
Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

Cognitive Memory-based Service Directory for

Performing Dynamic Pervasive Service

Composition

Rafael Salazar Salazar

Supervisor

Prof. Dr. Edson Emílio Scalabrin

Supervisor

Prof. Dr. Félix Francisco Ramos Corchado

Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional

Curitiba
2024

Pontifícia Universidade Católica do Paraná
Programa de Pós-Graduação em Informática

Cognitive Memory-based Service Directory for

Performing Dynamic Pervasive Service

Composition

Rafael Salazar Salazar

Thesis presented to the Programa de

Pós-Graduação em Informática as a partial

requirement for the degree of Doctor in

Informatics.

Major Field: Computer Science

Supervisor: Prof. Dr. Edson Emílio

Scalabrin

Supervisor: Prof. Dr. Félix Francisco

Ramos Corchado

Curitiba
2024

Dados da Catalogação na Publicação
Pontifícia Universidade Católica do Paraná

Sistema Integrado de Bibliotecas – SIBI/PUCPR
Biblioteca Central

Luci Eduarda Wielganczuk – CRB 9/1118

 Salazar, Rafael Salazar
S161c Cognitive memory-based service directory for performing dynamic pervasive
2024 service composition / Rafael Salazar Salazar ; supervisors: Edson Emílio Scalabrin,
 Félix Francisco Ramos Corchado. – 2024.
 88 f. : il. ; 30 cm

 Tese (doutorado) – Pontifícia Universidade Católica do Paraná, Curitiba, 2024
 Bibliografia: f. 82-88

 1. Informática. 2. Arquitetura cognitiva. 3. Composição pervasiva.
 4. Composição baseada em experiência. 5. Seleção de serviços. I. Scalabrin,
 Edson Emílio. II. Corchado, Félix Francisco Ramos. III. Pontifícia Universidade
 Católica do Paraná. Programa de Pós-Graduação em Informática. IV. Título.

 CDD. 21. ed. – 004

Pontifícia Universidade Católica do Paraná
Escola Politécnica
Programa de Pós-Graduação em Informática

Curitiba, 07 de novembro de 2024.

92-2024

DECLARAÇÃO

Declaro para os devidos fins, que RAFAEL SALAZAR SALAZAR

defendeu a tese de Doutorado intitulada “Cognitive Memory-based Service

Directory for Performing Dynamic Pervasive Service Composition”, na

área de concentração Ciência da Computação no dia 21 de junho de 2024, no

qual foi aprovado.

Declaro ainda, que foram feitas todas as alterações solicitadas pela

Banca Examinadora, cumprindo todas as normas de formatação definidas pelo

Programa.

Por ser verdade firmo a presente declaração.

Prof. Dr. Emerson Cabrera Paraiso

Coordenador do Programa de Pós-Graduação em Informática

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil
Fone: (41) 3271-1669 e-mail: secretaria@ppgia.pucpr.br

Abstract

Progress in the capabilities of computing devices is relentless, leading to the
rise of research fields looking to exploit devices’ functionalities to improve our
quality of life. Pervasive service composition studies the way to create useful
services satisfying actual problems. However, service composition still has
many challenges because the dynamicity of the environments, where resource
availability is uncertain. Thus, two key problems to solve are: first, to know the
availability of resources to compose a service, and second, the use of experience
to compose a service to solve a specific problem efficiently. In this work, we
propose a Biologically Inspired Cognitive Architecture for a service directory
and a directory of past compositions for specific problems. Our proposal is
inspired in the way the human brain keeps track of available resources it disposes
to solve a problem and keeps experience of past solution for specific problems.

Key-words: Pervasive Composition, Bio-Inspired Cognitive Architecture, Experience-
Based Composition, Service Selection

i

Resumo

O progresso nas capacidades dos dispositivos computacionais é incessante,
levando ao surgimento de campos de pesquisa que buscam explorar as fun-
cionalidades desses dispositivos para melhorar nossa qualidade de vida. A
composição de serviços pervasivos estuda a forma de criar serviços úteis que
resolvam problemas reais. No entanto, a composição de serviços ainda enfrenta
muitos desafios devido à dinamicidade dos ambientes, onde a disponibilidade
de recursos é incerta. Assim, dois problemas-chave a serem resolvidos são:
primeiro, conhecer a disponibilidade de recursos para compor um serviço e,
segundo, o uso da experiência para compor um serviço de forma eficiente para
resolver um problema específico. Neste trabalho, propõe-se uma Arquitetura
Cognitiva Inspirada Biologicamente para um diretório de serviços e um diretório
de composições passadas para problemas específicos. Esta proposta é inspirada
na maneira como o cérebro humano monitora os recursos disponíveis para re-
solver um problema e retém a experiência de soluções passadas para problemas
específicos.

Key-words: Composição Pervasiva, Arquitetura Cognitiva Bio-Inspirada, Com-
posição Baseada em Experiência, Seleção de Serviços

ii

Acknowledgements

I would like to thank my supervisor, Dr. Félix Ramos Corchado, for his
guidance his feedback, for always sticking by me, for saying the things that
needed to be said in order to get things done and to keep me focused. Without
his guidance, support and perseverance, this work would not have been possible.

I am very thankful to Dr. Edson Emílio Scalabrin for his guidance and help
with my work, for receiving me and helping me adapt during my academic
exchange at the PUCPR in Curitiba, Brazil, for helping me out whenever I
required it, up to the very last day of my exchange, for being always so kind.
Obrigado por tudo e até breve!

I would also like to thank all my peers and friends at both CINVESTAV
Guadalajara and PUCPR: people like Axel, Carlos, Christian, César, Jorge, Pedro,
Alfonso, Gustavo, Alan, Adrián Parra, Adrián Ulises, Diana, Francisco, Román,
Luis Martín, Alison, David, Miguel, Rafael, Herai, Bruno, Sheila, An- gelo, all of
them left a mark on me and helped me through this phase of my life, and I am
eternally grateful for it.

I am also thankful to the academic staff at CINVESTAV Guadalajara for all
the help they offered me through this time: Nora, Rogelio, Juan Pablo, Aracely,
Mony was always there when I needed them, always ready to help.

I am thankful to the Consejo Nacional de Humanidades, Ciencias y Tec-
nologías (CONAHCYT) for granting me a scholarship, which allowed me yo
accomplish all this. I wouldn’t be here without their help.

To CINVESTAV Guadalajara and the PUCPR, for giving me the chance to
attend their doctorate programs.

Estoy inmensamente agradecido con mi familia: mi mamá, mi papá, mi her-
mana, mi tía María Luisa, mi madrina Lupita, mis tíos y primos, por todo el
apoyo que me han brindado a través de mi vida, ya que sin ellos no sería quien
soy el día de hoy. Este logro es tanto de ellos como mío.

iii

And last but not least, to God, for always protecting me, for guiding me
through my life, and for gracing me with all the opportunities and people,
which turned me into who I am, allowing this to happen. All of the above is but
a fraction of all the blessings He has bestowed upon me.

iv

Contents

List of Figures viii

List of Tables x

List of Algorithms xi

List of Codes xii

1 Introduction 1

1.1 Problem Definition . 1
1.2 Justification . 3
1.3 Motivation . 4
1.4 Goals . 4
1.5 Document Organization . 4

2 Theoretical Framework 6

2.1 Cognitive Memory . 6
2.1.1 Neuroscientific approach: BICAs 7
2.1.2 Psychological approach: Dynamic Memory 13

2.2 Service Composition . 18

3 Memory Design 24

3.1 Requirements . 25
3.2 Types of Services . 27
3.3 Involved Cognitive Modules . 29
3.4 Memory Structure . 35
3.5 CBP-based Process . 41

v

CONTENTS

4 Implementation 52

4.1 Message and MOP structure . 52
4.2 Directory Functions . 55

5 Case Study 59

5.1 Introduction . 59
5.2 Additional Memory Structures . 61
5.3 Experiments . 63
5.4 Discussion . 77

6 Conclusions and Future Work 80

References 82

vi

List of Figures

3.1 Graph representing the relationships among different service types.
The blue ellipse represents the root of the structure. The red el-
lipses represent the CASs. The green ellipses represent the AASs.
The purple circles represent the CSs. The solid lines represent
indexing links, the dashed lines represent composition links and
the dotted lines represent categorization links. 30

3.2 General architecture of the Cuāyōllōtl BICA. The starting point of
the cognition process are the sensory inputs feeding the Sensory
modules. The ending point is the Output produced by the Motor
module that generally allows to interact with the environment. . . 33

3.3 Diagrams showing the proposal’s MOP-based directory structure. 39
3.4 Sequence diagram depicting the service registration process started

by a provider request. 42
3.5 Sequence diagram depicting the renewal of a service registry trig-

gered by a provider message. 43
3.6 Sequence diagram depicting the service deregistration process

due to the service provider requesting it. 44
3.7 Sequence diagram depicting the service deregistration process

due to the service registry crossing the expiration threshold. . . . 45
3.8 Sequence diagram depicting the service deregistration process

due to the service being unable to be successfully executed during
a service composition. 46

3.9 Sequence diagram depicting the service feedback process for a
composition and its components after a successful execution. . . . 47

vii

LIST OF FIGURES

3.10 Diagram showing the Cuāyōllōtl-based CBP-based service com-
position process. Blue blocks represent the cognitive modules
where directory tasks take place, and gray blocks stand for cog-
nitive modules apart from the directories. 51

5.1 Comparison of the failure rates for the scenarios of the first ex-
periment where availability time of devices is set to 15 minutes . 70

5.1 Comparison of the failure rates for the scenarios of the first ex-
periment where availability time of devices is set to 15 minutes
(cont) . 71

5.2 Comparison of the failure rates for the scenarios of the first ex-
periment where availability time of devices is set to 30 minutes . 72

5.2 Comparison of the failure rates for the scenarios of the first ex-
periment where availability time of devices is set to 30 minutes
(cont) . 73

5.3 Comparison of the failure rates for the scenarios of the first ex-
periment where availability time of devices is set to 60 minutes . 74

5.3 Comparison of the failure rates for the scenarios of the first ex-
periment where availability time of devices is set to 60 minutes
(cont) . 75

5.4 Comparison between the weight of relevance in service ratings
and service age in the second experiment 76

5.5 Comparison between the weight of relevance in service ratings
and average service feedback value in the second experiment . . . 77

viii

List of Tables

2.1 Comparison table of the reviewed CAs 12
2.2 Comparative table between different service discovery approaches.

. 23

5.1 Results of the first experiment with an availability of 15 minutes
and a service renewal chance of 50% 65

5.2 Results of the first experiment with an availability of 15 minutes
and a service renewal chance of 67% 66

5.3 Results of the first experiment with an availability of 15 minutes
and a service renewal chance of 33% 66

5.4 Results of the first experiment with an availability of 30 minutes
and a service renewal chance of 50% 67

5.5 Results of the first experiment with an availability of 30 minutes
and a service renewal chance of 67% 67

5.6 Results of the first experiment with an availability of 30 minutes
and a service renewal chance of 33% 68

5.7 Results of the first experiment with an availability of 60 minutes
and a service renewal chance of 50% 68

5.8 Results of the first experiment with an availability of 60 minutes
and a service renewal chance of 67% 69

5.9 Results of the first experiment with an availability of 60 minutes
and a service renewal chance of 33% 69

5.10 Results of the second experiment for the scenario with a feedback
weight of 1. 73

5.11 Results of the second experiment for the scenario with feedback
and relevance weights of 0.5 each. 75

ix

LIST OF TABLES

5.12 Results of the second experiment for the scenario with a feedback
weight of 0.67 and a relevance weight of 0.33. 75

5.13 Results of the second experiment for the scenario with a feedback
weight of 0.33 and a relevance weight of 0.67. 76

x

List of Algorithms

1 Adding a new CS to the directory 55
2 CS search algorithm . 56
3 CS removal algorithm . 56
4 CAS search algorithm . 57
5 Service registry renewal process 58

xi

List of Codes

3.1 pseudo-code for the MOP structure of a CS registry 38
3.2 Pseudo-code for the MOP structure of a CAS registry 38
4.1 XML structure for an up message 53
4.2 XML structure for a down message 53
4.3 XML structure for a timeout message 53
4.4 XML structure for an unavailable message 53
4.5 XML structure for a feedback message 54
4.6 Expression for a MOP structure in Common Lisp 54
5.1 Lisp expression for the MOP structure of a CAS registry in the

case study . 63
5.2 Lisp expression for the MOP holding the different steps in a CAS

in a composition . 63

xii

1
Introduction

1.1 Problem Definition

Breakthroughs in technologies such as wireless communications, battery
technologies, miniaturization of semiconductors, among others, have been key
for the development and deployment of ubiquitous and mobile computing.
Technologies from these research areas allow devices to interact among them-
selves, opening the way for them to cooperate and coordinate in order to combine
their individual capabilities resulting in a complex one that can tackle sophisti-
cated user needs. This kind of service composition is known as pervasive service
composition (ZHOU et al., 2009). Pervasive service composition puts different
challenges on the table, among them: selecting the devices with suitable capabil-
ities for a specific task, ensuring the required devices availability when needed,
handling communication between heterogeneous devices, dealing with missing
devices and communication lines, managing devices with limited energy, to
know the way to achieve a solution, assessing the fitness of a produced solution,
among others.

Many of the aforementioned challenges, which are important for fulfilling a
specific task, are directly related to available device directories, which hold the
information of available devices (services) for their proper use. In dynamic envi-
ronments, where devices come in and go out, devices can become unavailable for
different reasons, which requires that these directories need to be kept updated
with the information of the available services reflecting the needed information

1

CHAPTER 1. INTRODUCTION

for their use when its capabilities are required. There are different challenges
to solve in order to have this directory updated, such as: how this directory
keeps the information updated, which actions to take when an available service
leaves the environment, how to manage the security of the information and its
processing, how often does the directory needs to inspect if a service is still
alive, what are the policies and protocols to follow when a new service arrives
or another leaves the environment that is, it needs to be registered or deleted
from the service’s directory. Even more, in the literature we can find many
proposals dealing with the aforementioned challenges and some other more
(CERVANTES et al., 2018; SOMMER; MAHÉO; BAKLOUTI, 2020; LIU; CAO;
WANG, 2017; OSTOS et al., 2015; ZHOU et al., 2018) These proposals make clear
the importance of the directory in their solutions (WALDO, 1999a; VINOSKI,
1997; SABBOUH et al., 2001; DOULKERIDIS; VALAVANIS; VAZIRGIANNIS,
2003; RAYCHOUDHURY et al., 2011). However, these proposals contributions
are addressed to specific kind of situations. Even more, current research in
fields such as Ambient Intelligence (AmI), Smart Cities, Smart Environments
and Internet of Things (IoT) are very active in proposing solutions to issues
mentioned above (ALSARYRAH; MASHAL; CHUNG, 2019; KHANOUCHE et
al., 2019; URBIETA et al., 2017), given that this problem is very relevant to their
whole research.

Moreover, we have observed that the human being deals with similar chal-
lenges when facing similar tasks to the previously described ones in similar
dynamic environments, and what is most important, it tackles such situations
not in an optimal, but in a sufficiently satisfactory and useful way. Thus, our
main hypotheses is that using neuroscientific evidence about how human brain
manages previous experiences for solving similar to our concern problems, and
how it manages the resources needed to solve these kind of problems we will
be able to deal with challenges described above. Also we consider how our
proposal interacts with other components of the whole system. That is, how the
configuration of the system is achieved.

In order to achieve such configurations, we must delve into how resource
(service) registries and plans (compositions) are stored, retrieved and managed
in the memory, and which cognitive modules participate in those processes,
with the goal of defining the components that would constitute a memory-
based service directory. In this work, we propose a service directory based
on both the dynamic memory theory and neuroscientific evidence, with the

2

CHAPTER 1. INTRODUCTION

goal of developing a directory structure capable of managing service registries
according to different factors such as messages coming from service providers or
other service modules, as well as service expiration mechanisms, which would
allow us to better cope with environment dynamism by allowing the service
directory to dispose of registries that may have become unavailable over time
and whose providers didn´t have the chance to deregister them, enabling the
directory to have a bigger consistency between services registered in it and
services available in the environment. To validate it, we test an implementation
of our proposal in a case study to evaluate the availability of services registered
in it as well as how memory mechanisms effects the service selection process.

To test our approach, we proposed a process that could be used to configure
the Cuāyōllōtl a Biologically Inspired Cognitive Architecture (BICA) (PARRA;
Madrigal Díaz; RAMOS, 2023; MARTIN et al., 2022; DOUNCE; PARRA; RAMOS,
2022; GÓMEZ-MARTÍNEZ et al., 2023; SANDOVAL; RAMOS, 2021; HERNÁN-
DEZ et al., 2022) in order to perform a specific task. In that proposal presented in
(SALAZAR; SCALABRIN; CORCHADO, 2022), the proposed directory (mem-
ory) stores both the registries of the available resources and the plans that dictate
which resources to use as well as which steps to take to undertake a task.

1.2 Justification

Due to the naturally highly dynamic nature of pervasive systems, endowing
a pervasive service composition system/model with a cognitive/human-like
memory would allow it to add, update and delete service registries according
to incoming information from both the environment and the system itself in a
similar fashion to how the human brain manages short and mid-term informa-
tion. This will allow the memory to quickly add or update information about
the environment involved in pervasive service composition, allowing the whole
system to achieve a higher degree of consistency between the services registered
in a directory and those available in a pervasive environment, enabling us to
propose a solution to different challenges previously described. Our proposal
also considers this directory stores and retrieves previous compositions in order
to employ them for recurrent situations, improving the system’s performance.
This mimics the way long-term information about task solutions is stored and

3

CHAPTER 1. INTRODUCTION

retrieved from the human brain as experience, enabling us to improve our per-
formance achieving a task or similar tasks.

1.3 Motivation

By developing a service directory with cognitive memory-like capabilities,
we hope to contribute to solve open problems like those described above, that
are present in fields of knowledge such as: domotics, smart spaces, smart cities,
ecosystems among many others.

1.4 Goals

The general goal of this work is to design a brain-inspired pervasive ser-
vice directory based on neuroscientific evidence and psychological models/ev-
idence, capable of improving the consistency between available services in the
environment and services registered in the directory. The specific objectives to
achieve our general goal are the following:

• Define the required characteristics/features for a brain-inspired pervasive

service directory.

• Propose the data structures required to store information about services

and compositions in a brain-inspired service directory.

• Propose algorithms for managing service and composition registries within

the service directory.

1.5 Document Organization

This document is organized as follows. In Chapter 2, we review terms and
related works to this research in order to highlight the contributions of this pro-
posal. In Chapter 3, we describe our proposal for a cognitive memory-based

4

CHAPTER 1. INTRODUCTION

service directory. In Chapter 4, we present some details about our implemen-
tation. In Chapter 5 we describe a case study to validate our proposal, as well
as a discussion about the results. Finally, in Chapter 6 we present some closing
remarks.

5

2
Theoretical Framework

There has been many fields in which Cognitive Architectures (CA) have been
employed for expanding and improving the capabilities of computer systems,
such as assistance systems (YANG et al., 2022), rehabilitation (GONZÁLEZ;
PULIDO; FERNÁNDEZ, 2017; ZHAI et al., 2014) and robotics (BURGHART et
al., 2005; PINTO et al., 2021; TRAFTON et al., 2013). Also, there are works in the
IoT field that propose to use cognitive computing (MODHA et al., 2011) to embed
IoT systems with an AI that works on a similar way to the human mind (PLOEN-
NIGS; BA; BARRY, 2018; PRAMANIK; PAL; CHOUDHURY, 2018). However,
such works employ the cognitive approach just for processing information, with-
out going further beyond towards AI planning or cognitive memory manage-
ment. That is, the employment of CAs in the pervasive systems field remains
quite limited as shown in this chapter. In this section we review the cognitive
memory which we use as a foundation to build our work, from both the neuro-
scientific and psychological approaches. We also review the pervasive service
discovery process, which is fundamental for our proposal, touching upon its
definition and common approaches to perform it, as well as the fundamental
problems related to such approaches.

2.1 Cognitive Memory

The interoception and proprioception among other cognitive functions allow
the human brain to be conscious of its state, that is among other things to know

6

CHAPTER 2. THEORETICAL FRAMEWORK

the resources and any change in them it has available (at any time) to face a
task. In a similar way, through the sensory cognitive function (visual, aural,
gustatory, propioceptive and olfactory) is able to sense external resources and
their evolution to solve a task. The memory is also involved in this process of
being aware of the resources a human has for solving a task. Memory is defined
as the brain process tasked with encoding, storing, retrieving, and forgetting
knowledge about the word (KANDEL et al., 2021). Thus, it helps not just to
remember what kind of resources we use to solve a simple task, but also the way
we combine (compose) different resources to solve complex tasks.

Many fields of knowledge have taken interest in explaining and modeling
how memory performs all its tasks. For decades, researchers in such fields
have performed many kinds of experiments in order to try to explain the in-
ner workings of human memory in order to figure out, among many things,
how memory is structured, how it performs its functions, and how it interacts
with other brain functions. Perhaps the two fields most involved in answer-
ing these questions are neurosciences and psychology, which have engaged in
different approaches to explain not only how memory operates, but the whole
human cognition process. In the following sections, we present two different
approaches to explain and model the working of human memory: the first one
corresponding to neurosciences and the second one based on psychology.

2.1.1 Neuroscientific approach: BICAs

A Cognitive Architecture (CA) can be defined as a "structured systematization
of the cognition process, expressed in a representative language" (CASTILLO,
2020). CAs have been a research field for decades, aiming to produce Artificial
General Intelligence (AGI) models that behave in a similar way to the human
cognitive process. CAs are based on the developments and evidence presented
by the cognitive sciences: research fields aiming to explain and replicate the
human cognitive process, either as a whole or just some aspects of it, such as
neurosciences, psychology, artificial intelligence (AI) and philosophy, among
others.

Among CAs, those whose origin, purpose and representative language are
inspired in biologic procedures are known as Bio-inspired Cognitive Architec-
tures (BICA) (CASTILLO, 2020). Commonly, BICAs are composed of cognitive
functions according to the discipline or disciplines from which they take their

7

CHAPTER 2. THEORETICAL FRAMEWORK

foundations. Thus, it is normal to find CAs for different cognitive functions such
as Perception, Planning, Motor system, etc.

Among cognitive functions, the one we are concerned for our proposal is
Memory. The memory cognitive function is responsible for encoding, storing
and retrieving knowledge (MARTIN et al., 2022). Memory can be divided based
on the time in: Long-term Memory (LTM) is tasked with storing large amount of
data for long periods time; and Short-term Memory (STM), also called Working
Memory (WM). This memory stores a limited amount of data (five to seven
elements) for a short time (KANDEL et al., 2021). In (CASTILLO, 2020) Long-
term memory can be divided into next three levels levels according to their
retention time:

• Associative-short term storage (ASTS): works as a temporary buffer that

performs associations between the data arriving at time 𝑡 and data present

up until time 𝑡 − 1. It has a direct, fast link with STM.

• Mid-term memory (MTM): holds data that can be manipulated in a fast

fashion. It stores both associated data coming from ASTS and non-

associated data arriving directly at MTM. Just like ASTS, it has a fast,

direct link to STM.

• Persistent storage (PS): permanently stores data coming from MTM, with-

out having a cap on how much data it can hold. The time required for

manipulating its entries is slower.

Different CA proposals have appeared through decades of research in this
field, with each one following different theories from different cognitive sciences,
and, as a result, have different designs and capabilities both in general and for
its individual cognitive modules. Hereunder, we present some of the most
prevalent CA’s in the literature (SAMSONOVICH, 2010).

The State Operator and Result (SOAR) (LAIRD; NEWELL; ROSENBLOOM,
1987) is a CA intended for developing systems endowed with general intelli-
gence. It was created by the researchers John Laird, Allen Newell, and Paul
Rosenbloom, and is based around the problem-space computational model
(PSCM) (YOST; NEWELL, 1989). Memory in SOAR divided in two modules:

8

CHAPTER 2. THEORETICAL FRAMEWORK

long-term memory and short-term memory. In turn, long-term memory is
divided in two types: declarative memory, tasked with managing long-term
semantic and episodic knowledge for representing facts about the agent’s world
and snapshots of the agent’s experience, respectively; and procedural memory,
which represents the know-how and timing to perform certain tasks. Mean-
while, short-term memory, also called working memory, is a global memory
used as a place to store the representation of the current state of the agent, and
from which the retrieval of knowledge stored in long-term memory takes place.

Some limitations present in SOAR’s memories are the lack of memory mech-
anisms such as reinforcement and forgetting, which are useful where certain
bits of information have become either more relevant due to usage or irrelevant
due to lack of use, respectively. In addition, the memory modules cannot work
standalone, preventing them for being employed by modules/systems outside
SOAR.

Adaptive Control of Thought-Rational (ACT-R) (ANDERSON et al., 2004) is
both a human cognition theory and a CA based on such theory. The ACT-R
CA consists of modules such as goal, perceptual-motor, declarative memory
and procedural memory, each one based on a different cortical region, and they
communicate among themselves by placing information chunks in the modules’
buffers and then each module analyzing the chunks in its buffer in search for
patterns, followed by using production rules to respond to detected patterns.
There are two memory modules present in ACT-R: a declarative memory which
manages representations of facts, and a procedural memory tasked with storing
production rules, which represent the know-how of different tasks. There is a
lack of a dedicated short-term memory module, due to some short-memory tasks
being performed by the module buffers and by declarative memory elements
that are activated if they surpass a certain threshold.

ACT-R is limited by the fact that it lacks an specific way to represent episodic
information, which can be used to represent the state of an agent and the world
around it, which is a very important thing to have when operating on dynamic
environments and situations, given that episodic information can be used as
reference to detect changes in the environment.

The Learning Intelligent Distribution Agent (LIDA) is a CA developed by the
Cognitive Computing Research Group at the University of Memphis, as an ex-
tension of the Intelligent Distribution Agent (IDA) intelligent agent project. LIDA
is built using the Global Workspace Theory (GWT) (BAARS, 1988; BAARS;

9

CHAPTER 2. THEORETICAL FRAMEWORK

FRANKLIN, 2009) as a foundation, in addition to other theories coming from
neurosciences and psychology. The LIDA cognitive cycle is the result of the col-
laborative work between a group of subsystems: sensation, perception, working
memory, transient episodic memory, learning, among others. LIDA has four
memory subsystems: working memory, transient episodic memory, sensory
memory and long-term memory, with the latter divided into perceptual associa-
tive, spatial, attentional, declarative and procedural memories. LIDA memories
have memory functions (e.g. encoding, retrieving, decay, etc.) implemented.
The main drawback of LIDA’s memory component is that it cannot work stan-
dalone, thus needing the whole CA in order to be used, and there is no enough
information to use this architecture as base to solve problems presented in the
introduction of this dissertation.

iCub (METTA et al., ; VERNON; HOFSTEN; FADIGA, 2011) is a BICA applied
to a robot developed by the European RobotCub project with the goal of perform-
ing research about embodied cognition by creating a child-like humanoid robot.
iCub is powered by a CA built using YARP (METTA; FITZPATRICK; NATALE,
2006), a robotics framework developed by the iCub team, with the goal of creat-
ing an abstraction layer for both software modules and hardware.

iCub is composed by thirteen modules: Exogenous Salience, Endogenous
Salience, Egosphere, Attention Selection, Episodic Memory, Procedural Mem-
ory, Affective State, Action Selection, Gaze Control, Vergence, Reach & Grasp,
Locomotion and the iCub Interface (VERNON; HOFSTEN; FADIGA, 2011).

While iCub possesses both Episodic and Procedural memories, it lacks shot-
term memories, with some of its functions being present in the long-term memo-
ries. Also, its memory representations are focused on visual information, greatly
limiting the type of applications it can perform. Last, it seems to lack memory
mechanisms like decay, which are important part of cognitive memory, and of
great help in dynamic environments.

Executive Process-Interactive Control (EPIC) (KIERAS; MEYER, 1997) is a CA
developed by researchers David Kieras and David Meyer with the goal of mod-
eling the way humans perform complex multimodal tasks. EPIC takes external
stimuli as input and, based on the current task being performed, it uses produc-
tion rules to generate a response in real time. EPIC is composed by processors,
which are divided in three kinds: perceptual processors such as Visual and
Auditory Processors, motor processors like Vocal Motor and Manual Motor
processors, and Cognitive Processors like the Production Rule Interpreter and

10

CHAPTER 2. THEORETICAL FRAMEWORK

Working Memory, which in kind is partitioned into different memories: one
Working Memory partition for each non-cognitive processor.

While EPIC makes a distinction between declarative and procedural knowl-
edge, with the former being stored in a permanent rule storage and the latter in
a permanent declarative information storage, only Working Memory is formally
established as a memory processor, being a temporary memory for informa-
tion employed by the production rules; thus, there is no dedicated long-term
memory processor. It also lacks many memory functions, like decay, showing a
behavior not very similar to that of humans and making it unsuitable for appli-
cations where information expiration is desirable. Finally, its Working Memory
processor cannot work independently from the rest of the processors, severely
limiting its application potential.

Local, Error-driven and Associative, Biologically Realist Algorithm (Leabra) is a
CA that started off as a neural network developed based on the neural mecha-
nisms of the neocortex, which then expanded to different brain areas (O’REILLY;
HAZY; HERD, 2017). Leabra is organized into multiple levels, according to the
scale of the brain structures modeled: it goes from the micro-level representing
individual neurons all the way to macro-level which represents brain areas such
as prefrontal cortex and hippocampus. Different memory types are present,
such as episodic memory being located on the hippocampus area or working
memory on basal ganglia, but they rely on a connection-based approach that
limits the representation of the information stored on them, as well as memory
functions such as decay. This leaves Leabra with memories that greatly rep-
resent memory working on the micro level, but that lacks many macro level
properties of the human memory, that would be of great utility for many appli-
cations. Cuāyōllōtl (a Nahuatl term which means brain or smart) is a CA under
active development at CINVESTAV Guadalajara with the goal of endowing vir-
tual creatures with human-like behavior. Cuāyōllōtl uses cognitive sciences
such as neurosciences, psychology, philosophy and AI as a foundation for its
development. Cuāyōllōtl is currently composed by cognitive modules such as
Perception, Sensory, Working Memory, Declarative Memory, Motivation, Motor
System, Planning, Decision-making, Attention and Emotions. In this CA, Declar-
ative Memory is divided into Semantic and an Episodic memories, and Working
Memory serving as a short-term memory endowed with memory processes
such as decay and reinforcement, and tasked with processing and integrating

11

CHAPTER 2. THEORETICAL FRAMEWORK

CA Has dedi-

cated LTM?

Has dedi-

cated STM?

Has memory

mechanisms?

Can mem-

ories work

standalone?

SOAR Yes Yes No No
ACT-R Yes No Yes Yes
LIDA Yes Yes Yes Yes
iCub Yes No No Yes
EPIC No Yes No No

Leabra Yes Yes No Yes
Cuāyōllōtl Yes Yes Yes Yes

Table 2.1: Comparison table of the reviewed CAs

information coming from the Perception modules, creating a global snapshot of
the system, and querying longer-term memories for information.

Table 2.1 shows a comparison between the CAs reviewed above. As we can
notice, a problem a lot of the reviewed CAs share is the lack of inherent memory
mechanisms such as decay and reinforcement, which can be very useful to deal
with dynamic environments: decay helps us discard information from memory
when it stops being relevant (e.g. I can forget about a tool near me if I don’t need
it for anything), and reinforcement can help us retain and refer to information
that has proven to be useful in a task (e.g. if a tool has proven useful for a task, I
might want to remember it and refer to that memory when doing the same task
again in the future).

Also, some CAs don’t have dedicated long-term or short-term memory mod-
ules. Long-term memory is the storage for permanent information about things
like concepts, events, plans, among other things, and the lack of such memory
means that a system wouldn’t be capable to consolidate short-term information
into long-term knowledge, thus being unable to learn. Meanwhile, short-term
memory is where information from all around the brain is integrated and ma-
nipulated, so the lack of it, with all the memory functions it encompasses, not
only moves a CA away from a from human-like behavior, it also limits its usage
in applications dealing with dynamic environments where information com-
ing from modules such as sensory and planning needs to be integrated and
manipulated to quickly deal with changing situations.

12

CHAPTER 2. THEORETICAL FRAMEWORK

2.1.2 Psychological approach: Dynamic Memory

Another approach to cognitive memory comes from the psychology-based
dynamic memory. A memory is known as dynamic if it is able to alter its own
organization with the processing of new information (SCHANK, 1999). In
dynamic memory, information already stored in memory is used as a basis
to interpret new information, either because they are similar or related: an
object can remind you of another object because they are similar in some way
(e.g. a basketball ball can remind you of an orange because both are round
and orange-colored) or because of their relationship (e.g. an orange can remind
you of a fruit shop because you can find oranges there), or it can remind you
of an event it took part on (e.g. a hammer can remind you of the time you hit
your hand with it trying to hammer a nail to a wooden plank). Every time the
memory processes information, it results in a change of the memory structure,
which is in itself the output of this process.

Every experience processed by the memory is tried to be understood in terms
of the information already stored in memory, and the process of reminding can
happen in three different situations:

• Processing-based reminding: happens during the processing of a new

piece of information, e.g. when eating a dish for the first time, by trying

to explain its taste, we might try to relate it to the taste of a dish we

already know. In turn, processing-based reminding is subdivided into the

following types:

– Event expectations-based reminding: happens when we are experiencing

an action in a known situation, and based on the knowledge of such

situation, we remember and expect a following action, e.g. if I’m at

a birthday party and I see that the birthday cake is being brought, I

remember (and expect) that the following action is gonna be singing

the “Happy birthday” song. If the expected action happens, the

relation between both actions is reinforced, but if the expectation fails

(e.g. the anticipated event doesn’t occur) then the failure is stored

and indexed under the point of failure.

13

CHAPTER 2. THEORETICAL FRAMEWORK

– Goal-based reminding: it takes place when, during the process of try-

ing to understand the motivations of an actor during an event, we are

reminded of another actor’s goal that can be similar, even if the con-

texts of both events are different, e.g. a person buying some gasoline

everyday instead of filling the vehicle’s tank in one sitting can remind

me of another person that prefers to buy a few groceries every week

instead of buying all the groceries for the month in one single shop-

ping trip. The reminding can happen because the mind keeps track

of goals, and the goal subsumption that happens from this type of

reminding can be used to generalize our understanding of situations.

– Plan-based reminding: happens when a situation reminds us of another

one where both are embodied by the same kind of plan, e.g. a criminal

distracting police officers in some way to help a fellow criminal rob a

passerby can remind me of a school children distracting the teacher so

that another classmate can run away from the classroom, since both

are embodied by the plan “distract the authority to do something

against the rules”. Since memories can be indexed in terms of plans,

a situation that can be described in terms of a specific plan can remind

us of another situation in a whole different context that can also be

described in terms of such plan.

– Morality-based reminding: it’s the result of, after processing new in-

formation and drawing conclusions from it, being reminded of other

situations with the same lesson, moral point or otherwise message

conveyed by it, e.g. the story of a friend who had to work on a team

project for school and neglected it until the very end, resulting in him

having to beg his teammates for help can remind me of the fable of

the ant and the grasshopper, because in both cases, a lesson is to avoid

neglecting your duties. This type of reminding implies the existence

of both high-level memory structures representing to lessons, morals

14

CHAPTER 2. THEORETICAL FRAMEWORK

and messages, as well as a high-level analysis of new situations to

match possible conclusions from them to existing ones in memory.

– Intentional reminding: happens when trying to recall a relevant expe-

rience or situation, e.g. if I ask a bartender friend about a particular

client he attended in one of his shifts, he might not remember because

of the vague inquiry, but if I mention something more precise, like the

fact that such client, left a hefty tip, he might remember, because such

detail is uncommon and helps narrow down the search in memory.

Unlike the name may imply, intentional reminding isn’t necessarily

conscious, since intentional reminding can happen just by thinking

about our current situation: in intentional reminding, by questioning

ourselves about a specific situation, we can consciously or uncon-

sciously narrow down the contexts and make more likely to fetch a

desired memory.

• Dictionary-based reminding: happens when we try to recover information

about a concepts we don’t employ frequently in our daily lives. Unlike

a standard dictionary, where concepts have a semantic definition, in our

memory’s dictionary a concept is defined in terms of features such as how

to employ the object or term represented by the concept, associated feelings

to that concept, the circumstances where such concept first appeared in

our lives, etc., e.g. if I was a person unfamiliar with computers, I could

remember the concept computer by defining it on the basis of the first time

i used one, which tasks I can perform with it, etc. As we get accustomed

to a concept, dictionary-based reminding for such concept disappears.

• Visually-based reminding: performed specifically during visual recognition,

it happens when two distinct things look alike, one might remind us of

the other one, e.g. when one meets a new person, that person’s face might

15

CHAPTER 2. THEORETICAL FRAMEWORK

remind us of the face of a person we already know, due to them sharing

similar facial features.

The basic memory unit employed in Dynamic Memory is the Memory Or-
ganization Package (MOP), used to represent knowledge about concepts stored
in memory. A MOP has norms that represent basic characteristics about the
knowledge represented by it. MOPs are treated as both memory and processing
structures: for every concept represented in memory, the corresponding MOP
is tasked with both managing and processing its information.

MOPs can have both abstractions and specializations: an abstraction represents
a generalized version of the knowledge of a MOP (e.g. the MOP that represents
fruits is an abstraction of the MOP representing apples), while a specialization
stands for a more specific version of the knowledge of a MOP (e.g. the MOP
representing cars is a specialization of the MOP representing vehicles). A MOP
referring to a particular occurrence of the concept of a MOP is known as instance
(e.g. the MOP representing my car is an instance of the MOP representing cars).

MOPs are connected with each other through links. There are several types
of links (RIESBECK; SCHANK, 1989):

• abstraction links connect a MOP with its abstractions, e.g. a link connecting

the MOP representing apples with the MOP representing fruits.

• scene links connect a MOP representing a complex concept with MOPs rep-

resenting elements or components from that concept, e.g. the MOP repre-

senting reunions with the MOP representing places, tagged as "place".

• index links connect a MOP with its specializations, and are tagged with a

key-value pair, e.g. a link connecting the MOP representing figures with

the MOP representing triangles, with the label sides = 3.

• example links connect a MOP with a prototype example of such MOP, e.g. a

link connecting the MOP representing houses with the MOP representing

my house, the one I know the most.

16

CHAPTER 2. THEORETICAL FRAMEWORK

• failure links connect a MOP with an instance representing an expectation

failure for such MOP, e.g. a link connecting the MOP representing vacation

trips with the MOP representing the one where everything went wrong.

Abstraction links create an abstraction hierarchy that can be used to go from
specific concepts towards more general knowledge. Scene links are used to
create a packaging hierarchy to break down complex concepts into smaller com-
ponents, all the way into indivisible components. Index links are used to create
a discrimination network which helps dividing sets of MOPs into smaller, more
manageable subsets.

In dynamic memory, MOPs are employed as building blocks for larger struc-
tures that represent more complex situations, like scrips, scenes and events.

Scripts are a set of specific sequential actions associated to constantly-repeating
situations. They can be seen as a snapshot of a particular event.

Scenes group a set of actions that as a whole have a common goal and that
happen within a specific time period. Specific memories grouped under scenes
are indexed with regards to how they differ with the scene’s general flow. A
scene has a setting, a goal and actions taking place in the setting to further the
goal.

Events are a set of scenes directed towards the achievement of a goal. An
event has a main scene whose goal represents the essence of the event.

One of the main uses of the Dynamic Memory and its MOPs is in the field of
case-based reasoners (CBR) give some references: a type of AI problem solver
where new problems are tackled by employing solutions to previous prob-
lems and adapting them (RIESBECK; SCHANK, 1989; KOLODNER; SIMPSON;
SYCARA-CYRANSKI, 1985). The application of this idea for planning gave rise
to Case-based Planning (CBP): generating a plan to solve a new problem falling
back on previous cases adapting the plans that closely matches the current
predicament (HAMMOND, 1990).

Features such as multiple paths to reach specific memory items, storage
and retrieval of past experiences as a foundation for creating plans for new
situations, discrimination of memory elements using their attributes and the
update of existing memory elements with each new element processed makes
dynamic memory a powerful approach that we consider can be of great help to
create a pervasive system directory, given how such features help in our task

17

CHAPTER 2. THEORETICAL FRAMEWORK

of creating a service directory that employs past experiences to deal with new
tasks, while having tools to deal with dynamic environments.

2.2 Service Composition

As described previously, the devices available in our environment make
possible pervasive service composition. That is, different devices in the envi-
ronment can be abstracted and exploited by third parties as services: abstract
hardware-software entities that encapsulate a specific functionality that can be
used to compose user needed complex service.

We call pervasive services to those software or hardware services capable of
getting information from their surrounding environment, and whose function-
ality is performed on a limited spatial area with minimal human intervention
(AZIEZ; BENHARZALLAH; BENNOUI, 2019; YANG et al., 2005). Pervasive
services must comply with requirements such as selectability (select among dif-
ferent services according to their attributes), parameterisability (adapt a service
according to user or situation needs), inter-service dependency (being able to link
multiple services, replace any of them by other services if necessary) and context
awareness (the capability of a service to compute context information) (FUNK;
KUHMÜNCH; NIEDERMEIER, 2005). Some of the devices in a pervasive sys-
tem are limited in communication and energy means (e.g. smartphones and
drones having limited energy resources and wireless communication reach),
and many of them constantly moving through the environment, all of which
factors on their availability at a given moment

When a device requests another device to use a functionality abstracted as
service, we call the device requesting the service as consumer, and the device
providing the service as provider. Consumers seek services in order to employ
them to contribute in the solution of a task they are undertaking. However,
there may be tasks too complex to be performed by using a single service. In
that case, it is needed to combine the functionalities of multiple services in order
to fulfill such complex request. One approach to deal with that is pervasive service
composition: the process of combining different services into a sequence with the
goal to create a new, composite service that is able to fulfill complex requests
(SALAZAR; SCALABRIN; CORCHADO, 2022).

18

CHAPTER 2. THEORETICAL FRAMEWORK

The entire pervasive service composition process, from locating the necessary
services to executing the resulting composition is a very complex process that
can be divided into the next three phases (KAPITSAKI et al., 2007):

• Discovery phase: here is where the services available in the environment

are found by the system, in order to be employed during the composition

process.

• Composition phase: also known as planning (CLARO; ALBERS; HAO,

2006), refers to the phase where the discovered services go through a

selection process and the selected ones are combined to create a new,

complex service to solve a complex task.

• Invocation phase: also known as execution, it’s when the selected services

for a composition are called and executed according to the composition

flow to solve a the task needed to solve.

The discover of services in the environment is quite important and challeng-
ing for the pervasive service composition problem. Important because the more
precise the information provided by this discover service, the better are the de-
cisions that will take place for performing compositions, resulting in a better
performance for the composed service. It is quite challenging mainly because
of dynamic characteristics of the environment, where services may go through
the space of interest for very short of time, may fail because of energy, hard-
ware or software problems, and also because the arrival of a better option than
the previously selected service must be taken into account to improve service
composition performance.

To fulfill this task of service discovery, a pervasive service composition sys-
tem can follow either a directory −based model, or a directory −free model. In
the former case, the system employs a data structure known as service directory to
store and manage information related to services available. In the latter case, ser-
vice providers and consumers communicate directly among themselves, which
increases resiliency compared to the directory-based approach since there is no
centralized point of failure, but it induces a heavier communication complexity,
since every consumer must communicate with every reachable provider. It thus

19

CHAPTER 2. THEORETICAL FRAMEWORK

requires that either providers and consumers know each other before establish-
ing communication, which could prove challenging in a dynamic environment,
or the presence of intermediary entities (e.g. brokers) in the discovery process.

Depending of how service registries are managed in the service discovery
process, service registration approaches can be classified in the following three
types (TJIONG; LUKKIEN, 2008): First: the stateless approach that is the case
when service registries are not kept; second: the hard-state approach, service
registries are kept until a deregistration process is triggered by the provider;
and third: the soft-state approach, service registries have an expiration period,
so the registries have to be renewed periodically or they are removed from the
registry.

For a directory-based service discovery, only the latter two approaches are rel-
evant. Additionally, registries where both hard-state and soft-state approaches
are employed are known as hybrid-state. That type of states has shown to be
better at maintaining consistence levels that employing either soft or hard states
alone (TJIONG; LUKKIEN, 2008).

There are proposals such as (WALDO, 1999b) which is a distributed archi-
tecture based on the idea of grouping different users and the resources required
by them. The goal is to turn the network into a flexible tool allowing humans
and computational clients to find required services (devices). However, is has
limitations, such as segmenting the services into lookup groups, requiring a ser-
vice consumer to query each group for services, and that service providers must
join as many groups as possible to maximize reach, or it being limited to just the
Java ecosystem.

Pervasive service compositions must be able to handle the interactions be-
tween services, the data flow of the composite service and the way the se-
quence must be built. Many approaches to service composition have been
developed, such as based on machine learning (KHANOUCHE et al., 2019;
WANG et al., 2016), game theory (OSTOS et al., 2015; LEI; JUNXING, 2017), self-
organization (CERVANTES et al., 2018; CABRI; MARTOGLIA; ZAMBONELLI,
2016; GUTIÉRREZ-GARCIA; SIM, 2013), optimization (SOMMER; MAHÉO;
BAKLOUTI, 2020; LIU; CAO; WANG, 2017; ZHOU et al., 2018; ALSARYRAH;
MASHAL; CHUNG, 2019) and genetic algorithms (BRISCOE; WILDE, 2008),
among others. However, despite the variety of approaches, only a very limited
amount of them employ hybrid-state service directories: a big number of the re-
viewed works don’t employ a directory at all, and most of those that do only use

20

CHAPTER 2. THEORETICAL FRAMEWORK

hard-state registries, which directly impacts the consistency of the directory’s
registries, given the degree of dynamism present in pervasive environments.

There have been many works that deal with service discovery, either as stan-
dalone solutions or as part of a bigger entity, such as a middleware or a service
composition model. Table 2.2 presents a comparison between some represen-
tative works. From the reviewed works, we can see a fairly even split between
directory-based and directory-less discovery approaches: while directory-based
can introduce centralized points of failure, directory-less approaches can incur in
heavy communication complexity as the number of participants, and therefore
service providers, grows. Among those approaches employing directories in the
discovery process, most employ hard states, which can introduce inconsistency
since they require the service provider to explicitly request the deregistration of a
service, and given the high dynamism inherent to pervasive environments, such
request may become impossible if the provider becomes unavailable, leaving the
directory with an inconsistent registry. Also, none of the reviewed works stores
information from past compositions, which means that compositions must be
created from scratch every time a change occurs in the environment or to the
composition, even if such situation has previously been grappled with in pre-
vious cases. In other words, the proposals do not take advantage of previous
experience, representing not only wasted effort, but also the lack of a capability
that serves as the foundation for the learning process (SCHANK, 1999).

After reviewing the state of the art, we find only one work employing a brain
inspired cognitive architecture or BICA approach for service composition, which
is COPERNIC (ROMERO, 2019). The author proposes a multi-agent-based com-
position model in which cognitive agents, which employ cognitive functions and
following the steps established in the Common Model of Cognition (LAIRD;
LEBIERE; ROSENBLOOM, 2017), would be tasked with selecting, composing
and invoking services in a pervasive environment. However, COPERNIC shows
the same shortcomings of the non-BICA approaches, in addition to presenting
other issues like the lack of filtering of data flowing from the Perception module
towards the Working Memory module, which could potentially cause a bottle-
neck; the employed device grouping technique makes the model biased towards
devices belonging to the user, potentially leading to ignore well-performing ser-
vices on remote devices; the requirement of static devices such as desktops and
servers, something not present in many pervasive environment scenarios; and

21

CHAPTER 2. THEORETICAL FRAMEWORK

the lack the capacity to store and retrieve previous compositions, meaning that
any composition process must always start from scratch.

This fact shows that the CA approach is not exploited in the service com-
position field. Features such as being able to store and retrieve previous useful
task solutions (pervasive service compositions) on memory for later use, can be
useful for instance to change a plan if the goal changes mid-task.

22

CHAPTER 2. THEORETICAL FRAMEWORK

Work Type

Employs

directory?

State

type

Employs

information

from past

compositions?

Jini (WALDO,
1999a)

Distributed
Middleware

Yes Hybrid N/A

Corba (VINOSKI,
1997)

Distributed
Middleware

Yes Hard N/A

UDDI
(SABBOUH et al.,
)

Discovery Model Yes Hard N/A

(DOULKERIDIS;
VALAVANIS;
VAZIRGIANNIS,
2003)

Discovery Model Yes Hard N/A

MAPS (SHEU et
al., 2009)

Composition
Model

No N/A No

K-Directory
(RAYCHOUD-
HURY et al.,
2011)

Discovery Model Yes Weak N/A

(GUTIÉRREZ-
GARCIA; SIM,
2013)

Composition
Model

Yes Hard No

(CERVANTES et
al., 2018)

Composition
Model

No N/A No

MAS-ASC
(CHAIB;
BOUSSE-
BOUGH;
CHAOUI, 2017)

Composition
Model

No N/A No

GoCoMo
(CHEN;
CARDOZO;
CLARKE, 2018)

Composition
Model

No N/A No

OCE (YOUNES
et al., 2018)

Composition
Model

No N/A No

(MASCITTI et al.,
2018)

Composition
Model

No N/A No

(CABRERA et al.,
2018)

Discovery Model Yes NOS N/A

(BAKLOUTI; Le
Sommer;
MAHEO, 2019)

Composition
Model

No N/A No

COPERNIC
(ROMERO, 2019)

Composition
Model

Yes NOS No

Table 2.2: Comparative table between different service discovery approaches.

23

3
Memory Design

Performing efficient service compositions in a pervasive environment is an
open problem. However, it is present in many fields such as IoT and Smart
ecosystems (OSTOS et al., 2015), with the main requirement to solve it is to
know accurately which services are available when the composite service is
created or restructured. As was explained above, pervasive service composition
ought to deal with the failure of one or more elements that are part of the
pervasive composite service. As described previously, common approaches
restart the pervasive service composition from scratch, while in this dissertation,
we propose the substitution of the failing service for another equivalent, taking
advantage of even new incoming services or, even better, to recompose the
pervasive service using services providing better performance than the currently
selected, all this taking into account the time the pervasive service is needed.

This thesis contributes to this solution by proposing a pervasive service
directory whose structure is based on the Dynamic Memory MOP structures
(RIESBECK; SCHANK, 1989), and employing the Cuāyōllōtl BICA Memory
modules to manage the MOPs, thus creating a memory structure that can store
both pervasive service registries and previous composition solutions (MARTIN
et al., 2022; CASTILLO, 2020). In our proposal, pervasive services would be reg-
istered in a service directory in memory, and the registries managed according
to messages coming from different Cuāyōllōtl modules.

For this chapter, we first present the requirements that our proposal must
fulfill. The following section shows the types of services that we consider for
this work. After that, we present the Cuāyōllōtl cognitive modules we consider

24

CHAPTER 3. MEMORY DESIGN

as involved in the directory management tasks. Then, we proceed to show how
the directory is structured in memory based on MOPs. Finally, we proceed
to show how our proposal would fit within a CBP-based service composition
process employing the Cuāyōllōtl BICA.

3.1 Requirements

As a result of the literature review from the previous chapter, we have de-
tected a set of requirements that a pervasive service directory must have in
order to have the required capabilities for managing service registries in a way
that allows it to keep a high degree of consistency with the status of pervasive
services in the environment.

Register services at the
petition of the service

providers
Precondition Trigger Post-condition

A new pervasive
service enters the

environment.

Message from service
provider containing a

name, an IP direction, a
port, a timestamp, a set
of attributes and their

values.

Memory structures
created for the service

registry and its
attributes.

Deregister services that
go past their expiration

times
Precondition Trigger Post-condition

A service registry with
an associated

timestamp that crosses
the expiration time

threshold.

Service directory
receives a message

signaling a service has
crossed the expiration

threshold.

Memory structures
related to the service
and its information

deleted.

25

CHAPTER 3. MEMORY DESIGN

Deregister a service at
provider’s request

Precondition Trigger Post-condition

A service provider
requests the

deregistration of a
service.

Service directory
receives a message

requesting the
deregistration of a

service, containing the
service name.

Memory structures
related to the service
and its information

deleted.

Deregister a service due
to its unavailability

Precondition Trigger Post-condition

A service that is part of
a composition has

failed to successfully
execute.

Service directory
receives a message

requesting
deregistration of a

service, containing the
service name.

Memory structures
related to the service
and its information

deleted.

Renew the timestamp
of a registered service

Precondition Trigger Post-condition

A new pervasive
service enters the

environment

The service directory
receives a service

registration message for
a service already

registered.

The memory structure
representing the

service’s old timestamp
is replaced by one

representing the new
timestamp.

26

CHAPTER 3. MEMORY DESIGN

Store feedback for both
service compositions

and its individual
components after

execution.
Precondition Trigger Post-condition

A service composition
has successfully

finished its execution.

The service directory
receives a message
containing numeric
values representing
feedback from the

composition execution.

Memory structures
containing feedback

history for the
compositions and

individual services are
updated.

3.2 Types of Services

In order to better manage the pervasive services registered in the directory,
as well as to facilitate adaptability for service composition models employing
our directory, we classify services into the following types:

• concrete services (CS): pervasive services available in the environment

through devices.

• abstract services (AS): represent a specific functionality and group together

a set of services. There are two types of ASs:

– Atomic abstract services (AAS): these group CSs together according

to the functionality they offer: e.g. all pervasive services offering

a visual feed are grouped under the AAS "camera", all pervasive

services offering an audio feed under the AAS "microphone", etc.

Every AAS holds pointers to registered CSs that belong to the category

it represents.

– Composite abstract services (CAS): they group other ASs that take

part in a specific service composition: they encompass all the com-

ponent services that are used by specific compositions, e.g. the CAS

27

CHAPTER 3. MEMORY DESIGN

representing a service composition for visual monitoring in an as-

sisted living system would group the ASs required for that task, such

as cameras and devices that process the cameras’ video feeds.

As an example, let’s assume the scenario including a room with two cam-
eras, a speaker and an embedded computing device, all connected through a
network. This pervasive environment has four CSs: the camera service cam.01
offered by the first camera, camera service cam.02 offered by the second camera,
the speaker service speaker.01 offered by a device with speakers, and the pro-
cessing service comp.01 offered by the embedded computer device. These CSs
would be grouped under three AASs: the two camera CSs would be grouped
under a cameraAAS, the speaker CS would fall under the speakerAAS and the
processing CS would be placed under the processing AAS. If we created a ser-
vice composition tasked with greeting any person entering the room, we could
perform this task using the camera, speaker and processing AASs as compo-
nents, which would be grouped as such under a greetingCAS representing the
composition.

The reasoning behind this distinction is the following: we believe that by
differentiating among ASs and CSs, we allow a service composition model em-
ploying our proposal to decouple the more abstract functionalities that ser-
vices provide from the more technical capabilities provided by each service’s
attributes, thus allowing a service composition model to carry out two differ-
ent kinds of adaptations: adapting to a service unavailability by swapping the
unavailable CS to a new one with the same functionality, and altering a com-
position by swapping a type of AS by another one with different capabilities.
This enables us to swap CSs in a composition without altering the composition’s
structure.

Another way this could be useful is to opportunistically allow a composition
to swap a CS from a composition should a new CS from the same AAS but
with a better performance be registered before the composition is executed, e.g.
if a composition employs the CS cam.02 corresponding to the camera AAS,
but before executing it a new CS named cam.03 is registered in the directory
under the cameraAAS and has a better definition attribute, a composition model

28

CHAPTER 3. MEMORY DESIGN

could take this opportunity to swap cam.02 for cam.03 in order to get an overall
better-performing composition

Also, by treating the AS sets representing service composition’s components
as another type of ASs, we enable service composition models to employ ex-
isting compositions as components for a new composition, allowing service
composition models to use existing compositions as building blocks for even
more complex compositions, instead of limiting them to only employing atomic
services as components, which would limit the complexity for possible compo-
sitions and force the composition model to rebuild compositions from scratch
just to employ them as part of a new composition, thus going against the spirit
of employing existing compositions to tackle new tasks. This also mimics how
we, as humans, formulate plans: we can employ basic plans to create complex
plans, which in turn can be used to create even more complex plans, e.g. the
plan to prepare a specific meal can be used as a component for the more complex
task that can be to figure out a plan for a romantic dinner at home, which in turn
can be the key component of a grand plan that can be winning over someone’s
heart.

We propose two different data structures to store the different types of ser-
vices. The first one is a Concrete Service Directory (CSD), where the CS registries
would be stored and managed. In the second one, both AASs and CASs are to
be stored in an Abstract Service Directory (ASD), where they are managed.

Figure 3.1 shows a graph representing the relations among the different types
of services. The blue ellipse represents the root of the structure: the starting
point for any service query. The red ellipses represent the CASs. The green
ellipses represent the AASs. Finally, the purple circles represent the CSs. The
solid lines represent indexing links, the dashed lines represent links between a
composition and its components, and the dotted lines represent links between
AASs and CSs categorized by them.

3.3 Involved Cognitive Modules

As mentioned before, our proposal is built on top of the Cuāyōllōtl BICA,
given that is the one with the most suitable memory modules, as well as different
modules feeding the system with both external and internal information. For

29

CHAPTER 3. MEMORY DESIGN

Figure 3.1: Graph representing the relationships among different service types.
The blue ellipse represents the root of the structure. The red ellipses represent
the CASs. The green ellipses represent the AASs. The purple circles represent
the CSs. The solid lines represent indexing links, the dashed lines represent
composition links and the dotted lines represent categorization links.

30

CHAPTER 3. MEMORY DESIGN

the functioning of our proposal, we consider the participation of the following
Cuāyōllōtl cognitive modules:

• Mid-term Memory (MTM): this is where the CSD is to be located. MTM has

a limited retention time, and elements stored on it are constantly decaying

until they are forgotten. Our proposal allows us to implement a similar

mechanism, but instead of making memory entries harder to retrieve, it

can be used to compute their relevancy to the composition process: the

older the entry is, the less relevant it becomes, enabling the composition

model the option to use this relevancy value to ponder which service to

select in a composition. MTM is also the end-point for messages used to

manage service registries.

• Associative Short-term Storage (ASTS): it’s tasked with performing the

association between a newfound CS and a corresponding AAS. Every

time a new CS is registered in the CSD, ASTS uses the new service’s

information to classify it under the corresponding AAS according to the

CS’s functionality.

• Persistent Storage (PS): in our proposal it’s here where the ADS is located.

This is the endpoint for queries looking for services for a composition and

for stored composition solutions, and it’s where the storing of new CASs

and updating of AAs takes place.

• Percepto-Attentional Process (PAP): through its Proprioception function,

it is tasked with detecting available pervasive services in the system’s

environment and forward their information to the CSD. It also gathers

information about services that failed to execute.

• Planning: where the service composition is performed. This module

queries PS to look for available services to use in compositions and for

existing compositions to employ or adapt. It also provides feedback about

employed CSs according to their performance.

31

CHAPTER 3. MEMORY DESIGN

Our work focuses on the work of the MTM, PS and ASTS modules in manag-
ing CSD and ASD registries, so we make the following assumptions regarding
the process related to service information being retrieved by PAP modules and
that information reaching MTM:

• When a new information about a service becomes present in the envi-

ronment, the Sensory modules pick it up, and then that information is

interpreted by the PAP, which then generates a message with the inter-

preted information and sends it to Working Memory (WM).

• Once in WM, service information stays there decaying until it falls below

a threshold, after which the service data is deleted from WM and sent

to MTM (CASTILLO, 2020). That time is considered to be around two

seconds (BADDELEY; HITCH, 1974; COWAN, 2001).

Figure 3.2 illustrates the current architecture of the Cuāyōllōtl BICA, show-
casing the cognitive functions represented as modules and their interconnec-
tions, demonstrating the relationships between them.

For this work, we define five types of messages in order to manage service
registries in the CSD:

• up messages: sent by the PAP to add a CS registry every time it locates a

new pervasive service in the environment, or to renew a CS registry if its

provider signals that it will continue to be available.

• down messages: sent by the PAP to delete a CS registry at the provider’s

request. A provider could ask to take down a service for different reasons,

such as low energy remaining, device soon to be out of system’s range, etc.

• timeout messages: sent by the MTM to delete an expired service registry.

When a CS registry goes past a predefined time threshold without being

renewed, MTM alerts the CSD with this type of message.

• unavailable messages: sent by the PAP to delete the registry of an un-

available CS. If the system tries to invoke a CS during the execution of a

32

CHAPTER 3. MEMORY DESIGN

S
en

so
ry

In
p
u
ts

A
le

rt

W
o
rk

in
g
 m

em
o
ry

E
xt

er
n
al

 S
en

so
ry

O
ri
en

ta
ti
o
n

In
te

rn
al

 S
en

so
ry

D
ec

la
ra

ti
ve

 m
em

o
ry

Pe
rc

ep
ti
o
n

M
o
ti
va

ti
o
n

E
m

o
ti
o
n
s

E
xe

cu
ti
ve

C
o
n
tr

o
l

E
va

lu
at

io
n

N
o
n
d
ec

l.
 M

em
o
ry

D
ec

is
io

n
-m

ak
in

g

P
la

n
n
in

g

M
o
n
it
o
ri
n
g

M
o
to

r

M
o
to

r
O

u
tp

u
t

At
te

nt
io

n

Fi
gu

re
3.

2:
G

en
er

al
ar

ch
ite

ct
ur

e
of

th
e

C
uā

yō
llō

tl
BI

C
A

.T
he

st
ar

tin
g

po
in

to
ft

he
co

gn
iti

on
pr

oc
es

s
ar

e
th

e
se

ns
or

y
in

pu
ts

fe
ed

in
g

th
e

Se
ns

or
y

m
od

ul
es

.
Th

e
en

di
ng

po
in

ti
s

th
e

O
ut

pu
tp

ro
du

ce
d

by
th

e
M

ot
or

m
od

ul
e

th
at

ge
ne

ra
lly

al
lo

w
s

to
in

te
ra

ct
w

ith
th

e
en

vi
ro

nm
en

t.

33

CHAPTER 3. MEMORY DESIGN

composition and fails (e.g. the CS has a failure or doesn’t respond), the

PAP emits a message of this type.

• feedback messages: sent by Planning after the execution of a composition.

It contains feedback values both for the individual CSs that took part in

the composition and for the composition in general.

The ability to delete service entries from the CSD both at the system’s re-
quest once a service has been deemed as unavailable (either because the provider
requested it or because the service failed during the composition), and by expi-
ration when the MTM’s decay process determines that a registry has crossed the
time threshold allows us to implement a service directory that employs hybrid
states, which can be seen as analogous to how entries in memory decay over time
or can be updated to show they are no longer available after failing to further
sense them, which allows humans to quickly update the representation of our
surroundings, a crucial capability since humans dwell in extremely dynamic
environments.

We can see this as a similar process to how we construct episodes in memory:
when we sense all the elements in our surroundings, we can build a mental
structure that contains all the objects we sensed in it, and with every change we
perceive, we alter that structure to reflect the sensed changes for it to be accurate
with the state of the environment.

Also, information in our memory decays: the shorter the term the mem-
ory is, the faster it decays. The difference is that the memory doesn’t delete
information: as time passes, information that is not reinforced simply becomes
harder to recover. Meanwhile, in our case, once an item becomes old enough
without being renewed, we choose to delete it. It is not in our interest to hinder
the retrieval of old service registries, but to simply offer that information to a
composition model for it to use that information as it best suits it, and delete it
after it becomes old enough to still be useful.

34

CHAPTER 3. MEMORY DESIGN

3.4 Memory Structure

In order to store and manage the information employed by both the CSD
and the ASD, we designed a MOP-based memory structure: starting from a root
MOP, known as M-Root, we derive the following specializations:

• M-Attribute: represents the values that a CS’s attributes can take, e.g. quan-

tity of remaining battery life, duration of the response time, etc. We

consider five instances for M-Attribute:

– M-Quantity: represents values associated with quantities, used to rep-

resent quantitative attributes. For this work, we only represent the

values high (with I-M-High) and low (with I-M-Low).

– M-Duration: stands for values representing a time duration. We con-

sider the instances of short time period (with I-M-Short) and a long

time period (with I-M-Long).

– M-Distance: represents the physical distance between two places. We

only represent (with I-M-Near) and (with I-M-Far).

– M-Timestamp: stands for the timestamps for when a service regis-

tration message is emitted. Each instance corresponds to a codified

timestamp sent within an up message associated to a CS.

– M-Location: represents a place in the system’s physical environment.

Every instance represents a specific place in the environment.

– M-IP: represents the service’s IP address. Every instance is a specific

IP associated to a registered CS.

– M-Status: represents the status of a service, which can be either busy

performing a task (represented by the instance I-M-Busy) or free to be

invoked (represented by the MOP I-M-Free).

35

CHAPTER 3. MEMORY DESIGN

• M-Act: depicts actions that can be carried out by specific devices, e.g. watch

for cameras, listen for microphones. Instances of M-Act are actions related

to the capabilities offered by pervasive services.

• M-Event: stands for events, e.g. the steps of a plan. This MOP has only one

specialization:

– M-Step: represents a step belonging to a service composition. Every

instance of M-Step stands for one step that takes part of one or more

service compositions.

• M-Group: represents groups of elements, e.g. groups of services. It has the

following specializations:

– M-Step-Group: represents groups of steps employed by at least one

service composition.

– M-Concrete-Group: stands for groups of CSs.

– M-Abstract-Group: standing for groups of ASs, both AASs and CASs.

– M-Feedback-Group: represents groups of quantitative evaluations pro-

duced as feedback after the execution of a composition.

• M-Concrete-S: stands for CSs. This MOP serves as the root of the CSD,

with each instance corresponding to a registered pervasive service.

• M-Abstract-S: represents ASs. It has two specializations:

– M-Atomic: represents AASs and serves as the root of the ASD and

under which all AASs are grouped.

– M-Composition: stands for and groups all CASs.

36

CHAPTER 3. MEMORY DESIGN

The aforementioned MOPs are also connected via scene links in the following
way:

• M-Concrete-S has one scene link pointing to the corresponding specializa-

tion of M-Attribute for each attribute, so that every instance of M-Concrete-S

can be linked to the corresponding instance of M-Attribute in order to repre-

sent attributes and their values, e.g. a CS MOP I-M-Foobar-Service having

a link named response-time towards the attribute MOP I-M-Short to depict

that the service has a short response time.

• M-Step is linked via a packaging link named action to M-Act, to depict that

every composition step is constituted by an action, e.g. the step MOP

I-M-Composition has a link going towards the action MOP I-M-Composition.

• M-Concrete-Group and M-Abstract-Group have links tagged as 1 to M-Concrete-

S and M-Abstract-S respectively, in order to allow instances of M-Concrete-

Group and M-Abstract-Group to have numbered links towards the MOPs

representing the members of such groups, e.g. the MOP I-M-Concrete-

Group.1 having a link tagged 1 towards the MOP I-M-Concrete-S.1, another

link tagged 2 to the MOP I-M-Concrete-S.2, etc.

• M-Atomic has a link tagged available to M-Concrete-Group, which is used to

link every AAS to a CS group standing for all available CSs of that category,

e.g. the AAS MOP I-M-Foobar-Service having a link to the CS group MOP

I-M-Available-Foobar.

• M-Composition is linked through a packaging link tagged components to

M-Abstract-Group, used to link every CAS to an abstract service group

representing all the components services of a composition, which could be

both atomic services or other compositions, e.g. a CAS MOP I-M-Foobar-

Composition having a link to an AS group MOP I-M-Foobar-Components.

Figure 3.3 presents a graphical representation of the aforementioned mem-
ory structure. Each box represents a specific MOP, with links in Figure 3.3a

37

CHAPTER 3. MEMORY DESIGN

representing abstraction links going from each MOP towards its abstractions,
and links in Figure 3.3b representing packaging links going from MOPs rep-
resenting more complex concepts towards MOPs representing its constituent
parts, with the accompanying text being the link’s name. Listing 3.1 shows a
pseudo-code representing the general structure of a CS, including slots (the out-
going packaging links of a MOP), while Listing 3.2 shows the pseudo-code for
the general structure of a CAS, whose slots point towards the MOPs grouping a
composition’s component ASs, composition steps and the feedback history.

1 MOP I-M-Service

2 type: instance

3 abstractions: M-Concrete-S

4 slots:

5 attribute1: I-M-Value1

6 attribute2: I-M-Value2

7 ...

8 timestamp: I-M-MyTimestamp

9 status: I-M-MyStatus

10 feedback: I-M-ServiceFeedback

Code 3.1: pseudo-code for the MOP structure of a CS registry

1 MOP: I-M-Composition

2 type: instance

3 abstractions: M-Composition

4 slots:

5 components: M-Abstract -Group

6 1: I-M-ComponentService1

7 2: I-M-ComponentService2

8 ...

9 steps: M-Step-Group

10 1: I-M-Step1

11 2: I-M-Step2

12 ...

13 feedback: I-M-CompositionFeedbacks

Code 3.2: Pseudo-code for the MOP structure of a CAS registry

The general/overall functioning of the directories can be described by the
following processes:

• Service registration: when the system receives information about a new

service, the PAP sends an up message to the CSD with the information

38

CHAPTER 3. MEMORY DESIGN

(a
)D

ia
gr

am
re

pr
es

en
tin

g
th

e
ab

st
ra

ct
io

n
hi

er
ar

ch
y

fo
rt

he
pr

op
os

al
’s

M
O

Ps
.

(b
)D

ia
gr

am
re

pr
es

en
tin

g
th

e
pa

ck
ag

in
g

hi
er

ar
ch

y
fo

rt
he

pr
op

os
al

’s
M

O
Ps

.

Fi
gu

re
3.

3:
D

ia
gr

am
ss

ho
w

in
g

th
e

pr
op

os
al

’s
M

O
P-

ba
se

d
di

re
ct

or
y

st
ru

ct
ur

e.

39

CHAPTER 3. MEMORY DESIGN

about the new service. The CSD uses the message information to create

a new instance under M-Concrete-S, and links it with the appropriate in-

stances of M-Attribute according to the new service’s attributes. Then the

new service’s MOP is sent to ASTS to match it with an AAS according to its

functionality. A scene link is created from the instance of M-Abstract-Group

corresponding the matching AAS of the the new service’s MOP.

• Service renewal: if the CSD receives an up message corresponding to an

already registered CS, it resets the CS registry’s timestamp by creating a

new MOP under M-Timestamp with the new timestamp and linking the

CS’s MOP to the new timestamp.

• Service de-registration due to petition from provider: when the system re-

ceives a request to remove a service from the directory (due to the provider

having low resources or being about to exit the environment, etc.), the PAP

sends a down message to the CSD to delete the MOP for such service. First,

ASD deletes the link going towards the MOP to be removed from the in-

stance of M-Concrete-Group corresponding to the service’s AAS, and after

that, the CS MOP is deleted.

• Service de-registration due to registry expiration: every CS registry has a

timestamp represented by an instance of M-Timestamp, and a predefined

expiry period. MTM constantly monitors the CSD and, in case a registry

passes such period without its provider sending an up message to renew

its registry, it sends a timeout message to inform of such event to the CSD,

which then proceeds to delete the corresponding CS’s MOP in an identical

fashion that when a down message is received.

• Service de-registration due to unavailability: if a concrete service is un-

successfully tried to be used during the execution of a composition, by

reasons such as service failures or the service provider becoming unavail-

able before notifying the system, the PAP notifies the CSD by the means of

40

CHAPTER 3. MEMORY DESIGN

a unavailable message. The registry removal for such service happens the

same way that the two previous cases.

• Composition registration: when a new composition is created, PS adds a

new instance under M-Composition, which is then linked to two new MOPs:

a new instance of M-Abstract-Group representing the group of component

services, which is itself linked to the corresponding AAS MOPs; and a new

instance of M-Step-Group, which represents the composition steps, and is

linked to the instances of M-Step representing the individual steps.

• Composition feedback: after a CAS has finished executing, feedback must

be provided for both the composition and its components. Planning sends

a feedback message that contains a numeric feedback value for the CAS

and for each CS used in the composition. The feedback is stored in the

corresponding instances of M-Feedback-Group for each MOP representing

either the CAD or the component CSs.

Figures 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 show the UML sequence diagrams
depicting the each one of the aforementioned processes.

3.5 CBP-based Process

We envision our directory as a part of a CBP-based service composition
process, based on the modules proposed on (HAMMOND, 1990):

• RETRIEVER is tasked with retrieving both compositions (CASs) and their

components (AASs): when it receives a set of goals that the system seeks

to achieve through a service composition, RETRIEVER would ponder the

goals to determine their importance to the task, and then find an indexed

CAS capable of satisfying the highest number of goals, giving preference

to the ones with higher priority.

41

CHAPTER 3. MEMORY DESIGN

Figure 3.4: Sequence diagram depicting the service registration process started
by a provider request.

42

CHAPTER 3. MEMORY DESIGN

Figure 3.5: Sequence diagram depicting the renewal of a service registry trig-
gered by a provider message.

43

CHAPTER 3. MEMORY DESIGN

Figure 3.6: Sequence diagram depicting the service deregistration process due
to the service provider requesting it.

44

CHAPTER 3. MEMORY DESIGN

Figure 3.7: Sequence diagram depicting the service deregistration process due
to the service registry crossing the expiration threshold.

45

CHAPTER 3. MEMORY DESIGN

Figure 3.8: Sequence diagram depicting the service deregistration process due
to the service being unable to be successfully executed during a service compo-
sition.

46

CHAPTER 3. MEMORY DESIGN

Figure 3.9: Sequence diagram depicting the service feedback process for a com-
position and its components after a successful execution.

47

CHAPTER 3. MEMORY DESIGN

• MODIFIER takes the CAS selected by the RETRIEVER as input, and modi-

fies it to satisfy all goals in case it doesn’t satisfy them all: based on a set of

predefined rules, MODIFIER would add, swap or delete AASs and steps

in a CAS in order for it to become more fitting to the input set of goals.

• STORER indexes and stores both new and modified CASs in the ASD: if

the system produces a CAS that didn’t exist before, as a result of either the

modification of a CAS or as the output of the reparation process of a failed

CAS, STORER takes the new composition, indexes it and stores it in the

ASD. Indexes for such CASs can be either the goals they achieve and the

failures they avoid.

• REPAIRER is responsible for fixing failed compositions: if a CAS is exe-

cuted successfully but the result isn’t satisfactory, REPAIRER can employ

a failure vocabulary and a set of predefined repair strategies to modify the

composition and produce a new CAS that deals with the detected failure

point(s). The new CAS is sent to the STORER, while the failure points are

fed as input to the ASSIGNER.

• ASSIGNER is tasked with analyzing the CAS failure(s) and, after perform-

ing a reasoning process, which establishes which inputs and steps were

responsible for the failure of the composition. In other words, it receives

the step(s) where the composition failed, and reasons its way up to the

steps and inputs that originated such failure(s). This information is then

fed to the ANTICIPATOR.

• ANTICIPATOR uses information about previous composition failures to

analyze incoming sets of goals to try to find situations that can result

in a failure: if a previous composition failure was pinned on a situation

produced by two specific goals, ANTICIPATOR can alert the system if two

goals of the same kind are present in a new input, in order to take measures

early to avoid the same failure again.

48

CHAPTER 3. MEMORY DESIGN

In our case, each CBP module is located in a specific Cuāyōllōtl cognitive
module according to its functionality. The RETRIEVER module is located on
MTM and tasked with retrieving ASs, both atomic and composite. The STORER
module is to be located on PS, in charge of storing new compositions produced
during the CBP process. The ASSIGNER would be located on ASTS and perform
the matching of composition failures with their cause. The rest of the modules,
mainly involved in composition adaptation and repair, are located on the Plan-
ning module, where according to neuroscientific evidence such tasks take place.
The only CBP modules directly involved in the management and retrieval of
service and composition MOPs are the RETRIEVER and the STORER, located
in memory areas, with most remaining modules are mainly involved in plan-
ning, and therefore beyond the scope of our work. Figure 4 shows a diagram of
the CBP-based composition process, showing in which cognitive module each
process takes place.

As an addition to the preexisting steps in the CBP process, we added a “plan
execution” step: after MODIFIER outputs a composition, the CBP selects CS
corresponding to the specified components in the CAS, and then executes the
CSs according to the composition steps. Unlike other planning cases, where
resources can be assumed to be always present and never fail, pervasive ser-
vices can fail to execute or become unavailable, so executing a composition and
checking if all selected services worked allows us to replace unavailable/failed
services and try again.

After successfully executing a CAS, we can then proceed to evaluate if the
results are satisfactory: a service composition may execute flawlessly, but that
doesn’t mean the result accomplishes the input goals. After a composition
finishes the execution, the Planning module should evaluate if the goals it set
were fulfilled, and then send feedback back to the CBP process. Should the
feedback be unsatisfactory, the CBP can start the plan-repairing process by
sending the used composition to REPAIRER.

The difference between the plan adaptations performed by REPAIRER and
simply swapping component services if a CAS plans to execute is simple: the
swapping of a component just means that an individual component is not us-
able, and adapting to such a situation requires to either swap the failed CS by
another CS of the same category (AAS) or to alter/change the composition to
one that replaces specific AASs, in case there is no more available CSs under
an AAS. Meanwhile, the composition repair happens when all components in

49

CHAPTER 3. MEMORY DESIGN

a CAS executed successfully but the composition result is not satisfactory, thus
meaning that the failure wasn’t caused by a failed component service, but on
an unexpected interaction between goals and steps/components, requiring an
entirely different type of adaptation.

It is during the execution of the CBP process that many of the service-
managing and service retrieval processes happen:

• CSs are retrieved during the composition execution phase: once MODI-

FIER outputs a composition, Planning will select a CS from the available

ones corresponding to a AAS, for every AAS used as component, and then

query the CSD in order to get its information, like IP, in order to invoke it

during the execution.

• If a CS fails to be invoked during the composition execution, then the

Planning module sends an unavailable signal to MTM to de-register

service from the CSD.

• After a CAS is executed successfully, a feedback will be sent to the MTM

containing the feedback for the CAS and its corresponding components.

In this chapter, we defined which Cuāyōllōtl cognitive modules are involved
in our proposal, the messages used to manage service registries in our directory,
which processes are triggered by those messages and how they are carried our,
and the memory structure that we use to store information in our directory, and
also laid out a vision of a service composition and adaptation process of which
our directory would be part of. With our proposal now defined, we now move
towards defining the implementation details of our proposal.

50

CHAPTER 3. MEMORY DESIGN

Fi
gu

re
3.

10
:

D
ia

gr
am

sh
ow

in
g

th
e

C
uā

yō
llō

tl-
ba

se
d

C
BP

-b
as

ed
se

rv
ic

e
co

m
po

si
tio

n
pr

oc
es

s.
Bl

ue
bl

oc
ks

re
pr

es
en

tt
he

co
gn

iti
ve

m
od

ul
es

w
he

re
di

re
ct

or
y

ta
sk

st
ak

e
pl

ac
e,

an
d

gr
ay

bl
oc

ks
st

an
d

fo
rc

og
ni

tiv
e

m
od

ul
es

ap
ar

tf
ro

m
th

e
di

re
ct

or
ie

s.

51

4
Implementation

In order to test that our proposal in a more meaningful way, we developed an
implementation of it on Common Lisp, based on the Micro MOP implementation
of Riesbeck (RIESBECK; SCHANK, 1989). W chose to implement our proposal
in Common Lisp because the language has a good performance, a big set of
libraries to quickly and easily add functionalities like socket communication
and XML parsing, and because it has the most development and documentation
for MOP-based tools and projects.

In this chapter, we proceed to delve into the specifics of the implementation
of our proposal, like the structure of the proposed messages and the algorithms
employed in registry management.

4.1 Message and MOP structure

We implemented our service directory such that all communications are
performed through TCP messages formatted on XML. Our implementation takes
as input the IP direction and socket it will listen to for messages, as well as,
optionally, the size in seconds of the threshold for the expiration of service
registries in the CSR: if not specified, the CSR uses the default value. Listings
4.1, 4.2, 4.3, 4.4 and 4.5 show the format for the up, timeout, down, unavailable and
feedback messages, respectively.

52

CHAPTER 4. IMPLEMENTATION

1 <message name="up">

2 <name>Foobar</name>

3 <dir>127.0.0.1</dir>

4 <port>2222</port>

5 <attributes>

6 <latency>value</latency>

7 <payload>value</payload>

8 <available -energy>value</available -energy>

9 <response -time>value</response -time>

10 <timestamp>value</timestamp>

11 </attributes>

12 </message>

Code 4.1: XML structure for an up message

1 <message name="down">

2 <service>

3 <name>I-M-Foobar</name>

4 </service>

5 </message>

Code 4.2: XML structure for a down message

1 <message name="timeout">

2 <service>

3 <name>I-M-Foobar</name>

4 </service>

5 </message>

Code 4.3: XML structure for a timeout message

1 <message name="unavailable">

2 <service>

3 <name>I-M-Foobar</name>

4 </service>

5 </message>

Code 4.4: XML structure for an unavailable message

53

CHAPTER 4. IMPLEMENTATION

1 <message name="feedback">

2 <composition>

3 <name>I-M-Foobar-Composition</name>

4 <feedback>value</feedback>

5 </composition>

6 <component>

7 <name>I-M-Foobar-Component -1</name>

8 <feedback>value</feedback>

9 </component>

10 <component>

11 <name>I-M-Foobar-Component -2</name>

12 <feedback>value</feedback>

13 </component>

14 ...

15 </message>

Code 4.5: XML structure for a feedback message

The expression in Common Lisp for MOPs is shown is Listing 4.6. Every MOP
has a type, which can be either instance for MOPs that have no specializations or
mop for every other MOP. Also, every MOP has an unique name, with names for
mop-type MOPs starting with M- (e.g. M-composition) while names for instance-
type MOPs starting with I-M- (e.g. I-M-Foobar-Composition). The last necessary
element for a MOP are its abstractions, represented as a list with the names of
all abstractions of a MOP. Optionally, a MOP can have a list of slots, represented
by a list of key-value pairs (slot filler), where slot stands for the name of the slot,
and filler can be either the MOP it points at or nil (null).

1 (type name (abstractions)

2 ((slot1 filler1) (slot2 filler2) ...))

Code 4.6: Expression for a MOP structure in Common Lisp

The system uses three tables to store information about outgoing links for
every MOP in the memory structure:

• A table named mop-absts holds a list of every abstraction of a MOP, from

direct abstraction all the way to M-Root, e.g. the entry for the MOP M-

Atomic would be (M-Abstract-S, M-Root). This table effectively holds the

outgoing abstraction links of every MOP.

54

CHAPTER 4. IMPLEMENTATION

• A table named mop-specs that has the links of every direct specialization of

a MOP, e.g. the entry for M-Abstract-S would be (M-Atomic, M-Composition).

This table basically holds simplified versions of outgoing indexing links of

every MOP.

• A table named mop-slots which holds a list of slots of a MOP, e.g. the entry

for M-Composition would be ((steps M-Step-Group) (components M-Abstract-

Group))

4.2 Directory Functions

Algorithm 1 depicts the simple process of adding a new CS registry to the
directory: simply creating a MOP standing for the new CS and then creating
slots for that MOP corresponding to the MOPs representing the values of the
attributes.

Algorithm 1 Adding a new CS to the directory
attribute list 𝐴
CS MOP 𝑠

𝑠 ← create new MOP with 𝐴 as slots
𝑎 in 𝐴 such that 𝑎 ≠ nil
create slot 𝑥 for attribute 𝑎.𝑘𝑒𝑦 on MOP 𝑠

𝑠.𝑥.𝑣𝑎𝑙𝑢𝑒 ← 𝑎.𝑣𝑎𝑙𝑢𝑒

Algorithm 2 takes as input an AAS MOP, and optionally a list of (attribute,
value) pairs, and produces a list of available CS MOPs of the same type of the
AAS, and matching the same attributes that are provided. The algorithm first
goes and collects all services linked to the AAS MOP, and then checks if a list of
attributes was provided: if it was, it collects all services that match the attributes
in the list and are available into a list; otherwise it collects all available services
into the new list.

Algorithm 3 shows the process of removing a CS registry from the directory.
First, it searches for any reference of the CS MOP on the corresponding instance
of M-Concrete-Group and deletes it, then it proceeds to delete the MOP for the
CS’s timestamp, and finally it deletes the CS MOP from the CSD.

55

CHAPTER 4. IMPLEMENTATION

Algorithm 2 CS search algorithm
AAS MOP 𝑎, attribute list 𝐴
CS MOP set 𝐿
𝑔 ← filler for the available slot in 𝑎

𝐺← slot list of 𝑔
𝐿← Ø
𝐴 = Ø
𝑠 in G
if 𝑠.status=free then

𝐿← 𝐿 ∪ 𝑠

𝑠 in 𝐺

𝑥 in 𝐴

𝑓 ← true
if 𝑠 doesn’t have attribute 𝑥 or 𝑥.𝑣𝑎𝑙𝑢𝑒 ≠ 𝑠.𝑥.𝑣𝑎𝑙𝑢𝑒 then

𝑓 ← false
if 𝑓 = true and 𝑠.status=free then

𝐿← 𝐿 ∪ 𝑠

Algorithm 3 CS removal algorithm
CS MOP 𝑠

𝑔 ← AAS corresponding to 𝑠

𝐺← slot list of 𝑔
𝐺← 𝐺 without the slot containing 𝑠

𝑡 ←filler for the timestamp slot in 𝑠

𝑓 ← expiration function for 𝑠
unschedule

(︁
𝑓
)︁

remove MOP 𝑡

remove MOP 𝑠

56

CHAPTER 4. IMPLEMENTATION

Algorithm 4 depicts process for searching compositions that achieve a spec-
ified goal and, optionally, employ a specific set of ASs.

Algorithm 4 CAS search algorithm
goal 𝑔, component list 𝐶
CAS MOP set 𝑅
𝑋 ← specializations of M − Composition
𝑅← Ø
𝐶 = Ø
𝑥 in 𝑋

if 𝑖𝑛𝑑𝑒𝑥.𝑔𝑜𝑎𝑙 (M − Composition, 𝑥) = 𝑔 then

𝑅← 𝑅 ∪ 𝑥

𝑥 in 𝑋

if 𝑖𝑛𝑑𝑒𝑥.𝑔𝑜𝑎𝑙 (M − Composition, 𝑥) = 𝑔 then

𝑆← components of 𝑥
𝑓 ← true
𝑐 ∈ 𝐶

if 𝑐 ∉ 𝑆 then

𝑓 ← false
break

if 𝑓 = true then

𝑅← 𝑅 ∪ 𝑥

In order to implement the service relevance mechanism, we used the memory
decay function employed by Cuāyōllōtl’s MTM (CASTILLO, 2020), which was
proposed by Altmann and Schunn (ALTMANN; SCHUNN, 2012):

𝐴 (𝑥) = −0.5 ln (𝑥) (4.1)

where 𝐴 (𝑥) stands for the degree of activation of an item in MTM at a time 𝑥,
where in our case 𝑥 stands for the difference between the timestamp of a service
registry and the current time. For our work, 𝐴 (𝑥) stands for the relevance of the
corresponding service registry at time 𝑥.

The time threshold 𝑒 used to signal that a service registry has expired is
received as an optional parameter at the start of the execution. If the user didn’t
enter a value for the expiration threshold, the default value used is 900 seconds
(15 minutes), one of the lower time bounds MTM can retain items (??). When
a CS is registered and its corresponding timestamp MOP is created, a directory
function is timed to be executed after 𝑒 seconds have passed and sends a timeout

57

CHAPTER 4. IMPLEMENTATION

signal about the related CS. But if a CS registry is renewed through an up signal,
the timer is restarted and the current CS timestamp is replaced with another
timestamp with the system time at the moment of the renewal. Algorithm 5
shows the process of renewing a CS MOP registry by resetting the expiration
function and replacing its timestamp.

Algorithm 5 Service registry renewal process
service MOP 𝑠, expiration threshold 𝑒

𝑡 ←MOP in the timestamp slot of 𝑠
𝑓 ← expiration function for 𝑠
unschedule

(︁
𝑓
)︁

create timestamp MOP 𝑡𝑛 for the current system time
schedule

(︁
𝑓 , 𝑒

)︁
swap 𝑡 with 𝑡𝑛 in the timestamp slot of 𝑠
delete 𝑡

58

5
Case Study

With a service directory fully implemented, we chose a predatory crime
deterrence case study to test the behavior of our proposal, which is a common
issue in urban areas. We chose this case study given not only its prevalence
in urban areas, but also because, given the environment the a crime deterrence
system may work in, a way to manage devices and services offered by them has
to be able to deal with a great degree of dynamism regarding the availability of
services in it, as well as a great variety of service attributes.

5.1 Introduction

We call predatory crimes to those that are premeditated, in which a vic-
tim’s property is taken, and in which the criminal stalks the victim until an
opportunity to attack arises, behaving similarly to a predator hunting a prey
(MCELLISTREM, 2004). Currently, there are some documented cases of drones
being employed to deter criminals, as well as for assisting law enforcement
agencies to capture criminals. As an example, in (??) it was reported about
how in the Mexican city of Ensenada, a single drone employed by the city police
department helped reduce the general crime rate by 10%, and assisted in the
arrest of over 500 individuals. This leads us to believe that a pervasive system
composed by adequate kinds of devices can successfully be employed to deter
potential criminals and capture those detected committing crimes, and a ser-

59

CHAPTER 5. CASE STUDY

vice directory with the capability to quickly adapt to changes in the state of the
system’s devices would be of great help.

For the task of deterring potential criminals or assisting on their capture by
law enforcement officials, we consider the system operation to be composed by
three phases:

• Monitoring: it consists in sensing the environment, looking for either

crimes being committed in this moment or for suspicious situations that

can be considered the preamble of a crime. In this phase, sensor devices like

cameras or microphones are to be employed to monitor the environment,

and processing devices would analyze the sensor information in search of

unusual situations.

• Deterrence: it consists in driving a drone to the potential crime scene.

If during the monitoring phase a suspicious situation is detected, e.g. a

passerby closely following another person, the system transits to a de-

terrence phase, in which a drone is dispatched to the place where the

unusual situation is taking place, with the goal of deterring and driving

the potential criminal away.

• Alarm: it consists of activating actuators near a crime scene in order to

draw the attention of nearby law enforcement agents towards it. If during

either the monitoring or deterrence phases a crime is detected to be taking

place, the system would switch to this phase, with the goal of using any

close device capable of using actuators to draw attention towards it, e.g.

speakers or alarms. The intention behind this is to draw the attention of

any law enforcement unit close enough to the crime scene, or even prevent

any further action by the criminal and causing the criminal to flee.

For this case study, we assume the following:

• for the sake of simplicity, every CAS is composed by just three steps each:

one for each one of the aforementioned phases.

60

CHAPTER 5. CASE STUDY

• no new compositions will be stored: we test the retrieval of existing com-

positions, but not the storage of new ones.

• the set of service categories is predefined as instances of M-Atomic and

doesn’t change during the system execution: no new categories are created

nor deleted.

• the service classification process is a black box: once a new service is

registered, ASTS randomly indexes it under one of the instances of M-

Atomic.

• for the sake of simplicity, all ASs employed by compositions are AASs:

CASs using other CASs as components is not allowed.

5.2 Additional Memory Structures

In order to adapt our memory structure for its employment in this study case
by adding the following MOPs:

• M-Public-Sec-Act: specialization of M-Act. It stands for actions related to

public security, e.g.

• M-Monitoring-Act: specialization of M-Public-Sec-Act. It represents actions

related to the monitoring phase of the system, e.g. watching the environ-

ment through cameras.

• M-Deterrence-Act: specialization of M-Public-Sec-Act. It stands for actions

related to the system’s deterrence phase, e.g. the drone propelling itself to

a new location.

• M-Alarm-Act: specialization of M-Public-Sec-Act that represents actions car-

ried out during the system’s alarm phase, e.g. an alarm activating itself.

61

CHAPTER 5. CASE STUDY

• M-Public-Sec-Step: specialization of M-Step that represents steps of a ser-

vice composition for a public security task, e.g. watching over an area or

ringing an alarm. It inherits the action packaging link from M-Step, which

links it to M-Public-Sec-Act, to represent that every public security step is

performed by a public security action.

• M-Monitoring-Step: specialization of M-Public-Sec-Step that stands for ser-

vice composition steps performed during the system’s monitoring phase,

e.g. visually monitoring the environment. It’s linked to M-Monitoring-Act

though the packaging link action which represents which action performs

the step.

• M-Deterrence-Step: specialization of M-Public-Sec-Step representing ser-

vice composition steps performed during the system’s deterrence phase,

e.g. translating the drone to a specific place. It’s linked to M-Deterrence-Act

though the packaging link action, representing which action performs the

step.

• M-Alarm-Step: specialization of M-Public-Sec-Step that stands for service

composition steps performed during the system’s alarm phase, e.g. draw-

ing attention to the crime scene. It’s linked to M-Alarm-Act though the

packaging link action which represents which action performs the step.

• M-Public-Sec-Steps: specialization of M-Root representing the set of mon-

itoring, deterrence and alarm steps of a composition. It has three pack-

aging links: one named monitoring-steps, other named deterrence-steps,

and another one named alarm-steps, with all three linked to M-Step-Group:

monitoring-steps represents the link to the group of steps to be performed

during the monitoring phase of a composition, deterrence-steps stands for

for the link with the steps performed during the deterrence phase, and

alarm-steps represents the step group for the alarm phase. It follows that,

instead of being linked directly to M-Step-Group, M-Composition is linked

62

CHAPTER 5. CASE STUDY

to this MOP through the packaging link steps, representing that every

composition has three different sets of steps, with each set corresponding

to a system phase.

Listing 5.1 shows the Lisp code for the structure of a CAS MOP, while Listing
5.2 shows the structure for M-Public-Sec-Steps, whose instances holds the step
groups for every CASs.

1 (mop m-composition (m-abstract-s)

2 (monitoring -service m-atomic)

3 (deterrence -service m-atomic)

4 (alarm-service m-atomic)

5 (steps m-public-sec-steps))

Code 5.1: Lisp expression for the MOP structure of a CAS registry in the case
study

1 (mop m-public-sec-steps (m-root)

2 (monitoring -steps m-step-group)

3 (deterrence -steps m-step-group)

4 (alarm-steps m-step-group))

Code 5.2: Lisp expression for the MOP holding the different steps in a CAS in a
composition

5.3 Experiments

With our case study fully specified, we proceed to test the implementation of
our directory under the aforementioned case study. In this scenario, we chose six
service types (AASs) to be used: alarm services, microphone services, speaker
services, camera services, infrared camera services and drone services.

For our testing, we decided to generate random services to be registered in the
directory: a client node generates Common Lisp expressions with the informa-
tion necessary to create a CS MOP: a name, a timestamp and a random number
of attributes, with such attributes take a random value, e.g. a service foobar can
be generated with attributes response-time with value short and available-energy
with value low. Then, the client parses the expression to XML and sends it to
the directory node, which parses the XML message and uses the expression to

63

CHAPTER 5. CASE STUDY

generate a new instance of M-Concrete-S. Such process takes place every in a
random interval between 2 to 5 minutes.

After registering the first service, every 4 to 7 minutes, we also simulate the
search and retrieval of a CAS: the directory receives a request to find a CAS MOP
that fulfills certain requirements, e.g. accomplishes certain goal or employs
some specific component AASs. After a set of CASs has been retrieved, we
simulate the retrieval of the CSs for the execution: for every component AAS,
we simulate a query for a corresponding CS: that query can include specific
attributes to simulate the search of services that fulfill a certain attribute.

In order to simulate unavailability rates for services, we compute a probabil-
ity in a way that linearly increases over time in order to simulate the growth over
time of the probability for a device to become unavailable: this is because, as
time goes, a device traversing the environment like a smartphone or a drone may
move away from the environment, and devices with limited energy resources
(e.g. devices that employ battery as power sources) may become unavailable
due to low energy. This probability is computed every time a CS is fetched as a
component for a CAS.

To review the performance of our proposal, we conduct two tests:

• in the first test, we test the effect different expiration thresholds and ser-

vice renewal probabilities in the availability of registered CSs, with the

goal of testing how different service availability times and service expira-

tion thresholds affect the number of failures our proposal has during its

operation.

• for the second test, we check how the employment the relevance mecha-

nism as a criterion to select component CSs affects the selection behavior.

In the first test, we test expiration threshold of 15, 30 and 60 minutes, after
which CS registries are deleted. We also employ three different probabilities that
a service provider sends a message to renew the registry for the service it hosts:
33%, 50% and 67%. This leads us to having 9 different scenarios, with each one
being tested 3 times each. In this test, a CAS is retrieved from the ASD, and
after that, for every component AAS from that CAS, a CS is fetched. Based on
the time lapsed since its registration or last renewal, a probability is computed

64

CHAPTER 5. CASE STUDY

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 10 40%
2 15 min. 26 12 46.2%
3 15 min. 25 11 44%
4 15 min. 22 8 36.4%
5 30 min. 25 18 72%
6 30 min. 22 11 50%
7 30 min. 25 15 60%
8 30 min. 26 19 73.1%
9 60 min. 24 19 79.2%
10 60 min. 25 20 80%
11 60 min. 22 16 72.7%
12 60 min. 25 20 80%
13 N/A 25 20 80%
14 N/A 25 21 84%
15 N/A 25 21 84%
16 N/A 25 14 56%

Table 5.1: Results of the first experiment with an availability of 15 minutes and
a service renewal chance of 50%

for every component CS using a Bernoulli trial where the probability of success
(a CS being invoked without failures) is 𝑝 = 1 − 𝑡𝑐−𝑡𝑟

𝑎 , where 𝑡𝑐 is the system’s
current time, 𝑡𝑟 is the timestamp in the CS’s registry, and 𝑎 is the availability
time of device in the environment, meaning that 𝑝 = 1 at the moment of a CS
registration or renewal and 𝑝 = 0 upon reaching the maximum time a device may
be available. The values 𝑎 can take are 15, 30 and 60 minutes, used because those
are close to the availability times for drones as watched in empirical evidence.
If a service is deemed unavailable, an unavailable message is sent to deregister
that service, and that invocation is counted as a failure. After 180 minutes, we
stop the execution and get the rate of failure for CSs. This process is repeated
for each one of the scenarios, with the goal of seeing the directory’s behavior
and the failure rates. Figure 5.1 shows the comparison between the failure rates
under the different scenarios.

For the second test, we test the behavior of CS selection under two different
scenarios: selection based purely on feedback stored in the CSD and selection
based on a rating computed from both stored feedback and the relevance, com-

65

CHAPTER 5. CASE STUDY

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 24 7 29.2%
2 15 min. 25 10 40%
3 15 min. 25 9 36%
4 15 min. 25 10 40%
5 30 min. 25 16 64%
6 30 min. 24 11 45.8%
7 30 min. 25 13 52%
8 30 min. 24 17 70.8%
9 60 min. 25 17 68%
10 60 min. 17 13 76.5%
11 60 min. 25 17 68%
12 60 min. 25 16 64%
13 N/A 20 12 60%
14 N/A 25 20 80%
15 N/A 26 22 84.6%
16 N/A 23 12 52.2%

Table 5.2: Results of the first experiment with an availability of 15 minutes and
a service renewal chance of 67%

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 13 52%
2 15 min. 25 10 40%
3 15 min. 25 18 72%
4 15 min. 25 11 44%
5 30 min. 26 13 50%
6 30 min. 25 18 72%
7 30 min. 25 13 52%
8 30 min. 25 18 72%
9 60 min. 26 22 84.6%
10 60 min. 25 20 80%
11 60 min. 25 16 64%
12 60 min. 25 15 60%
13 N/A 26 17 65.4%
14 N/A 25 20 80%
15 N/A 25 18 72%
16 N/A 25 20 80%

Table 5.3: Results of the first experiment with an availability of 15 minutes and
a service renewal chance of 33%

66

CHAPTER 5. CASE STUDY

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 7 28%
2 15 min. 25 5 20%
3 15 min. 25 7 28%
4 15 min. 25 5 20%
5 30 min. 25 11 44%
6 30 min. 25 10 40%
7 30 min. 26 8 30.8%
8 30 min. 25 12 48%
9 60 min. 25 15 60%
10 60 min. 25 13 52%
11 60 min. 26 17 65.4%
12 60 min. 25 16 64%
13 N/A 25 19 76%
14 N/A 25 16 64%
15 N/A 25 19 76%
16 N/A 25 17 68%

Table 5.4: Results of the first experiment with an availability of 30 minutes and
a service renewal chance of 50%

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 26 4 15.4%
2 15 min. 25 7 28%
3 15 min. 26 1 3.8%
4 15 min. 25 4 16%
5 30 min. 24 6 25%
6 30 min. 25 10 40%
7 30 min. 25 12 48%
8 30 min. 24 5 20.8%
9 60 min. 21 11 52.4%
10 60 min. 25 10 40%
11 60 min. 25 12 48%
12 60 min. 25 17 68%
13 N/A 25 9 36%
14 N/A 25 16 64%
15 N/A 26 14 53.8%
16 N/A 26 17 65.4%

Table 5.5: Results of the first experiment with an availability of 30 minutes and
a service renewal chance of 67%

67

CHAPTER 5. CASE STUDY

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 6 24%
2 15 min. 24 6 25%
3 15 min. 25 4 16%
4 15 min. 26 7 26.9%
5 30 min. 22 11 50%
6 30 min. 25 14 56%
7 30 min. 25 8 32%
8 30 min. 25 13 52%
9 60 min. 25 13 52%
10 60 min. 25 12 48%
11 60 min. 25 15 60%
12 60 min. 25 16 64%
13 N/A 25 21 84%
14 N/A 25 19 76%
15 N/A 25 18 72%
16 N/A 25 16 64%

Table 5.6: Results of the first experiment with an availability of 30 minutes and
a service renewal chance of 33%

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 5 20%
2 15 min. 26 2 7.7%
3 15 min. 25 4 16%
4 15 min. 25 0 0%
5 30 min. 23 5 21.7%
6 30 min. 25 8 32%
7 30 min. 25 4 16%
8 30 min. 24 6 25%
9 60 min. 25 7 28%
10 60 min. 25 8 32%
11 60 min. 25 9 36%
12 60 min. 25 7 28%
13 N/A 25 13 52%
14 N/A 25 10 40%
15 N/A 25 8 32%
16 N/A 25 13 52%

Table 5.7: Results of the first experiment with an availability of 60 minutes and
a service renewal chance of 50%

68

CHAPTER 5. CASE STUDY

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 3 12%
2 15 min. 25 2 8%
3 15 min. 23 4 17.4%
4 15 min. 25 4 16%
5 30 min. 25 7 28%
6 30 min. 25 4 16%
7 30 min. 22 7 31.8%
8 30 min. 26 4 15.4%
9 60 min. 21 9 42.9%
10 60 min. 22 8 36.4%
11 60 min. 25 9 36%
12 60 min. 24 11 45.8%
13 N/A 25 14 56%
14 N/A 25 16 64%
15 N/A 25 7 28%
16 N/A 23 10 43.5%

Table 5.8: Results of the first experiment with an availability of 60 minutes and
a service renewal chance of 67%

Run

Expiration

threshold

Number of

CS retrievals

Number of

unavailabilities

Failure

rate

1 15 min. 25 2 8%
2 15 min. 25 4 16%
3 15 min. 25 3 12%
4 15 min. 25 4 16%
5 30 min. 24 2 8.3%
6 30 min. 26 6 23.1%
7 30 min. 25 7 28%
8 30 min. 24 7 29.2%
9 60 min. 25 8 32%
10 60 min. 25 9 36%
11 60 min. 26 11 42.3%
12 60 min. 25 14 56%
13 N/A 25 12 48%
14 N/A 25 9 36%
15 N/A 25 14 56%
16 N/A 25 15 60%

Table 5.9: Results of the first experiment with an availability of 60 minutes and
a service renewal chance of 33%

69

CHAPTER 5. CASE STUDY

Test 1

Test2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(a) Comparison of results for the scenario with a renewal probability of 50%

Test 1

Test2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(b) Comparison of results for the scenario with a renewal probability of 67%

Figure 5.1: Comparison of the failure rates for the scenarios of the first experi-
ment where availability time of devices is set to 15 minutes

70

CHAPTER 5. CASE STUDY

Test 1

Test2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(c) Comparison of results for the scenario with a renewal probability of 33%

Figure 5.1: Comparison of the failure rates for the scenarios of the first experi-
ment where availability time of devices is set to 15 minutes (cont)

puted with the following equation:

𝑤 = 𝑥 𝑓 + 𝑦𝑟 (5.1)

where 𝑤 is the final value of a service, 𝑓 is the average of feedback values of
a CS, 𝑟 is the relevance value of a CS registry, and 𝑥, 𝑦 ∈ [0, 1] are weights
for the two features to evaluate, with 𝑥 + 𝑦 = 1. For this, we run the directory
and generate service registration/renewal messages and CAS queries at random
intervals of four to six minutes, and then fetch the corresponding component
CSs, after which the selected CSs receive a random feedback value between 0

100
and 100

100 , picked using an uniform distribution. For the first scenario, every time
we query the available CSs for a specific AAS, we select the one with the highest
feedback average, and in the second case, the selection is based in the weighting
between feedback average and the computed relevance. We test four cases: one
where the the selection is based purely on feedback, one with a weighting of
50% for the feedback and 50% for the relevance, one with a weighting of 67% for
the feedback and 33% for the relevance, and one with a weighting of 67% for the
relevance and 33% for the feedback. In this test, we measure the average service

71

CHAPTER 5. CASE STUDY

Test 1

Test2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(a) Comparison of results for the scenario with a renewal probability of 50%

Test 1

Test 2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(b) Comparison of results for the scenario with a renewal probability of 67%

Figure 5.2: Comparison of the failure rates for the scenarios of the first experi-
ment where availability time of devices is set to 30 minutes

72

CHAPTER 5. CASE STUDY

Test 1

Test2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(c) Comparison of results for the scenario with a renewal probability of 33%

Figure 5.2: Comparison of the failure rates for the scenarios of the first experi-
ment where availability time of devices is set to 30 minutes (cont)

age in minutes and the service feedback average of each scenario, in order to see
the impact the selection weighting has in those two factors. Tables 5.10, 5.11, 5.12
and 5.13 show the results for the scenarios where feedback has a 100% weight,
feedback and relevance have a 50% weight each, feedback has a 67% weight and
relevance has a 33% weight, and feedback has a 33% weight and relevance has a
67% weight, respectively, and Figures 5.4 and 5.5 show the graphic comparison
with regards to average feedback value and average service age (how much time
has passed for a service since the last renewal of its timestamp) for the four
scenarios.

Run

Number of

fetched services

Average

rating

Average

feedback value

Average

service age (m)

1 90 0.66 0.66 49.51
2 93 0.75 0.75 51.64
3 90 0.7 0.7 50.31
4 87 0.72 0.72 44.82

Table 5.10: Results of the second experiment for the scenario with a feedback
weight of 1.

73

CHAPTER 5. CASE STUDY

Test 1

Test 2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(a) Comparison of results for the scenario with a renewal probability of 50%

Test 1

Test 2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(b) Comparison of results for the scenario with a renewal probability of 67%

Figure 5.3: Comparison of the failure rates for the scenarios of the first experi-
ment where availability time of devices is set to 60 minutes

74

CHAPTER 5. CASE STUDY

Test 1

Test 2

Test 3

Test 4

Average

15 30 60 N/A
0

20

40

60

80

100

Expiration threshold (m)

F
ai

lu
re

 r
at

e
(p

er
ce

nt
ag

e)

(c) Comparison of results for the scenario with a renewal probability of 33%

Figure 5.3: Comparison of the failure rates for the scenarios of the first experi-
ment where availability time of devices is set to 60 minutes (cont)

Run

Number of

fetched services

Average

rating

Average

feedback value

Average

service age (m)

1 90 -0.27 0.55 17.88
2 72 -0.23 0.49 11.38
3 93 -0.28 0.61 18.83
4 90 -0.24 0.58 15.51

Table 5.11: Results of the second experiment for the scenario with feedback and
relevance weights of 0.5 each.

Run

Number of

fetched services

Average

rating

Average

feedback value

Average

service age (m)

1 90 0.03 0.67 22.49
2 87 0.01 0.62 21.96
3 90 0.02 0.58 18.07
4 93 -0.07 0.57 24.93

Table 5.12: Results of the second experiment for the scenario with a feedback
weight of 0.67 and a relevance weight of 0.33.

75

CHAPTER 5. CASE STUDY

Run

Number of

fetched services

Average

rating

Average

feedback value

Average

service age (m)

1 90 -0.57 0.52 15.84
2 87 -0.51 0.53 13.81
3 93 -0.55 0.57 13.85
4 87 -0.4 0.54 11.11

Table 5.13: Results of the second experiment for the scenario with a feedback
weight of 0.33 and a relevance weight of 0.67.

Figure 5.4: Comparison between the weight of relevance in service ratings and
service age in the second experiment

76

CHAPTER 5. CASE STUDY

Figure 5.5: Comparison between the weight of relevance in service ratings and
average service feedback value in the second experiment

5.4 Discussion

After carrying out experiments and analyzing the results, we can proceed to
draw some observations from the gathered data. Regarding the first experiment,
the data shows that , if we can estimate an accurate average for device availability
time, having a service directory with the capability to remove service registries
whose time registered in the directory crosses a threshold lower that the afore-
mentioned average notably decreases the failure rate for services registered in
the directory. As we see form the data, the expiration threshold being lower
than the availability average is vital: if the threshold is higher, or even the same,
than the availability average, the impact in failure rates is significantly lower.
However, if that threshold is too low, we get another problem: in a directory
with a very low threshold for deleting services, the failure rate is consistently
smaller, but at the cost of occasionally having compositions fail due to lack of
services to employ. In our experiments with low CS expiration thresholds (e.g.
15 minutes), sometimes compositions would fail due to lack of services of spe-
cific type, e.g. needing a service of type I-M-Camera and finding none. This tells

77

CHAPTER 5. CASE STUDY

us that expiration thresholds should be carefully picked to be on a sweet spot
that is lower than the estimated average availability time for services in a given
environment, but high enough to avoid “service starvation”: the situation when
compositions cannot execute due to the lack of needed components.

The times used for computing the availability of devices in the first experi-
ment were based on empiric evidence of commercial drone’s average battery life,
bu other devices like smartphones and embedded sensors may have different
battery life averages, and also, devices in the environment may by affected by
mobility, meaning that the permanence time of such kind of devices is another
factor to have in mind. This leads us to believe that, to more effectively retrieve
relevant services, we would require a heuristic that weights factors like expected
battery life, expected permanence time in the environment and feedback in a
specific way for every kind of device, to have a more precise assessment of its
relevance. Finding such an heuristic could could enhance the performance of
our proposal, and it is definitely an area of opportunity for future work.

Regarding the second experiment, while it is obvious that the introduction
of the relevance parameter impacts both the average feedback value and service
age of selected services, that impact is dramatically higher for the latter: the sole
introduction of relevance into the evaluation process, even if with a low weight
(e.g. 0.33), approximately halves the average service age for selected services,
while the feedback value takes a lesser hit. While this result seems promising,
we think we need to perform experiments with other probability distributions
that produce statistics that resemble more closely the feedback real life services
may receive, in order to see if the behavior in our experiments holds.

If we analyze the results of both experiments as a whole, we can see that
if our directory were to be used by a service composition model that employs
our proposed relevance metric, it would give preference to “young” services
(services that have a short time span since their registry or last renewal) when
selecting component services, thus leaving services that don’t renew so fre-
quently to be less frequently used, and perhaps even having a higher chance
of being deleted due to the expiration threshold; all this could compel service
providers to increase the rate at which they send messages to the directory
to renew their services, potentially leading to flooding the pervasive system’s
network. A study analyzing this possibility would certainly be insightful.

The main idea behind implementing an expiration threshold is that, after a
certain time, there is a chance that a pervasive service registered in a service

78

CHAPTER 5. CASE STUDY

directory may become unable to be deregistered since its provider may become
unavailable due to the dynamic nature of pervasive environments. However,
since we completely delete a service registry from the CSD after expiring, what
happens with services that may be recurrent in a specific environment? For
example, if there was a pervasive service directory registering services that our
personal devices (e.g. our smartphones) in an environment we frequent (e.g. our
workplace), it would be preferable to maintain registries of them and just flag
them as unavailable after crossing the expiration threshold instead of outright
deleting their registry, but then, how do we decide when a service is a recurrent
member of the environment versus a one-time visitor? How do we establish
when a new service stops being a “visitor” to become a recurrent member, or,
on the contrary, a recurrent service stops being recurrent?

79

6
Conclusions and Future Work

In this work, we propose a pervasive service directory for performing service
composition, based on both the dynamic memory theory from psychology and
cognitive architecture’s memory from neurosciences. This service directory
is capable of indexing and retrieving services and compositions according to
attributes (e.g. name, type of service, if it belongs, the values of its attributes,
etc.) and is able to delete services both on the provider’s request as well as
based on an expiration threshold. It also provides a relevance value that service
composition models can use to select services that have spent the least amount
of time without being renewed. This led us to believe that our proposal could
help us keep a higher degree of consistency between the services present in a
pervasive environment and those registered in the directory.

After testing our proposal with the case study, we have seen that implement-
ing service expiration thresholds that are lower than the average expected time
services are assumed to stay in a pervasive environment positively affects the
failure rate in our experiments, which means the threshold helps weed out the
registries of services that may no longer be there. The experiments also showed
us that just by taking the relevance value into account for fetching services from
the directory, the average service age (the time a service has spent since its last
timestamp renewal or since registration if it has never been renewed) falls dra-
matically, helping select “younger” services and thus reducing the probability
of fetching a service that may be unavailable in the environment.

However, as we have discussed above, different devices can be expected to
be available for different time spans, e.g. drones and smartphones have different

80

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

average battery lives, they move through the environment at different speeds,
etc. In order to more precisely asses how much time a device may stay in a
pervasive environment, we need more robust heuristic that takes into account
the aforementioned factors, and that is specific for every kind of device that can
be present at a pervasive environment: smartphones, drones, wireless sensors,
etc. This is an area of opportunity for this work that we may tackle in the future.

In addition, while we have a service directory that implements memory
functions such as encoding, retrieval and decay, it still lacks the capability to
reinforce memory elements: reinforcement is, after all, how human memory
prevents itself from forgetting information that is of recurrent use to us. This
feature could be the answer to the question of how we prevent the directory to
delete services that are recurrent in an environment.

In top of that, the dynamic memory capability to index failed plans according
to the causes of such failure can be particularly useful in service composition,
where failed compositions can be indexed according to the elements or steps
that induced its failure, in order to prevent the system to commit such failure
yet again. Such failure can be very valuable, and we intend to to work in the
future to achieve it.

81

References

ALSARYRAH, O. et al. A fast iot service composition scheme for energy efficient
qos services. In: Proceedings of the 2019 7th International Conference on Computer and
Communications Management. New York, NY, USA: Association for Computing
Machinery, 2019. (ICCCM 2019), p. 231–237. ISBN 9781450371957. Disponível
em: <https://doi.org/10.1145/3348445.3348469>.

ALTMANN, E. M.; SCHUNN, C. D. Decay versus interference: A new look at
an old interaction. Psychological Science, v. 23, n. 11, p. 1435–1437, 2012. PMID:
23012268. Disponível em: <https://doi.org/10.1177/0956797612446027>.

ANDERSON, J. R. et al. An integrated theory of the mind. Psychological Review,
American Psychological Association (APA), v. 111, n. 4, p. 1036–1060, 2004.
ISSN 0033-295X. Disponível em: <http://dx.doi.org/10.1037/0033-295X.111.4.
1036>.

AZIEZ, M. et al. A full comparison study of service discovery approaches for
internet of things. Int. J. Pervasive Comput. Commun., Emerald, v. 15, n. 1, p. 30–56,
abr. 2019.

BAARS, B. J. A Cognitive Theory of Consciousness. New York: Cambridge Univer-
sity Press, 1988.

BAARS, B. J.; FRANKLIN, S. Consciousness is computational: The lida
model of global workspace theory. International Journal of Machine Conscious-
ness, v. 01, n. 01, p. 23–32, 2009. Disponível em: <https://doi.org/10.1142/
S1793843009000050>.

BADDELEY, A. D.; HITCH, G. Working memory. In: BOWER, G. H. (Ed.).
Academic Press, 1974, (Psychology of Learning and Motivation, v. 8). p.
47–89. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0079742108604521>.

BAKLOUTI, F. et al. Performing Service Composition in Opportunistic Net-
works. In: 2019 Wireless Days (WD). Manchester, United Kingdom, United King-
dom: IEEE, 2019. p. 1–4. ISBN 9781728101170. ISSN 2156972X.

82

https://doi.org/10.1145/3348445.3348469
https://doi.org/10.1177/0956797612446027
http://dx.doi.org/10.1037/0033-295X.111.4.1036
http://dx.doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.1142/S1793843009000050
https://doi.org/10.1142/S1793843009000050
https://www.sciencedirect.com/science/article/pii/S0079742108604521
https://www.sciencedirect.com/science/article/pii/S0079742108604521

REFERENCES

BRISCOE, G.; WILDE, P. D. Digital ecosystems: Optimisation by a distributed
intelligence. In: 2008 2nd IEEE International Conference on Digital Ecosystems and
Technologies. [S.l.: s.n.], 2008. p. 192–197.

BURGHART, C. et al. A cognitive architecture for a humanoid robot: a first
approach. In: 5th IEEE-RAS International Conference on Humanoid Robots, 2005.
[S.l.: s.n.], 2005. p. 357–362.

CABRERA, C. et al. The right service at the right place: A service model for
smart cities. In: 2018 IEEE International Conference on Pervasive Computing and
Communications (PerCom). [S.l.: s.n.], 2018. p. 1–10.

CABRI, G. et al. Designing a collaborative middleware for semantic and user-
aware service composition. In: 2016 IEEE 25th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE). [S.l.: s.n.], 2016.
p. 223–228.

CASTILLO, L. d. J. M. Diseño de una arquitectura cognitiva bio-inspirada de memoria
de trabajo declarativa para entidades informáticas. Tese (Doutorado) — CINVESTAV
del IPN Unidad Guadalajara, 10 2020.

CERVANTES, F. et al. A new approach for the composition of adaptive pervasive
systems. IEEE Systems Journal, v. 12, n. 2, p. 1709–1721, 2018.

CHAIB, A. et al. Adaptive service composition in an ambient environment with
a multi-agent system. Journal of Ambient Intelligence and Humanized Computing,
Springer Berlin Heidelberg, v. 9, n. 2, p. 367–380, 2017. ISSN 18685145.

CHEN, N. et al. Goal-Driven Service Composition in Mobile and Pervasive
Computing. IEEE Transactions on Services Computing, v. 11, n. 1, p. 49–62, 2018.
ISSN 19391374.

CLARO, D. B. et al. Web services composition. In: . Semantic Web Services,
Processes and Applications. Boston, MA: Springer US, 2006. p. 195–225. ISBN 978-0-
387-34685-4. Disponível em: <https://doi.org/10.1007/978-0-387-34685-4_8>.

COWAN, N. The magical number 4 in short-term memory: A reconsideration of
mental storage capacity. Behavioral and Brain Sciences, v. 24, n. 1, p. 87–114, 2001.

DOULKERIDIS, C. et al. Towards a context-aware service directory. In: BENA-
TALLAH, B.; SHAN, M.-C. (Ed.). Technologies for E-Services. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003. p. 54–65. ISBN 978-3-540-39406-8.

DOUNCE, I. A. et al. Bio-inspired computational object classification model
for object recognition. Cognitive Systems Research, v. 73, p. 36–50, 2022. ISSN
1389-0417. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S1389041721000802>.

83

https://doi.org/10.1007/978-0-387-34685-4_8
https://www.sciencedirect.com/science/article/pii/S1389041721000802
https://www.sciencedirect.com/science/article/pii/S1389041721000802

REFERENCES

FUNK, C. et al. A model of pervasive services for service composition. In:
MEERSMAN, R. et al. (Ed.). On the Move to Meaningful Internet Systems 2005:
OTM 2005 Workshops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. p.
215–224. ISBN 978-3-540-32132-3.

GÓMEZ-MARTÍNEZ, D. G. et al. A bioinspired model for the generation of a
motivational state from energy homeostasis. Cognitive Systems Research, v. 77,
p. 125–141, 2023. ISSN 1389-0417. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S1389041722000638>.

GONZÁLEZ, J. C. et al. A three-layer planning architecture for the au-
tonomous control of rehabilitation therapies based on social robots. Cogni-
tive Systems Research, v. 43, p. 232–249, 2017. ISSN 1389-0417. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S138904171630064X>.

GUTIÉRREZ-GARCIA, J. O.; SIM, K. M. Agent-based cloud service composition.
Applied Intelligence, Springer Science and Business Media LLC, v. 38, n. 3, p. 436–
464, abr. 2013.

HAMMOND, K. J. Case-based planning: A framework for planning from
experience. Cognitive Science, v. 14, n. 3, p. 385–443, 1990. Disponível em:
<https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1403_3>.

HERNÁNDEZ, O. et al. Bio-inspired task-rule retrieval model with audi-
tory sorting test. Cognitive Systems Research, v. 72, p. 1–13, 2022. ISSN 1389-
0417. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S138904172100084X>.

KANDEL, E. R. et al. Learning and memory. In: . Principles of Neural Science.
New York, NY: McGraw Hill, 2021. Disponível em: <accessbiomedicalscience.
mhmedical.com/content.aspx?aid=1192999623>.

KAPITSAKI, G. et al. Service composition: State of the art and future challenges.
In: 2007 16th IST Mobile and Wireless Communications Summit. [S.l.: s.n.], 2007.
p. 1–5.

KHANOUCHE, M. E. et al. Clustering-based and qos-aware services compo-
sition algorithm for ambient intelligence. Information Sciences, v. 482, p. 419–
439, 2019. ISSN 0020-0255. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0020025519300155>.

KIERAS, D. E.; MEYER, D. E. An overview of the epic architecture for cogni-
tion and performance with application to human-computer interaction. Human-
Computer Interaction, Taylor & Francis, v. 12, n. 4, p. 391–438, 1997. Disponível
em: <https://doi.org/10.1207/s15327051hci1204_4>.

84

https://www.sciencedirect.com/science/article/pii/S1389041722000638
https://www.sciencedirect.com/science/article/pii/S1389041722000638
https://www.sciencedirect.com/science/article/pii/S138904171630064X
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1403_3
https://www.sciencedirect.com/science/article/pii/S138904172100084X
https://www.sciencedirect.com/science/article/pii/S138904172100084X
accessbiomedicalscience.mhmedical.com/content.aspx?aid=1192999623
accessbiomedicalscience.mhmedical.com/content.aspx?aid=1192999623
https://www.sciencedirect.com/science/article/pii/S0020025519300155
https://www.sciencedirect.com/science/article/pii/S0020025519300155
https://doi.org/10.1207/s15327051hci1204_4

REFERENCES

KOLODNER, J. L. et al. A process model of cased-based reasoning in problem
solving. In: Proceedings of the Ninth International Joint Conference on Artificial
Intelligence. [S.l.: s.n.], 1985. p. 284–290.

LAIRD, J. E. et al. A standard model of the mind: Toward a common compu-
tational framework across artificial intelligence, cognitive science, neuroscience,
and robotics. AI Magazine, v. 38, n. 4, p. 13–26, Dec. 2017. Disponível em:
<https://ojs.aaai.org/index.php/aimagazine/article/view/2744>.

LAIRD, J. E. et al. Soar: An architecture for general intelligence. Artificial In-
telligence, v. 33, n. 1, p. 1–64, 1987. ISSN 0004-3702. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/0004370287900506>.

LEI, Y.; JUNXING, Z. Service composition based on multi-agent in the coop-
erative game. Future Generation Computer Systems, v. 68, p. 128–135, 2017. ISSN
0167-739X. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0167739X16302783>.

LIU, C. et al. A reliable and efficient distributed service composition approach
in pervasive environments. IEEE Transactions on Mobile Computing, v. 16, n. 5, p.
1231–1245, 2017.

MARTIN, L. et al. Bio-inspired cognitive architecture of episodic memory. Cog-
nitive Systems Research, v. 76, p. 26–45, 2022. ISSN 1389-0417. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S1389041722000390>.

MASCITTI, D. et al. Service provisioning in mobile environments through op-
portunistic computing. IEEE Transactions on Mobile Computing, v. 17, n. 12, p.
2898–2911, 2018.

MCELLISTREM, J. E. Affective and predatory violence: A bimodal classification
system of human aggression and violence. Aggression and Violent Behavior, v. 10,
n. 1, p. 1–30, 2004. ISSN 1359-1789. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S1359178903000521>.

METTA, G. et al. Yarp: Yet another robot platform. International Journal of Ad-
vanced Robotic Systems, v. 3, n. 1, p. 8, 2006. Disponível em: <https://doi.org/10.
5772/5761>.

METTA, G. et al. icub: the open humanoid robot designed for learning and
developing complex cognitive tasks.

MODHA, D. S. et al. Cognitive computing. Commun. ACM, Association for Com-
puting Machinery, New York, NY, USA, v. 54, n. 8, p. 62–71, aug 2011. ISSN
0001-0782. Disponível em: <https://doi.org/10.1145/1978542.1978559>.

O’REILLY, R. C. et al. 91The Leabra Cognitive Architecture: How to Play 20
Principles with Nature and Win! In: The Oxford Handbook of Cognitive Science.

85

https://ojs.aaai.org/index.php/aimagazine/article/view/2744
https://www.sciencedirect.com/science/article/pii/0004370287900506
https://www.sciencedirect.com/science/article/pii/0004370287900506
https://www.sciencedirect.com/science/article/pii/S0167739X16302783
https://www.sciencedirect.com/science/article/pii/S0167739X16302783
https://www.sciencedirect.com/science/article/pii/S1389041722000390
https://www.sciencedirect.com/science/article/pii/S1359178903000521
https://www.sciencedirect.com/science/article/pii/S1359178903000521
https://doi.org/10.5772/5761
https://doi.org/10.5772/5761
https://doi.org/10.1145/1978542.1978559

REFERENCES

Oxford University Press, 2017. ISBN 9780199842193. Disponível em: <https:
//doi.org/10.1093/oxfordhb/9780199842193.013.8>.

OSTOS, R. et al. Selection of coordination mechanisms in intelligent environ-
ments. IEEE Latin America Transactions, v. 13, n. 9, p. 3120–3126, 2015.

PARRA, L. A. et al. Computational framework of the visual sensory sys-
tem based on neuroscientific evidence of the ventral pathway. Cognitive Sys-
tems Research, v. 77, p. 62–87, 2023. ISSN 1389-0417. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S1389041722000481>.

PINTO, M. F. et al. Arcog: An aerial robotics cognitive architecture. Robotica,
Cambridge University Press, v. 39, n. 3, p. 483–502, 2021.

PLOENNIGS, J. et al. Materializing the promises of cognitive iot: How cognitive
buildings are shaping the way. IEEE Internet of Things Journal, v. 5, n. 4, p. 2367–
2374, 2018.

PRAMANIK, P. K. D. et al. Beyond automation: The cognitive iot. artificial
intelligence brings sense to the internet of things. In: SANGAIAH, A. K. et
al. (Ed.). Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and
Applications. Cham: Springer International Publishing, 2018. p. 1–37. ISBN 978-3-
319-70688-7. Disponível em: <https://doi.org/10.1007/978-3-319-70688-7_1>.

RAYCHOUDHURY, V. et al. K-directory community: Reliable service discovery
in manet. Pervasive and Mobile Computing, v. 7, n. 1, p. 140–158, 2011. ISSN
1574-1192. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S157411921000115X>.

RIESBECK, C. K.; SCHANK, R. C. Inside Case-Based Reasoning. Psychology
Press, 1989. ISBN 9781134930029. Disponível em: <http://dx.doi.org/10.4324/
9780203781821>.

ROMERO, O. J. Cognitively-inspired agent-based service composition for mobile
and pervasive computing. In: WANG, D.; ZHANG, L.-J. (Ed.). Artificial Intelli-
gence and Mobile Services – AIMS 2019. Cham: Springer International Publishing,
2019. p. 101–117. ISBN 978-3-030-23367-9.

SABBOUH, M. et al. Workshop on Web services. World Wide Web Consortium.
Disponível em: <https://www.w3.org/2001/03/WSWS-popa/paper08.html>.

SABBOUH, M. et al. Interoperability. In: Workshop on Web services. [s.n.], 2001.
Disponível em: <https://www.w3.org/2001/03/WSWS-popa/paper08>.

SALAZAR, R. S. et al. Cognitive architecture configuration model for performing
dynamic pervasive service composition. Procedia Computer Science, v. 213, p.
728–737, 2022. ISSN 1877-0509. 2022 Annual International Conference on Brain-
Inspired Cognitive Architectures for Artificial Intelligence: The 13th Annual

86

https://doi.org/10.1093/oxfordhb/9780199842193.013.8
https://doi.org/10.1093/oxfordhb/9780199842193.013.8
https://www.sciencedirect.com/science/article/pii/S1389041722000481
https://www.sciencedirect.com/science/article/pii/S1389041722000481
https://doi.org/10.1007/978-3-319-70688-7_1
https://www.sciencedirect.com/science/article/pii/S157411921000115X
https://www.sciencedirect.com/science/article/pii/S157411921000115X
http://dx.doi.org/10.4324/9780203781821
http://dx.doi.org/10.4324/9780203781821
https://www.w3.org/2001/03/WSWS-popa/paper08.html
https://www.w3.org/2001/03/WSWS-popa/paper08

REFERENCES

Meeting of the BICA Society. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S1877050922018269>.

SAMSONOVICH, A. V. Toward a unified catalog of implemented cognitive ar-
chitectures. In: Proceedings of the 2010 Conference on Biologically Inspired Cognitive
Architectures 2010: Proceedings of the First Annual Meeting of the BICA Society.
NLD: IOS Press, 2010. p. 195–244. ISBN 9781607506607.

SANDOVAL, C. J.; RAMOS, F. F. A proposal of bioinspired motor-system cog-
nitive architecture focused on feed-forward-control movements. Cognitive Sys-
tems Research, v. 67, p. 50–59, 2021. ISSN 1389-0417. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S138904172030098X>.

SCHANK, R. C. Dynamic Memory Revisited. [S.l.]: Cambridge University Press,
1999.

SHEU, R.-Y. et al. Multiagent-based adaptive pervasive service architecture
(maps). In: Proceedings of the 3rd Workshop on Agent-Oriented Software Engineering
Challenges for Ubiquitous and Pervasive Computing. New York, NY, USA: Associa-
tion for Computing Machinery, 2009. (AUPC 09), p. 3–8. ISBN 9781605586472.
Disponível em: <https://doi.org/10.1145/1568181.1568185>.

SOMMER, N. L. et al. Multi-strategy dynamic service composition in oppor-
tunistic networks. Information, v. 11, n. 4, 2020. ISSN 2078–2489. Disponível em:
<https://www.mdpi.com/2078-2489/11/4/180>.

Wired2018 STEWART, J. A Single Drone Helped Mexican Police Drop Crime
10 Percent. 2018 [Online]. Disponível em: <https://www.wired.com/story/
ensenada-mexico-police-drone/>.

TJIONG, M.; LUKKIEN, J. On the consistency of soft-state based service regis-
tration. In: 2008 IEEE Globecom Workshops. [S.l.: s.n.], 2008. p. 1–6.

TRAFTON, J. G. et al. Act-r/e: An embodied cognitive architecture for human-
robot interaction. J. Hum.-Robot Interact., Journal of Human-Robot Interaction
Steering Committee, v. 2, n. 1, p. 30–55, feb 2013. Disponível em: <https://doi.
org/10.5898/JHRI.2.1.Trafton>.

URBIETA, A. et al. Adaptive and context-aware service composition for iot-based
smart cities. Future Generation Computer Systems, v. 76, p. 262–274, 2017. ISSN
0167-739X. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0167739X16308688>.

VERNON, D. et al. The icub cognitive architecture. In: . A Roadmap for
Cognitive Development in Humanoid Robots. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011. p. 121–153. ISBN 978-3-642-16904-5. Disponível em: <https:
//doi.org/10.1007/978-3-642-16904-5_7>.

87

https://www.sciencedirect.com/science/article/pii/S1877050922018269
https://www.sciencedirect.com/science/article/pii/S1877050922018269
https://www.sciencedirect.com/science/article/pii/S138904172030098X
https://www.sciencedirect.com/science/article/pii/S138904172030098X
https://doi.org/10.1145/1568181.1568185
https://www.mdpi.com/2078-2489/11/4/180
https://www.wired.com/story/ensenada-mexico-police-drone/
https://www.wired.com/story/ensenada-mexico-police-drone/
https://doi.org/10.5898/JHRI.2.1.Trafton
https://doi.org/10.5898/JHRI.2.1.Trafton
https://www.sciencedirect.com/science/article/pii/S0167739X16308688
https://www.sciencedirect.com/science/article/pii/S0167739X16308688
https://doi.org/10.1007/978-3-642-16904-5_7
https://doi.org/10.1007/978-3-642-16904-5_7

REFERENCES

VINOSKI, S. Corba: integrating diverse applications within distributed het-
erogeneous environments. IEEE Communications Magazine, v. 35, n. 2, p. 46–55,
1997.

WALDO, J. The jini architecture for network-centric computing. Commun. ACM,
Association for Computing Machinery, New York, NY, USA, v. 42, n. 7, p. 76–
82, jul 1999. ISSN 0001-0782. Disponível em: <https://doi.org/10.1145/306549.
306582>.

WALDO, J. The jini architecture for network-centric computing. In: Commun.
ACM. [S.l.: s.n.], 1999. v. 42, p. 76–82.

WANG, H. et al. A multi-agent reinforcement learning approach to dynamic
service composition. Information Sciences, v. 363, p. 96–119, 2016. ISSN 0020-
0255. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0020025516303085>.

YANG, C.-Y. et al. A brain-inspired self-organizing episodic memory model
for a memory assistance robot. IEEE Transactions on Cognitive and Developmental
Systems, v. 14, n. 2, p. 617–628, 2022.

YANG, K. et al. Policy-based model-driven engineering of pervasive services
and the associated OSS. BT Technol. J., Springer Science and Business Media
LLC, v. 23, n. 3, p. 162–174, jul. 2005.

YOST, G. R.; NEWELL, A. A problem space approach to expert system specifica-
tion. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence
- Volume 1. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989.
(ĲCAI’89), p. 621–627.

YOUNES, W. et al. Towards an intelligent user-oriented middleware for oppor-
tunistic composition of services in ambient spaces. In: M4IOT 2018 - Proceedings
of the 2018 Workshop on Middleware and Applications for the Internet of Things,
Part of Middleware 2018 Conference. Rennes, France: ACM, 2018. p. 25–30. ISBN
9781450361187.

ZHAI, C. et al. A novel cognitive architecture for a human-like virtual player
in the mirror game. In: 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). [S.l.: s.n.], 2014. p. 754–759.

ZHOU, J. et al. Psc-rm: Reference model for pervasive service composition. In:
2009 Fourth International Conference on Frontier of Computer Science and Technology.
[S.l.: s.n.], 2009. p. 705–709.

ZHOU, Z. et al. Energy-aware composition for wireless sensor networks as a
service. Future Generation Computer Systems, v. 80, p. 299–310, 2018. ISSN 0167-
739X. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0167739X17303266>.

88

https://doi.org/10.1145/306549.306582
https://doi.org/10.1145/306549.306582
https://www.sciencedirect.com/science/article/pii/S0020025516303085
https://www.sciencedirect.com/science/article/pii/S0020025516303085
https://www.sciencedirect.com/science/article/pii/S0167739X17303266
https://www.sciencedirect.com/science/article/pii/S0167739X17303266

	List of Figures
	List of Tables
	List of Algorithms
	List of Codes
	Introduction
	Problem Definition
	Justification
	Motivation
	Goals
	Document Organization

	Theoretical Framework
	Cognitive Memory
	Neuroscientific approach: BICAs
	Psychological approach: Dynamic Memory

	Service Composition

	Memory Design
	Requirements
	Types of Services
	Involved Cognitive Modules
	Memory Structure
	CBP-based Process

	Implementation
	Message and MOP structure
	Directory Functions

	Case Study
	Introduction
	Additional Memory Structures
	Experiments
	Discussion

	Conclusions and Future Work
	References

