
Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

Latent Vectors’ Update Optimization and

Negatives-Relevant Sampling in One Class

Collaborative Filtering Recommender Systems

Antônio David Viniski

Supervisor

Jean Paul Barddal

Co-Supervisor

Alceu de Souza Britto Jr.

Curitiba
2023

Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

Latent Vectors’ Update Optimization and

Negatives-Relevant Sampling in One Class

Collaborative Filtering Recommender Systems

Antônio David Viniski

Thesis presented to the Programa de

Pós-Graduação em Informática as a partial

requirement for the degree of Doctor in

Informatics.

Major Field: Computer Science

Supervisor: Jean Paul Barddal

Co-supervisor: Alceu de Souza Britto Jr.

Curitiba
2023

Dados da Catalogação na Publicação
Pontifícia Universidade Católica do Paraná

Sistema Integrado de Bibliotecas – SIBI/PUCPR
Biblioteca Central

Sônia Maria Magalhães da Silva – CRB 9/1191

 Viniski, Antônio David
V785l Latent vectors’ update optimization and negatives-relevant sampling in one
2023 class collaborative filtering recommender systems / Antônio David Viniski ;
 supervisor: Jean Paul Barddal ; co-supervisor: Alceu de Souza Britto Jr. – 2023
 xiii, 131 f. ; il. : 30 cm

 Tese (doutorado) – Pontifícia Universidade Católica do Paraná, Curitiba, 2023
 Bibliografia: f. 107-120

 1. Fluxo de dados (Computadores). 2. Processamento eletrônico de dados.
 3. Informática. I. Barddal, Jean Paul. II. Britto Júnior, Alceu de Souza. III.
 Pontifícia Universidade Católica do Paraná. Programa de Pós-Graduação em
 Informática. IV. Título.

 CDD. 20. ed. – 004

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil
Fone: (41) 3271-1669 e-mail: secretaria@ppgia.pucpr.br

Pontifícia Universidade Católica do Paraná
Escola Politécnica
Programa de Pós-Graduação em Informática

Curitiba, 07 de novembro de 2023.

86-2023

DECLARAÇÃO

Declaro para os devidos fins, que ANTÔNIO DAVID VINISKI defendeu a

tese intitulada “Latent Vectors’ Update Optimization and Negatives-Relevant

Sampling in One Class Collaborative Filtering Recommender Systems”, na

área de concentração Ciência da Computação no dia 30 de junho de 2023, no

qual foi aprovado.

Declaro ainda, que foram feitas todas as alterações solicitadas pela Banca

Examinadora, cumprindo todas as normas de formatação definidas pelo

Programa.

Por ser verdade firmo a presente declaração.

Prof. Dr. Emerson Cabrera Paraiso

Coordenador do Programa de Pós-Graduação em Informática

Dedico este trabalho a todos que contribuíram durante o meu processo de doutoramento:
a minha família, por me apoiar e incentivar na busca pelo conhecimento; aos meus

mestres, que confiaram em mim, sempre me auxiliaram e continuam auxiliando dentro
e fora do meio acadêmico; e aos meus amigos, que vibram comigo em cada conquista.

"Eu prefiro ter perguntas que não podem ser respondidas a ter respostas que não podem
ser questionadas". Richard Feynman

Abstract

Recommender systems suggest items that a particular user prefers based on his-
torical behavior, actions, and feedback. Data on users and items are rapidly and
continuously generated in real-world applications, such as e-commerce, social
media, and digital marketing. Thus, these scenarios can be formulated as data
stream problems. Furthermore, the recommendation systems must deal with
challenges inherent in data streams, such as concept drifts and cold start, since
the users’ interests are dynamic and change over time, and the emergence of new
users and items from the stream is also expected. Several techniques have been
proposed in the literature to tackle these recommendation problems. However,
most of these techniques require additional information about users and items,
such as demographic and social network data. Nonetheless, additional informa-
tion is often unavailable in most real-world scenarios, and the system must use
the provided data to alleviate these problems. In this sense, this project aims to
optimize collaborative recommendation models via adaptations in latent vector
updates and unobserved negative-relevant item sampling. As a byproduct of
this research, a novel recommendation dataset for collaborative filtering was
introduced, in which was tested popular batch and streaming recommendation
models. It was proposed four variants of four adaptive learning rate optimizers,
Adam, AMSGrad, Nadam, and RMSprop, to provide more significant updates in
the Incremental MF recommender models. In addition, one of our contributions
relies on optimizing the property unknown items selection in models trained
with negative items. It was proposed two negative-relevant sampling strategies
combined with pairwise and point-wise recommender models. According to
the results obtained, both contributions significantly improve the recommender
model’s performance. Were observed that the incremental models are most
suitable in scenarios with concept drift and cold-start in the introduced dataset.
The adaptive optimizers improve the RECALL and NDCG rates by up to 11.1
and 7.5 percentage points, respectively. Considering the negative-relevant sam-
pling contribution, the proposed methods increased RECALL values by up to
17.4 percentage points.
Key-words: Streaming Recommendation, Incremental Learning, Collaborative
Filtering, Implicit Feedback

i

Resumo

Os sistemas de recomendação sugerem itens que um determinado usuário pref-
ere com base em seu comportamento histórico, ações e feedback. Em aplicativos
do mundo real, dados sobre usuários e itens são gerados de forma contínua e
rápida, como e-commerce, mídia social, marketing digital e consumo de con-
teúdo em muitos domínios. Portanto, esses cenários podem ser formulados
como um problema de fluxo de dados. Além disso, os sistemas de recomen-
dação devem lidar com alguns desafios da moda streaming, como concept drifts
e cold start, uma vez que os interesses dos usuários são dinâmicos e mudam com
o tempo, e também é esperado o surgimento de novos usuários e itens do fluxo.
Várias técnicas têm sido propostas na literatura para resolver esses problemas
de recomendação. No entanto, a maioria dessas técnicas requer informações
adicionais sobre usuários e itens, como dados demográficos e de redes sociais.
No entanto, informações adicionais geralmente não estão disponíveis na maio-
ria dos cenários do mundo real, e o sistema deve usar os dados fornecidos para
aliviar esses problemas. Nesse sentido, este projeto visa otimizar modelos de
recomendação colaborativa por meio de adaptações em atualizações de vetores
latentes e amostragem de itens negativos relevantes não observados. Como
subproduto desta pesquisa, um novo conjunto de dados de recomendação para
filtragem colaborativa é introduzido, no qual foram testados modelos populares
de recomendação em lote e streaming. Foram propostas quatro variantes de qua-
tro otimizadores de taxa de aprendizado adaptativo, Adam, AMSGrad, Nadam
e RMSprop, para fornecer atualizações mais significativas nos modelos de re-
comendação incremental baseados na Fatoração de Matriz. Além disso, uma
das contribuições dessa pesquisa se baseia na otimização da seleção apropri-
ada de itens desconhecidos em modelos treinados com itens negativos. Foram
propostas duas estratégias de amostragem de itens negativos e relevantes, as
quais foram combinadas com modelos de recomendação pairwise e point-wise.
De acordo com os resultados obtidos, ambas as contribuições são relevantes
para a comunidade de pesquisa e melhoram significativamente o desempenho
do modelo de recomendação. Pode-se observar que os modelos incrementais
são mais adequados em cenários com concept-drifts e cold-start no conjunto de
dados proposto. Os otimizadores adaptativos melhoram as taxas de RECALL e
NDCG em até 11,1 e 7,5 pontos percentuais, respectivamente. Considerando a

ii

contribuição de amostragem de itens negativos-relevantes, os métodos propos-
tos aumentaram os valores de RECALL em até 17,4 pontos percentuais. Como
o foco da pesquisa são os cenários streaming, em trabalhos futuros, planeja-
se incorporar detectores de mudanças em nossas estratégias propostas. Além
disso, pretende-se testar outras estratégias de seleção de itens desconhecidos
para comparação.
Palavras-chave: Recomendação em fluxo de dados, Aprendizagem Incremental,
Filtragem Colaborativa, Feedback Implícito

iii

Acknowledgements

I first thank my family, my parents, Antônio and Rosilda, my sister Luana, and
my brother-in-law Alessandro for all the support and dedication during the
development of the doctoral project. You were indispensable at this stage of my
life and continue to be, so I certainly intend to share many other achievements
with you.

I want to thank the other family members, who, even though they were far
away, cheered for me, put their prayers on me, and made this moment even
more special.

I thank my dear friends, who even indirectly contributed to the success of
this stage. In particular, I would like to thank my colleagues from laboratory 26,
Bruno, Rodrigo, Bruna, and Marcos, for all the exchange of knowledge that we
had during this period.

I thank all PUCPR employees for their support, faculty, secretariat, coordi-
nation, security, support, etc.

Finally, I am immensely grateful to my advisors, Jean and Alceu, for making
this moment possible, trusting me, embarking on my ideas, and carefully guid-
ing me along the best paths. You were fundamental for the completion of this
project.

iv

Agradecimentos

Agradeço primeiramente a minha família, meus pais Antônio e Rosilda, minha
irmã Luana, meu cunhado Alessandro, por todo o apoio e dedicação durante
o desenvolvimento do projeto de doutorado. Vocês foram indispensáveis nesta
etapa da minha vida e continuam sendo, por isso pretendo com certeza com-
partilhar de muitas outras alegrias com vocês.

Agradeço aos demais familiares, que mesmo estando longe torceram por
mim, me colocaram eu suas orações e fizeram desse momento ainda mais espe-
cial.

Aos meus queridos amigos, que mesmo indiretamente contribuíram para
o sucesso dessa etapa. Em especial, agradeço os meus colegas do laboratório
26, Bruno, Rodrigo, Bruna e Marcos, por toda troca de conhecimentos que
tivemos nesse período. Também sou muito grato aos meus amigos Leandro,
Rafael, Fábio, David, Alessandro e todos os demais que suportaram comigo os
momentos de angústia e estiveram ao meu lado, mesmo que distantes, durante
esse percurso.

A todos os funcionários da PUCPR pelo apoio prestado, docentes, secretaria,
coordenação, segurança, suporte, etc.

Por fim, agradeço imensamente os meus orientadores, Jean e Alceu, por
tornarem esse momento possível, confiaram em mim, embarcaram nas minhas
ideias e cuidadosamente me guiaram pelos melhores caminhos, vocês foram
fundamentais para a finalização desde projeto.

v

Contents

List of Figures xi

List of Tables xii

List of Algorithms xiii

1 INTRODUCTION 1

1.1 Objectives . 3
1.2 Hypotheses . 4
1.3 Contributions . 4
1.4 Publications . 4
1.5 Financial Support . 5
1.6 Overview . 5

2 Theoretical Background 7

2.1 Learning Schemes in the Recommendation Scenarios 7
2.1.1 Batch learning . 8
2.1.2 Incremental learning . 8

2.2 Recommender Systems . 10
2.2.1 Content-Based Filtering . 11
2.2.2 Collaborative Filtering . 11
2.2.3 Hybrid Filtering . 12
2.2.4 Session-Based Filtering . 12

2.3 Challenges . 13
2.3.1 Implicit Positive-Only Feedback 13
2.3.2 Concept Drift . 14
2.3.3 Cold-Start . 15

2.4 Datasets . 16

vi

CONTENTS

2.5 Final Considerations . 19

3 Related Works 20

3.1 Batch Recommendation Models for OCCF 20
3.1.1 Matrix Factorization Models 21
3.1.2 Neighborhood Models . 26
3.1.3 Neural Collaborative Framework - NCF 27

3.2 Streaming Recommendation Models 29
3.3 Incremental Learning . 30

3.3.1 Incremental Stochastic Gradient Descent (ISGD) 30
3.3.2 Incremental Bayesian Personalized Ranking for Matrix Fac-

torization (IBPRMF) . 31
3.3.3 Incremental Regularized Matrix Factorization (IRMF) . . . 32
3.3.4 Other Incremental Methods 32

3.4 Methods for Handling Concept Drifts 33
3.5 Association Rules Methods . 35
3.6 Hybrid Approaches . 35
3.7 Final Considerations . 36

4 Experimental Protocol 38

4.1 Datasets . 38
4.2 Recommender Models Implementation 39
4.3 Proposed Protocol for Batch and Streaming Comparison 40
4.4 Protocol Used for the Proposed Recommendation Strategies . . . 41
4.5 Evaluation . 42

4.5.1 Evaluation Metrics . 42
4.5.2 Evaluation Variants . 43
4.5.3 Significance Test . 44

4.6 Final Considerations . 44

5 Contribution I - Supermarket Data Collection 45

5.1 SDMI Dataset . 46
5.1.1 Data Acquisition . 46
5.1.2 Dataset Pre-processing Approaches 47
5.1.3 Dataset Availability and Content 50
5.1.4 Descriptive Statistics . 52

5.2 Experimental Setup . 52

vii

CONTENTS

5.3 Experimental Results and Analysis 53
5.3.1 Results of the Basic Evaluation 54
5.3.2 Results of the Window-based Evaluation 57

5.4 Final Considerations . 59

6 Contribution II - Incremental Specialized and Specialized-Generalized

Matrix Factorization Models based on Adaptive Learning Rate Opti-

mizers 60

6.1 Adaptive Learning Rate Optimizers 61
6.2 Proposed Methods . 65

6.2.1 Specialized Optimizer . 67
6.2.2 Specialized-Generalized Optimizer 69

6.3 Experimental Setup . 70
6.4 Results and Analysis . 72

6.4.1 Streaming Analysis of the Results 78
6.5 Conclusion . 80

7 Contribution III - Improving Negative Items Sampling in Streaming

Scenarios 81

7.1 Background - Ranking-Based Recommender Models 82
7.2 Negative Sampling Approaches in Streaming Scenarios 83

7.2.1 Uniform Random Sampling 84
7.3 Proposed Strategies to Candidate Items Sampling 84

7.3.1 Similarity-based Relevant Items Set Generation 85
7.4 Model-based Relevant Items Set Generation 87

7.4.1 Incorporating SBRG and MBRG in a Pairwise Model . . . 88
7.4.2 Incorporating SBRG and MBRG in a Point-wise Model . . 91

7.5 Experimental Setup . 94
7.6 Results and Analysis . 95

7.6.1 Streaming Analysis of the Results 101
7.7 Final Considerations . 104

8 Conclusion 105

References 107

A Windowed Evaluation of the Negative-Relevant Proposed Strategies 121

viii

List of Figures

2.1 Batch Learning Schema. 9
2.2 Incremental Learning Schema. 10
2.3 Content Based Filtering . 11
2.4 Collaborative Filtering . 12
2.5 Hybrid Filtering . 12

4.1 Batch and stream protocols. 41
4.2 Stream protocol. 42
4.3 Prequential Validation. Adapted from (JORGE et al., 2016). 43

5.1 Dataset representation. 47
5.2 Number of purchases considering different timestamp granularity. 48
5.3 Probability density for users (a) and items (b) in the original SMDI

dataset. 48
5.4 log10 transformation applied to ordered events (𝑁) for each user

(a) and unique events per user (b). 49
5.5 Probability distribution for users (a) and items (b) in theSMDI-500E

dataset. 50
5.6 Probability density for users (a) and items (b) in the SMDI-200E

dataset. 51
5.7 Moving averages of RECALL@10 values in the test stage, when

using a sliding window with size 2000; a) shows the plot evolu-
tion obtained in the original dataset; b) pre-processed SMDI-500E
dataset; and c) pre-processed SMDI-200UE dataset. 58

6.1 Nemenyi test results on RECALL@10 and NDCG@10 values in
the analysed datasets. 76

ix

LIST OF FIGURES

6.2 Critical distances of the Nemenyi test for tested datasets. All
p-values refer to the Friedman test. 77

6.3 Windowed evaluation of RECALL@10 values obtained by the best
optimizer and their variants in each dataset (We consider a win-
dow size of 5% of the number of interactions for each dataset test
portion). 79

7.1 Critical distances of the Nemenyi test for tested datasets results
obtained by the BPRMF model variants. All p-values refer to the
Friedman test. 99

7.2 Critical distances of the Nemenyi test for tested datasets results
obtained by the PMF model variants. All p-values refer to the
Friedman test. 100

7.3 Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants. 102

7.4 Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants. 103

A.1 Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the Amazon Books dataset. . . . 122

A.2 Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the Movie Lens 1M dataset. . . . 123

A.3 Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the Movie Tweetings dataset. . . 124

A.4 Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the SMDI-200UE dataset. 125

A.5 Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the TaFeng dataset. 126

A.6 Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the Amazon Books dataset. 127

A.7 Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the Movie Lens 1M dataset. 128

A.8 Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the Movie Tweetings dataset. 129

A.9 Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the SMDI-200UE dataset. 130

x

LIST OF FIGURES

A.10 Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the TaFeng dataset. 131

xi

List of Tables

4.1 Overview of the datasets used during experimentation. 39

5.1 Description of the files constituting the SMDI datasets. 51
5.2 Description of the SMDI dataset variants. 53
5.3 Parameters tuning for each model and dataset. 54
5.4 Recall values obtained by the recommendation methods in each

tested dataset. The shaded area comprises the results of the data
stream algorithms. 55

6.1 Optimizers update rules based on specialized and specialized-
generalized versions. 71

6.2 RECALL@10 and NDCG@10 values obtained by the incremental
MF recommender model for the Amazon Books and Movie Lens
1M datasets. 73

6.3 RECALL@10 and NDCG@10 values obtained by the incremental
MF recommender model for the Movie Tweetings and SMDI-
200UE datasets. 74

7.1 RECALL@10 and NDCG@10 values obtained by the IBPRMF,
IBPRMF+MBRG, and IBPRMF+SBRG models in the tested datasets. 96

7.2 RECALL@10 and NDCG@10 values obtained by the PMF, PMF+MBRG,
and PMF+SBRG models in the tested datasets. 97

xii

List of Algorithms

1 Original AMSGrad Optimizer. 66
2 Incremental Specialized AMSGrad Optimizer 68
3 Incremental Specialized-Generalized AMSGrad Optimizer. 70

4 Uniform Negative Sampling for a pairwise model 84
5 Updating the similarity structure incrementally -update_similarity 85
6 SBRG strategy - update_memory . 86
7 MBRG strategy - update_memory . 87
8 BPRMF recommender - model_update. 88
9 Batch processing phase of the IBPRMF model. 90
10 Streaming processing phase of the IBPRMF model. 91
11 PMF Recommender - model_update. 92
12 Batch processing phase of PMF model. 93
13 Streaming processing phase of PMF model. 94

xiii

1
INTRODUCTION

Due to the increasing amount of data collected, recommendation systems
have proven to be indispensable in several scenarios where defining user profiles
is essential. The modeling of consumption patterns enables personalized and
relevant recommendations for users (RICCI; ROKACH; SHAPIRA, 2011). The
personalization of actions has become an important marketing tool in numerous
areas (ZHANG et al., 2019). Companies such as Amazon, Netflix, and Google
News stand out using efficient recommendation methods, seeking to improve
the user experience on their systems and enable the engagement of their products
and services assertively (LI et al., 2017a).

Most of the developed recommendation models work in a batch fashion.
Thus, given a training set consisting of interactions between users and items,
a static model is generated and later used in the recommendation process
(BABÜROGLU; DURMUSOGLU; DERELI, 2021). Consequently, an important
research topic deals with adapting recommendation systems to work incremen-
tally, assuming that interactions between users and items are made available as
a data stream of events (VINISKI et al., 2021).

According to the available data and the recommendation process charac-
teristics, the research area classifies the recommendation models traditionally
into three categories: Content-Based Filtering, Collaborative Filtering, and Hy-
brid Filtering (some authors suggest other subdivisions, such as Session-Based
Filtering and Knowledge-Based Filtering) (ZHANG et al., 2019). In Collabo-
rative Filtering, the methods use only a list of interactions between users and
items to generate the models, while in Content-Based Filtering, details about the

1

CHAPTER 1. INTRODUCTION

items are necessary. Consequently, Collaborative Filtering is less restrictive and
has been the subject of many works over the years (BOBADILLA et al., 2013).
In the collaborative recommendation systems, users’ feedback, which includes
assessments, transactions, interactions, and examinations, is considered critical
information to learn and model users’ preferences and can be obtained explicitly
or implicitly (PIRAMUTHU et al., 2012).

Explicit feedback is usually represented by numeric grades with different
levels (Netflix 1-5 scale, for example). However, collecting explicit user feedback
is difficult, complicated, and often costly, as it requires new functionality in the
systems (PAN; LIU; MING, 2016; VINAGRE; JORGE; GAMA, 2014). On the
other hand, the implicit feedback expressed by users, such as watching a movie,
listening to a song, enjoying a post, buying a product, and so forth, is easy to
obtain and has attracted growing interest from researchers (VINAGRE; JORGE;
GAMA, 2014; LI et al., 2017a).

Although the advantages are clear, implicit feedback, referred to as One-
Class Collaborative Filtering (OCCF) and Positive-only Feedback, presents sev-
eral challenging characteristics. The data sparsity refers to the number of un-
observed interactions and the absence of negative feedback since only positive
observations are available. These are two examples of critical problems in the
one-class collaborative scenario. In addition to the abovementioned problems,
many other challenges related to the collaborative recommendation process are
the hot topics in last year’s research. This thesis focus on three specific challenges
that affect the recommendation model’s performance: negative item selection,
concept drift, and cold-start.

The first challenge deals with the possibility of using the unobserved inter-
actions (unknown relations in the user-item matrix) as negative ones. Using
negative interactions in the training stage improves the recommender models’
convergence process and reduces data imbalance (PAN et al., 2008). On the
other hand, most of the existing works select negative items randomly. Such
selection can choose relevant items as negatives, reducing the model’s accu-
racy (YU; BILENKO; LIN, 2017). The second challenge, concept drift, refers to
the changes in data behavior over time (WEBB et al., 2018). In recommenda-
tion systems, concept drifts reflect changes between customers and products
interactions, whether because (i) user preferences change, (ii) new items are
made available, (iii) specific offers at different time granularities (days of the
week, weeks of the month, months of the year), and so forth. Finally, the third

2

CHAPTER 1. INTRODUCTION

challenge, called cold-start, occurs when new users or items appear in the rec-
ommendation scenarios (WEI et al., 2017).

Using models capable of continuously modifying its parameters, considering
the changes in the data’s behavior, is a computational alternative to reduce the
impacts on the performance of the recommender models caused by the cold-
start and concept drift problems (VINISKI et al., 2021). Considering scenarios in
which the data present continuous changes due to the appearance of new users
and new items, or even by specific systems’ rules (such as promotions, actions
in periods of the year, month, or week), the recommendation models must be
able to identify these changes and adapt to maintain performance.

1.1 Objectives

This work aims to develop adaptive recommender models by generating new
approaches for updating latent factors and selecting negative-relevant items,
seeking to reduce the improved recommendations in implicit datasets.

The specific objectives of this project are:

• Collect, process and make available new retail datasets for OCCF with
concept drift and cold-start.

• Define a comparison protocol between batch processing and data stream
models.

• Analyze and implement existing adaptive and incremental recommenda-
tion models.

• Study the approaches to adapting the learning rate in data stream scenarios
seeking to improve recommendations.

• Implement adaptive recommendation models by combining machine learn-
ing optimizers to adapt the models based on user and item characteristics.

• Implement negative-relevant items sampling alternative to the traditional
uniform random sampling of negative items.

• Compare the developed methods with existing models in the literature.

3

CHAPTER 1. INTRODUCTION

1.2 Hypotheses

This section presents our hypotheses related to the proposed recommenda-
tion challenges:

Hypothesis #1. Adaptive and incremental methods present superior per-
formance compared with batch processing techniques in datasets with concept
drift and a high incidence of cold-start.

Hypothesis #2. Utilizing learning rate adaptation techniques improves the
recommender models’ performance in streaming scenarios.

Hypothesis #3. Utilizing methods that consider the dataset characteristics
to select negative and relevant items in the recommendation techniques training
allows better model adjustment than random negative selection.

1.3 Contributions

In addition to providing new adaptive recommendation approaches, this
thesis presents novel datasets and robust experimental protocols for comparing
the proposed techniques with traditional techniques in the literature. Thus, the
main contributions are the following:

• Provide real-world datasets from retail containing cold-start and concept-
drift characteristics to support the development and evaluation of adaptive
and incremental recommendation methods.

• Introduce a robust experimental protocol to compare traditional batch and
streaming recommender models.

• Develop adaptive recommendation techniques for incremental streaming
scenarios.

• Define incremental parameters update methods to improve the efficiency
of the recommender models.

• Generate negative-relevant item selection strategies for training recom-
mender systems with implicit datasets.

1.4 Publications

The main results of this thesis are reported in the following publications.

4

CHAPTER 1. INTRODUCTION

• Antônio David Viniski, Jean Paul Barddal, Alceu de Souza Britto Jr., Fab-
rício Enembreck, Humberto Vinicius Aparecido de Campos. A case study
of batch and incremental recommender systems in supermarket data un-
der concept drifts and cold start. In: Expert Systems with Applications,
Volume 176, Pages 114890, 2021. <https://doi.org/10.1016/j.eswa.2021.
114890>

• Antônio David Viniski, Jean Paul Barddal, Alceu de Souza Britto Jr. UKIRF:
An Item Rejection Framework for Collaborative Filtering. In: Karlapalem
K. et al. (eds) Advances in Knowledge Discovery and Data Mining.
PAKDD 2021. Lecture Notes in Computer Science, vol 12713. Springer,
Cham, 2021. <https://doi.org/10.1007/978-3-030-75765-6_44>

• (2nd revision - Under Review - Last review activity: 11th April 2023) An-
tônio David Viniski, Jean Paul Barddal, Alceu de Souza Britto Jr., Humberto
Vinicius Aparecido de Campos. Incremental Specialized and Specialized-
Generalized Matrix Factorization Models based on Adaptive Learning Rate
Optimizers. In: Neurocomputing.

1.5 Financial Support

This thesis is financially supported by the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq) under the Grant Number #142195/2019-7.
In addition, this project is characterized as an Academic Doctorate for Innova-
tion (Doutorado acadêmico para inovação - DAI) and is part of technical cooperation
between the Pontifícia Universidade Católica do Paraná (PUCPR) and the Himarket
Consultoria De Comunicação E Ti Ltda (Himarket) company.

1.6 Overview

This thesis is organized into three parts. The first part presents the back-
ground of the recommendations research area and the related work.

• Chapter 2 introduces the learning schemes, recommendation approaches,
problems, and popular available datasets.

• Chapter 3 presents popular batch and streaming recommendation tech-
niques.

The second part introduces this work’s main contributions, surrounding the
availability of a novel retail dataset, the recommender model’s optimization
strategies, and the negative-relevant sampling strategies.

5

https://doi.org/10.1016/j.eswa.2021.114890
https://doi.org/10.1016/j.eswa.2021.114890
https://doi.org/10.1007/978-3-030-75765-6_44

CHAPTER 1. INTRODUCTION

• Chapter 5 introduces a novel dataset collection containing three variants
of a supermarket dataset, two preprocessing strategies, and their charac-
teristics and content.

• Chapter 6 shows the proposed optimizers variants to replace the traditional
Stochastic Gradient Descent (SGD) optimizer in the incremental MF model.

• Chapter 7 presents two relevant items generation strategies combined with
the pairwise and point-wise recommender models, which aims to improve
the items sampling in the recommender model that needs negative items
in models training/updating.

Finally, I conclude this thesis and present the future works in Chapter 8.

6

2
Theoretical Background

This chapter presents a revision of related research, seeking to provide a
general understanding of the addressed topic, the often-used techniques, and
the different strategies to recommendation scenarios. Section 2.1 introduces the
learning schemes most often used in recommendation system’s researches. Sec-
tion 2.2 presents the main recommendation approaches. Section 2.3 presents the
recommendation challenges related to our research, including the problems of
implicit positive-only feedback (Section 2.3.1), concept-drift (Section 2.3.2), and
cold-start (Section 2.3.3). Finally, Section 2.4 presents popular recommendation
datasets.

2.1 Learning Schemes in the Recommendation Sce-
narios

Recommender systems suggest the items that appear most likely to be pre-
ferred by a particular user based on their historical behavior, actions, and feed-
back (GUO et al., 2017; RABIU et al., 2020). Modeling users’ preferences and in-
terests in recommender systems depends on the existence of training examples.
In this sense, we can follow two learning schemes: batch (offline) learning or
incremental (online) learning (BABÜROGLU; DURMUSOGLU; DERELI, 2021).

7

CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Batch learning

In batch learning, we have to train the recommender model using the entire
dataset that is available at a certain point in time (BISONG, 2019). Batch learning
algorithms periodically train the recommender models with large-volume his-
torical data, wherein the data are finite, static, and already pre-processed before
the recommendation system training. To perform the recommender models
training, we can pass through the same dataset multiple times until the model
convergence or the fixed number of epochs. Therefore, we can use the generated
static model only once the training is completed for performing future predic-
tions (BABÜROGLU; DURMUSOGLU; DERELI, 2021). If the generated model
performs well on the test set, we can use the model for production, and thus
learning ends. On the other hand, once new data becomes available, we need to
update the model based on the new data and train the model from scratch all
over again using both the old and new data samples (BISONG, 2019).

The batch learning algorithm is expected to generalize (BURLUTSKIY et al.,
2016) in the sense that its output predicts the user’s ratings to previously unseen
items and also made predictions to users that do not appear in the training set.
Therefore, in real-world scenarios, where the data becomes available continu-
ously, and we need to train the model whenever the data arrives, batch learning
becomes inappropriate. In such a circumstance, we have to update our learning
model on the go, based on the new data samples that are available (BISONG,
2019). Figure 2.1 presents an overview of the batch learning recommendation
algorithms. We split the available data into training and test sets. We also select
a portion of data for validation from the training set, and we train the model
until convergence or training epochs ended. Then, the model generated in the
training step is used with the test data to evaluate the model and compute the
statistics. Finally, we save the model for future predictions.

2.1.2 Incremental learning

In real-world applications, data are generated continuously at a fast rate in
many different domains, such as e-commerce, social media, and digital market-
ing. These scenarios can be formulated as a data stream problem since the users’
interests are dynamic and change over time (RABIU et al., 2020). In this sense,
an emerging topic in recommender systems is how to learn from potentially

8

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Batch Learning Schema.

infinite sequences of user-item interactions that arrive over time (VINISKI et al.,
2021).

Leaning user’s preferences in streaming scenarios remains a challenge due to
the users’ preferences volatility. The user interests are not static—they undergo
changes, i.e., concept drift (MATUSZYK et al., 2015a). Consequently, users’
preferences may change over time (concept drift), new items and new users
can emerge from the stream (cold start), or even the system conditions can be
modified, i.e., sales and actions in specific periods (VINISKI et al., 2021). As a
result, the developers of such systems must also be aware of concept drift and
cold start issues, which require recommender systems to work incrementally,
consistently detecting and adapting to changes in data so that performance is not
jeopardized (LAGHMARI; MARSALA; RAMDANI, 2018). Adapting to changes
that occur in a changing environment is an essential aspect of every learning
system (MATUSZYK et al., 2015a). A feasible way to deal with such a situation
is to incorporate new information into a model as new data is made available,
using incremental model updating (SONG; CHENG; LU, 2015).

Figure 2.2 presents an incremental learning scheme used in recommenda-
tion systems. As in the batch training scheme, we also incorporated a batch
training phase into the incremental learning algorithms. We used such a phase
to initialize and learn the model weights for the available users and items at
the point in time. Thus, we update the generated model in the incremental
update phase according to new instances from the data stream. We use the data

9

CHAPTER 2. THEORETICAL BACKGROUND

stream to evaluate the model, compute statistics, and update the model based
on performance.

Figure 2.2: Incremental Learning Schema.

2.2 Recommender Systems

Recommender methods aim at learning and model the user-item relation-
ships in the information systems. Such modeling allows for marketing actions
a greater reach, assertiveness, and the definition of customer loyalty strategies
through personalized offers. Understanding customer profiles is an essential
tool for businesses that wish to stand out in the market and guarantee success
in their actions. Thus, recurrently analyzing and identifying changes in users’
needs and tastes has proved to be a powerful tool. Besides, the stream mining
techniques used in such scenarios gained much attention in recent years. The
research community generally divide the recommender systems into three cat-
egories: Content-Based Filtering (CB), Collaborative Filtering (CF), and Hybrid
Filtering (HF) (ZHANG et al., 2019).

In the following sections, we present the details about the CB, CF, and HF
approaches and contextualize the Session-based recommendation process, nat-
urally designed for streaming scenarios with implicit feedback.

10

CHAPTER 2. THEORETICAL BACKGROUND

2.2.1 Content-Based Filtering

Content-Based filtering techniques, derived from text mining approaches,
recommend items to users considering the items characteristics and descriptions
(WEI et al., 2017; RICCI; ROKACH; SHAPIRA, 2011). A central component in
such methods is the modeling process that make inferences of user interest based
on items in which the user previously interacted with. CB models compare the
items available in the dataset with items that appear in the user’s past interactions
and then recommend the best matches (BEEL et al., 2016). Figure 2.3 presents
how the recommendation occurs in the content-based approach.

Figure 2.3: Content Based Filtering

2.2.2 Collaborative Filtering

The second approach, Collaborative Filtering, does not need previous knowl-
edge about users or items and is more frequently used in the recommender sys-
tems design. Such systems conduct recommendations considering only user-
item interactions (NASSAR; JAFAR; RAHHAL, 2020). The rationale behind the
collaborative filtering is that users who expressed similar interests will share in-
terests in the future. Thus, recommended items are related to preferred items of
users who demonstrated similar interests (PORTUGAL; ALENCAR; COWAN,
2018; YIN et al., 2019). In Figure 2.4, we present the collaborative filtering
approach.

11

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Collaborative Filtering

2.2.3 Hybrid Filtering

The hybrid approaches combine both collaborative and content-based tech-
niques to make recommendations. The hybrid recommender models take into
account both user-item interaction and the past interacted items characteristics.
Thus, such recommender systems can find similarities between users, items,
or both (PORTUGAL; ALENCAR; COWAN, 2018). Figure 2.5 represents the
recommendations made by a hybrid recommender model.

Figure 2.5: Hybrid Filtering

2.2.4 Session-Based Filtering

Most recommender systems research focuses on models that need the user
identifier to build a clear user profile. On the other hand, Session-based Fil-

12

CHAPTER 2. THEORETICAL BACKGROUND

tering is an emerging recommendation topic and has been widely studied in
recent years (TAN; XU; LIU, 2016; LI et al., 2017b; GUO et al., 2019). The
session-based recommendation is a typical application of recommender sys-
tems based on implicit feedback, where no explicit interests, e.g., ratings; but
only positive observations, e.g., clicks; are available. These positive observa-
tions are usually sequential data obtained by passively tracking users’ behavior
over a sequence of time. Compared with traditional user-item settings, this
task focuses on sequential mining and can exploit only limited user interactions
within a short time frame (GUO et al., 2019). Typically, there are two traditional
modeling paradigms, i.e., general recommender and sequential recommender.
The general recommender model is related to item-to-item recommendation
approaches. An item-to-item similarity matrix is pre-computed from available
session-data, and the model then recommends items that often appear together
in sessions. Based on Markov chains, the sequential recommender utilizes the
sequential data by predicting users next action given the last action (LI et al.,
2017b).

2.3 Challenges

In this section we bring forward three challenges related to recommenda-
tion systems research area. Section 2.3.1 presents the positive-only feedback
problem. Sections 2.3.3 and 2.3.2 introduce cold-start and concept-drift.

2.3.1 Implicit Positive-Only Feedback

The implicit positive-only feedback predicts users’ preferences given past
positive feedback available in a dataset (LI et al., 2017a). OCCF has characteristics
that differentiate it from other tasks in recommendation systems. First, we lack
negative feedback, as it is cumbersome to state with certainty which items a
user dislikes. For instance, the lack of interaction is ambiguous as the user
may dislike an item or be unaware of it. Next, implicit datasets are highly
sparse. Few interactions are known, and most of the user-item relationship
matrix corresponds to missing/unknown data. Furthermore, OCCF scenarios
are noisy, as an interaction between a user and an item does not mean that the
user prefers it. There is no explicit feedback from the user w.r.t. one’s satisfaction
after such interaction. Finally, implicit ratings expressed numerically indicate

13

CHAPTER 2. THEORETICAL BACKGROUND

confidence and do not represent users’ preferences as with explicit ratings, yet,
the frequency of interaction, e.g., how many times a user listens to a song, how
frequently a user purchases an item, etc. (VINISKI; BARDDAL; BRITTO JR.,
2021).

Existing solutions for OCCF differ in terms of how they treat unobserved
data. Although the one-class collaborative filtering is less visited than the multi-
class setting, some approaches have been proposed in the literature to deal with
missing (unknown) items (SONG et al., 2018). According to how the unlabeled
data is used, existing methods for OCCF can be classified into two categories
(SONG et al., 2018), i.e., whole-data based approaches (PAN et al., 2008; YU;
BILENKO; LIN, 2017); and sampling based approaches (RENDLE et al., 2012;
ZHANG et al., 2013; HE et al., 2017; YU; BILENKO; LIN, 2017). Both approaches
share challenges. Considering all the missing entries as negative, we have to
deal with two limitations. First, as most training instances are negative, the
class imbalance problem reduces the positive class’s predictive ability. Second,
we have to deal with the possibility of introducing false negative examples.
Besides, suppose we randomly sample unobserved interactions. In that case, it
is challenging to identify representative negative examples as all of the negative
and missing positive interactions are mixed and cannot be distinguished (PAN
et al., 2008). On the other hand, if the sampling method considers the dataset
characteristics during negative sampling, we have less probability of selecting
false negatives in the training stage (VINISKI; BARDDAL; BRITTO JR., 2021).

2.3.2 Concept Drift

An emerging topic in recommender systems is how to learn from potentially
infinite sequences of user-item interactions that arrive over time. The building
of models that learn incrementally from continuous flows of data is a concern
of data stream mining (AGGARWAL, 2007; GAMA, 2010). Models tailored
for data streams must have low computational costs regarding processing time
and memory consumption while also tackle concept drifts. Concept drift is
a problem that arises when the data distribution changes, thus affecting its
underlying patterns (TSYMBAL, 2004; WEBB et al., 2018). If a model cannot
detect and adapt to drifts swiftly, prediction power is put in jeopardy.

In recommender systems, concept drift refers to changes in customer behav-
ior, which reflect changes in their preferences (JORGE et al., 2016). Consequently,

14

CHAPTER 2. THEORETICAL BACKGROUND

recommender systems should be aware that the relationship between users and
items is not static. Thus, these are expected to detect and adapt to changes ac-
cordingly (BABÜROGLU; DURMUSOGLU; DERELI, 2021; GAMA et al., 2014).

The most efficient way to deal with potentially drifting scenarios is to incre-
ment the model as user-item interactions are available. Recommender systems
that are tailored to handle data streams must address both the problem of
learning drifting behavior and computational complexity issues (VINISKI et al.,
2021).

2.3.3 Cold-Start

Most collaborative filtering approaches require a large number of ratings
from a user on an item to provide valuable recommendations, thus leading to
unreliable suggestions due to an initial absence of rating (OCEPEK; RUGELJ;
BOSNIC, 2015). Although collaborative filtering is widely followed in recom-
mender systems’ implementation, its techniques suffer from sparsity, and cold
start problems (WEI et al., 2017). Data sparsity occurs when the number of
interactions between users and items is much smaller than the total number of
user and item combinations. Consequently, the mapping between the latent
factors and the rating matrix 𝑅 becomes even more cumbersome (SHAO; LI;
BIAN, 2021).

On the other hand, the cold start problem occurs when either a new user
or an item appears over time. Thus, the recommender model cannot map the
user-item interactions accurately as no a priori information on either of them
is available. In recommender systems, the cold start problem includes three
cases: (1) cold start of users (how to recommend items to a user recently entered
the system); (2) cold start of items (how to recommend a new item recently
introduced into the system to interested users); and (3) cold start of the system
(how to make accurate recommendation in a new system) (PANDEY; RAJPOOT,
2016; WEI et al., 2017).

Several techniques have been proposed in the literature to solve the cold start
problem and deal with data sparseness (PANDEY; RAJPOOT, 2016; WEI et al.,
2017; SILVA et al., 2019; TAHMASEBI et al., 2020; BI et al., 2020). However, most
of these techniques require additional data, such as demographic and social net-
work information. Nonetheless, in real-world scenarios, additional information
is often unavailable, and the system has to deal with the provided data to alle-

15

CHAPTER 2. THEORETICAL BACKGROUND

viate these problems. A recent approach for addressing cold-start scenarios is
using data stream methods, as incremental approaches are continuously learn-
ing the new underlying patterns between users and items (CHANDRAMOULI
et al., 2011; JOSÉ; ENEMBRECK; BARDDAL, 2020).

2.4 Datasets

Most of the available datasets in the literature are related to movies, songs,
books, and articles. A small group of datasets represents a large proportion
of research papers in the recommender systems community. The Movie Lens
(HARPER; KONSTAN, 2016) is one of the most used datasets, and by providing
many user ratings and being updated continuously has been used in the test-
ing and development of very collaborative recommendation algorithms. The
Yahoo Movie Ratings, Netflix Prize and Movie Tweetings movie datasets are also
widely adopted to improving recommendations systems researches (ÇANO;
MORISIO, 2015). In addition to the movies’ data and the popularity of video
stream platforms, the music recommendation algorithms are also popular in
the research area. Last.fm and Yahoo Music Ratings were used many times in
model comparison, as well as the algorithms’ development. Despite providing
support to improve the research area, most of these recommendation datasets
were sufficiently studied and did not provide new challenges related to the
recommendation process.

In addition to being frequently used in research related to recommender
systems, most of these popular datasets present explicit feedback, i.e., these
datasets contain the user ratings to items. However, many pieces of research
that work with implicit (positive only) feedback transform these datasets into
implicit form, sometimes using only the high score (5 stars, for example) as
an event (interaction between user and item) or using all ratings as positive
events (PAN et al., 2008). Although the advantage of explicit feedback is clear,
considering the facility to recover user preferences, the implicit feedback is easier
to obtain, because in most of the cases does not need adaptation in websites for
rating collection (PAN; LIU; MING, 2016). Besides that, a user does not rate every
song he/she listens to or the movies watched. Therefore, we do not have all the
information about users’ events when transforming an explicit dataset into an
implicit one. Thereby, making datasets with naturally implicit feedback available
has very importance for research involving recommendation. The studies with

16

CHAPTER 2. THEORETICAL BACKGROUND

implicit feedback have become popular, and the number of research articles on
implicit feedback has increased in recent years. In particular, a large group of
datasets has been mainly shared across competitions like NetFlix, Kaggle, or
RecSys (SIDANA et al., 2017).

Considering the retail scenario, which has processes similar to supermarkets,
few data collections are explicitly designed for recommendations, and most of
the existing retail datasets were created for market basket analysis and collected
from online purchases. Some existing online supermarket datasets available
in the literature and most frequently used for recommendations are Instacart
Dataset from Kaggle 1, Groceries Dataset 2, Tafeng3, and BeiRen4.

In the work of (TATIANA; MIKHAIL, 2018), Instacart Dataset and Groceries
Dataset are used for improving recommendations using association rules min-
ing. The TaFeng and BeiRen are two online shopping datasets with real purchase
records of users and have been used together for many researchers for recom-
mendation (WANG; GUO; LAN, 2014; WANG et al., 2015; LE; LAUW; FANG,
2017; BAI et al., 2019). According to (BAI et al., 2019), these datasets are the only
publicly available ones we are aware of that contain the real purchase history
of users. BeiRen dataset is collected by a large retail department store in China,
which records its supermarket purchase history during the period from January
2011 to September 2013. It contains 1,123,754 transactions belonging to 34,221
users and 17,920 items. Tafeng dataset is a public dataset offered by RecSys
Conference, which covers products from food, office supplies to furniture. It
contains 817,741 transactions belonging to 32,266 users and 23,812 items.

All presented supermarket datasets have been preprocessed in the recom-
mendation experiments due to the high data sparsity and because most users
and items appear a few times in the dataset. Similarly, in the works of (WANG;
GUO; LAN, 2014; WANG et al., 2015; LE; LAUW; FANG, 2017), the authors
conduct some preprocessing on the datasets transaction. For both TaFeng and
BeiRen datasets, all the items bought by less than ten users were removed , and
users that have bought less than ten items as well. When these preprocessing
steps are made, only 9,238 and 9,321 users, 7,982 and 5845 items, and 67,964 and

1https://www.kaggle.com/c/instacart-market-basket-analysis
2https://www.kaggle.com/datasets/heeraldedhia/groceries-dataset
3https://www.kaggle.com/datasets/chiranjivdas09/ta-feng-grocery-dataset
4http://www.brjt.cn

17

CHAPTER 2. THEORETICAL BACKGROUND

91,294 transactions are used in Tafeng and BeiRen datasets, respectively. Such
preprocessing means that more than 50% of the transactions were filtered, and
even though these datasets possess many transactions, few are actually assessed.

For the retail area, in addition to making good recommendations and mod-
eling users’ preferences/confidence, recommender systems can be beneficial
to find best practices, assist decision making, and provide support to generate
marketing actions (BALAKRISHNAN et al., 2018). Recently, e-commerce has be-
come an essential channel for many retail businesses, and recommender systems
have been widely used as an innovative solution that overcomes the limitations
of e-commerce services (HWANGBO; KIM; CHA, 2018).

Some considerations about retail recommendations are related to the data
source. Online and physical shopping do not share the same characteristics, and
users who buy from the online store do not necessarily buy from the physical
store. On the other hand, most of the available datasets are obtained in online
shopping, and recommendations systems for this kind of data do not take into
account the physical store events (ZAKARIA et al., 2014). Historically, it is not
easy for the physical supermarkets to obtain information about specific users’
consumption patterns, since most stores did not have customer registration
processes. For these stores, it was infeasible to incorporate personalized actions
and offer specific products for specific users without user purchase information.
However, with the popularization of advantage clubs, loyalty cards, and the
possibility to link the personal code in the commercial invoice, its also possible
to obtain the information about specific customers’ consumption in the physical
stores (GÓMEZ; ARRANZ; CILLÁN, 2012).

Furthermore, the retail market has some recurrent characteristics that en-
courage incremental and adaptive recommendation methods. For example,
supermarkets offer different products on specific days of the week. Moreover,
seasonality has a significant influence on user-item events. For example, some
products are purchased more frequently on the weekend, e.g. beers and soft
drinks, and holidays increase the consumption of other products, e.g. panettone
and turkey at Christmas.

Therefore, the physical supermarket data availability can be helpful to in-
crease the recommendation research in the retail area, and it is a great scenario
to analyze temporal aspects in recommender systems. In this sense, in Chapter
5 we introduce the supermarket dataset (SMDI) obtained from the supermarket
purchases (VINISKI et al., 2021). We also propose the challenge of modeling

18

CHAPTER 2. THEORETICAL BACKGROUND

users’ preferences considering only four months of supermarket transactions.
In addition, there are no many public supermarket datasets available, and few
recommendation algorithms are designed specifically for supermarket recom-
mendations. As for other publicly available data collections, the primary pur-
pose of the proposed dataset is to encourage research on recommender systems
algorithms for retail and to provide a reference based on implicit feedback for
evaluation (SIDANA et al., 2017).

2.5 Final Considerations

This chapter presented the recommender systems’ theoretical background
regarding learning schemes (batch and stream), recommendation approaches
(content-based, collaborative, and hybrid filtering), challenges (concept drifts,
cold-start, data sparsity, and negative sampling), and popular available datasets.
This thesis envisions testing batch and stream recommender models and pro-
viding an experimental protocol for comparison. The Collaborative Filtering
recommendation approach is primarily focused due to the ease of collecting
data in collaborative scenarios and the challenges in modeling user-item rela-
tionships. According to the recommendation challenges, this thesis implicitly
focused on concept drifts and cold-start problems in streaming scenarios and
explicitly generated alternatives to improving the negative item selection. Next,
Chapter 3 presents popular collaborative recommendation models for batch and
streaming learning schemes.

19

3
Related Works

This chapter presents an overview of existing works related to implicit
positive-only recommender models used as baseline models to develop stream-
ing recommendation systems.

Thus, Section 3.1 presents the popular batch techniques often used in positive-
only feedback scenarios, and Section 3.2 brings forward the existing works in
the streaming recommendation area.

3.1 Batch Recommendation Models for OCCF

This section reviews some popular approaches designed for OCCF scenar-
ios that sample negative examples for training recommender models. We can
categorize these approaches according to how they learn the relevance order.
Most algorithms exploiting OCCF focus on homogeneous positive feedback
with point-wise (HE et al., 2017), pair-wise (RENDLE et al., 2012), and list-
wise (SHI; LARSON; HANJALIC, 2010) preference assumptions. Point-wise
approaches regard user ratings as categorical labels or numerical values and
learn the relevance scores of missing data directly (SONG et al., 2018). The
pairwise approaches try to capture the preference order between missing data,
correctly identifying the positive/negative item in each pair (ZHANG et al.,
2013; SONG et al., 2018). On the other hand, an individual training example
is an entire list of items in a list-wise approach, rather than individual items
or item pairs. However, due to their difficulty modeling the inter-list loss and

20

CHAPTER 3. RELATED WORKS

inefficiency on large scale datasets, list-wise CF approaches are not widely used
compared to point-wise and pairwise in ranking-oriented collaborative filtering
(ZHANG et al., 2013).

Consequently, for further experimentation, we select recommender models
based on Matrix Factorization, such as Singular Value Decomposition (SVD)
(KOREN; BELL; VOLINSKY, 2009), Bayesian Personalized Ranking for Matrix
Factorization (BPRMF) (RENDLE et al., 2012), Alternating Least Squares (ALS)
(CHEN et al., 2020), the k-nearest neighbors (kNN) - Neighborhood Model, and
the models proposed in the Neural Collaborative Framework (NCF): Generalized
Matrix Factorization (GMF), Multi-layer Perceptron recommender (MLP) and
Neural Matrix Factorization (NeuMF) (HE et al., 2017).

3.1.1 Matrix Factorization Models

MF is the most commonly used technique in recommendation system design
(TAKÁCS et al., 2009; YU et al., 2016), and the most successful latent factor mod-
els are also based on MF (KOREN; BELL; VOLINSKY, 2009). MF models have
been widely applied to different recommendation scenarios and outperform
clustering and neighborhood methods in terms of predictive power, run time
(VINAGRE; JORGE; GAMA, 2014), and scalability (KOREN; BELL; VOLINSKY,
2009).

The input of MF is a relation matrix between users and items𝑅 ∈ R𝑚×𝑛 , where
𝑚 denotes the number of users and 𝑛 denotes the number of items (CHEN et al.,
2020). Because of 𝑅’s sparsity, MF models map users and items to a joint latent
factor space of dimensionality 𝑓 , such that user-item interactions are modeled
as inner products in that space (KOREN; BELL; VOLINSKY, 2009; CHEN et al.,
2020). The number of latent factors (𝑓) is much smaller than the number of users
and items, and the co-occurrence between users and items forms the basis for
recommendations (TAKÁCS et al., 2009).

More formally, matrices 𝑅 ∈ R𝑚×𝑛 ,
−→
𝐴 ∈ R𝑚× 𝑓 and

−→
𝐵 ∈ R 𝑓×𝑛 represent users’

ratings to items, users’ latent vectors, and items’ latent vectors, respectively. The
𝑟𝑢,𝑖 entry in the 𝑢-th row and 𝑖-th column of 𝑅 is the rating that user 𝑢 gives to
item 𝑖. 𝑢-th row vector (𝑝𝑢) of

−→
𝐴 and 𝑖-th column vector (𝑞𝑖) of

−→
𝐵 are the user’s 𝑢

and item’s 𝑖 latent vectors, respectively (YU et al., 2016). Given this formulation,
it is possible to compute predicted rating of user 𝑢 for the 𝑖-th item using the

21

CHAPTER 3. RELATED WORKS

dot product depicted in Equation 3.1 (VINAGRE; JORGE; GAMA, 2014).

ˆ︁𝑟𝑢𝑖 = −→𝐴𝑢 · −→𝐵𝑖𝑇 (3.1)

MF is closely related to singular value decomposition (SVD), a well-established
technique for information retrieval to identify latent features (RAGHUWANSHI;
PATERIYA, 2018). Applying SVD to collaborative filtering requires factoring in
the user-item matrix. However, the conventional SVD is undefined when the
rating matrix is incomplete. Because of the high percentage of missing values,
some methods use imputation techniques to fill in the missing values and make
the rating matrix dense before applying SVD. However, these approaches can
be costly and considerably distort the data owing to inaccurate imputation (KO-
REN; BELL; VOLINSKY, 2009; RAGHUWANSHI; PATERIYA, 2018). Hence,
more recent researches suggest direct modeling of the observed ratings while
avoiding overfitting through a regularized model (KOREN; BELL; VOLINSKY,
2009; RAGHUWANSHI; PATERIYA, 2018). Thus, the model was trained by
minimizing L2-regularized squared error for known values of ˆ︁𝑅 and the cor-
responding predicted ratings are denoted in Equation 3.2 (VINAGRE; JORGE;
GAMA, 2014).

min−→
𝐴 ,
−→
𝐵

∑︂
(𝑢,𝑖)∈𝐷

(︂
𝑟𝑢,𝑖 −

−→
𝐴𝑢 ·
−→
𝐵𝑖
𝑇
)︂2
+ �

(︃∥︁∥︁∥︁−→𝐴𝑢∥︁∥︁∥︁2
+

∥︁∥︁∥︁−→𝐵𝑖∥︁∥︁∥︁2
)︃

(3.2)

In the formalization above, 𝐷 is the set of (𝑢, 𝑖) pairs for each known 𝑟𝑢,𝑖

(training set), and � is the regularization parameter for user
−→
𝐴𝑢 and item

−→
𝐵𝑖

latent vectors that are used to avoid overfitting. MF learns a model by fitting
previously observed interactions. However, the goal is to generalize previously
known user-item interactions to predict future, unobserved user preferences
over items (KOREN; BELL; VOLINSKY, 2009). Approaches to minimizing Equa-
tion 3.2 include Stochastic Gradient Descent (SGD) (KOREN; BELL; VOLINSKY,
2009), Alternating least Squares (ALS) (CHEN et al., 2020), Bayesian Personal-
ized Ranking (BPR) - an adaptation of the SGD technique for pairwise learning
Rendle et al. (2012). The following sections show the matrix factorization opti-
mizers (SGD, ALS, BPR).

22

CHAPTER 3. RELATED WORKS

Stochastic Gradient Descent (SVD++)

The most common approach for minimizing Equation 3.2 in MF is the SGD
optimization, in which the algorithm loops over all ratings in the training set.
For each given training interaction, the system predicts 𝑟𝑢𝑖 and computes the
associated prediction error using Equation 3.3 (KOREN; BELL; VOLINSKY,
2009).

𝑒𝑟𝑟𝑢𝑖 = 𝑟𝑢𝑖 −ˆ︁𝑟𝑢𝑖 (3.3)

In this process, both the user (−→𝑔𝑢) and item (−→𝑔𝑖) gradients of the error (Equa-
tion 3.4) are used, where � is the regularization rate.

−→𝑔𝑢 ← 𝑒𝑟𝑟𝑢𝑖 ×
−→
𝐵𝑖 − �

−→
𝐴𝑢

−→𝑔𝑖 ← 𝑒𝑟𝑟𝑢𝑖 ×
−→
𝐴𝑢 − �

−→
𝐵𝑖

(3.4)

Next, SGD updates the parameters by a magnitude proportional to � in the
inverse direction of the error’s gradient according to Equation 3.5 (KOREN;
BELL; VOLINSKY, 2009), where � is the step size or learning rate, and � is the
regularization term for both user and item latent factors (VINAGRE; JORGE;
GAMA, 2014).

−→
𝐴𝑢 ←

−→
𝐴𝑢 + � × −→𝑔𝑢

−→
𝐵𝑖 ←

−→
𝐵𝑖 + � × −→𝑔𝑖

(3.5)

Alternating Least Squares

Alternating least squares (ALS) is an efficient MF technique for recommender
systems (CHEN et al., 2020). Because both 𝐴𝑢 and 𝐵𝑖 are unknowns, Equation
3.2 is not convex. However, the minimization principle of ALS is to keep one
fixed while calculating the other. Thus, the ALS technique fixes the 𝐵 matrix
to calculate the 𝐴 matrix to get vectors 𝐴𝑢 , and vice-versa. Consequently, the
optimization problem becomes a quadratic function and can be solved optimally.
The procedure ensures that each step decreases Equation 3.2 until convergence.
First, we minimize the equation over 𝐴 while fixing 𝐵, and we obtain Equation

23

CHAPTER 3. RELATED WORKS

3.6 (KOREN; BELL; VOLINSKY, 2009; CHEN et al., 2020).

min
𝐴

∑︂
(𝑖)∈𝐷𝑢

(︂
𝑟𝑢,𝑖 − 𝐴𝑢𝐵𝑇𝑖

)︂2
+ �(∥𝐴𝑢 ∥2) (3.6)

By calculating the partial derivative of 𝐴𝑢 in Equation 3.6 and letting the
partial derivative equal to zero, we obtain the Equation 3.7.

𝐴𝑢 = (𝐵𝑇𝐵 + �𝐼)−1𝐵𝑇𝑟𝑢 , (3.7)

where 𝐼 is the unit matrix ranked 𝑓 , and 𝑟𝑢 is the 𝑢-th rows of 𝑅. Similarly, we
obtain 𝐵𝑖 in Equation 3.8.

𝐵𝑖 = (𝐴𝑇𝐴 + �𝐼)−1𝐴𝑇𝑟𝑖 . (3.8)

Bayesian Personalized Ranking for Matrix Factorization

Bayesian Personalized Ranking (BPR) for MF is a generic optimization crite-
rion for personalized ranking derived from a Bayesian analysis of the problem.
Rendle et al. (2012) provide a learning BPR method based on SGD with bootstrap
sampling (BREIMAN, 1996). In addition to the matrix factorization parameters,
for each instance (𝑢; 𝑖) in the training set, BPRMF selects a negative item 𝑗 (an
item that the 𝑢-th user did not interact with). BPR optimization decomposes
triplets in the (𝑢; 𝑖; 𝑗) format using the difference of the 𝑢-th user predictions
w.r.t. items 𝑖 and 𝑗, such as depicted in Equation 3.9.

ˆ︁𝑟𝑢𝑖𝑗 =ˆ︁𝑟𝑢𝑖 −ˆ︁𝑟𝑢𝑗 (3.9)

Next, the model applies a sigmoid function variant described in Equation
3.10 (DING et al., 2018) to the prediction ˆ︁𝑟𝑢𝑖𝑗 to add the Bayesian probabilistic
characteristic to the model.

𝜎(ˆ︁𝑟𝑢𝑖𝑗) = (︃
1

1 + 𝑒−ˆ︁𝑟𝑢𝑖𝑗
)︃

(3.10)

For each triplet (𝑢; 𝑖; 𝑗), the latent factor vectors for a user 𝑢, item 𝑖, and
unobserved item 𝑗 are updated using Equation 3.11.

Θ← Θ + �
(︃
𝜎(ˆ︁𝑟𝑢𝑖𝑗) × 𝜕

𝜕Θ
ˆ︁𝑟𝑢𝑖𝑗 − �Θ)︃

(3.11)

24

CHAPTER 3. RELATED WORKS

where

𝜎(ˆ︁𝑟𝑢𝑖𝑗) × 𝜕

𝜕Θ
ˆ︁𝑟𝑢𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(−→𝐵𝑖 −

−→
𝐵 𝑗) if Θ =

−→
𝐴𝑢

−→
𝐴𝑢 if Θ =

−→
𝐵𝑖

−−→𝐴𝑢 if Θ =
−→
𝐵 𝑗

0 otherwise

(3.12)

As the BPRMF has an additional term 𝑗, the model differs in SGD to calculate
the gradients of the error for each term in the triplet (𝑢; 𝑖; 𝑗) (Equation 3.13).

−→𝑔𝑢 ← 𝜎(ˆ︁𝑟𝑢𝑖𝑗) × (𝐵𝑖 − 𝐵 𝑗) − �−→𝐴𝑢
−→𝑔𝑖 ← 𝜎(ˆ︁𝑟𝑢𝑖𝑗) × (𝐴𝑢) − �−→𝐵𝑖
−→𝑔𝑗 ← 𝜎(ˆ︁𝑟𝑢𝑖𝑗) × (−𝐴𝑢) − �−→𝐵 𝑗 (3.13)

Finally, decomposing Equations 3.11 and 3.12 for each component of the
(𝑢; 𝑖; 𝑗) instance, the latent factor vectors for user 𝑢, item 𝑖, and unobserved
item 𝑗 are updated using the traditional SGD optimization strategy described in
Equation 3.14.

𝐴𝑢 ← 𝐴𝑢 + � × −→𝑔𝑢
𝐵𝑖 ← 𝐵𝑖 + � × −→𝑔𝑖
𝐵 𝑗 ← 𝐵 𝑗 + � × −→𝑔𝑗

(3.14)

Momentum-incorporated Latent Factor Model

The Momentum-incorporated latent factor (MLF) algorithm is an optimiza-
tion strategy introduced as part of the momentum-incorporated parallel SGD
(MPSGD) model (LUO et al., 2021). The main purpose of the MPSGD model is
to paralyze the update of latent factors during the batch training step of the MF
model (LUO et al., 2021). In contrast, MLF is an SGD-based learning method
designed to update the latent factors matrices of user 𝐴 and item 𝐵, which can
be integrated into an incremental learning scenario.

The momentum method is an adaptive optimization strategy for improving
the convergence rate of an SGD-based model. The momentum algorithm im-
proves the model convergence by adding a fraction 𝛾 of the previous interaction
updates to the current interaction update. Thus, the learning update in the
current interaction considers the direction trend from the previous updates, re-
ducing oscillations during the learning process and making the resultant model

25

CHAPTER 3. RELATED WORKS

converge faster (GREENBERG-TOLEDO et al., 2019; LUO et al., 2021). Equation
3.15 presents the update rules of the momentum optimizer, where −→𝑣𝑡 stores the
history of the previous update, 𝛾 is the momentum term (also known as the
decay rate), −→𝑔 represents the gradients of the error, and

−→
� represents the latent

factor vector (𝐴𝑢 , 𝐵𝑖).

−→𝑣𝑡 ← 𝛾 × −−→𝑣𝑡−1 + � × −→𝑔
−→
� ← −→� − −→𝑣𝑡

(3.15)

The MLF incorporates momentum optimization by introducing𝑉(𝐴) and𝑉(𝐵)
auxiliary arrays. These arrays store the history of previous updates for each user
𝑢 and item 𝑖 in the dataset. Consequently, to update the user latent factor vector
−→
𝐴𝑢 with the MLF model, the update rules depicted in Equation 3.16 are used.

−−→𝑣𝑢(𝑡)← 𝛾 × −−−−→𝑣𝑢(𝑡−1) + � × −→𝑔𝑢
−→
𝐴𝑢 ←

−→
𝐴𝑢 − −−→𝑣𝑢(𝑡)

(3.16)

Similarly, for the item latent factor vector
−→
𝐵𝑖 updates, we used the rules in

Equation 3.17.

−−→𝑣𝑖(𝑡)← 𝛾 × −−−−→𝑣𝑖(𝑡−1) + � × −→𝑔𝑖
−→
𝐵𝑖 ←

−→
𝐵𝑖 − −−→𝑣𝑖(𝑡)

(3.17)

3.1.2 Neighborhood Models

The neighborhood models (NBMs) are common approaches used for col-
laborative filtering in recommendations systems terms. NBMs are traditionally
sub-categorized into user-based models (UBMs) (HERLOCKER et al., 1999) and
item-based models (IBMs) (SARWAR et al., 2001) according to the target of the
similarity measures (CHAE et al., 2018). Thus, the neighborhood methods are
centered on producing predictionsˆ︁𝑟𝑢𝑖 based on the set of 𝑘 users𝒩𝑢 most simi-
lar to 𝑢 (i.e., UBMs) or, alternatively, the set of 𝑘 items 𝒩𝑖 most similar to 𝑖 (i.e.,
IBMs) (KOREN, 2008). Considering the set of 𝑚 users𝒰 and the set of 𝑛 items
ℐ, the set of items a user 𝑢 interacted with (ℐ𝑢) and the set of items a user 𝑣
interacted with (ℐ𝑣), to obtain the prediction ˆ︁𝑟𝑢𝑖 , it is necessary to compute the
pairwise similarity between users, measured by the cosine similarity (Equation

26

CHAPTER 3. RELATED WORKS

3.18).

𝑆𝑢𝑣 =

∑︁
𝑖∈ℐ𝑢∩ℐ𝑣 𝑟𝑢𝑖 · 𝑟𝑣𝑖√︂∑︁

𝑖∈ℐ𝑢 𝑟
2
𝑢𝑖
·
√︂∑︁

𝑖∈ℐ𝑣 𝑟
2
𝑣𝑖

(3.18)

where the item-item similarity 𝑆𝑖 𝑗 can be defined symmetrically based on 𝒰𝑖

and𝒰𝑗 . Based on these similarities, we could then determine the neighborhood
𝒩𝑢 and𝒩𝑖 for each user 𝑢 or item 𝑖 consisting of the 𝑘 users or items closest to 𝑢
or 𝑖. The predicted score ˆ︁𝑟𝑢𝑖 is then determined by the proportion of observed
ratings in 𝒩𝑢 or 𝒩𝑖 . In the user-based model, we obtain the predictions as in
Equation 3.19 (LIU et al., 2010).

ˆ︁𝑟𝑢𝑖 = ∑︁
𝑣∈𝒩𝑢∩𝒰𝑖

𝑆𝑢𝑣√︁∑︁
𝑣∈𝒩𝑢 𝑆𝑢𝑣

(3.19)

the reason for this interpretation lies in the fact that an item will be appear in a
future user interaction if more neighbors have interacted with it.

3.1.3 Neural Collaborative Framework - NCF

NCF is a deep neural network recommender framework composed of three
recommender models: GMF, MLP, and NeuMF (HE et al., 2017). The NCF
framework presents a probabilistic approach for learning the point-wise models
that pay special attention to implicit data’s binary property, i.e., training models
using positive and negative examples. To endow the probabilistic explanation,
NCF models constrain the output 𝑟𝑢𝑖 in the range of [0, 1] using a probabilistic
function in the output layer. Regarding negative instances, the authors suggest
uniformly sampling them from unobserved interactions in each iteration.

Generalized Matrix Factorization

The Generalized Matrix Factorization (GMF) model results from an extensive
literature investigation of factorization models. It is a particular case of the
Neural Collaborative Framework (NCF) (HE et al., 2017). As input, GMF receives
the one-hot encoded feature vectors 𝑣𝑈𝑢 and 𝑣𝐼

𝑖
that describe user 𝑢 and item 𝑖,

respectively. Above the input layer are the embedding layers 𝐴𝑢 = 𝐴𝑇𝑣𝑈𝑢 and
𝐵𝑢 = 𝐵𝑇𝑣𝐼

𝑖
, which are the latent vectors of user and item. NCF’s first layer

mapping function is given by Equation 3.20, where ⊙ denotes the element-wise

27

CHAPTER 3. RELATED WORKS

product of user and item latent vectors.

𝜙(𝐴𝑢 , 𝐵𝑖) = (𝐴𝑢 ⊙ 𝐵𝑖) (3.20)

Each embedding layer (latent vector) is a fully connected layer that projects
the sparse representation of users and items to a dense vector. Thus, projecting
the vector to the output layer, the rating prediction of the 𝑢-th concerning the
𝑖-th item is obtained, as denoted in Equation 3.21, where 𝑎𝑜𝑢𝑡 and ℎ represent
the activation function and edge weights of the output layer, respectively.

ˆ︁𝑟𝑢𝑖 = 𝑎𝑜𝑢𝑡

(︂
ℎ𝑇 (𝐴𝑢 ⊙ 𝐵𝑖)

)︂
, (3.21)

Finally, the matrix factorization model is computed using an identity function
for 𝑎𝑜𝑢𝑡 and enforcing ℎ to being a uniform vector of ones (HE et al., 2017).

Multi-layer Perceptron (MLP)

Similar to GMF, the multi-layer perceptron (MLP) for recommender systems
is also part of the NCF framework (HE et al., 2017). The first difference between
GMF and MLP resides in the first layer. MLP concatenates the user and item
latent features instead of using the element-wise dot product between latent
factors as in GMF. Second, the model has hidden layers on the concatenated
vector to model the collaborative filtering effect and learn the interaction between
Au and Bu latent features. More formally, Equation 3.22 describes the MLP
model, where𝑊𝑥 , 𝑏𝑥 , and 𝑎𝑥 denote the weight matrix, bias vector, and activation
function for the 𝑥-th layer, respectively.

𝑧1 = 𝜙1(𝐴𝑢 , 𝐵𝑖) =
[︄
𝐴𝑢

𝐵𝑖

]︄
,

𝜙2 (𝑧1) = 𝑎2

(︂
𝑊𝑇

2 𝑧1 + 𝑏2

)︂
,

. . .

𝜙𝐿(𝑧𝐿−1) = 𝑎𝐿(𝑊𝑇
𝐿 𝑧𝐿 + 𝑏𝐿),ˆ︁𝑟𝑢𝑖 = 𝜎

(︂
ℎ𝑇𝜙𝐿 (𝑧𝐿−1)

)︂
,

(3.22)

28

CHAPTER 3. RELATED WORKS

Neural Matrix Factorization

Neural Matrix Factorization (NeuMF) combines GMF and MLP architectures.
More specifically, it combines the linear kernel from GMF and the non-linear
kernel from MLP. Internally, NeuMF trains GMF and MLP with random ini-
tializers until convergence. NeuMF allows GMF and MLP to learn separated
embeddings and merge them by concatenating their last hidden layer to pro-
vide more flexibility to the combined model. A formal description for NeuMF
is given in Equation 3.23 (HE et al., 2017), where 𝐴𝐺𝑢 and 𝐴𝑀𝑢 denote the user
embedding for GMF and MLP parts, respectively, while similar notations of 𝐵𝐺

𝑖

and 𝐵𝑀
𝑖

hold for item embeddings.

𝜙𝐺𝑀𝐹 = 𝐴𝐺𝑢 ⊙ 𝐵𝐺𝑖 ,

𝜙𝑀𝐿𝑃 = 𝑎𝐿

(︄
𝑊𝑇
𝐿

(︄
𝑎𝐿−1

(︄
...𝑎2

(︄
𝑊𝑇

2

[︄
𝐴𝑀𝑢

𝐵𝑀
𝑖

]︄
+ 𝑏2

)︄
...

)︄)︄
+ 𝑏𝐿

)︄
,

ˆ︁𝑟𝑢𝑖 = 𝜎

(︄
ℎ𝑇

(︄[︄
𝜙𝐺𝑀𝐹

𝜙𝑀𝐿𝑃

]︄)︄)︄
,

(3.23)

3.2 Streaming Recommendation Models

In real-world applications, users’ feedback is made available continuously.
Besides, we have no control over the order in which data arrives. Let us suppose
that new information becomes available in batch modes, such as a new item,
a new user, or a new user-item event. In that case, it is necessary to retrain
the entire matrix factorization (MF) model using both old and new data. The
retraining process may be unfeasible since batch training is computationally
expensive (YU et al., 2016; WU; WANG; CHENG, 2008). Furthermore, there is
no guarantee that the past user-item relationships are consistent with those ob-
served in more recent data. Consequently, we should update the recommender
systems in a single-pass manner according to the arrival of user-item interac-
tions, instead of retraining the entire model (VINAGRE; JORGE; GAMA, 2014).
As a result, the practical benefits of using single-pass incremental systems en-
compass computational cost reduction (WU; WANG; CHENG, 2008) and drift
adaptation (MATUSZYK et al., 2015a; CHANG et al., 2017).

Several topics are closely related to stream learning approaches in recom-
mender systems, such as Temporal Dynamic, Adaptive Learning, Incremen-

29

CHAPTER 3. RELATED WORKS

tal Learning, Online Learning, and Real-Time Learning. Most of the existing
streaming recommenders are related to the collaborative filtering approach and
use matrix factorization methods to learn and model user preferences (RENDLE
et al., 2012; LUO; XIA; ZHU, 2012; VINAGRE; JORGE; GAMA, 2014; YU et al.,
2016). We can also see temporal clustering (RANA; JAIN, 2014; ZHOU et al.,
2020) and temporal association rules (ZHOU; HIRASAWA, 2019) to generate
time-dependent recommendations to users, categorized as Hybrid approaches.
According to the feedback type, explicit and implicit feedback are used to model
user-item relationships and provide valuable suggestions to the system’s users.
Thus, the following sections provide the results of a search in the related fields to
cover the main approaches designed for Streaming Recommendations’ research
area.

3.3 Incremental Learning

This Section presents the popular Incremental Learning Recommender algo-
rithms designed for streaming scenarios.

3.3.1 Incremental Stochastic Gradient Descent (ISGD)

The Incremental Stochastic Gradient Descent (ISGD) (VINAGRE; JORGE;
GAMA, 2014) is a recommender model designed initially for positive-only feed-
back recommendations. Therefore, we represent the interactions between users
and items in the boolean matrix 𝑅, where 𝑅𝑢,𝑖 = 1 stands for the existence of an
interaction between the 𝑢-th user and the 𝑖-th item, and 𝑅𝑢,𝑖 = 0 depicts the ab-
sence of such relation. As in the traditional SVD++ model, we predict the rating
(ˆ︁𝑟𝑢𝑖) of a user 𝑢 to an item 𝑖 by the dot product of their respective latent factor
vectors 𝐴𝑢 and 𝐵𝑇

𝑖
(see Equation 3.1). On the other hand, as the ISGD model

is designed for item prediction and the model outputs is a numerical value, we
can select the most relevant items to a user in two ways: the highest predicted
values or the closest to 1. Furthermore, we must calculate the prediction error
as in Equation 3.24.

𝑒𝑟𝑟𝑢𝑖 = 1 −ˆ︁𝑟𝑢𝑖 (3.24)

Similar to the traditional batch MF model, the ISGD then updates the 𝐴𝑢

30

CHAPTER 3. RELATED WORKS

and 𝐵𝑖 vectors using the Equation 3.5. A relevant difference between ISGD and
its batch counterpart (SVD MF with batch SGD optimizer) regards the order
in which the method analyzes the data to generate the models (VINISKI et al.,
2021). The traditional batch SVD shuffles and performs multiple passes over
the training data during pre-processing and model creation. Differently, ISGD
does not perform any data pre-processing and processes data according to their
natural arrival order (VINAGRE; JORGE; GAMA, 2014).

3.3.2 Incremental Bayesian Personalized Ranking for Matrix
Factorization (IBPRMF)

The Incremental Bayesian Personalized Ranking for Matrix Factorization
(IBPRMF) updates vectors 𝐴𝑢 , 𝐵𝑖 and 𝐵 𝑗 using the operations present in Equa-
tions 3.11 and 3.12 as each user-item interaction of the dataset is made available
(RENDLE et al., 2012).

In this sense, similar to ISGD, we do not generate a static model to be used
later for predictions. The IBPRMF recommender continuously updates the
model parameters according to new instances emerging from the stream. An-
other significant difference between IBPRMF and BPRMF resides in the set of
negative items available for selection during a user-item interaction model up-
date. In the streaming variant (IBPRMF), the negative item is selected based on
items that appeared thus far in the stream and did not interact with the current
user (RENDLE et al., 2012).

Probabilistic Matrix Factorization

Similarly to the traditional MF model, the Probabilistic MF (PMF) model
decomposes a binary matrix into two lower-rank matrices to make predictions
(SALAKHUTDINOV; MNIH, 2007). The main difference is related to the use of
positive (ones, 1) and unknown (zeros, 0) observations during model training,
that is, the matrix represents a user’s likes and potential dislikes for items. PMF
is also similar to the GMF model, which is part of the NCF framework (Section
3.1.3). However, GMF uses neural network structures (embedding) to represent
latent factor vectors and was designed for batch processing schemes. Equation
3.25 describes the PMF process, where 𝜎 represents a sigmoid function (𝜎)

31

CHAPTER 3. RELATED WORKS

applied to make probabilistic predictions (0 ⩽ ˆ︂𝑟𝑢𝑖 ⩽ 1).

ˆ︂𝑟𝑢𝑖 ← 𝜎

(︃
−→
𝐴𝑢 ·
−→
𝐵𝑇𝑖

)︃
(3.25)

In the update process of the PMF’s user (
−→
𝐴𝑢) and item (

−→
𝐵𝑖) latent factor vec-

tors, ISGD update rules are used (Equation 3.5), except for error calculation,
because the PMF uses both positive and negative (unknown) observations. Fur-
thermore, when the user-item interaction is a binary outcome (𝑟𝑢,𝑖 ∈ {0, 1}),
it is natural to use cross-entropy (Equation 3.26) as the loss function for the
optimization problem (SALAKHUTDINOV; MNIH, 2007).

𝑒𝑟𝑟𝑢𝑖 = 𝑟𝑢,𝑖 × log (ˆ︁𝑟𝑢𝑖) + (1 − 𝑟𝑢,𝑖) × log(1 −ˆ︁𝑟𝑢𝑖) (3.26)

3.3.3 Incremental Regularized Matrix Factorization (IRMF)

Luo, Xia & Zhu (2012) also focused on the recommender models’ incremental
ability in their work, proposing a CF method based on the Regularized Matrix
Factorization (RMF). The model has two phases; the batch training phase and the
incremental update phase. They perform the batch training of the user 𝐴𝑢 and
item 𝐵𝑖 vectors of latent factors using the SGD update rules (see Equation 3.5,
respectively). The incremental update phase first simplifies the offline model
training to propose the Sequence Independent Regularized Matrix Factorization
(SI-RMF). The SI-RMF model is an RMF variant with the removal of sensitivity
to the input sequence of training examples and a simple mathematics form for
incremental updates. The authors then use the model structure to design two
recommender strategies, the Incremental RMF (IRMF) and the Incremental RMF
with linear biases (IRMF-B).

3.3.4 Other Incremental Methods

In the work of Yu et al. (2016), instead of use SVD or RMF, the authors
developed a novel method for incremental learning of MF models based on
Alternating Least Squares (ALS). The proposed method, called One-sided Least
Squares, provides accuracy near-equal to ALS at much faster learning speeds.
He et al. (2016) also proposed an ALS based recommender model for online
matrix factorization updates. The method highlights two critical issues: the

32

CHAPTER 3. RELATED WORKS

uniform weight on missing data and the offline setting in dynamic scenarios.
To solve these issues, they first propose to weigh the missing data based on
item popularity and design a new learning algorithm based on the element-
wise Alternating Least Squares (eALS) technique. The authors designed an
incremental update strategy that instantly updates an MF model given new
feedback to enable online recommendations. On the other hand, in Wu, Wang &
Cheng (2008), the authors proposed an incremental recommendation algorithm
based on Probabilistic Latent Semantic Analysis (PLSA). The method considers
the users’ long-term interests, reflected from all the interactions that already
occurred, and short-term interests that consider the new lately interactions. The
PLSA based algorithm also enjoys the flexibility to update users’ positive and
negative feedback.

Neural networks are also used in incremental learning for recommender
systems. Xu et al. (2020) introduce the GraphSAIL framework, a structure to
update the Graph Neural Network-based (GNN-based) recommender models
incrementally. The framework’s purpose is to address the commonly experi-
enced catastrophic forgetting problem that occurs when training a model incre-
mentally, preserving the user’s long-term preferences or item’s long-term prop-
erty during incremental model updating. You et al. (2019) also propose using
neural network architectures to make dynamic recommendations to users, intro-
ducing the Hierarchical Temporal Convolutional Network (HierTCN) method.
HierTCN consists of two levels of models. The high-level model uses Recurrent
Neural Networks (RNN) to learn and model the users’ evolving long-term inter-
ests across different sessions. In contrast, the low-level model is implemented
with Temporal Convolutional Networks (TCN), utilizing both the long-term in-
terests and the short-term interactions within sessions to predict the next user
taste.

3.4 Methods for Handling Concept Drifts

The work of Zhang & Lu (2020) propose a Multi-Trans matrix factorization
(MTMF) model with improved time weight to capture temporal dynamics. The
author aims to focus on changes in both user’s interests and item characteristics
over time. MTMF model presents a personalized time weight based on forget-
ting curve and item similarity and introduces it into the MF model. Next, MTMF
models the user and item dynamics by learning the multiple transitions at the

33

CHAPTER 3. RELATED WORKS

user-factor and factor-item latent space between the continuous-time and past
periods. Accordingly, recommendations are generated by a joint objective func-
tion solved by a gradient-based alternating optimization algorithm. Similarly,
Rabiu et al. (2020) presents a novel Temporal Matrix factorization method that
can capture the changes in users’ preferences and in item properties that occur
over time.

The work of Zheng et al. (2018) introduces a tourism destination recom-
mender system that employs opinion-mining technology to refine user senti-
ment. It uses temporal dynamics to represents the changes (drifting) over time
in user preferences and destination popularity. These elements are then fused
with the SVD++ method by combining user sentiment and temporal influence
to make accurate user recommendations.

A Hybrid recommender system (CoAWILDA - relying on on adaptive online
Latent Dirichlet Allocation (AWILDA)) is proposed in the work of Al-Ghossein
et al. (2018), an adaptive collaborative topic modeling approach to model newly
available items arriving as a document stream and incremental matrix factoriza-
tion for CF. The topic model is maintained up to date in an online fashion and
is retrained in a batch when a drift is detected using documents automatically
selected by an adaptive windowing technique.

In the work of Laghmari, Marsala & Ramdani (2018), the primary purpose
is to introduce an adapted Graded Multi-label Classification (GMLC) method to
concept-drifting data streams that used to build a temporal recommender sys-
tem. The authors propose using incremental decision trees in two incremental
GMLC models since the GMLC approaches can handle only uni-dimensional
data, and collected data for recommender systems are multidimensional (users
and items). The first model (𝐻𝑈), named User-incremental-GMLC is built con-
sidering users as instances and user characteristics and item ratings as descrip-
tive attributes. The second model (𝐻 𝐼), named Item-incremental-GMLC is built
considering items as instances and item characteristics and user ratings as de-
scriptive attributes.

Concept drifts are also addressed in a Dynamic Recommender System (DRS)
proposed by Rana & Jain (2014). The recommendation model considers the
users’ requirements changing over time in seeking information on the web.
The DRS model is based on an evolutionary clustering algorithm that clusters
similar users and evolves them to depict accurate and relevant user preferences
over time.

34

CHAPTER 3. RELATED WORKS

Temporal dynamics scenarios, in which recommender models deal with
users’ preferences for products drifting over time, is the central aspect considered
in the work of Koren (2010). The author proposes a more sensitive approach
that can distinguish between short and long-term patterns, allowing exploiting
the relevant components of all data instances while discarding only whatever is
modeled as irrelevant.

Many techniques are equipped with forgetting approaches to make the
stream mining algorithms adaptive to changes in recommender systems sce-
narios. In this sense, Matuszyk et al. (2015b) developed five new forgetting
mechanisms for incremental matrix factorization in recommender systems, ap-
plied in both rating and item predictions. Additionally, Matuszyk et al. (2018)
present unsupervised forgetting techniques that make recommender systems
adapt to changes in users’ preferences over time. The proposed techniques
are subdivided into obsolete information selection and algorithms to enforce
forgetting in different ways.

Zhang et al. (2018) provide a dynamic memory-based CF method, a novel
two-layer neighbor selection scheme that takes users’ capability and dynamic
trustworthiness into account on recommendations. The method uses a time
factor to evaluate whether a user shares consistent preferences with the target
user and also a time window to forget the user’s previous ratings.

3.5 Association Rules Methods

Zhou & Hirasawa (2019) propose an online supermarket recommender model
using temporal association rules. The method involves implementing meta-
heuristics, genetic network programming (GNP) to extract the interesting tem-
poral associations from the online customer dataset. Additionally, the model
uses the obtained rules to forecast future customer needs and an ant colony
optimization (ACO) approach to evolve the online recommender continuously.

3.6 Hybrid Approaches

The Stochastic Gradient Descent (SGD) technique is the most used to up-
dating the latent factors models’. In the work of Lin, Wang & Tsai (2018), the
authors present a hybrid real-time incremental stochastic gradient descent (RI-

35

CHAPTER 3. RELATED WORKS

SGD) updating technique for implicit feedback matrix factorization (MF) recom-
mendation systems. Lin, Wang & Tsai (2018) implement the RI-SGD model on
IBM-Streams, a real-time streaming data analytics platform developed by IBM
(ZIKOPOULOS; EATON, 2011). The RI-SGD is part of a recommender system
composed of four modules: 1) data collector, 2) model trainer, 3) model updater,
and 4) real-time recommender. The recommender system performs the model
training (module 2) using the ALSWR algorithm for matrix factorization, and
then the model updater module uses the RI-SGD approach to the online latent
factors update.

Ullah et al. (2012) also proposed a Hybrid Recommender system in their
work. Such an approach combines the model-based and memory-based con-
cepts to have better scalability and accuracy, respectively. The recommendation
system subdivides the process into offline and online steps. The first step of the
temporal-aware hybrid user model offline uses rating similarity, attribute simi-
larity, temporal information, and user demographic information. In the second
step, the method recommends online using user similarity to find the neighbor
set, temporal information, and rating matrix.

The work of Zhou et al. (2020) proposes a Hybrid Large-scale social recom-
mender model with online updates (LsRec). LsRec systematically integrates
matrix factorization technique and online incremental update, leveraging such
social network and numerical ratings for the recommendation. Such a hybrid
recommender system considers users’ social relationships and clusters items
according to the similarity measure degree. LsRec model perform prediction
and recommendation in each generated item cluster, respectively.

3.7 Final Considerations

This chapter provided an overview of popular batch and streaming recom-
mendation techniques. Most of the presented recommender models are variants
of the traditional Matrix Factorization technique, often used in collaborative
scenarios. As observed in this chapter, most of the streaming recommendation
techniques have as a baseline model some batch approach, which is adapted
to deal with dynamic environments. This thesis focuses on the ISGD, IBPRMF,
and PMF streaming recommender models as the baselines for the experiments
and proposed methods. Additionally, for further analysis, I want to implement
some incremental models with drift detectors to adapt their parameters when

36

CHAPTER 3. RELATED WORKS

explicitly detecting changes in user behavior. Next, Chapter 4 presents the
experimental protocol for accessing the recommender models’ performance in
batch and streaming learning schemes.

37

4
Experimental Protocol

This chapter describes the experimental protocol used in this thesis to test
the provided novel supermarket data collection and analyze the proposed rec-
ommendation strategies Section 4.3.

4.1 Datasets

This section introduces the statistics of some datasets used in this work.
In Chapter 5, only the provided supermarket data collection (SMDI) (VINISKI
et al., 2021) were used. In the optimizers contributions (Chapter 6), were se-
lected four real-word datasets for experimentation: Amazon Books (MCAULEY,
2014), Movie Lens 1M (HARPER; KONSTAN, 2016), Movie Tweetings (DOOMS;
PESSEMIER; MARTENS, 2014), and SMDI-200UE (VINISKI et al., 2021). Finally,
considering the negative-relevant items sampling strategies (Chapter 7), the
Amazon Books, Movie Lens 1M, Movie Tweetings, SMDI-200UE, and TaFeng1

datasets were used.
The Amazon Books, Movie Lens 1M, and Movie Tweetings datasets present

explicit user feedback. To analyze the effectiveness of the proposed models
in the One-Class Collaborative Filtering scenario, the explicit feedback were
transformed into positive-only feedback. Only those ratings greater than 3.5
were considered positive feedback . Table 4.1 depicts the main characteristics of

1https://www.kaggle.com/datasets/chiranjivdas09/ta-feng-grocery-dataset

38

CHAPTER 4. EXPERIMENTAL PROTOCOL

these datasets, including the number of interactions, users, items, and sparsity,
which is given by Equation 4.1, where |𝐷 | is the number of unique interactions,
𝑚 the number of users, and 𝑛 the number of items.

Sparsity (%) = 100 × 1 − |𝐷 |
𝑚 × 𝑛 (4.1)

Table 4.1: Overview of the datasets used during experimentation.

Datasets Interactions Users Items Sparsity

Amazon Books 769991 21675 22223 99.84%
Movie Lens 1M 575280 6038 3533 97.30%
Movie Tweetings 658700 65513 28149 99.96%
SMDI-200UE 447391 9472 6924 99.59%
Ta feng 817741 32266 23821 99.90%

4.2 Recommender Models Implementation

We implemented the batch models on top of TensorFlow (ABADI et al.,
2016), as most are based on neural network algorithms. On the other hand, the
Python libraries were used to implement the incremental (streaming) models.
All experiments were performed on an Intel i7-based computer with 64GB of
RAM, an NVIDIA Titan V with 12 GB of RAM, and an NVIDIA RTX 2070 SUPER
with 8GB of RAM.

Based on the item prediction strategy, the Binary Cross-Entropy (Log-loss
Equation 4.2) loss function were used for the recommender models.

Log-loss = − 1
|𝑇 |

∑︂
𝑢,𝑖∈𝑇

(︂
𝑅𝑢,𝑖 log

(︂ˆ︁𝑅𝑢𝑖)︂ + (1 − 𝑅𝑢,𝑖) × (︂
log(1 − ˆ︁𝑅𝑢𝑖)︂)︂ (4.2)

where |𝑇 | is the number of training or validating samples. For the rating pre-
diction models, the Mean Squared Error (MSE) were used as the loss function,
which is depicted in Equation 4.3.

MSE =
1
|𝑇 |

∑︂
𝑢,𝑖∈𝑇

(︂
𝑅𝑢,𝑖 − ˆ︁𝑅𝑢𝑖)︂2

(4.3)

39

CHAPTER 4. EXPERIMENTAL PROTOCOL

The model parameters were randomly set according to a Gaussian distribu-
tion with � = 0 and a 𝜌 = 0.01. Hyper-parameter tuning was performed on
a recommender model and dataset basis. As this thesis presents three contri-
butions (Chapters 5, 6, and 7), the datasets, recommender models, and the set
of parameters used in each contribution changes. The analysis explored dif-
ferent recommendation challenges, which require a set of specific parameters
depending on the analyzed scenario. However, the following sections present
the protocol used for dataset split and recommender techniques evaluation.

4.3 Proposed Protocol for Batch and Streaming Com-
parison

This section describes the experimental protocol used to compare batch and
streaming algorithms in the SMDI dataset (Chapter 5). This experimental pro-
tocol is relevant to guarantee that batch and streaming methods are adequately
compared and enable identifying concept drifts and cold start problems.

Figure 4.1 shows the proposed batch and stream protocols. The dataset was
split using the first two months of data for training and the remainder two
months for testing. The temporal split makes more sense than a random one
because users’ interests may change over time (MATUSZYK et al., 2015a). It is
also more realistic as it mimics the data behavior if any recommender systems
were applied in the real-world (SIDANA et al., 2017), thus comparing batch and
stream learning algorithms fairly.

During the training step, batch and streaming algorithms have significant
differences. The batch training first shuffles the data and use 20% of it for
validation. The validation set is applied to monitor the validation loss, thus
allowing training early stopping. Finally, the test set were used for assessing the
recommender system on unseen data.

Regarding streaming models, the first 20% of the training set is used solely
for training. The rationale is to allow the streaming recommender system to
learn initial parameters and uncover user-item relationships embedded within
the latent factors and non-random output recommendations at the beginning
of the experiment. We use the remainder of the training set for testing and
incremental training. Data shuffling is not performed as the instances’ natural
order must be preserved (VINAGRE; JORGE; GAMA, 2014). Next, the test set is

40

CHAPTER 4. EXPERIMENTAL PROTOCOL

Figure 4.1: Batch and stream protocols.

used in a test-then-train fashion, meaning that user-item interaction is queried
and later used for model update (GAMA; SEBASTIÃO; RODRIGUES, 2013).

4.4 Protocol Used for the Proposed Recommenda-
tion Strategies

Our focus in the proposed recommendation strategies (Chapters 6 and 7) is
the collaborative filtering approach in incremental (streaming) fashion. Because
the main focus of this thesis is a streaming scenario in which the order of
the events is significant, the datasets were splitted according to the protocol
suggested in (GAMA; SEBASTIÃO; RODRIGUES, 2013).

The first 20% of each dataset were used for batch training, 30% for batch
testing and incremental training, and the remaining 50% as the test set. The test
set is used in a test-then-train fashion, meaning that each user-item interaction
is used sequentially for model evaluation and updating. Figure 4.2 presents the
protocol for assessing the recommender models’ accuracy used to analyze the
proposed recommendation strategies.

41

CHAPTER 4. EXPERIMENTAL PROTOCOL

Figure 4.2: Stream protocol.

4.5 Evaluation

This section introduces the metrics and the evaluation variants used in our
project to test the recommender methods.

4.5.1 Evaluation Metrics

We express the goodness-of-fit of the models using RECALL@K (CREMONESI;
KOREN; TURRIN, 2010a) and normalized discounted cumulative gain (NDCG@K)
(HE et al., 2015) metrics with K ∈ {10}, which are the most commonly used
thresholds. TheRECALL@Kmetric quantifies how often a recommender suggests a
relevant item (hit) amongst unknown items, which are assumed to be irrelevant.

For each instance (𝑢, 𝑖) in the test set (𝑇), were selected a candidate list of
1000 unknown items for user 𝑢, and the known (relevant) item 𝑖 was appended
to this candidate list. We ordered candidate items by descending proximity
to a value of 1 (as the focus is the positive-only scenario) using the function
𝑓𝑢𝑖 = |1 − ˆ︁𝑅𝑢𝑖 |, according to the non-Boolean predicted scores ˆ︁𝑅𝑢𝑖 obtained by
the recommender models.

The RECALL@Kmetric, described in Equation 4.4, measures the average (across
all users) of the proportion of recommended items that appear among the top
𝐾 positions of the ranked list (YUAN; CHEN; ZHAO, 2011), where |𝑇 | is the test

42

CHAPTER 4. EXPERIMENTAL PROTOCOL

set size.

RECALL@K =
1
|𝑇 |

∑︂
(𝑢,𝑖)∈𝑇

hit@K(𝑢, 𝑖) (4.4)

For each instance ⟨𝑢, 𝑖⟩, hit@K(𝑢, 𝑖) = 1 is said to happen when 𝑖 is ranked
among the top 𝐾 items, and hit@K(𝑢, 𝑖) = 0 otherwise.

The NDCG@Kmetric, described in Equation 4.5, indicates whether the ground-
truth items are ranked higher than others by accounting for the position of hit
(HE et al., 2015).

NDCG@K =

{︄
0, if rank(i) ≤ K
1

𝑙𝑜𝑔2(𝑟𝑎𝑛𝑘+1) , otherwise
(4.5)

4.5.2 Evaluation Variants

The protocol followed to assess RECALL, and NDCG has two variants, pre-
sented in Figure 4.3. The first is an approach referred as a ‘basic evaluator,’
which measures the recommender system using the entire test set. This ap-
proach allows the comparison between recommender systems and hypothesis
testing. The second approach is the ‘window-based evaluator,’ which reports
the recall over test set chunks. We use a window with size at every 1% of the
test set (Figure 4.3).

Figure 4.3: Prequential Validation. Adapted from (JORGE et al., 2016).

43

CHAPTER 4. EXPERIMENTAL PROTOCOL

The rationale behind the window-based evaluation is that it allows the as-
sessment of recommender systems over time. This assessment is critical to ver-
ify whether the dataset exhibits drifting characteristics and whether streaming
models benefit from the incremental updates performed over test data. There-
fore, the Prequential test-then-train process (GAMA; SEBASTIÃO; RODRIGUES,
2013; JORGE et al., 2016) were followed for validating streaming models as de-
picted in Figure 4.3.

4.5.3 Significance Test

Finally, the hypothesis testing were incorporated to determine whether one
recommender algorithm outperforms others. This thesis experiments followed
the protocol reported in (DEMSAR, 2006) by combining Friedman (FRIEDMAN,
1937) and the Nemenyi post-hoc (NEMENYI, 1963) statistical tests. The exper-
imental results are the mean and standard deviation of the experiments’ repli-
cations. To analyze the significance of test results, in Chapters 6 and 7, were
also plotted the critical distance (CD) of the experiment results, which helps to
determine if there are significant differences between the analyzed methods.

4.6 Final Considerations

This chapter presented the experimental protocol for accessing the recom-
mender models’ performance in batch and streaming learning schemes. The
introduced protocol were used in all the contributions presented in the follow-
ing sections. Next, Chapter 4 presents the collected, processed, and provided
supermarket data collection.

44

5
Contribution I - Supermarket Data Col-
lection

In this chapter, we focus on two problems that affect recommender systems.
The first is concept drift, which refers to changes in the data behavior over time
(TSYMBAL, 2004; WEBB et al., 2018). In recommender systems, concept drift
reflects changes in the interactions between customers and items, either because
(i) customers’ preferences change, (ii) new items become available for purchase,
etc. The second is cold start, which occurs when new customers or items appear
in the recommendation scenario. Such a problem is challenging, because the
recommender model cannot make robust inferences for users or items about
which it has not yet collected enough information (OCEPEK; RUGELJ; BOSNIC,
2015; SHAO; LI; BIAN, 2021).

Recommender systems are traditionally trained in a batch fashion, which
means that given a training set composed of interactions between users and
items, a static model is learned and deployed ad eternum. Consequently, it
is relevant to tailor recommender systems that can be incremented over time,
assuming that the interactions between users and items are made available as a
stream of events.

In this chapter, our goal is to bring forward a case study of existing rec-
ommender algorithms in a real-world supermarket scenario that exhibits both
concept drifts and cold start problems. The contribution is threefold, as follows:

• A comparison of existing filtering recommender systems in which the im-
pact of concept drift and cold start is assessed in both batch and streaming

45

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

fashions.
• Evidence that the incremental ability of the streaming-based recommender

systems allows a better recovery when cold start is present.

• A novel real-word supermarket dataset that exhibits concept drifts and
cold start problems is made publicly available.

This chapter is divided as follows. Section 5.1 details a new dataset we make
available regarding supermarket transactions, which exhibits concept drift and
cold start characteristics. Section 5.2 describes the experiments undertaken to
perform the proposed analysis of recommender systems. Section 5.3 analyzes
existing works in recommender systems to answer whether streaming recom-
mender systems overcome batch approaches w.r.t. concept drifts and cold start.
Finally, Section 5.4 concludes this chapter.

5.1 SDMI Dataset

This section describes the Supermarket Dataset with Implicit Feedback (SMDI)
used in this case study, broadening data acquisition, pre-processing, and de-
scriptive statistics.

5.1.1 Data Acquisition

The original dataset came from a supermarket that is a customer of Hi-
Market1, and it encompasses purchases made between August 1st, 2019, and
November 30th, 2019. It contains 737,893 events representing 9,531 customers
purchasing 7,151 items in supermarket transactions carried out on-site since the
customer analyzed does not provide delivery services. The events are sorted
chronologically and reported in the ⟨user; item; rating; timestamp⟩ form, as
illustrated in Figure 5.1.

Figure 5.2 provides insights on purchases’ temporal traits considering differ-
ent granularities (day, week, and month). In the daily plot provided in Figure
5.2a, we observe that the number of items sold over time drastically reduces.
The reason is that the beginning of the data timespan matches the rewards club
launch and that the interest decreased over time. Furthermore, we observe that

1Himarket is a company located at Curitiba, Paraná, Brazil. HiMarket’s website is available
at <http://himarket.club/>

46

http://himarket.club/

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

Figure 5.1: Dataset representation.

the number of purchases increases during weekends (Figure 5.2b) and in the
first and last three days of the month (Figure 5.2c2).

One particular consideration of the SMDI dataset is that it contains repeated
events, i.e., users may purchase the same item multiple times. Consequently, Fig-
ure 5.3a depicts the dataset ‘imbalance’ as the maximum and minimum amount
of user interactions is volatile. On the other hand, Figure 5.3b shows that some
items have a higher number of interactions than others, as these are essential
items. Given the characteristics mentioned above, there are two problems re-
lated to the supermarket process that contribute to its ‘imbalancedness.’ First,
we observe that cashiers enter their identification number to enable discounts to
customers who do not provide their rewards club code when making purchases.
Consequently, some users possess an unrealistic number of purchases. Second,
users with a large number of events represent merchants in the region close to
the supermarket. Thus, the next section presents two approaches to address
these problems and reduce the dataset’s imbalance characteristic.

5.1.2 Dataset Pre-processing Approaches

This section presents two pre-processing approaches to alleviate the ‘imbal-
ancedness’ in the number of user events in the SMDI dataset. These strategies
account for the total number of events per user and the number of unique events

2An exception regards the 31st day, as not all months have 31 days.

47

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

Figure 5.2: Number of purchases considering different timestamp granularity.

(a) Daily number of purchases.
(b) Number of purchases per day of week

(c) Number of purchases per day of month

(a) Number of user interactions. (b) Number of items occurrences.

Figure 5.3: Probability density for users (a) and items (b) in the original SMDI
dataset.

48

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

per user, respectively.

(a) Distribution of the number of events
(𝑁) per user.

(b) Distribution of the number of
unique events per user.

Figure 5.4: log10 transformation applied to ordered events (𝑁) for each user (a)
and unique events per user (b).

Cut-off point by the total number of events per user

The first approach filters the dataset according to the maximum number
of events per user. Figure 5.4a reports the log10 of the number of events per
user. In this strategy, we assume as a cut-off point the region of the curve in
which the number of interactions substantially rises, i.e., where the approximate
value of log10 is 2.7; thus indicating a maximum number of approximately 500
(log10(500) = 2.69897) interactions per user. We refer to this version of the
dataset as SMDI-500E.

The resulting density distributions obtained for users and items with the re-
moval of such users are depicted in Figures 5.5a and 5.5b, respectively. Despite
the removal of users in this pre-processing approach, the distribution observed
for the number of items (Figure 5.5b) does not largely differ from the one ob-
served in the original dataset (Figure 5.3b). On the other hand, with the removal
of users with more than 500 interactions, the ‘imbalancedness’ was reduced.
In Table 5.2, we observe the characteristics of the pre-processed dataset. We
observe that the maximum number of interactions per user is 500, regardless of
whether there are multiple interactions with the same items.

Cut-off point by the number of unique events per user

When analyzing the number of unique interactions per user in the original
dataset in Figure 5.4b and Table 5.2, we also observe another relevant imbalance

49

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

(a) Probability distribution of users’ occur-
rences.

(b) Probability distribution of items’ occur-
rences.

Figure 5.5: Probability distribution for users (a) and items (b) in the SMDI-500E
dataset.

in the dataset. More specifically, the number of unique events for cashiers is
close to the total number of items available in the dataset and reinforces the need
to remove such users.

Following the same rationale for picking a cut-off point, an analysis of Figure
5.4b showed that the number of unique events per user rapidly increases with an
approximate value of 2.3 for the log10 transformation of the number of unique
events, thus indicating the removal of users who interacted with more than 200
(log10(200) = 2.3010) different items in the analyzed period. Consequently, we
refer to this dataset as SMDI-200E in the remainder of the chapter.

The probability distribution for users and items obtained after this pre-
processing approach are given in Figures 5.6a and 5.6b, respectively. Similarly
to the previous section’s approach, a significant reduction in the number of
interactions per user has been observed (Figure 5.6a). At the same time, the
probability curve for items (Figure 5.6b) does not significantly differ from the
one observed in the original dataset (Figure 5.3b). Table 5.2 depicts this variant
characteristics.

5.1.3 Dataset Availability and Content

Table 5.1 overviews the dataset’s content, particularly the included files, their
respective formats, and pieces of information. The dataset, its pre-processed ver-
sions, and the source code to replicate the experiments described in this chap-
ter can be downloaded from <https://dcam.ppgia.pucpr.br/assets/datasets/

50

https://dcam.ppgia.pucpr.br/assets/datasets/SMDI700kDataset.zip
https://dcam.ppgia.pucpr.br/assets/datasets/SMDI700kDataset.zip

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

(a) Number of user interactions. (b) Number of items occurrences.

Figure 5.6: Probability density for users (a) and items (b) in the SMDI-200E
dataset.

SMDI700kDataset.zip>. The original events without any pre-processing are in
the SMDI_original.csv file. The SMDI-500E.csv and SMDI-200UE.csv files con-
tain the results of pre-processing approaches shown in Section 5.1.2 and 5.1.2,
respectively. Users and items information are presented in SMDI_users.csv and
SMDI_items.csv, respectively.

Table 5.1: Description of the files constituting the SMDI datasets.

File Format Content

SMDI_original csv
user_id,item_id, rating, timestampSMDI-500E csv

SMDI-200UE csv
SMDI_users csv user_id, R, F, M, RFM, R1, F1, M1, RFM1, R2, F2, M2,

RFM2, R3, F3, M3, RFM3, R4, F4, M4, RFM4
SMDI_items csv item_id, section_id, brand_id, ref_price, avg_price,

min_price, max_price, amount

On the item information level, the SMDI dataset includes section and brand
identifiers (section_id and brand_id), reference price (ref_price), average,
minimum and maximum prices during the period (avg_price, min_price, and
max_price), and amount. Since users’ personal information is not made avail-
able and only purchase data was collected, we calculate, based on the obtained
data, the Recency-Frequency-Monetary (RFM) score (WENG, 2017). Recency (R)
is the interval between the current and previous purchase, and thus, the shorter
the interval is, the bigger R is. Frequency (F) indicates the user’s number of
transactions in a particular period. The bigger the frequency is, the bigger F

51

https://dcam.ppgia.pucpr.br/assets/datasets/SMDI700kDataset.zip
https://dcam.ppgia.pucpr.br/assets/datasets/SMDI700kDataset.zip

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

is. Finally, Monetary (M) refers to all transactions’ monetary value in a specific
period.

The RFM analysis assigns three different scores related to recency, frequency,
and monetary variables to each customer, using a scale from 1 to 5. Therefore, the
database is sorted per RFM dimension, and the customer list is divided into five
equal segments. The top quintile is assigned a score of 5, and the others receive
4, 3, 2, and 1 (CHRISTY et al., 2018), according to the quintile they belong.
The RFM score is then generated by concatenating R, F, and M components, in
this specific order. The normalized recency, frequency, and monetary values,
calculated monthly (variables R1, F1, M1; R2, F2, M2; and so forth) and the
entire period’s value are available in the SMDI_users.csv file.

5.1.4 Descriptive Statistics

Table 5.2 provides statistics from the variants of the SMDI dataset. Regarding
the pre-processing methods discussed in Sections 5.1.2 and 5.1.2, we see that
both pre-processing approaches obtained close values to the total number of
interactions (448791 and 447391), as well as the number of users (9480 and 9472)
and items (6933 and 6924). Conversely, the maximum number of events per
user in the SMDI-500E dataset is 775, which is much higher than 491 seen in the
SMDI-200UE variant. For both pre-processed datasets, the average number of
interactions (Avg # of events) per user was the same (47).

Table 5.2 also presents the statistics for each dataset w.r.t. unique events.
Despite the maximum number of unique events per user in the original dataset
(5853) being much higher than for pre-processed datasets (270 for both), the
average number of unique events per user (Avg # of events) for both is roughly the
same (30 for the SMDI_original dataset and 28 for theSMDI-500E andSMDI-200UE
datasets).

5.2 Experimental Setup

This section describes the experimental protocol used to compare batch and
streaming algorithms in the SMDI dataset. For the NCF models (GMF, MLP, and
NeuMF), instead of only using the positive examples to modeling the relation-
ship between users and items, we randomly sampled four unknown items per
positive example to serve as negative ones according to the protocol suggested

52

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

Table 5.2: Description of the SMDI dataset variants.

Information original SMDI-500E SMDI-200UE

Events 737,893 448,791 447,391
Unique events 292,943 (39.7%) 268,592 (59.84%) 266,354 (59.84%)
Users 9,531 9,480 9,472
Items 7,141 6,933 6,924
Avg # of events 77 47 47
Min # of events 1 1 1
Max # of events 166,549 491 775
Sparsity 99.57% 99.59% 99.59%
Avg # of unique events 30 28 28
Min # of unique events 1 1 1
Max # of unique events 5,853 270 200

in (HE et al., 2017). Considering the paired model BPRMF, it requires a single
negative instance per positive interaction during training. Thus, we randomly
selected a negative example to balance the positive-negative item pairs.

We tested the following hyper-parameter values for SVD, BPRMF, ISGD, and
IBPRMF: learning rate (learning-rate) ∈ [0.01, 0.02, 0.05, 0.001, 0.005, 0.0001,
0.0005], regularization rate (reg-rate) ∈ [0.01, 0.001, 0], latent factors ∈ [5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100] for SVD, BPRMF,
ISGD and IBPRMF. For GMF, MLP, and NeuMF models, we tested the values of
latent factors ∈ [8, 16, 32, 64, 128], and as suggested in the original paper (HE et
al., 2017), the embedding layers do not have regularization, i.e., reg-rate= 0. The
number of negative items selected for the NCF models (GMF, MLP and NeuMF).
In Table 5.3, we show the best parameters selected per model and dataset.

We evaluate our proposed dataset variants using the RECALL@N metric
(Equation 4.4). The main difference from the protocol presented in Chapter 4 is
the size of candidate list, here we selected a candidate list of 100 unknown items
to user 𝑢. We also use both the ‘basic evaluator,’ and ‘window-based evaluator,’
evaluation strategies presented in Chapter 4. The experimental results are the
mean and standard deviation of 30 replications.

5.3 Experimental Results and Analysis

This section reports the experimental results observed when comparing batch
and streaming recommender algorithms applied to the SMDI datasets. We dis-

53

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

Table 5.3: Parameters tuning for each model and dataset.

Dataset Model Opt Loss factors reg-rate learning-rate
SM

D
I_

or
ig

in
al

SVD SGD MSE 40 0.01 0.001
BPRMF SGD MSE 30 0.01 0.0005
GMF Adam Log-loss 32 0 0.001
MLP Adam Log-loss 32 0 0.0001
NeuMF Adam Log-loss 32 0 0.0005
ISGD SGD MSE 10 0.01 0.02
IBPRMF SGD MSE 20 0.001 0.001

SM
D

I-5
00

E

SVD SGD MSE 30 0.01 0.001
BPRMF SGD MSE 40 0.01 0.0001
GMF Adam Log-loss 32 0 0.001
MLP Adam Log-loss 32 0 0.001
NeuMF Adam Log-loss 32 0 0.001
ISGD SGD MSE 10 0.01 0.02
IBPRMF SGD MSE 30 0.001 0.05

SM
D

I-2
00

U
E

SVD SGD MSE 40 0.01 0.001
BPRMF SGD MSE 80 0.01 0.0005
GMF Adam Log-loss 32 0 0.001
MLP Adam Log-loss 32 0 0.0001
NeuMF Adam Log-loss 32 0 0.0001
ISGD SGD MSE 10 0.01 0.02
IBPRMF SGD MSE 40 0.001 0.05

cuss the observations of the two proposed strategies planned in the experimental
protocol, as follows: the basic evaluation in Section 5.3.1 and the window-based
evaluation in Section 5.3.2. These results are related to our Hypothesis #1.

Adaptive and incremental methods present superior performance compared with batch
processing techniques in datasets with concept drift and high incidence of cold-start.
Therefore, we want to show that the streaming recommender models, ISGD and
IBPRMF, perform better than the batch models in datasets with the incidence of
cold-start and concept drift.

5.3.1 Results of the Basic Evaluation

This section reports the results obtained by batch and streaming models in
the SMDI dataset variants. More specifically, we focus on the basic evaluation
process described in the proposed experimental protocol (Section 5.2) in which
the recommendation rates are computed over the entire test set. Table 5.4 shows
the general performance obtained.

54

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

According to the dataset variants’ results, we observe differences in the tested
recommender models’ behavior. Considering the original dataset results, we
verify that there is no clear indication of whether batch or streaming models
outperform others. We report the statistical test results obtained by combining
Friedman and Nemenyi tests assuming a 95% confidence level throughout our
discussion. These differences are also reported in Table 5.4, where recall values
are marked with letters (𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓) that depict and group the
goodness of their results.

Table 5.4: Recall values obtained by the recommendation methods in each tested
dataset. The shaded area comprises the results of the data stream algorithms.

Model RECALL@1 RECALL@5 RECALL@10 RECALL@20

SMDI_original.csv

PopTop 0.041𝑑 0.102𝑑 0.150𝑒 0.215 𝑓
SVD 0.325 ± 0.0021𝑎 0.565 ± 0.0012𝑎 0.669± 0.0011𝑏 0.779 ± 0.0009𝑏,𝑐

BPRMF 0.242 ± 0.0013𝑏,𝑐 0.410 ± 0.0018𝑐 0.484± 0.0019𝑑 0.564 ± 0.0014𝑑,𝑒
GMF 0.218 ± 0.0023𝑐 0.376 ± 0.0037𝑐 0.454± 0.0048𝑑 0.542 ± 0.0055𝑒
MLP 0.324 ± 0.0032𝑎 0.559 ± 0.0086𝑏 0.665± 0.0096𝑏,𝑐 0.790 ± 0.0116𝑎,𝑏

NeuMF 0.322 ± 0.0125𝑎 0.559 ± 0.0243𝑎,𝑏 0.664± 0.0257𝑏,𝑐 0.790 ± 0.0268𝑎

ISGD 0.298 ± 0.0023𝑏 0.562 ± 0.0012𝑏 0.674± 0.0027𝑎 0.782 ± 0.0020𝑎,𝑏

IBPRMF 0.324 ± 0.0144𝑎 0.559 ± 0.0075𝑏 0.662± 0.0046𝑐,𝑑 0.766 ± 0.0038𝑐,𝑑
SMDI-500E.csv

PopTop 0.042 𝑓 0.102 𝑓 0.150 𝑓 0.216𝑒
SVD 0.299 ± 0.0019𝑐 0.543 ± 0.0010𝑏,𝑐 0.648± 0.0011𝑐 0.757 ± 0.0015𝑐,𝑑

BPRMF 0.212 ± 0.0031𝑑,𝑒 0.382 ± 0.0046𝑑,𝑒 0.457± 0.0050𝑑,𝑒 0.538 ± 0.0057𝑑
GMF 0.197 ± 0.0025𝑒 0.371 ± 0.0038𝑒 0.454± 0.0041𝑒 0.540 ± 0.0046𝑑
MLP 0.299 ± 0.0108𝑐,𝑑 0.539 ± 0.0020𝑐,𝑑 0.645± 0.0016𝑐,𝑑 0.779 ± 0.0019𝑎,𝑏

NeuMF 0.293 ± 0.0220𝑏,𝑐 0.543 ± 0.0057𝑏,𝑐 0.650± 0.0027𝑏,𝑐 0.782 ± 0.0030𝑎

ISGD 0.317 ± 0.0008𝑎,𝑏 0.571 ± 0.0004𝑎 0.676± 0.0004𝑎 0.782 ± 0.0005𝑎

IBPRMF 0.322 ± 0.0007𝑎 0.565 ± 0.0006𝑎,𝑏 0.667± 0.0006𝑎,𝑏 0.772 ± 0.0006𝑏,𝑐
SMDI-200UE.csv

PopTop 0.042𝑒 0.102𝑒 0.150𝑒 0.216𝑒
SVD 0.299 ± 0.0023𝑏 0.544 ± 0.0012𝑏,𝑐 0.648± 0.0011𝑐 0.757 ± 0.0016𝑐,𝑑

BPRMF 0.213 ± 0.0028𝑐 0.384 ± 0.0029𝑐,𝑑 0.459± 0.0031𝑐,𝑑 0.539 ± 0.0040𝑑
GMF 0.198 ± 0.0026𝑐 0.371 ± 0.0031𝑑 0.453± 0.0036𝑑 0.539 ± 0.0044𝑑
MLP 0.285 ± 0.0586𝑏 0.544 ± 0.0072𝑏 0.666± 0.0029𝑏 0.785 ± 0.0013𝑎

NeuMF 0.292 ± 0.0235𝑏 0.542 ± 0.0140𝑏 0.667± 0.0035𝑏 0.784 ± 0.0011𝑎

ISGD 0.316 ± 0.0009𝑎 0.570 ± 0.0005𝑎 0.676± 0.0005𝑎 0.782 ± 0.0005𝑎,𝑏

IBPRMF 0.322 ± 0.0006𝑎 0.565 ± 0.0008𝑎 0.667± 0.0007𝑏 0.772 ± 0.0007𝑏,𝑐

In this table, we also report the results for PopTop (CREMONESI; KOREN;
TURRIN, 2010a), a non-machine learning approach for assessing recommender
systems. PopTop consists of recommending items with the best degree of success
among all users instead of modeling the user-item relationship using a machine
learning method. Consequently, we observe that PopTop is outperformed by all
methods regardless of the recall metric analyzed. This observation depicts that
both batch and streaming algorithms model the users’ behavior in supermarket
purchases adequately and surpass a naive baseline.

When comparing the batch models, we observe that two neural network

55

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

models, i.e., MLP and NeuMF, outperform GMF, BPFMF, and SVD in most
datasets and recall values. These results indicate that the neural networks are
suitable to capture complex interactions between users and items. In all datasets,
MLP and NeuMF models do not depict a significant difference between each
other. Even though NeuMF is a combination of MLP and GMF, GMF alone did
not result in better performance as the recall rates observed are not significantly
higher than those surveyed for MLP alone.

Regarding the streaming recommender models’ results (highlighted in Table
5.4), ISGD outperformed their batch version (SVD) concerning the RECALL@10
values in all datasets, thus showing a statistically significant difference with a
95% confidence level. The improvement is more significant in the pre-processed
datasets than in the original one. We observe an increase of 2.8 percentage points
for RECALL@10 in both SMDI-500E and SMDI-200UE, in contrast to 0.5 percentage
points in the original dataset. The discrepancy between streaming algorithms
and the corresponding batch counterpart depicts the importance of constantly
updating the recommender system as new data becomes available. This claim
is further backed up as ISGD obtained superior results when compared to MLP
and NeuMF in the pre-processed variants considering RECALL@1, RECALL@5, and
RECALL@10.

It is also noteworthy the analysis between BPR batch and streaming variants,
especially in the pre-processed datasets. For instance, IBPRMF increased the
RECALL@10 values up to 21 percentage points compared to the batch model
BPRMF, while ISGD improved SVD rates by 2.8 percentage points. Extending the
analysis, the RECALL@10 and RECALL@20 results obtained in the original dataset
show that IBPRMF had performance decreases. These decreases were due to
the volatility of the recall rates observed, as IBPRMF did not converge in all
experiment runs.

Overall, we observe that streaming models performed competitive results in
all the datasets, except the ISGD model in the original dataset when RECALL@1
is assessed. In this specific scenario, we observe that IBPRMF is a formidable
contender to match traditional matrix factorization techniques (SVD) and even
more complex approaches that rely on neural networks (MLP and NeuMF).
Summing up, we see that in smaller 𝑁 values, i.e., 𝑁 ∈ [1, 5, 10], either ISGD or
IBPRMF overcome batch models in the SMDI-500E and SMDI-200UE variants and
that MLP and NeuMF achieve superior results in RECALL@20. Comparing the
results acquired for both recommendation approaches, i.e., batch and streaming,

56

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

we observe that streaming models resulted in improvements of 2.8 percentage
points in recall values. In the next section, we further analyze these results from a
different perspective. More specifically, we focus on the performance assessment
that takes place over time, thus allowing a more fine-grained analysis on why
streaming recommender systems exhibit the behavior mentioned above and
provide evidence of the existence of concept drifts and cold start in the dataset
assessed.

5.3.2 Results of the Window-based Evaluation

In this section, we report the recall rates using the window-based process.
Figure 5.7 shows the results obtained with the assessment taking place at every
1% of the test set. In the same figure, we also report the cumulative number of
users and items to verify the cold start problem’s impact.

In real-world datasets, the assessment of user-item interactions over time
may uncover concept drifts, such as the launch of a product that reduces the
popularity of previous versions of the same product or its competitors. Conse-
quently, users’ interests and preferences may drift over time, resulting in concept
drifts that should be targeted by adaptive recommender systems (MATUSZYK
et al., 2015a; CHANG et al., 2017). In Figure 5.7, we observe recurrent fluctua-
tions in the RECALL@10 rates, which represent concept drifts. This observation is
corroborated by the recall rates obtained by PopTop, thus depicting that as new
user-item interactions occur, the overall behavior in the dataset also changes.
Such changes are weekly recurring drifts (GAMA et al., 2014), thus meaning
that the relationship between users and items changes over the week, but it
repeats itself across weeks. Recurring concepts are expected in supermarket
scenarios as specific sales are repeated along weeks, days of the month, or even
months of the year.

In this analysis, we observe that the streaming recommender models, i.e.,
ISGD and IBPRMF, allowed significant parameter adjustments over time that
induced better performance when compared to other models, especially in the
pre-processed dataset variants. Another relevant aspect observed in Figure 5.7
regards the performance decrease observed after the processing of 50 thousand
interactions. This decrease matches the behavior change of the cumulative
number of users in the dataset, thus culminating in a cold start problem.

However, even though we notice an abrupt increase in the number of users

57

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

(a) SMDI (original) (b) SMDI-500E

(c) SMDI-200UE

Figure 5.7: Moving averages of RECALL@10 values in the test stage, when us-
ing a sliding window with size 2000; a) shows the plot evolution obtained in
the original dataset; b) pre-processed SMDI-500E dataset; and c) pre-processed
SMDI-200UE dataset.

in all datasets, most algorithms recover from the cold start and maintain good
performance as new instances appear, except for the BPRMF and GMF meth-
ods. These results show that (i) streaming models, despite built on matrix
factorization, recover from cold start issues swiftly and that (ii) recommender
models based on neural networks exhibit interesting behavior in cold-start sce-
narios even though they are not continuously updated. The reason behind
this behavior is related to the internal learning process of neural network-based
recommender systems, where the user-item interactions result in higher-order
embeddings that better generalize the underlying behavior between users and
items when compared to traditional matrix factorization. Consequently, given
the neural networks’ generalization ability, the recommender models extract

58

CHAPTER 5. CONTRIBUTION I - SUPERMARKET DATA COLLECTION

unseen patterns in user-item interactions and provide useful suggestions in
cold-start scenarios.

On the other hand, when we analyze the cumulative number of items, we
observe that the increase is gradual. Comparing the behavior between the origi-
nal and pre-processed variants, we also observe that the latter datasets’ increase
is slightly faster. This behavior explains why the performance of streaming and
neural batch approaches observed in Table 5.4 in the original dataset is similar.
The streaming models are unable to take advantage of noticeable changes in
data behavior. In contrast, in the pre-processed datasets where these changes
are abrupt, the streaming models can adapt their parameters and achieve higher
recall values.

Finally, in both evaluation phases, the streaming methods were more effi-
cient in almost all presented recommendation scenarios. ISGD and IBPRMF
outperform their batch versions SVD and BPRMF and obtained better results
than observed in the neural network approaches. Considering the concept drift
and cold start problems, we verify that the incremental ability of the streaming
recommender models improved model prediction accuracy.

5.4 Final Considerations

This chapter analyzed batch and stream learning algorithms concerning con-
cept drifts and the cold-start problem. As a by-product of this analysis, a new
collaborative filtering supermarket dataset were publicly available alongside
two pre-processed variants. As a result of this analysis, it is possible to observe
that streaming recommender systems significantly overcome batch approaches.
Thus, more effort should be put into tailoring techniques at the intersection
between data streams and recommender systems. For instance, streaming rec-
ommender systems were especially beneficial with the cold-start issue and over-
came complex neural network approaches in weekly recurrent concept drifts
with statistical significance. Next, Chapter 6 presents the proposed optimiza-
tion variants of four well-known optimizers designed for the streaming learning
scheme.

59

6
Contribution II - Incremental Special-
ized and Specialized-Generalized Ma-
trix Factorization Models based on Adap-
tive Learning Rate Optimizers

Most proposed recommendation techniques operate in a batch fashion. In
such scenarios, given a training set comprising user-item interactions, a static
model is generated and later used for recommendations (BABÜROGLU; DUR-
MUSOGLU; DERELI, 2021). However, the world is dynamic, and it is realistic
to assume that interactions between users and items may become available over
time (RABIU et al., 2020). Consequently, user preferences may change over time
(concept drift), new items can be made available (cold start), or even the system
rules can be modified (e.g., clearance sales and actions in periods of the year,
month, or week) (VINISKI et al., 2021). Thus, developers of such systems must
also be aware of concept drift and cold start issues, which require recommender
systems to work incrementally, continuously, and consistently to detect and
adapt to changes in data so that performance is not jeopardized (LAGHMARI;
MARSALA; RAMDANI, 2018).

As changes in the data stream do not occur in all dataset users and items
simultaneously, we must consider adapting the recommender model learning
schemes in a specialized manner. However, specialization can be ensured in ad-

60

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

dition to user or item parameter learning process. In practice, the definition of
how specialization should take place includes analyzing the definition of partic-
ular step sizes for each user and item in the dataset and adjusting the convergence
according to the recommender performance and individual parameters learned.

In this chapter, we propose adaptive optimization strategies for well-known
incremental matrix factorization (MF) methods. Our approaches derive from
RMSprop (TIELEMAN; HINTON, 2012), Adam (KINGMA; BA, 2015), AMSGrad
(REDDI; KALE; KUMAR, 2018), and Nadam (DOZAT, 2016) optimizers, which
are adaptive gradient descent-based algorithms often used in a batch fashion.
The proposed method differs from the MLF (LUO et al., 2021) optimizer in terms
of the use of a single additional array, as it specifies the target of personalization:
the user or item. Furthermore, the main purpose is to apply the personalization
in an incremental scenario, in which the models were adapted according to
changes in data and with positive-only feedback data.More specifically, our
contribution is three-fold:

• An analysis of the optimizers application in an incremental fashion as part
of matrix factorization algorithms.

• The proposal of optimizer variants that include both user and item special-
ized and specialized-generalized incremental methods. These optimizers
are also substituted into existing MF algorithms.

• An empirical analysis that demonstrates that adaptive learning rate opti-
mizers induce better adjustment in the MF model’s parameters and, con-
sequently, more accurate recommendations.

The remainder of this Section is organized as follows. Section 6.1 describes
popular adaptive learning rate optimizers. Section 6.2 details the proposed
optimization methods and how they are coupled with the existing incremental
MF models. Section 6.3 describes the experimental protocol used to perform the
proposed analysis of recommender models. Section 7.6 presents the discussion
of the obtained results. Finally, Section 6.5 concludes the paper and describes
future work.

6.1 Adaptive Learning Rate Optimizers

This section introduces existing adaptive learning rate optimizers available
in the literature.

61

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

Most machine-learning methods can be formulated as optimization problems
to determine the extremum of an objective function. Accordingly, the three vital
steps of a machine learning algorithm are (i) building a model hypothesis, (ii)
defining the objective function, and (iii) solving the maximum or minimum of
the objective function to determine the model parameters. In this sense, the first
two steps are modeling problems, and the third step solves the problem using
optimization algorithms (SUN et al., 2020).

Therefore, optimization is a mathematical discipline used to solve decision-
making problem. The basic idea of optimization is to determine the best solution
among the various available options in the given objective function (KASTRATI;
BIBA, 2021). Traditionally, optimization research is divided into first-order, high-
order, and derivative-free methods (SUN et al., 2020; KASTRATI; BIBA, 2021).
First-order optimization methods, known as gradient-based optimization, are
primarily based on first-order derivatives or gradient descent algorithms. High-
order methods, in turn, are used to address the problem in which an objective
function exhibits highly non linear and ill-conditioned behavior. Finally, we can
use derivative-free methods in real-world optimization problems, where the
derivative of the objective and constraint functions may not exist or is difficult
to calculate.

In this study, we focus on traditional MF models, in which the most fre-
quently used optimization strategy to minimize the objective function is gra-
dient descent-based methods, such as RMSProp, Adam, AMSGrad, Nadam,
Momentum, Adadelta, and Adagrad optimizers. However, the following sec-
tions introduce the RMSProp, Adam, AMSGrad, Nadam, and gradient descent
optimization strategies selected to replace the traditional SGD optimizer in the
MF model. We selected RMSProp, Adam, AMSGrad, and Nadam optimizers
because they exhibited superior and more robust performance in many works
when compared with other optimization techniques (DOGO et al., 2018; YU;
LIU, 2019; CHAUDHURY; YAMASAKI, 2021)

RMSprop Optimizer

RMSprop (TIELEMAN; HINTON, 2012) is an unpublished adaptive learning
rate method that is similar to the SGD algorithm with momentum. It was
developed as a stochastic technique for mini-batch learning, which works well
in online and non stationary settings. RMSprop and gradient descent differ

62

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

in gradient computation. RMSProp uses the exponential decaying average −→𝑣𝑡
(Equation 6.1) method to discard the squared values of the gradients distant
from the current time step. The algorithm converges rapidly after obtaining
convex structure. In RMSprop’s update rules depicted in Equation 6.2, the
gradients (−→𝑔) are divided by the running average of their recent magnitudes
(−→𝑣𝑡) (TIELEMAN; HINTON, 2012). The 𝛾 parameter is the momentum (also
called the decay rate) and is usually set to 0.9 (TIELEMAN; HINTON, 2012).
Considering that the value of −→𝑣𝑡 may converge to 0, weights can “blow up”. To
prevent the gradients from blowing up, RMSprop includes a padding factor 𝜖 in
the denominator, often 𝜖 = 10−8, to avoid inconsistent computation (KINGMA;
BA, 2015).

−→𝑣𝑡 ← 𝛾 × −−→𝑣𝑡−1 + −→𝑔 2(1 − 𝛾) (6.1)

−→
� ← −→� + −→𝑔

�√︁−→𝑣𝑡 + 𝜖
(6.2)

RMSprop deals with gradient vanishing and explosion issues using a moving
average of past squared gradients, normalizing the gradient accordingly. This
normalization adapts the learning rate, decreasing it for large gradients to avoid
exploding and increasing it for small gradients to avoid vanishing (TIELEMAN;
HINTON, 2012; NGUYEN; TSILIGIANNI; DELIGIANNIS, 2018).

Adaptive Moment Estimation - Adam

Adaptive moment estimation (Adam) computes adaptive learning rates for
each model parameter (KINGMA; BA, 2015). Similar to the RMSprop optimizers,
Adam stores an exponentially decaying average of the past squared gradients 𝑣𝑡
(Equation 6.3).

−→𝑣𝑡 ← 𝛽2
−−→𝑣𝑡−1 + (1 − 𝛽2)−→𝑔 2 (6.3)

Adam also mantains an exponentially decaying average of past gradients𝑚𝑡 ,
similar to momentum (Equation 6.4).

−→𝑚𝑡 ← 𝛽1
−−−→𝑚𝑡−1 + (1 − 𝛽1)−→𝑔 (6.4)

The𝑚𝑡 and 𝑣𝑡 parameters are estimates of the first (the mean) and the second

63

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

moments (the uncentered variance) of the gradients, respectively; hence the
method is named accordingly. As 𝑚𝑡 and 𝑣𝑡 are initialized as vectors of 0’s, they
are biased towards zero, especially during the initial time steps and especially
when the decay rates are low (i.e., 𝛽1 and 𝛽2 are close to 1, propose default values
of 0.9 and 0.999, respectively). Thus, to counteract these biases, Adam computes
the bias-corrected first and second moment estimates using Equations 6.5 and
6.6, respectively, where 𝑡 is the current time step (epoch).

−→ˆ︁𝑚𝑡 ←
−→𝑚𝑡

(1 − 𝛽1)𝑡
(6.5)

−→ˆ︁𝑣𝑡 ← −→𝑣𝑡
(1 − 𝛽2)𝑡

(6.6)

Finally, Adam’s optimization update rule in Equation 6.7 uses the first (Equa-
tion 6.5) and second-moment (Equation 6.6) estimations as follows:

−→
� ← −→� + �

−→ˆ︁𝑚𝑡√︂−→ˆ︁𝑣𝑡 + 𝜖
(6.7)

AMSGrad Optimizer

The AMSGrad (REDDI; KALE; KUMAR, 2018) algorithm overcomes the
problem in which Adam cannot converge to the optimal solution. The AMSGrad
optimizer proposes a new parameter update method that uses the maximum of
the past squared gradients max(−→𝑣𝑡) (Equation 6.8) rather than the exponential
average (−→𝑣𝑡) directly to update the parameters (Equation 6.9). AMSGrad also
calculates the exponentially decaying average of past squared gradients (−→𝑣𝑡 -
Equation 6.3) and the exponentially decaying average of past gradients (−→𝑚𝑡 -
Equation 6.4). Therefore, max(−→𝑣𝑡) is an additional parameter.

max(−→𝑣𝑡) ← max
(︂
max(−→𝑣𝑡),−→𝑣𝑡

)︂
(6.8)

−→
� ← −→� + �

−→𝑚𝑡√︂
max(−→𝑣𝑡) + 𝜖

(6.9)

64

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

Nesterov-accelerated Adaptive Moment Estimation - Nadam)

The Nesterov-accelerated adaptive moment estimation (Nadam) (DOZAT,
2016) algorithm combines the Adam and nesterov accelerated gradient (NAG).
To incorporate NAG into Adam, the authors modified its momentum term −→𝑚𝑡 ,
thus defining the adjusted momentum (

−−−→ˆ︁𝑚𝑎(𝑡)) and similarly replacing the pre-
vious momentum vector with the current momentum vector. To simplify the
adjusted moment term (

−−−→ˆ︁𝑚𝑎(𝑡)), Nadam used the corrected bias (
−→ˆ︁𝑚𝑡 - Equation

6.5) of the current moment term.

−−−→ˆ︁𝑚𝑎(𝑡)← 𝛽1
−→ˆ︁𝑚𝑡 +

(︁
1 − 𝛽1

)︁ −→𝑔𝑡
1 − 𝛽𝑡1

(6.10)

This algorithm aims to increase or decrease the decay factor 𝛽1 over time. We
can observe the Nadam update rule, as shown in Equation 6.11.

−→
� ← −→� + �

−−−→ˆ︁𝑚𝑎(𝑡)√︂−→ˆ︁𝑣𝑡 + 𝜖

(6.11)

6.2 Proposed Methods

This section introduces the proposed variants for Adam, AMSGrad, Nadam,
and RMSProp with adaptive learning rate optimizers that have been previously
introduced in Section 6.1. The main purpose of our proposed optimizer variants
is to consider the user or item in the data-stream instance to update the optimizer
parameters. Such an analysis enables the learning of personalized optimizer
terms for each user or item in the data stream. In contrast to the MLF optimizer
described in Section 6.1, our proposed method uses a single auxiliary array (per
user or item) to personalize optimizer parameters.

The rationale for proposing optimizer variants is to consider the dynamic
characteristics of streaming recommendation scenarios. Such dynamism occurs
because the incidence of cold-start and concept-drift problems requires recom-
mendation models to adapt their learning schemes to maintain performance.
In this sense, as changes in the data behavior are not observed in the entire
dataset and are only for a few users or items, we propose updating the opti-
mizer learning steps individually. The idea here is not to implement an explicit
drift detector or treat the new users and new items differently because of the

65

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

cold-start incidence but, instead, to make the model adaptive according to the
acquired performance.

As both optimizers have as parameters the squared decaying average 𝑣𝑡

and/or the decaying average 𝑚𝑡 , we show the implementation of the AMS-
Grad optimizer variants owing to its additional parameter max(𝑣𝑡). Thus, the
following algorithms are prototypes for other adaptive learning rate optimiz-
ers. Therefore, to implement RMSProp, Adam, and Nadam variants, we must
replace the AMSGrad update rules for their update rules and operations accord-
ingly. Algorithm 1 shows the implementation of the original AMSGrad version,
which receives as inputs the latent factors vector

−→
� , current gradient of the error

−→𝑔 , learning rate �, decay rates 𝛽1 and 𝛽2, padding factor to prevent divisions
by zero 𝜖 , squared decaying average −→𝑣(𝑡), decaying average −−→𝑚(𝑡), and maximum
squared decaying average max(−→𝑣(𝑡)) of the past gradients 𝑔. As output, the AMS-
Grad algorithm returns the updated latent factors vector

−→
� . The Algorithm 1

is responsible for inplace updating of the AMSGrad parameters based on the
gradient of the error−→𝑔 and according to their rules in lines 1, 2, and 3 (described
in Section 6.1). Finally, line 4 updates the latent factor vector

−→
� according to the

AMSGrad update rules, and line 5 returns the updated vector.

Algorithm 1: Original AMSGrad Optimizer.

Input:

−→
� : latent factors vector, −→𝑔 : gradients of the error, �: learning

rate, 𝛽1 and 𝛽2: decay rates, 𝜖: padding factor to prevent
inconsistent computations, −→𝑣(𝑡): squared decaying average, −−→𝑚(𝑡):
decaying average, max(−→𝑣(𝑡)): maximum squared decaying
average.

Output:

−→
� : updated latent factors vector.

1

−→𝑣(𝑡)← 𝛽2 × −−−→𝑣(𝑡−1) + (1 − 𝛽2) × −→𝑔 2

2

−−→𝑚(𝑡)← 𝛽1 × −−−−→𝑚(𝑡−1) + (1 − 𝛽1) × −→𝑔
3 max(−→𝑣(𝑡)) ← max(max(−→𝑣(𝑡)),−→𝑣(𝑡))

4

−→
� ← −→� + �

(︄
−−→𝑚(𝑡)√︂

max(−−→𝑣(𝑡))+𝜖

)︄
5 return

−→
�

Section 6.2.1 shows the characteristics of the specialized optimization strat-
egy, in which we learn the personalized terms for each user or item in the data
stream. In Section 6.2.2, we present specialized-generalized (SG) variants, which

66

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

combine traditional and specialized optimizers to update the latent factor vector.

6.2.1 Specialized Optimizer

In the specialized version, we propose learning personalized optimizer pa-
rameters for each user 𝑢 or item 𝑖 to update MF models. In this sense, we update
latent factor vector of user

−→
𝐴𝑢 and item

−→
𝐵𝑖 considering a specific optimizer term

learned for the current user (user-specialized version) or item (item-specialized
version) in the data stream.

In Algorithm 2 we present a specialized version o the AMSGrad optimizer.
The specialized AMSGrad optimizer has as inputs the latent factors vector

−→
� ,

current gradient of the error −→𝑔 , and personalization target 𝑝 (which indicates
the identifiers of user 𝑢 or item 𝑖, depending on the specialized variant selected).
The specialized version also receives the learning rate �, decay rate 𝛽1, decay rate
𝛽2, padding factor 𝜖 (to prevent divisions by zero), and AMSGrad parameters,
that is, specialized squared decaying average −−→𝑣𝑝(𝑡), specialized decaying average
−−−→𝑚𝑝(𝑡), and specialized maximum squared decaying average max(−−→𝑣𝑝(𝑡)) of the past
gradients 𝑔. Algorithm 2 then updates the AMSGrad personalized optimizer
parameters 𝑣𝑝(𝑡) (Line 1), 𝑚𝑝(𝑡)(Line 2), and max(𝑣𝑝(𝑡)) (Line 3) based on the
gradients of the error −→𝑔 . Finally, we update the latent factor vector

−→
� (line 4)

using the AMSGrad update rules (Equation 6.9) and return the updated vector
(line 5).

If the user-specialized version is selected, both the latent factor vectors of
user

−→
𝐴𝑢 and item

−→
𝐵𝑖 are updated using the personalized optimizer parame-

ters learned for user 𝑢 in the instance. Suppose we have a function called
update_model that receives the specialized AMSGrad inputs, then user and
item latent factors vectors are updated using Equation 6.12, where −−→𝑣𝑢(𝑡), −−−→𝑚𝑢(𝑡),
and max(−−→𝑣𝑢(𝑡)) represents the specialized AMSGrad parameters learned for the
user 𝑢.

−→
𝐴𝑢 ← update_model(𝐴𝑢 , 𝑔𝑢 , 𝑢, �, 𝛽1, 𝛽2, 𝜖,

−−→𝑣𝑢(𝑡),−−−→𝑚𝑢(𝑡),max(−−→𝑣𝑢(𝑡)))
−→
𝐵𝑖 ← update_model(𝐵𝑖 , 𝑔𝑖 , 𝑢, �, 𝛽1, 𝛽2, 𝜖,

−−→𝑣𝑢(𝑡),−−−→𝑚𝑢(𝑡),max(−−→𝑣𝑢(𝑡)))
(6.12)

Otherwise, if an item-specialized version is selected,
−→
𝐴𝑢 and

−→
𝐵𝑖 are updated

using the personalized optimizer parameters learned for the item in the instance

67

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

Algorithm 2: Incremental Specialized AMSGrad Optimizer

Input:

−→
� : latent factors vector, −→𝑔 : gradients of the error, 𝑝: user or item

identifier based on specialized variant, �: learning rate, 𝛽1 and
𝛽2: decay rates, 𝜖: padding factor to prevent inconsistent
computations, −−→𝑣𝑝(𝑡): specialized squared decaying average, −−−→𝑚𝑝(𝑡):
specialized decaying average, max(−−→𝑣𝑝(𝑡)): specialized maximum
squared decaying average.

Output:

−→
� : updated latent factors vector.

1

−−→𝑣𝑝(𝑡)← 𝛽2 × −−−−→𝑣𝑝(𝑡−1) + (1 − 𝛽2) × −→𝑔 2

2

−−−→𝑚𝑝(𝑡)← 𝛽1 × −−−−−→𝑚𝑝(𝑡−1) + (1 − 𝛽1) × −→𝑔
3 max(−−→𝑣𝑝(𝑡)) ← max(max(−−→𝑣𝑝(𝑡)),−−→𝑣𝑝(𝑡))

4

−→
� ← −→� + �

(︄
−−−→𝑚𝑝(𝑡)√︂

max(−−→𝑣𝑝(𝑡))+𝜖

)︄
5 return

−→
�

using Equation 6.13, where −−→𝑣𝑖(𝑡), −−−→𝑚𝑖(𝑡), and max(−−→𝑣𝑖(𝑡)) represents the specialized
AMSGrad parameters learned for the item 𝑖.

−→
𝐴𝑢 ← update_model(𝐴𝑢 , 𝑔𝑢 , 𝑖 , �, 𝛽1, 𝛽2, 𝜖,

−−→𝑣𝑖(𝑡),−−−→𝑚𝑖(𝑡),max(−−→𝑣𝑖(𝑡)))
−→
𝐵𝑖 ← update_model(𝐵𝑖 , 𝑔𝑖 , 𝑖 , �, 𝛽1, 𝛽2, 𝜖,

−−→𝑣𝑖(𝑡),−−−→𝑚𝑖(𝑡),max(−−→𝑣𝑖(𝑡)))
(6.13)

Considering that we are analyzing the RMSProp, Adam, AMSGrad, and
Nadam optimizers, we have two specializations for each version. As our fo-
cus is on incremental scenario, we named the variants with the prefix “In” and
used the suffix to represent the specialized version. In this sense, the traditional
variants are the InRMSProp, InAdam, InAMSGrad, and InNadam optimizers.
The user-specialized variants assume the “User” suffix with InRMSPropUser,
InAdamUser, InAMSGradUser, and InNadamUser. Finally, the item-specialized
variants, which have “Item” suffix, are InRMSPropItem, InAdamItem, InAMS-
GradItem, and InNadamItem. Table 6.1 presents the update rules of Adam,
AMSGrad, Nadam, and RMSProp optimizer, where 𝑝 indicates the specializa-
tion target, which assumes the user or item identifiers during the model updates.

68

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

6.2.2 Specialized-Generalized Optimizer

The proposed specialized-generalized variant combines the original opti-
mizer version with a specialized version. Accordingly, it is necessary to learn
both optimizer parameters instead of learning only the general or specialized
versions. We combine the optimizer’s general and specialized variants by joining
their respective update rules. Therefore, we use the sum of the particular param-
eters of both variants to generate the specialized-generalized version. Equation
6.14 shows the specialized-generalized optimizer update rule in which

−→
� is the

user
−→
𝐴𝑢 or item

−→
𝐵𝑖 latent factor vector, � is step size, and 𝑃𝑜 and 𝑃𝑠 are param-

eters that represent the original and specialized optimizers, respectively. The
combination of these parameters enables the gradient to store both the local and
global latent factor changes.

−→
� ← −→� + � (𝑃𝑜 + 𝑃𝑠) (6.14)

Algorithm 3 presents the AMSGrad specialized-generalized optimizer vari-
ant. The input arguments (

−→
� ,−→𝑔 , 𝑝, �, 𝛽1, 𝛽2, 𝜖) and the output (

−→
�) are the same

as those of the original and specialized versions. However, the specialized-
generalized variant stores both general and specialized squared decaying aver-
ages (−→𝑣(𝑡) and −−→𝑣𝑝(𝑡)), decaying averages (−−→𝑚(𝑡) and −−−→𝑚𝑝(𝑡)), and maximum squared
decaying averages (max(−→𝑣(𝑡)) and max(−−→𝑣𝑝(𝑡))). However, we must update both the
general (Algorithm 3 - lines 1, 2, and 3) and specialized (Algorithm 3 - lines
4, 5, and 6) parameters according to AMSGrad update rule. Finally, to update
the latent factor vector

−→
� , the specialized-generalized variant combines general

and specialized AMSGrad update rules (line 7), in which the main difference is
between the specialized and specialized-generalized versions.

To distinguish the optimizers’ variants, we named the specialized-generalized
versions with the “SGI” prefix and used the suffixess “User” or “Item” to repre-
sent the specialized part of the optimizer. The user-specialized-generalized
variants are SGIRMSPropUser, SGIAdamUser, SGIAMSGradUser, and SGI-
NadamUser while the item-specialized variants are SGIRMSPropItem, SGIAdamItem,
SGIAMSGradItem, and SGINadamItem. Algorithms 1, 2, and 3 present the ex-
ecution flow of the variants of the AMSGrad optimizer. Accordingly, if we want
to select other optimizers, we have to use their update rule presented in Ta-
ble 6.1, which shows the latent factor vector

−→
� update for the specialized and

specialized-generalized variants of the Adam, AMSGrad, Nadam, and RMSProp

69

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

Algorithm 3: Incremental Specialized-Generalized AMSGrad Opti-
mizer.

Input:

−→
� : latent factors vector, −→𝑔 : gradients of the error, 𝑝: user or item

identifier based on specialized variant, �: learning rate, 𝛽1 and
𝛽2: decay rates, 𝜖: padding factor to prevent inconsistent
computations, −→𝑣(𝑡): squared decaying average, −−→𝑚(𝑡): decaying
average, max(−→𝑣(𝑡)): maximum squared decaying average −−→𝑣𝑝(𝑡):
specialized squared decaying average, −−−→𝑚𝑝(𝑡): specialized
decaying average, max(−−→𝑣𝑝(𝑡)): specialized maximum squared
decaying average.

Output:

−→
� : updated latent factors vector

1

−→𝑣(𝑡)← 𝛽2 × −−−→𝑣(𝑡−1) + (1 − 𝛽2) × −→𝑔 2

2

−−→𝑚(𝑡)← 𝛽1 × −−−−→𝑚(𝑡−1) + (1 − 𝛽1) × −→𝑔
3 max(−→𝑣(𝑡)) ← max(max(−→𝑣(𝑡)),−→𝑣(𝑡))
4

−−→𝑣𝑝(𝑡)← 𝛽2 × −−−−→𝑣𝑝(𝑡−1) + (1 − 𝛽2) × −→𝑔 2

5

−−−→𝑚𝑝(𝑡)← 𝛽1 × −−−−−→𝑚𝑝(𝑡−1) + (1 − 𝛽1) × −→𝑔
6 max(−−→𝑣𝑝(𝑡)) ← max(max(−−→𝑣𝑝(𝑡)),−−→𝑣𝑝(𝑡))

7

−→
� ← −→� + �

(︄
−−→𝑚(𝑡)√︂

max(−−→𝑣(𝑡))+𝜖
+

−−−→𝑚𝑝(𝑡)√︂
max(−−→𝑣𝑝(𝑡))+𝜖

)︄
8 return

−→
�

optimizers. Additional operations may be necessary based on each optimizer
step, which are presented in Section 6.1.

6.3 Experimental Setup

We compare our proposed MF optimization strategies with and against the
SGD (VINAGRE; JORGE; GAMA, 2014) and InMLF (LUO et al., 2021) algorithms,
as previously introduced in Chapter 3 . We also used PMF (SALAKHUTDINOV;
MNIH, 2007) and IBPRMF (RENDLE et al., 2012) recommender models as base-
lines.

Additionally, we tested the non-machine learning methods Top Popular (Top-
Pop) (CREMONESI; KOREN; TURRIN, 2010b) and random (KRISTOFFERSEN;
SHEPSTONE; TAN, 2018) for comparison. TopPop consists of recommending
items with the best degree of success among all users, instead of modeling the

70

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

Table 6.1: Optimizers update rules based on specialized and specialized-
generalized versions.

Specialized Specialized-Generalized

Adam

−→
� ← −→� + �

−−−→ˆ︁𝑚𝑝(𝑡)√︂−−−→ˆ︁𝑣𝑝(𝑡)+𝜖
−→
� ← −→� + �

(︄
−−→ˆ︁𝑚(𝑡)√︂−−→ˆ︁𝑣(𝑡)+𝜖 +

−−−→ˆ︁𝑚𝑝(𝑡)√︂−−−→ˆ︁𝑣𝑝(𝑡)+𝜖
)︄

AMSGrad

−→
� ← −→� + � ×

−−−→𝑚𝑝(𝑡)√︂
max(−−−→𝑣𝑝(𝑡))+𝜖

−→
� ← −→� + � ×

(︄
−−→𝑚(𝑡)√︂

max(−−→𝑣(𝑡))+𝜖
+

−−−→𝑚𝑝(𝑡)√︂
max(−−−→𝑣𝑝(𝑡))+𝜖

)︄
Nadam

−→
� ← −→� + � ×

−−−−→ˆ︁𝑚𝑝𝑎(𝑡)√︂−−−→ˆ︁𝑣𝑝(𝑡)+𝜖
−→
� ← −→� + � ×

(︄
−−−→ˆ︁𝑚𝑎(𝑡)√︂−−→ˆ︁𝑣(𝑡)+𝜖 +

−−−−→ˆ︁𝑚𝑝𝑎(𝑡)√︂−−−→ˆ︁𝑣𝑝(𝑡)+𝜖
)︄

RMSProp

−→
� ← −→� + −→𝑔 �√

𝑣𝑝(𝑡)+𝜖
−→
� ← −→� + � × −→𝑔 ×

(︄
1√︂
−−→𝑣(𝑡)+𝜖

+ 1√︂
−−−→𝑣𝑝(𝑡)+𝜖

)︄

user item relationship using a machine learning method. In contrast, the ran-
dom approach randomly selects items from a set of unobserved items in the
recommendation phase.

The incremental MF recommendation model uses the SGD optimizer in its
original version, which is the most frequently used method for minimizing
the L2-regularized squared error (Equation 3.2). Therefore, we compared the
proposed adaptive optimizer variants as replacements for the traditional SGD
optimizer.

The following hyper-parameter values were tested in the MF incremental
recommender model: optimizer ∈ {SGD, InMLF, InAdam, InAdamUser, In-
AdamItem, SGIAdamUser, SGIAdamItem, InAMSGrad, InAMSGradUser, In-
AMSGradItem, SGIAMSGradUser, SGIAMSGradItem, InNadam, InNadamUser,
InNadamItem, SGINadamUser, SGINadamItem, InRMSprop, InRMSpropUser,
InRMSpropItem, SGIRMSpropUser, and SGIRMSpropItem} learning rate ∈ {0.01,
0.001, 0.0001}, regularization rate equal to 0.01, latent factors ∈ {10, 20, 40, 60,
80}, batch training epochs equal to 10. We also used these hyper-parameters,
except for the optimizer, in the PMF and IBPRMF recommendation models.

The best hyper parameters were selected based on a grid search, which
exhaustively generates candidates from the specified grid of parameter values.
The entire dataset was used for each combination. In this sense, parameter
tuning is not a part of the processing time of the methods.

71

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

In this study, each best experimental setting were replicated 10 times, thus,
the results depict the average and standard deviation of the recall values. A
single random seed were tested for each replication and used it with all opti-
mizers to enable further paired comparisons and application of the statistical
significance test.

As this analysis have many optimization strategies for comparison, each
experiment were executed several times to envision finding any statistically
significant difference. Therefore, each optimizer’s best variant was selected and
applied non-parametric tests. Such analysis follows the protocol reported in
(DEMSAR, 2006) by combining the Friedman (FRIEDMAN, 1937) and Nemenyi
post-hoc (NEMENYI, 1963) statistical tests.

The scores reported in the following section for RECALL@K and NDCG@K were
obtained in the test portion of the experiments. As the best set of parameters was
selected, which include the number of latent features, the processing time of the
recommender models in this study. The greater the number of latent factors 𝑓 ,
the longer is the processing time of the recommender models. Furthermore, the
proposed specialized and specialized-generalized optimizer variants are more
time and memory consuming than the traditional SGD optimizer because of the
storage of the parameters for all users or items of the system.

6.4 Results and Analysis

This section presents the results of experiments using four real-world datasets.
The results obtained by incremental MF models are presented in Tables 6.2 and
6.3. These tables depict the RECALL@K and NDCG@K (with 𝐾 = 10) obtained
by each optimizer along with the analyzed datasets. The proposed optimizers
were compared against the ISGD, MF-InMLF, IBPRMF, PMF, TopPop, and Ran-
dom baselines and marked the best results per dataset in bold. This study also
reports the statistical test results obtained by combining the Friedman and Ne-
menyi tests, assuming a 95% confidence level throughout the discussion. The
p-values for each tested dataset are shown in Figure 6.2. We also observed
significant differences in computing the critical distance between the analyzed
optimizers and baselines (Figure 6.2).

Regarding the baseline methods (Tables 6.2 and 6.3), the MF with InMLF
(LUO et al., 2021) optimizer provide the best RECALL@10 and NDCG@10 values
in the Amazon Books dataset. Considering the Movie Lens 1M dataset, the ISGD

72

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

and IBPRMF models provided the best baseline results. By contrast, for the
Movie Tweetings dataset, the ISGD model obtained the highest RECALL values.
Finally, in the supermarket dataset (SMDI-200UE), the PMF model showed the
best performance.

Table 6.2: RECALL@10 and NDCG@10 values obtained by the incremental MF
recommender model for the Amazon Books and Movie Lens 1M datasets.

Models

Amazon Books Movie Lens 1M

RECALL@10 NDCG@10 RECALL@10 NDCG@10

Baselines

TopPop 0.0040 ± 0.0000 0.0020 ± 0.0000 0.0390 ± 0.0000 0.0190 ± 0.0000
Random 0.0010 ± 0.0000 0.0000 ± 0.0000 0.0030 ± 0.0002 0.0010 ± 0.0001

0.0130 ± 0.0001 0.0060 ± 0.0001 0.1200 ± 0.0003 0.0600 ± 0.0001
MF-InMLF 0.0180 ± 0.0002 0.0090 ± 0.0001 0.1070 ± 0.0003 0.0520 ± 0.0002

IBPRMF 0.0150 ± 0.0003 0.0080 ± 0.0002 0.1140 ± 0.0008 0.056 ± 0.0004
PMF 0.0050 ± 0.0001 0.0020 ± 0.0001 0.1210 ± 0.0050 0.0600 ± 0.0028

MF with Adam Optimizers variants

InAdam 0.0080 ± 0.0001 0.0040 ± 0.0001 0.1300 ± 0.0002 0.065 ± 0.0001
InAdamUser 0.0210 ± 0.0025 0.0100 ± 0.0012 0.1310 ± 0.0002 0.066 ± 0.0001
InAdamItem 0.0210 ± 0.0005 0.0100 ± 0.0002 0.0870 ± 0.0012 0.045 ± 0.0006

SGIAdamUser 0.0160 ± 0.0015 0.0080 ± 0.0007 0.1250 ± 0.0003 0.063 ± 0.0002
SGIAdamItem 0.0190 ± 0.0004 0.0090 ± 0.0002 0.1060 ± 0.0017 0.053 ± 0.0009

MF with AMSGrad Optimizers variants

InAMSGrad 0.0050 ± 0.0002 0.0020 ± 0.0001 0.1310 ± 0.0003 0.0660 ± 0.0002
InAMSGradUser 0.0360 ± 0.0040 0.0170 ± 0.0020 0.1320 ± 0.0003 0.0660 ± 0.0002
InAMSGradItem 0.0110 ± 0.0005 0.0050 ± 0.0002 0.0850 ± 0.0013 0.0430 ± 0.0007

SGIAMSGradUser 0.0270 ± 0.0045 0.0130 ± 0.0023 0.1320 ± 0.0003 0.0660 ± 0.0001
SGIAMSGradItem 0.0110 ± 0.0005 0.0050 ± 0.0002 0.1020 ± 0.0012 0.0510 ± 0.0006

MF with Nadam Optimizers variants

InNadam 0.0080 ± 0.0001 0.0040 ± 0.0001 0.1310 ± 0.0002 0.0660 ± 0.0001
InNadamUser 0.0190 ± 0.0020 0.0090 ± 0.0009 0.1310 ± 0.0003 0.0660 ± 0.0002
InNadamItem 0.0210 ± 0.0006 0.0100 ± 0.0003 0.0910 ± 0.0013 0.0460 ± 0.0006

SGINadamUser 0.0140 ± 0.0009 0.0060 ± 0.0005 0.1300 ± 0.0004 0.0650 ± 0.0003
SGINadamItem 0.0180 ± 0.0004 0.0090 ± 0.0002 0.1140 ± 0.0024 0.0570 ± 0.0012

MF with RMSProp Optimizers variants

InRMSProp 0.0170 ± 0.0004 0.0080 ± 0.0002 0.1260 ± 0.0004 0.0630 ± 0.0002
InRMSPropUser 0.0170 ± 0.0008 0.0080 ± 0.0004 0.1280 ± 0.0003 0.0640 ± 0.0002
InRMSPropItem 0.0160 ± 0.0016 0.0080 ± 0.0007 0.1260 ± 0.0002 0.0630 ± 0.0001

SGIRMSPropUser 0.0090 ± 0.0006 0.0040 ± 0.0003 0.1300 ± 0.0003 0.0650 ± 0.0001
SGIRMSPropItem 0.0080 ± 0.0003 0.0040 ± 0.0001 0.1290 ± 0.0005 0.0640 ± 0.0002

Tables 6.2 and 6.3 summarize the performances of the different optimizers an-
alyzed in terms of the RECALL@10 and NDCG@10 values. The InAMSGradUser
optimizer obtained the best results across all tested datasets. Considering the
RECALL@10 values of InAMSGradUser, the adaptive optimizer increases by
up to 2.3 percentage points in the Amazon Books, 1.2 percentage points for
the Movie Lens 1M (Table 6.2), 8.2 percentage points for the Movie Tweetings,
and 11.1 percentage points for the SMDI-200UE dataset (Table 6.3), compared
with the traditional SGD baseline. Furthermore, compared with adaptive In-
MLF optimization, the InAMSGradUser optimizer provided an increase by up
to 1.8, 2.5, 13.1, and 14.7 percentage points for the Amazon Books, Movie Lens

73

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

Table 6.3: RECALL@10 and NDCG@10 values obtained by the incremental MF
recommender model for the Movie Tweetings and SMDI-200UE datasets.

Models

Movie Tweetings SMDI-200UE

RECALL@10 NDCG@10 RECALL@10 NDCG@10

Baselines

TopPop 0.0070 ± 0.0000 0.0030 ± 0.0000 0.1500 ± 0.0000 0.0870 ± 0.0000
Random 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0020 ± 0.0001 0.0010 ± 0.0000

SGD 0.1510 ± 0.0032 0.0630 ± 0.0014 0.2290 ± 0.0004 0.1330 ± 0.0002
InMLF 0.1010 ± 0.0020 0.0430 ± 0.0008 0.1930 ± 0.0023 0.1080 ± 0.0012

IBPRMF 0.0580 ± 0.0004 0.0280 ± 0.0003 0.2380 ± 0.0013 0.1380 ± 0.0008
PMF 0.0090 ± 0.0015 0.0050 ± 0.0009 0.3390 ± 0.0058 0.2250 ± 0.0030

MF with Adam Optimizers variants

InAdam 0.1660 ± 0.0013 0.074 ± 0.0006 0.3210 ± 0.0004 0.2030 ± 0.0003
InAdamUser 0.2250 ± 0.0045 0.1110 ± 0.0027 0.3370 ± 0.0004 0.2010 ± 0.0017
InAdamItem 0.2070 ± 0.0016 0.0990 ± 0.0012 0.1950 ± 0.0026 0.1210 ± 0.0021

SGIAdamUser 0.2060 ± 0.0064 0.1010 ± 0.0034 0.3290 ± 0.0011 0.1840 ± 0.0014
SGIAdamItem 0.2120 ± 0.0010 0.1000 ± 0.0007 0.2100 ± 0.0042 0.1290 ± 0.0023

MF with AMSGrad Optimizers variants

InAMSGrad 0.1510 ± 0.0029 0.0720 ± 0.0014 0.3140 ± 0.0011 0.1820 ± 0.0011
InAMSGradUser 0.2320 ± 0.0028 0.1150 ± 0.0017 0.3400 ± 0.0005 0.2080 ± 0.0007
InAMSGradItem 0.2090 ± 0.0023 0.1 ± 0.0013 0.2350 ± 0.0039 0.1560 ± 0.0028

SGIAMSGradUser 0.2090 ± 0.0025 0.102 ± 0.0013 0.3380 ± 0.0003 0.2010 ± 0.0003
SGIAMSGradItem 0.2090 ± 0.0011 0.101 ± 0.0007 0.2550 ± 0.0030 0.1660 ± 0.0025

MF with Nadam Optimizers variants

InNadam 0.1570 ± 0.0004 0.0700 ± 0.0002 0.3260 ± 0.0006 0.1970 ± 0.0004
InNadamUser 0.2280 ± 0.0033 0.1120 ± 0.0018 0.3400 ± 0.0006 0.2010 ± 0.0018
InNadamItem 0.2190 ± 0.0012 0.1050 ± 0.0009 0.2050 ± 0.0051 0.1280 ± 0.0029

SGINadamUser 0.2040 ± 0.0048 0.0990 ± 0.0026 0.3280 ± 0.0015 0.1820 ± 0.0014
SGINadamItem 0.2220 ± 0.0012 0.1060 ± 0.0009 0.2240 ± 0.0073 0.1360 ± 0.0043

MF with RMSProp Optimizers variants

InRMSProp 0.1780 ± 0.0024 0.0910 ± 0.0015 0.1960 ± 0.0004 0.1170 ± 0.0004
InRMSPropUser 0.1770 ± 0.0021 0.0930 ± 0.0015 0.1940 ± 0.0010 0.1190 ± 0.0005
InRMSPropItem 0.1710 ± 0.0043 0.0880 ± 0.0023 0.2030 ± 0.0032 0.1220 ± 0.0016

SGIRMSPropUser 0.1880 ± 0.0026 0.0960 ± 0.0014 0.3130 ± 0.0013 0.1610 ± 0.0016
SGIRMSPropItem 0.1650 ± 0.0012 0.0850 ± 0.0007 0.3120 ± 0.0014 0.1640 ± 0.0015

1M, Movie Tweetings, and SMDI-200UE datasets, respectively. Concerning the
NDCG@10 metric, the results showed a lower increase, which is natural because
the NDCG evaluates the item ranking in the TOP@10 ranked list. Regarding the
InAMSGradUser and SGD NDCG@10 values, we observed increases of up to
1.1, 0.6, 5.2, and 7.5 percentage points for the Amazon Books, Movie Lens 1M,
Movie Tweetings, and SMDI-200UE datasets, respectively. However, although
the increase in NDCG values was smaller than that in RECALL, there were also
significant differences between the results.

The results showed that the PMF model provided competitive results for
the Movie Lens and SMDI-200UE datasets. Moreover, considering the Ama-
zon Books and Movie Tweeting datasets, which are the largest amog the tested
datasets, the results are not significantly different from the TopPop baseline.
As observed in the incremental MF model results (Tables 6.2 and 6.3), con-
sidering the optimizer variants, the user-specialized version provided superior

74

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

performance in most cases. In all the analyzed datasets, the InAdamUser, In-
AMSGradUser, and InNadamUser variants showed the best results compared
to the other variants of each optimizer. For the RMSProp optimizer, the user
specialized-generalized version presented the best results. In contrast, in most
experiments item-specialized and item-specialized-generalized variants did not
significantly differ from the SGD baseline. I can explain this behavior by search-
ing for datasets of distinct users and items, where the number of users is higher
than the number of items. Additionally, as the focus is the collaborative filter-
ing scenario, where the primary purpose is to model and learn the relationship
between users, it makes sense to learn individualized optimizer parameters for
each user, because the optimizer also uses these parameters to update the latent
factor vector of the items.

Considering the statistical significance test, although the InAMSGradUser
rates were greater, some optimizers did not show significant differences con-
sidering the Nemenyi test with a 95% confidence level. In the Movie Lens
1M dataset, the InAMSGradUser optimizer did not show a significant differ-
ence from the SGIAMSGradUser, InNadamUser, InAdamUser, InAMSGrad, In-
Nadam, and InAdam optimizers. Considering the Movie Tweetings dataset,
the optimizers without significant differences from InAMSGradUser are In-
NadamUser, InAdamUser, SGINadamItem, InNadamItem, and SGINadamItem.
Finally, in the SMDI-200UE dataset, the InAMSGradUser optimizer does not dif-
fer from InNadamUser, SGIAMSGradUser, InAdamUser, SGIAdamUser, SGI-
NadamUser, and InNadam.

Figure 6.1 shows the critical distance (CD) of the best variants of each op-
timizer, considering the obtained results for all datasets. The general results
concerning the RECALL@10 values demonstrate the best performance of user-
specialized variants. In addition, by comparing the RECALL@10 values across
all the analyzed datasets, it is possible to confirm that the AMSGradUser and
InNadamUser optimizers presented the best performance in the experiments,
showing significant differences from the other optimizers, except for the PMF
model in the SMDI-200UE dataset, which presented competitive results. Fur-
thermore, considering the NDCG@10 values, the PMF model outperformed the
other optimizers. On the other hand, in contrast to what was observed in the RE-
CALL@10 analysis, regarding the NDCG@10 values, the InAdam and SGIRM-
SPropItem optimizers outperform the InAdamUser and SGIRMSPropIUser vari-
ants.

75

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

(a) RECALL@10. (b) NDCG@10.

Figure 6.1: Nemenyi test results on RECALL@10 and NDCG@10 values in the
analysed datasets.

Figure 6.2 presents the results of Friedman and Nemenyi’s statistical sig-
nificance test, considering the experiments of all techniques in each analyzed
dataset. The legends present the Friedman p-values and show significant dif-
ferences, assuming a 95% (p-value < 0.05) confidence level for the results for all
datasets. Therefore, the graph of the critical distance obtained by the Nemenyi
test shows the rankings and significant differences of each method. Figure 6.2
presents the statistical significance tests, in that the behavior of the results is simi-
lar to that presented in Tables 6.2 and 6.3. The user-specialized variants provided
the best results in most cases and outperformed the specialized-generalized ver-
sions of the AMSGrad, Nadam, and Adam optimizers. InAMSGradUser and
InAdamUser proposed specialized optimizer variants provide the best results
for all analyzed datasets considering RECALL@10. Regarding the NDCG@10
values, only for the SMDI-200UE dataset, InAdamUser does not appear as the
best variant of the Adam Optimizer. However, considering the RMSProp opti-
mizer, the best results were obtained in the user-specialized-generalized version
(SGIRMSPropUser). The results presents different behaviors in the Amazon
Books dataset results, in which the item-specialized Nadam optimizer variant
(InNadamItem) presented the best performance compared to the other versions.

In contrast to the results obtained in the combined statistical analysis of all
datasets (Figure 6.1), considering the results in every single dataset (6.2), the PMF
model presented the best results only for the SMDI-200UE dataset. However,
in the general analysis, the PMF obtained the best performance because the
RECALL@10 and NDCG@10 values in the SMDI-200UE dataset were higher
than those of the other datasets.

76

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

(a) Amazon Books RECALL@10 (p-value
= 2.64 × 10−15).

(b) Amazon Books NDCG@10 (p-value =
3.07 × 10−15).

(c) Movie Lens RECALL@10 (p-value =
2.64 × 10−15).

(d) Movie Lens NDCG@10 (p-value =
2.41 × 10−15).

(e) Movie Tweetings RECALL@10 (p-
value = 3.60 × 10−15).

(f) Movie Tweetings NDCG@10 (p-value
= 3.29 × 10−15).

(g) SMDI-200UE RECALL@10 (p-value =
7.9 × 10−15).

(h) SMDI-200UE NDCG@10 (p-value =
1.78 × 10−15).

Figure 6.2: Critical distances of the Nemenyi test for tested datasets. All p-values
refer to the Friedman test.

Comparing the obtained results across the analyzed datasets, the proposed
user-specialized and user-specialized-generalized variants provided superior

77

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

performance to the tested baselines in most cases. Additionally, combining the
adaptive learning rate optimizers in the MF model, Adam, Nadam, AMSGrad,
and RMSProp significantly increased the RECALL and NDGC rates compared
with the traditional SGD baseline.

6.4.1 Streaming Analysis of the Results

As the focus of this thesis is the streaming scenario, it is essential to eval-
uate the tested methods by considering the evolution of the results according
to the emergence of new instances 〈𝑢, 𝑖〉in the stream. Figure 6.3 presents the
windowed evaluation of RECALL@10 values by analyzing the best optimizer
and their variants in each dataset. Were considered a window with a size 5% of
the number of test interactions. Considering the Amazon Books dataset results
(Figure 6.3a), the AMSGradUser and SGIAMSGradUser optimizers outperform
other AMSGrad variants during the entire streaming test set. However, the
specialized version AMSGradUser maintains the best windowed RECALL@10
values during the data stream fashion. The item-specialized (InAMSGradItem)
and item-specialized-generalized (SGIAMSGradItem) variants showed similar
results and presented superior results to the traditional InAMSGrad optimiza-
tion strategy.

Concerning the results obtained in the Movie Lens dataset experiments (Fig-
ure 6.3b), we can confirm the reduced differences in the RECALL@10 values
compared to the windowed evaluation results with the obtained average RE-
CALL@10 rates (Table 6.2). The both traditional (InAMSgrad), user-specialized
(InAMSgradUser), and user-specialized-generalized (SGIAMSgradUser) vari-
ants of the AMSGrad optimizer show similar behavior in the plotted results. Dif-
ferent from what were obtained in the Amazon Books dataset, in the Movie Lens
dataset, the item-specialized (InAMSGradItem) and item-specialized-generalized
(SGIAMSGradItem) variants of AMSGrad optimizer presented inferior results
than the traditional InAMSGrad version.

Figure 6.3c shows the windowed RECALL@10 values obtained using the
AMSGrad optimizer variants in the movie tweeting dataset. This analysis shows
that the proposed AMSGrad variants outperform the traditional optimizer. The
user-specialized optimizer (InAMSGradUser) provided superior performance
in some regions of the graph, as proven by the average RECALL@10 rates (Table
6.3), in which we obtained a RECALL@10 value of 23.20% using the InAMS-

78

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

GradUser optimizer. For InAMSGradItem, SGIAMSGradUser, and SGIAMS-
GradUser optimizers, the obtained RECALL@10 value was 20.90%.

(a) AMSGrad optimizers in the Amazon
Books dataset.

(b) AMSGrad optimizers in the Movie Lens
dataset.

(c) AMSGrad optimizers in the Movie
Tweetings dataset.

(d) Nadam optimizers in the SMDI-200UE
dataset.

Figure 6.3: Windowed evaluation of RECALL@10 values obtained by the best
optimizer and their variants in each dataset (We consider a window size of 5%
of the number of interactions for each dataset test portion).

Finally, considering the SMDI-200UE dataset results, Figure 6.3d shows the
results for the Nadam optimizer variants. A similar behavior were observed
from the obtained results in the Movie Lens dataset, in which the traditional
(InNadam), user-specialized (InNadamUser), and user-specialized-generalized
(SGINadamUser) variants presented similar results. Furthermore, the item spe-
cialized (InNadamItem) and item-specialized-generalized (SGINadamItem) ver-
sions also provided worse results than the traditional version. Nonetheless, al-
though the windowed evaluation presented similar results, InNadamUser and

79

CHAPTER 6. CONTRIBUTION II - INCREMENTAL SPECIALIZED AND
SPECIALIZED-GENERALIZED MATRIX FACTORIZATION MODELS BASED ON

ADAPTIVE LEARNING RATE OPTIMIZERS

SGINadamUser outperformed the InNadam optimizer in some regions of the
test data stream.

The obtained results in the analyzed datasets could be justified by comparing
the size (number of instances) and number of distinct users and items. The Movie
Lens and SMDI-200UE datasets had fewer users and items than the amazon
books and movie tweeting datasets. In this sense, the proposed optimizer
variants provided the best performance in datasets with a higher number of
users and items, which is reasonable because individual optimizer parameters
were trained for each available user or item in the stream. The amazon books
and movie tweeting datasets also have more instances than the others, showing
that our methods work well in large datasets with a high incidence of new users
and items.

6.5 Conclusion

This study proposed novel adaptive learning rate optimizers for incremental
MF recommender systems. Our variants consider user (user-specialized and
user-specialized-generalized) or item (item-specialized and item-specialized-
generalized) identifiers to model and learn optimizer parameters for each user
or item, respectively. Four adaptive optimizers were selected, Adam, Nadam,
AMSGrad, and RMSProp, and coupled them with the proposed optimizers.
The analysis tested the proposed approaches on three real-world datasets and
compared their results with those of a traditional SGD optimizer. As the result
of this analysis showed that the InAMSGradUser and InNadamUser variants,
which are user-specialized versions of the AMSGrad and Nadam optimizers, sig-
nificantly outperform the SGD among all datasets, increasing the RECALL@10
values by up to 11.1 percentage points and NDCG@10 by up to 7.5 percentage
points. In this sense, combining adaptive learning rate optimizers in the MF
model provides more accurate recommendations to users because adapting the
learning rates during models’ incremental updates makes the models adaptive
to changes in data behavior. Next, Chapter 7 introduces the proposed negative-
relevant sampling strategies combined with pairwise and point-wise models for
the OCCF scenarios.

80

7
Contribution III - Improving Negative
Items Sampling in Streaming Scenar-
ios

Recently, companies in all sectors have widely used recommendation sys-
tems and have proven effective in recommending personalized items to users,
boosting businesses, and facilitating decision-making processes (LI et al., 2017a;
ZHANG et al., 2019). Collaborative Filtering (CF) is one of the most widely
used approaches for recommender systems learning and modeling (VOLKOVS;
YU, 2015; ZHANG et al., 2013). It leverages the user-item preference, rating,
or behavior patterns provided by the systems from a large amount of historical
data to make the recommendation. Different recommendation scenarios could
result in different CF models (ZHANG et al., 2013).

In practice, most information systems only catch the user’s implicit feedback,
the available information to learn a recommender system. Implicit feedback
scenarios often represent the user interaction with the system and include clicks,
playing songs, watching movies, reading books/articles, purchases, and so on
(RENDLE; FREUDENTHALER, 2014). Recent research on recommendations
has shifted from explicit ratings to implicit feedback (DING et al., 2018), which
is much easier to collect compared to the explicit feedback (such as ratings) on
item utility (PAN; LIU; MING, 2016; DING et al., 2020).

Despite the easiness of data acquisition, implicit feedback scenarios have
specific problems, such as negative feedback’s unavailability. The absence of

81

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

user negative feedback is called One-Class Collaborative Filtering (OCCF) or
positive-only feedback (PAN et al., 2008). Despite the lack of negative feedback,
algorithms tailored for OCCF require strategies to assume the unknown relations
between users and items as negative (YU; BILENKO; LIN, 2017). There are two
ways to incorporate unknown inputs into the model’s training: (i) consider that
all missing interactions between users and items are negatives, or (ii) select a
sub-sample of these missing interactions as negative.

Furthermore, a user listening to a song, watching a movie, browsing a web
page, or clicking on a product offer does not necessarily mean that the user likes
the corresponding item. Thus, measuring the degree of preference for such in-
teractions is impossible. Consequently, more than the user’s interaction records
might be required to learn and model their valid preferences (PAN; LIU; MING,
2016). In contrast to multi-class Collaborative Filtering (MCCF) scenarios, which
often focus on the observed relations only, special treatments are needed for the
missing/unobserved examples in OCCF (YAO et al., 2019). Considering the sig-
nificant number of missing interactions, it is unfeasible to assume all as negative
(RENDLE; FREUDENTHALER, 2014) due to the computational cost.

Due to the absence of negative feedback in the positive-only datasets, some
models select unknown observations to serve as negative ones and improve
the model’s convergence. The BPR (RENDLE et al., 2012) is the most common
method to treat positive-only recommendation scenarios, which assumes that an
observed interaction should be ranked with a higher score than its unobserved
counterparts. Neural Network methods (HE et al., 2017) also provided proper
strategies to learn recommender models from binary implicit feedback.

In this Chapter, we introduced the SBRG and MBRG strategies. This ap-
proach combines negative and relevant sampling in pairwise (IBPRMF) and
point-wise (PMF) models seeking to improve the performance of the methods.

7.1 Background - Ranking-Based Recommender Mod-
els

To deal with the implicit recommendation scenarios, we use the Top-N rec-
ommendation tasks, which produce a ranking of the N most relevant items to
the user for each recommendation interaction. The Top-N CF recommendation
techniques aim to generate an optimal item rank function based on a given

82

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

context, i.e., each user profile (ZHANG et al., 2013).
Ranking-based recommender models are powerful tools for solving the Top-

N recommendation task, which can be optimized pairwise or point-wise. The
pairwise method usually has three inputs, i.e., a user 𝑢 and a positive-negative
item pair (𝑖 , 𝑗). The goal is to maximize the user reference margin between the
positive and negative items. Suppose the user preference is estimated from a
function 𝑓 (·) (predictive model), then the objective function (optimization target)
is represented by Equation 7.1 (YANG et al., 2021).

𝐿1(𝑂) = −
∑︂

(𝑢,𝑖, 𝑗)∈𝑂
log 𝜎

(︁
𝑓 (𝑢, 𝑖) − 𝑓 (𝑢, 𝑗)

)︁
, (7.1)

where 𝜎 is the sigmoid function to convert the margin to a probability and to
avoid trivial solutions. 𝑂 = {(𝑢, 𝑖, 𝑗)|𝑖 ∈ 𝐼+𝑢 , 𝑗 ∈ 𝐼 \ 𝐼+𝑢 } represents the dataset
instances. 𝐼 is the whole item set, and 𝐼+𝑢 indicates the set of items the user
𝑢 interacted with. (DING et al., 2020; YANG et al., 2021). For the point-wise
method, each instance is a user-item pair (𝑢, 𝑖), and the item 𝑖 receives both
positive and unobserved items for the user 𝑢. The user preference estimation
is treated as a classification problem, where 𝑓 is optimized by the cross entropy
objective (Equation 7.2).

𝐿2(𝑂) = −
∑︂
(𝑢,𝑖)∈𝑂+

log
(︁
𝑓 (𝑢, 𝑖)

)︁
−

∑︂
(𝑢,𝑖)∈𝑂−

(︁
1 − log

(︁
𝑓 (𝑢, 𝑖)

)︁)︁
, (7.2)

where 𝑂+ = {(𝑢, 𝑖)|𝑖 ∈ 𝐼+𝑢 } and 𝑂− = {(𝑢, 𝑖)|𝑖 ∈ 𝐼 \ 𝐼+𝑢 } are the set of positive and
negative samples. 𝑂 = 𝑂+ ∪ 𝑂− denotes the complete dataset instances.

7.2 Negative Sampling Approaches in Streaming Sce-
narios

As presented in Session 7.1, pairwise and point-wise models in the Top-
N tasks must select unobserved items during the model’s training/update to
serve as negative items. The common approach is to apply a uniform negative
sampling (Session 7.2.1). However, many works suggest that uniform negative
sampling needs to provide better examples for model training/update.

83

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

7.2.1 Uniform Random Sampling

The uniform random sampling is an option that selects the negative item 𝑗

from the entire set of unobserved items to the user 𝑢 ({ 𝑗 ∈ 𝐼 \ 𝐼+𝑢 }). Additionally,
both selected items often received the same selection probabilities during model
updates. Algorithm 4 shows the uniform negative sampling used in a pairwise
model update.

Algorithm 4: Uniform Negative Sampling for a pairwise model
Data: Set of positive observations 𝑂+, set of all items 𝐼
Input: 𝑘: number of negative items per positive one

1 foreach (𝑢, 𝑖) ∈ 𝑂+ do

2 𝑥 ← 0
3 while 𝑥 < 𝑘 do

4 draw 𝑗 from 𝐼 \ 𝐼+𝑢 ⊲ sampling 𝑗 from the set of unobserved items
5 model_update(𝑢, 𝑖, 𝑗) ⊲ learn parameters using the three inputs

(𝑢, 𝑖, 𝑗)
6 𝑥 ← 𝑥 + 1
7 end

8 end

7.3 Proposed Strategies to Candidate Items Sampling

This section presents our proposed candidate item sampling strategies to
improve the accuracy of the streaming recommendation models. Our meth-
ods combine the negative selection from the unobserved items set with the
selection of items that could be interesting for users. Section 7.3.1 introduces the
Similarity-based Negative-Relevant Sampling (SBNRS), and Section 7.4 presents
the Model-based Negative-Relevant Sampling. Both strategies are used for gen-
erating the possible relevant items set for each user (𝐼𝑟𝑢), i.e., such items that
could be of interest to a user based on knowledge acquired during the evolution
of the model. Concerning each user’s generated set of possible relevant items
(𝐼𝑟𝑢), we aim to adjust the pairwise and point-wise models to consider both un-
observed and relevant items during training/update. In this sense, instead of
only selecting items to be trained as negatives from the entire set of unobserved
items, the idea is to choose candidates from the relevant items set 𝐼𝑟𝑢 .

84

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

7.3.1 Similarity-based Relevant Items Set Generation

This section presents the proposed Similarity-based Relevant Generation
(SBRG) and introduces the steps to generate the relevant items set. The cosine
function, defined as the inner product of two vectors divided by the product of
their lengths (YE, 2011), is the most popular and widely used similarity measure
among the existing similarity measures. Its calculation is efficient, especially for
sparse vectors, as only the non-zero dimensions are considered (LI; HAN, 2013).
This characteristic is significant in the implicit feedback scenarios given the
sparsity in the interaction matrix 𝑅. Given two 𝑚-dimensional vectors 𝑣 and �⃗�,
where𝑚 is the number of users, the Cosine similarity between them is calculated
as follows:

Cosine(𝑣, �⃗�) = 𝑣 • �⃗�∥︁∥︁𝑣∥︁∥︁ ∥︁∥︁�⃗�∥︁∥︁ =

∑︁𝑛
𝑖=0 𝑣 �⃗� × 𝑤𝑖⃗√︂∑︁𝑛

𝑖=0 𝑣 �⃗�
2
√︂∑︁𝑛

𝑖=0 𝑤𝑖⃗
2

(7.3)

As we work in a streaming scenario with implicit feedback, computing the
full item-item similarity matrix for every interaction emerging from the stream
is infeasible in practice. Thereby, considering the current instance (𝑢, 𝑖), we only
update the similarity values between the item 𝑖 and the other items in 𝐼+𝑢 , i.e., the
items that user 𝑢 has interacted with. The Cosine approach applies the Cosine
similarity function to all item-item (𝑣, �⃗�) pairs. As a result, Algorithm 5 presents
the update_similarity function steps to update similarity matrix 𝑆𝑛×𝑛 , where
𝑛 is the number of items.

Algorithm 5: Updating the similarity structure incrementally -
update_similarity

Data: 𝐼+𝑢 : positive items for a user 𝑢, 𝑆: similarity matrix between items,
𝐾: the set of users who interacted with each item, 𝑁𝑟 : number of
the most similar items to be stored for each user

Input: (u,i), which represents the user 𝑢 and the item 𝑖 in the current
instance.

1 𝐼+𝑢 ← 𝐼+𝑢 ∪ 𝑖
2 𝐾𝑖 ← 𝐾𝑖 ∪ 𝑢
3 foreach 𝑗 ∈ 𝐼+𝑢 do

4 𝑆𝑖 , 𝑗 ←
𝐾𝑖∩𝐾 𝑗
∥𝐾𝑖 ∥·∥𝐾 𝑗 ∥ ⊲ Updating the similarity between 𝑖 and all others

items in 𝐼+𝑢
5 end

85

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

With the similarities between the available items, the next step is the analysis
of possible relevant items for each user. Thus, we retrieve the items most similar
to those the user interacted with. Algorithm 6 presents the steps to retrieve the
most relevant items to a given user 𝑢. Algorithm 6 uses the set of user 𝑢 positive
items 𝐼+𝑢 , the items-items similarity matrix 𝑆, and the number of relevant items
that we stored for each user 𝑁𝑟 . Algorithm 6 receives the user-item pair that
represents the dataset instance (u, i) as input. First, we must update the user
𝑢 set of positive items with incoming item 𝑖 (line 1) and update the similarity
structure based on the item in the stream (line 2). Next, we get a partial similarity
matrix 𝑃𝑥×𝑛 , where 𝑥 is the number of user 𝑢 positive items (𝑥 ← |𝐼+𝑢 |) and 𝑛 is
the number of items (Algorithm 6 - Line 3). To retrieve the most similar items to
those the user interacted with, we sum the similarities along the positive items,
generating a vector 𝑉 containing the sum of similarities for each available item
in 𝐼 (Algorithm 6 - Line 4). Naturally, considering that 𝑉 also have the user
positive items (𝐼𝑟𝑢) and their similarities values are higher, the next step is to
remove them from 𝑉 (Algorithm 6 - Line 5) and then sort 𝑉 in ascending order
(Algorithm 6 - Line 6). Finally, we can recover the 𝑁𝑟 most similar items by
selecting 𝑁𝑟 items from the end of the vector 𝑉 (line 7).

Algorithm 6: SBRG strategy - update_memory
Data: 𝐼+𝑢 : positive items for a user 𝑢, 𝑆: similarity matrix between items,

𝑁𝑟 : number of the most similar items to be stored for each user
Input: (u,i), which represents the user 𝑢 and the item 𝑖 in the current

instance.
Output: 𝐼𝑟𝑢

1 𝐼+𝑢 ← 𝐼+𝑢 ∪ 𝑖
2 update_similarity(u,i) ⊲ Algorithm 5
3 𝑃 ← 𝐷𝑎×𝑏 , such that 𝑎 ∈ 𝐼+𝑢 and 𝑏 ∈ 𝐼, and 𝑑𝑎,𝑏 = 𝑆𝑎,𝑏 ⊲ get a partial

similarity matrix with the weight vectors of items in 𝐼+𝑢
4 𝑉 ← ∑︁𝑎

𝑘=0 𝑃𝑘,𝑏 ⊲ sum of similarities considering items in 𝐼+𝑢
5 𝑉 ← 𝑉\𝐼+𝑢
6 Sort 𝑉 in ascending order
7 𝐼𝑟𝑢 ← 𝑉𝑘 , such that (|𝑉 | − 𝑁𝑟 ≤ 𝑘 ≤ |𝑉 |)

86

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

7.4 Model-based Relevant Items Set Generation

This section introduces the proposed Model-based Relevant Generation (MBRG)
strategy. Our model-based sampler is more straightforward than the SBRG strat-
egy since we do not need to store the similarity structure during the recommen-
dation process. Algorithm 7 presents the MBNRS steps for generating the set of
possible relevant items to a user. MBNRS uses the user 𝑢 latent factors vector
𝐴𝑢 , the items factor Matrix 𝐵, and the number of relevant items to store for each
user 𝑁𝑟 . As input, the MBNRS strategy receives the user identifier 𝑢 and item 𝑖

identifiers and returns the updated set of relevant items 𝐼𝑟𝑢 as output. The main
focus of the MBNRS strategy is to consider the learning model in the sampling
schema. Therefore, as we are working with MF models, we use the dot product
between the user’s latent factors vector 𝐴𝑢 and the transpose item’s latent factor
matrix 𝐵𝑇 to acquire all available items predictions 𝑉 for the respective user 𝑢
(Algorithm 7 - Line 2). Next, we remove the user 𝑢 positive items predictions
from 𝑉 (Algorithm 7 - Line 3) and sort 𝑉 in ascending order (Algorithm 7 -
Line 4). Considering those the higher item predictions are at the end of 𝑉 , we
select the last 𝑁𝑟 items from 𝑉 to serve as the most relevant items 𝐼𝑟𝑢 to user 𝑢
(Algorithm 7 - Line 5). Finally, Function update_memory returns the updated set
of relevant items 𝐼𝑟𝑢 (Algorithm 7 - Line 6).

Algorithm 7: MBRG strategy - update_memory
Data: 𝐴: user’s latent factor vectors, 𝐵: item’s latent factor vectors, 𝑁𝑟 :

number of the most similar items to be stored for each user
Input: (𝑢, 𝑖), where 𝑢 represents the user identifier and 𝑖 the item

identifier.
Output: 𝐼𝑟𝑢 : set of relevant items to user 𝑢.

1 𝐼+𝑢 ← 𝐼+𝑢 ∪ 𝑖 ⊲ Updating user 𝑢 set of positive items.
2 𝑉 ← 𝐴𝑢 · 𝐵𝑇 ⊲ Get the predictions of all items to user 𝑢
3 𝑉 ← 𝑉\𝐼+𝑢 ⊲ removing the user positive items 𝐼+𝑢 from 𝑉

4 Sort 𝑉 in ascending order
5 𝐼𝑟𝑢 ← 𝑉𝑘 , such that (|𝑉 | − 𝑁𝑟 ≤ 𝑘 ≤ |𝑉 |)
6 return 𝐼𝑟𝑢

87

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

7.4.1 Incorporating SBRG and MBRG in a Pairwise Model

We used the IBPRMF as the pairwise baseline model. As our focus is the
positive-only feedback datasets in streaming scenarios, in which we have offline
(batch) and online (streaming) updates, in this section, we present the IBPRMF
adjustments to enable incorporating possible relevant items in both learning
schemes. Our primary purpose is to combine negative and relevant items sam-
pling to provide more accurate latent factor updates. Traditionally, IBPRMF has
a triple (𝑢, 𝑖, 𝑗) as input to the model training/update. On the other hand, to deal
with negative and relevant items, we change the IBPRMF update rules, adding
the instance prediction probability parameter 𝑝. Now, the IBPRMF model has
as input (𝑢, 𝑖, 𝑗, 𝑝), where 𝑢 represents the current user in the instance, 𝑖 is the
current positive item, 𝑗 is the negative item, and 𝑝 parameter represents the prob-
ability for the ˆ︂𝑟𝑢𝑖𝑗 prediction. IBPRMF model receives as data the user’s latent
factor vectors𝐴, item’s latent factor vectors 𝐵, learning rate �, and regularization
� (Algorithm 8).

Algorithm 8 presents the IBPRMF update rules. In Lines 1 and 2, we pre-
dicted (𝑢, 𝑖) and (𝑢, 𝑗) pairs, respectively. Line 3 presents the instance predictionˆ︂𝑟𝑢𝑖𝑗 , which we generate by the difference between (𝑢, 𝑖) and (𝑢, 𝑗) predictions,
multiplied by the instance probability 𝑝. Next, line 4 calculates the instance
prediction error ˆ︂𝑒𝑟𝑟𝑢𝑖𝑗 , which we used to update the user 𝑢 (Line 5), item 𝑖 (Line
6), and candidate item 𝑗 (Line 7) latent factors vector.

Algorithm 8: BPRMF recommender - model_update.

Data: 𝐴: user’s latent factor vectors, 𝐵: item’s latent factor vectors, �:
learning rate, �: regularization rate.

Input: (𝑢, 𝑖, 𝑗, 𝑝), where 𝑢: user identifier, i: positive item identifier, 𝑗:
negative item identifier, 𝑝: probability value for (𝑖 , 𝑗) pair.

1 ˆ︁𝑟𝑢𝑖 ← 𝐴𝑢 · 𝐵𝑖
2 ˆ︁𝑟𝑢𝑗 ← 𝐴𝑢 · 𝐵 𝑗
3 ˆ︁𝑟𝑢𝑖𝑗 ← (ˆ︁𝑟𝑢𝑖 −ˆ︁𝑟𝑢𝑗) × 𝑝
4 ˆ︂𝑒𝑟𝑟𝑢𝑖𝑗 ← − log(𝜎(ˆ︁𝑟𝑢𝑖𝑗))
5

−→
𝐴𝑢 ←

−→
𝐴𝑢 + � ×

(︂ ˆ︂𝑒𝑟𝑟𝑢𝑖𝑗 × (𝐵𝑖 − 𝐵 𝑗) − � × −→𝐴𝑢)︂
6

−→
𝐵𝑖 ←

−→
𝐵𝑖 + � ×

(︂ ˆ︂𝑒𝑟𝑟𝑢𝑖𝑗 × (𝐴𝑢) − � × −→𝐵𝑖)︂
7

−→
𝐵 𝑗 ←

−→
𝐵 𝑗 + � ×

(︂ ˆ︂𝑒𝑟𝑟𝑢𝑖𝑗 × (−𝐴𝑢) − � × −→𝐵 𝑗)︂

88

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

In Algorithm 9, we introduce the IBPRMF batch learning schema, which
uses the dataset training samples (𝑂+

𝑏
), the available items 𝐼, the probabilities

for positive-negative 𝑝𝑖 𝑗 , positive-relevant 𝑝𝑖𝑟 , and relevant-negative 𝑝𝑟 𝑗 pairs,
the number of negative samples per instance 𝑘, and the number of training
epochs. The IBPRMF batch training phase has three steps: updating the sam-
pling structure, generating training data, and recommender model training.

Updating sampling structure: To use the provided sampling strategies SBRG
and MBRG, we first must update the sampling structure using the training
samples 𝑂+

𝑏
(Algorithm 9, Lines 1 to 3). For each instance (𝑢, 𝑖), we call the

update_memory function, which represents the SBRG (Algorithm 6) or MBRG
(Algorithm 7) strategies.

Generating training data: Next, we have to create the training instances 𝐷
(Algorithm 9, line 4) also considering each instance (𝑢, 𝑖) in 𝑂+

𝑏
(Algorithm

9, line 5). However, we must perform the negative-relevant sampling 𝑘 times
(lines 6 and 7). We select 2 (two) negatives (𝑗1 and 𝑗2, Algorithm 9 line 8) items
from the available items 𝐼, except for those that the user interact with (𝐼+𝑢) or
are in the set of relevant items 𝐼𝑟𝑢 . We also select 2 (two) relevant (𝑟1 and 𝑟2,
Algorithm 9 line 9) items from 𝐼𝑟𝑢 . We then use the selected negatives and
relevant items combined with the current instance (𝑢, 𝑖) to create three new
training instances (𝐶) (Algorithm 9, line 10). Each generated instance receives
their own probability; for the positive-negative (𝑖 , 𝑗1), positive-relevant (𝑖 , 𝑟1),
and relevant-negative (𝑟2, 𝑗2) pairs, we use the 𝑝𝑖 𝑗 , 𝑝𝑖𝑟 , and 𝑝𝑟 𝑗 probabilities,
respectively. Finally, we appended the generated instances 𝐶 in the training
dataset 𝐷 (Algorithm 9, line 11).

Recommender Model Training: We perform the recommender model train-
ing 𝑧 times (Algorithm 9, lines 15 and 16), where 𝑧 represents the number of
training epochs. As we perform the recommender model batch training, we
shuffle the training instances 𝐷 before each training step (Algorithm 9, line 17).
Next, for each generated (𝑢, 𝑖, 𝑗, 𝑝) instance (Algorithm 9, line 18), we call the
model_update function (Algorithm 9, line 19) to use the IBPRMF update rules,
introduce in ALgorithm 8.

Algorithm 10 presents the streaming processing phase of the IBPRMF rec-
ommender model, which we adapted to incorporate the provided sampling

89

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

Algorithm 9: Batch processing phase of the IBPRMF model.

Data: 𝑂+
𝑏
: batch dataset instances, 𝐼: available items set, 𝑝𝑖 𝑗 : probability

for positive-negative pair, 𝑝𝑖𝑟 : probability for positive-relevant
pair, 𝑝𝑟 𝑗 : probability for relevant-negative pair, 𝑘: number of
negative samples per instance, 𝑧: number of training epochs.

1 foreach (𝑢, 𝑖) ∈ 𝑂+
𝑏

do

2 update_memory(u,i) ⊲ Updating user relevant items set (Algorithms
6 and 7)

3 end

4 𝐷 ← ∅
5 foreach (𝑢, 𝑖) ∈ 𝑂+

𝑏
do

6 𝑥 ← 0
7 while 𝑥 < 𝑘 do

8 draw 𝑗1 and 𝑗2 from 𝐼 \ (𝐼+𝑢 ∪ 𝐼𝑟𝑢), such that 𝑗1 ≠ 𝑗2 ⊲ Sampling
negatives items.

9 draw 𝑟1 and 𝑟2 from 𝐼𝑟𝑢 , such that 𝑟1 ≠ 𝑟2 ⊲ Sampling relevant
items.

10 𝐶 ← {(𝑢, 𝑖, 𝑗1, 𝑝𝑖 𝑗), (𝑢, 𝑖, 𝑟1, 𝑝𝑖𝑟), (𝑢, 𝑟2, 𝑗2, 𝑝𝑟 𝑗)}
11 𝐷 ← 𝐷 ∪ 𝐶
12 𝑥 ← 𝑥 + 1
13 end

14 end

15 𝑥 ← 0
16 while 𝑥 < 𝑧 do

17 shuffle(𝐷)
18 foreach (𝑢, 𝑖, 𝑗, 𝑝) ∈ 𝐷 do

19 model_update(𝑢, 𝑖, 𝑗, 𝑝) ⊲ Adjusted IBPRMF model update rules
(Algorithm 8)

20 end

21 𝑥 ← 𝑥 + 1
22 end

strategies SBRG and MBRG. In the streaming-incremental model training, we
use the incoming dataset instance 𝑂+𝑠 , the available items 𝐼, and the prediction
probabilities 𝑝𝑖 𝑗 , 𝑝𝑖𝑟 , and 𝑝𝑟 𝑗 . Naturally, we must perform a single pass-through
data in the streaming process. In this sense, we also perform the negatives and
relevant sampling a single time. For each emerged instance (𝑢, 𝑖) in the stream
(Algorithm 10, line 1), we select 2 (two) negatives items (𝑗1 and 𝑗2, Algorithm 10
line 2) from the set of available items 𝐼 that the user has not interacted with, or
that are not possibly relevant. Additionally, we also sampled 2 (two) relevant

90

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

(𝑟1 and 𝑟2, Algorithm 10 line 3) items from 𝐼𝑟𝑢 . Next, we call the model_update
function (Algorithm 8) to update the IBPRMF model by combining the positive-
negative (line 4), positive-relevant (line 5) and relevant-negative pairs (line 6).
Finally, we must update the relevant strategy (SBRG or MBRG) structure calling
the update_memory function (Algorithm 10, line 7).

Algorithm 10: Streaming processing phase of the IBPRMF model.

Data: 𝑂+𝑠 : dataset incoming instances, 𝐼: available items set, 𝑝𝑖 𝑗 :
probability for positive-negative pair, 𝑝𝑖𝑟 : probability for
positive-relevant pair, 𝑝𝑟 𝑗 : probability for relevant-negative pair.

1 foreach (𝑢, 𝑖) ∈ 𝑂+𝑠 do

2 draw 𝑗1 and 𝑗2 from 𝐼 \ (𝐼+𝑢 ∪ 𝐼𝑟𝑢), such that 𝑗1 ≠ 𝑗2 ⊲ Sampling negative
items.

3 draw 𝑟1 and 𝑟2 from 𝐼𝑟𝑢 , such that 𝑟1 ≠ 𝑟2 ⊲ Sampling relevant items.
4 model_update(𝑢, 𝑖, 𝑗1, 𝑝𝑖 𝑗) ⊲ Algorithm 8
5 model_update(𝑢, 𝑖, 𝑟1, 𝑝𝑖𝑟) ⊲ Algorithm 8
6 model_update(𝑢, 𝑟2, 𝑗2, 𝑝𝑟 𝑗) ⊲ Algorithm 8
7 update_memory(u,i) ⊲ Updating user relevant items set (Algorithms

6 and 7)
8 end

7.4.2 Incorporating SBRG and MBRG in a Point-wise Model

This section presents the combination of the relevant generation strategies
(SBRG and MBRG) with the PMF model, previously introduced in Chapter
3. PMF is a point-wise model, so we must consider this characteristic when
sampling negative and relevant items.

Algorithm 11 presents the PMF recommender model adjusted update rules
to consider the prediction probability term 𝑝 in each instance. Algorithm 11 uses
the user’s latent factor matrix 𝐴, the item’s latent factor matrix 𝐵, the learning
rate �, and the regularization rate �. As input, PMF receives the user 𝑢, item
𝑖, the item score 𝑠 ∈ {0, 1}, and the prediction probability 𝑝. First, we must
recover the user-item (𝑢, 𝑖) prediction rating 𝑟𝑢𝑖 applying the dot product in
their latent factor vectors 𝐴𝑢 and 𝐵𝑖 , respectively (Algorithm 11, line 1). As
we are working with the probabilistic matrix factorization, we obtained the
probabilistic prediction ˆ︁𝑝𝑢𝑖 using the sigmoid function 𝜎 in the predicted rating
𝑟𝑢𝑖 , multiplied by the instance prediction probability 𝑝 (Algorithm 11, line 2).

91

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

Next, we use the binary cross entropy loss to calculate the prediction error ˆ︂𝑒𝑟𝑟𝑢𝑖
for instance (Algorithm 11, line 3). Finally, we use the prediction error to update
the user 𝐴𝑢 and item 𝐵𝑖 latent factor vectors (Algorithm 11, lines 4 and 5).

Algorithm 11: PMF Recommender - model_update.

Data: 𝐴: item’s latent factor vectors, 𝐵: item’s latent factor vectors, �:
learning rate, �: regularization rate.

Input: (𝑢, 𝑖, 𝑠 , 𝑝), where 𝑢: user, 𝑖: item, 𝑠: score ∈ {0, 1}, 𝑝: probability
value for item (𝑖).

1 ˆ︁𝑟𝑢𝑖 ← 𝐴𝑢 · 𝐵𝑖
2 ˆ︁𝑝𝑢𝑖 ← 𝜎(ˆ︁𝑟𝑢𝑖 × 𝑝)
3 ˆ︂𝑒𝑟𝑟𝑢𝑖 ← −𝑟 × log (ˆ︁𝑝𝑢𝑖 + 1−10) + (1.0 − 𝑟) × log (1 −ˆ︁𝑝𝑢𝑖 + 1−10)
4

−→
𝐴𝑢 ←

−→
𝐴𝑢 + � ×

(︂ ˆ︂𝑒𝑟𝑟𝑢𝑖 × 𝐵𝑖 − � × −→𝐴𝑢)︂
5

−→
𝐵𝑖 ←

−→
𝐵𝑖 + � ×

(︂ ˆ︂𝑒𝑟𝑟𝑢𝑖 × 𝐴𝑢 − � × −→𝐵𝑖)︂
In algorithms 12 and 13, we present the batch and the streaming learning

schemes of the PMF model, respectively. In Algorithm 12, we introduce the
PMF batch learning schema, which uses the dataset training samples (𝑂+

𝑏
), the

available items 𝐼, the probabilities for positive 𝑝𝑖 , negative 𝑝 𝑗 , and relevant
𝑝𝑟 items, the number of negative samples per instance 𝑘, and the number of
training epochs. Similarly to the IBPRMF model, the PMF batch learning phase
has three steps: updating the sampling structure, generating training data, and
recommender model training.

The first step, update sampling structure, is the same as for the IBPRMF
model (Algorithm 12, lines 1 to 3). On the other hand, as the PMF is a point-
wise model, to generate the training data (second step, Algorithm 12, lines 4 to
15), we analyze the positive, negative, and relevant items separately. For each
user-item pair in the training data (Algorithm 12, line 5), we first add the positive
instance in the training data 𝐷, which has the score equal to 1, and receives the
𝑝𝑖 probability (Algorithm 12, line 6). Next, we must sample the negative and
relevant items 𝑘 times (Lines 7 and 8). The point-wise model does not combine
positive and negative examples. In this sense, we must select only one negative
(line 9) and one relevant (line 10) item. We then create two new instances 𝐶
to represent the user-negative and user-relevant pairs, where both receive the
score 𝑠 equal zero (0) and the probabilities 𝑝 𝑗 and 𝑝𝑟 , respectively. Finally, the
new instances are appended to the training data 𝐷.

92

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

The third step, recommender model training (Algorithm 12, lines 16 to 23),
performs the PMF model training 𝑧 times, where 𝑧 represents the number of
epochs. In each step, we shuffle the training instances 𝐷, and then we use all
instances to update the PMF model, using function model_update, which refers
to the PMF update rules (Algorithm 11).

Algorithm 12: Batch processing phase of PMF model.

Data: 𝑂+
𝑏
: dataset batch instances, 𝑝𝑖 : probability for positive item, 𝑝 𝑗 :

probability for negative item, 𝑝 𝑗 : probability for relevant item, 𝑘:
Number of samples per positive instance, 𝑧: number of training
epochs.

1 foreach (𝑢, 𝑖) ∈ 𝑂+
𝑏

do

2 update_memory(u,i) ⊲ Updating user relevant items set (Algorithms
6 and 7)

3 end

4 𝐷 ← ∅
5 foreach (𝑢, 𝑖) ∈ 𝑂+

𝑏
do

6 𝐷 ← 𝐷 ∪ (𝑢, 𝑖, 1, 𝑝𝑖)
7 𝑥 ← 0
8 while 𝑥 < 𝑘 do

9 draw 𝑗 from 𝐼 \ (𝐼+𝑢 ∪ 𝐼𝑟𝑢) ⊲ Sampling negative item.
10 draw 𝑟 from 𝐼𝑟𝑢 ⊲ Sampling relevant item.
11 𝐶 ← {(𝑢, 𝑗, 0, 𝑝 𝑗), (𝑢, 𝑟, 0, 𝑝𝑟)}
12 𝐷 ← 𝐷 ∪ 𝐶
13 𝑥 ← 𝑥 + 1
14 end

15 end

16 𝑥 ← 0
17 while 𝑥 < 𝑧 do

18 shuffle(𝐷)
19 foreach (𝑢, 𝑖, 𝑠 , 𝑝) ∈ 𝐷 do

20 model_update(𝑢, 𝑖, 𝑠 , 𝑝) ⊲ Adjusted PMF model update rules
(Algorithm 11)

21 end

22 𝑥 ← 𝑥 + 1
23 end

Algorithm 13 presents the adaptations in the PMF streaming processing
phase to incorporate the provided sampling strategies SBRG and MBRG. In the
streaming-incremental model training, we use the incoming dataset instance
𝑂+𝑠 , the available items 𝐼, and the prediction probabilities 𝑝𝑖 , 𝑝 𝑗 , and 𝑝𝑟 . We

93

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

perform the negative and relevant sampling a single time, passing a single time
through the data. For each emerged instance (𝑢, 𝑖) in the stream (Algorithm 13,
line 1), we first update the PMF model with the incoming instance (Algorithm
13 line 2). Then we select one negative item (𝑗, Algorithm 13, line 3) from the set
of available items 𝐼 that the user has not interacted with or that are not possibly
relevant and update the PMF model with the (𝑢, 𝑗, 0, 𝑝 𝑗) parameters (Algorithm
13, line 4). Additionally, we also sampled one relevant (𝑟, Algorithm 13 line
5) item from 𝐼𝑟𝑢 . Next, we call the model_update function (Algorithm 11) to
update the IBPRMF model with the (𝑢, 𝑟, 0, 𝑝𝑟) parameters (Algorithm 13, line
6). Finally, we must update the relevant strategy (SBRG or MBRG) structure
calling the update_memory function (Algorithm 13, line 7).

Algorithm 13: Streaming processing phase of PMF model.

Data: 𝑂+𝑠 : dataset incoming instances, 𝐴: user’s latent factor vectors, 𝐵:
item’s latent factor vectors, 𝑝𝑖 : probability for positive item, 𝑝 𝑗 :
probability for negative item, 𝑝 𝑗 : probability for relevant item

1 foreach (𝑢, 𝑖) ∈ 𝑂+𝑠 do

2 model_update(𝑢, 𝑖, 1, 𝑝𝑖) ⊲ Algorithm 11
3 draw 𝑗 from 𝐼 \ (𝐼+𝑢 ∪ 𝐼𝑟𝑢) ⊲ Get 𝑗 from the unknown and not relevant

items set.
4 model_update(𝑢, 𝑗, 0, 𝑝 𝑗) ⊲ Algorithm 11
5 draw 𝑟 from 𝐼𝑟𝑢 ⊲ Get 𝑟 from the relevant items set.
6 model_update(𝑢, 𝑟, 0, 𝑝𝑟) ⊲ Algorithm 11
7 update_memory(u,i) ⊲ Updating user relevant items set (Algorithms

6 and 7)
8 end

7.5 Experimental Setup

We compare our proposed MBRG and SBRG strategies with and against
the Uniform Random Sampling algorithm previously introduced in Section 7.2.
We incorporate the sampling strategies in the adjusted PMF (SALAKHUTDI-
NOV; MNIH, 2007) and IBPRMF (RENDLE et al., 2012) recommender models
as baselines.

We tested the following hyper-parameter values in the IBPRMF and PMF
incremental recommender models: learning rate ∈ {0.01, 0.001}, regularization
rate equal to 0.01, latent factors ∈ {32, 64, 128}, number of negatives items in

94

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

training phase ∈ {1, 3, 5, 10}, batch training epochs equal to 10. We also tested
different values for the 𝑝 parameter in the BPRMF (pairwise) and PMF (point-
wise) methods, where 𝑝 ∈ {(0.6,0.2,0.2), (0.2,0.6,0.2), (0.2,0.2,0.6)}, which are the
probability values for (𝑝𝑖 𝑗 , 𝑝 𝑗𝑟 , 𝑝𝑟 𝑗) in BPRMF model and the (𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑟) in PMF
model.

We choose the best hyper-parameters based on a grid search, which exhaus-
tively generates candidates from the specified grid of parameter values. For
each combination, we use the entire dataset. In this sense, the parameter tuning
is not part of the method’s processing time. We replicate each best experimental
setting ten times in this work, so the results depict the average and standard
deviation of recall values. We selected a single random seed for each replication
and used it with all optimizers to enable further paired comparisons and the
application of the statistical significance test.

Finally, we incorporate hypothesis testing to determine whether one sam-
pling strategy outperforms others significantly, as presented in Chapter 4. We
execute each experiment ten times for finding any statistically significant differ-
ence.

7.6 Results and Analysis

Tables 7.1 and 7.2 present the obtained results of the IBPRMF and PMF
models. We mark the best result for the dataset and the number of negative items
in bold. Considering the IBPRMF model (Table 7.1), we can observe that our
sampling strategies outperformed the traditional IBPRMF recommender model
in most cases. The Amazon Books dataset results obtained the best RECALL@10
value with the IBPRMF+SBRG strategy with five negative items, increasing by
up to 1.9 percentage points (from 0.01 to 0.029). For the Movie Lens 1M dataset,
we obtained an increase by up to 6.9 percentage points (from 0.115 to 0.184)
in RECALL@10 values, with the IBPRMF+MBRG strategy and ten negative-
relevant samples. Concerning the Movie Tweetings dataset, the IBPRMF+MBRG
strategy increases the RECALL@10 values by up to 15.8 percentage points (from
0.065 to 0.223), with a single negative-relevant sample per instance. Considering
the SMDI-200UE dataset, the IBPRMF+MBRG strategy enables an increase of
6.8 percentage points (from 0.218 to 0.286). Finally, considering the TaFeng
dataset, we obtained an increase of 4.2 percentage points (from 0.120 to 0.162)
in RECALL@10 values with the IBPRMF+SBRG method.

95

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

Table 7.1: RECALL@10 and NDCG@10 values obtained by the IBPRMF,
IBPRMF+MBRG, and IBPRMF+SBRG models in the tested datasets.

D # N BPRMF BPRMF+MBRG BPRMF+SBRG

RECALL@10 NDCG@10 RECALL@10 NDCG@10 RECALL@10 NDCG@10

A
m

az
on

Bo
ok

s 1 0.010 ± 0.0002 0.004 ± 0.0001 0.011 ± 0.0002 0.005 ± 0.0001 0.010 ± 0.0002 0.005 ± 0.0001
3 0.009 ± 0.0001 0.004 ± 0.0001 0.020 ± 0.0006 0.010 ± 0.0003 0.027 ± 0.0005 0.014 ± 0.0003
5 0.009 ± 0.0002 0.004 ± 0.0001 0.020 ± 0.0005 0.010 ± 0.0003 0.029 ± 0.0006 0.015 ± 0.0003
10 0.009 ± 0.0001 0.005 ± 0.0001 0.018 ± 0.0002 0.009 ± 0.0001 0.026 ± 0.0003 0.013 ± 0.0002

M
ov

ie
Le

ns
1M

1 0.110 ± 0.0009 0.054 ± 0.0004 0.143 ± 0.0012 0.072 ± 0.0006 0.105 ± 0.0016 0.052 ± 0.0007
3 0.116 ± 0.0005 0.057 ± 0.0002 0.173 ± 0.0008 0.086 ± 0.0003 0.140 ± 0.0010 0.068 ± 0.0005
5 0.116 ± 0.0007 0.057 ± 0.0005 0.180 ± 0.0007 0.090 ± 0.0004 0.148 ± 0.0004 0.072 ± 0.0002
10 0.115 ± 0.0006 0.056 ± 0.0003 0.184 ± 0.0005 0.091 ± 0.0003 0.152 ± 0.0007 0.074 ± 0.0003

M
ov

ie
Tw

ee
tin

gs 1 0.015 ± 0.0023 0.007 ± 0.0012 0.223 ± 0.0021 0.124 ± 0.0011 0.218 ± 0.0020 0.107 ± 0.0019
3 0.065 ± 0.0010 0.029 ± 0.0004 0.191 ± 0.0015 0.116 ± 0.0007 0.166 ± 0.0012 0.080 ± 0.0010
5 0.059 ± 0.0004 0.027 ± 0.0002 0.200 ± 0.0014 0.122 ± 0.0008 0.168 ± 0.0011 0.084 ± 0.0005
10 0.054 ± 0.0006 0.025 ± 0.0003 0.222 ± 0.0009 0.136 ± 0.0007 0.176 ± 0.0010 0.089 ± 0.0007

SM
D

I-
20

0U
E

1 0.015 ± 0.0015 0.007 ± 0.0008 0.254 ± 0.0060 0.156 ± 0.0032 0.249 ± 0.0066 0.153 ± 0.0035
3 0.218 ± 0.0026 0.129 ± 0.0012 0.286 ± 0.0005 0.174 ± 0.0005 0.258 ± 0.0011 0.159 ± 0.0005
5 0.232 ± 0.0014 0.133 ± 0.0009 0.268 ± 0.0006 0.163 ± 0.0004 0.231 ± 0.0012 0.141 ± 0.0008
10 0.207 ± 0.0013 0.118 ± 0.0009 0.238 ± 0.0009 0.142 ± 0.0006 0.188 ± 0.0013 0.107 ± 0.0008

Ta
Fe

ng

1 0.010 ± 0.0002 0.004 ± 0.0001 0.038 ± 0.0052 0.023 ± 0.0035 0.036 ± 0.0053 0.022 ± 0.0037
3 0.057 ± 0.0059 0.034 ± 0.0034 0.155 ± 0.0006 0.091 ± 0.0004 0.162 ± 0.0007 0.087 ± 0.0004

5 0.119 ± 0.0020 0.064 ± 0.0011 0.144 ± 0.0006 0.084 ± 0.0004 0.151 ± 0.0005 0.082 ± 0.0003
10 0.120 ± 0.0007 0.064 ± 0.0005 0.128 ± 0.0004 0.073 ± 0.0003 0.128 ± 0.0006 0.067 ± 0.0003

Considering the PMF model results (Table 7.1), we can also observe that
our negative-relevant strategies provided superior performance in most cases,
compared with the traditional uniform random sampling of negative items. The
PMF+MBRG strategy increased by 7.4 percentage points (from 0.024 to 0.098) in
the RECALL@10 values for the Amazon Books dataset. Considering the Movie
Lens 1M dataset, we also obtained the best result with the PMF+MBRG strategy,
which enables an increase of 0.8 percentage points. For the Movie Tweentings
dataset, the PMF+MBRG strategy increased RECALL@10 values by up to 17.4
percentage points (from 0.126 to 0.300). Considering the SMDI-200UE dataset,
the best result represents an increase of 0.6 percentage points obtained by the
PMF+MBRG strategy. Finally, considering the TaFeng dataset, the PMF+SBRG
strategy provided de best result, with an increase of 13 percentage points (from
0.046 to 0.176) in the RECALL@10 values.

Concerning the IBPRMF and PMF best results in each dataset, in the Ama-
zon Books, the PMF+MBRG strategy provided superior performance than the
IBPRMF-SBRG, with an increase of 6.9 percentage points (from 0.029 to 0.098).
In contrast, the IBPRMF+MBRG outperforms the PMF+MBRG by up to 5.9 per-
centage points (from 12.5 to 18.4) in the Movie Lens 1M dataset. Considering
the Movie Tweetings dataset, we obtained the best result by the PMF+MBRG,
outperforming the IBPRMF+MBRG by up to 7.7 percentage points (from 22.3 to

96

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

Table 7.2: RECALL@10 and NDCG@10 values obtained by the PMF,
PMF+MBRG, and PMF+SBRG models in the tested datasets.

D # N PMF PMF+MBRG PMF+SBRG

RECALL@10 NDCG@10 RECALL@10 NDCG@10 RECALL@10 NDCG@10

A
m

az
on

Bo
ok

s 1 0.010 ± 0.0002 0.004 ± 0.0001 0.015 ± 0.0002 0.007 ± 0.0001 0.011 ± 0.0002 0.005 ± 0.0001
3 0.010 ± 0.0002 0.004 ± 0.0001 0.023 ± 0.0012 0.011 ± 0.0006 0.023 ± 0.0007 0.011 ± 0.0004
5 0.010 ± 0.0003 0.005 ± 0.0001 0.075 ± 0.0010 0.040 ± 0.0007 0.047 ± 0.0007 0.022 ± 0.0005
10 0.024 ± 0.0005 0.011 ± 0.0003 0.098 ± 0.0007 0.053 ± 0.0005 0.064 ± 0.0005 0.031 ± 0.0003

M
ov

ie
Le

ns
1M

1 0.111 ± 0.0013 0.054 ± 0.0007 0.121 ± 0.0008 0.060 ± 0.0005 0.077 ± 0.0017 0.038 ± 0.0010
3 0.114 ± 0.0005 0.056 ± 0.0002 0.125 ± 0.0005 0.063 ± 0.0004 0.082 ± 0.0007 0.041 ± 0.0005
5 0.114 ± 0.0007 0.056 ± 0.0004 0.123 ± 0.0008 0.062 ± 0.0004 0.082 ± 0.0007 0.041 ± 0.0003
10 0.117 ± 0.0007 0.057 ± 0.0003 0.122 ± 0.0013 0.062 ± 0.0005 0.084 ± 0.0010 0.042 ± 0.0006

M
ov

ie
Tw

ee
tin

gs 1 0.015 ± 0.0019 0.007 ± 0.0010 0.024 ± 0.0032 0.012 ± 0.0017 0.029 ± 0.0048 0.014 ± 0.0025
3 0.018 ± 0.0027 0.009 ± 0.0014 0.064 ± 0.0048 0.032 ± 0.0023 0.158 ± 0.0033 0.077 ± 0.0015
5 0.031 ± 0.0033 0.015 ± 0.0015 0.174 ± 0.0060 0.097 ± 0.0045 0.225 ± 0.0021 0.122 ± 0.0016
10 0.126 ± 0.0020 0.057 ± 0.0009 0.300 ± 0.0010 0.210 ± 0.0009 0.278 ± 0.0016 0.161 ± 0.0008

SM
D

I-
20

0U
E

1 0.015 ± 0.0017 0.007 ± 0.0009 0.024 ± 0.0042 0.013 ± 0.0026 0.021 ± 0.0036 0.011 ± 0.0023
3 0.023 ± 0.0043 0.012 ± 0.0027 0.144 ± 0.0175 0.095 ± 0.0114 0.158 ± 0.0063 0.103 ± 0.0039
5 0.070 ± 0.0148 0.044 ± 0.0100 0.228 ± 0.0012 0.148 ± 0.0008 0.153 ± 0.0018 0.099 ± 0.0012
10 0.224 ± 0.0026 0.136 ± 0.0013 0.211 ± 0.0006 0.139 ± 0.0006 0.136 ± 0.0018 0.083 ± 0.0014

Ta
Fe

ng

1 0.010 ± 0.0002 0.004 ± 0.0001 0.011 ± 0.0002 0.005 ± 0.0001 0.011 ± 0.0003 0.005 ± 0.0002
3 0.010 ± 0.0003 0.005 ± 0.0001 0.016 ± 0.0010 0.008 ± 0.0007 0.036 ± 0.0056 0.021 ± 0.0036
5 0.011 ± 0.0003 0.005 ± 0.0002 0.059 ± 0.0038 0.036 ± 0.0024 0.154 ± 0.0032 0.087 ± 0.0015
10 0.046 ± 0.0068 0.028 ± 0.0042 0.121 ± 0.0004 0.073 ± 0.0003 0.176 ± 0.0009 0.099 ± 0.0006

30.0). The IBPRMF+MBRG also provided the best results in the SMDI-200UE
dataset, increasing RECALL@10 values by up to 5.8 percentage points (22.8 to
28.6). On the other hand, considering the TaFeng dataset, PMF-SBRG obtained
the best result of the experiments, with an increase of 1.4 percentage points
(from 16.2 to 17.6).

We can justify the obtained results in the analyzed datasets by comparing
their number of instances, users, and items. In the small datasets, Movie Lens
and SMDI-200UE, the IBPRMF provided superior performance. Nonetheless,
the PMF recommender obtained the best results considering the Amazon Books,
Movie Tweetings, and TaFeng datasets. We can also observe that the higher
differences between the provided negative-relevant strategies and the random
sampling were obtained in the large datasets. In the Amazon Books, Movie
Tweeting, and TaFeng datasets, our strategies increased RECALL@10 values by
up to 7.4, 17.4, and 13.0 percentage points, respectively. On the other hand,
for the Movie Lens and SMDI-200UE datasets, we obtained an increase of up
to 6.9 and 5.8, respectively. In this sense, our proposed sampling strategies
provided the best performance in datasets with a higher number of users and
items, which is reasonable because when the higher the number of users and
items, the smaller the number o instances in which each user and item appear.
Furthermore, as the number of incoming users and items increases, the incidence

97

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

of cold-start also increases. In this sense, training and updating recommender
models with negatives and relevant items (with specific probabilities) can be
successfully used in cold-start scenarios.

Figures 7.1 and 7.2 present the results of Friedman and Nemenyi’s statisti-
cal significance tests, considering the experiments of BPRMF and PMF model’s
variants in each analyzed dataset. The legends present the Friedman p-values
and show significant differences, assuming a 95% (p-value < 0.05) confidence
level. We consider all the experiment results in the statistical significance anal-
ysis concerning the replications of each experiment setting (recommendation
strategy, dataset, and number of samples per positive instance). Therefore, the
graph of the critical distance obtained by the Nemenyi test shows each recom-
mendation strategy’s rankings and significant differences. We can observe that
the behavior of the results is similar to that presented in Tables 7.1 and 7.2.

Considering the BPRMF model variants, we observe that the proposed
negative-relevant sampling strategies, combined with the BPRMF model, out-
perform the traditional uniform random sampling and present statistically sig-
nificant differences in most cases. In the Amazon Books dataset, the BPRMF-
SBRG presents the best RECALL@10 and NDCG@10 results. However, there are
no significant differences compared with the BPRMF-MBRG strategy. On the
other hand, both strategies presented significant differences compared with the
traditional BPRMF model.

For the Movie Lens 1M dataset, the BPRMF-MBRG model obtained the best
results compared with the BPRMF-SBRG and BPRMF strategies, showing a
statistically significant difference with a 95% of confidence level. In contrast
to what we observed in the Amazon Books results, for the Movie Lens 1M
dataset, the BPRMF-SBRG and BPRMF strategies do not differ, considering both
RECALL@10 and NDCG@10 values. We observed the same behavior in the
SMDI-200UE dataset.

Considering the Movie Tweetings dataset, the BPRMF-MBRG strategy out-
performs and differs from the other strategies. On the other hand, BPRMF-SBRG
and BPRMF strategies do not present significant differences considering only the
RECALL@10 values. When we look for the NDCG@10 values, the BPRMF-SBRG
model also provides better results and differs from the traditional BPRMF model.

Finally, considering the TaFeng dataset, we observe a different behavior in
the obtained results. Considering the RECALL@10 values, the BPRMF-SBRG
strategy is in the first position and does not present a significant difference

98

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

(a) Amazon Books RECALL@10
(p = 7.68 × 10−15).

(b) Amazon Books NDCG@10
(p = 4.31 × 10−14).

(c) Movie Lens RECALL@10
(p = 7.68 × 10−15).

(d) Movie Lens NDCG@10
(p-value = 7.68 × 10−15).

(e) Movie Tweetings RECALL@10
(p-value = 4.24 × 10−18).

(f) Movie Tweetings NDCG@10
(p-value = 4.24 × 10−18).

(g) SMDI-200UE RECALL@10
(p-value = 1.42 × 10−11).

(h) SMDI-200UE NDCG@10
(p-value = 1.42 × 10−11).

(i) TaFeng RECALL@10
(p-value = 9.13 × 10−14).

(j) TaFeng NDCG@10
(p-value = 5.01 × 10−14).

Figure 7.1: Critical distances of the Nemenyi test for tested datasets results
obtained by the BPRMF model variants. All p-values refer to the Friedman test.

compared to the BPRMF-MBRG strategy. However, looking at the NDCG@10
values, BPRMF-MBRG outperformed others, and both presented significant dif-
ferences. However, all the results show us that the proposed strategies obtained

99

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

competitive results compared with the traditional BPRMF model. In this sense,
combining the negative-relevant sampling in the pairwise model is an alterna-
tive to the uniform random sampling of negative items.

(a) Amazon Books RECALL@10 (p-value
= 3.88 × 10−12).

(b) Amazon Books NDCG@10 (p-value =
4.09 × 10−13).

(c) Movie Lens RECALL@10 (p-value =
4.25 × 10−18).

(d) Movie Lens NDCG@10 (p-value =
4.25 × 10−18).

(e) Movie Tweetings RECALL@10 (p-
value = 4.29 × 10−12).

(f) Movie Tweetings NDCG@10 (p-value
= 4.29 × 10−12).

(g) SMDI-200UE RECALL@10 (p-value =
5.17 × 10−07).

(h) SMDI-200UE NDCG@10 (p-value =
1.13 × 10−08).

(i) TaFeng RECALL@10 (p-value = 2.07×
10−10).

(j) TaFeng NDCG@10 (p-value = 1.57 ×
10−10).

Figure 7.2: Critical distances of the Nemenyi test for tested datasets results
obtained by the PMF model variants. All p-values refer to the Friedman test.

100

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

Figure 7.2 shows the statistically significant analysis of the PMF model vari-
ant’s results. Similar to what we observed for the BPRMF variants, the proposed
sampling strategies combined with the point-wise model also outperform the
uniform random sampling of unobserved items in most cases. However, the
traditional PMF strategy outperforms our proposed SBRG sampling strategy
for the point-wise model, as we can observe in the Movie Lens and Movie
Tweetings datasets results (also presented in Table 7.2). On the other hand, the
PMF-MBRG provided the best performance with significant differences in the
RECALL@10 values considering both the Amazon Books, Movie Lens, Movie
Tweetings, and SMDI-200UE datasets. Concerning the NDCG@10 values, the
PMF-SBRG provided the best results for the Movie Tweetings and SMDI-200UE.
This behavior shows us that although the PMF-MBRG provided more TOP@K
corrected ranked items, the PMF-SBRG strategy is capable of ranking the positive
instances at the first positions.

7.6.1 Streaming Analysis of the Results

This section presents the evolution of the RECALL@10 values according to
new instances that emerged from the data stream. Figure ?? presents the win-
dowed evaluation of RECALL@10 values by analyzing the best results consider-
ing each dataset and the number of selected samples. As this analysis generated
an expressive number of experiment settings, the windowed evaluation only
shows the best results for each dataset in the pairwise and point-wise models
to plot the windowed evaluation. Thus, all the obtained results for the win-
dowed assessment are presented in Appendix A. We considered a window with
a size of 5% of the number of test interactions. Considering the Amazon Books
dataset results (Figure 7.3a), we observe that the BPRMF-SBRG outperforms
other BPRMF variants during the entire streaming test set. On the other hand,
considering the Movie Lens 1M dataset, we obtained the best performance in
the streaming analysis by the BPRMF-SBRG strategy. For the Movie Tweetings
dataset, we can observe that both the proposed strategies, BPRMF-SBRG and
BPRMF-SBRG, presented similar behavior in the plot evolution of RECALL@10
values with a visible best performance than the traditional BPRMF. Similar to
what we obtained in the basic evaluation process (Table 7.1), the windowed
evaluation of the SMDI-200UE dataset results presented the lowest increases
than the other datasets. However, the proposed strategies also outperformed

101

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

the BPRMF baseline. Finally, for the TaFeng dataset, we can observe that the
proposed sampling strategies also performed better than the random sampling
baseline in the entire instances streams.

(a) Amazon Books - 5 samples (b) Movie Lens - 10 samples

(c) Movie Tweetings - 1 sample (d) SMDI-200UE - 3 sample

(e) TaFeng - 3 samples

Figure 7.3: Windowed Evaluation of RECALL@10 values for the experiments of
the BPRMF model variants.

102

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

(a) Amazon Books - 10 samples (b) Movie Lens - 3 samples

(c) Movie Tweetings - 10 sample (d) SMDI-200UE - 5 sample

(e) TaFeng - 10 samples

Figure 7.4: Windowed Evaluation of RECALL@10 values for the experiments of
the PMF model variants.

Figure 7.4 shows the windowed RECALL@10 values obtained using the PMF
model variants in all the analyzed datasets. As we can observe in the presented
plot evolution of RECALL@10 values, the PMF-MBRG presented the best results

103

CHAPTER 7. CONTRIBUTION III - IMPROVING NEGATIVE ITEMS SAMPLING IN
STREAMING SCENARIOS

in most of the tested datasets. The PMF-MBRG strategy outperforms other PMF
variants in the Amazon Books, Movie Lens 1M, Movie Tweetings, and SMDI-
200UE datasets. On the other hand, the PMF-SBRG strategy presented the best
results in the TaFeng dataset.

Considering the Movie Lens dataset results, in which we also obtained the
best performance with the PMF-MBRG strategy, we can observe similar behavior
in the windowed evaluation and basic evaluation process (presented in Table
7.2), where the traditional PMF model outperformed the PMF-SBRG strategy.
Considering that the similarity-based model analyzes the similarities between
the user’s positive and unobserved items for the Movie Lens 1M dataset, which
has fewer users and items, the PMF-SBRG does not generate relevant items
successfully. On the other hand, the similarity-based strategy performed better
in datasets with large numbers of users and items. Considering that most of the
available datasets have a lot of users and items, we can combine both MBRG and
SBRG strategies with pairwise and point-wise models to obtain more accurate
results.

7.7 Final Considerations

This chapter provided an analysis of negative sampling in OCCF scenarios.
The presented recommendation strategies are variants of the traditional pairwise
and point-wise models BPRMF and PMF, respectively. BPRMF and PMF need
unobserved items to serve as negatives during model training and update. This
study proposes two alternatives for the traditional uniform random sampling
that were successfully combined with pairwise and point-wise methods. As
observed in this chapter, the negative-relevant sampling strategies outperformed
the tested negative sampling baseline in most of the presented results. The
proposed methods increased the RECALL@10 values by up to 17.4 percentage
points compared with the uniform sampling baseline.

104

8
Conclusion

This thesis focused on optimizing recommender models by providing alter-
natives for the latent factors’ updates and negative sampling in OCCF streaming
scenarios. In this work, the use of batch and incremental recommender models
were analyzed in different aspects and scenarios, and the objectives were aligned
with the developed analysis. Considering the availability of new retail datasets
for OCCF with concept drift and cold-start incidence, this work provides a novel
supermarket data collection from four months of purchases in a physical su-
permarket store. A robust comparison protocol between batch and streaming
recommender models was also introduced. Considering the provided dataset
(Chapter 5), it was concluded that in real-world supermarket data, the stream-
ing recommender models induced better recall rates than the batch learning
approaches due to the incidence of cold-start and concept drifts. However, as
the dataset was collected over four months, and although it will be helpful in the
research community, I have as future work the acquisition of at least one year of
supermarket transactions with more than 10 million user-item interactions.

Considering the analysis and implementation of adaptive recommender
models, Chapter 6 presents five variants of four well know adaptive optimizers,
i.e., Adam, AMSGrad, Nadam, and RMSprop, and provides results that show
us the efficiency of adaptive learning rate optimizer combined with traditional
and incremental MF model. I plan to investigate other adaptive learning rate
optimizers in future work to analyze their incremental efficiency in updating
MF models. I also intend to incorporate our optimizer variants into other MF
recommender models, such as the PMF and BPRMF models presented in this

105

CHAPTER 8. CONCLUSION

study. Furthermore, we plan to investigate the application of drift detectors as
part of the learning process to adapt the model parameters according to changes
in the data.

Focusing on the negative-relevant items sampling, presented in Chapter 7,
this works studies the proper selection of unknown and possible relevant items
to be used in the recommender models training. The proposed sampling strate-
gies were combined in both pairwise and point-wise models. The proposed
strategies enabled the recommender models to learn more efficient user and
item features and then recommend more accurate items to users. In future
works, I want to implement other sampling alternatives applied in streaming
scenarios for comparison. Additionally, I plan to use other similarity measures
for finding relevant items.

Furthermore, I envision combining the MF models with temporal dynamics
since the supermarket/e-commerce scenarios have a large time dependency due
to the specific behaviors, with a high incidence of cold-start and concept drifts.

106

References

ABADI, M.; BARHAM, P.; CHEN, J.; CHEN, Z.; DAVIS, A.; DEAN, J.; DEVIN,
M.; GHEMAWAT, S.; IRVING, G.; ISARD, M.; KUDLUR, M.; LEVENBERG,
J.; MONGA, R.; MOORE, S.; MURRAY, D. G.; STEINER, B.; TUCKER, P. A.;
VASUDEVAN, V.; WARDEN, P.; WICKE, M.; YU, Y.; ZHENG, X. Tensor-
flow: A system for large-scale machine learning. In: KEETON, K.; ROSCOE,
T. (Ed.). 12th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. USENIX Associa-
tion, 2016. p. 265–283. Disponível em: <https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/abadi>.

AGGARWAL, C. C. (Ed.). Data Streams - Models and Algorithms. Springer, 2007.
v. 31. (Advances in Database Systems, v. 31). ISBN 978-0-387-28759-1. Disponível
em: <https://doi.org/10.1007/978-0-387-47534-9>.

AL-GHOSSEIN, M.; MURENA, P.; ABDESSALEM, T.; BARRÉ, A.; COR-
NUÉJOLS, A. Adaptive collaborative topic modeling for online recommenda-
tion. In: PERA, S.; EKSTRAND, M. D.; AMATRIAIN, X.; O’DONOVAN, J. (Ed.).
Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Van-
couver, BC, Canada, October 2-7, 2018. ACM, 2018. p. 338–346. Disponível em:
<https://doi.org/10.1145/3240323.3240363>.

BABÜROGLU, E. S.; DURMUSOGLU, A.; DERELI, T. Novel hybrid pair rec-
ommendations based on a large-scale comparative study of concept drift de-
tection. Expert Syst. Appl., v. 163, p. 113786, 2021. Disponível em: <https:
//doi.org/10.1016/j.eswa.2020.113786>.

BAI, T.; DU, P.; ZHAO, W. X.; WEN, J.; NIE, J. A long-short demands-aware
model for next-item recommendation. CoRR, abs/1903.00066, 2019. Disponível
em: <http://arxiv.org/abs/1903.00066>.

BALAKRISHNAN, J.; CHENG, C. H.; WONG, K.; WOO, K. Product recom-
mendation algorithms in the age of omnichannel retailing - an intuitive clus-
tering approach. Comput. Ind. Eng., v. 115, p. 459–470, 2018. Disponível em:
<https://doi.org/10.1016/j.cie.2017.12.005>.

107

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1007/978-0-387-47534-9
https://doi.org/10.1145/3240323.3240363
https://doi.org/10.1016/j.eswa.2020.113786
https://doi.org/10.1016/j.eswa.2020.113786
http://arxiv.org/abs/1903.00066
https://doi.org/10.1016/j.cie.2017.12.005

REFERENCES

BEEL, J.; GIPP, B.; LANGER, S.; BREITINGER, C. Research-paper recommender
systems: a literature survey. Int. J. on Digital Libraries, v. 17, n. 4, p. 305–338, 2016.
Disponível em: <https://doi.org/10.1007/s00799-015-0156-0>.

BI, Y.; SONG, L.; YAO, M.; WU, Z.; WANG, J.; XIAO, J. DCDIR: A deep cross-
domain recommendation system for cold start users in insurance domain. In:
Proceedings of the 43rd International ACM SIGIR conference on research and develop-
ment in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020.
ACM, 2020. p. 1661–1664. Disponível em: <https://doi.org/10.1145/3397271.
3401193>.

BISONG, E. Building machine learning and deep learning models on Google cloud
platform. [S.l.]: Springer, 2019.

BOBADILLA, J.; ORTEGA, F.; HERNANDO, A.; GUTIÉRREZ, A. Recommender
systems survey. Knowledge-based systems, Elsevier, v. 46, p. 109–132, 2013.

BREIMAN, L. Bagging predictors. Mach. Learn., v. 24, n. 2, p. 123–140, 1996.
Disponível em: <https://doi.org/10.1007/BF00058655>.

BURLUTSKIY, N.; PETRIDIS, M.; FISH, A.; CHERNOV, A.; ALI, N. An investi-
gation on online versus batch learning in predicting user behaviour. In: Research
and Development in Intelligent Systems XXXIII - Incorporating Applications and In-
novations in Intelligent Systems XXIV. Proceedings of AI-2016, The Thirty-Sixth SGAI
International Conference on Innovative Techniques and Applications of Artificial Intelli-
gence, Cambridge, UK, December 13-15, 2016. Springer, 2016. p. 135–149. Disponível
em: <https://doi.org/10.1007/978-3-319-47175-4_9>.

ÇANO, E.; MORISIO, M. Characterization of public datasets for recommender
systems. In: IEEE. 2015 IEEE 1st International Forum on Research and Technologies
for Society and Industry Leveraging a better tomorrow (RTSI). [S.l.], 2015. p. 249–257.

CHAE, D.; LEE, S.; LEE, S.; KIM, S. On identifying k-nearest neighbors in
neighborhood models for efficient and effective collaborative filtering. Neuro-
computing, v. 278, p. 134–143, 2018. Disponível em: <https://doi.org/10.1016/j.
neucom.2017.06.081>.

CHANDRAMOULI, B.; LEVANDOSKI, J. J.; ELDAWY, A.; MOKBEL, M. F.
Streamrec: A real-time recommender system. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data. New York, NY, USA:
Association for Computing Machinery, 2011. (SIGMOD ’11), p. 1243–1246. ISBN
9781450306614. Disponível em: <https://doi.org/10.1145/1989323.1989465>.

CHANG, S.; ZHANG, Y.; TANG, J.; YIN, D.; CHANG, Y.; HASEGAWA-
JOHNSON, M. A.; HUANG, T. S. Streaming recommender systems. In: BAR-
RETT, R.; CUMMINGS, R.; AGICHTEIN, E.; GABRILOVICH, E. (Ed.). Pro-
ceedings of the 26th International Conference on World Wide Web, WWW 2017,

108

https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1145/3397271.3401193
https://doi.org/10.1145/3397271.3401193
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/978-3-319-47175-4_9
https://doi.org/10.1016/j.neucom.2017.06.081
https://doi.org/10.1016/j.neucom.2017.06.081
https://doi.org/10.1145/1989323.1989465

REFERENCES

Perth, Australia, April 3-7, 2017. ACM, 2017. p. 381–389. Disponível em: <https:
//doi.org/10.1145/3038912.3052627>.

CHAUDHURY, S.; YAMASAKI, T. Robustness of adaptive neural network opti-
mization under training noise. IEEE Access, v. 9, p. 37039–37053, 2021. Disponível
em: <https://doi.org/10.1109/ACCESS.2021.3062990>.

CHEN, J.; FANG, J.; LIU, W.; TANG, T.; YANG, C. clmf: A fine-grained and
portable alternating least squares algorithm for parallel matrix factorization.
Future Gener. Comput. Syst., v. 108, p. 1192–1205, 2020. Disponível em: <https:
//doi.org/10.1016/j.future.2018.04.071>.

CHRISTY, A. J.; UMAMAKESWARI, A.; PRIYATHARSINI, L.; NEYAA, A.
Rfm ranking–an effective approach to customer segmentation. Journal of King
Saud University-Computer and Information Sciences, Elsevier, 2018. Disponível em:
<https://doi.org/10.1016/j.eswa.2008.07.018>.

CREMONESI, P.; KOREN, Y.; TURRIN, R. Performance of recommender algo-
rithms on top-n recommendation tasks. In: AMATRIAIN, X.; TORRENS, M.;
RESNICK, P.; ZANKER, M. (Ed.). Proceedings of the 2010 ACM Conference on Rec-
ommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010. ACM,
2010. p. 39–46. Disponível em: <https://doi.org/10.1145/1864708.1864721>.

CREMONESI, P.; KOREN, Y.; TURRIN, R. Performance of recommender algo-
rithms on top-n recommendation tasks. In: AMATRIAIN, X.; TORRENS, M.;
RESNICK, P.; ZANKER, M. (Ed.). Proceedings of the 2010 ACM Conference on Rec-
ommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010. ACM,
2010. p. 39–46. Disponível em: <https://doi.org/10.1145/1864708.1864721>.

DEMSAR, J. Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res., v. 7, p. 1–30, 2006. Disponível em: <http://jmlr.org/papers/v7/
demsar06a.html>.

DING, J.; FENG, F.; HE, X.; YU, G.; LI, Y.; JIN, D. An improved sampler for
bayesian personalized ranking by leveraging view data. In: CHAMPIN, P.;
GANDON, F.; LALMAS, M.; IPEIROTIS, P. G. (Ed.). Companion of the The Web
Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France, April 23-27,
2018. ACM, 2018. p. 13–14. Disponível em: <https://doi.org/10.1145/3184558.
3186905>.

DING, J.; QUAN, Y.; YAO, Q.; LI, Y.; JIN, D. Simplify and robustify negative
sampling for implicit collaborative filtering. In: LAROCHELLE, H.; RANZATO,
M.; HADSELL, R.; BALCAN, M.; LIN, H. (Ed.). Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual. [S.l.: s.n.], 2020.

109

https://doi.org/10.1145/3038912.3052627
https://doi.org/10.1145/3038912.3052627
https://doi.org/10.1109/ACCESS.2021.3062990
https://doi.org/10.1016/j.future.2018.04.071
https://doi.org/10.1016/j.future.2018.04.071
https://doi.org/10.1016/j.eswa.2008.07.018
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/1864708.1864721
http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1145/3184558.3186905
https://doi.org/10.1145/3184558.3186905

REFERENCES

DOGO, E.; AFOLABI, O.; NWULU, N.; TWALA, B.; AIGBAVBOA, C. A com-
parative analysis of gradient descent-based optimization algorithms on convo-
lutional neural networks. In: IEEE. 2018 international conference on computational
techniques, electronics and mechanical systems (CTEMS). [S.l.], 2018. p. 92–99.

DOOMS, S.; PESSEMIER, T. D.; MARTENS, L. Mining cross-domain rating
datasets from structured data on twitter. In: 23rd International World Wide Web
Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, Companion Volume.
[S.l.]: ACM, 2014. p. 621–624.

DOZAT, T. Incorporating nesterov momentum into adam. ICLR Workshop, p.
2013–2016, 2016.

FRIEDMAN, M. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the american statistical association, Taylor &
Francis, v. 32, n. 200, p. 675–701, 1937.

GAMA, J. Knowledge discovery from data streams. [S.l.]: CRC Press, 2010.

GAMA, J.; SEBASTIÃO, R.; RODRIGUES, P. P. On evaluating stream learning
algorithms. Mach. Learn., v. 90, n. 3, p. 317–346, 2013. Disponível em: <https:
//doi.org/10.1007/s10994-012-5320-9>.

GAMA, J.; ZLIOBAITE, I.; BIFET, A.; PECHENIZKIY, M.; BOUCHACHIA, A. A
survey on concept drift adaptation. ACM Comput. Surv., v. 46, n. 4, p. 44:1–44:37,
2014. Disponível em: <https://doi.org/10.1145/2523813>.

GÓMEZ, B. G.; ARRANZ, A. M. G.; CILLÁN, J. G. Drivers of customer likelihood
to join grocery retail loyalty programs. an analysis of reward programs and
loyalty cards. Journal of Retailing and Consumer Services, Elsevier, v. 19, n. 5, p.
492–500, 2012.

GREENBERG-TOLEDO, T.; MAZOR, R.; ALI, A. H.; KVATINSKY, S. Supporting
the momentum training algorithm using a memristor-based synapse. IEEE Trans.
Circuits Syst. I Regul. Pap., v. 66-I, n. 4, p. 1571–1583, 2019. Disponível em: <https:
//doi.org/10.1109/TCSI.2018.2888538>.

GUO, G.; QIU, H.; TAN, Z.; LIU, Y.; MA, J.; WANG, X. Resolving data spar-
sity by multi-type auxiliary implicit feedback for recommender systems. Knowl.
Based Syst., v. 138, p. 202–207, 2017. Disponível em: <https://doi.org/10.1016/
j.knosys.2017.10.005>.

GUO, L.; YIN, H.; WANG, Q.; CHEN, T.; ZHOU, A.; HUNG, N. Q. V. Stream-
ing session-based recommendation. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, An-
chorage, AK, USA, August 4-8, 2019. ACM, 2019. p. 1569–1577. Disponível em:
<https://doi.org/10.1145/3292500.3330839>.

110

https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1007/s10994-012-5320-9
https://doi.org/10.1145/2523813
https://doi.org/10.1109/TCSI.2018.2888538
https://doi.org/10.1109/TCSI.2018.2888538
https://doi.org/10.1016/j.knosys.2017.10.005
https://doi.org/10.1016/j.knosys.2017.10.005
https://doi.org/10.1145/3292500.3330839

REFERENCES

HARPER, F. M.; KONSTAN, J. A. The movielens datasets: History and context.
TiiS, v. 5, n. 4, p. 19:1–19:19, 2016. Disponível em: <https://doi.org/10.1145/
2827872>.

HE, X.; CHEN, T.; KAN, M.; CHEN, X. Trirank: Review-aware explainable rec-
ommendation by modeling aspects. In: Proceedings of the 24th ACM International
Conference on Information and Knowledge Management, CIKM 2015, Melbourne,
VIC, Australia, October 19 - 23, 2015. ACM, 2015. p. 1661–1670. Disponível em:
<https://doi.org/10.1145/2806416.2806504>.

HE, X.; LIAO, L.; ZHANG, H.; NIE, L.; HU, X.; CHUA, T. Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017. [S.l.]: ACM, 2017. p. 173–182.

HE, X.; ZHANG, H.; KAN, M.; CHUA, T. Fast matrix factorization for online
recommendation with implicit feedback. In: PEREGO, R.; SEBASTIANI, F.;
ASLAM, J. A.; RUTHVEN, I.; ZOBEL, J. (Ed.). Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Information Retrieval, SIGIR
2016, Pisa, Italy, July 17-21, 2016. ACM, 2016. p. 549–558. Disponível em: <https:
//doi.org/10.1145/2911451.2911489>.

HERLOCKER, J. L.; KONSTAN, J. A.; BORCHERS, A.; RIEDL, J. An algorithmic
framework for performing collaborative filtering. In: SIGIR ’99: Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA. ACM, 1999. p.
230–237. Disponível em: <https://doi.org/10.1145/312624.312682>.

HWANGBO, H.; KIM, Y. S.; CHA, K. J. Recommendation system development
for fashion retail e-commerce. Electron. Commer. Res. Appl., v. 28, p. 94–101, 2018.
Disponível em: <https://doi.org/10.1016/j.elerap.2018.01.012>.

JORGE, A. M.; VINAGRE, J.; DOMINGUES, M. A.; GAMA, J.; SOARES, C.; MA-
TUSZYK, P.; SPILIOPOULOU, M. Scalable online top-n recommender systems.
In: BRIDGE, D.; STUCKENSCHMIDT, H. (Ed.). E-Commerce and Web Technolo-
gies - 17th International Conference, EC-Web 2016, Porto, Portugal, September 5-8,
2016, Revised Selected Papers. [s.n.], 2016. (Lecture Notes in Business Informa-
tion Processing, v. 278), p. 3–20. Disponível em: <https://doi.org/10.1007/
978-3-319-53676-7_1>.

JOSÉ, E. F.; ENEMBRECK, F.; BARDDAL, J. P. Adadrift: An adaptive learning
technique for long-history stream-based recommender systems. In: Proceedings
of IEEE Systems, Man, and Cybernetics 2020 (IEEE SMC 2020). [S.l.]: IEEE, 2020.

KASTRATI, M.; BIBA, M. A state-of-the-art survey of advanced optimization
methods in machine learning. In: XHINA, E.; HOXHA, K. (Ed.). Proceedings
of the 4th International Conference on Recent Trends and Applications in Computer
Science and Information Technology, Tirana, Albania, May 21st - to - 22nd, 2021. [S.l.]:
CEUR-WS.org, 2021. (CEUR Workshop Proceedings, v. 2872), p. 1–10.

111

https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2806416.2806504
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1145/312624.312682
https://doi.org/10.1016/j.elerap.2018.01.012
https://doi.org/10.1007/978-3-319-53676-7_1
https://doi.org/10.1007/978-3-319-53676-7_1

REFERENCES

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. In: BENGIO,
Y.; LECUN, Y. (Ed.). 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. [s.n.], 2015.
Disponível em: <http://arxiv.org/abs/1412.6980>.

KOREN, Y. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-
27, 2008. ACM, 2008. p. 426–434. Disponível em: <https://doi.org/10.1145/
1401890.1401944>.

KOREN, Y. Collaborative filtering with temporal dynamics. Commun. ACM, v. 53,
n. 4, p. 89–97, 2010. Disponível em: <http://doi.acm.org/10.1145/1721654.
1721677>.

KOREN, Y.; BELL, R. M.; VOLINSKY, C. Matrix factorization techniques for
recommender systems. IEEE Computer, v. 42, n. 8, p. 30–37, 2009. Disponível em:
<https://doi.org/10.1109/MC.2009.263>.

KRISTOFFERSEN, M. S.; SHEPSTONE, S. E.; TAN, Z. A dataset for inferring
contextual preferences of users watching TV. In: MITROVIC, T.; ZHANG, J.;
CHEN, L.; CHIN, D. (Ed.). Proceedings of the 26th Conference on User Modeling,
Adaptation and Personalization, UMAP 2018, Singapore, July 08-11, 2018. ACM,
2018. p. 367–368. Disponível em: <https://doi.org/10.1145/3209219.3209263>.

LAGHMARI, K.; MARSALA, C.; RAMDANI, M. An adapted incremental graded
multi-label classification model for recommendation systems. Prog. Artif. In-
tell., v. 7, n. 1, p. 15–29, 2018. Disponível em: <https://doi.org/10.1007/
s13748-017-0133-5>.

LE, D.; LAUW, H. W.; FANG, Y. Basket-sensitive personalized item recommen-
dation. In: SIERRA, C. (Ed.). Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, ĲCAI 2017, Melbourne, Australia, August 19-25,
2017. ĳcai.org, 2017. p. 2060–2066. Disponível em: <https://doi.org/10.24963/
ĳcai.2017/286>.

LI, B.; HAN, L. Distance weighted cosine similarity measure for text classifi-
cation. In: Intelligent Data Engineering and Automated Learning - IDEAL 2013 -
14th International Conference, IDEAL 2013, Hefei, China, October 20-23, 2013. Pro-
ceedings. [S.l.]: Springer, 2013. (Lecture Notes in Computer Science, v. 8206), p.
611–618.

LI, G.; ZHANG, Z.; WANG, L.; CHEN, Q.; PAN, J. One-class collaborative
filtering based on rating prediction and ranking prediction. Knowl. Based Syst.,
v. 124, p. 46–54, 2017.

112

http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
http://doi.acm.org/10.1145/1721654.1721677
http://doi.acm.org/10.1145/1721654.1721677
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3209219.3209263
https://doi.org/10.1007/s13748-017-0133-5
https://doi.org/10.1007/s13748-017-0133-5
https://doi.org/10.24963/ijcai.2017/286
https://doi.org/10.24963/ijcai.2017/286

REFERENCES

LI, J.; REN, P.; CHEN, Z.; REN, Z.; LIAN, T.; MA, J. Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017. ACM, 2017.
p. 1419–1428. Disponível em: <https://doi.org/10.1145/3132847.3132926>.

LIN, C.; WANG, L.; TSAI, K. Hybrid real-time matrix factorization for implicit
feedback recommendation systems. IEEE Access, v. 6, p. 21369–21380, 2018.
Disponível em: <https://doi.org/10.1109/ACCESS.2018.2819428>.

LIU, N. N.; CAO, B.; ZHAO, M.; YANG, Q. Adapting neighborhood and matrix
factorization models for context aware recommendation. In: Proceedings of the
Workshop on Context-Aware Movie Recommendation. [S.l.: s.n.], 2010. p. 7–13.

LUO, X.; QIN, W.; DONG, A.; SEDRAOUI, K.; ZHOU, M. Efficient and high-
quality recommendations via momentum-incorporated parallel stochastic gra-
dient descent-based learning. IEEE CAA J. Autom. Sinica, v. 8, n. 2, p. 402–411,
2021. Disponível em: <https://doi.org/10.1109/JAS.2020.1003396>.

LUO, X.; XIA, Y.; ZHU, Q. Incremental collaborative filtering recommender
based on regularized matrix factorization. Knowl. Based Syst., v. 27, p. 271–280,
2012. Disponível em: <https://doi.org/10.1016/j.knosys.2011.09.006>.

MATUSZYK, P.; VINAGRE, J.; SPILIOPOULOU, M.; JORGE, A. M.; GAMA, J.
Forgetting methods for incremental matrix factorization in recommender sys-
tems. In: Proceedings of the 30th Annual ACM Symposium on Applied Comput-
ing, Salamanca, Spain, April 13-17, 2015. ACM, 2015. p. 947–953. Disponível em:
<https://doi.org/10.1145/2695664.2695820>.

MATUSZYK, P.; VINAGRE, J.; SPILIOPOULOU, M.; JORGE, A. M.; GAMA, J.
Forgetting methods for incremental matrix factorization in recommender sys-
tems. In: Proceedings of the 30th Annual ACM Symposium on Applied Comput-
ing, Salamanca, Spain, April 13-17, 2015. ACM, 2015. p. 947–953. Disponível em:
<https://doi.org/10.1145/2695664.2695820>.

MATUSZYK, P.; VINAGRE, J.; SPILIOPOULOU, M.; JORGE, A. M.; GAMA,
J. Forgetting techniques for stream-based matrix factorization in recommender
systems. Knowl. Inf. Syst., v. 55, n. 2, p. 275–304, 2018. Disponível em: <https:
//doi.org/10.1007/s10115-017-1091-8>.

MCAULEY, J. Amazon Product Data. 2014. Disponível em: <http://jmcauley.
ucsd.edu/data/amazon/links.html>.

NASSAR, N.; JAFAR, A.; RAHHAL, Y. A novel deep multi-criteria collaborative
filtering model for recommendation system. Knowl. Based Syst., v. 187, 2020.
Disponível em: <https://doi.org/10.1016/j.knosys.2019.06.019>.

NEMENYI, P. B. Distribution-free multiple comparisons. Tese (PhD Thesis) —
Princeton University, 1963.

113

https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1109/ACCESS.2018.2819428
https://doi.org/10.1109/JAS.2020.1003396
https://doi.org/10.1016/j.knosys.2011.09.006
https://doi.org/10.1145/2695664.2695820
https://doi.org/10.1145/2695664.2695820
https://doi.org/10.1007/s10115-017-1091-8
https://doi.org/10.1007/s10115-017-1091-8
http://jmcauley.ucsd.edu/data/amazon/links.html
http://jmcauley.ucsd.edu/data/amazon/links.html
https://doi.org/10.1016/j.knosys.2019.06.019

REFERENCES

NGUYEN, D. M.; TSILIGIANNI, E.; DELIGIANNIS, N. Learning discrete matrix
factorization models. IEEE Signal Process. Lett., v. 25, n. 5, p. 720–724, 2018.
Disponível em: <https://doi.org/10.1109/LSP.2018.2823268>.

OCEPEK, U.; RUGELJ, J.; BOSNIC, Z. Improving matrix factorization recom-
mendations for examples in cold start. Expert Syst. Appl., v. 42, n. 19, p. 6784–6794,
2015. Disponível em: <https://doi.org/10.1016/j.eswa.2015.04.071>.

PAN, R.; ZHOU, Y.; CAO, B.; LIU, N. N.; LUKOSE, R. M.; SCHOLZ, M.; YANG,
Q. One-class collaborative filtering. In: Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy. [S.l.]:
IEEE Computer Society, 2008. p. 502–511.

PAN, W.; LIU, M.; MING, Z. Transfer learning for heterogeneous one-class col-
laborative filtering. IEEE Intell. Syst., v. 31, n. 4, p. 43–49, 2016.

PANDEY, A. K.; RAJPOOT, D. S. Resolving cold start problem in recommenda-
tion system using demographic approach. In: IEEE. 2016 International Conference
on Signal Processing and Communication (ICSC). 2016. p. 213–218. Disponível em:
<https://doi.org/10.1109/ICSPCom.2016.7980578>.

PIRAMUTHU, S.; KAPOOR, G.; ZHOU, W.; MAUW, S. Input online review data
and related bias in recommender systems. Decis. Support Syst., v. 53, n. 3, p.
418–424, 2012. Disponível em: <https://doi.org/10.1016/j.dss.2012.02.006>.

PORTUGAL, I.; ALENCAR, P. S. C.; COWAN, D. D. The use of machine learning
algorithms in recommender systems: A systematic review. Expert Syst. Appl.,
v. 97, p. 205–227, 2018. Disponível em: <https://doi.org/10.1016/j.eswa.2017.
12.020>.

RABIU, I.; SALIM, N.; DA’U, A.; OSMAN, A.; NASSER, M. Exploiting dynamic
changes from latent features to improve recommendation using temporal matrix
factorization. Egyptian Informatics Journal, Elsevier, 2020.

RAGHUWANSHI, S. K.; PATERIYA, R. K. Accelerated singular value decompo-
sition (asvd) using momentum based gradient descent optimization. Journal of
King Saud University-Computer and Information Sciences, Elsevier, 2018.

RANA, C.; JAIN, S. K. An evolutionary clustering algorithm based on temporal
features for dynamic recommender systems. Swarm Evol. Comput., v. 14, p. 21–30,
2014. Disponível em: <https://doi.org/10.1016/j.swevo.2013.08.003>.

REDDI, S. J.; KALE, S.; KUMAR, S. On the convergence of adam and beyond.
In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. [S.l.]: OpenRe-
view.net, 2018.

114

https://doi.org/10.1109/LSP.2018.2823268
https://doi.org/10.1016/j.eswa.2015.04.071
https://doi.org/10.1109/ICSPCom.2016.7980578
https://doi.org/10.1016/j.dss.2012.02.006
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.swevo.2013.08.003

REFERENCES

RENDLE, S.; FREUDENTHALER, C. Improving pairwise learning for item
recommendation from implicit feedback. In: CARTERETTE, B.; DIAZ, F.;
CASTILLO, C.; METZLER, D. (Ed.). Seventh ACM International Conference on
Web Search and Data Mining, WSDM 2014, New York, NY, USA, February 24-
28, 2014. ACM, 2014. p. 273–282. Disponível em: <https://doi.org/10.1145/
2556195.2556248>.

RENDLE, S.; FREUDENTHALER, C.; GANTNER, Z.; SCHMIDT-THIEME,
L. BPR: bayesian personalized ranking from implicit feedback. CoRR,
abs/1205.2618, 2012.

RICCI, F.; ROKACH, L.; SHAPIRA, B. Introduction to recommender systems
handbook. In: Recommender Systems Handbook. Springer, 2011. p. 1–35. Disponível
em: <https://doi.org/10.1007/978-0-387-85820-3_1>.

SALAKHUTDINOV, R.; MNIH, A. Probabilistic matrix factorization. In: PLATT,
J. C.; KOLLER, D.; SINGER, Y.; ROWEIS, S. T. (Ed.). Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6,
2007. [S.l.]: Curran Associates, Inc., 2007. p. 1257–1264.

SARWAR, B. M.; KARYPIS, G.; KONSTAN, J. A.; RIEDL, J. Item-based collabora-
tive filtering recommendation algorithms. In: Proceedings of the Tenth International
World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001. ACM,
2001. p. 285–295. Disponível em: <https://doi.org/10.1145/371920.372071>.

SHAO, B.; LI, X.; BIAN, G. A survey of research hotspots and frontier trends
of recommendation systems from the perspective of knowledge graph. Expert
Systems with Applications, Elsevier, v. 165, p. 113764, 2021. Disponível em: <https:
//doi.org/10.1016/j.eswa.2020.113764>.

SHI, Y.; LARSON, M. A.; HANJALIC, A. List-wise learning to rank with matrix
factorization for collaborative filtering. In: Proceedings of the 2010 ACM Conference
on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010.
[S.l.]: ACM, 2010. p. 269–272.

SIDANA, S.; LACLAU, C.; AMINI, M.; VANDELLE, G.; BOIS-CRETTEZ, A.
KASANDR: A large-scale dataset with implicit feedback for recommendation.
In: Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017.
ACM, 2017. p. 1245–1248. Disponível em: <https://doi.org/10.1145/3077136.
3080713>.

SILVA, N.; CARVALHO, D.; PEREIRA, A. C. M.; MOURÃO, F.; ROCHA, L. C.
da. The pure cold-start problem: A deep study about how to conquer first-time
users in recommendations domains. Inf. Syst., v. 80, p. 1–12, 2019. Disponível
em: <https://doi.org/10.1016/j.is.2018.09.001>.

115

https://doi.org/10.1145/2556195.2556248
https://doi.org/10.1145/2556195.2556248
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1145/371920.372071
https://doi.org/10.1016/j.eswa.2020.113764
https://doi.org/10.1016/j.eswa.2020.113764
https://doi.org/10.1145/3077136.3080713
https://doi.org/10.1145/3077136.3080713
https://doi.org/10.1016/j.is.2018.09.001

REFERENCES

SONG, B.; YANG, X.; CAO, Y.; XU, C. Neural collaborative ranking. In: Pro-
ceedings of the 27th ACM International Conference on Information and Knowledge
Management, CIKM 2018, Torino, Italy, October 22-26, 2018. [S.l.]: ACM, 2018. p.
1353–1362.

SONG, Q.; CHENG, J.; LU, H. Incremental matrix factorization via feature space
re-learning for recommender system. In: WERTHNER, H.; ZANKER, M.; GOL-
BECK, J.; SEMERARO, G. (Ed.). Proceedings of the 9th ACM Conference on Recom-
mender Systems, RecSys 2015, Vienna, Austria, September 16-20, 2015. ACM, 2015.
p. 277–280. Disponível em: <https://doi.org/10.1145/2792838.2799668>.

SUN, S.; CAO, Z.; ZHU, H.; ZHAO, J. A survey of optimization methods from a
machine learning perspective. IEEE Trans. Cybern., v. 50, n. 8, p. 3668–3681, 2020.

TAHMASEBI, F.; MEGHDADI, M.; AHMADIAN, S.; VALIALLAHI, K. A hy-
brid recommendation system based on profile expansion technique to alleviate
cold start problem. Multimedia Tools and Applications, Springer, p. 1–16, 2020.
Disponível em: <https://doi.org/10.1007/s11042-020-09768-8>.

TAKÁCS, G.; PILÁSZY, I.; NÉMETH, B.; TIKK, D. Scalable collaborative filtering
approaches for large recommender systems. J. Mach. Learn. Res., v. 10, p. 623–656,
2009. Disponível em: <https://dl.acm.org/citation.cfm?id=1577091>.

TAN, Y. K.; XU, X.; LIU, Y. Improved recurrent neural networks for session-
based recommendations. In: Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, DLRS@RecSys 2016, Boston, MA, USA, September 15,
2016. ACM, 2016. p. 17–22. Disponível em: <https://doi.org/10.1145/2988450.
2988452>.

TATIANA, K.; MIKHAIL, M. Market basket analysis of heterogeneous data
sources for recommendation system improvement. Procedia Computer Science,
Elsevier, v. 136, p. 246–254, 2018.

TIELEMAN, T.; HINTON, G. Lecture 6.5 - RMSProp, COURSERA: Neural Networks
for Machine Learning. [S.l.], 2012.

TSYMBAL, A. The problem of concept drift: definitions and related work. Com-
puter Science Department, Trinity College Dublin, Citeseer, v. 106, n. 2, p. 58, 2004.

ULLAH, F.; SARWAR, G.; LEE, S. C.; PARK, Y. K.; MOON, K.; KIM, J. T. Hy-
brid recommender system with temporal information. In: 2012 International
Conference on Information Networking, ICOIN 2012, Bali, Indonesia, February 1-
3, 2012. IEEE Computer Society, 2012. p. 421–425. Disponível em: <https:
//doi.org/10.1109/ICOIN.2012.6164413>.

VINAGRE, J.; JORGE, A. M.; GAMA, J. Fast incremental matrix factorization
for recommendation with positive-only feedback. In: User Modeling, Adapta-
tion, and Personalization - 22nd International Conference, UMAP 2014, Aalborg,

116

https://doi.org/10.1145/2792838.2799668
https://doi.org/10.1007/s11042-020-09768-8
https://dl.acm.org/citation.cfm?id=1577091
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1145/2988450.2988452
https://doi.org/10.1109/ICOIN.2012.6164413
https://doi.org/10.1109/ICOIN.2012.6164413

REFERENCES

Denmark, July 7-11, 2014. Proceedings. Springer, 2014. (Lecture Notes in Com-
puter Science, v. 8538), p. 459–470. Disponível em: <https://doi.org/10.1007/
978-3-319-08786-3_41>.

VINISKI, A. D.; BARDDAL, J. P.; BRITTO JR., A. de S. UKIRF: an item rejection
framework for improving negative items sampling in one-class collaborative
filtering. In: Advances in Knowledge Discovery and Data Mining - 25th Pacific-
Asia Conference, PAKDD 2021, Virtual Event, May 11-14, 2021, Proceedings, Part
II. Springer, 2021. (Lecture Notes in Computer Science, v. 12713), p. 549–560.
Disponível em: <https://doi.org/10.1007/978-3-030-75765-6_44>.

VINISKI, A. D.; BARDDAL, J. P.; BRITTO JR., A. de S.; ENEMBRECK, F.;
CAMPOS, H. V. A. de. A case study of batch and incremental recommender
systems in supermarket data under concept drifts and cold start. Expert Sys-
tems with Applications, v. 176, p. 114890, 2021. ISSN 0957-4174. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0957417421003316>.

VOLKOVS, M.; YU, G. W. Effective latent models for binary feedback in recom-
mender systems. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Santiago, Chile, August 9-13,
2015. [S.l.]: ACM, 2015. p. 313–322.

WANG, P.; GUO, J.; LAN, Y. Modeling retail transaction data for personalized
shopping recommendation. In: LI, J.; WANG, X. S.; GAROFALAKIS, M. N.;
SOBOROFF, I.; SUEL, T.; WANG, M. (Ed.). Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and Knowledge Management, CIKM
2014, Shanghai, China, November 3-7, 2014. ACM, 2014. p. 1979–1982. Disponível
em: <https://doi.org/10.1145/2661829.2662020>.

WANG, P.; GUO, J.; LAN, Y.; XU, J.; WAN, S.; CHENG, X. Learning hierarchical
representation model for nextbasket recommendation. In: Proceedings of the 38th
International ACM SIGIR conference on Research and Development in Information
Retrieval. [S.l.: s.n.], 2015. p. 403–412.

WEBB, G. I.; LEE, L. K.; GOETHALS, B.; PETITJEAN, F. Analyzing concept drift
and shift from sample data. Data Mining and Knowledge Discovery, Springer, v. 32,
n. 5, p. 1179–1199, 2018.

WEI, J.; HE, J.; CHEN, K.; ZHOU, Y.; TANG, Z. Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Syst. Appl.,
v. 69, p. 29–39, 2017. Disponível em: <https://doi.org/10.1016/j.eswa.2016.09.
040>.

WENG, C. Revenue prediction by mining frequent itemsets with customer
analysis. Eng. Appl. Artif. Intell., v. 63, p. 85–97, 2017. Disponível em: <https:
//doi.org/10.1016/j.engappai.2017.04.020>.

117

https://doi.org/10.1007/978-3-319-08786-3_41
https://doi.org/10.1007/978-3-319-08786-3_41
https://doi.org/10.1007/978-3-030-75765-6_44
https://www.sciencedirect.com/science/article/pii/S0957417421003316
https://doi.org/10.1145/2661829.2662020
https://doi.org/10.1016/j.eswa.2016.09.040
https://doi.org/10.1016/j.eswa.2016.09.040
https://doi.org/10.1016/j.engappai.2017.04.020
https://doi.org/10.1016/j.engappai.2017.04.020

REFERENCES

WU, H.; WANG, Y.; CHENG, X. Incremental probabilistic latent semantic anal-
ysis for automatic question recommendation. In: Proceedings of the 2008 ACM
Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October
23-25, 2008. ACM, 2008. p. 99–106. Disponível em: <https://doi.org/10.1145/
1454008.1454026>.

XU, Y.; ZHANG, Y.; GUO, W.; GUO, H.; TANG, R.; COATES, M. Graph-
sail: Graph structure aware incremental learning for recommender systems.
In: CIKM ’20: The 29th ACM International Conference on Information and Knowledge
Management, Virtual Event, Ireland, October 19-23, 2020. ACM, 2020. p. 2861–2868.
Disponível em: <https://doi.org/10.1145/3340531.3412754>.

YANG, M.; DAI, Q.; DONG, Z.; CHEN, X.; HE, X.; WANG, J. Top-n recommen-
dation with counterfactual user preference simulation. In: DEMARTINI, G.;
ZUCCON, G.; CULPEPPER, J. S.; HUANG, Z.; TONG, H. (Ed.). CIKM ’21: The
30th ACM International Conference on Information and Knowledge Management, Vir-
tual Event, Queensland, Australia, November 1 - 5, 2021. ACM, 2021. p. 2342–2351.
Disponível em: <https://doi.org/10.1145/3459637.3482305>.

YAO, Y.; TONG, H.; YAN, G.; XU, F.; ZHANG, X.; SZYMANSKI, B. K.; LU, J.
Dual-regularized one-class collaborative filtering with implicit feedback. World
Wide Web, v. 22, n. 3, p. 1099–1129, 2019.

YE, J. Cosine similarity measures for intuitionistic fuzzy sets and their applica-
tions. Math. Comput. Model., v. 53, n. 1-2, p. 91–97, 2011.

YIN, R.; LI, K.; ZHANG, G.; LU, J. A deeper graph neural network for rec-
ommender systems. Knowl. Based Syst., v. 185, 2019. Disponível em: <https:
//doi.org/10.1016/j.knosys.2019.105020>.

YOU, J.; WANG, Y.; PAL, A.; EKSOMBATCHAI, P.; ROSENBERG, C.;
LESKOVEC, J. Hierarchical temporal convolutional networks for dynamic rec-
ommender systems. In: The World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019. ACM, 2019. p. 2236–2246. Disponível em:
<https://doi.org/10.1145/3308558.3313747>.

YU, H.; BILENKO, M.; LIN, C. Selection of negative samples for one-class matrix
factorization. In: Proceedings of the 2017 SIAM International Conference on Data
Mining, Houston, Texas, USA, April 27-29, 2017. [S.l.]: SIAM, 2017. p. 363–371.

YU, T.; MENGSHOEL, O. J.; JUDE, A.; FELLER, E.; FORGEAT, J.; RADIA, N.
Incremental learning for matrix factorization in recommender systems. In: 2016
IEEE International Conference on Big Data, BigData 2016, Washington DC, USA,
December 5-8, 2016. IEEE Computer Society, 2016. p. 1056–1063. Disponível em:
<https://doi.org/10.1109/BigData.2016.7840707>.

118

https://doi.org/10.1145/1454008.1454026
https://doi.org/10.1145/1454008.1454026
https://doi.org/10.1145/3340531.3412754
https://doi.org/10.1145/3459637.3482305
https://doi.org/10.1016/j.knosys.2019.105020
https://doi.org/10.1016/j.knosys.2019.105020
https://doi.org/10.1145/3308558.3313747
https://doi.org/10.1109/BigData.2016.7840707

REFERENCES

YU, Y.; LIU, F. Effective neural network training with a new weighting
mechanism-based optimization algorithm. IEEE Access, v. 7, p. 72403–72410,
2019. Disponível em: <https://doi.org/10.1109/ACCESS.2019.2919987>.

YUAN, Q.; CHEN, L.; ZHAO, S. Factorization vs. regularization: fusing het-
erogeneous social relationships in top-n recommendation. In: Proceedings of
the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL,
USA, October 23-27, 2011. ACM, 2011. p. 245–252. Disponível em: <https:
//doi.org/10.1145/2043932.2043975>.

ZAKARIA, I.; RAHMAN, B. A.; OTHMAN, A. K.; YUNUS, N. A. M.;
DZULKIPLI, M. R.; OSMAN, M. A. F. The relationship between loyalty pro-
gram, customer satisfaction and customer loyalty in retail industry: A case
study. Procedia-Social and Behavioral Sciences, Elsevier, v. 129, p. 23–30, 2014.

ZHANG, J.; LU, X. A multi-trans matrix factorization model with improved time
weight in temporal recommender systems. IEEE Access, v. 8, p. 2408–2416, 2020.
Disponível em: <https://doi.org/10.1109/ACCESS.2019.2960540>.

ZHANG, S.; YAO, L.; SUN, A.; TAY, Y. Deep learning based recommender
system: A survey and new perspectives. ACM Comput. Surv., v. 52, n. 1, p.
5:1–5:38, 2019.

ZHANG, W.; CHEN, T.; WANG, J.; YU, Y. Optimizing top-n collaborative fil-
tering via dynamic negative item sampling. In: JONES, G. J. F.; SHERIDAN,
P.; KELLY, D.; RĲKE, M. de; SAKAI, T. (Ed.). The 36th International ACM SI-
GIR conference on research and development in Information Retrieval, SIGIR ’13,
Dublin, Ireland - July 28 - August 01, 2013. ACM, 2013. p. 785–788. Disponível em:
<https://doi.org/10.1145/2484028.2484126>.

ZHANG, Z.; LIU, Y.; JIN, Z.; ZHANG, R. A dynamic trust based two-layer
neighbor selection scheme towards online recommender systems. Neurocomput-
ing, v. 285, p. 94–103, 2018. Disponível em: <https://doi.org/10.1016/j.neucom.
2017.12.063>.

ZHENG, X.; LUO, Y.; SUN, L.; ZHANG, J.; CHEN, F. A tourism destination
recommender system using users’ sentiment and temporal dynamics. J. Intell.
Inf. Syst., v. 51, n. 3, p. 557–578, 2018. Disponível em: <https://doi.org/10.1007/
s10844-018-0496-5>.

ZHOU, H.; HIRASAWA, K. Evolving temporal association rules in recommender
system. Neural Comput. Appl., v. 31, n. 7, p. 2605–2619, 2019. Disponível em:
<https://doi.org/10.1007/s00521-017-3217-z>.

ZHOU, W.; ZHOU, Y.; LI, J.; MEMON, M. H. Lsrec: Large-scale social rec-
ommendation with online update. Expert Syst. Appl., v. 162, p. 113739, 2020.
Disponível em: <https://doi.org/10.1016/j.eswa.2020.113739>.

119

https://doi.org/10.1109/ACCESS.2019.2919987
https://doi.org/10.1145/2043932.2043975
https://doi.org/10.1145/2043932.2043975
https://doi.org/10.1109/ACCESS.2019.2960540
https://doi.org/10.1145/2484028.2484126
https://doi.org/10.1016/j.neucom.2017.12.063
https://doi.org/10.1016/j.neucom.2017.12.063
https://doi.org/10.1007/s10844-018-0496-5
https://doi.org/10.1007/s10844-018-0496-5
https://doi.org/10.1007/s00521-017-3217-z
https://doi.org/10.1016/j.eswa.2020.113739

REFERENCES

ZIKOPOULOS, P.; EATON, C. Understanding big data: Analytics for enterprise class
hadoop and streaming data. [S.l.]: McGraw-Hill Osborne Media, 2011.

120

A
Windowed Evaluation of the Negative-
Relevant Proposed Strategies

This appendix presents all the generated images related to the negative-
relevant sampling strategies. These images are part of the windowed evaluation
and show the results of RECALL@10 values considering the number of selected
samples per positive instance, datasets, and models. First, Figures A.1, A.2, A.3,
A.4, and A.5 present the results obtained by the BPRMF model variant in the
Amazon Books, Movie Lens 1M, Movie Tweetings, SMDI-200UE, and TaFeng
datasets, respectively. Next, the results of the PMF variants are presented in
Figures A.6, A.7, A.8, A.9, and A.10

121

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) Amazon Books - 10 samples

Figure A.1: Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the Amazon Books dataset.

122

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.2: Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the Movie Lens 1M dataset.

123

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.3: Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the Movie Tweetings dataset.

124

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.4: Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the SMDI-200UE dataset.

125

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.5: Windowed Evaluation of RECALL@10 values for the experiments
of the BPRMF model variants in the TaFeng dataset.

126

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) Amazon Books - 10 samples

Figure A.6: Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the Amazon Books dataset.

127

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.7: Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the Movie Lens 1M dataset.

128

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.8: Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the Movie Tweetings dataset.

129

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.9: Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the SMDI-200UE dataset.

130

APPENDIX A. WINDOWED EVALUATION OF THE NEGATIVE-RELEVANT PROPOSED
STRATEGIES

(a) 1 sample (b) 3 samples

(c) 5 samples (d) 10 samples

Figure A.10: Windowed Evaluation of RECALL@10 values for the experiments
of the PMF model variants in the TaFeng dataset.

131

	List of Figures
	List of Tables
	List of Algorithms
	INTRODUCTION
	Objectives
	Hypotheses
	Contributions
	Publications
	Financial Support
	Overview

	Theoretical Background
	Learning Schemes in the Recommendation Scenarios
	Batch learning
	Incremental learning

	Recommender Systems
	Content-Based Filtering
	Collaborative Filtering
	Hybrid Filtering
	Session-Based Filtering

	Challenges
	Implicit Positive-Only Feedback
	Concept Drift
	Cold-Start

	Datasets
	Final Considerations

	Related Works
	Batch Recommendation Models for OCCF
	Matrix Factorization Models
	Neighborhood Models
	Neural Collaborative Framework - NCF

	Streaming Recommendation Models
	Incremental Learning
	Incremental Stochastic Gradient Descent (ISGD)
	Incremental Bayesian Personalized Ranking for Matrix Factorization (IBPRMF)
	Incremental Regularized Matrix Factorization (IRMF)
	Other Incremental Methods

	Methods for Handling Concept Drifts
	Association Rules Methods
	Hybrid Approaches
	Final Considerations

	Experimental Protocol
	Datasets
	Recommender Models Implementation
	Proposed Protocol for Batch and Streaming Comparison
	Protocol Used for the Proposed Recommendation Strategies
	Evaluation
	Evaluation Metrics
	Evaluation Variants
	Significance Test

	Final Considerations

	Contribution I - Supermarket Data Collection
	SDMI Dataset
	Data Acquisition
	Dataset Pre-processing Approaches
	Dataset Availability and Content
	Descriptive Statistics

	Experimental Setup
	Experimental Results and Analysis
	Results of the Basic Evaluation
	Results of the Window-based Evaluation

	Final Considerations

	Contribution II - Incremental Specialized and Specialized-Generalized Matrix Factorization Models based on Adaptive Learning Rate Optimizers
	Adaptive Learning Rate Optimizers
	Proposed Methods
	Specialized Optimizer
	Specialized-Generalized Optimizer

	Experimental Setup
	Results and Analysis
	Streaming Analysis of the Results

	Conclusion

	Contribution III - Improving Negative Items Sampling in Streaming Scenarios
	Background - Ranking-Based Recommender Models
	Negative Sampling Approaches in Streaming Scenarios
	Uniform Random Sampling

	Proposed Strategies to Candidate Items Sampling
	Similarity-based Relevant Items Set Generation

	Model-based Relevant Items Set Generation
	Incorporating SBRG and MBRG in a Pairwise Model
	Incorporating SBRG and MBRG in a Point-wise Model

	Experimental Setup
	Results and Analysis
	Streaming Analysis of the Results

	Final Considerations

	Conclusion
	References
	Windowed Evaluation of the Negative-Relevant Proposed Strategies

