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Abstract
In a programming course, students develop various source code tasks. Using these tasks to
track student progress can provide valuable insights into their strengths and weaknesses in
each learning topic. This practice allows the teacher to intervene in learning from the first
weeks of class and thus maximize student gains. However, manually analyzing these tasks
poses a significant challenge for teachers due to the time and effort required. To address this
challenge, our research aims to automatically group students with similar programming
skills based on the automatically analysis of their submitted source codes. To achieve
this objective, we propose novel features that represent students’ progress in different
learning topics. Our research follows an applied approach and employs an experimental
procedure. Firstly, we prepared a database of over 650 real-world source code tasks written
in the C language. These tasks covered five learning topics taught throughout an academic
period. Next, we defined a set of 21 source code features to explicitly extract for each
learning topic. In the subsequent step, we pre-processed the database and extracted the
proposed features. Finally, we employed a hierarchical clustering algorithm to group the
students based on their source code tasks. Our model expects as input the source code
tasks that the students developed. Besides, our model allows the teacher to input the
solution to each task, enabling analysis and comparison. As a result, we obtained four
distinct groups of students. Our findings provide individualized analysis of the student
distribution within each group and calculate the midpoint of each cluster. The midpoint
calculation offers a summarized evaluation of the strengths and weaknesses exhibited by
each group of students. This approach supports continuous student monitoring throughout
the academic period, empowering teachers to design tailored tasks without relying on
specific programming environments. We believe that our results will assist teachers in
making informed pedagogical decisions and addressing the specific needs of each group
of students. By automating the analysis of source code tasks, our approach reduces the
burden on teachers, enhances student progress tracking, and promotes effective educational
interventions.

Keywords: Classroom feedback systems, clustering, computer science education, feature
engineering, teaching programming.





Resumo
Em um curso de programação, os estudantes desenvolvem diversas tarefas de código-fonte.
Utilizar essas tarefas para acompanhar o progresso dos estudantes pode fornecer valiosas
informações sobre os pontos fortes e os pontos fracos dos estudantes em cada tópico de
aprendizagem. Essa prática permite que o professor intervenha no aprendizado desde as
primeiras semanas de aula, maximizando assim os ganhos dos estudantes. No entanto,
analisar manualmente essas tarefas representa um desafio significativo para os professores
devido ao tempo e esforço envolvidos. Para enfrentar esse desafio, o objetivo desta pesquisa
é agrupar automaticamente os estudantes com habilidades de programação semelhantes
com base na análise dos códigos-fonte enviados pelos estudantes. Para atingir esse objetivo,
foi necessário propor novas características que representam o progresso dos estudantes em
diferentes tópicos de aprendizagem. Esta pesquisa segue uma abordagem aplicada e emprega
um procedimento experimental. Primeiramente, foi preparado um banco de dados com
mais de 650 tarefas de código-fonte do mundo real escritas na linguagem C. Essas tarefas
abrangem cinco tópicos de aprendizagem ensinados ao longo de um período acadêmico.
Em seguida, foi definido um conjunto de 21 características de código-fonte a ser extraído
especificamente de cada tópico de aprendizagem. Na etapa subsequente, foi realizado o
pré-processamento do banco de dados e as características propostas anteriormente foram
extraídas. Por fim, foi utilizado um algoritmo de agrupamento hierárquico para agrupar
os estudantes com base em suas tarefas de código-fonte. O modelo computacional espera
como entrada as tarefas de código-fonte que os estudantes desenvolveram. Além disso,
o modelo permite que o professor insira a solução de cada tarefa, que pode ser usada
para fins de análise e comparação. Como resultado, obteve-se quatro grupos distintos
de estudantes. As descobertas fornecem análises individualizadas da distribuição dos
estudantes em cada grupo e calculam o ponto médio de cada cluster. O cálculo do ponto
médio oferece uma avaliação sumária dos pontos fortes e os pontos fracos de cada grupo
de estudantes. Essa abordagem suporta o monitoramento contínuo dos estudantes ao
longo do período acadêmico, capacitando os professores a projetar tarefas personalizadas
sem depender de ambientes de programação específicos. Acredita-se que estes resultados
auxiliarão os professores na tomada de decisões pedagógicas embasadas e no atendimento
às necessidades específicas de cada grupo de estudantes. A automação da análise das tarefas
de código-fonte reduz a carga de trabalho dos professores, aprimora o acompanhamento
do progresso dos estudantes e promove intervenções educacionais eficazes.

Palavras-chave: Sistemas de retorno de sala de aula, agrupamento, educação em compu-
tação, engenharia de características, ensino de programação.
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Chapter 1

INTRODUCTION

Nowadays, computational software permeates the daily lives of virtually every
individual, either directly or indirectly. From the most specialized professions to routine
activities like using a smartphone or installing electronic devices, computing technology
plays a pivotal role. Concurrently, the influence of computing extends its impact on
employment opportunities, as emphasized by Barr and Stephenson (2011). The ubiquitous
presence of computational software underscores its significance as a driving force in modern
society, shaping various aspects of human life and professional endeavors. Research studies
by Schwab (2018) show that in 2025 machines will perform more than half of the tasks
humans perform in their current jobs. The impact is that a large part of the paid jobs
today will be replaced by new jobs requiring technological skills. The computational power
and rapid evolution of algorithms in the workplace can create 133 million new functions in
the next two years. However, emerging challenges are related to the qualification of these
professionals to adapt to the new job market.

This popularization of access to technology and the various employment opportuni-
ties have made higher education in computing a preference for a considerable part of future
university students (CAMP et al., 2017). In this context, programming courses have been
present since the beginning of studies and characterize fundamental student success skills
in subsequent phases. Introductory subjects to programming are conventionally referred
to by the term Introductory Computer Science (CS1) course, designed by the computing
association ACM Digital Library (HERTZ, 2010; ACM, 2013). This approach is usually
the student’s first contact with programming environments and languages. Therefore,
algorithmic concepts and logical reasoning are the first subjects to be studied. The term
algorithm is commonly defined as a sequence of ordered and executable steps that lead to
the resolution of a given problem (CORMEN, 2012). The algorithms can initially be ex-
pressed in natural language for educational purposes, helping beginners better understand.
However, natural language has innate ambiguities and inaccuracies; therefore, program-
ming languages are used to develop software solutions. Typically, source code related
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tasks are proposed for students to develop problem-solving skills, learn basic programming
concepts, and translate the problem description into a programming language, following
the necessary syntax and semantics (IEEE, 2013). The common programming languages
used at this learning stage are C, Python, and Java (SPACCO et al., 2015).

Teaching introductory programming generally requires students to be able to
design programs and solve simple problems. Throughout the course, students acquire
different levels of knowledge. Some students readily understand the elementary concepts
and can receive more advanced learning topics, while others still need assistance in key
topics (CARTER et al., 2010). Both groups need attention. In the first case, the teacher
should direct the learning to continue progressing and prevent the student from becoming
disinterested in the course. In the second case, which is the most critical, it will require
even more effort for the student to keep learning and not give up on the course.

Then, the new course’s excitement is often interrupted by the obstacles present in
these early experiences with programming for many students. The difficulty in developing
the expected logical reasoning can lead to the course’s failure or drop out. Research shows
that approximately 30% of students fail the course (BENNEDSEN; CASPERSEN, 2007;
WATSON; LI, 2014; LUXTON-REILLY et al., 2019). Regardless, drop out rates can reach
50% of students (KINNUNEN; MALMI, 2006). The most frequent reasons for students
to make this decision are lack of time and lack of motivation, both directly affected by
the difficulty of the course. For these reasons, teachers are concerned about making the
learning experience more engaging, and researchers are increasingly investigating methods
(VIHAVAINEN; AIRAKSINEN; WATSON, 2014), and tools to support these teachers
(KEUNING; JEURING; HEEREN, 2018).

1.1 Problem Statement and Justification for the Research

Given the academic and professional importance programming learning to students,
as well as all the challenges involved in the process, giving a comprehensive review of all
the related work is beyond the scope of this research. However, some very interesting and
inspiring papers provide a good overview of this area while discussing important issues.
Over the years, different authors have made joint efforts to disseminate experiences and
discoveries in teaching programming. Robins, Rountree and Rountree (2003) investigated
programming learning processes for beginners and practical implications for teachers. Pears
et al. (2007) researched the teaching of introductory programming with a specific focus on
curriculum, pedagogy, languages, and tools. Since then, differences in learning have been
debated in terms of levels of programming understanding, programming paradigms, and
knowledge dissemination strategies.
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In this sense, teachers also face many inherent challenges in teaching programming
to beginning students. Among the challenges observed, the biggest is the lack of methods
and tools available to understand student development and support teaching strategies
(MEDEIROS; RAMALHO; FALCãO, 2019). So a greater effort is devoted to motivational
theories, learning topics, and methods used for teaching programming (SCAICO; SCAICO;
QUEIROZ, 2018). For example, Maia, Serey and Figueiredo (2017) investigated how
teaching styles affect programming learning. They highlighted that styles that present
active, reflective, and intuitive characteristics positively affect learning. For a comprehensive
review of automated feedback generation for programming exercises, we refer the reader to
the paper (KEUNING; JEURING; HEEREN, 2018). Research carried out in Brazil shows
that active approaches are predominant, such as gamified classes, the use of robotics, and
block language, to encourage student motivation (SANTOS; ARAUJO; BITTENCOURT,
2018).

There has been a growing concern about how to engage students more during
classes. In this context, several novel pedagogical approaches have been developed under
the "Active Learning Pedagogical Approaches". Felder and Brent (2009) define active
learning as everything students do in a course that goes beyond just watching, listening,
and taking notes. There are several approaches of this type, such as Think-Pair-Share
(KOTHIYAL et al., 2013), 300 (FRANGELLI, 2015), Pair-Programming (HANKS et al.,
2011), Peer Instruction (FAGEN; CROUCH; MAZUR, 2002), Problem-Based Learning
(HMELO-SILVER, 2004), Project-Based Learning (KOKOTSAKI; MENZIES; WIGGINS,
2016), Gamification (ZAINUDDIN et al., 2020), to name a few. To apply some of these
methodologies in programming classes is necessary to have a way of grouping students by
some criteria, such as their programming skills. However, to the best of our knowledge, no
approach or tool would allow us to do that using the students’ source code in an automatic
way.

The increase in the number of students enrolled, for example, leads to overcrowded
classes that limit the monitoring of activities and make personalized intervention difficult
(SZABO; FALKNER, 2017). Some research carried out indicates that immediate teacher
intervention is vital for student performance (SZABO; FALKNER, 2017) (FONSECA;
MACEDO; MENDES, 2018) (PETERSEN et al., 2016). In contrast, obtaining information
about student progress from manually grading source code tasks is humanly challenging.
The amount of source code produced by students during the term requires several hours
of work by the teacher to analyze them.

For these reasons, researchers have continuously tried to create methodologies and
develop tools to support teaching programming (SILVA et al., 2019). Related literature
presents tools for automatic correction (ALFARO; SHAVLOVSKY, 2014) and plagiarism
detection (YAN et al., 2018) to platforms for block programming (RODRÍGUEZ; PRICE;
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BOYER, 2017), in addition to other technological approaches (ZAVALA; MENDOZA,
2018). Recent studies have started to employ machine learning techniques within the
developed tools. One technique used in machine learning to make discoveries from data
is clustering. Data clustering is an unsupervised machine learning technique for creating
groups of objects. One example of such an approach in teaching programming is Aottiwerch
and Kokaew (2018) work, where a clustering algorithm is used to suggest programming
pairs from a qualitative questionnaire answered by students. Another example is the
research of Ahadi et al. (2017), where they use a clustering model to analyze performance
and consistency in programming tasks.

However, to the best of the author’s knowledge, there seems to be no report in
the literature about an approach that allows monitoring students’ progress in such a way
that it can guide groups with similar difficulties and challenges based on the analysis of
their source code solutions. If the teacher can identify the programming skills the students
developed in the first few weeks of class, he can make specific pedagogical decisions. With
the support of machine learning techniques, the students’ source code solutions can be
automatically grouped according to the similarity of the lines of source code. After that,
the teacher can identify the knowledge levels of each group and provide targeted assistance.
An example would be the choice of a teaching methodology that would adapt to the needs
identified for each group of students. Therefore, we observe high research potential in this
theme.

1.2 Objectives

Our main research objective is to automatically group students with similar pro-
gramming skills based on the analysis of their submitted source codes. In order to achieve
this, we also had to propose novel features for the source code analysis that are related to
the learning topics. This main objective refers to the following specific objectives:

(a) To define machine learning techniques to analyse the students’ source code tasks.

(b) To propose source code analysis features that consider the different learning topics.

(c) To develop a solution to monitor student progress based on the techniques studied.

(d) To evaluate the use of this solution in different experiments.
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1.3 Thesis Hypothesis

The development of this doctoral thesis is motivated by the lack of scientific studies
that use machine learning techniques to support monitoring the progress of programming
students. In this context, we present our hypotheses.

• Null Hypothesis (H0): It is possible to group students with related programming
skills from the automatic analysis of their source code tasks.

• Alternative Hypothesis (H1): It is not possible to group students with related
programming skills from the automatic analysis of their source code tasks.

It is important to note that the definition of the best clustering algorithm is not
part of the scope of this research. Also, predicting students’ final grades is not in our
best interest, but we want to support the teacher’s pedagogical decisions regarding the
development of each group of students better.

1.4 Outcomes and Contributions

The research developed in this thesis has lead to the following contributions: (i)
scientific contribution in filling knowledge gaps with the proposition of new features;
(ii) technical contribution in developing new technology; and (iii) social contribution in
problem-solving, and improvement of analysis conditions.

1.4.1 Scientific Contributions

The scientific relevance of the research is creating a set of new source code features
specific to the learning topics of a programming course. From the features created, the
application of machine learning techniques allows the grouping of students. In addition,
the definition of a midpoint as a reference value to evaluate the clustering results.

Throughout the development of this doctoral thesis, some full papers have been
written and published in scientific events in the area.

• BERNARDO SILVA, D.; DECONTO, D. S.; AGUIAR, R. L., and SILLA, C. N..
2019. Recent studies about teaching algorithms (CS1) and data structures
(CS2) for computer science students. In Proceedings Frontiers in Education.
49th Annual Conference (FIE ’19). IEEE, Cincinnati, OH, USA.
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• BERNARDO SILVA, D.; SILLA, C. N.. 2020. Evaluation of students program-
ming skills on a computer programming course with a hierarchical clus-
tering algorithm. In Proceedings Frontiers in Education. 50th Annual Conference
(FIE ’20). IEEE, Uppsala, Sweden, UK.

• BERNARDO SILVA, D.; RIBEIRO CARVALHO, D.; SILLA, C. N.. 2023. A
clustering-based computational model to group students with similar
programming skills from automatic source code analysis using novel
features. In IEEE Transactions on Learning Technologies (TLT).

1.4.2 Technical Contributions

The technical relevance of the research is developing a computational model to
group students according to their programming skills. The computational model can
automatically group students based on their submitted source code tasks and allows the
teacher to track students’ progress across the learning topics of a programming course.

The source code of our computational model is available in a public repository for
greater detail of how its construction occurred1. This source code also helps to understand
the technical aspects our computational model. Considering that it is difficult to find
available implementations to handle the preprocessing of source code tasks and student
grouping, this can be considered as another technical contribution of this research.

1.4.3 Social Contributions

Considering the use of the proposed method by teachers, it has the added contribu-
tion of allowing the teacher to better visualise and identify the limitations of the learning
process based on the organization of groups of students, and thus define the focus of the
learning topics of a programming course.

Our approach presents a visualization of what is happening within each group of
students. Programming classes are often large, and this makes it difficult to understand
what skills students are developing. Our model allows the teacher to visualize these skills
without opening any of the students’ source code assignments. Based on this, the teacher
can define different pedagogical strategies to level the students.

1 The public repository of the computational model is available at:
https://github.com/davibernardos/SCAFX.git
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1.5 Document Outline

This doctoral thesis is organized into eight chapters, including this introductory
chapter that presents a contextualization of teaching-learning programming. Also, we
describe some of the problems about the teaching-learning programming that present as
research opportunity. Next, we present our objectives and our thesis hypothesis. Finally,
we present the contributions of our research, such as social, scientific, and technological.

Chapter 2 presents a mapping of recent studies in SIGCSE focusing on the teaching
of programming (CS1) and data structures (CS2) to university students in computer
science courses. Three key findings emerged from this review: the characterization of course
contents, the identification of pedagogical strategies, and the categorization of supporting
tools. This concise literature review situates us within the field of programming education
and provides valuable insights to attack approaches to clustering and feature extraction.

Chapter 3 presents part of the fundamental bibliography, where we explain the
main concepts inherent in unsupervised machine learning. Initially, the data clustering task
is contextualized, and then the main clustering algorithms are described. In the sequence,
two categories of distance measures are presented that can be used in the data clustering.
The first category is used to calculate the distance between objects in a cluster, and the
second category is used to calculate the distance between clusters. Finally, the possible
assessment models for a cluster are presented.

Chapter 4 presents the second part of the fundamental bibliography, where we
explain the main concepts inherent to feature engineering. Initially, the basic definitions of
information retrieval, information extraction, word processing, and regular expressions
are described. In the sequence, some of the main numerical data normalization techniques
are presented. Subsequently, we present a set of techniques for measuring software quality.
The software metrics described are size, complexity, coupling, and cohesion. Finally, some
best coding practices are presented. These practices are divided into refactoring functions
and variables, simplifying conditional logic, and refactoring parameters.

Chapter 5 presents the related works that inspired and guided the construction
and development of this doctoral thesis. First, we present the works that used approaches
to make students’ grading in teaching programming. Next, we present works that used
approaches to verify students’ performance in teaching programming. Subsequently, we
present the works that used students’ grouping approaches and techniques in teaching
programming. Overall, we have tried to put some intonation for these approaches’ coding
features. Also, we tried to rescue aspects of the works such as the programming language
used, population, information from the database, and information about the experiment
execution, among other study characteristics. Finally, we present an analysis of these
aspects and how they are related to our research.
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Chapter 6 presents the methodological approach, where we present the research
method used to develop this doctoral thesis. First, we present the characterization and
classification of our research. Next, we present the structure of our research that was
guided by the steps of the knowledge discovery process in data mining. We describe how
our approach works, the steps that must be followed to replicate our experiments, and how
we collect and analyze our results. Finally, we present the configuration of our experiments.
We define our research questions, describe our database, and present the machine learning
techniques chosen for use and how they were evaluated.

Chapter 7 describes our main scientific contribution that addresses the area of
feature engineering, specifically the creation and extraction of features. Sections of this
chapter have been divided between learning topics. In this sense, we present the new
source code features that we have developed to represent each learning topic. First, we
introduce the learning topic and present its respective features. In addition, we relate these
features to their respective learning outcomes. Then, we describe the feature and explain
how the extraction process of this feature occurs at the source code level. In addition, we
present the importance of the new feature regarding the learning topic and how this feature
can help the teacher in the classroom. Finally, we discuss the potentials and weaknesses
identified in the features defined and extracted from the source code tasks.

Chapter 8 presents the analysis of the results obtained from grouping students
with similar programming skills. First, we present the results obtained in the different
configurations tested for the clustering algorithm. Next, we present a descriptive analysis
of our database. Then, we extract the features, which were previously proposed, from
the source codes of our database and perform the grouping of students. We present and
statistically analyze the output of our computational model that addresses programming
skills individually. Subsequently, we present an overview of the student groups based on
the midpoint of the features obtained in each grouping. The overview supports the teacher
in understanding the skills developed by the students. Finally, we compare the group’s
overview with the benchmark defined for each learning topic.

Chapter 9 presents the final considerations of this doctoral thesis. We revisited
the contributions achieved, which were published in annals of events and are available for
consultation by the scientific community. Besides, we summarize the limitations present in
our research and outline guidelines for future research.



31

Chapter 2

RECENT STUDIES ABOUT TEACHING ALGORITHMS
AND DATA STRUCTURES

This chapter present the outcomes of a survey conducted with the primary objective
of gaining deeper insights into the realm of programming teaching. The comprehensive
findings and insights presented here are derived from a research that has been previously
published in the Proceedings of the 49th Annual Conference on Frontiers in Education
(SILVA et al., 2019).

In the view of the relevance of this subject, many studies are being conducted in
order to disseminate the experiences and discoveries in the teaching of algorithms and
data structures. New approaches are being developed and consolidated approaches have
been tested in different environments. Some computing events have specific tracks for
the publication of education related papers. However, there are whole events destined to
the teaching of computing, such as the ACM Technical Symposium on Computer Science
Education (SIGCSE).

An important part of the initial research of this thesis was to map the recent
advances in teaching programming and to understand what approaches were being used
and developed by other reserachers. Given that doing a complete survey about the topic
of teaching programming was infesable given the amount of existing works, we used as a
starting point the papers published in the ACM SIGCSE during the period of 2014 to
2018, which would be equal to the last five years, when the mapping was being conducted.
In this sense, the aim of this study wass to map the approaches employed in the teaching
of algorithms and data structures, published in SIGCSE, as well as their contributions
and limitations. We were interested in answering the following research question:

RQ1 What are the recent approaches to teaching programming and data structures?
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2.1 Study Setting

In this section, we elucidate the methodology employed for the construction of
this mapping. Our research was structured around three distinct research subquestions,
each designed to guide our investigative approach. Additionally, we expound upon the
criteria and systematic procedures utilized for the selection of pertinent publications and
the organization of data collection. To maintain transparency and scholarly rigor, we also
address the inherent limitations that may impact the scope and outcomes of our mapping.
In this section, we elucidate the methodology employed for the construction of this mapping.
Our research framework was structured around three distinct research subquestions, each
designed to guide our investigative approach. Additionally, we expound upon the criteria
and systematic procedures utilized for the selection of pertinent publications and the
organization of data collection. To maintain transparency and scholarly rigor, we also
address the inherent limitations that may impact the scope and outcomes of our mapping.

2.1.1 Definition of Research Questions

The main question of research to be investigated in this study is as follows: What
are the recent approaches to teaching programming and data structures? To do this, we
define three other secondary research questions.

RQ1.1 What type of course content is covered?

In RQ1.1, our subsequent aim is to discern the specific content being imparted,
whether it pertains to introductory programming (CS1) or data structures (CS2). Also
we want to ascertain the primary programming languages employed in these educational
contexts. This inquiry will enable us to gain a comprehensive understanding of the instruc-
tional landscape and the prevalent languages in the programming courses.

RQ1.2 What pedagogical teaching strategies are used?

In RQ1.2, our subsequent aim is to provide a detailed exposition of the pedagogical
strategies that are currently in use for teaching programming. We want to elucidate not
only what these strategies encompass but also how they are effectively implemented within
the instructional framework. By delving into these pedagogical methodologies, we can offer
valuable insights into the diverse approaches employed in programming education, thereby
enhancing our understanding of their efficacy and impact on student learning outcomes.
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RQ1.3 What teaching support tools are used?

In RQ1.3, our subsequent aim is to map the landscape of tools and frameworks that
are under development and undergoing testing to support the teaching of programming.
We endeavor not only to identify these tools but also to delve into their functionalities,
applications, and their potential to enhance the educational experience.

2.1.2 Selection of Publications

In order to search for the papers we have performed the search using two different
Databases. This is particularly important in order to get a good number of primary related
studies (PETERSEN et al., 2008). The search process occurred in September 2018. A
summary view of quantities selected and classified as primary studies, separated by year,
can be seen in the Table 1.

Table 1 – Number of publications selected and classified by year

Year DBLP ACM Finalselected classified selected classified
2014 25 11 25 +4 15
2015 24 9 20 +2 11
2016 17 7 28 +0 7
2017 31 13 26 +2 15
2018 23 11 33 +1 12

Total 120 51 131 +9 60

The first database was the DBLP2 computer science bibliography list. In this
database the search was performed manually by visual inspection of the titles of the papers
published in the SIGCSE conference in the years 2014, 2015, 2016, 2017 and 2018. All
papers published between 2014 and 2018 (783 papers in total) were reviewed by pairs of
researchers and selected according to the inclusion criteria (IC) presented in Table 2. The
selection consisted of reading the title and keywords. The potentially related papers were
registered in a spreadsheet and, in cases of doubt, the abstract of the paper was read. 120
papers were selected. The selected papers were read completely. When the uncertainty
about the classification prevailed, the authors of this study met to establish a consensus.
Its the end 51 papers were classified as primary studies.

The second round of selections was done using the ACM Digital Library3. The
search was performed by filtered by event (SIGCSE), year of publication (2014–2018) and
keywords (CS1 or CS2). The second selection resulted in 131 papers. The same procedure
2 DBLP computer science bibliography, available in https://dblp.uni-trier.de
3 ACM Digital Library, available in https://dl.acm.org/dl.cfm
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Table 2 – Definition of ICs for selection of publications

Criteria Description
CI 1 publications in SIGCSE
CI 2 categorized as Full Paper
CI 3 between 2014 and 2018
CI 4 focus on teaching programming (CS1 or CS2)
CI 5 aimed at computer science
CI 6 according to research questions

used for the selection of primary studies in the DBLP database was used to select the
papers from the ACM Digital Library. The total number of papers classified as primary
studies in this second search was 60. It should be noted that out of these 60 papers there
were only nine new papers that were added to the pool of primary studies.

2.1.3 Data Extraction

After the final classification of the papers, the process of collecting and tabulating
the results was initiated. The collected characteristics were grouped according to their
similarity and organized into three categories: (i) content coverage; (ii) pedagogical strategy
and, finally, (iii) support tools. A spreadsheet with the list of classified papers and the
characteristics collected is available for online consultation4.

2.1.4 Threats to Validity

The possible threats to the validity of this study are the following. The SIGCSE is
an important event in computer teaching, but it is not the only one. Other events also
contain papers with relevant contributions to the teaching programming area. However,
in order to present more detailed results and in-depth discussions, we opted to restrict
the scope of the review. To cover a larger slice of the literature, we recommend that other
revisions equal to this, with the specific and well-defined scope, be performed.

We know that the symposium has happened since the decade of 80 and, therefore,
many primary studies, prior to 2014, were not considered. However, the interest in this
paper was to identify what is most recent in teaching programming. It may have happened
that, due to the negligence of the authors, primary studies related in the range of 2014
and 2018 remained outside the selection. To circumvent this threat, peer reviews were
performed. Given that this technique can still generate losses, we performed a second
search in the ACM Digital Library database. We were able to add nine more papers.

4 List of classified publications, available in goo.gl/ymL7Bp
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2.2 Analysis of Results

In our mapping we found 60 related papers. The data were extracted, tabulated
and analyzed in order to answer the research questions of this study. An overview of the
results can be observed in Table 3. The results presented in Table 3 refer to the number
of pedagogical strategies and support tools that appear within all papers. For example,
in the paper (LATULIPE; LONG; SEMINARIO, 2015) three approaches are presented.
In the years 2014 and 2017, the highest numbers of publications were found, with 15
papers (25.0%) for each year. In 2014 it was also the year that had the most publications
on pedagogical strategies, 10 papers (16.7%). And, 2017 was the largest publication of
support tools, 11 papers (18.3%). The year 2016, had the smallest number of published
papers and the smallest proportions of pedagogical strategies and support tools.

Table 3 – Overview of Results

Year Contents Strategies Tools
2014 15 (25,0%) 10 (16,7%) 7 (11,7%)
2015 11 (18,3%) 9 (15,0%) 4 (6,7%)
2016 7 (11,7%) 5 (8,3%) 2 (3,3%)
2017 15 (25,0%) 6 (10,0%) 11 (18,3%)
2018 12 (20,0%) 8 (13,3%) 6 (10,0%)

The following results will be classified among the course content, strategies and
teaching support tools that have been identified.

2.2.1 Covered Contents

The first programming disciplines are usually divided between the fundamental
concepts of the algorithms (CS1) and the advanced data structures (CS2). We verify the
coverage of the content of the publications found. As can be seen in Figure 1, the 60
papers found were classified among CS1, CS2 or both. The x axis indicates the year of
publication, and the bars of the y axis represent the grouping of the papers found. The
publications that only depicted the teaching of CS1 were the majority, with 37 approaches
(61.7%). The teaching of CS2 was found in 14 papers (23.3%). Nine other publications
addressed both contents (15.0%).

The programming language is used to put the covered content into practice.
Normally, this choice is at the discretion of the teacher, according to their personal
preference. Among the programming languages, the most recurrent was Java, which was
present in 24 publications (40.0%). Then Python appeared 18 times, C++ 10 times and
the language C was found in five publications. Other languages such as C#, Matlab, and
Ruby were also found, but in smaller proportions.
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Figure 1 – Distribution of content covered by years

In the classroom, teachers use teaching methodologies as strategies to transmit
content and provide learning to students. Such strategies are usually related to increased
involvement and content fixation. The following will be presented with the strategies we
have discovered.

2.2.2 Pedagogical Strategies

While the content covered by the course defines what needs to be taught, teaching
strategies represent how the teacher will accomplish the transfer of knowledge. Traditionally,
the teaching of programming mixes between theoretical classes and laboratory practices.
Traditional teaching methods add privilege for the transmission of information by teachers
regardless of what the students gain is. Whereas, the active methodologies put the student
as the main focus and the teacher as a mediator of the teaching. As can be seen in Figure 2,
we identified 32 papers that specified the teaching strategy used. The x axis indicates the
year of publication, and the bars of the y axis represent the grouping of the pedagogical
strategies found. Next, a brief description of the pedagogical strategies discovered and an
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overview of their respective publications will be presented.
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Figure 2 – Distribution of pedagogical strategies by years

Peer Instruction (PI) — is a pedagogical approach characterized by the
provision of preparatory materials to students, allowing them to engage with the course
content prior to attending class sessions (CROUCH; MAZUR, 2001). At the beginning
of each class, students are presented with brief knowledge assessments, where they indi-
vidually respond to questions. Subsequently, students engage in collaborative discussions
within small groups to deliberate upon these questions, and, guided by their enhanced
comprehension, they formulate revised responses. Throughout the instructional sessions,
instructors intersperse the presentation of course content with interactive clicker questions
(BRUFF, 2009).

The pedagogical strategy PI was found in seven papers (11.7%). The year 2014
presented the highest number of publications, with three papers. Although in 2017 there was
no paper found. Usually, publications about PI involve their comparison with traditional
methodologies (ZINGARO, 2014; PORTER et al., 2016; CACEFFO; GAMA; AZEVEDO,
2018; HAO et al., 2018), differing only in the configuration of the environment. In general,
the results describe more satisfied and better-income students in the disciplines that use
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PI. On the other hand, the preparation of classes usually involves more work the teacher
(CACEFFO; GAMA; AZEVEDO, 2018). Important attention for the implementation of
PI is the elaboration of challenging, but not very complex issues. Also, the teacher must
make sure that is resetting sufficient time for reading and understanding the questions
(PORTER et al., 2016).

Pair Programming (PP) — is a collaborative software development practice
stemming from the Agile methodology, specifically, Extreme Programming (XP), wherein
two individuals, designated as the Driver and the Navigator, collaborate closely at a
single computer for brief programming sessions (BECK; ANDRES, 2004). The Driver is
primarily responsible for in-depth source code composition, while the Navigator engages
in ongoing collaboration involving code quality assurance and strategic coding planning
(BRYANT; ROMERO; BOULAY, 2008). The functions are switched according to the
previously defined protocol.

The PP pedagogical strategy was found in 11 papers (18.3%). In the years 2014
and 2017, three publications were found for each year. In 2016, only one publication
was found. Experiments conducted in the classroom prove the benefits of using PP in
teaching programming (MCCHESNEY, 2016; HARSLEY et al., 2017). In addition to
the students developing more relevant questions, Li and Kraemer (2014) report that PP
is a collaborative approach that promotes early engagement of critical thinking in the
process of resolving the task. However, a key point in its use is the communication between
the pair. Zarb, Hughes and Richards (2014), Zarb, Hughes and Richards (2015) used
industry guidelines to verify the communication experience between peers in debugging
and troubleshooting programming tasks. The pairs that were exposed to the guidelines
obtained higher scores and more significant contribution rates. In the same direction,
Rodríguez, Price and Boyer (2017) discover that collaboration is more effective when both
partners contribute to the dialogue. Finally, in order to avoid the wear of the methodology,
something to be observed and coordinated is the Union of equally qualified partners
(CELEPKOLU; BOYER, 2018).

Problem-Based Learning (PBL) — is an instructional approach rooted in
problem-solving, where educational themes are derived from genuine or simulated issues
(KöLLING; BARNES, 2004). The student’s engagement in the PBL process involves
problem identification, evaluation of prospective solutions, and collaborative teamwork
towards resolution (WOOD, 2008). Teachers introduce practical scenarios to direct the
course content effectively. It is worth noting that activities encompassing source code
comprehension, maintenance, refactoring, and adaptation or extension closely align with
real-world software development practices in the industry.

The PBL pedagogical strategy was found in five papers (8.3%). The highest number
of publications was found in the year 2016. In 2014 there were no publications. In order
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to increase student engagement, Anderson et al. (2015) set up a CS1 course that uses
real data to solve problems encountered in practice, such as DNA analysis, indication of
friends in a social network, prediction of the outcome of the election, among others. Sheth
et al. (2016) describes a course that uses four steps to solve problems: logical reasoning,
implementation, analysis and presentation of results to the class. Something interesting
is that there is an incentive to exchange ideas and share the source code, as long as the
owner is referenced. Lovellette et al. (2017) investigate whether contextualized problems
to the detriment of only numerical problems, make a difference in learning. On the other
hand, Morrison et al. (2016) have opted to reduce the cognitive burden in solving problems.
First, resolutions of similar problems are provided. Subsequently, students define smaller
goals to reach the solution of their own tasks.

Project-Based Learning (PjBL) — is an educational approach that centers
on students’ active engagement in real-world projects and challenges. This methodology
promotes deeper learning by encouraging students to investigate, explore, and find solutions
to authentic problems (JAZAYERI, 2015). Key features of PBL include its emphasis on
real-world relevance, active and collaborative learning, longer-term engagement in projects,
and interdisciplinary application of knowledge. PBL helps students develop critical thinking,
problem-solving, and teamwork skills while fostering a deeper understanding of subject
matter.

The PjBL pedagogical strategy was found in four papers (6.7%). In the year 2015,
3 publications were found. However, between the years 2016 and 2018 there were no
publications. One goal to be achieved with PjBL is to deepen the student’s involvement
with the learning task. Wood and Keen (2015) have opted to challenge students to create
virtual worlds in a large comprehensive programming project. Lucas (2015) presents a
sequence of projects that integrated the study of algorithmic paradigms with an illustration
of how the choice of data structures significantly impacts an algorithm.

Gamification — is a pedagogical strategy that seeks to integrate competitive
elements into non-gaming environments (IBANEZ; DI-SERIO; DELGADO-KLOOS, 2014).
More recently, this approach has found application within the educational domain, where
it leverages reward and challenge mechanisms to facilitate content delivery, while concur-
rently enhancing student engagement and motivation (DOMINGUEZ et al., 2013). This
educational strategy capitalizes on elements often found in games to create an immersive
and participatory learning experience.

The gamification pedagogical strategy was found in five papers (8.3%). For each
year there was a publication. The idealization of tournaments favors the effort to develop
more robust solutions, as occurs in the last phase of the methodological cycle of (SHETH
et al., 2016). The use (or creation) of the games are initiatives that instill the students’
competitive interest. Dicheva and Hodge (2018) presented Stack Game, a game for the
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teaching of concepts, implementation and manipulation of stacks applied in a CS2 course.
In the experiment, the students received two videos and didactic material for a previous
study. In class, the teacher made a brief summary on the subject. Butler, Bezakova and
Fluet (2017) encourage the approach of pencil puzzles to convey the content of CS1 and
CS2.

Other pedagogical strategies were identified in 6 papers (10.0%). The elaboration
of instructional videos was an alternative to fix the content and minimize the burden of
teachers in a CS1 course (FRANK-BOLTON; SIMHA, 2018). VanDeGrift (2017) describes
the creation and evaluation of activities using POGIL (Process-Oriented Guided Inquiry
Learning) in the teaching of CS2. POGIL is based on constructivist and collaborative
learning theories, in which students work in teams through a set of activities that guide the
construction of the content. Battestilli, Awasthi and Cao (2018) conducted an experimental
study based on a Two-Stage Project. In the first step, students submit their programming
tasks individually. Followed by a second step, where they are paired to work on an enhanced
version of the same task.

2.2.3 Support Tools

The tools to support teaching programming have the important role of optimizing
and enriching the student’s experience, as well as automating and making the teaching
processes more dynamic. In Figure 3, we have identified 28 papers that specified the use
of support tools. The x axis indicates the publication year and the y axis bars represent
the grouping of the found tools. Next, a brief description of the discovered tools and an
overview of their respective publications will be presented.

Automatic grade — is a mechanism used by teachers to automate the process
of correcting programming tasks. This approach is particularly advantageous when dealing
with extensive class sizes, characterized by heightened workload demands. Consequently, the
time saved through automation allows for the development of more intricate instructional
materials and heightened focus on addressing student challenges.

Studies on automatic evaluation tools were found in 6 papers (10.0%). Alfaro and
Shavlovsky (2014) present CrowdGrader5 that explores learning through collaborative
assessment. Pettit et al. (2015) present a set of metrics to evaluate the interactive mod-
ifications in coding activities. Estey, Keuning and Coady (2017) perform an evaluation
based on the amount of builds and hints requested. Castro-Wunsch, Ahadi and Petersen
(2017) use machine learning models to predict student performance.

Learning environment — is a programming environment specifically tailored for
novice programmers and serves as a platform for teaching beginners. In contrast, Integrated
5 CrowGrader, available in https://www.crowdgrader.org



2.2. Analysis of Results 41

0

1

2

3

4

5

6

7

8

9

10

11

12

2014 2015 2016 2017 2018

N
um

be
r 

of
 p

ub
lic

at
io

ns

Year of publication

Automatically grade

Learning environment

Visualization and animation

Programming blocks

Similarity detector

others

Figure 3 – Distribution of teaching support tools by year

Development Environments (IDEs) encompass a multitude of advanced programming
features. Nevertheless, these comprehensive tools can appear intricate and provide limited
guidance for individuals new to programming.

Studies on learning environments were found in four papers (6.7%). CodeSkulptor6,
used for teaching CS1, allows you to configure visual events for debugging and tracking of
source code at run time (TANG; RIXNER; WARREN, 2014). Mumuki7, an environment
in which the theory arises from the exercises (BENOTTI et al., 2018). Pythy8, a Web
environment for the learning of the Python language (EDWARDS; TILDEN; ALLEVATO,
2014).

Visualization and animation — are mechanisms used to support learning,
offering a graphical depiction of programming processes. This resource aims to supplant
traditional textbooks by presenting visual information and interactive content, which
serves to elucidate abstract and complex concepts.

6 CodeSkulptor, available in http://www.codeskulptor.org/viz
7 Mumuki, available in https://mumuki.io/home
8 Pythy learning environment, available in https://pythy.cs.vt.edu
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Studies on visualization and animation tools were found in nine papers (15.0%).
The main application was in the teaching of CS2, in which students have great difficulties to
understand the functioning of the advanced structures (CROSS et al., 2014; FäRNQVIST
et al., 2016; BURLINSON et al., 2016; SCHREIBER; DOUGHERTY, 2017; FARGHALLY
et al., 2017; YOUNG; WALKINGSHAW, 2018; MCQUAIGUE et al., 2018). The interactive
books were to support learning are found in (FäRNQVIST et al., 2016; FARGHALLY et
al., 2017). In addition, some studies allow the monitoring of learning (EDGCOMB et al.,
2017; DEB; FUAD; KANAN, 2017; MCQUAIGUE et al., 2018). Cross et al. (2014) and
Burlinson et al. (2016) presented studies in which the student can generate the visualization
of their own coding.

Blocks programming — is a pedagogical approach that shares a striking
resemblance to LEGO construction, characterized by its intuitive, visual, and modular
nature. This innovative method has gained substantial prominence as a foundational tool
for cultivating and nurturing the logical thinking and problem-solving skills of students,
especially those embarking on their initial programming learning journey. Much like
the step-by-step instructions in computer programming, blocks programming utilizes a
repertoire of drag-and-drop visual elements, often referred to as "blocks." These blocks
are designed to encapsulate discrete programming commands, creating an abstract but
remarkably comprehensible representation of code. By employing these blocks, students
are afforded an experiential learning process, where they can effortlessly assemble logical
structures and sequences by interlocking these visual elements.

Studies on tools using block programming were found in two papers (3.3%). In
order to avoid syntactic errors, Rodríguez, Price and Boyer (2017) used Snap!9 to teach
introductory programming. Price, Dong and Lipovac (2017) presented iSnap, a Snap!, that
records the student’s actions and generates contextualized tips.

Similarity detector — is a mechanism designed to evaluate and compare various
activities, primarily aimed at identifying instances of plagiarism or duplication within the
context of education, research, or content creation. This essential mechanism operates by
scrutinizing the content of different files, with a primary focus on textual data, and cross-
referencing it to identify potential matches or similarities. A platform that successfully
makes this functionality is MOSS10.

Studies on similarity detection tools were found in two papers (3.3%). Yan et al.
(2018) presented TMOSS11, an extension of MOSS that allows intermediate analysis of the
accomplishment of a programming task. The development environment has been modified
so that at the time of any compilation the current state of the task is sent to a versioner.

9 Snap! Build Your Own Blocks, available in https://snap.berkeley.edu
10 MOSS, available in https://theory.stanford.edu/ aiken/moss
11 TMOSS, available in https://github.com/yanlisa/tmoss
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Other seven techniques were tested by Gaudencio, Dantas and Guerrero (2014), among
them the Jaccard coefficient, distance between texts and variations of the Terms Frequency
(TF). The authors found that there may be greater concordance, in the evaluation of
similarity, between a teacher and a tool than between two professors.

Tools of other natures were found in seven papers (11.7%). Zavala and Mendoza
(2018) present a semantic-based approach to automatically generate a diversity of contex-
tualized exercises. Heinonen et al. (2014) developed CodeBrowser12, a tool for analyzing
snapshots of source code.

2.3 Final Remarks

In a limited scope of five years of single-event publications, we find a large number
of publications related to teaching programming. Most of them were directed to the
CS1 course, using in 41.3% of cases the Java programming language. Probably, this
demand is the answer to the difficulties faced by the novices in their first contact with
the programming. The choice of Java language seems to be tied to the industry demand.
However, we note that Python has also been a widely used programming language as it
was present in 39.1% of CS1 publications. We recommend special attention in this initial
phase, especially in the first weeks of the course. Students motivated from the beginning,
are more able to follow the pace of classes and willingness to seek help when needed. In
addition, we emphasize the importance in developing other didactic mechanisms to recover
those students subject to disapproval and withdrawal. Few publications addressed the
teaching of CS2, which may be a concern. The most widely used programming language is
Java, which is present in 34.8% of CS2 publications. The course of data structures carries
complex and abstract concepts that require prior knowledge and close attention.

It seems that the way to promote student engagement has been to alter teaching
strategies. In programming education, 63.3% of the publications presented pedagogical
strategies in the classroom. Active teaching methodologies are increasingly being applied
at different levels of education. Among the publications that involve pedagogical strategies,
78.1% are related to CS1 teaching and only 34.4% with CS2.

The teaching-learning process is still very laborious for teachers, from the prepa-
ration of good materials to the correction of large volumes of exercises. Among the
publications involving support tools, 78.6% are related to the teaching of CS1. This must
happen, mainly, by the large scale of students registered in introductory programming
courses. Given the large number of students enrolled in introductory programming courses,
the improvement of existing tools and the development of new ones are important to

12 CodeBrowser, available in https://github.com/codebrowser/web-client
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improve the teaching and learning of CS1 and CS2.

The next chapter presents a detailed background on unsupervised learning tech-
niques, with a specific focus on clustering algorithms. These algorithms constitute a pivotal
component of our research, as they hold the potential to significantly enhance the landscape
of programming education and streamline the process of knowledge discovery.
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Chapter 3

DATA CLUSTERING ANALYSIS

This chapter presents the main concepts of unsupervised machine learning tech-
niques focusing on data clustering approaches. Machine learning is the field of study that,
from a large volume of data, gives computers the ability to learn a pattern without being
programmed (HARRINGTON, 2012). There are two main approaches to machine learning.
In supervised learning, each object comprises a set of features and a label that identifies
the object’s class. On the other hand, in unsupervised learning, only the input data is
presented for the algorithm to discover the outputs. This means that the dataset has no
previously known label information (ZHU; GOLDBERG, 2022).

In this doctoral thesis, we are particularly interested in unsupervised learning. This
task focuses on exploratory analysis and is used to discover new patterns in the data. In
this case, clustering algorithms are the most common. They aim to organize the data
groups according to the distance between the objects. A practical example of applying
a clustering algorithm is the discovery of companies whose characteristics diversify an
investment portfolio on the stock exchange (PAI; MICHEL, 2009). Unsupervised machine
learning techniques can be very useful for the exploratory analysis of textual objects, such
as source code files.

3.1 Distance Measures between Objects

Clustering algorithms need a measure to calculate the distance between two objects
that can be classified as similarity or dissimilarity measures (ROKACH; MAIMON, 2005).
The first defines the degree of similarity; the higher the result, the more similar the objects
are. The second is used to check the difference; the higher the result, the less similar the
objects are. A brief description of the main measures will be presented in this section,
where the distance between two numerical vectors u and v is calculated.
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• Manhattan distance (or City Block) is used to calculate the distance it would take
to get from one point to another within a city (SINWAR; KAUSHIK, 2014). The
distance between two points is the sum of the absolute differences between a pair of
objects’ coordinates. In Equation 3.1, manhattan is the distance between u and v in
an n-dimensional vector space, and i are the coordinates to be compared.

manhattan(−→u , −→v ) =
n∑

i=1
|ui − vi| (3.1)

• Euclidean distance is one of the most common measures to calculate the distance
between two multidimensional space points (SINWAR; KAUSHIK, 2014). Once the
coordinates of two points in the Cartesian plane are known, it is possible to use
the Pythagorean theorem to calculate their distance. The calculation is defined as
the sum of the square root of the difference between two objects’ coordinates. In
Equation 3.2, euclidean is the distance between u and v in an n-dimensional vector
space, and i are the coordinates to be compared.

euclidean(−→u , −→v ) =
(

n∑
i=1

(ui − vi)2
)1/2

(3.2)

• Cosine distance is often used to determine the similarity between two text analysis
documents (SAHU; MOHAN, 2014). Each word in the document corresponds to
a dimension in a multidimensional space. The similarity of Cosine verifies the
orientation between two vectors through its angle. Two vectors with the same
orientation have a cosine similarity of 1 and two vectors oriented at 90 degrees have
a similarity of 0. That is, the smaller the angle, the greater the correspondence
between the vectors. In Equation 3.3, cosine is the distance between u and v in an
n-dimensional vector space, and i are the coordinates to be compared.

cosine(−→u , −→v ) =
∑n

i=1 uivi√∑n
i=1 u2

i

√∑n
i=1 v2

i

(3.3)

• Bray-Curtis distance (or Sorensen) is a measure of dissimilarity commonly used
in the study of environmental sciences (MICHIE, 1982). The calculation involves
the absolute difference divided by the sum of the two samples. In Equation 3.4,
braycurtis is the distance between u and v in an n-dimensional vector space, and i
are the coordinates to be compared. If all coordinates are positive, their value will
be between 0 and 1.

braycurtis(−→u , −→v ) =
∑n

i=1 |ui − vi|∑n
i=1 (ui + vi)

(3.4)

• Chebyshev distance (or Maximum Value distance) is often used in cases where a
high execution speed is required in the calculation (SOUZA; CARVALHO, 2004). It
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calculates the absolute magnitude of the differences between coordinates between
two objects. In Equation 3.5, chebyshev is the distance between the two objects u
and v in an n-dimensional vector space, and i are the coordinates to be compared.

chebyshev(−→u , −→v ) = maxi |ui − vi| (3.5)

• Canberra distance was proposed in Lance and Williams (1967) and is often used to
calculate the distance between two objects. It is similar to Manhattan distance, but
the absolute difference between the two objects’ variables is divided by the sum of
the values of the absolute variables before the sum (BOUGUETTAYA et al., 2015).
In Equation 3.6, canberra is the distance between the two objects u and v in an
n-dimensional vector space, and i are the coordinates to be compared. Each fraction
term has a value between 0 and 1, but the Canberra distance is not between 0 and 1.

canberra(−→u , −→v ) =
n∑

i=1

|ui − vi|
|ui| + |vi|

(3.6)

3.2 Types of Clustering Algorithms

Data clustering analysis consists of an exploratory data analysis, in which a
set of clusters share common characteristics (HARRINGTON, 2012). Each cluster has
an indefinite number of objects that are assembled according to their similarity. The
constituted clusters must obey a division in which the cluster’s objects must be as similar
as possible. Regardless, the distinct clusters must have a high dissimilarity between their
objects (JAIN, 2010). There are two main categories of data clustering algorithms, which
are the partitive and hierarchical algorithms.

3.2.1 Partitive Clustering

The partitioning clustering algorithms aim to discover exclusive clusters present
in the data from a set of initial seeds (AGGARWAL; REDDY, 2014). These seeds are
the central points of each cluster and are called centroids. The number of centroids is
defined before executing the algorithm, and its coordinates are configured randomly. The
centroid is calculated by averaging the values of the objects contained in each cluster and
is improved iteratively to become more representative of the clusters present in the data.
Then, a specific purpose function is optimized, and the quality of partitions is improved
iteratively.

The K-means algorithm is the most popular (MACQUEEN et al., 1967; LLOYD,
1982; JAIN, 2010), and its pseudocode is presented in Algorithm 1. The only parameters
required are the dataset (D) and the number of clusters (k) chosen arbitrarily by the user.
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Then, each object in the dataset is assigned to a cluster. The assignment takes effect when
finding the cluster closest to the selected object. The algorithm uses a function to calculate
the error, which is the distance from the cluster centroid to the selected object. Finally,
the centroids are updated according to the average value of all objects in the cluster in
question. This process will be repeated until the objects stop changing clusters or a given
number of iterations is run.

Algorithm 1: K-means
Input: dataset D ∈ R and the value for k
Output: Partitive clustering D in k groups

1 select k points as the initial centroids;
2 begin
3 while the centroids change do
4 form k clusters by assigning all points to the closest centroid;
5 recompute the centroid of each cluster;
6 end
7 end

The function used to calculate the proximity of centroids is called the Sum of
Squared Errors (SSE) (XU; WUNSCH, 2008). This function is also used to calculate
the quality of the partitive clustering. SSE is defined as the sum of the squared distance
between the centroid and each cluster object. The error is the distance to the nearest cluster
for each object (ROKACH; MAIMON, 2005). Given a dataset D = {x1, x2, x3, ..., xn},
where n is the total number of objects, clustering is formed from C = {C1, C2, C3, ..., Cn}.
In Equation 3.7, the sum of cluster C ’s square errors is calculated, where d is the distance
measure, and ci is the centroid of cluster Ci.

SSE(C) =
K∑

i=1

∑
x∈Ci

d(x, ci)2 (3.7)

where ci is calculated as:

ci = 1
|Ci|

∑
x∈Ci

x (3.8)

The resulting clusters for an illustration of the application of K-means are shown
in Figure 4. In Figure 4a, the input data are presented on a 2-dimensional dataset with
three clusters. In Figure 4b, three random seed points were defined as centroid, and the
objects were assigned to their respective clusters. In Figure 4c and 4d, the centroids change
position until similar objects are in the same cluster. In Figure 4e, the final clustering
obtained by the K-means algorithm is presented.
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Figure 4 – An example of k-means clustering algorithm

Source: Jain (2010)

This type of algorithm does not work well with outliers in the data and presents
undesirable characteristics when the groups are of different sizes, densities, or have non-
globular shapes (AGGARWAL; REDDY, 2014).

3.2.2 Hierarchical Clustering

While in partitive clustering, the number of clusters needs to be defined in advance,
hierarchical clustering is generally used when the number of clusters is unknown. The
hierarchical clustering corresponds to a set of nested groups organized as a hierarchical tree
that helps to determine the ideal number of clusters. This clustering can occur following
the approach of divisive or agglomerative (MULLNER, 2011).

3.2.2.1 Divisive hierarchical clustering

The divisive hierarchical clustering approach is when the algorithm starts with a
cluster that includes all the objects (EVERITT et al., 2011). This large cluster is then
successively divided into smaller clusters until each cluster contains only one object. This
approach is also called top-down because it divides objects from the root to the tree leaves
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(XU; WUNSCH, 2008). An illustration is shown in Figure 5. The direction of the arrows
indicates the sequence in which iterations occur, and the numbers are the hierarchy level of
the tree. In the divisive approach at level zero, the root cluster contains all objects: {a, b,
c, d, e}. As the tree navigates, the large clusters of objects dissolve into the leaves, where
each object has its cluster. This approach is generally advantageous when it is desired to
identify large cluster structures.

Figure 5 – Representation of the hierarchical tree structure

Source: Adapted from Everitt et al. (2011)

The divisive hierarchical clustering algorithmic representation is presented in
Algorithm 2 (AGGARWAL; REDDY, 2014). The input parameter is an S matrix that
contains the dissimilarity measures for all objects in the dataset. Then, a looping is started
with a cluster containing all objects. At each iteration, the distance measurements between
the clusters are updated, and the algorithm searches for the most distant object to create
a new cluster. The looping stop condition is the complete isolation of objects.

Algorithm 2: Divisive hierarchical clustering
Input: matrix of dissimilarity S ∈ R
Output: Divisive hierarchical clustering S

1 begin
2 Start with the root cluster that consists of all data objects;
3 while all objects are not in different groups do
4 update the distances between the clusters;
5 find the most distant objects;
6 separate into a new cluster;
7 end
8 end
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3.2.2.2 Agglomerative hierarchical clustering

The agglomerative hierarchical clustering approach is when the algorithm starts with
as many clusters as the number of objects (singleton) (EVERITT et al., 2011). Then, the
closest clusters are merged successively until there is a single cluster with all objects. This
approach is also called bottom-up because it brings together objects from leaves to the tree’s
root (XU; WUNSCH, 2008). In the illustration in Figure 5, the agglomerative approach
starts at level zero with five clusters: C1 = {a}, C2 = {b}, C3 = {c}, C4 = {d}, C5 = {e}.
As navigation in the tree occurs, the individual clusters are joined to the root, where only
one cluster contains all objects. In general, this approach is advantageous when small
cluster structures need to be identified.

The algorithmic representation of agglomerative hierarchical clustering is presented
in Algorithm 3 (AGGARWAL; REDDY, 2014). The input parameter is an S matrix that
contains the dissimilarity measures for all objects in the dataset. Then, a looping is started
to place all objects in the same group. At each iteration, the distance measurements
between the clusters are updated, and the algorithm searches for the closest cluster to join
a new cluster.

Algorithm 3: Agglomerative hierarchical clustering
Input: matrix of dissimilarity S ∈ R
Output: Agglomerative hierarchical clustering S

1 begin
2 while all objects are not in the same group do
3 update the distances between the clusters;
4 find the nearest clusters;
5 join in a new cluster;
6 end
7 end

3.2.2.3 Hierarchical clustering graphical representation

The hierarchical clustering methods provide a graphical tree representation of
the results, called a dendrogram diagram. This diagram shows the order and distances
between the groups formed during the clustering (KOREN; HAREL, 2003). Figure 6
presents an example of the tree representation of hierarchical clustering. The dendrogram
nodes represent clusters, and the lengths of the stems represent the distances at which the
clusters are first fused. Level zero represents the tree’s root, where all the data objects to
be grouped are. Subsequent levels are the child nodes that represent the clusters present
in the data subsets. In this sense, it is possible to obtain different clusters for the same
dataset, depending on the level at which the dendrogram is cut (AGGARWAL; REDDY,
2014).
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Figure 6 – An example of representing a hierarchical clustering

Source: Bengfort, Bilbro and Ojeda (2018)

3.2.2.4 Distance measures between hierarchical clusters

The linkage method defines how the distance between the clusters will be measured
(MULLNER, 2011). The three main methods for calculating the proximity between two
clusters are: Single Linkage, Complete Linkage, and Average Linkage. Their behavior is
shown in Figure 7 and will be described in this subsection. Besides, there is a method
defined by an objective function that is based on the quadratic error.

(a)  Minimum (single link)     (b)  Maximum (complete link)       (c)  Mean (average link) 

Figure 7 – Defining proximity between clusters

Source: Adapted from Tan, Steinbach and Kumar (2016)

• Single Linkage or Minimum (Figure 7a) defines the similarity between two clusters as
the shortest distance between any two objects in different clusters (XU; WUNSCH,
2008). This means that the similarity between the clusters is greater than in other
methods. In Figure 8, it is possible to observe that the Single Linkage tends to
produce longer clusters. The result is independent of the normalization of the data.

• Complete Linkage or Maximum (Figure 7b) defines the similarity between two
clusters as the longest distance between any two objects in different clusters (XU;
WUNSCH, 2008). This means that the similarity between the clusters is lower than
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Figure 8 – Clustering representation using Single Linkage

Source: Tan, Steinbach and Kumar (2016)

in other methods. In Figure 9, the Complete Linkage tends to produce more compact
clusters. The result is independent of the normalization of the data.

Figure 9 – Clustering representation using Complete Linkage

Source: Tan, Steinbach and Kumar (2016)

• Average Linkage or Mean (Figure 7c) defines the similarity between two clusters
as the average distance between pairs of objects in one cluster and another (XU;
WUNSCH, 2008). Figure 10 shows an example of clustering using this method. The
result is sensitive to the scale of the data.

Figure 10 – Clustering representation using Average Linkage

Source: Tan, Steinbach and Kumar (2016)
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• Ward link or Ward’s minimum variance defines the similarity between two clusters as
the sum of the pairs of objects’ squared distances in different clusters (XU; WUNSCH,
2008). Figure 11 presents an example of clustering using this method. As a K-means
algorithm, Ward’s method tries to minimize the sum of the square distances from
its cluster centroid points. The result is sensitive to the data scale and tends to
minimize the total variation within the cluster.

Figure 11 – Clustering representation using ward link

Source: Tan, Steinbach and Kumar (2016)

3.3 Model Evaluation

Choices in configuring the clustering approach can generate different clusters for
the same dataset. The reliability of the obtained clusters depends on the validation of the
model. According to Bonner (1964), a universal definition of what a good clustering is
controversial. This evaluation is related to the criteria and requirements of the evaluator.
However, the three main validation strategies recognized in the literature are presented in
this subsection (THEODORIDIS; KOUTROUBAS, 1999).

• The external validation index is used to evaluate an algorithm’s results based on
the structure of the cluster compared to some predefined classification of objects
(HALKIDI; BATISTAKIS; VAZIRGIANNIS, 2001). An example is checking the
correspondence between the labels found in the clustering and the classes’ labels
provided externally. This index reflects the expert’s intuition about the cluster
structure and serves as a criterion to test the cluster’s trend and the dataset (REZAEI,
2016).

• The internal validation index measures the degree of agreement between the cluster
found, and the data set presented in the similarity matrix (HALKIDI; BATISTAKIS;
VAZIRGIANNIS, 2001). This index can be approached from the point of view of
intra-cluster similarity or inter-cluster similarity (REZAEI, 2016). The intra-cluster
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measures the similarity between objects within a cluster; in this case, the compression
between objects is the most important criterion for spherical clusters. The inter-
cluster measures the distance between the clusters; in this case, a cluster is expected
to provide clusters with objects well-separated (LEGÁNY; JUHÁSZ; BABOS, 2006).
In the k-means algorithm, the internal validation index is usually measured using the
sum of the quadratic error (SSE), used as an object of group optimization (ROKACH;
MAIMON, 2005). Regardless, an existing internal validation index for hierarchical
clustering is the Copenetic Coefficient (CARDONA et al., 2013).

• The relative validation index compares two different clusters (HALKIDI; BATIS-
TAKIS; VAZIRGIANNIS, 2001). It is common to use internal and external validation
measures for this validation.

3.4 Final Remarks

In this chapter, we present aspects that involve unsupervised machine learning
that is fundamental for understanding this doctoral thesis. We focused on data clustering
algorithms, such as the partitive and hierarchical algorithms. We describe how each of them
works and provide practical examples. Besides, the main existing measures to calculate
the distance between the objects in the cluster were described. Finally, we present the
means to validate the quality of the formed clusters.

In our research, we strategically utilized the agglomerative hierarchical clustering
algorithm, an approach that prioritizes the creation of clusters characterized by enhanced
granularity. This algorithmic choice was guided by the desire to extract intricate pat-
terns and capture nuanced relationships among data points, ensuring a comprehensive
representation of the underlying dataset.

To establish the proximity between objects within the dataset, we selected the
Euclidean distance as our distance measure. This metric has proven to be a robust and
widely adopted method for calculating the dissimilarity or similarity between vectors in
multidimensional space. By employing the Euclidean distance, we sought to precisely cap-
ture the spatial relationships between data points, fostering a comprehensive understanding
of their similarities and differences.

Furthermore, to effectively merge and delineate the boundaries between clusters,
we employed the Average Linkage method. This approach evaluates the distances between
clusters based on the average distance between their constituent data points, offering
a balanced and cohesive representation of cluster interrelatedness. By employing the
Average Linkage method, we aimed to yield clusters that are coherent and representative
of the underlying data structure, facilitating insightful interpretations and meaningful
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explorations.

The next chapter explores the formation of the dataset provided as an input to
these clustering algorithms. We present the fundamental concepts and the different ways
to extract and create data features from source code.
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Chapter 4

FEATURE ENGINEERING FOR SOURCE CODE ANALYSIS

This chapter presents the main concepts and potential features for source code
analysis. Choosing which features to use is a critical step in the success of machine learning
techniques. The ability to predict or explain a model’s results is closely linked to the
defined set of features. A set of features are attributes used to describe and distinguish
objects (ANDERSON et al., 2013). Defining a feature set can seem simple, although it
is performed on an extensive dataset – generally, the more features, the better (LEVY,
2010).

Feature engineering is a crucial aspect of data analysis and machine learning,
with the primary objective of augmenting the set of features to gain deeper insights into
the interactions among existing features, as emphasized by Heaton (2016). This process
involves introducing new features that are derived from the original ones, leading to a more
comprehensive representation of the data. However, it should be noted that this endeavor
often necessitates a series of iterative tests and adjustments to identify which characteristics
hold significance in representing the raw data, as highlighted by Bengio, Courville and
Vincent (2013). These repeated evaluations are crucial for refining the feature set and
ensuring that it encapsulates the most relevant information, ultimately contributing to the
effectiveness and accuracy of the subsequent data analysis or machine learning tasks. By
skillfully engineering features, researchers can unleash the full potential of the underlying
data, leading to improved model performance and enhanced decision-making processes.
As the field of machine learning continues to advance, feature engineering remains a
fundamental and indispensable component for unlocking valuable insights from complex
datasets.
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4.1 Fundamentals of Source Code Analysis

A feature can exhibit various data types, with the primary ones being categorical,
ordinal, and numeric, as outlined by Dong and Liu (2018). Categorical features are discrete
values, such as eye color, covering the following domain: {black, blue, green, brown}.
Ordinal features are values that follow a hierarchical order, for example, the position in a
company covering the following domain: {intern, assistant, supervisor, manager, boss}.
Numerical features are numerical, quantitative, or continuous values, such as the height
covering the following domain: {1.60, 1.70, 1.80, 1.90}.

4.1.1 Information Retrieval

Information Retrieval (IR) is a critical area within the field of computing, aimed
at verifying and extracting pertinent information from a given set of data from the user’s
perspective, as proposed by Mooers (1951). The process of information retrieval involves
navigating through the dataset, seeking out relevant and valuable data that aligns with
the user’s specific needs and requirements. This entails employing sophisticated algorithms
and techniques to efficiently identify and extract the most relevant information. The
dataset used for information retrieval is called a corpus. In turn, a corpus consists of a
set of objects, called documents (BENGFORT; BILBRO; OJEDA, 2018). For example,
documents can be phrases, texts, people, music, or source codes.

In preprocessing a corpus, a common practice is to perform the tokenization of
the text. This is the process of decomposing the document into each term that composes
it – each word is transformed into a token (BENGFORT; BILBRO; OJEDA, 2018). The
most used delimiters are white spaces, line breaks, or tabs. Then, cleaning the corpus is
recommended. It is part of this procedure to remove words irrelevant to the application’s
context, called stopwords. For the textual context, the list of stopwords usually consists
of articles, prepositions, adverbs, numbers, pronouns, and punctuation. For example, in
English, this list could contain13: I, me, my, myself, we. This list could contain braces,
semicolons, parentheses, blanks, and line breaks for programming languages. However, it
is important to address each situation in the particularity of its application.

This corpus is later transformed into a Bag-of-Words (BoW). The BoW represents
each document in a numeric vector (ZHENG; CASARI, 2018). This vector’s words do not
respect any hierarchy of sentence organizational structure or synonyms. The BoW can be
binary (whether or not the word exists in the document) or store the term count. Each
position in the vector references a term in the corpus vocabulary. The vocabulary is the set
13 The Python NLTK library has a standard list of stopwords for both English and Brazilian Portuguese.

Available in: http://www.nltk.org/howto/portuguese_en.html
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of all possible words present in the corpus. Every time one of these terms is found in the
document, its corresponding position in the vector increases. The purpose of this vector is
to show the frequency of terms in the document. This application commonly produces
sparse vectors, when many positions have values equal to zero (DONG; LIU, 2018).

To effectively navigate through the corpus and extract the desired information,
information retrieval systems rely on a combination of search algorithms, indexing tech-
niques, and relevance ranking methodologies. These components work in tandem to ensure
the efficient and accurate retrieval of information that aligns with the user’s query.

4.1.2 Term Frequency Normalization

The frequency with which a term occurs in a document is used to check the
term’s representativeness for the learning content. However, a term appearing in several
documents becomes less representative of the data analysis task. Therefore, the Term
Frequency – Inverse Document Frequency (TFIDF) is used to measure the importance of
a term in a document present in a collection of documents (corpus) (JONES, 1972).

• Frequency of Terms (TF) is the number of times each term occurs in a corpus
document. The result is given by comparing the total number of terms in the same
document. The TF calculation is given by Equation 4.1; where ni,j is the frequency
of a term i in a document j.

tfi,j = ni,j∑
k ni,j

(4.1)

• Inverse Document Frequency (IDF) is the weight of each term in the collection of
documents. Terms that rarely occur in the corpus score high on the IDF. The IDF
calculation is given by Equation 4.2; where N is the total number of documents in
the corpus and dft is the number of documents containing the term t.

idf(w) = log
(

N

dft

)
(4.2)

• Term Frequency – Inverse Document Frequency (TFIDF) is a statistical measure
that indicates the importance of a term within the corpus. The TFIDF value of
a term increases proportionally as the number of term occurrences in a document
increases. However, this value is relative to the number of documents that this term
appears. The TFIDF of a term in a corpus document is the previous equation’s
product (4.1 and 4.2). The TFIDF (w) calculation is given by Equation 4.3; where
tf(i,j) is the number of occurrences of a term i in a document j, df(i) is the number
of documents containing i, and N is the total number of documents.



60 Chapter 4. FEATURE ENGINEERING FOR SOURCE CODE ANALYSIS

wi,j = tfi,j × log
(

N

dfi

)
(4.3)

4.1.3 Regular Expressions

One way to retrieve information is to use regular expressions. Regular expressions
are a formal language for specifying strings and are the simplest ways to process text.
They define standards that a text must match (GOYVAERTS; LEVITHAN, 2012). A
practical application is to verify that the user’s given value is a valid email address. Other
applications include searching for a word in a text, extracting specific parts (such as a
telephone or postal code), replacing words or parts of the text, and dividing a text into
smaller parts using delimiters.

Regular expressions are made up of two categories: literals and special characters
(LÓPEZ; ROMERO, 2014). Literals are the simplest form of pattern matching in regular
expressions. They are common letters (a to z) or numbers (0 to 9) and will succeed whenever
that literal is found. The special characters are known as metacharacters. Metacharacters
are symbols with a specific function that can change depending on the context. They can
be combined to form more complex constructions. Some examples of metacharacters are:
backslash, dollar sign, plus sign, opening and closing parenthesis, dot, and question mark.

4.2 Software Quality Metrics

In this section, we introduce some software quality metrics. These metrics are
related to the software’s size, complexity, coupling, and cohesion. Whenever necessary, we
will use the source code example in Figure 12 to illustrate. The purpose of this source code
is to calculate a student’s final average. For this, one main function and three auxiliary
functions were created. Three values are received as an argument in the main function,
representing the student’s three grades. Then, the sum of the three grades is performed
using a specific function. Then, the previous operation results are used as a parameter to
access the function that calculates the grades’ average. Finally, the average of the three
grades is used to verify whether or not the student has reached the minimum final grade
established. The variables used in the source code are of the primitive data type double,
which is more suitable for operations as values belonging to the set of real numbers. Also,
two libraries were used, and two constants were defined.
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1 # include <stdio .h>
2 # include <stdlib .h>
3
4 # define MEAN 7.0
5 # define NUM_GRADES 3
6
7 // Calculates the sum of three grades
8 double calc_sum ( double gd1 , double gd2 , double gd3){
9 return (gd1 + gd2 + gd3);

10 }
11
12 // Calculates the sum of three grades
13 double calc_average ( double sum_grades ){
14 return ( sum_grades / NUM_GRADES );
15 }
16
17 // Checks wheter or not a student has reached the average
18 double calc_result ( double average_grades ){
19 if( average_grades >= MEAN){
20 return 1;
21 }else{
22 return 0;
23 }
24 }
25
26 // Main function of calculating the average of three grades
27 int main(int argc , char *argv []){
28 double sum , average ;
29
30 sum = calc_sum (atof(argv [1]) , atof(argv [2]) , atof(argv

[3]));
31 average = calc_average (sum);
32 printf ("%.2f", calc_result ( average ));
33 return 0;
34 }

Figure 12 – Source code example that averages three grades

Source: The author
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4.2.1 Size Metrics

Size metrics were the first to be created and are generally used to calculate other
metrics (ANDERSON, 2004). They are associated with the size of the source code. Usually,
these metrics with higher values represent more complex software (OLIVEIRA et al., 2008).
The biggest impact is on the computer’s memory storage and processing consumption. Most
size metrics are commonly used in source codes written in structured and object-oriented
languages.

• The Lines of Code (LOC) is the most common metric (ANDERSON, 2004). LOC
assesses the complexity of the software through the total volume of lines in the
source code. This count includes only the lines of instructions that the processor will
execute. That is, blank lines or comment lines for source code are disregarded. In
the case of a real programming project involving several classes and files, all lines
are counted. For example, the line count for the source code in Figure 12 is LOC =
a, such that a is equal to 24.

• The Lines of Code by Method (MLOC) is an alternative to LOC (OLIVEIRA et al.,
2008). In this metric, the counting scope is restricted to the source code block of the
method. Only the lines of instructions that the processor will execute are counted.
Following the common pattern, blank lines and comments are disregarded. MLOC
is often used in object-oriented languages (OLIVEIRA et al., 2008), but it can be
adapted to structured languages’ function blocks. For example, the line count for
the function calc_result() in Figure 12 is MLOC = a, such that a is equal to 5.

Results with high LOC and MLOC metrics values can reduce the source code’s
readability and cause more memory filling and processing consumption. Both metrics
represent a simple and quick way to measure software. The fact that they are independent
of the programming language also makes them flexible. However, the main problems are
inherent to its practicality (BHATIA; MALHOTRA, 2014). First, the gross count of lines of
code neglects the complexity of programming tied to each line. Second, each programming
structure’s meaning is not considered (conditionals, looping, branches, libraries). The more
advanced language features are used, the tendency is to lower the LOC. This situation
can lead to a misunderstanding from a programming point of view. Finally, the best
coding solution for the same software can vary, in the number of lines, between different
programmers.

Still, other metrics are related to the gross count applied to object-oriented lan-
guages, which can be adapted for structured languages (OLIVEIRA et al., 2008).
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• The Number of Attributes (NOA) counts the total number of attributes within a
class. This metric is equivalent to a structured language program’s total number of
variables. In structured language, NOA should be counted at the level of the global
and local variables. For example, the attributes count for the function calc_sum() in
Figure 12 is NOA = a, such that a is equal to 3.

• The Number of Methods (NOM) counts the total number of class methods. This
metric is equivalent to a structured language program’s total number of functions.
For example, the functions count for the source code in Figure 12 is NOM = a, such
that a is equal to 4.

• The Number of Parameters (NOP) counts the total number of parameters defined
in the class’s method signature. This metric is equivalent to the total number
of parameters defined in the signature of functions within a structured language
program. For example, the parameters count for the function calc_sum() in Figure
12 is NOP = a, such that a is equal to 3.

• The Number of Static Methods (NOSM) counts the total number of static methods
defined within a class. This metric is equivalent to using libraries declared in the
header of a program in a structured language. For example, the static functions
count for the source code in Figure 12 is NOSM = a, such that a is equal to 2.
The declared libraries were stdio.h to allow textual output, and stdlib.h to enable
converting the received arguments in character format to the floating-point format.

• The Number of Static Attributes (NOSA) counts the total number of static attributes
defined within a class. This metric is equivalent to the total number of constants
declared in a program’s header or library constants used in a structured language.
For example, the static attributes count for the source code in Figure 12 is NOSA =
a, such that a is equal to 2.

Global variables tend to cause more memory filling. On the other hand, high
values for the local and NOP variables characterize a more local source code with strong
indications that the memory space will be emptied sooner. However, a very high number
of parameters can indicate that the code block needs to be divided into sub-blocks. In
general, high values reduce the source code’s readability and increase the complexity of
the software.

Other metrics that require specific characteristics of object-oriented languages were
presented in (OLIVEIRA et al., 2008). Therefore, they cannot be adapted for structured
languages.

• The Number of Classes (NOC) counts the total number of classes defined in the
software.
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• The Number of Packages (NOPK) counts the total number of packages defined in
the software.

• The Number of Interfaces (NOI) counts the total number of purely abstract classes
defined in the software.

These metrics generally refer to the modularity and flexibility of the software.
Results with high values for these metrics provide signals of a more organized, reusable,
and easy-to-main source code. However, they make the software more complex.

4.2.2 Complexity Metrics

Complexity metrics are responsible for verifying the difficulty of understanding or
expressing a source code. They are usually related to the flow of execution, granularity, or
the level of nesting of the source code. Flow structures are powerful tools that allow the
development of advanced logical solutions that are effectively and easily implementable.

4.2.2.1 Cyclomatic Complexity

The Cyclomatic Complexity (CC) software metric is the most common and was
initially proposed by McCabe (1976). This metric can be applied in structured and
object-oriented languages (ANDERSON, 2004; OLIVEIRA et al., 2008). CC measures
how many tests need to be performed to verify all possible flow the code can have
(MUNSON; KHOSHGOFTAAR, 1992). Conditional structures, repetition structures, and
logical operators represent these different flows. The higher the values obtained with this
metric, the more complex the software is. In order to compute the CC, it is necessary to
use a Control Flow Chart (CFC). A CFC visualizes sequential procedural instructions
(SARWAR; SHAHZAD; AHMAD, 2013). The mathematical representation of CC is
presented in Equation 4.4. Its result is calculated from a CFC, where E is the number of
edges and N is the number of nodes in graph G.

V (G) = E − N + 2 (4.4)

To illustrate the CC, we present an example using the calc_result() function of the
source code shown in Figure 12. We create the CFC, as shown in Figure 13. The structure
formed was a graph with five edges and five nodes.

1. Each node in the graph corresponds to a line of the source code numbered in red.
Thus, the total number of nodes E is equal to 5.
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2. The edges of the graph represent the flow possibilities of the source code. There is
only one path from Line 1 to Line 2, but in Line 2, there is a conditional that can
lead to Line 3 or Line 4. Finally, any conditionals lead to the end of the algorithm
in Line 5. In the example shown, the total number of edges N is equal to 5.

3. Therefore, the result of the CC calculation is equal to 2 (V (G) = 5 − 5 + 2).
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Figure 13 – Control Flow Chart for calc_result() function

Source: The author

Anderson (2004) defined a scale to classify the results of CC about the assessment
of risks associated with software development. Table 4 shows this scale. Values between 01
and 10 represent simpler and less complex source code structures. Values between 11 and
20 represent source code structures with moderate complexity. Values between 21 and 50
represent highly complex source code structures. Finally, values above 50 represent source
code structures with very high complexity.

Table 4 – Cyclomic Complexity Scale defined in Anderson (2004)

Cyclomatic Complexity (CC) Risk Evaluation
1-10 A simple function, without much risk
11-20 More complex, moderate risk
21-50 Complex, high risk function
greater than 50 Untestable program (very high risk)

4.2.2.2 Weighted Methods per Class

The Weighted Methods per Class (WMC) is a variation of CC. WMC is the sum
of the Cyclomatic Complexity for all class methods (OLIVEIRA et al., 2008). High-value
results for this metric make the source code more complex.
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To illustrate the WMC, we present an example using the source code shown in
Figure 12. We created the CFC for each of the functions. The graph of the function
calc_result() has already been presented in Figure 13. The other three functions are
represented in Figure 14. Since there are no conditionals or loops, the flow is simple. Then,
we present the CC calculation for each function and the WMC result.

1. Result for the function calc_result() is equal to 2 (V (G) = 5 − 5 + 2)

2. Result for the function calc_sum() is equal to 1 (V (G) = 2 − 3 + 2)

3. Result for the function calc_average() is equal to 1 (V (G) = 2 − 3 + 2)

4. Result for the function main is equal to 1 (V (G) = 6 − 7 + 2)

5. The WMC result, which is the sum of all cc results, is equal to 5

Table 5 presents the risk scale associated with software development defined in
(OLAGUE; ETZKORN; COX, 2006).
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Figure 14 – Control Flow Chart for the other functions of the source code

Source: The author



4.2. Software Quality Metrics 67

Table 5 – Weighted Methods per Class Scale

Weighted Methods per Class (WMC) Risk Evaluation
1-20 Good value of class complexity
20-100 Moderately high value of class complexity
greater than 100 High class complexity, cause for investigation

4.2.2.3 Nested Block Depth

A limitation of CC-based metrics is the non-differentiation between the breadth
and depth of the structures’ nesting. A high level of breadth or depth of these structures
can result in unwanted software in terms of quality Alrasheed and Melton (2014). Nesting
amplitude is the number of nested structures at the same level. In Figure 15(a), a tree
with two nodes is presented, where the amplitude is equal to 2, and the depth is equal
to 1. Nesting depth is the number of structures chained together at different levels (one
within the other). In Figure 15(b), a tree with two nodes is shown, where the amplitude is
equal to 1, and the depth is equal to 2.
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Figure 15 – Example of a nesting tree

Source: The author

The depth of nesting is an aspect that attributes more complexity than the breadth
of nesting. Very high levels of depth can result in incomprehensible source code and
extremely complex software. Therefore, a specific metric is defined in this situation.

Nested Block Depth (NBD) calculates the depth of nested code blocks. This metric’s
high-value results lead to worse readability and more complex solutions (OLIVEIRA et
al., 2008). For example, the nested block’s depth for the function calc_result() in Figure
12 is NBD = a, such that a is equal to 2.
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4.2.2.4 Halstead Complexity

The Halstead Complexity (HC) software metric was initially proposed in Halstead
(1977) and can be applied in both structured and object-oriented languages. HC is calculated
from the count of operators and operands present in the scope of the source code. The
operators are the reserved words of the programming language, as well as the arithmetic,
logical and relational operators. On the other hand, operands are the logical units to be
operated, for example, explicitly defined variables, constants, and numerical values. This
metric makes it possible to measure the approximate size of the software execution in bits
(NURMINEN, 2003). In Equation 4.5, halstead is the result of Halstead Complexity.

halstead(volume) = OPs_occur ∗ log2 OPs_unique (4.5)

Where OPs_occur is the sum of the total number of occurrences of the operands
(opd_occur) and the total number of occurrences of the operators (opt_occur); and,
OPs_unique is the sum between the unique operands (opd_unique) and the unique
operators (opt_unique). In order to illustrate the HC, we present an example using the
calc_result() function of the source code shown in Figure 12.

1. To calculate the number of distinct operators (opt_unique = 10 )

• set of operators found: double, if, else, return, {, }, (, ), >=, ;

2. To calculate the number of distinct operands (opd_unique = 4 )

• set of operands found: average_grades, MEAN, 0, 1

3. To calculate the total number of occurrences of the operators (opt_occur = 17 )

4. To calculate the total number of occurrences of the operands (opd_occur = 5 )

5. To calculate the sum between different operators and operands (OPs_unique = 14 )

6. To calculate the sum between the total of operators and operands (OPs_occur =
22 )

7. To calculate complexity (halstead(volume) = 83.76 )

4.2.3 Coupling Metrics

In the context of software metrics, the coupling is the level of dependency between
the source code modules. This can be considered the number of source code blocks that
access the same part of the global data in a structured language. Object-oriented languages
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divide the coupling between afferent and efferent (MARTIN, 1995). Afferent coupling is
when the classes of other packages depend on the classes of a given package. Efferent
coupling occurs when classes in one package depend on classes in other packages.

Another coupling measure refers to the number of calls to the functions (ANDER-
SON, 2004). The name is fan-in for the number of calls made to a given function. The
number of times a specific function calls other functions is called a fan-out. When software
is tightly coupled, its maintenance and reuse become more complex.

4.2.4 Cohesion Metrics

Cohesion metrics are used to verify the degree of relationship between blocks of
code (ANDERSON, 2004). High cohesion means that the code blocks perform only one
task and do not share their variables with other blocks (HENDERSON-SELLERS, 1996).
A function is cohesive in the structured language if its elements are designed to perform a
single specific task. If the function is being used to solve many tasks, it may be necessary
to divide it. Modularization promotes reusability and makes the source code less complex,
easier to understand, and test (YOURDON; CONSTANTINE, 1979).

Weiser (1984) developed the first metrics to slice the complexity of the source
code. These metrics were subsequently improved by Ott and Thuss (1993). The set of
metrics that were defined to verify the cohesion of the source code are: coverage, minimum
coverage, maximum coverage, overlap, and tightness. In Figure 16, these metrics are
described mathematically. Such equations were defined by Green et al. (2009), and the
meaning of the symbols is presented as follows:

• M is the function.

• VM are all the variables in the function.

• V0 are the output variables in the function.

• i is one of the output variables.

• SLi is a slice on output variable i.

• SLint is the intersection of slices for each of the output variables.

4.3 Best Coding Practices

The development of source code goes beyond compilation according to its purpose
of operating the software. There are countless ways to implement a source code solution,
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Figure 16 – Mathematical description of the cohesion metrics set

Source: Green et al. (2009)

which is done according to each person’s programming logic (GAUDENCIO; DANTAS;
GUERRERO, 2014). While all solutions may be correct, some may be more complex
than others. Consequently, the coding characteristics will be different, and the quality
of the software will also change (LEFFINGWELL, 2007). Therefore, it is interesting to
establish a minimum of rules that are called best coding practices. This set of rules can
help decrease the software’s complexity and improve its readability.

Some practices already consolidated include the proper source code indentation,
intuitive nomenclature of variables and functions, and using comments, among others.
Fowler (2018) created a catalog of refactorings listing the main coding best practices. Most
of these practices apply to both structured and object-oriented languages, some of which
will be presented in this section.

4.3.1 Refactoring Functions and Variables

Although it is related to fundamental knowledge, functions and variables are items
that structure the source code and occur all the time in development. Therefore, writing
these blocks of source code is important in the most readable way possible.

• Extract Function is one of the most common refactorings. It should check the purpose
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of a code fragment and then move it to its own function (LI, 2011; LIEBIG et al.,
2015). Some practical experience tips are: the functions must not be larger than the
monitor screen. Any code used more than once must be placed in a function, but
the code used only once must remain in the program’s body (FOWLER, 2018). In
general, roles should be large enough to perform a single task. Anything more than
that, it starts to smell. There was a time when it was concerned with building small
functions to save computational costs. Currently, this processing is negligible for the
computer. Now the concern is with the readability and reuse of the source code.

• Inline Function is the inverse of the Extract Function. When the function’s body is
as simple as its name, then that code snippet can become part of the main function
again (LIEBIG et al., 2015). The excess of functions that perform very simple tasks
can confuse those who read the source code (FOWLER, 2018). In this case, the ideal
is to combine all these small functions and then think about new refactoring of the
Extract Function. It is important to find all references to the function and replace
them with the function body to do this refactoring.

Another aspect related to the functions is nomenclature. These names need to
add the intention with which the role was created. They should be named according to
"what it does" and not "how it does it" (FOWLER, 2018). If it cannot think of a good
name, maybe that code snippet should not become a function. The better the names, the
more self-documented the code will be. Many source code comments, written to explain a
function, can be condensed into the function name. The source code calls and instructions
can be so well written that writing comments are less and less necessary.

• Change Function Declaration is mainly concerned with writing the function signature
(FOWLER, 2018). This signature must have a name consistent with the function’s
task and must have good parameter names. The parameters determine how a function
can fit the rest of the code. This should happen so that it is possible to understand the
function’s implementation only when reading its signature. Depending on the context,
it may be more interesting to receive data primitive to the function parameters’ data
structure. In addition to allowing a function to be used more often, this practice
allows for reducing coupling.

A code fragment cut from the main function to an auxiliary function must be
independent of its variables. Therefore, it is important to pay special attention to the
variables. All local variables within the scope of the main function, that are used in the
auxiliary function must be passed by parameter.

• Extract Variable is used for the complexity inherent in lines with many self-contained
tasks (REIMANN et al., 2012). In this sense, creating local variables can simplify a
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given line of code’s complexity. This makes the code more manageable and makes it
easier to understand what is going on. Besides, these variables also favor debugging
the source code. When the function’s logic is broken into variables with good
nomenclature, the code becomes more self-explanatory, and comments become
unnecessary (FOWLER, 2018).

• Inline Variable is the inverse of the Extract Variable. When the attribution value is
free of side effects, it is a sign that the new variable may not be playing a significant
role in understanding the code (FOWLER, 2018). Instead, this variable may confuse
the programmer and take up unnecessary memory space. When eliminating the
declaration of a variable, it is important to refactor the code by assigning the variable
in all references to the variable (REIMANN et al., 2012).

4.3.2 Simplifying Conditional Logic

Conditional structures are the first to bring more complexity to the source code.
Therefore, it the importance to apply techniques to simplify these structures.

• Decompose Conditional is the transformation of the entire logical content body
of the conditional into functions (PRETE et al., 2010). A function is created for
each part of the conditional structure (if-elif-else) using the Extraction Function
rule(FOWLER, 2018). Each piece of code will receive a function name that shows the
intention. This decomposition procedure gives clarity to a code that was previously
complex to read.

• Consolidate Conditional Expression is the use of logical operators (and, or) to
aggregate conditionals with the same resulting action (COUNSELL et al., 2013;
FOWLER, 2018). For example, in some cases, a sequence of independent ifs conditions
are tested with the same resulting value. Then, it can add all these conditionals
using the "or" operator. Another case would be to have two nested conditionals, so
using the "and" operator would be appropriate.

• Replace Nested Conditional with Guard Clauses is a way to make a block of
conditional structures more emphatic about its purpose (COUNSELL et al., 2013).
For example, all clauses appear equally important in a structure that uses if-then-else.
In cases where all clauses are equally likely, this method is appropriate. However,
guard clauses would be more elucidating if the else clause were less important. The
guard clause indicates the core of the conditional structure, and if it is triggered then,
it must perform its task and leave the function (FOWLER, 2018). The implementation
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rule is that a guard clause replaces the outermost clause (else). One observation is
that if the custody clauses return the same value, it will be possible to implement
the practice of Consolidate Conditional Expression.

4.3.3 Refactoring Parameters

• Parameterize Function is joining two functions that perform similar tasks (FOWLER,
2018). This will make it possible to increase the function’s usefulness, as it can be
applied in different locations. In some cases, it is necessary to adapt the parameters
received to make the function more generic.

• Remove Flag Control means removing an argument that the function uses to indicate
which logic should be executed. (FOWLER, 2018). This technique makes use of
conditional structures to test the values. Boolean flags can be even more confusing –
they do not convey meaning to the reader (COUNSELL et al., 2013). Removing the
signaling arguments makes the code clearer and better prepares the code for tool
analysis. Therefore, it is indicated that an explicit function replaces each flag value.
This can be done using the practice of Decompose Conditional. For all times that
the literal value of the flag was used, the function call is performed.

4.4 Final Remarks

In this chapter, we present the aspects that involve feature engineering, which is
fundamental for understanding this doctoral thesis. We summarized the basic concepts
related to Information Retrieval, and the operation of regular expressions. We also did
a comprehensive review of the different software quality metrics applied in structured
and object-oriented languages. Four categories of metrics were addressed: size, complexity,
coupling, and cohesion. Finally, we describe some best practices for developing source code
that can be applied in structured languages.

Software quality metrics are important features to characterize source code tasks and
make discoveries regarding student clustering. There are tools like Sonar and SonarQube14

that provide comprehensive features to evaluate and improve code quality in software
projects. These tools are designed to continuously scan and analyze source code, detect bugs,
security vulnerabilities, violations of coding standards, and other issues that may affect the
maintenance and performance of the software. However, based on the bibliographic research
carried out, software quality metrics have been used so far to characterize developers
working in the industry (KOZIK et al., 2019; SILVA et al., 2019). Bearing in mind that
14 The SonarQube is available at: https://www.sonarqube.org/
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the characteristics of professional developers’ software are more advanced than students
who are starting in programming, we observe a potential contribution to the adaptation of
these metrics to verify students’ progress throughout the learning topic.

Another important point in software development is the best coding practices. They
are taught in CS1 courses from the first days of class and are from the simplest to the
most advanced (BUSE; WEIMER, 2010), but they are all fundamental to the organization
and readability of the source code. To the best of the authors’ knowledge, the best coding
practices are evaluated manually in a qualitative way (POSNETT; HINDLE; DEVANBU,
2011). Therefore, we did not find automatic metrics to measure the readability of the
source code developed by students. We believe that it would be relevant, in the future, to
create features that verify simple programming aspects, such as indentation and source
code comments if students are in the first weeks of class. More advanced coding practices
should follow the student’s progress in the course, for example, aspects related to the
nesting of conditionals and loopings.

The next chapter explores the works related to this thesis. In particular, we report
some literature reviews that put computer education in evidence. Then, we introduce
the existing tools and approaches to support teaching-learning programming. We seek to
identify the advantages, disadvantages, and context in which each tool operates. Special
attention was paid to machine learning tools for student monitoring and assessment.
Finally, we report research that uses software quality metrics as features.
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Chapter 5

RELATED WORK

According to the Survey by Douce, Livingstone and Orwell (2005), tools that
support students in learning programming have been developed since the 1960s. Nowadays,
the majority of the tools can be classified into the following categories (SILVA et al.,
2019): Learning Environment, Visualization and Animation (of the functioning of the
algorithms), Block Programming, Similarity Detection, Students’ Feedback, Students’
Grade and Students’ Performance. Regarding the existing tools, it should be noted that
the approach proposed in this research does not fit any of these existing categories because
it was developed with a different purpose in mind. Our approach was developed to support
teachers in their pedagogical decisions in the programming classroom.

The obstacles faced by students in their experiences with programming cannot
always be closely monitored by the teacher. An aggravating factor is an increase in
the number of students enrolled, which makes it difficult for the teacher to provide a
personalized intervention. Like other areas of research, teaching-learning programming
is challenging and constantly evolving. The use of technology can make the teaching-
learning process more efficient in the sense that learning happens and is meaningful to the
student. The literature presents a diversity of tools that help students to evolve in their
programming tasks (KEUNING; JEURING; HEEREN, 2018). However, these tools are
mainly focused on student feedback. Teachers are far from adapting these tools to their
needs.

This chapter presents the works related to the research developed in this doctoral
thesis. In this context, we will discuss how our research relates to the "closest" existing
tools from the different tools categories. Then, we present three research fronts to discuss
the related works. First, students’ grading approaches provide a means to grade tasks
automatically. Second, students’ performance approaches provide a means of verifying
student outcomes. Third, students’ grouping approaches provide a means of grouping
students using some criteria.
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5.1 Students’ Grade

The evaluation of source code is a critical aspect in software development and
programming education. Two primary methodologies employed for source code assessment
are static analysis and dynamic analysis. Static analysis entails evaluating the code without
execution, thereby providing insights into its structural characteristics and potential issues.
This evaluation encompasses a spectrum of techniques, including the utilization of syntactic
analysis, structural analysis, similarity detection, and software quality metrics (BASILI;
BRIAND; MELO, 1996). By analyzing the code’s structure, complexity, and adherence
to coding standards, static analysis aids in identifying potential vulnerabilities, code
smells, and adherence to best practices. Conversely, dynamic analysis necessitates the
execution of the program to assess its behavior during runtime. This approach evaluates
how the program responds to various inputs and scenarios, thereby revealing performance
bottlenecks, memory leaks, and runtime errors (ERNST et al., 1999). By simulating
real-world conditions, dynamic analysis provides valuable insights into the code’s runtime
behavior and efficiency, facilitating the identification of potential issues that might not be
apparent through static analysis alone.

The pursuit of automated methods for grading programming tasks has been a
subject of extensive research, aiming to alleviate the burden on educators and streamline
the assessment process. Among the prevalent approaches, the utilization of test cases has
emerged as a common method for evaluating source code tasks. Test case-based assessment
leverages predefined input scenarios and expected outputs to objectively evaluate the
correctness and functionality of the provided code (SHARMA; SAHA, 2018). Edwards
and Perez-Quinones (2008) introduced Web-CAT, an automated grading tool designed to
assess source code tasks by employing test cases. A noteworthy feature of Web-CAT is
its encouragement of student involvement in crafting their own test cases for the tasks
they complete. This collaborative aspect not only enhances students’ understanding of
the material but also contributes to a comprehensive evaluation of their programming
skills. Similarly, Polito, Temperini and Sterbini (2019) devised 2TSW, a gamified tool
tailored for teaching C Language programming. In 2TSW, teachers can incorporate new
tasks, each necessitating the creation of corresponding test cases. Students’ interaction
with these tasks serves to advance their in-game accomplishments, while the central focus
of the study lies in automated task correction and the provision of personalized error
feedback. Notably, the evaluation process in these approaches hinges upon validated test
cases, underscoring the importance of adhering to predefined input-output standards.

In contrast to the prevalent test case-based evaluation approaches, Liu et al. (2019)
present an innovative perspective through the AutoGrader tool. AutoGrader employs a
reference implementation strategy, automatizing the assessment of programming tasks by
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focusing on the semantics of the program. This approach diverges from the conventional
binary evaluation criterion, allowing for a more nuanced assessment that considers the
overall program behavior and logic. The endeavor to assign partial credit and rectify
minor syntax errors in source code has also garnered attention (PARIHAR et al., 2017).
Furthermore, modern machine learning techniques, such as convolutional neural networks,
have been harnessed to validate grades assigned manually by instructors, exemplifying
the integration of methodologies into the assessment domain (SOUZA; ZAMPIROLLI;
KOBAYASHI, 2019).

An alternative technique that emerged in the automated grading landscape is
Parsing-based Automated Assessment (PAAA), proposed by Tianyi et al. (2019). PAAA
harnesses parsing techniques to automate the grading process of source code tasks, with
a particular focus on tasks involving the Python programming language. Remarkably,
the adaptability of PAAA to various programming languages showcases its potential
applicability across diverse educational contexts. Abstract Syntax Tree (AST), a key
component of programming language processing, is effectively employed by Porfirio,
Pereira and Maschio (2021) to automate the assessment of students’ programming skills.
AST-based grading facilitates a deeper understanding of the code’s structural intricacies,
enabling a more comprehensive evaluation of students’ comprehension and implementation.
For an in-depth exploration of tools and techniques encompassing static, dynamic, and
hybrid approaches to automated assessment, the works by Ullah et al. (2018) and Galan et
al. (2019) provide valuable insights into the landscape of automated grading methodologies
and their implications.

5.2 Students’ Performance

In addition to the aforementioned concerns, another pertinent matter revolves
around the identification of students in need of assistance throughout the programming
course. Substantiating this, existing evidence highlights the correlation between initial
and final course performance, implying the persistence of early trends throughout the
learning journey (OZTURK; BONFERT-TAYLOR; FUGENSCHUH, 2018). Moreover,
the attainment of successful outcomes in tests has been leveraged as a means to ascertain
student performance.

Fonseca, Macedo and Mendes (2018) introduced CodeInsights, an online tool that
uses a plug-in installed in the programming environment to receive coding information
(PHP, Java, or Python) and provides performance notifications of the students to teachers.
Source code tasks are compiled and tested using the automated black-box testing software
engineering procedure (NIDHRA; DONDETI, 2012). Information was collected, such as an
unusual number of code lines, compilation errors, attempts per assignment, assignments not
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attempted, and unfinished assignments. Performance is calculated based on the percentage
of source code tasks completed correctly over a while – the student is given a label related
to their pace (slow, intermediate, or fast).

Benotti et al. (2018) presented Mumuki, an open-source online editor, in a process
that, for each source code task, the system explains the theory and a programming
example that involves the concepts needed to solve the source code task. The teacher is
responsible for manually defining the test cases and can also define auxiliary functions.
The tool includes an interactive console on which solutions and reusable functions can
be performed, and automatic feedback is provided according to the tests. The system
supports 17 languages, including Python, JavaScript, and C.

Ihantola et al. (2015) mapped using machine learning techniques and analysis
techniques for teaching-learning, to assist teachers and students in programming. Ahadi et
al. (2015) used decision trees and Bayesian networks to predict student performance, while
Castro-Wunsch, Ahadi and Petersen (2017) used neural networks for the same purpose. A
diverse set of 10 features was used by (AHADI et al., 2015) to implement their classifier.
Among the features are the student’s average in other courses, the passage through test
cases, the number of steps used to solve the tasks, and a categorical feature that indicates
students’ major. Castro-Wunsch, Ahadi and Petersen (2017) focused on just two features:
Steps, which is the number of submissions for each task, and Correctness, which is the
success fraction in the test cases.

The utilization of the linear regression technique has garnered considerable attention
in the realm of educational assessment. It has been adeptly employed to discern students
exhibiting weaker academic performance (MUNSON; ZITOVSKY, 2018) and to prognosti-
cate the likelihood of student attrition from the course (OZTURK; BONFERT-TAYLOR;
FUGENSCHUH, 2018). Munson and Zitovsky (2018) conducted a comprehensive study
encompassing the incorporation of over 100 distinct features, meticulously curated to
encapsulate critical facets. These factors encompass a spectrum of variables, including the
extent and frequency of academic engagement, resolution of compilation errors, source code
dimensions, temporal patterns of coding activities, frequency and duration of interludes,
among other influential parameters. In parallel, Ozturk, Bonfert-Taylor and Fugenschuh
(2018) harnessed the potential of a keystroke-level analysis tool, facilitating the meticulous
capture of an expansive set of 300 source code features. A prominent highlight of their
investigation resides in the identification of a significant correlation existing between two
key features: the temporal investment of students in task completion and the efficacy of
task resolution rates. This interplay highlights the dynamics governing students’ coding
behavior and its subsequent implications on task accomplishment.
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5.3 Students’ Grouping

Unsupervised machine learning techniques have gained widespread utilization across
diverse educational domains, serving as a potent tool to unearth insights (YADAV et
al., 2014; ILIC et al., 2016; RANA; GARG, 2016; PURBA; TAMBA; SARAGIH, 2018).
These techniques harness student-related attributes as features, encompassing demographic
information, class attendance (ALFIANI; WULANDARI et al., 2015), historical grades
(POLYZOU; KARYPIS, 2019), and indicators of academic performance (OYELADE;
OLADIPUPO; OBAGBUWA, 2010). The burgeoning interest in leveraging unsupervised
machine learning techniques to unveil intricate patterns and relationships within educa-
tional data highlights the potential for novel insights. However, the extant body of literature
addressing the confluence of student clustering and programming in the pedagogical context
appears to be relatively limited.

In the endeavor to establish programming pairs, Aottiwerch and Kokaew (2018)
developed a web platform that suggests the pairs from a questionnaire that students answer
in advance. This questionnaire covers three themes: (i) programming skills that consist of a
basic programming test; (ii) learning behavior that involves issues of attitude, motivation,
planning, knowledge-seeking and (iii) self-assessment (KHALIL et al., 2017), and finally,
behavioral interoperability involving communication and teamwork skills (RODRÍGUEZ;
PRICE; BOYER, 2017). The information collected was used as features for a partition
clustering algorithm that resulted in four clusters: good and bad students in all respects,
students with high, and low performance in programming skills.

Regardless, Ahadi et al. (2017) used clustering to predict student performance in
the final example of the CS1 course. The course was taught in Java, and the learning
content taught was basic commands, variables, conditionals, looping, methods, lists, and
objects. A software unit test was used to verify the students’ average performance. The
average performance was considered the degree of correctness in the students’ weekly
source code tasks. It was analyzed whether or not the students’ performance was consistent.
For this, static analysis was performed to quantify students’ weekly performance. Finally,
it was verified whether or not the students’ performance changed from one week to another.
For this, a transition diagram was used based on the student’s average performance.
Clustering was then applied to verify which students would be more likely to drop out of
the course. These three features were used: average performance, consistent performance,
and transition. As a result, it was identified that student performance decreases over the
course.

Anand et al. (2018) intended to group programming students based on previous
student performance. They used the K-means clustering algorithm and extracted three
features. The features used were the students’ grades in the prerequisite courses, Cumulative
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Grade Point Average (CGPA), and the grades in the current course. The interesting point
is that they fixed three groups (below average, average, and above average). Given the
importance of grouping students according to their programming skills to support the
teacher’s pedagogical decisions, a student grouping survey was carried out. Silva and
Silla (2020) processed a database similar to ours in a computational model of hierarchical
clustering. Text-based features were used that were linked to programming language
keywords. However, the extracted features were too generic to represent the learning topics.
In addition, all the source code tasks of a term were processed at once. The main limitation
was the inability of the teacher to intervene in the teaching-learning process before the
end of the academic period.

5.4 Aspects of the Approaches

Table 6 compares our research and the related works, listing the main learnings
found in each work. In the first six columns, we present and summarize some characteristics
of the approaches described above. These characteristics address: (i) the bibliographic
identification of the research; (ii) the type of application targeted by the research, which
we classified into one of the three fronts discussed above: grade, performance, or grouping;
(iii) the number of students involved in the experiment; (iv) the programming language
used to experiment, even if the approach supports other languages; (v) the number of
features used, which in some cases can be very comprehensive and involve all programming
language keywords or use software tests as a feature; (vi) and the database used. In the
database, we identify the number of submissions of a task or the number of compilations
that may involve many occurrences, as a task can be corrected and submitted or compiled
numerous times. We identified databases that use the number of different assignments,
regardless of student submissions. Finally, the number of source codes is the same as what
we considered in our experiments.

In the last 10 columns, we present the approaches classified as having (✓) or not
having (✗) a particular aspect. Therefore, we raise potentials and limitations observed in
these approaches under the focus of this thesis.

• Provides solution is when the tool offers the correct answer to a problem after
a series of unsuccessful attempts by the student. Conversely, our model’s purpose
does not encompass direct correction, thereby allowing students the autonomy to
iteratively develop and rectify their assignments without external intervention. These
assignments can be submitted through any designated platform as per the teacher’s
guidelines. Furthermore, we advocate for a restricted access policy to the clusters,
ensuring that only the teacher possesses the privilege of accessing the clustering
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results.

• IDE freedom is the autonomy of teachers to select a development environment
without being bound by specific tools or constraints. Within the framework of our
model, the chosen integrated development environment remains inconsequential, as
our processing methodology operates directly on the underlying source codes, which
are presented in plain text format. As such, our approach transcends the influence
of IDE preferences, emphasizing the core aspects of code analysis and evaluation.
This highlights the versatility of our model in accommodating diverse pedagogical
preferences, fostering an environment where teachers can exercise their discretion in
choosing IDEs.

• New tasks are the ability for teachers to generate their own source code tasks
autonomously, free from tool-specific constraints. In alignment with this principle, our
model possesses the capability to autonomously identify and extract predetermined
features from the source code of any programming challenge crafted in the C
Language. This extends the flexibility of our approach beyond the confines of a
particular tool, enabling integration with a diverse array of programming problems.
As a result, teachers are empowered to curate tailored tasks without being constrained
by tool dependencies, ultimately fostering an adaptable and versatile pedagogical
environment.

• Compilation is when the tool compiling the code task to facilitate the analysis.
In contrast, our model is designed to operate effectively regardless of whether the
code compiles or whether it is deemed correct or incorrect. Our model possesses
the capability to group students based on their programming skills, irrespective of
the compilation outcome. Given that weaker students might struggle to generate
compilable code, our focus is primarily directed towards identifying programming
skills within the code that can aid and support the student’s learning process.

• Partial evaluation is the process wherein the tool undertakes a nuanced assessment
of the source code task, taking into account partial completion. Within the framework
of our model, we possess the capacity to meticulously analyze and categorize students,
even in instances where their assignments are not fully completed. This approach
acknowledges the potential educational value of assessing partial efforts, providing
a comprehensive understanding of students’ progress and skills, regardless of task
completion status. By incorporating partial evaluation, our model contributes to
a more holistic and inclusive evaluation process that highlights the significance of
incremental learning and individualized growth.

• Lots of data is when the tool necessitates an extensive volume of data to execute
the analysis. However, our model distinguishes itself by its minimal data requirement
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to conduct the analysis effectively. A notable advantage of this approach is that
teachers can swiftly garner a comprehensive overview of the class’s performance
early in the academic period, immediately following students’ completion of a source
code task. This expedited insight into students’ programming capabilities facilitates
timely and informed instructional decisions, enabling teachers to tailor their teaching
strategies according to the collective skill level exhibited by the classroom.

• Different languages is the capability to accommodate a variety of programming
languages. In the context of our model, the utilization of language-specific keywords
serves as a mechanism for locating and extracting relevant features, establishing a
pronounced association with the C Language. The prospect of extending our model’s
applicability to alternative programming languages entails recognizing analogous
patterns and subsequently implementing the requisite extractor module tailored to
the new language’s syntax and semantics. This process hinges on the identification of
parallel constructs and the translation of our feature extraction mechanism to ensure
the transferability of our model’s functionalities to diverse programming languages.

• Semantic independence is when the tool dissociates itself from semantic consider-
ations while identifying code similarity. In contrast, our model focuses on analyzing
the sequence of commands and syntactic patterns generated by the student. Instances
of task replication, where deliberate modifications are made to variable names or
additional line breaks are introduced to distinguish the tasks, are treated equivalently
by our model. This approach ensures a consistent evaluation, where the primary
emphasis remains on syntactical alignments rather than semantic nuances, offering a
streamlined and robust assessment process.

• Student’s history is the ability to construct a chronological representation of
a student’s development over the course of various learning topics. In alignment
with this principle, our model possesses the capacity to construct a comprehensive
timeline that charts the evolution of students’ skills across different programming
tasks. This temporal perspective enables us to monitor the trajectory of students
as they transition between different groups, discerning whether their programming
skills are converging towards or diverging from established benchmarks. By affording
us the means to track students’ progression within the context of their learning
history, our model enriches our understanding of their growth and achievements,
facilitating informed pedagogical interventions and tailored support.

• Reference value is when the tool relies on or permits the input of a reference source
code for processing students’ code submissions. In contrast, our model operates
independently of a reference value to yield its results. However, the option to input
a source code or parameterize feature values provides teachers with the opportunity
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to conduct a more comprehensive analysis of our outcomes. This facet within our
model is referred to as the "Gold-Standard", signifying a deeper level of exploration
and evaluation enabled by this resource.
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Edwards and Perez-Quinones (2008) GD - Java, C++ test case - ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓
Parihar et al. (2017) GD 410 C 55 15.613 submissions ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗
Polito, Temperini and Sterbini (2019) GD 11 C test case 49 codes ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓
Liu et al. (2019) GD - C key words 10.270 submissions ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓
Souza, Zampirolli and Kobayashi (2019) GD 150 Java key words 938 codes ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗
Porfirio, Pereira and Maschio (2021) GD - C 27 3977 codes ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗
Tianyi et al. (2019) GD 61 Python key words 61 codes ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗
Ahadi et al. (2015) SP 296 Java 10 2.000 codes ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗
Castro-Wunsch, Ahadi and Petersen (2017) SP 146 Java, Python 23 1416 codes ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗
Ozturk, Bonfert-Taylor and Fugenschuh (2018) SP 95 C 300 68.248 submissions ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗
Munson and Zitovsky (2018) SP 86 Java 100 61.684 compilations ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗
Fonseca, Macedo and Mendes (2018) SP 27 Java, Python 5 51 tasks ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗
Benotti et al. (2018) SP 114 Haskell test case 82 tasks ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Moresi, Gómez and Benotti (2021) SP 75 Haskell 4** 67 tasks ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗
Ahadi et al. (2017) GR 89 Java 9 - ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗
Anand et al. (2018) GR 200 C++ 3 - ✗ ✓ ✓ ✗ - ✗ ✗ ✗ ✓ ✗
Silva and Silla (2020) GR 34 C 46 630 codes ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗
This research (2023) GR 41 C 24 713 codes ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓
* Application legend: Grading (GD), Student Performance (SP), Grouping (GR).
** They also used a Bag-of-Words (BoW) to perform word count in natural language processing.
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5.5 Final Remarks

In this chapter, we present the works related to this doctoral thesis. We present
several aspects in related works, but our main interest is the source code features. It is well
known that building a good machine learning model depends fundamentally on selecting
good features (GARRETA; MONCECCHI, 2013). Within software engineering research,
some studies attempt to define metrics that characterize software development. An example
is Bassi et al. (2018), which presented a set of software quality metrics to measure the
contribution of development team members. The metrics are related to the source code’s
complexity, inheritance, coupling, and size. Other works have also explored software quality
metrics as features for programming solutions (KASTO; WHALLEY, 2013; WHALLEY;
KASTO, 2014). Regardless, the relationship between source code readability and software
quality was explored by Buse and Weimer (2010). We approach state-of-the-art on three
research fronts involving teaching programming: students’ grade, students’ performance,
and students’ grouping.

These are just some teaching-learning programming research perspectives that
report the challenges over time. Overall, the common purpose of all related works is to
identify students who need assistance in the course. In contrast, their differences are
usually related to the information collected and the techniques used to produce the results.
Our main focus of study is the grouping of programming students. While the integration
of unsupervised machine learning techniques into educational research is discernible,
the specific intersection of student clustering with programming pedagogy is relatively
underexplored. Some studies found try to predict the students’ final grade (AHADI et al.,
2017), and those try to form programming pairs as an alternative to accelerate learning
(AOTTIWERCH; KOKAEW, 2018).

In our computational model, we wanted to develop an approach that would be
helpful to teachers to have insights into the student’s programming skills since the class’s
first task. Based on those insights, the teacher would then be able to use different peda-
gogical approaches, such as active learning-based pedagogical approaches, to help improve
student learning. Most of the different pedagogical approaches involve pairing at least two
students. However, these students must be similar or dissimilar in some aspect (depending
on the pedagogical approach). Therefore, the teacher could make pairs or groups using the
students from the same group (when similar skills are necessary) or from different groups
(when dissimilar skills are required).

To the best of the author’s knowledge, there seems to be no report in the literature
on a model that uses clustering algorithms to monitor student progress from their source
code solutions designed to support the teacher in his pedagogical decisions throughout
the academic period. Therefore, we observe research potential in this theme. To find
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practical use in teachers’ daily lives, we developed a survey to consider student progress
across learning topics. In this way, we present our hypothesis: "It is possible to develop a
computational approach to monitoring student progress from their source code solutions
in a programming course". To achieve our objective, we created features based on software
metrics that represent each learning topic present in the exercise lists in our database.

The next chapter presents the research methodology used to develop this doctoral
thesis. We present the characterization and structure of our research, and we detail the
configuration of our experiments.
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Chapter 6

METHODOLOGICAL APPROACH

This chapter presents the methodological approach used to conduct the research
and achieve the objectives proposed in this doctoral thesis. First, the research is char-
acterized by aligning its conceptual underpinnings with the well-established definitions
and concepts in the literature. This initial step serves as a robust foundation for delving
into the methodological approach employed to undertake the research and accomplish
the predetermined objectives outlined in this doctoral thesis. Next, the research structure
is defined. We used the Knowledge Discovery in Databases (KDD) guidelines to explain
the tools used to implement the method and the data collection process. This entails a
detailed explication of the mechanisms and protocols put in place to procure the requisite
data that fuels the empirical inquiry. Finally, the configurations used to carry out the
experiments of this doctoral thesis are detailed. In this context, paramount emphasis is
placed upon elucidating the interplay of features, settings, and variables that were selected
and aligned with the overarching research objectives.

6.1 Research Characterization

The scientific method is an instrument formed by procedures to formulate scientific
problems and examine scientific hypotheses (GALLIANO, 1979). In our research, we
defined the characterization of the scientific method based on the concepts presented in
Jung (2004). The scientific method is classified according to three points (JUNG, 2004):
(i) in terms of nature, (ii) in terms of objectives, and (iii) in terms of procedures. In this
sense, this research is characterized as applied in nature, with descriptive and explanatory
objectives that use experimental research procedures and strategies. Figure 17 helps to
understand the methodological choices made in this research.

As for the nature of research, applied (or technological) research is used to acquire
theoretical knowledge and obtain a solution for practical application, such as, for example,
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a new product, a process, or a patent. In our case, we use the knowledge acquired in
computing to apply it in education to develop a computational model to monitor students’
progress in different programming learning topics.

As for the research objectives, descriptive research aims to explore a certain topic
and classify the relationship between the variables, expanding its understanding. For
this, as much information as possible is collected to infer a population statistically, such
as obtaining percentages, averages, frequency, and correlation coefficient, among other
possibilities (GILL, 2002). In explanatory research, the objective is to understand the
causes and effects of a given phenomenon from the ideas identified. In our case, we identified
a set of features related to each learning topic. In addition, we carried out a descriptive
analysis of the groups of students that were formed after the grouping.

In terms of research procedures, experimental research endeavors to methodically
manipulate relevant variables in a comprehensive, systematic, and impartial manner to
explore novel techniques and approaches. In our research, we specifically manipulated
the source code features to establish their correlation with students’ progress over the
academic period.

6.2 Research Structuring

The structure of our research follows the Knowledge Discovery in Databases
(KDD) process guidelines. We use KDD to support the development of our experiments
methodologically. KDD is an iterative process that aims to extract knowledge and identify
understandable patterns from large databases (HAN; PEI; KAMBER, 2006). Knowledge
discovery involves a sequence of five steps, where one step outcome depends on the other,
and each step can be repeated over and over again.

The structure of our research addresses: (i) Data Selection organizes the database
and defines the Gold-Standard; (ii) Data Preprocessing prepares the data; (iii) Data
Transformation includes feature extraction; (iv) Data Mining defines the machine learning
technique; and, finally (v) Interpretation and Evaluation occurs the outputs interpretation
and the model evaluation. Figure 18 presents the necessary steps to run our computational
model and obtain groups of students with their respective skills. The description of
each step of the execution flow of our computational model is presented in the following
subsections.



6.2. Research Structuring 89

Scientific Method

Basic or Fundamental 
Research

(i) As for the Nature

(ii) As for the Objectives

(iii) As for the Procedures

and / or

Applied or Technological 
Research

Exploratory Research Descriptive Research Explanatory Research

Experimental Research Operational Research Case Study

Laboratory Research Field Research

Figure 17 – Source code example that averages three grades

Source: Adapted from Jung (2004)

6.2.1 Data Selection

In the Data Selection step, the application domain is learned. Also, in the same
step occurs the selection and segmentation of the data to be analyzed. In this sense, the
data can come from different sources and formats.

In this step, we prepare the database in our computational model. The database
must essentially consist of source code tasks. As expected by the programming language
compiler, these tasks must be in plain text format (e.g., task1.c). The operating system
directory structure that stores these tasks must also respect a hierarchical organization.
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(i) Data Selection (ii) Data Preprocessing

(iv) Data Mining (iii) Data Transformation

Topic 1 Topic 2 Topic n

Features extraction

(v) Interpretation and Evaluation

Students grouping

tokenization filesstopwords, comments and strings

source code solution

OR

Teacher (Gold–Standard)

features parameterized

Students

Join tasks

stud. 101

Optional

Classroom 1

Figure 18 – Execution flow of our computational model

Source: The author

This structure allows the model to maintain the link between students and tasks, as well
as the learning stage within the course.

The root of this structure is the classroom taught, that is, the class of students,
while the child nodes of a classroom are the learning topics that reflect the lists of exercises
developed in the course. Then, the students that make up a classroom are nested within
each exercise list. Finally, student source code solutions for the exercise lists are found in
the leaf nodes of the directory structure.

After organizing the database, we define the reference values for the tasks in the
learning topic. In addition to the source code solutions submitted by students, our model
can receive a unique reference implementation for each task. This reference solution is a
Gold-Standard that the course teacher developed. This way, the Gold-Standard is the set
of results the teacher expects for the tasks in a learning topic. There are two ways the
teacher can send this reference to our model. The first is the source code solution written
by the teacher. Then, our model does the code processing and extracts the features to
use as Gold-Standard. In the second, the teacher informs each feature value to the model
in a parameterized way. Our model works with or without the Gold-Standard. However,
this reference provides a general evaluation of source code solutions developed by students.
Values above or below the expected may represent positive or negative conditions based on
the teacher’s interpretation. We performed this analysis in our experiment and compared
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it to the learning outcomes established for our course.

6.2.2 Data Preprocessing

In the Data Processing step, the quality of the stored data is checked. Among the
operations performed in this step, the main one is cleaning the stored data. In this sense,
some data can be removed if they are identified as inconsistent or discrepant (outliers).
This step can also make strategic decisions to fill in missing data fields.

In this step, we preprocess the source code solutions in our computational model.
Each learning topic is preprocessed separately and sequentially. This preprocessing policy
is important to preserve the temporal order in which each learning topic occurs. The
preprocessing is performed directly on the directory structure, that is, on the source code
solutions developed by each student. Each student’s solutions (from a learning topic) are
concatenated into a single large text file. After that, source code comments are identified
and removed to maintain student anonymity. Then the words from this large file are
identified and tokenized to be stored in a linked list. Then, the feature extractor uses this
linked list of source code tokens. If there is any empty source code solution or with the
occurrence of features that go beyond normality, this task can be considered an outlier.
The teacher can identify these outliers after the Data Transformation step. When observing
an outlier, one returns to this stage, and the source code solution must be removed from
the database not to generate noise in the grouping.

6.2.3 Data Transformation

In the Data Transformation step, data is reduced and transformed to facilitate its
use and navigation. The data must be standardized and thus adapted to Data Mining
techniques. Among the applied transformations, normalization, aggregation, creation of
new attributes, reduction, and data synthesis stand out. In this sense, the most important
attributes of the application domain must be identified and classified. In addition, reducing
the number of attributes performed in this step can increase the model’s effectiveness.

In this step, we perform feature extraction from source code solutions in our
computational model. The source code features were defined based on the subjects taught
in each learning topic. In this way, the features of each learning topic were identified in the
lists of exercises solved by the students. The important point is that another learning topic
can reuse the features defined for a learning topic. The teacher predefined the criterion
for reusing features, respecting the importance of the learning topic. Then, the features
are counted according to the feature extraction criteria that we present in the proposed
features. Afterward, the features are stored in a term-document matrix. Each feature
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is a term that represents a programming skill, and each student is a new vector space
document. The term-document matrix with the features is used to group students.

6.2.4 Data Mining

In the Data Mining step, machine learning techniques are constructed or applied to
obtain new knowledge. Some aspects involved are the choice of algorithm for data processing
and the definition of settings related to the technique, such as distance measurements. In
clustering, choices must be made so that the cluster represents the selected data.

In this step, we apply machine learning techniques to group students according to
their programming skills in our computational model. Our model aims to provide insight
into students’ abilities without the teacher having to open source code solutions. We use
an unsupervised learning algorithm because these codes were not previously classified
and did not have a label. A distance calculation that uses the extracted features verifies
the distance between students in vector space. Students are grouped according to the
proximity of this distance, which refers to the similarity between their programming skills.
By default, our model creates four clusters, each representing the student’s level of learning
topic: very skillful, skillful, medium, and unskilled.

6.2.5 Interpretation and Evaluation

In the Interpretation and Evaluation step, the knowledge extracted from the data is
carefully examined, interpreted, and validated. The primary objective is to gain meaningful
insights and ensure the accuracy and reliability of the computational model.

During the interpretation phase, experts or domain specialists closely analyze the
results obtained from the data mining process. They leverage their expertise and domain
knowledge to interpret and understand the patterns, trends, and relationships discovered
by the model. This interpretation helps to extract valuable knowledge and insights that
can be applied to real-world problems or decision-making processes.

Validation, on the other hand, aims to assess the quality, reliability, and gen-
eralizability of the computational model. It involves various evaluation techniques to
measure the performance, effectiveness, and robustness of the model. These techniques
can include statistical measures, cross-validation, hypothesis testing, and comparing the
model’s predictions against real-world data or known outcomes.

By conducting thorough interpretation and validation, the KDD process ensures
that the extracted knowledge is accurate, meaningful, and useful for making informed
decisions or solving complex problems. It helps to establish the credibility and reliability
of the computational model, providing confidence in its applicability and effectiveness.
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6.3 Experimental Settings

Figure 19 contextualizes how we approach the teaching process in our research.
First, the teacher presents a theoretical part of the learning topic in question. Also, part of
this step is solving source code tasks as an example for students. Then, a list of exercises
is proposed for the students to fix the subjects of the learning topic. Students solve tasks
and submit them on a teaching platform used by the teacher. These tasks are used as
input to our computational model that extracts the features and groups the students. A
table with the features obtained per student and their respective clusters is the output
of our computational model. From this table, the teacher can make decisions regarding
teaching.

teacher

teaching-learning content

source code tasks
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Clustering

features extraction

teacher

computational model to group students

teaching learning topic
Topic 1 Topic 2 Topic n

stud. 101

Classroom 1

input model

output model

Figure 19 – Conceptual diagram of the teaching process

Source: The author

The clustering task has been used in many areas to join related elements (JAIN,
2010). Usually, the dataset is not labeled, so the clustering approach is classified as an
unsupervised machine learning technique. In this way, the elements are clustered according
to the similarity of the information available (ZHU; GOLDBERG, 2022). Knowledge of
the application domain is imperative to the success of the model. The results are highly
sensitive to the input parameters, such as the measure of similarity, the chosen clustering
algorithm, and the employed feature set. In this section, we will explore the process of
constructing our model and address these topics.
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6.3.1 Research Questions

In this research, we present an approach to clustering students according to their
respective programming skills that were extracted from previously submitted source code
tasks. Our experiments were divided into five categories, which are represented by their
respective research questions:

RQ1 How to group students with similar skills using automatic analysis of the source
code with machine learning?

In RQ1, we aim to describe the application of a clustering algorithm to a set
of source code solutions and analyze their results. For this, we use an agglomerative
hierarchical clustering algorithm present in the machine learning library Scikit-learn15,
available for Python programming language.

RQ2 How to assess students’ individual programming skills?

In RQ2, we intend to present the strengths and weaknesses of each student from the
extracted features. Also, we want to see if the clusters represent related ways of thinking.
To enrich the results, we performed a descriptive statistical analysis of the submission
information of the source code solution.

RQ3 Were the extracted features significantly different in each learning topic?

In RQ3, we aim to determine if there are significant differences in the extracted
features across different learning topics. To evaluate this, we conducted statistical tests to
assess the statistical significance of our findings. Specifically, we applied the Kruskal-Wallis
test to determine if there is a significant difference among the clusters generated by our
clustering algorithm. We also employed the Mann-Whitney statistical test to identify
specific differences between the clusters (CORDER; FOREMAN, 2014). By using these
statistical tests, we can provide evidence of whether the extracted features exhibit statisti-
cally significant variations across the learning topics, enhancing the validity and reliability
of our results.

RQ4 What is the correlation between the features extracted in each learning topic?

15 Available in https://scikit-learn.org
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In RQ4, we apply a correlation coefficient to the extracted features to assess the
level of linkage between them. This analysis aims to explore the existence of relationships or
dependencies among the features and understand how they relate to each other. By using
the correlation coefficient, we seek to identify whether the extracted features are positively,
negatively, or insignificantly correlated. This investigation is crucial for understanding the
interactions and interdependencies among the features and can provide valuable insights
for our study.

RQ5 How to get an overview of programming skills from student groups?

In RQ5, we want to present an overview of the strengths and weaknesses of each
student group. The aim is to verify if the clusters are being organized from the evolution
of learning. In this way, the teacher will identify the clusters of students who need more
attention on a particular learning topic.

6.3.2 Database Description

Our database includes source code solutions written by students in the C Language.
These source codes are organized by learning topics, representing a real-world environment
where students progress throughout the academic period.

Table 7 presents the characterization of the database used in this research. Our
database contains real-world data from a programming course organized at an educational
institution in southern Brazil in 2016.

Table 7 – Description of the source code task database

ID Topics # Tasks # Stud. # Codes
T1 functions (by value) 6 35 189
T2 functions (by reference) 4 26 94
T3 data structures 5 32 141
T4 recursive functions 4 26 89
T5 dynamic allocation 6 28 160
Total source code solutions submitted 673

The classroom had 16 weeks of face-to-face classes, including theoretical and
practical classes in the computer lab. Five learning topics were taught during the course,
following the chronological order presented in Table 7. To fix the subject, the students
solved the learning topics tasks (T1 to T5). Each learning topic comprises a set of source
code tasks ranging from 4 to 6 problems. Thus, 25 source code tasks were proposed for
the classroom. The difficulty level of the tasks progressively increases as the learning topic
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progresses. An example of a statement for a function with passing parameters by value
task is presented in Figure 20.

"Write a program that takes two integers. Then, create a function to calculate the
sum of these two numbers. Finally, print the result in the main function".

Figure 20 – An example of a source code statement from T1

Source: The author

The number of students who submitted at least one of the source code solutions
and the total amount of source code processed for each topic is also shown in Table 7.
It is important to note that a student can submit at least one solution to a learning
topic without submitting any solution to another topic. In all, the classroom had 41
students enrolled who developed a total of 673 source code solutions. These students were
in Higher Education and had already taken an introductory module where they learned
about variables, conditionals, control flow, and loops.

6.3.3 Clustering Algorithm

Data cluster analysis consists of an exploratory data analysis, where a set of clusters
share common features (HARRINGTON, 2012). The constituted clusters must obey a
division where the cluster points must be as similar as possible.

According to Halkidi, Batistakis and Vazirgiannis (2001) and Jain, Murty and
Flynn (1999) the main clustering approaches can be classified into Partitional clustering,
Hierarchical clustering, Density-Based clustering, and Grid-Based clustering. Partitive
clustering algorithms require that calculations involving the initialization of centroids be
performed repeatedly. They are more efficient in terms of memory usage and are faster
when the database is large. On the other hand, hierarchical clustering algorithms are more
flexible, as they allow data points to be clustered according to their features without the
need to initialize the centroids. Density-Based clustering, as explored by Ester (2018),
focuses on identifying clusters with regions of high data density. On the other hand,
Grid-Based clustering, explored by Cheng, Wang and Batista (2018), proves to be highly
effective with large multidimensional datasets.

In summary, each clustering approach offers distinct advantages and is best suited
for specific types of datasets, making them valuable tools for different clustering sce-
narios. Considering the size of our database, which is relatively small, we opted for the
agglomerative hierarchical clustering algorithm. This choice was driven by the limitations
encountered with partitional methods and the inherent ease of visualization offered by the
dendrogram, allowing for a clearer understanding of the data’s hierarchical structure.
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6.3.3.1 Distance measures between students

Clustering algorithms need a measure to calculate the distance between two objects.
Distance measures between clusters are updated with each iteration, and the algorithm
looks for the closest point to join a new cluster. They are called similarity or dissimilarity
measures (ROKACH; MAIMON, 2005).

We tested two measures to calculate the distance between objects used to define the
cluster structure (RANI; SAHU, 2017): the Cityblock distance and the Euclidean distance.
Each metric was applied from the data matrix, in which each row represents an object.
Then, the second distance matrix is calculated; each matrix element corresponds to a
quantitative measure of the proximity between two pairs of objects.

6.3.3.2 Distance measures between hierarchical clusters

Hierarchical clustering algorithms require the configuration of the linkage method
that defines how the distance between clusters will be calculated. The three main methods
to calculate the proximity between two clusters are: Single Linkage, Average Linkage, and
Complete Linkage.

We calculated the similarity between the clusters using the three linkage methods.
To evaluate the best behavior configuration, we interleaved each linkage method with the
two distance measures (Cityblock and Euclidean).

6.3.4 Model Interpretation and Evaluation

As cluster analysis is used to discover patterns in the data, the database usually
does not include the labels with the true data classification. In this sense, the evaluation
of the model is carried out through specific methods to verify the quality of the resulting
clusters. However, cluster evaluation essentially depends on the data interpretation by a
professional who knows the application domain.

6.3.4.1 Interpretation of extracted features

In the feature extraction step, our model generates a term-document matrix where
it is possible to carry out a detailed investigation of each student’s abilities. However, in
our final results, we provide the teacher with an overview of each group of students. This
overview is the midpoint index that calculates the average of the feature values that were
obtained in each cluster. Subsequently, we used the Gold-Standard reference provided by
the teacher to interpret the midpoint.
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There is a comprehensibility cost in normalizing the features (i.e., performing
the experiments with and without feature normalization). We have run a preliminary
investigation using L2-normalization, and the student clusters did not change. However,
it has become harder to understand what is happening with each feature due to the
normalization.

For this reason we decided not to normalize the extracted features as the obtained
visualization has become of the research’s contribution. The analysis of actual values
provides the teacher with the possibility to obtain valuable insights.

6.3.4.2 Cluster internal validation

We apply an internal validation index to check the quality of the resulting clusters.
In this sense, the Cophenetic Coefficient Correlation (CARDONA et al., 2013) was used,
which correlates linearly with similarity matrices and Cophenetic Coefficient. Equation 6.1
defines the Cophenetic Coefficient cp, where x is the distance and t is the node’s height
where the points meet.

cp =
∑

u<v (x (u, v) − x̄)
(
t (u, v) − t̄

)
([∑

u<v (x (u, v) − x̄)2
] [∑

u<v

(
t (u, v) − t̄

)2
])1/2 (6.1)

The resulting matrix must correlate with the similarity matrix for a valid dendro-
gram. The coefficient value can range from 0.00 to 1.00, the closer to 1.00, the higher the
internal quality of the cluster.

6.3.4.3 Definition of the number of clusters.

The hierarchical algorithms allow the definition of the number of clusters after
obtaining the result of the clusters. However, the resulting output from our model requires
that a number of clusters have been chosen. With this number of clusters, the model
can automatically generate the students’ individual skills and their respective discovered
clusters. Therefore, we set four clusters as the default value for our model’s number of
clusters automatically generated. This value was chosen based on four groups of expected
students: very skilled, skilled, average, and unskilled.

In addition to dividing the clusters into four groups based on classroom experience,
we interpret a dendrogram to confirm the acceptable number of clusters in the dataset. To
verify this division’s consistency, we apply the Elbow method, which is used to examine
the percentage variation between clusters (LIU et al., 2010). The purpose is to add new
clusters to the model to the point where the information gain is no longer significant. This
point is identified on the graph as an "elbow".
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Furthermore, the hierarchical clustering algorithms provide a graphical tree repre-
sentation of the results that shows the order and distances between the clusters formed
during clustering. This feature allows the teacher to track how the student groups are hier-
archically organized. In this way, the teacher can analyze the difference between students
within the same cluster to see how heterogeneous the students can be.

It is important to note that our computational model allows the number of clusters
to be parameterized. In this way, the number of clusters can be changed according to the
teacher’s strategy. Students who did not submit a source code solution for a given learning
topic were not considered in the grouping.

6.3.4.4 Statistical analysis

We use a nonparametric statistical test to perform our statistical analyses. The
nonparametric test was chosen because of the characteristics of our database. In some
learning topics, our database has a sample smaller than 30 students (N < 30). In addition,
our database meets the prerogatives of the nonparametric test as it is a non-homogeneous
sample and does not have a normal distribution. Since students from one cluster cannot
belong to another, we apply the test for k-independent samples. We used IBM SPSS
Statistics Software16 to perform the statistical analysis.

The Kruskal-Wallis test is used when we have three or more independent groups
and want to determine if there are significant differences in the medians of these groups.
It is a non-parametric extension of the 1-way ANOVA test, which is used to compare
means of independent groups (MCKIGHT; NAJAB, 2010). The Kruskal-Wallis test is
appropriate when the assumptions of the ANOVA test are not met, particularly when the
data does not follow a normal distribution or when the data is measured on an ordinal
scale. We applied the Kruskal-Wallis H-test statistical test to verify whether the groups of
students were significantly different. To run the test, we check the total features of each
student to use as a test item and use the clusters as test group identifiers. We run the
test for each learning topic separately. Finally, we compare the samples individually by
applying Mann-Whitney U-tests (MCKNIGHT; NAJAB, 2010).

Besides, we compared the samples individually using a post-hoc test to find
differences between groups. One way to do the post-hoc test is to apply multiple Mann-
Whitney U-tests (MCKNIGHT; NAJAB, 2010). The problem with doing multiple Mann-
Whitney U-tests is that it increases the chance of a type 1 error. Thus, correcting the
value of p by the Bonferroni factor is necessary. We apply the Kruskal-Wallis H-test to
avoid this problem by making two-by-two comparisons. The post-hoc test using multiple
comparisons returns the adjusted p for the number of comparisons performed.

16 The IBM SPSS Statistics Software is available at: https://www.ibm.com/spss
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Finally, we used the bivariate (2-tailed) correlation to verify the relationship
involving the two variables. Given the characteristics of our database, we need to apply a
nonparametric correlation coefficient. With the correlation, we intend to verify if there is
a relationship between the features defined for each learning topic. The coefficient used
was Spearman’s rho correlation.

The Spearman’s rank correlation coefficient, also known as Spearman’s rho, provides
a measure of the correlation between two variables on an ordinal scale. The coefficient
ranges from -1 to +1 and indicates the strength and direction of the correlation (SIEGEL,
1956). The resulting output of Spearman’s rank correlation is a single value within this
range. A value close to +1 indicates a strong positive correlation, while a value close to -1
indicates a strong negative correlation. On the other hand, a value close to 0 suggests a
weak or no linear correlation between the variables. In interpreting the Spearman’s rank
correlation coefficient, Cohen (1988) suggests that a correlation value of 0.50 or higher can
be considered large, indicating a substantial relationship between the variables. An average
correlation falls between 0.30 and 0.50, suggesting a moderate relationship. Conversely, a
correlation value of 0.30 or less suggests a small or negligible relationship.

6.4 Final Remarks

In this chapter, we present the methodological approach that has been employed
in this doctoral thesis. Our aim is to provide a comprehensive understanding of the
methodology adopted to guide our research endeavors. We commence by delineating
the fundamental characteristics of our research, including its nature, objectives, and
procedural aspects. By doing so, we set the stage for a comprehensive comprehension of
the foundational principles that underpin our study.

Moreover, we elucidate the structure that governs our research, aligning our ap-
proach with the systematic stages of the Knowledge Discovery in Databases (KDD) process.
Within this framework, we outline the steps undertaken to construct our computational
model and elucidate the process through which our data were collected and organized.
This provides a transparent overview of the rigor in our research efforts.

Subsequently, we turn our attention to the configuration of our experiment, an
essential facet that underpins the acquisition of meaningful results. This section delves
into the specifics of how our experiment was designed, highlighting the factors that were
considered to ensure the accuracy and reliability of our findings. Additionally, we offer
insights into the dataset employed, shedding light on the bedrock upon which our analyses
were conducted.

The next chapter presents the synthesis of the feature set corresponding to each
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learning topic. Before running our experiments, it was imperative to construct a compre-
hensive set of source code features. These defined features were tailored for every individual
learning topic, with the overarching objective of extracting relevant insights from the
students’ source codes. In the subsequent sections, we delve into the intricacies of this
constructed feature set, expounding on the rationale that underpins its architecture and
the strategic decisions that guided its formulation.
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Chapter 7

PROPOSED FEATURES

This chapter presents the definition of a set of features that are directly related to
the subjects in each learning topic. The proposed features are presented in Table 7 and
described in this chapter. The goal is that these features represent the programming skills
reflected in the source code instructions programmed by the students. In this way, the
teacher will be able to identify the students’ strengths and weaknesses without manually
grading the source code solutions.

In all, we defined 21 features for the course’s five learning topics. Each learning
topic is represented by exercise lists applied during the course. Learning topics include:
functions with parameter passage by value (T1), functions with parameter passage by
reference (T2), struct (T3), recursion (T4), and dynamic allocation (T5). We will use the
acronym "topic.feature" to simplify identifying features within the learning topic whenever
necessary – the acronym T1.NF is an example to refer to the number of functions of the
first learning topic.

We discuss each feature’s importance in the practice of teaching programming
and present how each feature contributes to learning. The distribution of features among
the learning topics is shown in Table 8. In addition, we describe how the features were
extracted at the source code level. Our computational model was developed in Python,
but we formalized the main features in pseudocode and presented them in this chapter.

7.1 Features for T1 (Functions by Value)

The learning topic corresponding to T1 allows students to understand the functions
with passing parameters by value. We have defined four new proprietary features to
investigate student’s strengths and weaknesses in the T1 learning topic. We adapted two
of these features used in the object-oriented paradigm (HENDERSON-SELLERS, 1996)
(OLIVEIRA et al., 2008) for the context of structured programming.
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Table 8 – Correspondence between learning topics and features

ID Feature T1 T2 T3 T4 T5 Adapted from
1 NF ✓ Henderson-Sellers (1996)
2 NP ✓ Oliveira et al. (2008)
3 NC ✓

4 NR ✓

5 NPt–s ✓

6 NAdd–s ✓

7 NPt–ds ✓

8 NAdd–ds ✓

9 NStr ✓

10 NStrM ✓

11 NStrT ✓

12 NStrI ✓

13 NStrC ✓

14 NFRec ✓

15 NCRec ✓

16 NIFPar ✓

17 NRRec ✓

18 NRNRec ✓

19 NMalloc ✓

20 NSizeof ✓

21 NFree ✓

The extracted features are desirable and complementary criteria to the learning
topic and meet the following learning outcomes: 1) Number of Functions: the ability to
create functions; 2) Number of Parameters: the ability to understand passing parameters
by value; 3) Number of Calls: the ability to call student-created functions; and 4) Number
of Returns: the ability to understand return types.

7.1.1 Number of Functions

The Number of Functions (NF) represents the number of functions the student
developed. This feature allows the teacher to verify the student’s understanding of the
functioning of the functions and, consequently, the degree of organization of the source
code. The more functions are developed, the greater the chance that the source code
is modularized. According to good programming practices, modularizing source code
increases the possibility of source code being readable and reusable (FOWLER, 2018).

Algorithm 4 shows how our computational model obtained the NF feature. This
algorithm inputs the source code task that the student has developed and a list of data
types. These data types correspond to the function’s return, which appears at the beginning
of a function’s signature in C Language. The list of data types is parameterized and can
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be redefined according to teacher preferences. We default use the following data types:
void, int, float, double, and char. The algorithm’s output counts the number of functions
found in the source code. In the execution of this algorithm, a looping goes through all
the lines of the source code. For each line, we ignore leading spaces and look for the data
types that have been defined. The data types are checked on the first word found on the
current line. If any data type is found, we look for the characters "open parentheses" and
"close parentheses" on the same line where the data type was found. Finally, we check for
"open braces" on the same or next line. We identify a function when all these criteria are
met. All content found between the braces represents the structure’s function and is stored
in a list for future use (ls_functions). Then the current line is stored in a signature list.
The important point is that we only consider the new functions created by the students
and disregard the main function (which must exist in any source code in C Language).

Algorithm 4: GET_NF: number of functions
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of functions

1 begin
2 initialize counter → 0;
3 while do not finish the code lines do
4 while do not finish the return_types do
5 if type in line then
6 if parentheses in line then
7 if braces in line or braces in next line then
8 increments the counter;
9 end

10 break; //exit return_types looping
11 end
12 end
13 end
14 end
15 return counter;
16 end

7.1.2 Number of Parameters

The Number of Parameters (NP) represents the number of parameters present in
the functions the student developed. This feature allows the teacher to check the student’s
understanding of the variable’s scope. It is necessary to transfer this variable to the context
of the subroutine in question to use the value of a local variable in a subroutine. A smaller
number of parameters than expected may mean that the code needs to meet the minimum
requirements for the correct functioning of the program. On the other hand, the student
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may use global variables to make them accessible to all the source code. Another possibility
is for the student to use a data structure to store more than one value and thus save
parameters.

Algorithm 5 shows how our computational model obtained the NP feature. This
algorithm inputs the source code task that the student has developed and a list of data
types. The algorithm’s output counts the number of parameters found in the source code.
In C Language, parameters are normally found on the same line as the function declaration.
For this reason, we used the Algorithm pseudocode 4 to obtain the function signatures in
the student’s source code. Then, a looping goes through each function signature. Finally,
we identify the arguments inside the parentheses. We use the commas as the delimiter of
these arguments and perform the raw count of occurrences.

Algorithm 5: GET_NP: Number of Parameters
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of parameters

1 begin
2 initialize counter → 0;
3 list_signatures → get_NF(code, return_types);
4 while do not finish the list_signatures do
5 if not empty within the parentheses then
6 counter accumulates the total of parameters delimited by comma;
7 end
8 end
9 return counter;

10 end

7.1.3 Number of Calls

The Number of Calls (NC) represents the number of calls to the functions the
student developed. This feature allows the teacher to check if the functions created by the
student are being used. A number of calls less than the number of functions may mean
that more than necessary functions have been created. On the other hand, a much higher
number of calls means that a function is being used more than once.

Algorithm 6 shows how our computational model obtained the NC feature. This
algorithm inputs the source code task that the student has developed and a list of data
types. The algorithm’s output counts the number of calls to functions found in the source
code. First, we retrieve the list of function signatures as in Algorithm 4. Then, a looping
goes through each function signature. From the signature, we identify the function name,
which is delimited by the first space to the first parenthesis of the function signature. We
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search each line of source code for the function name. We discard all lines that are the
function signature itself. We also discard occurrences that refer to function prototypes.
Prototypes are characterized by a ";" at the end of the line instead of an "open braces".
We identify a call to the function when all these criteria are met.

Algorithm 6: Get_NC: Number of Calls
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of calls

1 begin
2 initialize counter → 0;
3 list_signatures → get_NF(code, return_types);
4 while do not finish the list_signatures do
5 while do not finish the code lines do
6 if function name in line then
7 if line is not a prototype then
8 if line is not a signature then
9 increments the counter;

10 end
11 end
12 end
13 end
14 end
15 return counter;
16 end

7.1.4 Number of Returns

The Number of Returns (NR) represents the number of return commands the
student used in his source code. This feature allows the teacher to identify the student’s
understanding of the variable’s scope. Variables declared locally are valid only within the
function in which they were declared. For this reason, it is necessary to return to the main
function to retrieve the value of a local variable that has been modified.

Algorithm 7 shows how our computational model obtained the NR feature. This
algorithm inputs the source code task that the student has developed and the command
that will be searched. The algorithm’s output counts the number of return statements
found in the source code. A looping goes through the source code. We search each line of
source code for the return keyword. We identify a return command when these criteria are
met.
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Algorithm 7: Get_Commands: Generic function for commands
Input: code //source code the student developed
Input: command //keyword command
Output: counter ∈ N //number of commands

1 begin
2 initialize counter → 0;
3 while do not finish the code lines do
4 if command in line then
5 increments the counter;
6 end
7 end
8 return counter;
9 end

7.2 Features for T2 (Functions by Reference)

The learning topic corresponding to T2 enables the student to understand the
functions with parameter passage by reference. We defined four new proprietary features
to investigate the weaknesses and strengths of students in the T2 learning topic.

The extracted features are desirable and complementary criteria to the learning
topic and meet the following learning outcomes: 5) Number of Simple Pointers: the ability
to create pointers; 6) Number of Simple Address: the ability to pass parameters by reference;
7) Number of Array Pointers: the ability to understand the use of array pointers; and 8)
Number of Array Addresses: the ability to pass parameters by reference of array-type.

7.2.1 Number of Simple Pointers

The Number of Simple Pointers (NPt–s) is the number of primitive data type
pointers the student used in his source code. This feature allows the teacher to identify
if the student is declaring pointers in the source code writing. Understanding pointers is
a determining factor for future topics learning such as dynamic memory allocation. In
addition, pointers are used to return more than one value in the function and are references
to lists, stacks, and trees in the data structure.

Algorithm 8 shows how our computational model obtained the NPt-s feature. This
algorithm inputs the source code task that the student has developed and a list of data
types. The algorithm’s output counts the number of pointers of the primitive data type
found in the source code. First, we retrieve the list of function signatures as in Algorithm
4. Then, a looping goes through each function signature. Later, we identify the placeholder
for passing parameters within the signature of each function. Then, within the parameters,
we find the prefix referring to the pointer operator (*) and perform the raw count of
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occurrences.

Algorithm 8: Get_NPt-s: Number of Simple Pointers
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of simple pointers

1 begin
2 initialize counter → 0;
3 list_signatures → get_NF(code, return_types);
4 while do not finish the list_signatures do
5 increments the counter with the number of asterisk in the line;
6 end
7 return counter;
8 end

7.2.2 Number of Simple Address

The Number of Simple Address (NAdd–s) is the number of addresses for pointers
of the primitive data type the student used in his source code. This feature allows the
teacher to identify if the student is passing the address of the pointers created in the
function calls of its source code. The NAdd-s result must be equal to or higher than the
NPt-s result. The value is higher when a function with passing parameters by reference is
called more than once.

Algorithm 9 shows how our computational model obtained the NAdd-s feature.
This algorithm inputs the source code task that the student has developed and a list of
data types. The algorithm’s output counts the number of addresses for pointers of the
primitive data type found in the source code. First, we retrieve the function call list as
it was in the Algorithm 6. Then, a looping goes through each call to the function. Later,
we identify the placeholder for passing parameters within the signature of each function.
Then, within the parameters, we find the prefix referring to the address operator (&) and
perform the raw count of occurrences.

7.2.3 Number of Array Pointers

The Number of Array Pointers (NPt–ds) is the number of composite data type
pointers the student used in his source code. In this case, the data type refers to the
homogeneous data structure, such as arrays. This feature allows the teacher to identify if
the student uses data arrays to declare pointers.

Algorithm 10 shows how our computational model obtained the NPt-ds feature.
The extraction process for this feature is similar to NPt-s. The difference is that we loop
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Algorithm 9: Get_NAdd-s: Number of Simple Address
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of simple address

1 begin
2 initialize counter → 0;
3 list_calls → get_NC(code, return_types);
4 while do not finish the list_calls do
5 increments the counter with the number of ampersand in the line;
6 end
7 return counter;
8 end

through a list of calls to the functions. Then, we identify the suffix referring to the array
identifier in the function parameters instead of the pointer operator.

Algorithm 10: Get_NPt-ds: Number of Array Pointers
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of array pointers

1 begin
2 initialize counter → 0;
3 list_signatures → get_NF(code, return_types);
4 while do not finish the list_signatures do
5 while there are words between commas in the signature do
6 if open square brackets in word and close square brackets in word then
7 increments the counter;
8 end
9 end

10 end
11 return counter;
12 end

7.2.4 Number of Array Addresses

The Number of Array Addresses (NAdd–ds) is the number of addresses for composite
data type pointers the student used in his source code. In this case, the data type refers to
the homogeneous data structure, such as arrays. This feature allows the teacher to identify
if the student is passing data arrays in function call arguments. The NAdd-ds result must
be equal to or higher than the NPt-ds result. The value is higher when a function with
passing parameters by reference is called more than once.

Algorithm 11 shows how our computational model obtained the NAdd–ds feature.
The extraction process for this feature is more complex than the previous ones because the
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array-type arguments do not receive a specific markup. We use the relationship of function
signatures and calls to find out the exact name of the function. Later, we identify if there
is any array between the local variables. Then, we check if any of the identified arrays are
used in the arguments of the function calls to perform the raw count of occurrences.

Algorithm 11: Get_NAdd-ds: Number of Array Addresses
Input: code //source code the student developed
Input: return_types //set of data type
Output: counter ∈ N //number of array addresses

1 begin
2 initialize counter → 0;
3 list_signatures → get_NF(code, return_types);
4 list_parameters → get_NP(code, return_types);
5 while do not finish the code lines do
6 if line is an array-type local variable then
7 while do not finish the list_signatures do
8 while do not finish the list_parameters do
9 if array-type in parameter then

10 increments the counter;
11 end
12 end
13 end
14 end
15 end
16 return counter;
17 end

7.3 Features for T3 (Data Structures)

The learning topic corresponding to T3 enables the student to understand het-
erogeneous data structures. We defined five new proprietary features to investigate the
weaknesses and strengths of students in the T3 learning topic.

The extracted features are desirable and complementary criteria to the learning
topic and meet the following learning outcomes: 9) Number of Structs: the ability to create
heterogeneous data structures; 10) Number of Struct Members: the ability to understand
how heterogeneous data structures work; 11) Number of Struct Typedefs: the ability to
rename heterogeneous data structures; 12) Number of Struct Instances: the ability to
instantiate new heterogeneous data structures; and 13) Number of Struct Calls: the ability
to call heterogeneous data structures.
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7.3.1 Number of Structs

The Number of Structs (NStr) is the number of heterogeneous data structures the
student developed. This feature allows the teacher to identify if the student is developing
their own set of variables within a data structure.

Algorithm 12 shows how our computational model obtained the NStr feature. We
use the source code the student developed to find lines that start with the keyword struct
to extract this feature. Afterward, we look for "braces open" on the same line or the next
line where the structure was identified. All content found between the braces represents
the structure’s body and is stored in a list for future use (ls_structsBody). Finally, we
perform the raw count of occurrences for the items in the list.

Algorithm 12: Get_NStr: Number of Structs
Input: code //source code the student developed
Output: counter ∈ N //number of structs

1 begin
2 initialize counter → 0;
3 while do not finish the code do
4 if word struct in line then
5 if line ends with open braces or next line then
6 increments the counter;
7 end
8 end
9 end

10 return counter;
11 end

7.3.2 Number of Struct Members

The Number of Struct Members (NStrM) is the number of elements of the hetero-
geneous data structure the student declared. This feature allows the teacher to identify
the size and consistency of the heterogeneous data structures defined by the student.

Algorithm 13 shows how our computational model obtained the NStrM feature. We
relate the heterogeneous data structures found in the student source codes to extract this
feature. Then, we ignored the lines referring to the structure’s signature to find only the
declaration of the variables. Finally, we perform the raw count of each variable declared
within the structure.
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Algorithm 13: Get_NStrM: Number of Struct Members
Input: code //source code the student developed
Input: ls_structsBody //body each struct saved in Algorithm 12
Output: counter ∈ N //number of struct members

1 begin
2 initialize counter → 0;
3 while do not finish the list_structsBody do
4 if line is not struct declaration then
5 if line is not starts with open braces or not ends with close braces then
6 while there are words between commas in the line do
7 increments the counter;
8 end
9 end

10 end
11 end
12 return counter;
13 end

7.3.3 Number of Struct Typedefs

The Number of Struct Typedefs (NStrT) is the number of typedef commands the
student used. This feature allows the teacher to identify if the student renames existing
data structures. Sources become more readable and portable, as only typedef commands
need to be changed if the structure is changed.

Algorithm 14 shows how our computational model obtained the NStrM feature. We
use source codes the student developed to extract this feature. We look at the beginning of
each line for the keywords "typedef struct". Then, we check if there is an end-of-statement
indication (;) as the last letter in the line. Afterward, we capture the alias of each typedef
and store it in a list. Finally, we perform the raw count of occurrences for the items in the
list.

7.3.4 Number of Struct Instances

The Number of Struct Instances (NStrI) is the number of instances of the hetero-
geneous data structure the student used. This feature allows the teacher to identify if the
student is instantiating structures defined in the source code.

Algorithm 15 shows how our computational model obtained the NStrI feature. To
extract this feature, we list the aliases of the typedefs found in the student source codes.
We then look for each alias at the beginning of each line of code and do the raw count of
hits.
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Algorithm 14: Get_NStrT: Number of Struct Typedefs
Input: code //source code the student developed
Output: counter ∈ N //number of struct typedefs

1 begin
2 initialize counter → 0;
3 while do not finish the code do
4 if typedef struct in line then
5 if line ends with semicolon then
6 while there are words between spaces in the line do
7 increments the counter;
8 end
9 end

10 end
11 end
12 return counter;
13 end

Algorithm 15: Get_NStrI: Number of Struct Instances
Input: code //source code the student developed
Output: counter ∈ N //number of struct instances

1 begin
2 initialize counter → 0;
3 ls_typedefs → get_NStrT(code);
4 while do not finish the ls_typedefs do
5 while do not finish the code do
6 if typedef in line then
7 increments the counter;
8 end
9 end

10 end
11 return counter;
12 end

7.3.5 Number of Struct Calls

The Number of Struct Calls (NStrC) is the number of accesses to instances of the
heterogeneous data structure the student performed. This feature allows the teacher to
identify if the student is using the instance structures. A call value less than the number
of instances may mean that more structures were created than necessary.

Algorithm 16 shows how our computational model obtained the NStrC feature.
We list the instances found in the student’s source codes to extract this feature. Then, we
look for each instance through the source code and perform the raw count of occurrences.
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Algorithm 16: Get_NStrC: Number of Struct Calls
Input: code //source code the student developed
Output: counter ∈ N //number of struct calls

1 begin
2 initialize counter → 0;
3 ls_instances → get_NStrI(code);
4 while do not finish the ls_intances do
5 while do not finish the code do
6 if intance in line then
7 increments the counter;
8 end
9 end

10 end
11 return counter;
12 end

7.4 Features for T4 (Recursive Functions)

The learning topic corresponding to T4 enables the student to use recursive
functions. We defined five new proprietary features to investigate the weaknesses and
strengths of students in the T4 learning topic.

The extracted features are desirable and complementary criteria to the learning
topic and meet the following learning outcomes: 14) Number of Recursive Functions:
the ability to create recursive functions; 15) Number of Recursive Functions Calls: the
ability to call recursive functions; 16) Number of Parameters in Conditional: the ability to
implement stop conditions in recursive functions; 17) Number of Recursive Returns: the
ability to return values recursively; and 18) Number of Non-Recursive Returns: the ability
to implement stopping conditions in recursive functions.

7.4.1 Number of Recursive Functions

The Number of Recursive Functions (NFRec) is the number of recursive functions
the student developed. This feature allows the teacher to check if the student is imple-
menting recursive functions. Recursive functions sometimes allow the student to create
more readable and simpler source code.

Algorithm 17 shows how our computational model obtained the NFRec feature.
We retrieved the function signature list and the function body list to extract this feature.
Then, we collect the role name from the role signature. Finally, we look in the function
body for the function’s name. Bearing in mind that this verification will be used other
times, we have developed Algorithm 18. If an occurrence is identified, we carry out the



116 Chapter 7. PROPOSED FEATURES

count.

Algorithm 17: Get_NFRec: Number of Recursive Functions
Input: ls_functions //body each function saved in Algorithm 4
Output: counter ∈ N //number of recursive functions

1 begin
2 initialize counter → 0;
3 while do not finish the list_functions do
4 if is_recursive_function(function) then
5 increments the counter;
6 end
7 end
8 return counter;
9 end

Algorithm 18: is_recursive_function: checks a recursive function
Input: function body
Output: boolean variable

1 begin
2 initialize counter → 0;
3 ls_signatures → get_NF(function);
4 while do not finish the function from line two do
5 if signature in line then
6 return True;
7 end
8 end
9 return False;

10 end

7.4.2 Number of Recursive Functions Calls

The Number of Recursive Functions Calls (NCRec) is the number of calls to
recursive functions used by the student. This feature allows the teacher to check if the
student is using the recursive functions that were created.

Algorithm 19 shows how our computational model obtained the NCRec feature. We
retrieve the list with the body of the functions to extract this feature. Then we check which
functions are recursive and collect the name of those functions. Next, we look through
the source code for the lines containing the name of the recursive function, except the
recursive function itself. Finally, we perform the raw count of occurrences.
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Algorithm 19: Get_NCRec: Number of Recursive Functions Calls
Input: code //source code the student developed
Input: ls_functions //body each function saved in Algorithm 4
Output: counter ∈ N //number of recursive functions calls

1 begin
2 initialize counter → 0;
3 while do not finish the list_functions do
4 if is_recursive_function(function) then
5 while do not finish the code do
6 if name function in line and line is not a signature then
7 increments the counter;
8 end
9 end

10 end
11 end
12 return counter;
13 end

7.4.3 Number of Parameters in Conditional

The Number of Parameters in Conditional (NIFPar) is the number of conditional
structures linked to the parameters of the recursive functions the student used. This
feature allows the teacher to check if the student implements the stopping conditions in
their recursive functions. Recursive functions need to have a stop condition to not run
indefinitely. This condition is represented by the IF command and must return a value
other than the recursive function.

Algorithm 20 shows how our computational model obtained the NIFPar feature. We
rescued the list with the function’s body to extract this feature. Then, we check whether
the functions are recursive and store the function parameters. The stop condition must
test some of the parameters that were used as input to the recursive function, so we carry
out this check. When these criteria are met, we perform a raw count of occurrences.

7.4.4 Number of Recursive Returns

The Number of Recursive Returns (NRRec) is the number of return statements
that call the recursive function the student used. This feature allows the teacher to verify
if the function developed by the student works recursively. The recursive return needs to
include the function’s name and change some function parameters so that the function is
recursive.

Algorithm 21 shows how our computational model obtained the NFRRec feature.
We retrieve the list with the body of the functions to extract this feature. Then we check
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Algorithm 20: Get_NIFPar: Number of Parameters in Conditional
Input: ls_functions //body each function saved in Algorithm 4
Output: counter ∈ N //number of parameters in conditional

1 begin
2 initialize counter → 0;
3 while do not finish the list_functions do
4 if is_recursive_function(function) then
5 while do not finish the function lines do
6 if there are conditional in line then
7 if there are parameter in line then
8 increments the counter;
9 break;

10 end
11 end
12 end
13 end
14 end
15 return counter;
16 end

which functions are recursive and collect the name of those functions. Next, we look for
return statements that contain the function name on each line of the function body. Finally,
we perform the raw count of occurrences.

Algorithm 21: Get_NRRec: Number of Recursive Returns
Input: ls_functions //body each function saved in Algorithm 4
Output: counter ∈ N //number of recursive returns

1 begin
2 initialize counter → 0;
3 while do not finish the list_functions do
4 if is_recursive_function(function) then
5 while do not finish the fuction lines do
6 if name function in line and line starts with return then
7 increments the counter;
8 end
9 end

10 end
11 end
12 return counter;
13 end
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7.4.5 Number of Non-Recursive Returns

The Number of Non-Recursive Returns (NRNRec) is the number of return state-
ments that do not call the recursive function the student used. This feature allows the
teacher to check if the student has implemented a return to exit the recursive function.

Algorithm 22 shows how our computational model obtained the NRNRec feature.
We retrieve the list with the body of the functions to extract this feature. Then we check
which functions are recursive and collect the name of those functions. Next, we look for
return statements that do not contain the function name on each line of the function body.
Finally, we perform the raw count of occurrences.

Algorithm 22: Get_NRNRec: Number of Non-Recursive Returns
Input: code //source code the student developed
Input: ls_functions //body each function saved in Algorithm 4
Output: counter ∈ N //number of non-recursive returns

1 begin
2 initialize counter → 0;
3 while do not finish the list_functions do
4 if is_recursive_function(function) then
5 while do not finish the fuction lines do
6 if name function is not in line and line starts with return then
7 increments the counter;
8 break;
9 end

10 end
11 end
12 end
13 return counter;
14 end

7.5 Features for T5 (Dynamic Allocations)

The learning topic corresponding to T5 enables the student to use dynamic memory
allocation. We defined three new proprietary features to investigate the weaknesses and
strengths of students in the T5 learning topic.

The extracted features are desirable and complementary criteria to the learning
topic and meet the following learning outcomes: 19) Number of Malloc: the ability to
dynamically allocate memory; 20) Number of Sizeof: the ability to calculate the size of any
data type; and 21) Number of Free: the ability to free memory that has been allocated.
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7.5.1 Number of Malloc

The Number of Malloc (NMalloc) represents the number of malloc functions the
student used in his source code. This feature facilitates the teacher to identify the student’s
ability to engage in dynamic memory allocation. Invoking the malloc function yields a
pointer, thereby enabling the acquisition of memory space.

Algorithm 7 shows how our computational model obtained the NMalloc feature.
The algorithm’s output counts the number of malloc functions found in the source code.
A looping goes through the source code. We search each line of source code for the malloc
function. We identify a malloc function when these criteria are met.

7.5.2 Number of Sizeof

The Number of Sizeof (NSizeof) represents the number of sizeof operators the
student used in his source code. This feature allows the teacher to identify if the student
knows how to verify the number of bytes occupied by a certain type of data. For every
memory allocation with malloc, having one instance of the sizeof operator would be
consistent. The balance between these two features assures that the memory allocated
follows the type of data used.

Algorithm 7 shows how our computational model obtained the NSizeof feature.
The algorithm’s output counts the number of sizeof operators found in the source code. A
looping goes through the source code. We search each line of source code for the sizeof
operator. We identify a sizeof operator when these criteria are met.

7.5.3 Number of Free

The Number of Free (NFree) represents the number of free functions the student
used in his source code. This feature allows the teacher to identify if the student can release
previously allocated memory. Every memory allocation with malloc would be consistent
with having one instance of the free function. The balance between these two features
ensures that allocated memory is returned to the system after it is used.

Algorithm 7 shows how our computational model obtained the NFree feature. The
algorithm’s output counts the number of free functions found in the source code. A looping
goes through the source code. We search each line of source code for the free function. We
identify a free functions when these criteria are met.
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7.6 Feature Extraction Example

Figure 21 encapsulates a exemple of a source code solution corresponding to the
task presented in Figure 20. This illustrative example showcases the practical application
of the task and provides a tangible reference for the subsequent discussions.

1 # include <stdio .h>
2
3 int sumNumbers (int n1 , int n2) {
4 return (n1 + n2);
5 }
6
7 void main () {
8 int number1 , number2 ;
9 int sum;

10 printf ("\ nEnter two integer numbers : ");
11 scanf ("%d %d", &number1 , & number2 );
12 sum = sumNumbers (number1 , number2 );
13 printf ("\nThe sum of the values is: ");
14 printf ("%d", sum);
15 }

Figure 21 – Example of source code solution

Source: The author

For Figure 21, our model extracted the features presented in Table 9. As we chose
to disregard the main function counting, the only function created by the student was
sumNumbers() (line 3). Therefore, NF received the value 1. The number of parameters
accounts for n1 and n2 (line 3). Therefore, NP received the value 2. The sumNumbers()
function was called once (line 12). Therefore, NC received the value 1. We observe that
the sumNumbers() function makes a return (line 4). Therefore, NR received the value 1.

Table 9 – Example of feature extraction for Figure 21
NF NP NC NR
1.0 2.0 1.0 1.0

Figure 22 presents an example in which the student uses a different approach than
expected to solve the task. In this case, the student declares two global variables (number1
and number2 ) instead of creating a function and passing parameters by value to the
function.

In Table 10, we present the extracted features for Figure 22. The features were
all zeroed because no new function was created. One of the advantages of the proposed
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1 # include <stdio.h>
2
3 int number1 , number2 ;
4 int sum;
5
6 void main () {
7 printf ("\ nEnter two integer numbers : ");
8 scanf("%d %d", &number1 , & number2 );
9 sum = number1 + number2 ;

10 printf ("\nThe sum of the values is: ");
11 printf ("%d", sum);
12 }

Figure 22 – Source code example where the student does not meet the topic

Source: The author

method is that the instructor can verify at a glance when something unexpected happens,
such as having all the features zeroed or even only one particular feature zeroed, which
was related to the learning topic.

Table 10 – Example of feature extraction for Figure 22
NF NP NC NR
0.0 0.0 0.0 0.0

7.7 Final Remarks

In this chapter, we present a set of 21 source code features that were created
specifically for five learning topics. First, we present how the features relate to each
learning topic and their respective learning outcomes. Next, we describe each feature. We
cover from how we perform the feature extraction to the contribution that this feature
provides to the teacher in the classroom.

We must note that we tested other features until we arrived at this set that suits
each learning topic. First, we extracted text-based features that counted the occurrences
of keywords from the programming language (SILVA; SILLA, 2020). The problem with
these features was that they were simple and had no connection to the learning topics.
We could identify that the students were using decision structures and loops, for example.
However, that did not tell us anything about the specific programming skills being learned
in each learning topic.

Later, we tested features such as whether the source code compiles or not, but we
found that this was not a feature that our computational model should address. Our main
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purpose was to create features that helped explain the learning topics, and that would be
a reason for the build to be left out. Also, the compilation is a "binary test" with only
two possibilities: to compile or not to compile. For example, the lack of a semicolon at
the end of a statement would be enough for the source code not to work. Our model is
broader than that. We want the teacher to have an overview of the skills developed by the
students, regardless of whether the solution is correct or the code is functional.

Also, we tested features such as cyclomatic complexity and the average of lines per
function. These features are interesting because they add information to the coding in a
summarized way. However, we chose to leave them out. In addition to compromising the
originality of our features and not representing the specificity of the learning topic, they
were not statistically significant. Finally, we tested different configurations, for example,
using all features on all learning topics. However, this caused the learning topic at hand to
lose the focus of the analysis. We also consider that clustering algorithms ask for fewer
variables to avoid the "curse of dimensionality" (HINNEBURG ALEXANDER E KEIM,
1999).

In order to test this set of defined features, the next chapter presents the analysis
of our results. We organized the chapter based on our research questions and perfomed
experiments to answer each one. We present the experiments’ results and highlight the
main findings. When possible, we present an interpretation of the clusters from the
teacher’s point of view. In addition, we performed a descriptive statistical evaluation and
non-parametric tests to verify the significance of our results.
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Chapter 8

ANALYSIS OF RESULTS

This chapter presents the conduct of experiments and evaluations aimed at pro-
viding comprehensive answers to the research questions posited in Chapter 6. In Section
8.1 addressed RQ1, where we experimented with the different clustering algorithm con-
figurations. Moving forward, Section 8.2 addressed RQ2, where we experimented with
individual student features. Subsequently, Section 8.3 addressed RQ3, where we checked
the statistical validity of our experiment. Then, Section 8.4 addressed RQ4, where we
checked the correlation between features. Finally, Section 8.5 addressed RQ5, where we
experimented with the cluster overview.

8.1 Clustering Settings

RQ1 How to group students with similar skills using automatic analysis of the source
code with machine learning?

To answer RQ1, we grouped the students by testing the different distance settings
for the agglomerative hierarchical clustering algorithm. In Table 11, we present the internal
validation index obtained for each configuration of the algorithm using the Cophenetic
Coefficient Correlation. The results obtained are divided by learning topics (T1 to T5). We
tested the combination between the distances (Euclidean and Cityblock) and the Linkage
Method (Single, Average, Complete) for each topic.

The best results were found with the Average Linkage method in the Euclidean
distance configuration. The only exception was in T2, where there was a tie (0.73) between
the distances. In this case, we opted for the Euclidean distance, which was also the best
in the other experiments. According to the data, the results from Kruskal-Wallis H-test
indicated that one or more of the four clusters are significantly different (p < 0.05).
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Table 11 – Internal validation between clusters

Topic Distance Linkage Method
Single Average Complete

T1 Euclidean 0.62 0.80 0.62
Cityblock 0.62 0.77 0.65

T2 Euclidean 0.58 0.73 0.73
Cityblock 0.55 0.72 0.72

T3 Euclidean 0.86 0.88 0.82
Cityblock 0.87 0.85 0.62

T4 Euclidean 0.74 0.81 0.80
Cityblock 0.68 0.80 0.78

T5 Euclidean 0.73 0.82 0.64
Cityblock 0.70 0.70 0.68

8.2 Students’ Grouping

RQ2 How to assess students’ individual programming skills?

To answer RQ2, we use agglomerative hierarchical clustering with the Euclidean
Distance and the Average Linkage method because of RQ1. In addition, we used the
previously defined features for each learning topic that was presented in Table 8.

In our default definition, we get four clusters resulting from the grouping, which
will be called: GA, GB, GC, and GD. Students who have not submitted any solution for
a given list will be identified by NA (not applicable). It is important to note that the
names of the clusters do not represent any evaluative concept, nor do they represent an
order of development quality. The ascending order in the naming of the groups follows
the single pattern of the largest number of features found. However, depending on the
teacher’s interpretation, this can be a strength or a weakness.

In Table 12, we present the task submission rate. The submitted tasks were
separated by cluster and for each learning topic. In the first column, cluster identification
is displayed. From the second to the fourth column, the information for T1 is presented.
The subsequent columns represent information from the other learning topics (T2 to
T5). Each learning topic has the number of students involved for each cluster and the
respective amounts of tasks sent. In the last line, we present the number of students who
did not submit tasks for each learning topic. In addition, we calculate the percentage
of submissions, which is relative to the total expected tasks (codes ∗ Stud.). Students
have a high submission rate, above 90% on average. GA had the best subimission rates
but also had the lowest number of students on average. A highlight point is that in T1
(functions with parameter passage by value), GC grouped 24 students (60% of the total
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approximately) and had a submission rate of 94% of the tasks. Something similar happened
in T3 (struct), in which GB grouped 20 students (approximately 50% of the total) and
had a submission rate of 89% of the tasks. The GD had the lowest submission rates in all
learning topics. In T4 (recursion), GD concentrated its largest number of students and
had the lowest rate of submissions.

Table 12 – Submission rate by cluster
T1 T2 T3 T4 T5
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GA 1 6 100.0% 4 16 100.0% 1 5 100.0% 2 8 100.0% 1 6 100.0%
GB 1 6 100.0% 1 4 100.0% 20 89 89.0% 10 40 100.0% 13 78 100.0%
GC 24 136 94.4% 9 36 100.0% 8 40 100.0% 2 8 100.0% 12 66 91.7%
GD 9 41 75.9% 12 38 79.2% 2 7 70.0% 12 33 68.8% 2 10 83.3%
NA 6 - - 15 - - 10 - - 15 - - 13 - -

Students classified as NA did not submit tasks for the learning topic. Therefore,
they were not considered in the grouping. There is a chance that these students will master
the learning topic of study and refuse to perform the tasks. However, most likely, they
have not learned any of the subjects taught in the learning topics. The first learning topic
(T1) had only six students who did not submit tasks. The other learning topics had an
average of 13 students who did not submit tasks. These values can be explained by why
students are more enthusiastic at the beginning of the course, so the submission rates are
higher. However, as the course progresses and the difficulties increase, more students stop
participating.

In Table 13, we present the cluster output for the five learning topics. The first col-
umn represents the 41 students’ identification, which is solely used to maintain traceability
across learning topics. The number that precedes the student identification corresponds
to the identification of the classroom in question (e.g., #101 corresponds to Classroom
1, and Student 01). The four subsequent columns represent the features extracted from
T1. The next column (sixth) is the cluster obtained from the clustering algorithm. The
following subdivisions represent the extracted features and the cluster obtained for the
other learning topics (T2 to T5).

The teacher can verify each student’s weaknesses and potential by comparing the
Gold-Standard reference values with the results obtained in Table 13, the teacher can
verify each student’s weaknesses and potentials. We will present some possible insights for
the output obtained in our database.

We used boxplot plots to verify the distribution of features extracted in each cluster.
The boxplot graphically describes the quantitative distribution of the data to facilitate
the comparison between features. The graph is divided into quartiles. The bottom line of
the box indicates the first quartile representing 25% of the data distribution. The top line
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of the box indicates the third quartile, representing 75% of the data distribution. The line
that crosses the box represents the median of the data. Also, we have the lower bound and
upper bound of the data represented by the ends of both sides of the box. Finally, outliers
in the rest of the distribution are called outliers. Thus, with the boxplot, it is possible to
visualize the more concentrated data and if there are outliers outside the quartiles. We
present a more detailed analysis and some possible insights into each learning topic in the
following subsections. The graph’s x-axis presents the cluster identification (e.g., GA, GB,
GC, and GD), and the graph’s y-axis represents the value obtained for each feature.



8.2.
Students’G

rouping
129

Table 13 – Model output after extracting features for the 41 students
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101 - - - - NA - - - - NA 5.0 26.0 5.0 3.0 17.0 GB 2.0 4.0 2.0 2.0 2.0 GD 2.0 2.0 1.0 GC
102 3.0 5.0 5.0 10.0 GD - - - - NA 5.0 26.0 5.0 3.0 16.0 GB 2.0 6.0 2.0 2.0 2.0 GD 2.0 2.0 2.0 GC
103 13.0 17.0 12.0 15.0 GC 2.0 2.0 6.0 6.0 GC 3.0 12.0 3.0 3.0 18.0 GB 4.0 9.0 6.0 0.0 4.0 GC 3.0 3.0 2.0 GB
104 11.0 17.0 10.0 15.0 GC 3.0 3.0 6.0 9.0 GA 5.0 26.0 5.0 3.0 20.0 GB 2.0 5.0 3.0 2.0 2.0 GD 3.0 3.0 2.0 GB
105 14.0 12.0 10.0 18.0 GC 2.0 2.0 6.0 6.0 GC 5.0 26.0 5.0 3.0 20.0 GB 3.0 8.0 5.0 4.0 3.0 GB 2.0 2.0 1.0 GC
106 - - - - NA - - - - NA 5.0 29.0 5.0 3.0 16.0 GB 2.0 4.0 3.0 2.0 2.0 GD - - - NA
107 16.0 14.0 24.0 21.0 GC 2.0 0.0 5.0 0.0 GA 5.0 26.0 4.0 2.0 14.0 GB 3.0 6.0 5.0 2.0 3.0 GB 3.0 3.0 3.0 GB
108 9.0 7.0 13.0 16.0 GC 1.0 1.0 9.0 9.0 GD 5.0 26.0 0.0 0.0 0.0 GC 4.0 9.0 6.0 0.0 3.0 GC 3.0 3.0 4.0 GB
109 5.0 10.0 2.0 11.0 GD - - - - NA 5.0 26.0 0.0 0.0 0.0 GC 3.0 6.0 3.0 0.0 1.0 GD 0.0 1.0 2.0 GD
110 13.0 13.0 1.0 8.0 GD 2.0 0.0 3.0 0.0 GD - - - - - NA - - - - - NA - - - NA
111 12.0 14.0 13.0 22.0 GC 2.0 2.0 7.0 10.0 GA 5.0 26.0 0.0 0.0 0.0 GC - - - - - NA 3.0 3.0 2.0 GB
112 14.0 15.0 13.0 9.0 GC 2.0 2.0 7.0 7.0 GC 5.0 26.0 0.0 0.0 0.0 GC 3.0 7.0 6.0 2.0 3.0 GB 3.0 3.0 2.0 GB
113 - - - - NA 2.0 1.0 0.0 0.0 GD 2.0 8.0 0.0 0.0 0.0 GD - - - - - NA - - - NA
114 5.0 10.0 2.0 7.0 GD - - - - NA - - - - - NA - - - - - NA - - - NA
115 15.0 20.0 15.0 22.0 GC 5.0 5.0 3.0 7.0 GB 4.0 19.0 4.0 3.0 18.0 GB 4.0 12.0 5.0 2.0 2.0 GA 3.0 3.0 3.0 GB
116 8.0 13.0 6.0 13.0 GC - - - - NA - - - - - NA - - - - - NA 3.0 3.0 1.0 GC
117 - - - - NA 2.0 1.0 0.0 0.0 GD - - - - - NA - - - - - NA - - - NA
118 15.0 15.0 13.0 10.0 GC 2.0 2.0 6.0 7.0 GC 4.0 20.0 4.0 3.0 16.0 GB 3.0 5.0 6.0 3.0 3.0 GB 1.0 1.0 1.0 GD
119 6.0 8.0 5.0 6.0 GD - - - - NA - - - - - NA - - - - - NA - - - NA
120 - - - - NA 2.0 2.0 3.0 3.0 GD 3.0 10.0 3.0 3.0 16.0 GB - - - - - NA 2.0 2.0 1.0 GC
121 11.0 13.0 7.0 15.0 GC 2.0 2.0 4.0 2.0 GD 4.0 19.0 4.0 3.0 18.0 GB 4.0 9.0 4.0 4.0 4.0 GB 3.0 3.0 1.0 GC
122 10.0 13.0 13.0 24.0 GC 2.0 2.0 6.0 6.0 GC 5.0 26.0 5.0 3.0 20.0 GB 3.0 6.0 4.0 0.0 3.0 GD 3.0 3.0 3.0 GB
123 12.0 14.0 21.0 14.0 GC - - - - NA 5.0 23.0 1.0 0.0 0.0 GC 4.0 12.0 5.0 4.0 4.0 GA 3.0 3.0 3.0 GB
124 15.0 14.0 15.0 16.0 GC 2.0 2.0 3.0 0.0 GD 5.0 25.0 5.0 3.0 16.0 GB 4.0 8.0 5.0 4.0 3.0 GB 3.0 3.0 2.0 GB
125 16.0 14.0 15.0 25.0 GC 2.0 0.0 6.0 0.0 GD 3.0 13.0 0.0 0.0 0.0 GD 2.0 4.0 2.0 2.0 2.0 GD 3.0 3.0 0.0 GC
126 13.0 13.0 15.0 10.0 GC 2.0 2.0 6.0 3.0 GC 5.0 26.0 4.0 2.0 8.0 GC 4.0 9.0 6.0 5.0 4.0 GB 3.0 3.0 1.0 GC
127 - - - - NA - - - - NA - - - - - NA - - - - - NA 2.0 2.0 2.0 GC
128 10.0 14.0 13.0 16.0 GC 2.0 2.0 6.0 6.0 GC 3.0 13.0 2.0 3.0 16.0 GB 2.0 4.0 3.0 0.0 0.0 GD 2.0 2.0 2.0 GC
129 10.0 14.0 12.0 23.0 GC - - - - NA - - - - - NA - - - - - NA - - - NA
130 3.0 5.0 3.0 12.0 GD 1.0 1.0 3.0 3.0 GD 3.0 13.0 3.0 3.0 16.0 GB 2.0 5.0 4.0 3.0 2.0 GD - - - NA
131 12.0 13.0 10.0 18.0 GC 2.0 2.0 3.0 1.0 GD 5.0 26.0 5.0 3.0 38.0 GA 2.0 4.0 2.0 2.0 2.0 GD 2.0 2.0 0.0 GC
132 16.0 20.0 36.0 23.0 GA - - - - NA 5.0 29.0 6.0 3.0 24.0 GB - - - - - NA 3.0 3.0 1.0 GC
133 14.0 19.0 19.0 12.0 GC - - - - NA 5.0 26.0 3.0 0.0 0.0 GC 4.0 9.0 6.0 4.0 4.0 GB 3.0 3.0 3.0 GB
134 5.0 10.0 6.0 11.0 GD - - - - NA 5.0 26.0 5.0 3.0 20.0 GB 2.0 4.0 3.0 2.0 2.0 GD - - - NA
135 14.0 13.0 13.0 12.0 GC 2.0 2.0 6.0 3.0 GC 5.0 26.0 5.0 3.0 20.0 GB 4.0 8.0 6.0 4.0 4.0 GB 3.0 3.0 2.0 GB
136 18.0 22.0 23.0 27.0 GB 4.0 4.0 8.0 10.0 GA - - - - - NA 2.0 4.0 2.0 2.0 2.0 GD 5.0 3.0 3.0 GA
137 7.0 12.0 12.0 21.0 GC 2.0 2.0 6.0 5.0 GC 5.0 26.0 0.0 0.0 0.0 GC - - - - - NA - - - NA
138 5.0 10.0 4.0 10.0 GD - - - - NA - - - - - NA - - - - - NA - - - NA
139 3.0 5.0 1.0 9.0 GD 1.0 1.0 3.0 3.0 GD 3.0 13.0 3.0 1.0 13.0 GB - - - - - NA - - - NA
140 15.0 16.0 16.0 20.0 GC 2.0 2.0 3.0 3.0 GD 5.0 26.0 5.0 3.0 20.0 GB 4.0 8.0 4.0 3.0 3.0 GB 3.0 3.0 2.0 GB
141 14.0 16.0 15.0 25.0 GC - - - - NA - - - - - NA - - - - - NA - - - NA
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8.2.1 Individual programming skills for the T1

In Figure 23, we graphically present the distribution of T1 features. The x-axis
represents the four defined clusters, while the y-axis indicates the occurrence of the
corresponding features. In Figure 23a, we present the NF distribution. Analyzing this
boxplot, we noticed that the median of the GA, GB, and GC clusters are close. This means
that most of the data from these three clusters are similar to the NF feature. However,
students #132 and #136 from the GA and GB clusters, respectively, showed the greatest
similarity for all features. In Figure 23c, we can see that the NC feature was decisive in
separating student #132 from student #136.

(a) Number of Function (NF) (b) Number of Parameters (NP)

(c) Number of Calls (NC) (d) Number of Returns (NR)

Figure 23 – Relationship between clusters and features for the T1

Overall, we noticed that GC occupies a larger region of the boxplot. This also
happens because GC is the cluster with the largest number of students. The GC boxplot
demonstrates that several students are about to migrate from the cluster. This happens
for students about to be upgraded, such as students #107, #115, and #141 – Just as it
happens for students about to be downgraded, such as students #108, #116, and #137.
Therefore, the GC cluster also had more outliers for the NP and NC features. It is possible
to notice that DG students are struggling to progress, but in all cases, not enough features
are developed. In Figure 23a, student #110 excels at creating more functions than his
cluster mates. This also happens more leniently with the same student for the NP feature.
In Figure 23c, we observe that for NC, the students are more concentrated in a small
range of values, indicating that the data are similar. On the other hand, in Figure 23b, we
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observe that the students are more dispersed for NP.

8.2.2 Individual programming skills for the T2

In Figure 24, we graphically present the distribution of T2 features. The x-axis
represents the four defined clusters, while the y-axis indicates the occurrence of the
corresponding features. Overall, the GA boxplot occupied a more extensive region, while
the GC data were concentrated. In the simple type structures (figures 24a, 24b, and 24c),
we observed that the GA cluster was quite comprehensive in encompassing other clusters
in its minimum and maximum limits. What differentiated GB from GA were the NAdd-ds
features, where student #115 presented only three occurrences.

(a) Number of Simple Pointers (NPt-s) (b) Number of Simple Address (NAdd-s)

(c) Number of Array Pointers (NPt-ds) (d) Number of Array Address (NAdd-ds)

Figure 24 – Relationship between clusters and features for the T2

Outliers occurred mainly in array-like structures. In Figure 24c, we observe that
student #112 used more array pointers than the average of his peers. The same is true for
students #121 and #125 in the GD cluster. On the other hand, two GD students were
highlighted for not developing skills related to the NPt-ds feature. In Figure 24d, students
#126 and #135 did not develop the NAdd-ds features as much as their peers. A highlight
point is that the median of GC is equivalent to the third quartile, which gathers 75% of
the students.

From the T2, it is possible to verify how the migration of students between the
clusters occurred along the learning topics. An example is student #107, who was in
T1.GC, close to migrating from the cluster, moved to T2.GA. On the other hand, student
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#108, who was also in T1.GC, but with features below his peers, moved to T2.GD. It is
also interesting to note that 67% of students in GD.T1 moved to NA.T2.

8.2.3 Individual programming skills for the T3

In Figure 25, we graphically present the distribution of T3 features. The x-axis
represents the four defined clusters, while the y-axis indicates the occurrence of the
corresponding features. Overall, the GB boxplot occupied a larger region, except for
GB.NStrI. GB also grouped most students, about 50% of enrolled students. The interesting
point is that the median obtained by GB was close to student #131 of the GA cluster,
except for the NStrC feature. Half of the GB students are aligned with the GA student.
The GC also had its data similarly distributed in the NStr and NStrM features. However,
GC.NStrT (Figure 25c), GC.NStrI (Figure 25d), GC.NStrC (Figure 25e) had their data
more similar to the GD cluster.

(a) Number of Structs (NStr) (b) Number of Struct Members (NStrM)

(c) Number of Struct Typedefs (NStrT) (d) Number of Struct Instances (NStrI)

(e) Number of Struct Calls (NStrC)

Figure 25 – Relationship between clusters and features for the T3
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In Figure 25d, NStrI was the feature that most concentrated the data. Outliers
occurred for features NStrM, NStrI, and NStrC. In Figure 25d, students #107 and #139
trend downgrade in GB.NStrI. On the other hand, student #126 is trending upward in
GC.NStrC.

In the migration of students from T2 to T3, it is possible to observe a large number
of students from different groups assuming GB, approximately 49% of the sample. A
positive point is that 67% of GD.T2 students moved up in level when they moved to T3.
Only two GD.T2 students remained in the GD in T3. Another two GD.T2 students moved
on to NA.T3. Furthermore, only student #136, who had submitted tasks in T2, did not
turn in any task in T3. These insights allow observing greater stability among students in
T3.

8.2.4 Individual programming skills for the T4

In Figure 26, we graphically present the distribution of T4 features. The x-axis
represents the four defined clusters, while the y-axis indicates the occurrence of the
corresponding features. What separated GA from the other clusters was the NCRec
feature. GB has a lower limit coinciding with the GD cluster in NIFPar, NCRec, and
NRRec. The outliers occurred in GD.NFRec with an upward trend for students #109 and
#122, who had three occurrences of recursive functions. Other students who presented
discrepant data were #109, #122, and #128 in GD.NRNRec.

In the migration of students from T3 to T4, the results were somewhat negative.
There was a 12% increase in students who did not submitted any tasks. In addition, it
increased 24% of students from GD.T3 to GD.T4. Although T4 was not exciting in terms
of leveling up students, a positive point was student #123 who came from GC.T1 to
GA.T4. The same happened with student #115 who went from GC.T1 to GA.T4, but in
this case the journey was even better because he went through GB.T2 and GB.T3.

8.2.5 Individual programming skills for the T5

In Figure 27, we graphically present the distribution of T5 features. The x-axis
represents the four defined clusters, while the y-axis indicates the occurrence of the
corresponding features. Overall, GA and GB presented similar features. What differentiated
GA from GB was mainly NMalloc, shown in Figure 27a. Although GB grouped 12 students,
its data was concentrated on the NMalloc and NSizeof features. On the other hand, student
#108 outperformed all other students in GB.NFree. Regardless, GC was closer to GB and
what differentiated them was mainly the NFree features, shown in Figure 27c. Interestingly,
the GD was inferior to the other clusters, except in NFree. In this way, the lower limit of
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(a) Number of Recursive Functions (NFRec) (b) Number of Recursive Functions Calls (NCRec)

(c) Number of Parameters in Conditional (NIFPar) (d) Number of Reursive Returns (NRRec)

(e) Number of Non-Recursive Returns (NRNRec)

Figure 26 – Relationship between clusters and features for the T4

GD.NFree even surpassed the median of GC.NFree.

One event that occurred several times in T2 was that the median coincided with
the first quartile and the lower limit of the clusters. This happened in GC.NMalloc in
Figure 27a, GC.NSizeof in Figure 27b, and in Figure 27c for GB.NFree and GC.NFree.
Outliers occurred twice, only in GC.NFree. Students #131 and #125 never used the free
function to free memory.

In the migration of students from T4 to T5, it is possible to observe only two
students in GD. In addition, there was less dropout among students. Only two students
who submitted in T4 did not submit any tasks in T5 (#106 and #134). Another interesting
insight is the students’ complete journey through the learning topics. For example, #106
showed a possible recovery in GB.T3, when it could have been redeemed course. This
happened in the case of student #101, who started to submit tasks from T3 onwards.
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(a) Number of Malloc (NMalloc) (b) Number of Sizeof (NSizeof)

(c) Number of Free (NFree)

Figure 27 – Relationship between clusters and features for the T5

8.2.6 Clusters quality validation

In order to validate the quality of the generated clusters, we manually checked the
source code of a sample of students for learning topic 1. Our sample procedure consisted
of selecting examples of students closest to each cluster midpoint. Therefore, from GA
cluster we analyzed the source codes from student (#132). From GB Cluster, we only had
one student (#136). From GC Cluster the students closest to the cluster midpoint were
#122 and #131. And, from GD Cluster the selected students were #102 and #138. The
result of our manual analysis is presented in Table 14. We used the following criteria to
identify the level of the quality specification: fully meets ( ), partially meets ( G#), and does
not meet (#). While it may appear that certain students across different clusters exhibit
similarities in certain source code tasks, it is crucial to bear in mind that the clusters were
established based on the entirety of the learning topic’s tasks (six tasks in the T1 case).

Although the order in which the cluster names are defined does not imply superiority,
we noticed that the student in the GA cluster were more careful in their source code
solutions. One example would be in task 01, whose statement is presented in Figure 20.
Apart from receiving integer values, student #132 utilizes the resources of the limits.h
library to verify whether or not the received values fall within the minimum and maximum
numerical values that an integer data type can assume. Another example is GB student
#136, who verifies if the input data is an integer, when it is not, a new value is requested
from the user. In addition, students in the GA and GB cluster enclose the program within
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Table 14 – Clusters quality validation for a sample of students in T1
Cluster GA GB GC GC GD GD Cluster GA GB GC GC GD GD
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Stud.

#
13

2

#
13

6

#
12

2

#
13

1

#
10

2

#
13

8

ta
sk

01

statement      G#

ta
sk

04

statement     G# G#

compile      # compile     #  
logic      G# logic    G# G# G#

validations   # # # # validations    G# # G#

comments   # # # G# comments    G# G# G#

clear buffer   # # # # clear buffer   # # # #
run again   # # # # run again   # # # #
variables names      G# variables names    G# G# G#

external library   # # # # external library    G# # #
own library # # # # # # own library # # # # # #

ta
sk

02

statement   G# G#   

ta
sk

05

statement     # #
compile   # #   compile     # #
logic   G# G# G# G# logic    G# # #
validations   # # # # validations    G# # #
comments   G# G# G# G# comments    G# # #
clear buffer   # # # # clear buffer    # # #
run again   # # # # run again     # #
variables names   G# G# G# G# variables names    G# # #
external library   # # # # external library     # #
own library   # # # # own library # # # # # #

ta
sk

03

statement   G#  G# G#

ta
sk

06

statement    G# # #
compile     # # compile    # # #
logic   G# G# G# G# logic    G# # #
validations   # # # # validations    # # #
comments   G# G# G# G# comments    G# # #
clear buffer   # # # # clear buffer    # # #
run again   # # # # run again    # # #
variables names   G# G# G# G# variables names    G# # #
external library   # # # # external library     # #
own library   G#  #  own library # # # # # #

 The student fully meets the quality specification.

G# The student partially meets the quality specification.
# The student does not meet the quality specification.

a loop so that the user can execute it more than once, they also perform buffer cleaning
before receiving a value, and they also execute operating system commands using the
system() function from the stdlib.h library. These quality specifications are some examples
that differentiate students #132 and #136 from other student clusters.

The students in GC and GD clusters demonstrate a more limited understanding of
the subject compared to the students in the other clusters. The quality requirements were
either partially or not met in most cases. However, what seems to distinguish students
in the GC cluster from students in the GD cluster is the completion of tasks 05 and 06,
which were not submitted by the students in the GD cluster.

8.3 Statistical Test Results

RQ3 Were the extracted features significantly different in each learning topic?

In Table 15, we present the statistical test result performed to compare the distri-
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butions of the different features and verify if the features are significantly different. We
run a test for each learning topic and present the results separately. In the first column,
we identify the features. In the second column, we present the result of the Chi-Square
statistic with the Degree of Freedom (df = 3). Furthermore, in the last column, we
present the value of p. In tables 15a, 15d and 15e, we observed that all features showed
significant differences (p < 0.05). In Table 15b, we observe that only the NPt-s feature
is not statistically different (p = 0.067). Finally, in Table 15c, we observe that only the
NStrM feature is not statistically different (p = 0.079).

Table 15 – Summary of the Kruskal-Wallis H-test statistical test
(a) Statistical test for T1

Feature H(3) p
NF 18.84 0.000
NP 19.43 0.000
NC 22.37 0.000
NR 17.54 0.001

(b) Statistical test for T2

Feature H(3) p
NPt-s 7.16 0.067
NAdd-s 10.90 0.012
NPt-ds 19.91 0.000
NAdd-ds 19.92 0.000

(c) Statistical test for T3

Feature H(3) p
NStr 10.53 0.015
NStrM 6.78 0.079
NStrT 17.69 0.001
NStrI 25.69 0.000
NStrC 21.92 0.000

(d) Statistical test for T4

Feature H(3) p
NFRec 19.92 0.000
NCRec 19.24 0.000
NIFPar 19.27 0.000
NRRec 15.19 0.002
NRNRec 16.99 0.001

(e) Statistical test for T5

Feature H(3) p
NMalloc 17.63 0.001
NSizeof 16.17 0.001
NFree 16.99 0.001

The statistical analysis is relevant for understanding learning topics, enabling
the identification of significant differences among features, detecting patterns in source
code, and providing support for decision-making in the development of new features. This
analysis helps identify features that can be improved and highlights aspects of source code
that may form the basis for the course. Consequently, it enables a more informed and
data-driven approach to enhancing the computational model.
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8.4 Correlation between the Features

RQ4 What is the correlation between the features extracted in each learning topic?

In Table 16, we present the result of the correlation between the features. With
these results, we verify if there is a relationship between the features that were defined for
each learning topic. We run a test for each learning topic and present the results separately.
In the first column, we identify the features. In subsequent columns, we repeat each feature
to cross them in pairs. The table rows show the resulting value of the obtained Spearmans’
rho coefficient. In Table 16a, we observe a high correlation between all the features of T1.
We can highlight the relationship between the number of functions (NF) with parameters
(NP) and the calls (NC) that had the highest coefficients for T1 (ρ = 0.80). In Table 16b,
we observe a low correlation between simple type pointers and arrays. We can highlight
the relationship between simple pointers and array addresses (ρ = 0.08). In Table 16c,
we observe features with the lowest correlations. The number of structs (NStr) and the
number of struct instances (NStrI) had a negative correlation (ρ = −0.06). That is, the
higher the frequency of NStr, the lower the frequency of NStrl. Finally, in Table 16d, we
highlight recursive functions (NFRec) and recursive function calls (NCRec) that are highly
correlated (ρ = 0.92). The same happens in Table 16e, with the commands of Malloc and
Sizeoff (ρ = 0.97).

The statistical correlation is relevant in understanding learning topics, enabling the
identification of non-linear relationships among source code features, reducing the influence
of outliers, and considering scale independence. In source code features, relationships
between different features can be complex and may not follow a linear pattern, especially
due to programming errors or unique code conditions. The use of correlation allows for
the identification and quantification of such relationships, even when they do not exhibit
a direct association.

8.5 Overview of Students’ Grouping

RQ5 How to get an overview of programming skills from student groups?

To answer RQ5, we present the midpoint calculation for each feature within a
cluster of students. We present these results in the next subsections, divided into five
different tables (tables 17 to 21) representing each learning topic. The five tables follow
a common organization. In the first column, cluster identification is presented. In the
second column, the number of students grouped is presented. The subsequent columns



8.5. Overview of Students’ Grouping 139

Table 16 – Summary of the Spearman’s rho correlation between the features
(a) Correlation for T1

NF NP NC
NP 0.80
NC 0.80 0.74
NR 0.50 0.52 0.62

(b) Correlation for T2

NPt-s NAdd-s NPt-ds
NAdd-s 0.68
NPt-ds 0.30 0.47
NAdd-ds 0.08 0.27 0.72

(c) Correlation for T3

NS
tr

NS
trM

NS
trT

NS
trI

NStrM 0.91
NStrT 0.40 0.46
NStrI -0.06 0.02 0.80
NStrC 0.12 0.21 0.85 0.88

(d) Correlation for T4

NF
Re

c

NC
Re

c

NI
FP

ar

NR
Re

c

NCRec 0.92
NIFPar 0.79 0.73
NRRec 0.40 0.38 0.34
NRNRec 0.80 0.74 0.77 0.56

(e) Correlation for T5

NSizeof NMalloc
NMalloc 0.97
NFree 0.41 0.38

represent the features of the learning topic. For each feature, the calculation of the midpoint
and its respective standard deviation are presented. In addition, the expected reference
value (Gold-Standard) of each feature is presented in the last row of the tables. The
Gold-Standard was defined according to the teacher’s solution logic.

In general, GD students presented results much lower than expected and needed
special monitoring from the teacher. Students developed at least the first exercises on
the list, either completely or almost all of them incompletely. These students are close to
dropping out of the course or are likely to retake the course. As learning topics advance,
the possibility of recovering GD students becomes increasingly remote. Promoting tasks in
pairs (for example, pair programming (HANNAY et al., 2009)) with members of different
groups could help GD students. Another option is to have stronger students teach weaker
ones, as in the 300 methodology (FRANGELLI, 2015). Individually, the teacher can direct
easy-level role tasks to reinforce topic understanding and restore student confidence.
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8.5.1 Overview for the T1

We present the resulting midpoint for each T1 cluster in Table 17. A total of 35
students participated in the T1 tasks submissions, corresponding to 85% of the enrolled
students. The other six enrolled students did not participate in the T1 tasks submission.

Table 17 – Midpoint obtained from the grouping in T1

Cluster* # Stud. NF NP NC NR
GA 1 16.0 ±0.0% 20.0 ±0.0% 36.0 ±0.0% 23.0 ±0.0%
GB 1 18.0 ±0.0% 22.0 ±0.0% 23.0 ±0.0% 27.0 ±0.0%
GC 24 12.5 ±2.5% 14.3 ±2.5% 13.5 ±3.9% 17.2 ±4.8%
GD 9 5.3 ±2.9% 8.4 ±2.7% 3.2 ±1.7% 9.3 ±1.9%
Gold-Standard 16.0 16.0 16.0 28.0

* There were no applied (NA) in the grouping of six students who did not
submit any source code solution for this learning topic.

Only one student was labeled with GA. He used the same number of functions
defined in the reference value. The number of returns was lower than expected. In terms
of functions with passing parameters by value, a higher frequency is expected in NR. On
the other hand, the number of parameters was higher than expected. The results of these
features are within an acceptable range of variation. However, the main point of attention
was using the created functions represented by NC. The student made twice as many calls
to functions as anticipated. The functions created are being called over and over again,
probably in an exaggerated way. In this case, the NC feature does not represent a threat
to the structure of the developed solutions. In general, additional instructions are being
implemented, and less objective logic is being developed. This group of students needs the
teacher’s help to make their source codes more uncomplicated and objective.

Only one student was labeled with GB. He used features above the reference value
for all features except NR. The first feature that draws the teacher’s attention is the number
of functions, as the student may fragment the source code beyond what is necessary. On
the other hand, the NP and NC features point to coherence in coding: the more functions
developed, the higher the exchange of parameters, and the higher the number of function
calls. Reviewing the scope of the variable is the first activity indicated for students to be
able to manipulate functions. The understanding that the variables sent by parameter
need to work again in the main function with new values is fundamental for the evolution
of GB students. Second, NR is a feature that generates an alert for the teacher, but it
should not be a concern. As the student used more functions and parameters than the
reference, the returns of the functions were expected to the same extent. Overall, the GB
generated enough features to solve the source code tasks and presented coherence between
the features. The GB represents a possibly self-taught group of students capable of quickly
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learning different logic to solve the same exercise. Correcting the list of classroom exercises
would be enough for the GA to understand the possible optimizations in their source code.

The largest cluster was GC, which grouped 24 students. Overall, the cluster
midpoint was close to the reference values. However, attention should be on the resulting
standard deviation that was higher than 2.4% for all features. A higher heterogeneity
of solutions is also expected when the cluster is large. This cluster can reach extremes
for the collected features. The resulting standard deviation confirmed the diversity of
solutions. Probably, some students produced tasks closer to the reference value, while
others developed simple tasks to the point of almost switching clusters. By looking at
these details, the teacher could increase the number of clusters (k = 5) in the algorithm
configuration to produce more specific clusters. In general, GC students are still following
the topics studied. Some tasks were not submitted, as shown in the submission rate shown
in Table 12. One possibility is that students who need more help from the teacher are
starting to give up on more difficult tasks. The teacher can rescue these specific students
in the individual output presented in Table 13. Generally, reviewing the subjects studied
and encouraging students to do more exercises to ensure learning is important.

8.5.2 Overview for the T2

We present the resulting midpoint for each T2 cluster in Table 18. A total of 26
students participated in T2 tasks submissions, corresponding to 63% of enrolled students.
The other 15 enrolled students did not participate in the T2 tasks submission.

Table 18 – Midpoint obtained from the grouping in T2

Cluster* # Stud. NPt-s NAdd-s NPt-ds NAdd-ds
GA 4 2.5 ±1.1% 2.5 ±1.1% 7.5 ±1.1% 9.5 ±0.5%
GB 1 5.0 ±0.0% 5.0 ±0.0% 3.0 ±0.0% 7.0 ±0.0%
GC 9 2.0 ±0.0% 2.0 ±0.0% 6.1 ±0.3% 5.4 ±1.4%
GD 12 1.8 ±0.4% 1.2 ±0.8% 3.0 ±1.6% 1.3 ±1.4%
Gold-Standard 3.0 3.0 6.0 6.0

* There were no applied (NA) in the grouping of 15 students who did
not submit any source code solution for this learning topic.

Four students were labeled with GA. They used the number of simple type pointers
and addresses closest to the reference value. However, GA also had the highest number
of array pointers. Also, GA is probably repeating the call of some function and therefore
needs to pass more array-type addresses. The students in the GA cluster do not represent
a concern for the teacher.

On the other hand, GB had the highest number of simple pointers and their
references. As for arrays, we observe that the number of pointers is considerably less
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than the number of addresses. In this cluster, the call of repeated functions that receive
array pointers was even more aggravating. Also, what could be happening is that GB
compensated for array-type pointers by using simple-type pointers. The student could
receive reinforcement regarding the use of array pointers.

GC grouped a significant portion of students (22%). They presented features slightly
below the reference value. The only exception was for the number of array-type pointers.
These students are probably developing the source codes with the least amount of features
expected to solve the task. However, the results show that the GB follows the techniques
and topics taught. It is important that the teacher encourages this cluster in the resolution
of tasks and keeps attention to its results.

The most important point in this learning topic is the features related to pointers
and their respective addresses. Note that all groups are declaring and using pointers.
Overall, considering the resulting standard deviation, we observed that the T2 cluster had
fewer variations within the clusters. Another highlight is that most groups present related
features proportionally. Regardless of the resulting numbers, this consistency between the
features indicates a good understanding of the source code being developed.

8.5.3 Overview for the T3

We present the resulting midpoint for each T3 cluster in Table 19. A total of 32
students participated in T3 tasks submissions, corresponding to 78% of enrolled students.
The other 10 enrolled students did not participate in the T3 tasks submission.

Table 19 – Midpoint obtained from the grouping in T3

Cluster* # Stud. NStr NStrM NStrT NStrI NStrC
GA 1 5.0 ±0.0% 26.0 ±0.0% 5.0 ±0.0% 3.0 ±0.0% 38.0 ±0.0%
GB 20 4.4 ±0.9% 21.8 ±6.2% 4.3 ±1.0% 2.9 ±0.5% 17.7 ±2.5%
GC 8 5.0 ±0.0% 25.8 ±0.7% 1.0 ±1.5% 0.3 ±0.7% 1.0 ±2.6%
GD 2 2.5 ±0.5% 10.5 ±2.5% 0.0 ±0.0% 0.0 ±0.0% 0.0 ±0.0%
Gold-Standard 5.0 26.0 5.0 3.0 17.0

* There were no applied (NA) in the grouping of 10 students who did not submit any
source code solution for this learning topic.

Only one student was labeled with GA. It presented results equal to the reference
value. The exception was for the NStrC feature, which generated twice as many occurrences.
What may have happened is that the student is being detailed in developing his source
code. Once the student has scored well on the other features, a positive theory is valid.
Therefore, it must print data in abundance to provide a better experience for those using
the program.
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The most expressive cluster was GB (48%). GB obtained results slightly below the
reference values. Although the NStrC feature outperformed the benchmark and the NStrM
feature was inferior, this should not be of concern to the teacher. We must consider that
many students are involved and that the standard deviation for these two features was
high (6.2% and 2.5%, respectively).

Although GC obtained regular results for NStr and NStrM, the cluster obtained a
result much lower than expected for the last three features (NTstrT, NStrI, and NstrC).
This cluster is likely bringing together students who have not fully understood the learning
topic. They need tutoring to review learning and solve more exercises.

8.5.4 Overview for the T4

We present the resulting midpoint for each T4 cluster in Table 20. A total of 26
students participated in T4 tasks submissions, corresponding to 63% of enrolled students.
The other 15 enrolled students did not participate in the T4 tasks submission.

Table 20 – Midpoint obtained from the grouping in T4

Cluster* # Stud. NFRec NCRec NIFPar NRRec NRNRec
GA 2 4.0 ±0.0% 12.0 ±0.0% 5.0 ±0.0% 3.0 ±1.0% 3.0 ±1.0%
GB 10 3.6 ±0.5% 7.7 ±1.3% 5.3 ±0.8% 3.5 ±0.9% 3.4 ±0.5%
GC 2 4.0 ±0.0% 9.0 ±0.0% 6.0 ±0.0% 0.0 ±0.0% 3.5 ±0.5%
GD 12 2.2 ±0.4% 4.7 ±0.8% 2.8 ±0.7% 1.6 ±1.0% 1.8 ±0.7%
Gold-Standard 4.0 10.0 8.0 6.0 4.0

* There were no applied (NA) in the grouping of 15 students who did not submit
any source code solution for this learning topic.

Two students were labeled with GA. They used the same amount of recursive
functions as the reference value. Calls to recursive functions were also close to expectations,
indicating that recursive functions were reused throughout the source code. The other
features were lower than expected. GB obtained similar results with the first cluster. The
decisive feature in separating these two clusters was NCRec. GB made 30% fewer recursive
calls than GA. However, GB also grouped a larger share of students (24%).

A point of attention was the number of recursive returns. NRRec indicates whether
the student is implementing recursive functions that work and is an important feature for
the learning topic. GA and GB obtained half of the expected recursive returns. However,
this may not be a concern because students may not be anticipating more than one return
situation in the same recursive function.

Two students were labeled with GC. The number of recursive returns that resulted
in zero caught our attention in this cluster. That is, there is a high possibility that the
functions developed are not recursive in the execution of the application. The students
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in this cluster need the teacher’s help solving this issue. The other features are balanced
against the other clusters and the reference values.

Overall, considering the resulting standard deviation, we observed that the clustering
of T4 had little variation within the clusters. The NIPar and NRNRec features generated
similar behavior for GA, GB, and GC. All recursive functions must have at least one
stop condition. In this sense, the NIFPar and NRNRec features complement each other.
The GA, GB, and GC clusters met the minimum stopping conditions that agree with the
number of recursive functions but obtained results below the reference value. It would
be important for the teacher to review the subjects and demonstrate other source code
examples to improve students’ skills in controlling recursive functions.

8.5.5 Overview for the T5

We present the resulting midpoint for each T5 cluster in Table 21. A total of 28
students participated in T5 tasks submissions, corresponding to 68% of enrolled students.
The other 13 enrolled students did not participate in the T5 tasks submission.

Table 21 – Midpoint obtained from the grouping in T5

Cluster* # Stud. NSizeof NMalloc NFree
GA 1 5.0 ± 0.0% 3.0 ± 0.0% 3.0 ± 0.0%
GB 13 3.0 ± 0.0% 3.0 ± 0.0% 2.5 ± 0.6%
GC 12 2.4 ± 0.5% 2.4 ± 0.5% 1.1 ± 0.6%
GD 2 0.5 ± 0.5% 1.0 ± 0.0% 1.5 ± 0.5%
Gold-Standard 3.0 3.0 3.0

* There were no applied (NA) in the grouping of 13 students
who did not submit any source code solution for this
learning topic.

Only one student was labeled with GA. This student exceeded the expected values
in the reference for using the sizeof operators. However, its other features were equivalent
to the reference values. The GA result does not negatively impact the structures used
since the Sizeof operator is used as a precaution not to allocate more (or less) memory
than necessary.

GB and GC formed large clusters at T5. Still, it is important to note that although
it was the largest group, the standard deviation was low. GB met the expected values,
except for the average of free functions, which was lower than expected. Given the number
of students in the GC cluster, the Nfree feature does not represent a concern for the
teacher. Regardless, the GC obtained lower results in relation to the reference values. The
use of sizeof and malloc is balanced, representing a positive point. However, the students
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are struggling to free up the memory that has been allocated. For this reason, GC students
need help understanding the importance of the structures studied in T5.

8.6 Final Remarks

In this chapter, we present the analysis of the results obtained from our experiments.
For this, we used a database with more than 650 real-world source code tasks that were
developed in C language. Then, we extracted the 21 features defined in Chapter 7, grouped
the students, and presented the results for the five learning topics. This thesis was financed
in part by the Coordenação de Apereiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001.

In RQ1, we present the experiment to define the configuration of the machine
learning technique. We verified which would be an adequate configuration to perform the
grouping of students based on the extracted features. We tested the two categories of
algorithms widely used in the literature: divisive and hierarchical. The clusters formed by
the divisive algorithm were similar to those formed by the hierarchical algorithm. Other
clustering algorithms could have been tested, finding the best clustering algorithm is
beyond the scope of this research. Our focus was on testing the feature set we created.
We used the agglomerative hierarchical clustering algorithm to cluster the students. We
considered the freedom to define the number of clusters after clustering and the visual
dendrogram system that can help debug cluster organization. Thus, we ran an experiment
for each learning topic with different distance settings between students and between
clusters. We apply an internal cluster validation to verify the best configuration. In addition,
we performed a test to verify if the cluster separation was statistically significant. We
found the Euclidean distance metric and the Average Linkage method as the setting that
best represented the data.

In RQ2, RQ3, and RQ4, we present the experiment to verify the students’ individual
programming skills. These abilities were identified through the previously defined features
and extracted from the source code tasks. First, we present the submission rate of the
tasks to understand the context in which the results were obtained. A point of attention
was the percentage of tasks submitted on each learning topic. The student may have
chosen to do only some tasks instead of all, which can happen for several reasons. The
student may not have had time to complete the tasks and decided to prioritize the quality
of only a few tasks. Another possibility is that the student has only developed the first
tasks, which are usually less complex and require less understanding of the learning topic.
Our model allows us to measure development quality through the extracted features. We
allow the teacher to input reference values that can be used as a parameter to verify the
minimum features expected in a learning topic. However, our experiment considered all
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tasks within the learning topic. This way of dealing with tasks prevents us from trying to
find students who developed only a few source code tasks but the students who would be
able to develop all of them. This granularity could be modified according to the teacher’s
interest and thus allow the tasks to be analyzed individually. In addition, we found that
our features have statistical significance and present the correlation between the features.
An interesting example was the simple-type structures that had a low correlation with
the array-like structures in T2. This finding confirms the learning outcomes that were
expected. On the other hand, we observed that NFree had a low correlation with the other
features in T5. These results help us understand the strengths and weaknesses observed
the source code solutions of each student.

In RQ5, we present the experiment performed to get an overview of programming
skills by cluster. These results help the teacher find strengths and weaknesses within the
cluster quickly. A weakness of the midpoint calculation is that clusters can have students
at extreme limits, which can considerably differentiate students. Although we present
the number of students grouped and the standard deviation obtained in the feature, the
overview can cause a false impression. Therefore, we recommend that confirmation be
made of the student’s individual skills. Furthermore, we present the Gold-Standard concept
that was used to define the expected values for each feature. Thus, it was possible to
identify in a macro way which clusters were closer or farther from the expected learning
outcomes and to direct specific help. The important point is that the Gold-Standard can
also be used in the individual analysis of students.

In regards to the related work presented in Chapter 5, we present research related to
students’ grade that uses computational approaches to correct students’ tasks automatically
and presents a grade according to established criteria. Grading tools strictly check whether
the source code is correct or incorrect. However, we are interested in finding out the
strengths and weaknesses of students’ programming skills. Our computational model
provides a view of what is happening within the source code. In this way, the teacher
has insights into what the student might be doing wrong without looking inside the
source code. According to Ullah et al. (2018), one of the main limitations of the static
approach is comparing students’ code with a teacher-provided model solution since this
comparison is usually made character by character. In our approach, this limitation is
overcome since the teacher might optionally provide only one source code solution for
each programming task, which is then used as a Gold-Standard. However, regardless of
whether or not the Gold-Standard is present, the proposed method provides a visual and
meaningful visualization of the student’s programming skills. This visualization can be
seen as either per student or group of students with similar programming skills.

We present also research related to students’ performance. In particular, monitoring
and evaluating students with machine learning techniques. Among the studies found, there is
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special attention to predicting student performance to use this information for interventions
in teaching-learning programming. These predictions are usually driven by high failure
and drop out rates in CS1 courses. The use of supervised machine learning techniques
has shown promising results. However, the most significant harm in teaching-learning is
generating previous data to train the computational model. Often this data is generated in
a classroom to be used in a new classroom, generating a new problem: the student profile.
Regardless, our computational model uses the current classroom source codes. Also, the
teacher can take advantage of the results from the first source codes developed by the
students.

Overall, our model allows the teacher to analyze the situation of their students
without opening any source code. The results allowed us to separate the students into
groups. This separation does not necessarily define which student is better but defines
which students have different skills. From this, teaching methodologies can be applied
according to the teacher’s strategies. We know that other features could be created, but
we try to define features representing each learning topic’s expected learning outcomes.
Our features make it possible to identify whether students are acquiring enough knowledge
to proceed in the course. The next chapter concludes this doctoral thesis. We rescued our
goals and revisited our research questions. Also, we describe our contributions, discuss
research limitations, and present future directions.
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Chapter 9

CONCLUSIONS

Current professions have become dependent on computer software, and it is antici-
pated that future professions will be exercised by intelligent software. With this advance
and the popularization of technology, the demand for CS1 courses increased significantly.
However, the first contact with the programming languages is not easy; leading groups of
students to fail and drop out of the courses.

Regardless, a great responsibility is attributed to teachers, who need to monitor
student performance to promote appropriate teaching-learning for each group of students.
However, evaluating source code solutions is time-consuming for the teacher and becomes
even more challenging in large classes. We presented the efforts that have been made to
develop computational approaches that support teaching-learning programming in the
context of the problems presented in this research. The students’ grade approaches can
help professors grade large volumes of source code tasks. Regardless, students’ performance
approaches can help the teacher automatically identify students who are facing obstacles in
the course. Finally, students’ grouping tools can bring together large numbers of students
and their source code tasks to provide a summary overview for the teacher.

Thus, the help of automated mechanisms that use machine learning techniques is
greatly valued. In this context, our main research objective was to develop a computational
model that uses machine learning techniques to automatically analyze source codes and
group students with similar programming skills. Our thesis hypothesis was: "It is possible to
group students with related programming skills from the automatic analysis of their source
code tasks". To achieve our objective and answer our thesis hypothesis, we conducted
a literature review to understand the teaching-learning area of programming (SILVA et
al., 2019). Our main discoveries were the classifications of learning content, tools, and
teaching-learning programming strategies. This gave us the insight to group students based
on their source code. Thus, we delved into the fundamentals of unsupervised machine
learning techniques focusing on clustering algorithms.
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As an initial result, we developed a computational approach for clustering students
from their source codes using an agglomerative hierarchical clustering algorithm (SILVA;
SILLA, 2020). The extracted features were based on text using the keywords of the
programming language. Our experiment was performed with source code tasks based on
programming exercise lists for a complete academic period. We identified three clusters
of students, one of whom needed more help in the learning process. Although this first
experiment has some limitations, it was an important step toward building this thesis for
several reasons. First, we performed all the steps involved in an unsupervised machine
learning setting, from the database creation to the computational model evaluation. It
is important to note that this thesis’s author had no previous experience with machine
learning research. Second, the first experiment’s main limitation is that it considers all the
source code solutions developed by students during the whole academic period at once. As
discussed in Chapter 8, this prevents any possibility of teacher intervention to support
the students who need help during the current academic period. Finally, the extracted
features were generic and did not uniquely characterize each learning topic.

Based on the extensive investigations carried out and the limitations discovered,
our research efforts led us to identify a significant research gap that constitutes the main
focus of this doctoral thesis, highlighted in Chapter 7. The fundamental idea of this
study was to provide valuable support to professors in tracking students’ strengths and
strengths in a programming course during the academic period. To achieve this overarching
goal, the creation and adaptation of new source code features was considered essential.
These designed features have been strategically tailored to capture and track students’
academic progress as they traverse diverse and challenging learning topics. Consequently,
this initiative not only facilitates more informed and personalized instructional approaches,
but also enables personalized interventions to better address each student’s individual
learning needs.

In this research, we defined a total of 21 source code features for five learning
topics. We present a computational model to cluster students from their source code
tasks using an agglomerative hierarchical clustering algorithm. We carry out the practical
application of our model in a database of more than 650 real-world source codes. Our
results provided insights into the potentials and weaknesses obtained in developing learning
topics. Our model allows the teacher to understand students without opening the source
code. Furthermore, the teacher does not depend on a specific programming environment
and can create his own source code tasks.
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9.1 Research Limitations and Future Work Directions

After developing this doctoral thesis, several research gaps have come to light,
presenting intriguing opportunities for future investigation. In the ensuing discourse, we
aim to delve into the delineated limitations unveiled by our study, elucidating how these
findings can serve as a foundation for further advancements in the field. By dissecting
these constraints, we intend to offer insightful directions that can be leveraged to enhance
and mitigate the identified issues, thereby fostering a more comprehensive understanding
of the subject matter.

• The diversity of programming languages: our computational model is strongly
linked to the C Language. This is because identifying and extracting features from
source code tasks requires prior knowledge of language-specific behaviors. However,
this limitation is only present in the extractor module, which works directly on the
diversity of language structures to extract the features. A modification in the coding
of the extractor module makes it possible to replicate our computational model to
other input programming languages. We choose the C Language because it is widely
used to teach programming, and it serves as a basis for learning other languages,
such as Java or Python.

• The number of clusters: the nature of our database requires a process of discovering
the ranking of students within the cluster. We define four clusters as a default to
support the idea that we can have four groups of students: very skillful, skillful,
medium, and unskilled. Furthermore, the rationale behind using four clusters in our
experiments is that in our collective experience (considering the three authors of
the research) in teaching programming for over 38 years in different universities, we
normally came across students that struggle in the module, students that struggle a
bit, students that do well in the module and a few number of students that excel
at the module, hence the four clusters. Other authors in the literature defined a
similar number of clusters that also took as a premise the qualification of students,
like Anand et al. (2018) and Aottiwerch and Kokaew (2018). However, to guarantee
the teacher’s autonomy, the definition of the number of clusters in our model is
parameterized. The teacher can modify this value according to the reality of the
classroom and the teaching strategy. In addition, we chose not to group enrolled
students who did not send a source code solution on a given topic. Regardless, the
standard way our model was configured allows the teacher to carry out interactive
interventions among students. Although our focus is not on methodologies, our
model allows for cases in which the teacher wants to propose activities using active
learning methodologies. These cases require the composition of groups of students
with different abilities. Therefore, ranking techniques or student pairing benefit from
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the results generated by our model. A future direction that would make our model
more self-contained would be to add automatic adjustment of the number of clusters
at runtime.

• The temporality of the experiments: our experiments were carried out with a
class that had already been completed. In order to repeatedly test the created features
and the developed implementations, it was necessary to have a complete database.
Carrying out classroom experiments in real time would make our research unfeasible.
To mitigate threats to validity and not impact our results, we use our database
to simulate an ongoing academic period. Our experiments were run progressively
across learning topics (T1 to T5). However, obtaining the results as the weeks
of classes progressed would be interesting. One research possibility is to replicate
our experiments in a production environment so that the teacher can follow each
student’s progress and interfere in the teaching-learning process to optimize the
student’s gains.

• The learning topics: our experiments cover specific learning topics that are not
the most fundamental programming language commands. However, we understand
that this stage involves complete and complex knowledge that requires a closer look
from the teacher. An avenue for further investigation lies in the development of
more elementary features aimed at catering to novices in the realm of programming
education. As evidenced in our prior research (SILVA; SILLA, 2020), we introduced
features suitable for more beginning topics encompassing areas like input and
output, conditionals, diversion, and looping structures. Expanding the feature set
to encompass foundational concepts can enhance the model’s applicability across
varying levels of programming proficiency.

• The defined features: our features were defined from the learning topics embedded
within the course curriculum. However, the potential exists for the introduction of new
features that align with criteria deemed significant by other teachers. To develop new
features, it’s crucial to ensure congruence with the established model’s overarching
goals and focus on capturing salient aspects of student skills. The alignment of
these new features with the existing ones should be guided by the pedagogical
context and the desired insights into students’ programming skills. Rigorous testing
and validation of these new features against the established benchmarks would be
necessary to ascertain their effectiveness in enhancing the comprehensiveness of the
model while preserving its foundational principles. In our endeavor, we made the
strategic decision to reduce the dimensionality of our feature vector by retaining solely
those features intricately associated with the learning topics and their corresponding
learning outcomes. Furthermore, the exploration of different features combinations
remains feasible. An interesting avenue for future investigations is to define weights
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according to the importance of the learning topic. The delineation of feature relevance
could facilitate the inclusion of additional features per topic while preserving the
pedagogical essence of the learning process.
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