
used, some evaluation details and comparative models, and then we show the
results for each corpus and a discussion about the obtained results. In the end,
we revisit the research objectives and hypothesis of this thesis.

8.1 Architecture Definition, Tools, and Parameters

By studying and experimenting, we defined the architecture used in our
experiments with BioNestedNER as models based on BERT (Phase 1 of the
method), for generating the representation of words and for task fine-tuning.
BERT uses the Transformer architecture, where its self-attention mechanism
allows the model to capture dependencies between distant words in a sentence,
improving long-range dependencies. Also, pre-trained BERT models on a large
amount of data allow the learning of general features of language that can
be applied to a wide variety of NLP tasks, making it versatile and effective
for language processing. Furthermore, its bidirectional approach to language
modeling captures a more nuanced understanding of language. It performs
highly on tasks that require a deeper understanding of context.

To make a fair comparison between our method and other methods in the
literature, we used only BERT-based models. We prioritized the use of the
same pre-trained weights (checkpoint) in all methods, BioBERT (LEE et al.,
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Table 8.1: Main hyper-parameter settings of the experiments.

Hyper-parameter Value

Training batch size 32, 16, and 8

Evaluation batch size 32, 16, and 8

Learning rate 3e-5 and 2e-05

Embedding size 768

Dropout probability 0.1

Transformer blocks 12

Attention heads (for each attention layer) 12

Optimizer AdamW

Activation function GELU

Sentence maximum length 180

Maximum number of epochs 30 and 10

2019) in the experiments in English and BioBERTpt (SCHNEIDER et al., 2020)
in the experiments in the Portuguese language. Therefore, we can compare
the methods without taking into account the differences between the language
models. In addition, we also performed a small few-shot experiment with GPT-3,
which is explained later.

In the implementation, we used the Python programming language, version
3, the PyTorch version of the "Transformers" library provided by the Hugging
Face API (WOLF et al., 2020), and the "Crfsuite" package from "Sklearn" (PE-
DREGOSA et al., 2011).

In terms of hardware, we have used: a) NVIDIA T4 Tensor Core GPU with
CUDA version 11.2, 15 GB of GPU memory, and up to 32 GB of RAM, service
accessed in the cloud and provided by Google Colab Pro 1, b) NVIDIA Geforce
RTX 2060 SUPER, with CUDA version 12.0, 8 GB of GPU memory, and an Intel i7
with 16 GB of RAM, and c) NVIDIA Geforce GTX TITAN X, with CUDA version
11.6, 12 GB of GPU memory, and an Intel Xeon E5-1620 v4 with 16 GB of RAM.

For the experiments, we used the configuration shown in Table 8.1.

1https://colab.research.google.com/
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8.2 Evaluation Details and Comparative Models

Following other works in the literature, we consider micro metrics and report
only the exact matches, i.e., both entity type and boundaries must be correct.
In experiments run locally, we also show the accuracy (ACC) of nested entities
(NE), discontinuous entities (DE), and multi-type entities (ME), representing
the proportion of correctly classified instances in relation to the total number of
instances.

In some cases, we have trained baselines using BERT models to compare
with our method. In cases of the corpus with nested and multi-type entities, we
have performed a binary relevance (BR), i.e., we have trained a specific model
for each type of entity and then joined the results.

Besides BR, we also trained local models with the MRC (LI et al., 2020),
PIQN (SHEN et al., 2022), and QA-NER (BANERJEE et al., 2021) (the original
and with an adapted version without the CNN) methods, which are similar to
ours, in order to be able to compare the results. We used the same settings
presented above but with the following changes (proposed by the authors in
their repository): for MRC and PIQN, the maximum number of epochs was 30,
for MRC we used dropout as 0.2 and weight decay as 0.002, and for PIQN we
used learning rate as 2e-05.

In view of the success of ChatGPT (OPENAI, 2023), in experiments E3.1
(NestedClinBr) and E5.3 (GENIA few shot) we also did a small few-shot exper-
iment with GPT-3 model, Davinci (BROWN et al., 2020), via a prompt 2. GPT-3
has been trained on an enormous amount of data and has a high capacity to
generalize to new tasks. Its pre-training includes exposure to a broad range of
natural language processing tasks, which makes it able to perform well on tasks
it has never seen before. As demonstrated by (BROWN et al., 2020), GPT-3 has
the ability to perform well on few-shot learning tasks, having a high capacity to
generalize to new tasks as its pre-training includes exposure to a broad range
of natural language processing tasks. Also, GPT-3 includes a large number of
parameters (175 billion), which allows it to capture complex patterns in data
and learn from a few examples. We have experimented with a few-shot training
with GPT-3 with just 15 and 20 examples of input, following (BROWN et al.,

2Few-shot prompting is a technique where the model is given a small number of samples,
in order to quickly adapt to new examples.
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2020) where they suggest a value between 10 to 100.
In Figure 8.1 we show an example of the prompt used in the few-shot training.

Figure 8.1: An example of the prompt for few-shot ChatGPT training.

We trained several variants of our main model to identify the best settings
for balancing and loss reduction during training, and in the case of the CRF, to
find the best number of clusters and thresholds. An explanation of each variant
follows:

• BioNestedNER(classWeight+sum): means that we trained the model using
the class balancing with sum reduction in loss function;

• BioNestedNER(classWeight+sum+CRF): means that we trained the model
using the class balancing with sum reduction in loss function and we
combined it with the results of the best trained CRF model;

• BioNested-NER(classWeight+sum+CRF ensemble): means that we trained
the model using the class balancing with sum reduction in loss function
and we combined it with the results of an ensemble formed by all trained
CRF models;

• BioNestedNER(binaryWeight+sum): means that we trained the model
using the binary balancing with sum reduction in loss function;

• BioNestedNER(binaryWeight+sum+CRF): means that we trained the model
using the binary balancing with sum reduction in loss function and we
combined it with the results of the best trained CRF model;
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• BioNestedNER(binaryWeight+sum+CRF ensemble): means that we trained
the model using the binary balancing with sum reduction in the loss func-
tion, and we combined it with the results of an ensemble formed by all
trained CRF models;

• BioNestedNER(classWeight+mean): means that we trained the model us-
ing the class balancing with a mean reduction in loss function;

• BioNested-NER(classWeight+mean+CRF): means that we trained the model
using the class balancing with a mean reduction in loss function and we
combined it with the results of the best trained CRF model;

• BioNestedNER(classWeight+mean+CRF ensemble): means that we trained
the model using the class balancing with a mean reduction in the loss func-
tion, and we combined it with the results of an ensemble formed by all
trained CRF models;

• BioNestedNER(binaryWeight+mean): means that we trained the model
using the binary balancing with a mean reduction in loss function;

• BioNestedNER(binaryWeight+mean+CRF): means that we trained the model
using the binary balancing with a mean reduction in the loss function, and
we combined it with the results of the best trained CRF model;

• BioNestedNER(binaryWeight+mean+CRF ensemble): means that we trained
the model using the binary balancing with a mean reduction in loss func-
tion and combined it with the results of an ensemble formed by all trained
CRF models.

In the comparison tables with other models, we follow this pattern:

• BioNestedNER (QA-NER): the model generated in the first phase of the
method, that is, the model based on QA-NER with the best balancing
configuration and loss reduction;

• BioNestedNER (QA-NER + CRF): the same as above combined with the
best trained CRF model results;

• BioNestedNER (QA-NER end-to-end): the model generated in the first
phase of the method, using end-to-end modification, that is, the model
based on QA-NER with the best balancing configuration and loss reduc-
tion;

• BioNestedNER (QA-NER end-to-end + CRF): the same as above combined
with the best trained CRF model results;

• BioNestedNER (CRF multi-label): the model generated in the second phase
of the method, that is, the CRF multi-label with the best-selected features
(e.g., number of clusters) and threshold value;

• BioNestedNER (CRF ensemble): an ensemble formed by all trained CRF
models.
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Following the same guidelines as the methods in the literature, all reported
results are using micro metrics, calculating the aggregated performance of the
model across all classes, appropriate when the class distribution is imbalanced
and the main interest is to evaluate the model’s overall performance across
all classes. We apply the non-parametric Friedman test (an alternative to the
repeated measures ANOVA) to verify if there are statistical differences between
results and processing time, followed by a Nemenyi post-hoc test to see which
groups are different. The Friedman test was selected as it is commonly used in
comparing multiple models (such as neural networks) in experiments using the
same dataset, followed by post-hoc Nemenyi when the null hypothesis is rejected
(DEMŠAR, 2006). In our experiments, we consider a statistically significant
result when p-value < 0.05.

8.3 Results and Discussion

This section provides a comprehensive presentation of the evaluation results
for all experimented corpora, accompanied by a discussion and analysis of the
outcomes.

8.3.1 NestedClinBr Corpus (E3)

Tables 8.2 and 8.3 show the results in NestedClinBr, a new proposed corpus
with Brazilian-Portuguese clinical notes. As it is a new corpus, proposed in this
work, it is not yet possible to compare it with results from the literature, so we
trained binary relevance models with BioBERTpt, BERTimbau, and mBERT. We
have trained models with MRC, PIQN, and QA-NER, with CNN and without it,
using BioBERTpt as a base model.

Since the methods being compared with BioNestedNER were not trained to
recognize discontinuous entities, in order to make a fair comparison, we per-
formed an experiment containing only the corpus with flat and nested entities,
removing the discontinuous entities, and another experiment that also considers
the discontinuous ones.

In both experiments with NestedClinBr corpus, our method achieved the
SOTA in F1-score, although there was no statistical difference. As the method
based on QA-NER is very similar, it obtained very similar results, with our
method only 0.19 points ahead in the first experiment and 1.44 in the second
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Table 8.2: Results in the NestedClinBr corpus, without discontinuous entities
(experiment E3.1).

1.NestedClinBr - only flat and nested entities
Model Recall Precision F1-score Acc NE
Baseline (binary relevance)
BioBERTpt 0.7309 0.8333 0.7787 0.4907
BERTimbau 0.6253 0.7709 0.6905 0.2870
mBERT 0.5455 0.6959 0.6116 0.1296
Literature
MRC 0.8134 0.8093 0.8113 -
PIQN 0.7661 0.8766 0.8176 -
QA-NER (CNN) 0.8599 0.8895 0.8744 0.6481
QA-NER (w/o CNN) 0.8589 0.8931 0.8756 0.6667
GPT-3 (few shot) 0.5396 0.6598 0.5936 -
Ours
BioNestedNER (CRF multi-label) 0.7033 0.8357 0.7638 0.2870
BioNestedNER (QA-NER) 0.8629 0.8926 0.8775 0.6389
BioNestedNER (QA-NER + CRF) 0.9043 0.8346 0.8681 0.7037

Table 8.3: Results in the NestedClinBr corpus, with discontinuous entities (ex-
periment E3.2).

2.NestedClinBr - flat, nested, and discontinuous entities
Model Recall Precision F1-score Acc NE Acc DE
Baseline (binary relevance)
BioBERTpt 0.7085 0.8219 0.7571 0.3443 0
BERTimbau 0.6057 0.7535 0.6716 0.2203 0
mBERT 0.5301 0.6802 0.5959 0.1041 0
Literature
MRC 0.7929 0.7728 0.7827 - -
PIQN 0.7456 0.8351 0.7878 - -
QA-NER (CNN) 0.8287 0.8575 0.8420 0.5056 0
QA-NER (w/o CNN) 0.8288 0.8686 0.8482 0.5279 0.0227
Ours
BioNestedNER (QA-NER) 0.8542 0.8711 0.8626 0.6394 0.2727

BioNestedNER (QA-NER + CRF) 0.8873 0.8176 0.8510 0.6617 0.2727
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one. However, when analyzing the accuracy for complex entities, our accuracy
of nested entities is 0.7037, versus 0.6667 of QA-NER, in experiment 1, and
0.6617 versus 0.5279 in experiment 2. BioNestedNER was able to find 27.27%
of discontinuous entities, and although this percentage is still conservative, it
demonstrates that the method has the capacity to find this kind of entities, a
plus compared to most other complex entity recognition methods that are not
able to recognize this type of entity.

Compared to baselines with binary relevance, the method was 9.88 points
ahead of the best model, which uses the same checkpoint model (BioBERTpt),
indicating that the method was more effective than the traditional NER algo-
rithm. Further, with BioNestedNER only one Transformer-based model needed
to be trained, unlike the baseline where one model had to be trained for each
entity type. Our method also performed better than MRC and PIQN, similar
to our method as they also adapted the QA task to find entities. The MRC and
PIQN methods were also trained using BioBERTpt as a checkpoint, but they
were not as effective in F1-score. This may be due to the size of the corpus,
which, being small, may have affected the performance of these methods. Also,
in this corpus, we performed a few-shot experiment with GPT-3, in which it
presented impressive results in view of the small number of input samples. Al-
though it presented inferior results, it demonstrates the potential of this model
in NLP tasks, requiring further tests and experiments with GPT-3.

In Appendix 10.3.1 we can see BioNestedNER results by entity type, where
we noticed that in general, the model performed reasonably in all.

As expected, BioNestedNER model formed only by the multi-label CRF did
not perform well alone, but when added to the BERT model, it improved recall
and the number of nested entities found.

Analyzing the results in the recognition of discontinuous entities, using the
necessary adaptation to recognize this type of entity, out of 44 discontinuous
entities in the test set, our method found 24, and of these, only 12 are strictly
correct. In Table 8.4, we can check some of the errors when identifying this type
of entity. A large part of the errors concerns the lack of marking one or more
words, or the inclusion of a word, causing all tags to be considered an error, as
we use the restricted metric.

For an ablation study, we presented in Table 8.5 all experiments performed
with the method, with the configuration variants, in the nested corpus. As we
can see, in this corpus the best result of F1 was with class balancing using the
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Table 8.4: Examples of matches and errors of discontinuous entities with the
BioNestedNER method.

Gold Predict Expression Free translation
Matches
MMII edema MMII edema MMII sem edema LL without edema
AD aumentado AD aumentado AD = aumentado AD = increased
abdome massas abdome massas abdome globoso normotenso

indolor ausência de massas
abdomen globus nor-
motensive painless ab-
sence of masses

VTri refluxo discreto VTri refluxo discreto VTri = refluxo discreto com
PSAP 56mmHg.

VTri = discrete reflux with
PSAP 56mmHg.

Errors
síncope mais com o
calor

síncope com o calor síncope inicio em janeiro mais
com o calor

syncope beginning in Jan-
uary more with the heat

MMII EMPASTA-
MENTO

MMII EDEMA EM-
PASTAMENTO

MMII : SEM EDEMA OU
EMPASTAMENTO

LL: WITHOUT EDEMA OR
CAMPING

Microalbuminúria Microalbuminúria
creatinina

Microalbuminúria 12 / 04:
10.64 / G de creatinina

Microalbuminuria 12/04:
10.64/G creatinine

dor de cabeça mel-
hora com analgésico
comum

dor de cabeça melhora dor de cabeça melhora com
analgésico comum

headache improves with
common pain reliever

AO CUSPIDES
CALCIFICADAS

CUSPIDES LESAO AO : CUSPIDES CALCI-
FICADAS , COM DUPLA
LESAO .

AO: CALCIFICATED
SCUPS, WITH DOUBLE
LESION.

Decréscimo FC Decréscimo normal da
FC

Decréscimo normal da FC no
1° minuto de recuperação

Normal decrease in HR in
the 1st minute of recovery

VMi folhetos espessa-
dos

VMi VMi = folhetos espessados ,
abertura preservada , refluxo
discreto

VMi = thickened leaflets,
preserved opening, mild
reflux

mean of losses in Cross-Entropy. The best precision value was obtained using the
binary weights and the average of the CE losses. When adding the CRF results,
we obtain the highest value of matches for nested entities (78.70%), with an
increase in recall but at the expense of accuracy. This must be taken into account
in each task, depending on the task and application and the consequences of
false positives or false negatives.

Analyzing only the results of the CRF models, we found that the best con-
figuration was using the division into 100 clusters, using our trained clinical
Word2vec model (compared to the generic Portuguese model trained by (NILC,
2023)), with a threshold of 0.35, achieving 0.7033 in recall, 0.8357 in precision
and 0.7638 in F1, and 0.2870 of nested accuracy. In Appendix 10.3.2 we have the
complete results of the tests performed with CRF, where we can verify that with

94



CHAPTER 8. EXPERIMENTS, RESULTS, AND DISCUSSION

Table 8.5: Experiments performed with all method variants

Experiments performed with all BioNestedNER variants
Metrics Recall Precision F1 Acc NE
BioNestedNER(classWeight+sum) 0.8589 0.8829 0.8707 0.6204
BioNestedNER(classWeight+sum+CRF) 0.8957 0.8299 0.8616 0.6852
BioNestedNER(classWeight+sum+CRF en-
semble)

0.9354 0.6749 0.7841 0.7500

BioNestedNER(binaryWeight+sum) 0.8619 0.8787 0.8702 0.6759
BioNestedNER(binaryWeight+sum+CRF) 0.9021 0.8247 0.8616 0.7407
BioNestedNER(binaryWeight+sum+CRF
ensemble)

0.9387 0.6775 0.7870 0.7870

BioNestedNER(classWeight+mean) 0.8629 0.8926 0.8775 0.6389
BioNestedNER(classWeight+mean+CRF) 0.9043 0.8346 0.8681 0.7037
BioNestedNER(classWeight+mean+CRF
ensemble)

0.9393 0.6807 0.7892 0.7407

BioNestedNER(binaryWeight+mean) 0.8377 0.9023 0.8688 0.6389
BioNestedNER(binaryWeight+mean+CRF) 0.8800 0.8349 0.8569 0.7130
BioNestedNER(binaryWeight+mean+CRF
ensemble)

0.9318 0.6757 0.7833 0.7870

BioNestedNER(CRF multi-label) 0.7033 0.8357 0.7638 0.2870

our clinical Word2Vec model, we obtained the best results.

8.3.2 SemClinBr Corpus (E4)

SemClinBr (OLIVEIRA et al., 2022) is a semantically annotated corpus for
Brazilian-Portuguese clinical NER, containing 1,000 labeled clinical notes and
43,659 entities compatible with UMLS standard. SemClinBr has an interesting
characteristic, the fact that each mention can have more than one label associated
(which occurs in 14% of entities), making it ideal for our work of identifying
multi-type entities. We perform experiments using the same hold-out split
(60%-20%-20%) of previous works such as (SCHNEIDER et al., 2020), (SOUZA
et al., 2019), and (SOUZA et al., 2021), as well as grouping entities in categories
("Disorder", "ChemicalDrugs", "Procedures" and "Abbreviation"), making pos-
sible comparisons with previous work. As a baseline, we have trained models
with binary relevance using BioBERTpt, BERTimbau, and mBERT, as well as the
MRC, PIQN, and QA-NER literature methods, all of which were initialized with
BioBERTpt weights.

Our BioNestedNER method obtained superior results in F1 and recall met-
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Table 8.6: Results in the SemClinBr corpus.

Model Recall Precision F1-score Acc ME
Baseline (binary relevance)
BioBERTpt 0.5951 0.7588 0.6671 0.4969
BERTimbau 0.5568 0.7426 0.6365 0.4177
mBERT 0.5329 0.7259 0.6146 0.4015
Literature
MRC 0.6352 0.5983 0.6162 -
PIQN 0.4738 0.6720 0.5558 -
QA-NER (CNN) 0.5975 0.7469 0.6639 0.5071
QA-NER (w/o CNN) 0.6003 0.7410 0.6633 0.5071
Ours
BioNestedNER (CRF multi-label) 0.7110 0.6347 0.6707 0.5062
BioNestedNER (QA-NER) 0.6689 0.7312 0.6987 0.5471
BioNestedNER (QA-NER + CRF) 0.8798 0.7042 0.7822 0.6989

rics (but not statistically significant), although in precision BioBERTpt with BR
obtained better results, as can be seen in Table 8.6. Our model reached the state-
of-the-art in the F1 metric, with 0.7822 (11.51 above BioBERTpt, the second best
placed) and 0.8798 in recall (24.46 above MRC, the second best placed). In terms
of precision, BioBERTpt with binary relevance had better results with 0.7588.
In this corpus, since it is multi-label and CRF has been trained in a multi-label
way, it exhibited competitive results alone, ahead of the BR methods and the
literature in terms of F1. We found that the ensemble with all CRF models
was superior to a single isolated CRF model. When added with our QA-NER
method, it increased by 8.35 F1 points and 15.18 in multi-type matches.

In Appendix 10.4.1 we can see BioNestedNER results by entity type, where
we noticed that in general, the model performed well at finding entities like
"ChemicalDrugs", with 0.9149 of F1, but not so well at recognizing entities
like "Procedures". This may be due to these classes having different linguistic
characteristics, for example, "ChemicalDrugs" entities may have more distinct
textual patterns or specific keywords that facilitate their detection.

Analyzing multi-type entities, the model correctly found 69,89% of occur-
rences, versus 50,71% of the original QA-NER. The test dataset has a total of
2,252 entities with more than one type, most formed by a medical concept +
"Abbreviation" (examples: "HAS", an "Abbreviation" + "Disorder", "AAS", an
"Abbreviation" + "Chemical&Drug", and "CAT", an "Abbreviation" + "Proce-
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dure"). In a few cases, mention has two medical concepts like "Valvoplastia
Aortica" (Aortic Valvoplasty) which is both a "Disorder" and a "Procedure".

Of the 2,252 multi-type entities, the model correctly found 1,574, which
corresponds to approximately 69,89% of matches. Most of the errors are related
to the model having recognized only one type of entity, as in some examples in
Table 8.7.

Table 8.7: Examples of error in recognizing multi-type entities with the BioN-
estedNER method.

Expression Free translation Gold Predict
PURAN PURAN Abbreviation, ChemicalDrug ChemicalDrug
LAB LAB Abbreviation, Procedure Abbreviation
DCA CHAGASICA CHAGASICAL DCA Abbreviation, Disorder Disorder
TAC TAC Abbreviation, ChemicalDrug ChemicalDrug
TX RENAL RENAL TX Abbreviation, Disorder, Proce-

dure
Abbreviation

vacina de bcg bcg vaccine Abbreviation, Procedure,
ChemicalDrug

(none)

All the experiments performed in this corpus are shown in Table 8.8.

Table 8.8: Experiments performed with all method variants.

Experiments performed with all BioNestedNER variants
Metrics Recall Precision F1 Acc ME
BioNestedNER(classWeight+sum) 0.6483 0.7303 0.6869 0.5355
BioNestedNER(classWeight+sum+CRF ensem-
ble)

0.8730 0.7027 0.7787 0.6847

BioNestedNER(binaryWeight+sum) 0.6462 0.7361 0.6882 0.5231
BioNestedNER(binaryWeight+sum+CRF ensem-
ble)

0.8697 0.7038 0.7780 0.6794

BioNestedNER(classWeight+mean) 0.6689 0.7312 0.6987 0.5471
BioNestedNER(classWeight+mean+CRF ensem-
ble)

0.8798 0.7042 0.7822 0.6989

BioNestedNER(binaryWeight+mean) 0.6421 0.7307 0.6835 0.5275
BioNestedNER(binaryWeight+mean+CRF en-
semble)

0.8705 0.7020 0.7772 0.6785

BioNestedNER(CRF ensemble) 0.7110 0.6347 0.6707 0.5062

We can see that the best configuration for F1, recall, and multi-type matches
is the class-balanced method using the average in CE, plus the CRF ensemble
results.
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Analyzing only the results of the CRF models, we found that the best con-
figuration was using the division into 50 clusters, using our trained clinical
Word2vec model (compared to the generic Portuguese model trained by Nilc
(NILC, 2023)), with a threshold of 0.15, achieving 0.5141 in recall, 0.6545 in pre-
cision and 0.5759 in F1, and 31.26% of multi-type hits. In Appendix 10.4.2 we
have the complete results of the tests performed with CRF. We report the results
of the individual CRFs models, although in this corpus, the ensemble formed
by all CRFs together obtained the best results.

8.3.3 GENIA Corpus (E5)

The GENIA corpus (KIM et al., 2003) was created to develop and evaluate
molecular biology information retrieval systems, with 2,000 PubMed abstracts
based on the three medical subject heading terms: human, blood cells, and tran-
scription factors. GENIA is one of the most used corpora to evaluate biomedical
nested recognition models, as it contains 18,546 sentences with 56,870 entities,
in which 31.64% approximately are nested and 3.65% are discontinuous entities
(CHEN et al., 2020).

Although this dataset has been annotated with 36 types of entities, re-
searchers usually use only "DNA", "RNA", "Protein", "Cell line" and "Cell type"
entities, grouping the granular classes and ignoring all others. Also, in both
training and evaluation, usually, the discontinuous entities are discarded since
the research’s focus commonly is on identifying nested entities. The authors
preferentially follow the same division of data (the first 90% of sentences used
in training and validation, and the rest for testing). We follow the same dataset
split used in several works such as (FINKEL; MANNING, 2009), (LU; ROTH,
2015), and (MUIS; LU, 2017). In order to maintain compatibility with works
in the literature and allow a fair comparison, we also adopted these configura-
tions, although we also report results with our method in the original corpus,
containing the discontinuous entities.

To facilitate, we divided this section into three parts: initially, we report
our results in the corpus with nested entities (experiment E5.1), comparing the
method with others in the literature. Next, we report the results in the complete
corpus, containing the discontinuous entities (experiment E5.2). And at the
end, we show a “few-shot” experiment performed with this corpus (experiment
E5.3), executing several experiments with smaller parts of the corpus, in order to
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verify if the method can quickly adapt and learn more abstract and transferable
representations of the data, in addition to measure and compare the processing
time.

Genia with nested entities (experiment E5.1)

Table 8.9 shows the results of our method, in comparison with recent selected
methods from the literature.

Although BioNestedNER did not reach the highest values of F1, it proved
competitive with recent methods for nested entities. To find whether the differ-
ences are statistically relevant, we used the non-parametric statistical Friedman
test with these results, followed by the Nemenmy post-hoc test to find the groups
of data that differ from the rest. For this set of evaluated models, no statistical
differences were found for the F1-score (p-value = 0.456836), indicating that our
method presented competitive results with those of the literature.

Analyzing our model’s performance in recognizing nested entities, we no-
ticed that of the 1,111 nested entities that the test dataset had, our model was
able to find 378, which represents 34.02

All the experiments performed in this corpus are shown in Table 8.10.
The corpus does not have discontinuous entities, however, it has nested

entities of the same type, so the version with the end-to-end model presented
the best results. We can see that the best configuration for F1 was with the
binary balanced method using the mean in CE. Although the multi-label CRF
alone did not present satisfactory results, as expected (with 0.6648 of F1), when
combined with the Transformer-based model, it helped to increase the accuracy
of nested entities found from 0.2592 to 0.6067.

In Appendix 10.5.1 we can see BioNestedNER results by entity type, where
we noticed that the model performed well at finding all entities in general, being
better on entities "Protein" and "RNA". "Cell line" and "Cell type", appearing in
similar contexts, may be more difficult to distinguish from one another.

Analyzing only the results of the CRF models, we found that the best config-
uration was using the division into 10 clusters, with a threshold of 0.2, achieving
0.6148 in recall, 0.7385 in precision, and 0.6148 in F1, and 16.02% of nested hits.

99



CHAPTER 8. EXPERIMENTS, RESULTS, AND DISCUSSION

Table 8.9: Results in the GENIA corpus, with flat and nested entities.

Model F1 Precision Recall

Locate and Label (SHEN et al., 2021) 0.8054 0.8019 0.8089

Multi-agent Comm (LI et al., 2021) 0.7650 0.7820 0.7480

Pyramid Layered (WANG et al., 2020) 0.7931 0.8031 0.7833

Multi-head Pyramid Layered (CUI; JOE, 2022) 0.8010 0.7947 0.7979

MRC (LI et al., 2020) * 0.7612 0.7751 0.7475

Excluding Best Path (WANG et al., 2021) 0.7858 0.7621 0.7737

BioBERT+TreeCRFs (FU1 CHUANQI TAN, 2020) 0.7820 0.7820 0.7820

Dependency Parsing (YU; BOHNET; POESIO, 2020) 0.8050 0.8180 0.7930

TCSF (SUN et al., 2020) 0.7730 0.7820 0.7650

PIQN (SHEN et al., 2022) * 0.8013 0.8110 0.7919

QA-NER (BANERJEE et al., 2021) * 0.7591 0.8118 0.7128

MTL-BAM (W LI Y, 2022) 0.8065 0.8062 0.8068

Labeling Gaps (MUIS; LU, 2017) 0.7080 0.7540 0.6680

Hypergraph RNN (KATIYAR; CARDIE, 2018) 0.7380 0.7670 0.7670

NER layers LSTM+ CRF (JU; MIWA; ANANIADOU, 2018) 0.7470 0.7850 0.7130

Deep exhaustive (SOHRAB; MIWA, 2018) 0.7710 0.9320 0.6400

Boundary-aware model (ZHENG et al., 2019a) 0.7470 0.7590 0.7360

Segmental hypergraphs (WANG; LU, 2018) 0.7700 0.7330 0.7510

Linearization (LUAN et al., 2019) 0.7830 - -

MLC+Flair (ROJAS; BRAVO-MARQUEZ; DUNSTAN, 2022) 0.7760 0.8010 0.7520

BioNestedNER (OURS) 0.7913 0.8154 0.7686

* Results obtained by the author of this thesis, which can differ from those reported by the
original authors, in view of the difference between the parameters used.
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Table 8.10: Experiments performed with all method variants.

Experiments performed with all BioNestedNER variants

Metrics Recall Precision F1 Acc NE

BioNestedNER(classWeight+sum) 0.7316 0.8095 0.7686 0.2592

BioNestedNER(classWeight+sum)+CRF (best) 0.7815 0.7788 0.7801 0.3582

BioNestedNER(classWeight+sum)+CRF (ensemble) 0.8904 0.6648 0.7613 0.6067

BioNestedNER(binaryWeight+sum) 0.7208 0.8039 0.7601 0.2376

BioNestedNER(binaryWeight+sum)+CRF (best) 0.7865 0.7648 0.7755 0.3564

BioNestedNER(binaryWeight+sum)+CRF (ensemble) 0.8869 0.6643 0.7596 0.5851

BioNestedNER(classWeight+mean) 0.7424 0.8057 0.7728 0.2664

BioNestedNER(classWeight+mean)+CRF (best) 0.7894 0.7728 0.7810 0.3510

BioNestedNER(classWeight+mean)+CRF (ensemble) 0.8900 0.6650 0.7613 0.5923

BioNestedNER(binaryWeight+mean) 0.7386 0.8116 0.7734 0.2502

BioNestedNER(binaryWeight+mean)+CRF (best) 0.7967 0.7723 0.7843 0.3726

BioNestedNER(binaryWeight+mean)+CRF (ensemble) 0.8925 0.6672 0.7636 0.5995

BioNestedNER-end-to-end (binaryWeight+mean) 0.7686 0.8154 0.7913 0.3402

BioNestedNER-end-to-end (binaryWeight+mean)+CRF

(best)

0.8014 0.7803 0.7907 0.4068

BioNestedNER-end-to-end (binaryWeight+mean)+CRF

(ensemble)

0.8507 0.6935 0.7641 0.5149

CRF multi-label (best) 0.6683 0.6613 0.6648 0.2196

Genia with discontinuous entities (experiment E5.2)

Next, we report on Table 8.11 the results with the complete GENIA corpus,
containing the discontinuous entities as well. In this case, we could only compare
with the MRC, PIQN, and QA-NER methods, which we executed locally. As
these literature methods are not prepared to deal with discontinuous entities,
we do not train new models but used previously trained models with nested
entities. We also didn’t train specific CRF models, for the same reason, as our
method using CRF doesn’t allow us to find discontinuous entities. In this way,
we used the same trained CRF models previously (to find nested entities). Our
method, trained to recognize discontinuous entities, presented a higher F1 value,
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with 0.7800, followed by QA-NER (w/o CNN) with 0.7400, and a higher recall
with 0.7832 followed by 0.7094 by MRC. Our method also managed to find more
nested entities than the original QA-NER method (34.81% versus 16.02%), in
addition to finding 31.30% of discontinuous entities.

Table 8.11: Results in the complete GENIA corpus, with flat, nested, and dis-
continuous entities.

Model Recall Precision F1-score Acc NE Acc DE
Literature
MRC 0.7094 0.7571 0.7325 - -
PIQN 0.7009 0.6639 0.6829 - -
QA-NER (CNN) 0.6739 0.8041 0.7333 0.1529 0
QA-NER (w/o CNN) 0.6809 0.8104 0.7400 0.1602 0
Ours
BioNestedNER (QA-NER) 0.7484 0.8093 0.7777 0.2957 0.3130

BioNestedNER (QA-NER + CRF) 0.7832 0.7769 0.7800 0.3481 0.3130

We only consider discontinuous entities, mentions with one level of dis-
continuity (spacing) and one level of overlap between tokens, obtaining 115
discontinuous entities in our test dataset. Of this total, our method correctly
found 36 entities, with strict mach, equivalent to 31.30%. In Table 8.12, we show
some examples of mistakes and successes.

Our model predicted 84 discontinuous entities in total, but only 36 had the
mention’s boundaries + type correct (strict match), i.e. 31.30% of the predicted
entities. Although the method had 36 matches for discontinuous entities, it
was penalized in the overall performance by false positives and missing other
discontinuous entities (false negatives).
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Table 8.12: Examples of matches and errors of discontinuous entities with the
BioNestedNER method.

Gold Predict Expression

Matches

B cells B cells B and T cells

Human B lymphocytes Human B lymphocytes Human T and B lymphocytes

Human T lymphocytes Human T lymphocytes Human T and B lymphocytes

X boxes X boxes X and Y boxes

interleukin - 1 genes interleukin - 1 genes interleukin - 1 and MHC class II genes

megakaryocytic cell lines megakaryocytic cell lines megakaryocytic and erythroid cell

lines

quiescent cells quiescent cells quiescent and stimulated cells

actin mRNA actin mRNA actin and fibronectin receptor mRNA

immunoglobulin heavy - chain genes immunoglobulin heavy - chain genes immunoglobulin heavy - and light -

chain genes

immunoglobulin heavy chain gene en-

hancers

immunoglobulin heavy chain gene en-

hancers

immunoglobulin heavy and kappa

light chain gene enhancers

Errors

Human Rhom - 2 Human Human and mouse Rhom - 2

human immunodeficiency virus pro-

moters

human immunodeficiency virus inter-

feron promoters

human immunodeficiency virus and

beta interferon promoters

cytoskeletal genes cytoskeletal cytoskeletal, and extracellular matrix

genes

heavy chain enhancer heavy light chain enhancer heavy and kappa light chain enhancers

human chromosomes 11p13 human chromosomes human chromosomes 11p15 and 11p13

purified human macrophages macrophages purified human monocytes and

macrophages

mitogen - treated peripheral blood

lymphocytes

mitogen - mitogen - and anti - CD3 - treated pe-

ripheral blood lymphocytes

human fibroblastic cells (none) human fibroblastic or keratinocyte -

derived human cells

human papillomavirus transformed

cells

human papillomavirus cells human papillomavirus - or adenovirus

- transformed cells

positive cis - acting DNA elements cis - acting DNA elements positive and negative cis - acting DNA

elements

Genia few shot (experiment E5.3)

We performed five experiments with only 15% of the GENIA corpus, to
compare the results and also the execution speed with other methods in the lit-
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erature. In this cut of the database, we worked with 2,500 examples in training
and 350 for validation. We created five smaller datasets, with this amount of
examples, and performed five experiments with BioBestedNER, PIQN, MRC,
QA-NER (CNN), and QA-NER (w/o CNN), as they are methods that use a sim-
ilar approach to ours, all using BioBERT as a checkpoint. It is worth mentioning
that the five small datasets are balanced according to the original dataset. We
measured the micro F1 metric in the same test set for all experiments, with 1,854
samples, and computed the runtime as well. We only considered the execution
times per epoch, and not the total time, since in MRC and PIQN the maximum
number of epochs (with early stop) was 20 and 30, respectively (according to
default values). In the case of the CRF execution time, we consider the entire
training time (with 100 interactions), since there is no epoch count.

Table 8.13 shows the results of our few-shots experiments, in terms of the
micro F1-score metric.

Table 8.13: Micro F1 results in the GENIA few-shot corpus for the five experi-
ments.

Method F1(1) F1(2) F1(3) F1(4) F1(5) Avg ACC
NE

Literature
MRC 0.7316 0.7345 0.7364 0.7294 0.7309 0.7325 -
PIQN 0.7162 0.7184 0.7132 0.7279 0.7148 0.7181 -
QA-NER (CNN) 0.7396 0.7434 0.7490 0.7355 0.7319 0.7399 0.1919
QA-NER (w/o CNN) 0.7260 0.7393 0.7409 0.7305 0.7388 0.7351 0.1843
Ours
BioNestedNER (CRF multi-label) 0.6647 0.6718 0.6660 0.6680 0.6648 0.6671 0.2272
BioNestedNER (QA-NER) 0.7650 0.7600 0.7642 0.7632 0.7630 0.7631 0.2707
BioNestedNER (QA-NER + CRF) 0.7663 0.7623 0.7623 0.7623 0.7629 0.7632 0.3550

BioNestedNER (QA-NER end-to-
end)

0.7597 0.7628 0.7722 0.7679 0.7584 0.7642 0.2880

BioNestedNER (QA-NER end-to-
end + CRF)

0.7612 0.7618 0.7693 0.7658 0.7588 0.7634 0.3510

It is remarkable that our models trained with only 15% of the training dataset
achieved similar results to the models trained with 100% of the data, with only
2.71 points difference in F1-score on average. This may be explained by the
fact that a small portion of the GENIA data may be representative enough to
capture the main patterns and features of the task. Our model trained with the
end-to-end format obtained the best result on average, with 0.7642 of F1, being
2.43 points ahead of the original model QA-NER, with 0.7399. Furthermore, our
models were also able to find more nested entities (35.50% versus 19.19% of the
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original QA-NER).
We performed the Friedman statistical test with the F1 values of the five

experiments, to see if there is a difference between the results. We found that
our models (BioNestedNER (QA-NER)+CRF, BioNestedNER (QA-NER end-to-
end), and BioNestedNER (QA-NER)) had statistically better results than the
PIQN and BioNestedNER (multi-label CRF) models (Figure 8.2). Our CRF model
alone was already expected to present inferior results since it is a complement to
the method. PIQN is a model that presented better results using the complete
GENIA corpus, but its performance may suffer when using a small dataset for
training due to overfitting or poor generalization to new data.

Figure 8.2: Statistical result of GENIA few-shot experiments using F1-scores.

We also did an experiment with GPT-3 (Davinci) (BROWN et al., 2020), which
achieved 0.4126 on F1-score. We cannot compare the results with others because
we trained with ChatGPT using only 20 example sentences and evaluating on
only 719 instances (limit reached). Still, it was interesting to test how the model
reacts in a biomedical experiment being trained with very few input examples,
exploring the potential of this tool in NLP tasks. Table 8.14 shows the results of
our few-shots experiments, in terms of training time for epoch (TPE).
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Table 8.14: Training time in the GENIA few-shot corpus for the five experiments.

Method TPE(1) TPE(2) TPE(3) TPE(4) TPE(5) Avg

Literature

MRC 00:04:40 00:04:51 00:04:47 00:04:50 00:04:23 00:04:42

PIQN 00:07:53 00:08:17 00:08:20 00:07:59 00:08:00 00:08:06

QA-NER (CNN) 00:04:43 00:04:45 00:04:51 00:04:47 00:04:43 00:04:46

QA-NER (w/o CNN) 00:04:24 00:04:28 00:04:32 00:04:29 00:04:32 00:04:29

Ours

BioNestedNER (CRF multi-

label)

00:00:20 00:00:16 00:00:20 00:00:19 00:00:19 00:00:19

BioNestedNER (QA-NER) 00:04:21 00:04:23 00:04:25 00:04:15 00:04:16 00:04:20

BioNestedNER (QA-NER +

CRF)

00:04:41 00:04:39 00:04:55 00:04:34 00:04:35 00:04:39

BioNestedNER (QA-NER end-

to-end)

00:04:56 00:04:56 00:05:02 00:05:02 00:05:01 00:05:00

BioNestedNER (QA-NER end-

to-end + CRF)

00:05:16 00:05:12 00:05:22 00:05:21 00:05:20 00:05:19

The CRF training was faster, with 19 seconds in general, as is a simpler model
with fewer parameters to train compared to deep learning models. We calculated
the statistical differences, transforming the times per epoch into seconds (Figure
8.3), and found that BioNestedNER (multi-label CRF), BioNestedNER (QA-NER)
and QA-NER (w/o CNN) were statistically faster than PIQN. We noticed that the
end-to-end models, although they improve in F1, tend to make the processing
slower, with BioNestedNER (QA-NER) being faster than BioNestedNER (QA-
NER end-to-end) + CRF, in addition to PIQN.

Figure 8.3: Statistical result of GENIA few-shot experiments using time values
per epochs.
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Our method presented competitive training time to other similar methods
(MRC and QA-NER) and was even faster than PIQN, which may indicate that
the method requires similar or low computational complexity.

8.3.4 Rare Disease Corpus (E6)

Next, we report our results in Rare Disease, an annotated corpus in English
of rare diseases and their clinical manifestations, containing 9,141 sentences and
approximately 9,300 annotated entities, including nested and discontinuous en-
tities (MARTíNEZ-DEMIGUEL et al., 2022). Rare Disease also includes the
annotation of relations between entities, outside of this research scope. Unfor-
tunately, at the time of running the experiments, we didn’t have access to the test
dataset, so we had to move about 25% of the training dataset to use as validation.
For this reason, it will not be possible to perform a comparison with the baseline
of (SEGURA-BEDMAR; CAMINO-PERDONAS; GUERRERO-ASPIZUA, 2021)
since our results are unofficial. In addition, the authors of the baseline did not
deal with nested and discontinuous entities, appearing as future works in their
paper. Nevertheless, we report our results along with some literature methods,
locally trained, in Table 8.15.

Table 8.15: Results in the Rare Disease corpus.

Model Recall Precision F1-score Acc NE

Literature

MRC 0.7169 0.7051 0.7196 -

PIQN 0.7216 0.7430 0.7322 -

QA-NER (CNN) 0.6699 0.7643 0.7140 0.0180

QA-NER (w/o CNN) 0.6697 0.7694 0.7161 0.0180

Ours

BioNestedNER (CRF multi-label) 0.6196 0.6968 0.6560 0

BioNestedNER (QA-NER) 0.6932 0.7587 0.7245 0.0360

BioNestedNER (QA-NER + CRF) 0.7309 0.7271 0.7290 0.0180

In this corpus, the PIQN method had better results in micro F1, with 0.7322,
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0.32 points ahead of BioNestedNER, which, in compensation, obtained a higher
recall value of 0.7309. Our method did not have superior results, but it was
above the original QA-NER method, demonstrating that the modifications in
the approach had an effect here. Furthermore, in the baseline of (SEGURA-
BEDMAR; CAMINO-PERDONAS; GUERRERO-ASPIZUA, 2021), the authors
report 0.7181 of F1, 1.09 points behind BioNestedNER. Even though the results
cannot be compared for the reasons explained above, we can have an idea of the
competitiveness of our method.

In Appendix 10.6.1 we can see BioNestedNER results by entity type, with our
results being similar to (SEGURA-BEDMAR; CAMINO-PERDONAS; GUERRERO-
ASPIZUA, 2021), where the "Rare Disease" entity, with one of the largest support
values, had the highest values of precision, recall, and F1. On the other hand,
"Sign" and "Symptom" entities showed the lowest F1-score, which may be be-
cause these mentions are usually nominal phrases, unlike a few technical terms.
Moreover, the support value of the "Symptom" entity is small, making learning
more difficult.

Analyzing the performance in recognizing nested entities, we noticed that
of the 111 nested entities that the test dataset had, our model was able to find
just 2, which represents 1.8%. We noticed that the model had difficulties in
distinguishing "Rare disease" from only diseases, and also "Disease" from "Sign".
For example, "progressive arthritis of the spine" is annotated with a "Sign",
and "progressive arthritis", a nested entity being a "Disease". The model only
predicted "progressive arthritis of the spine" as a "Sign", dismissing the "Disease"
inside it. The same occurred in "hereditary ataxia", which is a "Rare disease",
and "ataxia", a "Sign". The model found only "hereditary ataxia", however as a
"Disease" (instead as a "Rare disease"). In another example, "Infectious arthritis"
is a "Rare disease", while "arthritis" is a "Sign". The model did not find either
of the two entities. As these clinical entities have very similar meanings, they
generally are more complex and harder to detect. Additionally, as exhibited in
Figure 8.4, the imbalanced class distribution may affect the performance of the
model, both in general and in the search for nested entities.

All the experiments performed in this corpus are shown in Table 8.16.
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Figure 8.4: Balancing classes in the Rare Disease corpus used in our training.

Table 8.16: Experiments performed with all method variants.

Experiments performed with all BioNestedNER variants

Metrics Recall Precision F1 Acc NE

BioNestedNER(classWeight+sum) 0.6710 0.7713 0.7176 0.0180

BioNestedNER(classWeight+sum+CRF) 0.7258 0.7291 0.7274 0.0180

BioNestedNER(classWeight+sum+CRF ensem-

ble)

0.8743 0.5298 0.6598 0.3063

BioNestedNER(binaryWeight+sum) 0.6846 0.7670 0.7234 0

BioNestedNER(binaryWeight+sum+CRF) 0.7309 0.7271 0.7290 0.0180

BioNestedNER(binaryWeight+sum+CRF en-

semble)

0.8765 0.5323 0.6624 0.3063

BioNestedNER(classWeight+mean) 0.6897 0.7463 0.7169 0.0180

BioNestedNER(classWeight+mean+CRF) 0.7364 0.7061 0.7210 0.0180

BioNestedNER(classWeight+mean+CRF en-

semble)

0.8826 0.5270 0.6600 0.3243

BioNestedNER(binaryWeight+mean) 0.6932 0.7587 0.7245 0.0360

BioNestedNER(binaryWeight+mean+CRF) 0.7397 0.7175 0.7284 0.0541

BioNestedNER(binaryWeight+mean+CRF en-

semble)

0.8806 0.5279 0.6600 0.3243

BioNestedNER(CRF multi-label ) 0.6196 0.6968 0.6560 0

BioNestedNER(CRF ensemble) 0.8078 0.5270 0.6379 0.2883
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We can see that the best configuration for F1 is the binary class-balanced
method using the sum in CE, plus the best CRF result. However, if we consider
the number of matches in nested entities, the best configurations are our QA-
NER model with class balancing and binary class balancing using the average of
losses added with the CRF ensemble, with 32.43% of nested accuracy. Although
there is a loss in precision, this result can be interesting when the objective of
the application is to minimize false negatives, i.e. when it is more important
to identify all positive instances, even at the cost of some false positives. This
is often the case in applications such as medical diagnosis, where missing a
positive instance can have serious consequences. We can see that although the
CRF alone does not perform well, when performing an ensemble with all the
trained CRFs, we reached 28.83% of the nested entities in the corpus. Analyzing
the results of each CRF model, we found that the best configuration was using
the division into 50 clusters, with a threshold of 0.3, achieving 0.6196 in recall,
0.6968 in precision, and 0.6560 in F1.

8.3.5 PortugueseClinicalNER Corpus (E7)

PortugueseClinicalNER (LOPES; TEIXEIRA; OLIVEIRA, 2019) is a collection
of 281 clinical texts in Portuguese manually annotated for named entities in
the biomedical domain. The corpus has only flat entities, important for our
research since we also want to evaluate the method on a corpus containing only
flat entities. We trained models to be baselines, a BioBERTpt traditional NER
model, MRC, PIQN, and QA-NER methods, all using BioBERTpt as a checkpoint.
Table 8.17 exhibits the results, where our method has reached the state-of-the-art
for this corpus in micro F1 with 0.9482, being even better than the simple NER
with BioBERTpt with 0.9332.

This result is relevant, since this corpus has 13 types of entities, demonstrat-
ing that our method is also effective when there is a relatively large number of
entities. Unexpectedly, our CRF model alone achieved better results than the
baseline using BiLSTM+CRF (LOPES; TEIXEIRA; OLIVEIRA, 2019). This may
have occurred due to the size of the dataset, which has only 281 clinical texts
which may not be sufficient to train a complex model like BiLSTM. The feature
engineering and the model label dependencies of CRF models may have affected
the results as well.

In Appendix 10.8.1 we can see BioNestedNER results by entity type, where
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Table 8.17: Results in the PortugueseClinicalNER corpus.

Model Recall Precision F1
Baseline (traditional NER)
BiLSTM+CRF (out-of-domain) (LOPES; TEIXEIRA;
OLIVEIRA, 2019)

0.7335 0.7506 0.7419

BiLSTM+CRF (in-domain) (LOPES; TEIXEIRA;
OLIVEIRA, 2019)

0.7448 0.7525 0.7486

BioBERTpt 0.9139 0.9533 0.9332
Literature
MRC 0.9184 0.8778 0.8976
PIQN 0.7749 0.9356 0.8477
QA-NER (CNN) 0.9280 0.9604 0.9439
QA-NER (w/o CNN) 0.9295 0.9625 0.9457
Ours
BioNestedNER(CRF multi-label) 0.8438 0.7841 0.8438
BioNestedNER(QA-NER) 0.9290 0.9680 0.9481
BioNestedNER(QA-NER + CRF) 0.9437 0.9528 0.9482

we noticed that in general, the model performed well at finding all entities,
reaching value 1 in F1 for "Genetic" and "Via" entities.

Analyzing only the results of the CRF models, we found that the best con-
figuration was using the division into 100 clusters, using our trained clinical
Word2vec model (compared to the generic Portuguese model trained by Nilc
(NILC, 2023), with a threshold of 0.35, achieving 0.8438 in recall, 0.7841 in pre-
cision and 0.8438 in F1. In Appendix 10.8.2 we have the complete results of
the tests performed with CRF, where we noticed that in general, the model
performed reasonably in all.

All the experiments performed in this corpus are shown in Table 8.18.
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Table 8.18: Experiments performed with all method variants

Experiments performed with all BioNestedNER variants

Metrics Recall Precision F1

BioNestedNER(classWeight+sum) 0.9189 0.9631 0.9405

BioNestedNER(classWeight+sum+CRF) 0.9351 0.9485 0.9417

BioNestedNER(binaryWeight+sum) 0.9290 0.9680 0.9481

BioNestedNER(binaryWeight+sum+CRF) 0.9437 0.9528 0.9482

BioNestedNER(classWeight+mean) 0.9285 0.9584 0.9432

BioNestedNER(classWeight+mean+CRF) 0.9391 0.9463 0.9427

BioNestedNER(binaryWeight+mean) 0.9290 0.9550 0.9418

BioNestedNER(binaryWeight+mean+CRF) 0.9408 0.9446 0.9427

BioNestedNER(CRF multi-label) 0.8438 0.7841 0.8438

We can see that the best configuration for F1 is the binary class-balanced
method using the sum in CE, plus the best CRF result.

8.3.6 JNLPBA Corpus (E8)

JNLPBA is a biomedical dataset originated from GENIA corpus (version 3.02)
(COLLIER; KIM, 2004), where nested and discontinuous entities were removed.
Like the experiment with PortugueseClinicalNER, we use this corpus to validate
the method in a corpus containing only flat entities, but this time in English.

In our research, we used the original corpus, containing the tags in BIO
format plus the type of entity. However, there is a corpus variation where
only the BIO tags are present, without the entity type. For this reason, in our
comparative table, we will not include all results reported in JNLPBA, but only
those that were performed with the same original corpus. Our method did not
reach the state of the art in the JNLPBA, but presented competitive results, being
behind the first place by only 1.61 in F1 (Table 8.19).
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Table 8.19: Results in the JNLPBA corpus.

Model Recall Precision F1

Literature

Deep exhaustive (SOHRAB; MIWA, 2018) 0.6680 0.9640 0.7840

MRC (LI et al., 2020) 0.7789 0.7009 0.7378

PIQN (SHEN et al., 2022) 0.7572 0.7399 0.7484

QA-NER (CNN) (BANERJEE et al., 2021) 0.7547 0.7480 0.7513

QA-NER (w/o CNN) (BANERJEE et al.,

2021)

0.7486 0.7514 0.7500

LSTM+CNN (WEI et al., 2019) 0.7622 0.7137 0.7372

NERBio (TSAI et al., 2006) 0.7398 0.7201 0.7298

Gimli (CAMPOS; MATOS; OLIVEIRA,

2013)

0.7162 0.7285 0.7223

Multi-task LSTM (WANG et al., 2019) 0.7634 0.7091 0.7352

Gram-CNN (ZHU et al., 2017) - - 0.7257

Ours

BioNestedNER (CRF multi-label) 0.6738 0.7190 0.6956

BioNestedNER (QA-NER) 0.7744 0.7482 0.7611

BioNestedNER (QA-NER + CRF) 0.8157 0.7254 0.7679

Regarding the compared methods, our method reached the best recall value,
with 0.8157, 3.68 points ahead of second place, MRC. Although the method
focuses on nested, discontinuous, and multi-type entities, these results demon-
strate that BioNestedNER can also be applied to corpora containing flat NER,
with results similar to other methods in the literature.

In Appendix 10.7.1 we can see BioNestedNER results by entity type, where
we noticed that in general, the model performed well at finding all entities,
with the exception of "Cell line". As in GENIA, the model may have difficulty
distinguishing "Cell line" from Cell type", prioritizing "Cell type" that has greater
support.
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All the experiments performed in this corpus are shown in Table 8.20.

Table 8.20: Experiments performed with all method variants

Experiments performed with all BioNestedNER variants

Metrics Recall Precision F1

BioNestedNER(classWeight+sum) 0.7659 0.7549 0.7603

BioNestedNER(classWeight+sum+CRF) 0.8094 0.7302 0.7678

BioNestedNER(binaryWeight+sum) 0.7488 0.7543 0.7516

BioNestedNER(binaryWeight+sum+CRF) 0.8020 0.7302 0.7644

BioNestedNER(classWeight+mean) 0.7744 0.7482 0.7611

BioNestedNER(classWeight+mean+CRF) 0.8157 0.7254 0.7679

BioNestedNER(binaryWeight+mean) 0.7687 0.7471 0.7578

BioNestedNER(binaryWeight+mean+CRF) 0.8135 0.7252 0.7668

BioNestedNER(CRF multi-label) 0.6738 0.7190 0.6956

We can see that the best configuration for F1 is the class-balanced method
using the mean in CE, plus the CRF results.

Analyzing only the results of the CRF models, we found that the best con-
figuration was using the division into 300 clusters, with a threshold of 0.35,
achieving 0.6738 in recall, 0.7190 in precision, and 0.6956 in F1.

8.4 Revisiting Research Objectives and Hypothesis

In this section, we correlate the research goals with the developed methods
and results, describing how this work responds to the research questions. This
section can be used as a summary of all the achievements and findings of this
thesis.

8.4.1 Research Objectives Achievement

First, we bring up the research goals and summarize how they were accom-
plished.
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Main objective

The development of a named entity recognition method that also considers nested,
discontinuous and multi-type entities, using state-of-the-art architecture for NLP, such
as Transformer architecture and deep learning.

The main objective of this work was to develop a NER method that can
recognize nested, discontinuous, and multi-type entities (in addition to the flat
ones), since traditional NER methods cannot identify these entities, and ignoring
them can cause relevant information to be lost.

In this study, we explored several approaches to recognize these complex
entities, developing a flexible and efficient method that we call BioNestedNER.
The evaluation protocol included comparing the results against other literature
methods through experiments with six NER corpora resulting in nine experi-
ments. This objective was reached with our method using deep learning and
Transformer architecture and presenting state-of-the-art results in six experi-
ments and competitive results in the others.

Specific objective 1

To study existing approaches that address the recognizing of complex named entities
to compare with the proposed method.

We performed a study in the literature, according to the Related Work section,
to understand the problem and recognize the gaps and limitations of existing
works. We found similar works, based on the same strategy and compared them
with our method to find the benefits and limitations of each one.

Specific objective 2

To search available NER corpora containing complex entities in English and Por-
tuguese languages to perform experiments.

In the exploratory phase of the research, in addition to searching for methods
adapted for complex entities, we also searched for available corpora containing
this type of entity. We found 12 corpora used by the researchers, of which three
were selected for the research because they are in English or Portuguese lan-
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guages, in the clinical or biomedical domains, and have public access available.
We also identified a gap during the research: no clinical corpus in Portuguese
containing nested and discontinuous entities was found.

Specific objective 3

To develop a two-phase method that combines the QA-NER approach with CRF to
recognize nested, discontinuous, and multi-type entities, while achieving competitive
results without the high computational demands associated with exhaustive methods.

Our method uses the QA-based approach, being simple and not demanding
high computational resources as in exhaustive methods, which first needs to list
all candidate entities through a combination of all tokens, and then classify each
one. It also requires training a unique Transformer-based model, which returns
all the entities in a single passage, as opposed to methods that first find the
entity boundaries and then classify them. Although the method is composed
of two phases, as the CRF has a relatively simple model structure with fewer
parameters, it does not impact the complexity of the method.

Specific objective 4

To develop a guideline for human annotations of nested and discontinuous entities
in clinical texts in Portuguese.

We developed a guideline for annotating clinical entities, using the guideline
by (GUMIEL et al., 2023) as a basis. Our guidelines will be available to the
community, which may be helpful for building a larger corpus, containing nested
and discontinuous entities. Although built for the Portuguese language, it can be
applied in other languages in the medical domain, generating corpus for training
and evaluating machine learning models and thereby helping the extraction of
clinical information.

Specific objective 5

To build a corpus with clinical texts in Brazilian Portuguese containing nested and
discontinuous entities.
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We built and will make available NestedClinBr, a Brazilian-Portuguese clin-
ical corpus, annotated twice by different annotators. We measured the IAA
based on F1 and reached 94.08% in general, meeting the expected results.

Specific objective 6

To train clinical and biomedical Transformer-based models for the Portuguese lan-
guage.

We have trained clinical and biomedical language models using BERT archi-
tecture, which reached state-of-the-art in many NLP tasks. In total, we trained
three generic (no-task) models for the medical domain and 13 specific models
for entity extraction. As Portuguese is a low-resource language, we made all our
models freely available to the community.

Specific objective 7

To evaluate the proposed method in both English and Portuguese in clinical and
biomedical domains.

We evaluated our method in six corpora, in Portuguese (NestedClinBr, Sem-
ClinBr, and PortugueseClinicalNER) and English languages (GENIA, JNLPBA,
and Rare Disease). Our method reached SOTA in all corpora in Portuguese in
micro F1-score, and competitive results in English corpora.

8.4.2 Research Hypotheses Response

This section revisits the presented research hypotheses and, based on the
research and results of this study, aims to answer them.

Research hypothesis H1

A new NLP task, which combines aspects of both NER and QA, allows the success-
ful recognition of nested, multi-type, and discontinuous entities, yielding competitive
results with literature methods.
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We verify that this hypothesis is true since BioNestedNER was able to find
the complex entities simply and efficiently. This has been proven through exper-
iments: E3.1 and E3.2 (NER experiment in the NestedClinBr corpus), E4 (NER
experiment in the SemClinBr corpus), E5.1, E5.2, and E5.3 (NER experiment in
the GENIA corpus), and E6 (NER experiment in the Rare Disease corpus).

In addition to the previous contributions by (BANERJEE et al., 2021) in
demonstrating the feasibility of recognizing nested and multi-type entities, our
research extends these findings by showcasing the recognition of discontinuous
entities, in experiments E3.2 and E5.2.

Research hypothesis H2

By incorporating a multi-label CRF model into the Transformer-based model, the
method improves the coverage of nested and multi-type entities.

We verified that by combining the results of the Transformer-based model
with those of the CRF, there is an increase in the accuracy of the nested and
multi-type entities found, in addition to an increase in recall in general.

In the corpora SemClinBr (E4), GENIA with discontinuous (E5.2), Rare Dis-
ease (E6), PortugueseClinicalNER (E7), and JNLPBA (E8), we noticed an increase
in the value of F1-score with the addition of the CRF. Moreover, the accuracy
value of nested and multi-type entities increased with the addition of CRF in all
evaluated scenarios.

Research hypothesis H3

H3: We hypothesize that our method achieves state-of-the-art performance in NER
task, when performed in corpora containing complex entities.

The hypothesis was partially confirmed. In experiments E3.1 and E3.2 (NER
experiment in the NestedClinBr corpus), E4 (NER experiment in the SemClinBr
corpus), and E5.2 (NER experiment in the GENIA corpus) our method presented
the best F1-score results.

In E5.3, we performed a few-shot experiment with 15% of the training corpus.
Our method has reached state-of-the-art F1-score results compared to similar
methods (same approach), statistically superior to the PIQN method
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In other experiments performed with the GENIA corpus (E5.1) and Rare
Disease corpus (E6), our method did not reach the state-of-the-art, however,
obtained competitive results (statistically similar) to the literature methods.
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Conclusion

In several situations, named entities in a text can be formed by nested, over-
lapping, multi-type, or discontinuous mentions. However, traditional NER
methods are not able to capture these complex entities, which can lead to the
loss of relevant information, especially in the clinical and biomedical domains.
Although most recent works in NLP present the use of Transformer architecture,
deep learning, and contextualized models such as BERT, few methods focus on
the recognition of complex entities. Moreover, less attention has been given to
lower-resource languages, such as Portuguese.

This thesis has explored the challenges and opportunities associated with
nested NER, including the development of a new method to improve its effi-
ciency, addressing studies in Portuguese and English. We have identified several
key factors that can impact the performance of complex NER systems, includ-
ing the use of contextualized language models, Transformer architecture, and
the use of in-domain models as checkpoints. Additionally, we proposed a new
method formed by two phases, called BioNestedNER. The method is based on
a QA approach which proved to be efficient in recognizing nested, multi-type,
and discontinuous entities, combined with a multi-label CRF model. Combin-
ing different methods can improve the coverage, accuracy, and robustness of
NLP tasks as NER since it is possible to obtain a broader and more complete
coverage of the text.

To support experiments in the Portuguese language, we have generated sev-
eral models for the clinical and biomedical domains, the BioBERTpt models,
which are publicly available to the research community. We have also con-
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structed a clinical corpus and plan to release it openly. As far as our knowledge
extends, this will be the first clinical corpus in Brazilian Portuguese to include
nested and discontinuous entities.

For the feature extraction, to train the CRF models, we also have trained
a POS-tagger model, based on BioBERTpt weights, and a Word2Vec model
with clinical data, used to generate word clusters based on their similarity.
Compared to the generic model (trained by (NILC, 2023)), our clinical Word2vec
model showed improvements in the results of CRF models, as can be seen in
Appendices 10.3.2, 10.4.2, and 10.8.2. We also intend to make all these resources
public.

Overall, our results suggest that the proposed method is a promising ap-
proach for complex NER and related NLP tasks, such as information extraction,
question-answering, and multi-label tasks. Our method reached SOTA in terms
of micro F1 in six experiments out of nine, involving the search for flat, nested,
discontinuous, multi-type entities and a few-shot scenario. In addition, it can
be applied in several domains and languages, with the potential for further im-
provements. The findings of this thesis are likely to be of interest to researchers
and practitioners working in the field of NLP and related areas.

9.1 Contributions

This thesis contributes to clinical NLP research by exploring a critical task, the
recognition of complex entities, very common in clinical and biomedical texts.
Accurate information retrieval could increase, directly or indirectly, the quality
of patient care. Furthermore, the production and availability of resources and
models of this study should contribute to the development and evaluation of
several new methods and models. As seen in the “Introduction” section, our
main contributions are a new method for complex NER, resources for Portuguese
clinical and biomedical domains, and a new Brazilian Portuguese clinical corpus
containing nested and discontinuous entities.

9.2 Future Work

In this section, we recommend several research directions that could be
explored in further studies:
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• Improvements on NestedClinBr corpus. It would be convenient to in-
crease the size of the corpus with more labeled clinical notes, using the
defined guideline, allowing to train and evaluate more robust models.
Also, like SemClinBr and TempClinBr, it would be interesting to label the
negations, to extract the most accurate information possible.

• Conducting experiments in other domains and languages. The devel-
oped method has been evaluated in the clinical and biomedical domains,
in two different languages, but has the potential to be applied to other
domains and languages. Since Spanish is a language similar to Portuguese
and also belongs to the Romance language group, which originates from
the Latin languages, it will be interesting to evaluate the model on the
NLPMedTerm and CWLCE corpora. This will allow us to assess our
method in a language that shares a common origin. It will also be inter-
esting to test with other language models such as RoBERTa.

• Improve recognition of discontinuous entities. Identifying discontinu-
ous entities is itself a considerable challenge. Our method can be improved
in the future, targeting this type of entity.

• Explore more techniques for data imbalance. We also would like to
explore more techniques for dealing with data imbalance, in order to
avoid class bias, improve generalization and enhance the machine learning
models’ accuracy.

• Develop and make available more resources for the Portuguese lan-

guage, in the health area. As we still have few resources in the clinical
domain for the Portuguese language, new language models will be very
useful. We intend to train a new version of the BioBERTpt models, using
the BERTimbau model as a checkpoint and more clinical and biomedi-
cal data. In the course of this work, we also trained a biomedical GPT-2
model for Portuguese and new BERT models with cardiology clinical data.
Also, it would be interesting to generate clinical models based on other
architectures less explored in Portuguese, such as RoBERTa, DistilBERT,
etc.

• More experiments with generative algorithms We plan to conduct further
experiments involving generative algorithms such as GPT-3, GPT-4 1, and
BARD 2, enabling new comparisons, since these models were not available
at the time of writing this document.

1https://openai.com/research/gpt-4
2https://bard.google.com/

122



10
Appendix

10.1 Search Queries

The full search queries used in the scientific databases are presented below.

10.1.1 PubMed

English

(nested [Title/ Abstract] OR "complex entity" [Title/ Abstract] OR "complex named
entity" [Title/ Abstract] OR "complex named entities" [Title/ Abstract] OR "complex
entities" [Title/ Abstract] OR "multi type entity" [Title/ Abstract] OR "multi type
entities" [Title/ Abstract] OR "overlapping entity" [Title/ Abstract] OR "overlap entity"
[Title/ Abstract] OR "overlapped entity" [Title/ Abstract] OR "discontinuous entity"
[Title/ Abstract] OR "discontiguous entity" [Title/ Abstract] OR "multilabel entity"
[Title/ Abstract] OR "multi label entity" [Title/ Abstract] OR "structured entity" [Title/
Abstract] OR "structured entities" [Title/ Abstract] OR "structured named entity"
[Title/ Abstract] OR "structured named entities" [Title/ Abstract] OR "irregular entity"
[Title/ Abstract] OR "irregular entities" [Title/ Abstract] OR "cascaded entity" [Title/
Abstract] OR "cascaded entities" [Title/ Abstract]) AND (ner [Title/ Abstract] OR
"named entities" [Title/ Abstract] OR "named entity" [Title/ Abstract] OR "entity
recognition" [Title/ Abstract]) NOT (nucleotide excision repair [Title/ Abstract])
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Portuguese

(aninhada [Title/ Abstract] OR aninhadas [Title/ Abstract] OR "entidade complexa"
[Title/ Abstract] OR "entidade nomeada complexa" [Title/ Abstract] OR "entidades
nomeadas complexas" [Title/ Abstract] OR "entidades complexas" [Title/ Abstract] OR
"entidade multitipo" [Title/ Abstract] OR "entidades multitipos" [Title/ Abstract] OR
sobreposta [Title/ Abstract] OR sobreposta [Title/ Abstract] OR sobrepor [Title/ Abstract]
OR descontinuas [Title/ Abstract] OR descontinuadas [Title/ Abstract] OR "multirró-
tulo " [Title/ Abstract] OR "multi rótulo" [Title/ Abstract] OR "entidade estruturada"
[Title/ Abstract] OR "entidades estruturadas" [Title/ Abstract] OR "entidade nomeada
estruturada" [Title/ Abstract] OR "entidaded nomeadas estruturadas" [Title/ Abstract]
OR "entidade irregular" [Title/ Abstract] OR "entidades irregulares" [Title/ Abstract]
OR "entidade encadeada" [Title/ Abstract] OR "entidades encadeadas" [Title/ Abstract])
AND ("entidade nomeada" [Title/ Abstract] OR "entidades nomeadas" [Title/ Abstract]
OR "reconhecimento de entidade" [Title/ Abstract])

10.1.2 ACM Digital Library

English

(Abstract: (ner) OR Abstract: ("named entity") OR Abstract: ("named entities")
OR Abstract: ("entity recognition")) AND (Abstract: (nested) OR Abstract: ("complex
entity") OR Abstract: ("complex entities") OR Abstract: ("complex named entity") OR
Abstract: ("complex named entities") OR Abstract: ("multi type entity") OR Abstract:
("multi type entities") OR Abstract: ("overlapping") OR Abstract: ("overlap") OR Ab-
stract: ("overlapped") OR Abstract: ("discontinuous") OR Abstract: ("discontiguous")
OR Abstract: ("multilabel entity") OR Abstract: ("multi-label entity") OR Abstract:
("structured entity") OR Abstract: ("structured entities") OR Abstract: ("structured
named entity") OR Abstract: ("structured named entities") OR Abstract: ("irregular
entities") OR Abstract: ("irregular entity") OR Abstract: ("cascaded entities") OR
Abstract: ("cascaded entity"))

Portuguese

(Abstract: (ren) OR Abstract: ("entidade nomeada") OR Abstract: ("entidades
nomeadas") OR Abstract: ("reconhecimento de entidade")) AND (Abstract: (anin-
hada) OR Abstract: ("entidade complexa") OR Abstract: ("entidades complexas") OR
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Abstract: ("entidade nomeada complexa") OR Abstract: ("entidades nomeadas com-
plexas") OR Abstract: ("entidade multitipo") OR Abstract: ("entidades multitipo")
OR Abstract: ("sobreposta") OR Abstract: ("sobrepostas") OR Abstract: ("sobrepor")
OR Abstract: ("descontinuas") OR Abstract: ("descontinuadas") OR Abstract: ("mul-
tirrótulo") OR Abstract: ("multi rótulo") OR Abstract: ("entidade estruturada") OR
Abstract: ("entidades estruturadas") OR Abstract: ("entidade nomeada estruturada")
OR Abstract: ("entidades nomeadas estruturadas") OR Abstract: ("entidade irregu-
lar") OR Abstract: ("entidades irregulares") OR Abstract: ("entidade encadeada") OR
Abstract: ("entidades encadeadas"))

10.1.3 Science Direct

English

(ner OR "named entity" OR "named entities" OR "entity recognition") AND
(nested OR "complex entity" OR "complex entities" OR "complex named entity" OR
"complex named entities") + (ner OR "named entity" OR "named entities" OR "entity
recognition") AND ("multi type entity" OR "multi type entities" OR "overlapping"
OR "overlap" OR "overlapped") + (ner OR "named entity" OR "named entities" OR
"entity recognition") AND ("discontinuous" OR "discontiguous" OR "multilabel" OR
"multi-label" OR "structured entity") + (ner OR "named entity" OR "named entities"
OR "entity recognition") AND ("structured entities" OR "structured named entity"
OR "structured named entities" OR "irregular entities" OR "irregular entity") + (ner
OR "named entity" OR "named entities" OR "entity recognition") AND ("cascaded
entities" OR "cascaded entity")

Portuguese

(ren AND "entidade nomeada" OR "entidades nomeadas" OR "reconhecimento de
entidade") AND ("aninhadas" OR "entidade complexa" OR "entidades complexas"
OR "entidade nomeada complexa") + (ren AND "entidade nomeada" OR "entidades
nomeadas" OR "reconhecimento de entidade") AND ("entidades nomeadas complexas"
OR "entidade multitipo" OR "entidades multitipo" ) + (ren AND "entidade nomeada"
OR "entidades nomeadas" OR "reconhecimento de entidade") AND ("sobrepostas"
OR "descontinuas" OR "estruturada" OR "entidade irregular") + (ren AND "enti-
dade nomeada" OR "entidades nomeadas" OR "reconhecimento de entidade") AND
("entidades irregulares" OR "entidade encadeada" OR "entidades encadeadas")
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10.1.4 Springer Link

English

("named entity" OR "named entities" OR "entity recognition") AND ("nested
entity" OR "nested entities" OR "complex entity" OR "complex entities" OR "com-
plex named entity" OR "complex named entities" OR "multi type entity" OR "multi
type entities" OR "entity overlapping" OR "entity overlap" OR "entity overlapped"
OR "discontinuous entity" OR "discontiguous entity" OR "structured entity" OR
"structured entities" OR "structured named entity" OR "structured named entities"
OR "irregular entities" OR "irregular entity" OR "cascaded entities" OR "cascaded
entity")

Portuguese

("entidade nomeada" OR "entidades nomeadas" OR "reconhecimento de entidade")
AND ("aninhada" OR "aninhadas" OR "entidade complexa" OR "entidades com-
plexas" OR "entidade nomeada complexa" OR "entidades nomeadas complexas" OR
"entidade multitipo" OR "entidades multitipo" OR "sobreposta" OR "sobrepostas" OR
"sobrepor" OR "descontinuas" OR "descontinuadas" OR "entidade estruturada" OR
"entidades estruturadas" OR "entidade nomeada estruturada" OR "entidades nomeadas
estruturadas" OR "entidade irregular" OR "entidades irregulares" OR "entidade en-
cadeada" OR "entidades encadeadas")

10.1.5 IEEE Xplore

English

("Abstract":ner OR "Abstract": "entities recognition" OR "Abstract":"entity recog-
nition" OR "Abstract":"named entity" OR "Abstract":"named entities") AND (("Ab-
stract":"nested entity") OR ("Abstract":"complex entity") OR ("Abstract":"multi type
entity" ) OR ("Abstract":"overlap entity") OR ("Abstract":"discontinuous entity") OR
("Abstract":"discontiguous entity") OR ("Abstract":"structured entity") OR ("Ab-
stract":"irregular entity") OR ("Abstract":"cascaded entity") OR ("Abstract":"nested
entities") OR ("Abstract":"complex entities") OR ("Abstract":"multi type entities"
) OR ("Abstract":"overlap entities") OR ("Abstract":"discontinuous entities") OR
("Abstract":"discontiguous entities") OR ("Abstract":"structured entities") OR ("Ab-
stract":"irregular entities") OR ("Abstract":"cascaded entities"))

126



CHAPTER 10. APPENDIX

Portuguese

("Abstract":ren OR "Abstract": "reconhecimento de entidade" OR "Abstract": "re-
conhecimento de entidades" OR "Abstract": "entidade nomeada" OR "Abstract": "en-
tidades nomeadas") AND (("Abstract":aninhada) OR ("Abstract":complexa) OR ("Ab-
stract": "multitipo") OR ("Abstract":sobreposta) OR ("Abstract":descontinua) OR
("Abstract":descontinuada) OR ("Abstract":estruturada) OR ("Abstract":irregular)
OR ("Abstract":encadeada))

10.1.6 ACL Anthology

English

("nested entity") OR ("complex entity") OR ("overlap entity") OR ("discontinuous
entity") OR ("discontiguous entity") or ("structured entity") OR ("irregular entity")
OR ("cascaded entity") OR ("multitype entity") OR ("nested entities") OR ("complex
entities") OR ("overlap entities") OR ("discontinuous entities") OR ("discontiguous
entities") OR ("structured entities") OR ("irregular entities") OR ("cascaded entities")
OR ("multitype entities") AND (ner OR "entity recognition")

Portuguese

entidade AND (aninhada OR "entidade complexa" OR multitipo OR sobreposta
OR descontinua OR estruturada OR irregular OR encadeada)

10.2 Example of Samples in the QA-based Format

We provide examples of sentences in the QA-based input format (in JSON),
which will be used by the model.

Nested Entities

We present a sentence with nested entities, from the NestedClinBr corpus.
The same sentence is sent and processed four times, once for each entity type. In
this example, we have four entity types: Problem, Test, Treatment, and Anatomy.

{"qid":"1001",
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"text":"Dispneia importante aos esforcos + dor tipo peso no peito no

esforco .",

"question":"Problema",

"answer":[ "Dispneia importante aos esforcos","dor tipo peso no peito

no esforco"]}

{"qid":"1002",

"text":"Dispneia importante aos esforcos + dor tipo peso no peito no

esforco .",

"question":"Teste",

"answer":[]}

{"qid":"1003",

"text":"Dispneia importante aos esforcos + dor tipo peso no peito no

esforco .",

"question":"Tratamento",

"answer":[]}

{"qid":"1004",

"text":"Dispneia importante aos esforcos + dor tipo peso no peito no

esforco .",

"question":"Anatomia",

"answer":[ "peito"]}

Discontinuous Entities

We present a sentence with nested and discontinuous entities, from the
NestedClinBr corpus, to be processed by the model adapted for the recognition
of discontinuous entities. The same sentence is sent and processed four times,
once for each entity type. In this example, we have four entity types: Problem,
Test, Treatment, and Anatomy.

{"qid":"182",

"text":"O # BEG , LOTE , CORADO , HIDRATADO , EUPNEICO , AFEBRIL , PA

150 / 80 , FC 74 , CP : SP , ACV : BCRNF 2T SS , AP : MV +

REDUZIDO DIFUSAMENTE , SEM RA , ABD : SP , MMII : PULSOS REDUZIDOS

BILAT , SEM EDEMA OU EMPASTAMENTO , LAB 13 / 01 / 14 : GLICOSE

304 ; GLICOSE P S - PRANDIAL 309 ; CT 119 ; HDL 21 ; TG 214 ; TGO

19 ; HBA1C 6 , 70 ; CPK 72 ; CR 1 , 00 ; K 4 , 7 ; UR 30 ;

MICROALBUMINURIA 24 HS ( 2114 MG ) ; PU ( GLICOSE + + ; LEUC 2 )

.",

"question":"Problema",

"answer":[ "AFEBRIL","SS","MV + REDUZIDO DIFUSAMENTE","RA","MMII

PULSOS REDUZIDOS BILAT","MMII EDEMA","MMII EMPASTAMENTO"],
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"answer_indices":[ [12],[30],[34, 35, 36, 37],[40],[46, 48, 49, 50],[

46, 53],[46, 55]]}

{"qid":"183",

"text":"O # BEG , LOTE , CORADO , HIDRATADO , EUPNEICO , AFEBRIL , PA

150 / 80 , FC 74 , CP : SP , ACV : BCRNF 2T SS , AP : MV +

REDUZIDO DIFUSAMENTE , SEM RA , ABD : SP , MMII : PULSOS REDUZIDOS

BILAT , SEM EDEMA OU EMPASTAMENTO , LAB 13 / 01 / 14 : GLICOSE

304 ; GLICOSE P S - PRANDIAL 309 ; CT 119 ; HDL 21 ; TG 214 ; TGO

19 ; HBA1C 6 , 70 ; CPK 72 ; CR 1 , 00 ; K 4 , 7 ; UR 30 ;

MICROALBUMINURIA 24 HS ( 2114 MG ) ; PU ( GLICOSE + + ; LEUC 2 )

.",

"question":"Teste",

"answer":[ "PA","FC","LAB","GLICOSE","GLICOSE P S - PRANDIAL","CT","

HDL","TG","TGO","HBA1C","CPK","CR","K","UR","MICROALBUMINURIA 24

HS","PU","GLICOSE","LEUC"],

"answer_indices":[ [14],[19],[57],[64],[67, 68, 69, 70],[73],[76],[79

],[82],[85],[90],[93],[98],[103],[106, 107, 108],[114],[116],[120

]]}

{"qid":"184",

"text":"O # BEG , LOTE , CORADO , HIDRATADO , EUPNEICO , AFEBRIL , PA

150 / 80 , FC 74 , CP : SP , ACV : BCRNF 2T SS , AP : MV +

REDUZIDO DIFUSAMENTE , SEM RA , ABD : SP , MMII : PULSOS REDUZIDOS

BILAT , SEM EDEMA OU EMPASTAMENTO , LAB 13 / 01 / 14 : GLICOSE

304 ; GLICOSE P S - PRANDIAL 309 ; CT 119 ; HDL 21 ; TG 214 ; TGO

19 ; HBA1C 6 , 70 ; CPK 72 ; CR 1 , 00 ; K 4 , 7 ; UR 30 ;

MICROALBUMINURIA 24 HS ( 2114 MG ) ; PU ( GLICOSE + + ; LEUC 2 )

.",

"question":"Tratamento",

"answer":[],

"answer_indices":[]}

{"qid":"185",

"text":"O # BEG , LOTE , CORADO , HIDRATADO , EUPNEICO , AFEBRIL , PA

150 / 80 , FC 74 , CP : SP , ACV : BCRNF 2T SS , AP : MV +

REDUZIDO DIFUSAMENTE , SEM RA , ABD : SP , MMII : PULSOS REDUZIDOS

BILAT , SEM EDEMA OU EMPASTAMENTO , LAB 13 / 01 / 14 : GLICOSE

304 ; GLICOSE P S - PRANDIAL 309 ; CT 119 ; HDL 21 ; TG 214 ; TGO

19 ; HBA1C 6 , 70 ; CPK 72 ; CR 1 , 00 ; K 4 , 7 ; UR 30 ;

MICROALBUMINURIA 24 HS ( 2114 MG ) ; PU ( GLICOSE + + ; LEUC 2 )

.",

"question":"Anatomia",

"answer":[ "CP","ACV","ABD","MMII"],

"answer_indices":[ [22],[26],[42],[46]]}
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10.3 Complete Results in NestedClinBr Corpus

10.3.1 Metrics per Entity

In table 10.1, we report the results of the BioNestedNER (with the best con-
figuration) method in the NestedClinBr corpus by entity type, in addition to the
micro, macro and weighted metrics.

Table 10.1: Results in the NestedClinBr corpus.

Precision Recall F1 Support

Metrics per entity

Problem 0.8549 0.8195 0.8369 338

Test 0.9087 0.8975 0.9031 244

Treatment 0.8976 0.8598 0.8783 214

Anatomy 0.9312 0.8980 0.9143 196

Avg metrics

Micro avg 0.8926 0.8629 0.8775 992

Macro avg 0.8981 0.8687 0.8831 992

Weighted avg 0.8924 0.8629 0.8774 992

10.3.2 CRF results

In table 10.2, we report the results of all CRF models trained for NestedClinBr
corpus, with different configurations: number of generated clusters, Word2vec
model used to generate the clusters, generic Portuguese (NILC, 2023) vs clinical
(ours), with UMLS concept, and better threshold setting.
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Table 10.2: Results of CRF models in NestedClinBr corpus

Model Recall Precision F1-score Acc NE

With generic Word2vec

cluster-5 (threshold-0.3) 0.6552 0.7738 0.7096 0.2963

cluster-10 (threshold-0.35) 0.6492 0.7970 0.7156 0.2593

cluster-50 (threshold-0.35) 0.6603 0.8017 0.7242 0.2037

cluster-100 (threshold-0.35) 0.6623 0.8002 0.7248 0.2130

cluster-300 (threshold-0.35) 0.6704 0.8022 0.7304 0.2315

With clinical Word2vec

cluster-5 (threshold-0.3) 0.6936 0.8019 0.7438 0.2870

cluster-10 (threshold-0.30) 0.6895 0.8172 0.7480 0.2685

cluster-50 (threshold-0.25) 0.6976 0.8103 0.7497 0.2963

cluster-100 (threshold-0.35) 0.6835 0.8188 0.7451 0.2778

cluster-300 (threshold-0.35) 0.6875 0.8287 0.7515 0.2593

With clinical Word2vec and UMLS concepts

cluster-5 (threshold-0.3) 0.6936 0.8019 0.7438 0.2870

cluster-10 (threshold-0.4) 0.6966 0.8350 0.7577 0.2593

cluster-50 (threshold-0.3) 0.7026 0.8200 0.7568 0.3056

cluster-100 (threshold-0.35) 0.7033 0.8357 0.7638 0.2870

cluster-300 (threshold-0.4) 0.6855 0.8354 0.7530 0.2037

10.4 Complete Results in SemClinBr Corpus

10.4.1 Metrics per Entity

In table 10.3, we report the results of the BioNestedNER (with the best con-
figuration) method in the SemClinBr corpus by entity type, in addition to the
micro, macro, and weighted metrics.
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Table 10.3: Results in the SemClinBr corpus.

Precision Recall F1 Support

Metrics per entity

Procedures 0.5803 0.790188 0.6692 1916

Disorders 0.6821 0.8843 0.7701 3173

ChemicalsDrugs 0.8919 0.9390 0.9149 984

Abbreviation 0.7553 0.9074 0.8244 3575

Avg metrics

Micro avg 0.7042 0.8798 0.7822 9648

Macro avg 0.7274 0.8802 0.7946 9648

Weighted avg 0.7104 0.8798 0.7850 9648

10.4.2 CRF results

In table 10.4, we report the results of all CRF models trained for SemClinBr
corpus, with different configurations: number of generated clusters, Word2vec
model used to generate the clusters, generic Portuguese (NILC, 2023) vs clinical
(ours), with UMLS concept, and better threshold setting.

132



CHAPTER 10. APPENDIX

Table 10.4: Results of CRF models in SemClinBr corpus

Model Recall Precision F1-score Acc ME

With generic Word2vec

cluster-5 (threshold-0.15) 0.4894 0.6421 0.5554 0.2895

cluster-10 (threshold-0.2) 0.4742 0.6582 0.5513 0.2371

cluster-50 (threshold-0.15) 0.4944 0.6328 0.5551 0.3011

cluster-100 (threshold-0.2) 0.4782 0.6590 0.5542 0.2567

cluster-300 (threshold-0.15) 0.4896 0.6385 0.5502 0.2815

With clinical Word2vec

cluster-5 (threshold-0.2) 0.4877 0.6697 0.5644 0.2513

cluster-10 (threshold-0.15) 0.5019 0.6477 0.5655 0.3108

cluster-50 (threshold-0.15) 0.5141 0.6545 0.5759 0.3126

cluster-100 (threshold-0.15) 0.5084 0.6555 0.5727 0.3171

cluster-300 (threshold-0.15) 0.5058 0.6523 0.5698 0.3064

With clinical Word2vec and UMLS concepts

cluster-5 (threshold-0.2) 0.4632 0.6806 0.5644 0.2513

cluster-10 (threshold-0.15) 0.5019 0.6477 0.5655 0.3108

cluster-50 (threshold-0.15) 0.5141 0.6545 0.5759 0.3126

cluster-100 (threshold-0.15) 0.5084 0.6555 0.5727 0.3171

cluster-300 (threshold-0.15) 0.5058 0.6524 0.5698 0.3064

10.5 Complete Results in GENIA Corpus

10.5.1 Metrics per Entity

In table 10.5, we report the results of the BioNestedNER (with the best con-
figuration) method in the GENIA corpus by entity type, in addition to the micro,
macro, and weighted metrics.
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Table 10.5: Results in the GENIA corpus.

Precision Recall F1 Support

Metrics per entity

DNA 0.7680 0.7371 0.7523 1244

RNA 0.8942 0.8532 0.8732 109

Cell line 0.8353 0.6384 0.7237 437

Cell type 0.7594 0.7368 0.7479 604

Protein 0.8409 0.8033 0.8216 3065

Avg metrics

Micro avg 0.8154 0.7686 0.7913 5459

Macro avg 0.8196 0.7538 0.7838 5459

Weighted avg 0.8159 0.7686 0.7909 5459

10.6 Complete Results in Rare Disease Corpus

10.6.1 Metrics per Entity

In table 10.6, we report the results of the BioNestedNER (with the best con-
figuration) method in the Rare Disease corpus by entity type, in addition to the
micro, macro and weighted metrics.
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Table 10.6: Results in the Rare Disease corpus.

Precision Recall F1 Support

Metrics per entity

Rare disease 0.8292 0.9023 0.8642 522

Disease 0.6627 0.6111 0.6358 180

Symptom 0.4865 0.6207 0.5455 29

Sign 0.6583 0.6216 0.6394 592

Avg metrics

Micro avg 0.7271 0.7309 0.7290 1323

Macro avg 0.6592 0.6889 0.6712 1323

Weighted avg 0.7226 0.7309 0.7256 1323

10.7 Complete Results in JNLPBA Corpus

10.7.1 Metrics per Entity

In table 10.7, we report the results of the BioNestedNER (with the best config-
uration) method in the JNLPBA corpus by entity type, in addition to the micro,
macro, and weighted metrics.
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Table 10.7: Results in the JNLPBA corpus.

Precision Recall F1 Support

Metrics per entity

DNA 0.7133 0.7871 0.7484 958

RNA 0.6528 0.8174 0.7259 115

Cell type 0.7454 0.7230 0.7340 1668

Cell line 0.5527 0.7302 0.6291 467

Protein 0.7440 0.8650 0.8000 4489

Avg metrics

Micro avg 0.7254 0.8157 0.7679 7697

Macro avg 0.6816 0.7845 0.7275 7697

Weighted avg 0.7275 0.8156 0.7678 7697

10.8 Complete Results in PortugueseClinicalNER Cor-
pus

10.8.1 Metrics per Entity

In table 10.8, we report the results of the BioNestedNER (with the best config-
uration) method in the PortugueseClinicalNER corpus by entity type, in addition
to the micro, macro, and weighted metrics.
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Table 10.8: Results in the PortugueseClinicalNER corpus.

Precision Recall F1 Support

Metrics per entity

Caracterização 0.8623 0.8095 0.8351 147

Teste 0.9482 0.9794 0.9636 243

Evolução 0.9770 0.9341 0.9551 91

Genética 1.0000 1.0000 1.0000 8

Anatomia 0.9679 0.9679 0.9679 343

Negação 0.9790 1.0000 0.9894 93

Observações 0.9667 0.7838 0.8657 37

Condição 0.9390 0.9550 0.9469 467

Resultados 0.9582 0.9347 0.9463 245

Data 0.9817 0.9699 0.9758 166

Terapêutica 0.9873 0.8864 0.9341 88

Valor 0.9630 0.9630 0.9630 54

Via 1.0000 1.0000 1.0000 6

Avg metrics

Micro avg 0.9528 0.9437 0.9482 1988

Macro avg 0.9639 0.9372 0.9494 1988

Weighted avg 0.9527 0.9437 0.9477 1988

10.8.2 CRF results

In table 10.9, we report the results of all CRF models trained for Portuguese-
ClinicalNER corpus, with different configurations: number of generated clus-
ters, Word2vec model used to generate the clusters, generic Portuguese (NILC,
2023) vs clinical (ours), with UMLS concept, and better threshold setting.
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Table 10.9: Results of CRF models in PortugueseClinicalNER corpus

Model Recall Precision F1-score

With generic Word2vec

cluster-5 (threshold-0.25) 0.8644 0.7764 0.8180

cluster-10 (threshold-0.3) 0.8559 0.7839 0.8183

cluster-50 (threshold-0.35) 0.8545 0.7835 0.8174

cluster-100 (threshold-0.35) 0.8550 0.7825 0.8171

cluster-300 (threshold-0.35) 0.8539 0.7865 0.8188

With clinical Word2vec

cluster-5 (threshold-0.3) 0.8540 0.7855 0.8183

cluster-10 (threshold-0.3) 0.8458 0.7853 0.8145

cluster-50 (threshold-0.25) 0.8609 0.7849 0.8212

cluster-100 (threshold-0.2) 0.8438 0.7841 0.8128

cluster-300 (threshold-0.3) 0.8565 0.7857 0.8196

With clinical Word2vec and UMLS concepts

cluster-5 (threshold-0.4) 0.8515 0.7909 0.8200

cluster-10 (threshold-0.35) 0.8458 0.7853 0.8145

cluster-50 (threshold-0.35) 0.8609 0.7849 0.8212

cluster-100 (threshold-0.35) 0.8438 0.7841 0.8438

cluster-300 (threshold-0.35) 0.8565 0.7857 0.8196
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