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Abstract

In real world data, there are some problems where the class structure has an inherent
hierarchical relationship between the classes. In these scenarios, it makes sense to model the
problem using a hierarchical classification approach. The task of hierarchical classification
is defined as a task where the class structure of a dataset can be organized in a taxonomy
or hierarchy. A problem that is often observed in real world data is the imbalanced class
distribution, and this problem also appears in hierarchical classification. The imbalanced
class distribution occurs when there are classes that have a lot more samples than others.
This phenomenon causes the class distribution to be skewed towards the classes that
occur more often, the majority classes. This unequal distribution distribution negatively
affects the classification performance because the classifier tends to benefit the majority
class. Because of this problem, our objective is to evaluate the effectiveness of using
different data resampling approaches in imbalanced hierarchical datasets from different
application domains. To do this, we test well known resampling approaches, such as the
flat resampling, and we also propose new methods, using them with different kinds of
local hierarchical classifiers and resampling algorithms from the literature. Our choice
to use local hierarchical classifiers is because there are few works in the literature that
investigate imbalanced distributions in local hierarchical classification problems. After
testing both the well known data resampling approoaches and the proposed ones, we
evaluate their effectiveness compared to a baseline, where no resampling is used. Our
results reported that data resampling yields statistically significant improvement to the
classification performance and also that one of the proposed data resampling approaches

was the best ranked approach in one of the local hierarchical classification scenarios.

Keywords: Hierarchical classification, Imbalanced Learning, Class Imbalance, Resampling

algorithms.
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1 Introduction

The interest on Machine Learning applications in real world problems has been
experiencing a big increase in the past decade. The expectations on this field of study
have never been higher, and it is expected that the Machine Learning field will continue
to experience a substantial growth in the next few years (COLUMBUS, 2020).

One of the main areas of study in Machine Learning is the supervised learning task,
also known as, classification. Even with the classification algorithms, there are different

types of problems that they can handle, such as:

o Binary: In this type of classification, the task is to assign a given data example to
one out of two classes (PARMIGIANI, 2001).

o Multi-class: In this type of approach, the task is to assign each data example to one
label from a set of previously defined labels (SAHARE; GUPTA, 2012).

o Multi-label: In this approach, each data example is associated with a set of labels
from a set of previously defined labels (TSOUMAKAS; KATAKIS, 2007).

o Hierarchical Classification: The main difference between hierarchical classification
algorithms and the previous ones, is that, according to (SILLA; FREITAS, 2011),
the outputs of these classifcation problems are defined according to a class taxonomy

or hierachy. These classes are connected to each other through the IS-A relationship.

Nowadays, classification models may apply to a diverse range of domains, and when
we deal with real world problems, there is a challenge for the Data Mining community
that many researchers face: the class imbalance problem (FERNANDEZ et al., 2013). This
happens mainly because real world datasets usually have classes that occur more frequently
(majority classes) and other ones that have fewer occurrences (known as minority classes).
The classification algorithms usually benefit the majority classes at the expense of the
minority ones. However, sometimes our main interest is to label the rare patterns instead
of the most frequent ones, such as in credit card fraud detection (KUMAR et al., 2015)
and medical image classification (PEREIRA et al., 2020; BAT et al., 2019; ARIAS et al.,
2016; ABDULRAZZAQ et al., 2020).

The main issue with imbalanced datasets used in standard classification algorithms
is that they are suitable for balanced scenarios, but when there is a class imbalance, it is
very likely that the classifier will be biased towards the majority classes (FERNANDEZ
et al., 2013). Because of this, the classifier will have a limited capacity to identify the
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samples from the minority classes, which could be problematic in some domains where the

main interest is to identify the classes that represent rare patterns.

A good example where this kind of issue may arise is in the medical imaging
domain. Imagine a scenario where the majority class has examples labeled as "healthy"
and the minority class has examples labeled as "not healthy". If we train the classifier with
this dataset, without any sort of approach to handle the class imbalanceness, it would be
biased towards the "healthy" examples, so there is a higher probability that the classifier
would predict as a "healthy" sample. The cost of misclassification in this scenario is very
high, once that if we diagnose a "not healthy" patient as "healthy", that could have very

serious consequences.

According to (LOYOLA—GONZALEZ et al., 2016), there are also multiple ap-
proaches used in the literature to deal with the class imbalanceness issue. The most well
known are: data-level, algorithmic-level and cost-sensitive. The data-level approach is
considered the most versatile approach, because it is applied only to the dataset which
makes it independent of the classification algorithm being used. The most widely used
data-level technique is called data resampling, which consists in creating or removing data

examples from the dataset in order to make the class distribution balanced.

The imbalanced data issue is something that could also happen in hierarchical
classification scenarios. Because of this, we propose to conduct a study to assess the
effectiveness of data resampling applied to the hierarchical classification task, in multiple
domains. In this work, we aim to test well known data resampling approaches and also to
propose new ones. Our main interest is to establish a baseline where no resampling is used
and then compare it with the results obtained using different data resampling approaches

to evaluate how effective these techniques are.

1.1 Objectives

To cope with the imbalanced class distribution problem that negatively affects the
hierarchical classification performance, the main objective of this work is to evaluate the
use of different data resampling approaches for the hierarchical classification task, using
local classifiers, and compare their effectiveness with a baseline. To achieve this goal, we

define following specific objectives:

1. Establish a baseline where no data resampling approach is used.

2. Evaluate the use of resampling algorithms in hierarchical classification datasets (flat

resampling).

3. Evaluate the use of resampling algorithms in hierarchical classification datasets,
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considering the local class distributions at each local classifier and applying the

resampling algorithms at local level (local resampling).

4. Evaluate the use of resampling algorithms in hierarchical classification datasets,
considering the local class distributions at each local classifier and applying the

resampling algorithms at local level for selected classes (threshold selective resam-

pling).

5. Evaluate the use of resampling algorithms in hierarchical classification datasets, con-
sidering the local class distributions at each local classifier and applying the different

resampling algorithms for each one of local classifiers (local selective resampling).

1.2 Hypothesis

o Hypothesis: The proposed resampling approaches outperform the baseline approach

(without resampling) for hierarchical classification problems.

1.3 Contributions

This work aims to contribute to the scientific community with an evaluation and
analysis of how the performance of local hierarchical classifiers is affected when data
resampling techniques are applied to hierarchical datasets. It is noteworthy that some of
the results obtained during the development of this work were used in a paper that was
accepted and presented at the 21st IEEE International Conference on Biolnformatics and
BioEngineering (BARROS et al., 2021).

We also proposed new resampling approaches, the Threshold Selective and the
Local Selective approaches, with the objective to improve the hierarchical classification

results obtained with existent approaches, such as the Flat Resampling approach.

Besides contributing scientifically and technically, we used this effort to bring
positive impact to the society as well, by participating of a competition sponsored by the
government of the state of Sao Paulo, where the objective was to develop a solution using
machine learning to help in the COVID-19 identification through Chest X-Ray (CXR)

images (Secretaria de Desenvolvimento Economico, 2020).

1.4 Document Structure

The structure of this document is organized as it follows: chapter 2 provides us
theoretical background on the hierarchical classification and imbalanced data topics. In

chapter 3, we provide a review and summary on the recent works in the literature that
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treated the class imbalanceness issue for hierarchical classification tasks in a similar way.
The next section talks about what is the methodology we developed to implement our
proposals. In chapter 5, we present and analyze the results. Finally, in chapter 6, the

concluding remarks are discussed, considering the results that were obtained.



2 Theoretical Background

In this chapter, the main concepts used throughtout this work are discussed. In
section 2.1, the conceptual knowledge of the hierarchical classification task is presented
and explained. In this work we will be focusing in the local classifiers and because of
that we will not discuss the global classifiers in detail. Section 2.4 presents the most used
approaches to resolve the class imbalance issue and some of the most commonly used

resampling algorithms.

2.1 Hierarchical Classification

The hierarchical classification task, a type of supervised learning, could be briefly
defined as a classification task where its classes are hierarchically related to each other,
making it possible to represent their relationship using a taxonomic structure. In this task,
we are considering exclusively those problems where this hierarchy is pre-defined, which

means that it is inherent to the problem.

In order to have a clearer understanding about how these structures are organized,
we further detail the definitions and terms from the hierarchical classification domain in
the section 2.2.

2.2 Definitions and Terminology

The first important definition that we need to understand the hierarchical clas-
sification task is the definition of taxonomy. Let us consider a tree structured hierarchy
where the set of all the possible classes in this problem is represented by C' and the <
symbol represents the "IS-A Relationship". According to (SILLA; FREITAS, 2011), this

relationship may be considered as asymmetric, anti-reflexive and transitive:

The greatest element "R" is the root of the tree.

e Ve, c; € Cif ¢; < ¢jthen ¢; £ ¢

Vci S C, C; 7Q C;

e Ve, cj,cp, € Coci < ¢ and ¢j < ¢ imply ¢; < ¢y,

If the class structure of the problem being studied satisfies the aforementioned

properties, that means that it is a hierarchical classification problem. These four properties
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were tailored for tree structures, but it is also adequate for problems that are modeled
with a Directed Acyclic Graph (DAG).

After evaluating if the class structure represents a hierarchical classification problem
and confirming that it does, based on (SILLA; FREITAS, 2011), we can also categorize

this problem according to the following features:

o The type of structure representing the hierarchical structure

— Tree: which means the classes are arranged in a tree structure.

— Graph: which means the classes are arranged in a DAG structure.

o If a data instance is allowed to be associated with a single or multiple paths of the

hierarchy

— Single Path of Labels (SPL): means that the instance may have only one path
of labels down the hierarchy.

— Multiple Path of Labels (MPL): means that the instance may have more than
one path of labels down the hierarchy. It is a synonym of the term "hierarchically

multi-label".
o The label depth for each data instance

— Partial Depth (PD): indicates that the labels for each data instance may be

intermediate classes, without reaching the leaf nodes.

— Full Depth (FD): indicates that all the labels for all data instances are leaf

nodes.

According to (SILLA; FREITAS, 2011), we can also categorize the classification
algorithm that will be produced to handle this hierarchical classification problem. Note
that, even though some of them sound familiar to the previous categorization, they refer

to different entities (algorithms vs problems). They are the following ones:

o Whether the algorithm will be capable to predict label in a single or multiple paths
in the hierarchy.

— Single Path Prediction (SPP): The algorithm is capable of associating each

data instance with a single path of labels.

— Multiple Path Prediction (MPP): The algorithm is capable of associating each

data instance with multiple paths of labels.

o The prediction depth of the algorithm
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— Mandatory Leaf Node Prediction (MLNP): Indicates that the algorithm will

always predict leaf classes.
— Non-Mandatory Leaf Node Prediction (NMLNP): Indicates that the algorithm
is able to predict classes at any level, including leaf ones.

e Which taxonomy the algorithm is able to use

— Tree: means that the algorithm can handle classes that are arranged in a tree.

— DAG: means that the algorithm can handle classes that are arranged in a DAG.
o The algorithm type

— LCN: For this particular case, it is important to specify which strategy will
be used to select the positive and negative examples. These strategies are also
called policies, as mentioned below:

x Exclusive
* Less Exclusive
* Less Inclusive

* Inclusive

*

Siblings
* Exclusive Siblings
— LCPN
— LCL
— Global Classifier

In order to categorize a real world problem and the algorithm to be used, let us
consider a sample dataset based on a real-life dataset. In this sample dataset, we use as
an example a pneumonia detection dataset with chest x-ray (CXR) images that represent
healthy or unhealthy lungs. The healthy images come from the RYDLS dataset (PEREIRA
et al., 2020), and the unhealthy ones come from the C-19 IDC (COHEN et al., 2020)
dataset. This dataset has data instances with SPL and FD. The final hierarchical structure
is the tree presented in figure 1, and the final distribution that we will use throughout our

examples is presented in table 1.

2.3 Local Classifier Approaches

The local classification approaches are among the most common hierarchical
classification approaches in the literature. The main idea behind them is to take the

underlying hierarchy of the problem into account, to use the information with a local
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Table 1 — Class labels for a Sample dataset based on the RYDLS C-19 IDC dataset

Sample Dataset

Class Count
R/Normal 1000
R/Viral/COVID-19 479
R/Fungal /Pneumocystis 30
R/Bacterial /Streptococcus 22
R/Viral/SARS 16
R/Lipoid 13
R/Bacterial/Mycoplasma 11
R/Bacterial/Klebsiella 10
R/Bacterial/Legionella 8

Normal] Lipoid ] {Fungal

Pneumocystis] [Streptococcus

[ Klebsiella Legionella ]

Figure 1 — Taxonomy produced from the class labels in table 1

Mycoplasma] COVID-19 ] ‘ SARS ’

perspective. There are three well-known classifier types that use this local information
from three different perspectives: the local classifier per node (LCN), the local classifier
per parent node (LCPN) and the local classifier per level (LCL). These three approaches

are explained in more detail in the next sections.

2.3.1 Local Classifier per Node (LCN)

This is one of the most widely used local approaches in the hierarchical classification
domain. Basically, it is consisted of one binary classifier for each class in the hierarchy. The
figure 2 presents an example of how this approach would work for the hierarchy presented
in figure 1. As we can see, each of the nodes will contain a binary classifier which will

predict the samples as belonging to the positive examples or the negative ones.

Also, as mentioned in section 2.2, the distinction between the positive and negative

examples for each of these classifiers is done using policies. Let us use the terminology in
table 2 defined by (SILLA; FREITAS, 2011) to define each policy.
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Figure 2 — LCN example based on the hierarchy produced in figure 1

Table 2 — Notation used in the definition of each policy

Symbol Meaning

T, All training examples

Tt(c;)  Positive training examples of ¢;

T (¢;)  Negative training examples of ¢;

1 (¢) The parent of ¢;

1 (¢) The set of children of ¢;

1 (¢5) The set of ancestors of ¢;

U (¢)) The set of descendants of ¢;

< (¢;)  The set of siblings of ¢;

*(c;) Examples whose the most specific class is ¢;

Exclusive: In this policy, 7" (¢;) is represented only by x(c;) , while 7,7 (¢;) = \ * (¢;).
In this example, let us consider the hierarchy in figure 1. If we assume ¢; = Viral class,
we would have 7" (¢;) = Viral and 7, (¢;) = Viral/COVID-19, Viral/SARS, Bacterial,
Bacterial /Streptococcus, Bacterial /Klebsiella, Bacterial/Mycoplasma, Bacterial/Le-
gionella, Normal, Lipoid and Fungal /Pneumocystis. This may sound inconsistent

because the set of children of ¢; is marked as negative.

Less Exclusive: The inconsistency observed in the previous policy is resolved here.
The positive examples T.F(¢;) = *(c;) while the negative examples T, (¢;) =
\ * (¢;)U ) (¢;). In this case, we would have T"(¢;) = Viral and T, (¢;) = Bacterial,

Bacterial /Streptococcus, Bacterial/Klebsiella, Bacterial/Mycoplasma, Bacterial/Le-

gionella, Normal, Lipoid and Fungal/Pneumocystis.

Less Inclusive: In this policy, the descendant examples of class ¢; are included as
part of the positive examples. T, (¢;) = *(c;)U | (¢;) and T,7 (¢;) = \ * (¢;)U I (¢5).
In our example, the positive examples would be T, (¢;) = Viral, Viral/COVID-19,

T

Viral/SARS and 7, (¢;) = Bacterial, Bacterial /Streptococcus, Bacterial/Klebsiella,

T
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Bacterial /Mycoplasma, Bacterial/Legionella, Normal, Lipoid and Fungal/Pneumo-

cystis.

o Inclusive: The only difference compared to the "Less Inclusive" policy is that, for this
one, any ancestors f} (¢;) are excluded from the negative examples. Thus, we have
T (c;) = *(c;) UV (¢;) and T,7 (¢j) = \ * (¢;)U I (¢;)U A (¢j). In our example, we

would need to remove any ancestors of the Viral class from the negative examples, if

there were any.

« Siblings: In the siblings policy, the positive examples are consisted of the ¢; class
and its descendants while the negative ones are consisted of the ¢; siblings and its
descendants. Thus, we have: T (¢;) = *(¢;)U | (¢j) and T, (¢;) =< *(c;)U | (<
(¢;)). In our example, T.F(¢;) = Viral, Viral/COVID-19, Viral/SARS and T, (c;)
= Bacterial, Bacterial/Streptococcus, Bacterial /Klebsiella, Bacterial /Mycoplasma,

Bacterial /Legionella, Normal, Lipoid and Fungal/Pneumocystis.

o Exclusive Siblings: The main difference between this policy and the Siblings one
is that we do not take into account the descendants of ¢;. Thus, we would have:
T (cj) = *(¢;) and T (¢;) =« *(c¢;). In our example, the positive examples would

be from the Viral class and the negative ones would belong to the Bacterial, Normal,

Lipoid and Fungal classes.

2.3.1.1 Training Phase

The training phase of a LCN classifier is done independently of the hierarchical
structure being used, we traverse the Tree or DAG passing through all the nodes and
training the binary classifiers in each one of them. The training process ends when we

reach the end of the structure.

2.3.1.2 Prediction

Differently from what was discussed in the training phase, the prediction process in
the LCN is far more complicated. A common approach used in the hierarchical classification

domain is the top-down approach.

This approach was originally proposed in (KOLLER; SAHAMI, 1997). Basically,
the prediction at each level [ of the hierarchy (except at root level) entirely depends on the
prediction made at the previous (or parent) level [ — 1. Using the hierarchy produced in
figure 1 as an example, let’s say that at level 1, the output for the Bacterial classifier is true
and all the other ones are false. The next level will narrow down the choices only to those
classes that are a child of the Bacterial node. This means that only the Streptococcus,

Klebsiella, Mycoplasma and Legionella classes will be considered in the next prediction at
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level 2. An example predicting a data instance from class Streptococcus is shown in figure
3.

Bacterial

Normal [ Lipoid [Fungal
T

False False False
| 2

Pneumocystis] %treptococcus] Klebsiella ] Legionella ] [COVID-19

True False False False

[ SARS ’

Figure 3 — Prediction using the top-down approach for the LCN scenario

Mycoplasma]

Even tough the top-down approach solves the inconsistency problems of classifying
a data instance as Viral/Streptococcus in our example, there is also another problem when
this approach is used together with the LCN classifier. What if we are dealing with a
NMLNP problem? In this case, we need a criterion to stop the prediction before it reaches
the leaf levels. Another issue that may arise at this point is if all the classifiers at a certain
level return us a false prediction. If that happens, we would face a "blocking" problem. In
figure 3, imagine if all the binary classifiers from level 1 had a false response. We would
not be able to continue the prediction to level 2 if the problem is MLNP, or, if we are
dealing with a NMLNP problem, we would not have a predicted class. This issue will be

further elaborated in section 2.3.4.

2.3.2 Local Classifier per Parent Node (LCPN)

Another approach found in the literature that copes with local information in the
hierarchical classification dominain is the LCPN. The main difference between the LCPN
and the LCN is that the LCPN uses a multi-class classifier for each parent node in the class
hierarchy. These classifiers are trained to distinguish data instances that belong to classes
of any of its child nodes (SILLA; FREITAS, 2011). Figure 4 presents an example of the
hierarchy for this scenario. Each of the nodes that were highlighted will have a multi-class
classifier. An important observation here is that, from an implementation perspective, the

Fungal class will not have a classifier because it has a single child class.

In the same way as the LCN, this approach also needs some policies to determine

the positive and negative classes for each multi-class classifier. The "siblings" and "exclusive-
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Lipoid

Normal] .' [Fungal '

Pneumocystis]

Klebsiella

[ Legionella ]

Figure 4 — LCPN example based on the hierarchy produced in figure 1

Streptococcus] [Mycoplasma COVID-19 ] ‘ SARS ’

siblings" policies, mentioned in section 2.3.1, are both adequate to be used with the LCPN
approach.

2.3.2.1 Training Phase

The training process of the LCPN is very similar to the one described for the LCN.
The hierarchical structure is traversed, passing through all the nodes. For each parent
node, we will have a multi-class classifier which will be trained with the positive examples

for that node. The training algorithm ends when the last parent node is reached.

2.3.2.2 Predict

The prediction process for the LCPN using the top-down approach shares simi-
larities with the LCN process. The main difference here is that we will have multi-class
classifiers instead of binary ones. Figure 5 shows an example of the top-down prediction
considering the LCPN scenario. In this case, a data instance from class Bacterial/Strepto-

coccus is being predicted.

In this case, the prediction starts at root level. The root classifier predicted a
Bacterial class, then the process continues in the Bacterial parent node. This last classifier
then predicts that the data instance belongs to the Streptococcus class. Since the problem
presented is MLNP and FD, the prediction is then completed.

2.3.3 Local Classifier per Level (LCL)

The LCL consists of using one multi-class classifier for each level in the hierarchy.
Figure 6 adapts the example of the dataset presented in table 1 to show a LCL classifier

using that hierarchy. As we have two levels, we would have two multi-class classifiers.
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Predicted:
.+ Bacterial

. B | Predicted:
NormaIJ [ Lipoid J [Fungal .“ ;'Streptococcus
Klebsiella ] MycoplasmaJ

PneumocystisJ %treptococcu% LegionellaJ [COVID—19

Figure 5 — Top-down approach for the LCPN scenario.

N

[ SARS ’

~

[Streptococcus

/

Figure 6 — LCL example based on the hierarchy produced in figure 1

2.3.3.1 Prediction

The prediction for the LCL scenario may also be done using the top-down approach
mentioned for both LCPN and LCN scenarios. Similarly to the LCPN classifier, after a
prediction is done at a certain level [, only the child classes of the node predicted at level [

will be considered for the prediction at level [ + 1.

Figure 7 shows an example of a top-down prediction using the LCL classifier.
In this case, we can see that at the first level of the hierarchy, the predicted class was
Bacterial. Then, when we move to the second level. According to the top-down method,
the only options available here, are the child nodes of Bacterial: Streptococcus, Klebsiella,

Mycoplasma and Legionella. The predicted class was Streptococcus.
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H Predicted:
i | Normal Bacterial

Klebsiella Legionella

i [Pneumocystis] %treptococcu% [Mycoplasma]

Predicted:
Streptococcus

Figure 7 — Top-down prediction for the LCL classifier

2.3.4 The blocking problem

The blocking problem happens during the prediction phase in the top-down ap-
proach and it may happen in any of the local classifiers (LCN, LCPN or LCL). Blocking
happens when, during the prediction, the classifier predicts that a certain data instance
does not have any class associated with it. Because of this, the top-down prediction cannot
continue, or, if we have a NMLNP problem, we will not have a label for that data instance.

Let us consider the example of the blocking problem applied to the LCN scenario, presented
in figure 8.

[NormaIJ i [LipoidJ i [Fungal ; '
False ) IS B
Pneumocystis] Klebsiella ] Mycoplasma] Legionella]

Figure 8 — Blocking problem in the LCN classifier

Streptococcus

COVID-19 ] ‘ SARS ]

As we can see, in this case, the predictions at the first level show that the data

instance has no class associated with it, because all the binary classifiers did not identify
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the sample as belonging to any of the classes at that level. Because of this, the prediction
is "blocked" and neither will stop at this level nor continue to the next one. In order to

avoid this, there are some strategies to solve this issue, as defined in (SUN et al., 2004):

o Threshold reduction method: Reduce the probability threshold of the classifiers, in

order to be able to allow more examples to be passed to the classifiers at lower levels.

o Restricted voting: This method depends on a set of secondary classifiers to link a
node to its grandparent. Basically, this set of secondary classifiers will be trained
with a different training set, and will act as a second opinion about which class
the sample belongs to. To classify a sample with class C, both main and secondary

classifiers must agree with each other at grandparent and parent levels.

o Extended multiplicative thresholds: This rule is an extension of the threshold rule
defined by (DUMAIS; CHEN;, 2000), where the authors propose a rule for a two-level
hierarchy. To label an example with a specific class, the posterior probabilities at the
first and second levels must be higher than a threshold. In the extended multiplicative
version of this rule, we consider the product of the posterior probabilities at the first

and second levels, and then compare this product with the threshold.

2.3.5 Evaluation Metrics

According to (SILLA; FREITAS, 2011), there are many works in the literature
that use different metrics to evaluate hierarchical classification algorithms. Some of them
use flat classification metrics such as precision, recall and f-measure while others even
propose their own metrics. However, there is a study, proposed by (KIRITCHENKO et
al., 2006) where the author proposes hierarchical classification metrics that shows that
using this metrics had a difference of 29.39% in the worst case scenario, compared to the
flat evaluation metrics. The main question that comes up is: is it adequate to evaluate a
hierarchical classification model using metrics that are suited for flat classification models?

What if we evaluated them using hierarchical measures as well?

If we want to specifically use hierarchical measures to evaluate these models, which
ones should we use? Some new adapted metrics were proposed by (KIRITCHENKO et al.,
2005). These measures are extensions of the widely used precision, recall and f-measure

metrics. Let us define the variables involved in these calculations:

« i: a data instance from the testing data

A

o P;: the set of the most specific classes predicted for instance @

e Ti: the set of the true most specific classes for instance i
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e hP: hierarchical precision
e hR: hierarchical recall
o hF" hierarchical f-measure
Using these definitions, we have:
|BNT;
pp = Zilbi0 T (2.1)
|2
|BNT,
i = 20T (2.2)
| T3]
2+ hP *xhR
hF = ———— 2.
hP + hR (23)

To have a better understanding of how these metrics work, let us consider the

following examples:

« a) Predicted Class: R/Bacterial - True Known Class: R/Bacterial /Streptococ-

cus

e b) Predicted Class: R/Viral/COVID - True Known Class: R/Viral/COVID

« ¢) Predicted Class: R/Viral/SARS - True Known Class: R/Viral/COVID

For all these cases, we will ignore the root R. Solving example a), we would have:

WP — > |Bacterial N Bacterial / Streptococcus| 1

> |Bacterial| 1

hR - > |Bacterial N Bacterial / Streptococcus| 1

> | Bacterial / Streptococcus| 2

_2*1*0.5

hF = =1/1.5=0.67
1+0.5 /

By solving example b), we would have:

_ X |Viral/COVID N Viral/COVID| 2 1

hP
> |Viral/COVID| 2

_ X |Viral/COVID N Viral/COVID| 2 1

hR
> |Viral/COVID| 2

Z =1

- =0.5

(2.4)

(2.5)

(2.6)



32 Chapter 2. Theoretical Background

hF="""""_9/2= (2.9)
And finally, for example ¢), we have:

_ X |Viral/SARS N Viral/COVID| 1

hP —=0.5 2.10
> |Viral/SARS| 2 (2.10)

> |Viral/SARS N Viral/COVID| 1
hR — — 205 2.11
> |Viral/COVID| 2 (2.11)

2x0.5%0.5

F=—""—=05/1=0. 2.12
h 0.5+0.5 05/ 05 ( )

2.4 Imbalanced Data

The imbalanced data issue appears when the number of data instances that belong
to the majority class is very different from the amount belonging to the minority one.
The simplest way to identify if the dataset is imbalanced is by computing the Imbalance
Ratio (IR), defined in (ORRIOLS-PUIG; BERNADO-MANSILLA, 2009):

IR = Nimagority (2.13)

N, minority
If the result of this operation is greater than 1, that means that we have more
samples from the majority class than the minority one. The bigger the value becomes, the
more imbalanced the dataset is. This kind of issue is common when we use real world data

to build classification models once that real world data tends to be imbalanced.

In many fields of study, there is usually a lot more samples that belong to a majority
class and a lot less samples belonging to a minority class. Some of the domains where
this is common are: medical imaging, anomaly detection, credit card fraud detection and
many others. This happens because there is a pattern in these datasets that occurs more
often than the others. The minority classes, which have fewer occurrences, are usually
associated with the classes of main interest or the most important concepts to be learned.
In the medical imaging domain, they are usually associated with pathologies, in credit
card detection they are usually associated with fraudulent transactions and in anomaly

detection they are associated with anormal behavior.

This inherent imbalance in the class distribution brings us a big issue to the
construction of classification models for these datasets. Because of this big difference in
the number of examples belonging to the majority class compared to the minority one,

the predictions of this trained model will be most likely be biased towards the majority
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class, which means that there is a higher chance that the classifier will label the sample as

belonging to the majority class.

Because of this, there are multiple approaches to deal with class imbalance. They
will be further detailed in section 2.4.1.

2.4.1 Dealing with data imbalanceness

There are multiple approaches to deal with the class imbalance in classification
problems. According to (FERNANDEZ et al., 2013), these approaches are grouped in

three main groups:

« Data level: This approach consists in resampling the data in order to overcome the
class imbalance issue. They are mostly based on algorithms that create new data
instances based on the existing ones. It may be considered an external approach

because it mostly deals with the data distribution of the dataset.

o Algorithmic level approaches: This is a solution that is focused on adapting the
classification algorithm to reinforce the learning towards the minority classes. This
may be considered as an internal approach, once that it tries to modify the algorithm

to make it more suitable for the minority class.

o Cost-sensitive: These solutions are suitable to be applied to data and algorithmic
level, or even both used together. The focus of this approach is to minimize the

misclassification cost.

The data level approach is considered more versatile because it does not have any
dependencies of the classification algorithm, once that we can simply resample the data as
a pre-processing step and use it in any classification algorithm. These resampling methods
are divided in three sub-groups: undersampling, oversampling and hybrid. Each one of

them is defined as it follows, and presented in figure 9.

o Undersampling: consists in eliminating data instances from the majority classes.
o Oversampling: consists in creating synthetic data examples for the minority classes.

o Hybrid: This method is a combination of undersampling and oversampling techniques.
It consists in using oversampling to create synthetic examples for the minority classes

while also doing some data cleaning in the examples of the majority class.
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Figure 9 — Oversampling and Undersampling

The algorithmic and cost sensitive approaches will not be further detailed because
the focus of this work is the resampling approaches. Section 2.4.2 will detail some examples

of algorithms from each of the resampling methods.

2.4.2 Resampling and Algorithms

In this section, some of the most common resampling algorithms in the literature
will be presented and detailed. Figure 10 represents the class distribution of a synthetic
dataset in a binary classification problem which will be used throughout the examples of
each resampling algorithm. In order to make the example easier to understand, the dataset

has a total of 100 samples only, as presented in table 3.
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Table 3 — Class distribution of the synthetic dataset

Original
Class No.
of samples
0 90
1 10

Original Dataset
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Figure 10 — Synthetic binary classification dataset used in the resampling algorithms
examples

2.42.1 Random Oversampling (ROS)

The Random Oversampling (ROS) algorithm is a method which uses the random
replication of existing minority class samples to tackle the class imbalance issue. The
major drawback of this kind of approach to deal with imbalanceness is that it increases
the likelihood of overfitting. In a hypothetical classifier, we may be able to construct an
adequate model to this dataset, however, as we have replicated new samples, the classifier
will probably biased towards these examples (BATISTA; PRATI; MONARD, 2004). For
our example, after applying the ROS algorithm would result in the new class distribution

presented in table 4.

As mentioned earlier, the new samples created by the ROS algorithm are basically
random duplicates of the existing ones. Because of this, if we look at the dataset before and
after the resampling is applied, as presented in figure 11, it seems that nothing happened.
However, this is not true. The figures look alike because the synthetic examples were

replicated from the existing ones.



36 Chapter 2. Theoretical Background

Table 4 — Class distribution of the synthetic dataset after using the ROS algorithm

No.
Class
of samples
Original Dataset Resampled dataset - Random Oversampling
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Figure 11 — Class distribution of the synthetic dataset after resampling it with Random
Oversampling

2.4.2.2 Synthetic Minority Oversampling Technique (SMOTE)

The SMOTE was initially proposed by (CHAWLA et al., 2002), and its main
purpose is to generate new synthetic examples for the minority class, using the existing

examples as a starting point.

Basically, the oversampling occurs as it follows: new synthetic examples are intro-
duced for the minority class along the segments that join the k-nearest neighbors of the
minority class sample (CHAWLA et al., 2002). This is done through the interpolation of
the nearest neighbors, as it follows: the algorithm will calculate the difference between a
feature vector of a sample and its nearest neighbor, which basically is the distance between
them. Then, it will multiply this value by a random number between 0 and 1, causing
it to create a new point along the line that connects the two feature vectors. Figure 12

shows how the new synthetic examples through interpolation.
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Xi2

Figure 12 — How the SMOTE synthetic examples are created, for a sample x; with 5
nearest neighbors.

In figure 12, we see that the example x; has 5 nearest neighbors, represented by

Ti1, Ti2, T3, Tis and x;5. The new synthetic examples are represented by 71,79, 13,74 and rs.

In order to have an example of how the point in between them is calculated, Let
us consider a sample S = (6,5) and its nearest neighbor N = (4, 3) as its nearest neighbor.
Let us consider the following notation: f;;, where ¢ represents the sample (1 for S, 2 for
N) and j represents the feature number. Thus, for sample S we have fi; and fi2, while
for sample N we have fo; and fos We calculate the new sample through the following

expression:

R; = S;j +rand(0,1) * (fa1 — fi1, fa2 — fi2) (2.14)
R; = (6,5) + rand(0,1) x (6 — 4,5 — 3) (2.15)
Ri = (6,5) + rand(0,1) * (2,2) (2.16)

The new class distribution after resampling is presented in table 5.

Table 5 — Class distribution of the synthetic dataset after resampling it with SMOTE

SMOTE
Class No.
of samples
0 90

1 90
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In figure 13, we can see how the new samples were distributed after applying the

resampling algorithm. It is possible to notice that new examples were created in random

spots between the existing ones.
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Resampled dataset - SMOTE
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Figure 13 — The difference in the dataset distribution after resampling it with SMOTE

2.4.2.3 Borderline-SMOTE

In the studies of (HAN; WANG; MAO, 2005), the author suggests that the data
instances that are far from the borders of the clusters contribute a little for the training
process of the classifier. Because of this, the authors propose two new oversampling
algorithms called borderline-SMOTE]1 and borderline-SMOTE2. The main difference of
these two new methods to the other oversampling algorithms is that only the minority class
examples at the borderline are oversampled, instead of oversampling all of the examples.
These new algorithms are based on the SMOTE oversampling algorithm. The new class

distribution is presented in table 6.

The result of the new distribution is also presented in figure 14. As discussed earlier,
the Borderline-SMOTE algorithm aims to reinforce the borders of the clusters. Because of
this, if we look at the borders of the cluster for class 1 in our example, we can see that
a lot more samples were created close to the border. The farther we go away from the

border, less new samples were created.

Table 6 — Class distribution of the synthetic dataset after resampling it with Borderline-

SMOTE
Borderline-SSMOTE
Class No.
of samples
0 90

1 90
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Original Dataset

Resampled dataset - Borderline SMOTE
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Figure 14 — The difference in the dataset distribution after resampling it with Borderline-
SMOTE

2.4.2.4 Adaptive Synthetic Sampling (ADASYN)

The idea behind the ADASYN algorithm is to be an adaptative approach where
more synthetic data is generated for the minority class examples that are harder to learn
compared to those that are easier to learn. To do this, the algorithm uses a density
distribution that measures how difficult it is to learn minority classes examples. This
measurement is used in order to decide the number of synthetic examples that will be

generated for each minority class example.

As an example, let us consider x; an example from the set of minority class samples,
the number of minority class examples as mg, the number of nearest neighbors based on
the Euclidean distance as K, and A; as the number of majority class examples within the

K nearest neighbors of ;. We then calculate the ratio r;:

(2.17)

Then, in order to obtain a density distribution, we normalize the expression 2.17:

li (2.18)

721' = s
2T
n=1

Greater values of 7, represent examples that are more difficult to learn and thus

more synthetic examples will be generated in these cases.

The main objective of doing this is to reduce the bias introduced by class imbalance
and also reinforce the classification task towards the difficult examples (HE et al., 2008).
Table 7 shows the new class distribution after applying the ADASYN algorithm to the
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dataset, and in figure 15 we present the comparison between the original dataset and the

new dataset, after applying resampling with ADASYN.

Table 7 — Class distribution of the synthetic dataset after resampling it with ADASYN

ADASYN
Class No.
of samples
0 90
1 90

Figure 15 — The difference in the dataset distribution after resampling it with ADASYN
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2425 SMOTE-Tomek

The SMOTE-Tomek algorithm is also one of the hybrid approaches to resample
data. It is based on the SMOTE algorithm in the oversampling phase, and it also uses the
Tomek links algorithm as data cleaning method. Frequently, datasets have class clusters
that are not very well defined. In some cases, data examples from the majority class
invade the minority class spaces. The opposite is also true, mainly when we introduce new
examples for the minority class, which could lead to overfitting when trying to induce a

classifier in this situation.

Because of this, the main purpose of the SMOTE-Tomek algorithm is to oversample
the minority classes instances using the SMOTE algorithm, and then use a data cleaning
method to remove those samples (from both majority and minority classes) that are
invading spaces they should not. To do this, the Tomek links method is used as a data

cleaning tool.

Tomek Links
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In order to be able to understand how the data cleaning method works, we need to
define what are the Tomek links, which were originally proposed by (TOMEK et al., 1976).
Let us say that we have two samples F; and F; from distinct classes. Let’s consider the
distance between them as d(E;, E;). This pair of samples (E;, E;) is called a Tomek link
if there is not another sample £ in which d(E;, ;) < d(E;, E;) or d(E;, Ey) < d(E;, E;).
If these examples (E;, E;) form a Tomek link, they could be either noise or a borderline.
This is a method that may be used to undersample the majority class or as a data cleaning
technique, removing the examples that form the Tomek link for both classes (BATISTA;
PRATI; MONARD, 2004).

In our example, if we apply the SMOTE-Tomek algorithm to the original dataset,

we will have the new distribution as presented in table 8.

Table 8 — Class distribution of the synthetic dataset after resampling it with SMOTE-

Tomek
SMOTE-Tomek
Class No.
of samples
0 89
1 89

As mentioned earlier, the first step is applying the SMOTE algorithm to oversample
the data. Then we use the Tomek links as a data cleaning technique. In figure 16, we see
the original distribution and the result of both steps. First, the SMOTE algorithm was
applied and the outcome of this operation is in the bottom left. The two instances of data
that are highlighted with the red circle form a Tomek link. Finally, in the second step,

they are removed and the final distribution is seen on the bottom right side of figure 16.

2426 SMOTE-ENN

The SMOTE-ENN algorithm is a hybrid resampling approach. The main objective
of the approach is like the SMOTE-Tomek, which is oversampling the minority classes
and applying a data cleaning technique to clean-up the borders of the clusters, to have
better defined borders between the classes. This method uses the SMOTE algorithm to
oversample the minority class and the Wilson’s Edited Nearest Neighbors (Edited Nearest
Neighbor (ENN)) (WILSON, 1972) rule as a data cleaning approach. This algorithm
promotes a deeper data cleaning than the SMOTE-Tomek, because it tends to remove

more samples than the last one.
Edited Nearest Neighbors (ENN)

The ENN rule, proposed by (WILSON, 1972), is a rule that aims to remove any

example that have a different class than its three neighbors.For a binary classification
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Figure 16 — Sequence of resampling steps done when using the SMOTE-Tomek algorithm.
The final result is the image in the bottom right.

problem, let us consider a data sample E;. If at least two out of three of its neighbors have
a different class, then FE; is removed. However, if E; belongs to the minority class, and
at least two out of three neighbors have a different class, then the neighbors that have a
different class are removed (BATISTA; PRATT; MONARD, 2004).

After applying the SMOTE-ENN algorithm to our example, we will have a new

class distribution, presented in table 9.

As mentioned before, the SMOTE-ENN algorithm has two phases: the oversampling
and the data cleaning through the ENN rule. Figure 17 shows the results for both
oversampling and undersampling steps. The image on the top represents the original class
distribution. The bottom left one represents the output of the SMOTE algorithm, and
the red circle highlights those samples that fit into the ENN rule. The other one on the
bottom right, depicts the final result after the data cleaning was applied. We can see that
in this case we have a much cleaner borderline, compared to the SMOTE-Tomek approach
shown in figure 16. We can see that at the end we have a lot more samples from the
minority class and a much cleaner borderline between the two clusters, once they are very
well defined.
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SMOTE-ENN
Class No.
of samples
0 86
1 85

Table 9 — Class distribution of the synthetic dataset after resampling it with SMOTE-ENN

Figure 17 — Final result comparing the original dataset with the new distribution after
applying SMOTE-ENN
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3 Related Work

Class imbalanceness is an issue that affects binary, multi-class and hierarchical
classification problems. One subject that has been gaining popularity over the past decade is
how to handle this class imbalance issue in these different types of classification problems.
As explained in section 2.4.1, (FERNANDEZ et al., 2013) groups the approaches to
deal with imbalanced data in three: data-level, algorithmic level and the cost-sensitive
approaches. The current work will focus in the data-level approach, since it is independent
of the classification algorithm used. Therefore, the literature review will be focused in
those papers where a data-level approach was used as a way to cope with the imbalanced

class distributions often found in real-world data.

Our objective in the current work is to investigate in the literature those works
where the hierarchical classifier is implemented using a local classification approach, in
an imbalanced scenario. It is also of our interest to explore hierarchical classification
papers that use data-level techniques to cope with the class imbalance issue. Table 10
shows a list of works published recently which applied either the local classifier in an
imbalanced scenario or data-level techniques to cope with class imbalanceness. In table 10,
we present which hierarchical classification approach was used, the resampling strategy
utilized (oversampling, undersampling or hybrid) and the domain of the datasets used in

each work.

From the analysis of the works presented in table 10, we can see that there are
some recently published papers that are employing resampling as a strategy to overcome

data imbalance. In general, they contemplate a wide range of domains, such as:

« Biology: In (FENG; FU; ZHENG, 2017) (FENG; FU; ZHENG, 2018) for gene

ontology prediction.

o Text Categorization: In (RACHMAN; KHODRA; WIDYANTORO, 2018), (KLUNG-
PORNKUN; VATEEKUL, 2019) and (ADDI; EZZAHIR; MAHMOUDI, 2020). In
(RACHMAN; KHODRA; WIDYANTORO, 2018), the classifier is used for sentence
categorization in papers, while in (KLUNGPORNKUN; VATEEKUL, 2019) the
World Intellectual Property Organization (WIPO) (patents) and Wiki datasets are
used. Finally, in (ADDI; EZZAHIR; MAHMOUDI, 2020), the classification task uses

texts in Arabic in order to identify sentiments.

o Medical and Medical imaging: In (ABAD; MASLOVE; LEE, 2020) the authors use

the classifier to predict discharge of critically ill patients according to variables such
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as admission diagnosis and chronic health conditions. In (PEREIRA et al., 2020),
the classifier is employed in the COVID-19 identification through CXR images.

e Music: In (PEREIRA; COSTA; SILLA, 2018), the classification task aims to help in

music genre recognition.

e Astronomy: In (HOSENIE et al., 2019), the main task is to recognize stars using

light curves as features.

o Multiple domains: Some of the related works do not focus in a specific domain to
apply any hierarchical classification techniques. In (PEREIRA; COSTA; SILLA,
2021), The local classifiers are tested with datasets from the biological, music, image,
and text domains. In (SILVA-PALACIOS; FERRI; RAMIREZ-QUINTANA, 2017),

the authors test a big variety of datasets, which include: medical, text and image.

It is important to emphasize that the datasets used in these works mentioned in
table 10 contemplate both single and multi-labeled classification problems. The current
work will focus on tree-structured hierarchical classification problems with single path of
labels.

Table 10 — Related work published in the literature

Hierarchical Single/ Resamplin,
Reference Classification g PIIE  Domain
Multi-label  approach
Approach
(FENG; FU; ZHENG, 2017) LCN Multi Over Biology
RACHMAN; KHODRA; WIDYANTORO, 2018 LCPN Single Over/ Text
& Under
(SILVA-PALACIOS; FERRI; RAMIREZ-QUINTANA, 2017) LCPN Single Under zgita‘fﬁg
(ABAD; MASLOVE; LEE, 2020) LCPN Single Over/ Medical
Hybrid
(FENG; FU; ZHENG, 2018) LCN Multi Over Biology
(PEREIRA; COSTA; SILLA, 2018) Clus-HMC Multi Over/ Music
Framework Under
. . Level Based .
(KLUNGPORNKUN; VATEEKUL, 2019) CNN Multi Over Text
(HOSENIE et al., 2019) LCPN Single Under Astronomy
) Clus-HMC . Over/ Medical
(PEREIRA et al., 2020) Framework Single Under Imaging
(ADDI; EZZAHIR; MAHMOUDI, 2020) LCPN Single Over Text
LCPN/ . Over/ .
(PEREIRA; COSTA; SILLA, 2021) LCN/ Single/ Under/ ~ hultiple
Multi domains

LCL Hybrid
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The related works presented in table 10 make use of the three different resampling
approaches mentioned in section 2.4.1. For the oversampling strategy, we may summarize

as:

o Oversampling: It is the most widely used technique when it comes to resampling.
It was used in (FENG; FU; ZHENG, 2017), (RACHMAN; KHODRA; WIDYAN-
TORO, 2018), (SILVA-PALACIOS; FERRI; RAMIREZ-QUINTANA, 2017), (ABAD;
MASLOVE; LEE, 2020), (FENG; FU; ZHENG, 2018), (PEREIRA; COSTA; SILLA,
2018), (KLUNGPORNKUN; VATEEKUL, 2019), (PEREIRA et al., 2020), (ADDI,;
EZZAHIR; MAHMOUDI, 2020) and (PEREIRA et al., 2020).

o Undersampling: In our list of related works, it was used by (RACHMAN; KHODRA;
WIDYANTORO, 2018), (SILVA-PALACIOS; FERRI; RAMIREZ-QUINTANA, 2017),
(PEREIRA; COSTA; SILLA, 2018), (HOSENIE et al., 2019), and (PEREIRA et al.,
2020) and (PEREIRA; COSTA; SILLA, 2021).

o Hybrid: The use of algorithms that combine both oversampling and undersampling
techniques was employed in (ABAD; MASLOVE; LEE, 2020) and (PEREIRA,;
COSTA; SILLA, 2021)

Most of the related work found in the literature that uses resampling also uses local
classification approaches. However, some of them used other kind of classifiers. We present

below a summary of the hierarchical classification approaches used in each of them.

o LCPN: One of the simplest and most common approaches in the literature. Used
in (RACHMAN; KHODRA; WIDYANTORO, 2018), (SILVA-PALACIOS; FERRI;
RAMIREZ-QUINTANA, 2017), (ABAD; MASLOVE; LEE, 2020), (HOSENIE et al.,
2019), (PEREIRA; COSTA; SILLA, 2021) and (ADDI; EZZAHIR; MAHMOUDI,
2020).

o LCN: This is also a very common approach in the literature. It was used in (FENG;
FU; ZHENG, 2017), (FENG; FU; ZHENG, 2018) and (PEREIRA; COSTA; SILLA,
2021).

o LCL: Among the local classifiers, this approach is the least used. Even though the
authors do not mention LCL in (KLUNGPORNKUN; VATEEKUL, 2019), they
implement a level based Convolutional Neural Networks (CNN), which means a
CNN for each level of the hierarchy, which could be interpreted as a local classifier

per level.

« Global: Even though the global classifiers are not the focus of the current work, we
included the works of (PEREIRA et al., 2020) and (PEREIRA; COSTA; SILLA, 2018)
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because they use one of the state-of-the-art ensembles for hiearchical classification,
called Clus-Hierarchical Multi-Label Classification (HMC), which was proposed by
(NAKANO; LIETAERT; VENS, 2019). This classifier is combined with resampling
techniques in both (PEREIRA et al., 2020) and (PEREIRA; COSTA; SILLA, 2018).

If we would pick the state-of-the-art works for the hierarchical classification in
imbalanced scenarios, and which also use data-level approaches to overcome the class
imbalanceness issue, they would be (PEREIRA et al., 2020), (ADDI; EZZAHIR; MAH-
MOUDI, 2020) and (PEREIRA; COSTA; SILLA, 2021). They are the most recent works
published in the literature that use multiple resampling techniques. In (ADDI; EZZAHIR;
MAHMOUDI, 2020) and (PEREIRA; COSTA; SILLA, 2021), the authors both use local
classification approaches. The first uses the LCPN only, while in the second, the author
makes use of all kinds of local classifiers. The work of (PEREIRA; COSTA; SILLA, 2021)
tests a lot more approaches and different datasets than in (ADDI; EZZAHIR; MAHMOUDI,
2020), and thus we may consider it the one of the best references regarding the hierarchical

classification in imbalanced domains.

The other work we mentioned (PEREIRA et al., 2020), focuses in two approaches to
resolve the data imbalance issue, which is the data-level by using widely known resampling
algorithms as a pre-processing step, and a algorithmic level by using a classifier tailored
for hierarchical scenarios called Clus-HMC, proposed by (NAKANO; LIETAERT; VENS,
2019), and is one of the state-of-the-art ensemble algorithms to be used in hierarchical

scenarios.



4 Methodology

This chapter describes which steps are taken to develop a hierarchical classifier
to be used with imbalanced datasets, and also how to evaluate the performance of these

solutions. We may summarize the steps as it follows:
1. Pre-process or clean the data if necessary (section 4.1);
2. Split the data in train and test (section 4.2);
3. Model the hierarchical problem to a suitable representation (4.3);
4. Propose and develop resampling approaches (section 4.4);

5. Model and develop a local hierarchical classifier (section 4.5);

6. Assess the best ways to evaluate the results (section 4.6).

4.1 Datasets and Data pre-processing

In order to evaluate the performance of different resampling approaches and
algorithms in the hierarchical classification task, we propose to use multiple datasets for
different domains and with different IRs. The hierarchical classification problems chosen
so far may be categorized according to the definition by (SILLA; FREITAS, 2011) as:

« Structure to represent the hierarchy: tree;

o Class labels: SPL, which means that each instance of the dataset will have class

labels associated with a single path in the hierarchical structure.

e Depth of the data instances: FD, which means that the data instances will have

labels associated with a full depth path in the hierarchy.

The list of datasets used in this work is presented in table 11. They were previously
used in related works published in the literature. The datasets 1 and 2 (PARMEZAN;
SOUZA; BATISTA, 2019) belong to the biological domain, where the first is related to ento-
mology (insects) and the second to ichthyology (fishes), while the dataset 3 (PARMEZAN;
SOUZA; BATISTA, 2019) is related to musical instruments classification. The fourth
(DIMITROVSKI et al., 2011) is a medical imaging dataset mainly composed by radiogra-
phies and the fifth (FELIPE et al., 2019) is called infant Classification of Pain Expressions

(iCOPE), and it is composed of audio spectrograms used in the classification of infant’s
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cry. Lastly, the dataset 6 is a novel one created as part of the this work, and it is a mixture
of some images from (PEREIRA et al., 2020) and some from the COVID-19 Image Data
Collection (C-19 IDC) (COHEN et al., 2020), which we call RYDLS C-19 IDC. The process
to obtain the RYDLS C-19 IDC dataset is further explained in section 4.1.1, once this is a
novel dataset that was obtained during the current work. Since the other datasets were
already used in previous works in the literature, we do not go over further details of how

they were obtained.

Table 11 — Proposed datasets

Dataset Domain Reference
1. Actinopterygii Biology (PARMEZAN; SOUZA; BATISTA, 2019)
2. Diptera Biology (PARMEZAN; SOUZA; BATISTA, 2019)
3. Instrument Music (PARMEZAN; SOUZA; BATISTA, 2019)
4. ImCLEF07 Medical Imaging (DIMITROVSKI et al., 2011)
5. iCOPE Biology (FELIPE et al., 2019)
6. RYDLS C-19 IDC Medical Imaging (PEREIRA et al., 2020; COHEN et al., 2020)

The descriptive details for regarding each dataset are presented in the table 12. In
this table we show the number of label paths, what is the hierarchical structure that defines
the data, what is the maximum depth (levels) of the hierarchy, the number of samples for

each level, the total number of samples and the IR, calculated through equation 2.13.

We also present in Appendix A the complete original class distribution of each one
of them, in tables 42 through 47 . Their hierarchical class distribution is also presented in
Appendix A in tables 48 through 53.

Table 12 — Overview of all the datasets

Label

Dataset Structure Label Path Max. Samples per Level Total of
Paths Depth Samples

Depth
1. Actinopterygii 15 4 2244422444 /22444 /22444 22444 149.71
2. Diptera 14 4 21722/21722/21722/17712 21722 12.77
3. Instrument Tree 31 MLNP 3 9419/9419/9419 9419 41.16
4. ImCLEF07D 26 3 11006,/11006/11006 11006 232.33
5. InfantCry 4 2 113/71 113 2.80
6. RYDLS C-19 IDC 10 3 1581/570/570 1581 125.00

4.1.1 RYDLS C-19 IDC Dataset

The C19-IDC (COHEN et al., 2020) dataset is an ongoing project of a public
dataset that contains CXR and Computed Tomography (CT) scan images from public
sources as well as through indirect collection from hospitals and physicians. It is a dataset
which is constantly being updated with images of lungs which were infected either by

COVID-19 or other types of pneumonia. However, it doesn’t contain any images of healthy
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lungs. Even though the C-19 IDC dataset (COHEN et al., 2020) does not contain any
images of healthy lungs, RYDLS (PEREIRA et al., 2020) has them, making these images
suitable to complement the up-to-date images of infected lungs obtained in C-19 IDC.

Having in mind that RYDLS (PEREIRA et al., 2020) contains healthy images and
that C-19 IDC (COHEN et al., 2020) contains very up-to-date images of infected lungs,
we propose to create a new dataset which is a mixture of both, using the healthy images
from RYDLS with the infected ones of C-19 IDC, and which is hereafter referred as the
RYDLS C-19 IDC dataset.

In the images that came from the RYDLS dataset, no data cleaning operations
were necessary, but in the C-19 IDC (COHEN et al., 2020) some cleaning operations were
applied. The main reason for this is that the RYDLS (PEREIRA et al., 2020) contains
only CXR images, thus all of the CT images from C-19 IDC were removed.

After merging both datasets, the image features were extracted using the Local
Binary Patterns (LBP) image descriptor, using 8 neighboring pixels and a radius of 2
with the non-rotation invariant method. This descriptor was chosen due to its reduced
computational complexity compared to the most recent ones, like CNNs. The result of
the extraction was a feature matrix, where a filter to remove the classes with less than 7
samples was applied, in order to avoid issues when running resampling with SMOTE based
resamplers with a number of neighbors k = 5. The final class distribution and the filtered
classes of the RYDLS C-19 IDC dataset is presented in table 13. The final distribution

without the filtered classes is also presented in table 47.

4.2 Cross-validation

To reduce the effect of testing only one split of the data like in the hold-out strategy,
all of the experiments in this work use a stratified k-fold validation with k = 5 to split the
training and test sets. The main reason for using the stratified version of it is to keep the

same proportions in both training and testing datasets, compared to the original dataset
(KOHAVI, 1995).

In order to have a easy to follow example of how the methodology works, let us
take the class distribution from the sample dataset presented in table 1. If we take the
example shown in table 1 and use the stratified cross-validation with 5 folds, we will have

the data divided in train and test folds as presented in table 14.

The fold 1 on table 14 will be used throughout the examples in the subsequent
sections. Considering that we propose to use the LCPN and the LCN approaches in the
current work, tables 15 and 16 show us the class distribution of fold 1 from table 14 in
the LCPN and LCN scenarios, respectively. The IR in both tables was calculated with
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Table 13 — Final class distribution of the RYDLS C-19 IDC dataset showing the classes
that were filtered.

Class

count

Final

distribution

R/Normal

R/Pneumonia/Viral/COVID-19
R/Pneumonia/Fungal /Pneumocystis

R/Pneumonia/Bacterial /Streptococcus
R/Pneumonia/Viral/SARS

R/Tuberculosis

R/Pneumonia/Viral/  MERS-CoV

R/Pneumonia/Bacterial /Legionella
R/Pneumonia/Bacterial /Klebsiella
R/Pneumonia/Lipoid

1000
476

Filtered
(removed)

R/Pneumonia/Bacterial /Mycoplasma

R/Pneumonia/Viral /Varicella

R/Pneumonia/Bacterial /E.Coli
R/Pneumonia/Bacterial /Nocardia
R/Pneumonia/Viral /Herpes

R/Pneumonia/Viral /Influenza

R/Pneumonia/Bacterial
R/Pneumonia/Fungal/ Aspergillosis
R/Pneumonia/Viral/Influenza/H1N1

R/Pneumonia/Bacterial /Staphylococcus/ MRSA

R/Pneumonia/Aspiration
R/Pneumonia/Bacterial /Chlamydophila

=== = NN DN W W R OO0 OO

Table 14 — Class distribution of the sample dataset after the stratified k-fold split with k

=5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Class Label Train Test | Train Test | Train Test | Train Test | Train Test
R/Normal 800 200 800 200 800 200 800 200 800 200
R/Viral/COVID-19 383 96 383 96 383 96 384 95 383 96
R/Fungal/Pneumocystis 24 6 24 6 24 6 24 6 24 6
R/Bacterial /Streptococcus 17 4 18 4 18 4 18 4 17 5
R/Viral/SARS 13 3 13 3 13 3 12 4 13 3
R/Lipoid/Non applicable 11 3 10 3 10 3 10 3 11 P
R/Bacterial/Mycoplasma 9 2 9 2 9 2 8 3 9 2
R/Bacterial /Klebsiella 8 2 8 2 8 2 8 2 8 2
R/Bacterial /Legionella 6 2 6 2 6 2 7 1 7 1

equation 2.13.

4.3 Taxonomy

Adapting the inherent hierarchy for each one of the datasets and modeling it in an

algorithmic representation is one of the core steps of the process to build a hierarchical

classifier. This structure is basically responsible to dictate how the classes relate to each
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Table 15 — Class distribution for the LCPN scenario of the data from table 14, after the
stratified k-fold split

No. Samples No. samples

Class Label IR (Training) (Testing)
Parent Node: R/ (root)
R/Normal 800 200
R/Viral 396 99
R/Bacterial 72.73 40 11
R/Fungal 24 6
R/Lipoid 11 2

Parent: Node R/Bacterial

R/Bacterial /Streptococcus 17 5
R/Bacterial /Mycoplasma 983 9 2
R/Bacterial /Klebsiella ' 8 2
R/Bacterial /Legionella 6 2
Parent: Node R/Viral

R/Viral/COVID-19 20,46 383 96
R/Viral/SARS ' 13 3

Table 16 — Class distribution for the LCN scenario of the of the data from table 14, after
the stratified k-fold split

No. samples No. samples

Class label IR (Training)  (Testing)
R /Normal 0.50 800 200
Other ’ 471 118
R/Lipoid 11 3
Other 114.55 1260 315
R /Fungal 24 6
Other 51.96 1247 312
R /Bacterial 40 10
Other 3078 1231 308
R/Viral 9 91 396 99
Other ' 875 219
R /Bacterial /Streptococcus 135 17 4
Other ' 23 6
R /Bacterial /Klebsiella 40 8 2
Other ' 32 8
R /Bacterial/Mycoplasma 344 9 2
Other ’ 31 8
R /Bacterial /Legionella 5 6T 6 2
Other ' 34 8
R/Viral/COVID-19 383 96
Other 0.0034 13 3
R/Viral/SARS 13 3
Other 29.46 383 96
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other.

Due to the nature of the datasets that were chosen, as presented in table 12, which
are all classified in the SPL category, the data structure that is most suitable to define the
taxonomy used in the hierarchical classifier is a tree. In this specific case, a generic tree,

where a parent node may have one or more child nodes.

To better illustrate how the taxonomic structure is assembled, let us use the class
labels and distribution from fold 1 in table 14. Considering all the labels defined in the
aforementioned table, the R represents the root of the tree and the slash symbols (‘/”)

separate a parent class from its sub-class. For example, for the class R/Viral/COVID-19:

o R: It is a node that represents the root of the tree.
o Viral: It represents a child node of R.
o COVID-19: It represents a child node of the node R/Viral, since COVID-19 is a

viral type of pneumonia.

Thus, if we generalize the same logic to all labels from table 14, that will generate

the taxonomy depicted in figure 18.

[Mycoplasma

Lipoid J [Fungal

Pneumocystis]

Klebsiella

[ Legionella ]

Figure 18 — Taxonomy produced from the class labels in table 14

Streptococcus] COVID-19 ] ‘ SARS ’

Each node of the tree represents a data class. Also, each one of them will store the
training data for its respective class, depending on the data policy chosen to be used in

the hierarchical classifier.

4.3.1 Data retrieval

In hierarchical classification tasks that use a local classification approach, the

positive classes for each target class are retrieved according to a policy. There are multiple
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policies, which were already detailed in section 2.1. In the next few examples, we will use

the siblings policy.

Even though we are using the same policy in the examples for both local classifiers,
the way the data is retrieved for the LCPN and LCN scenarios is slightly different because
of some adaptations that needed to be done. Both will be explained in more depth in
subsections 4.3.1.1 and 4.3.1.2.

4.3.1.1 LCPN Scenario

In the LCPN scenario, the key idea is that a parent node needs to be capable
to distinguish data from any of its child (or descending) nodes, which would make it a
multi-class classifier. Thus, the positive classes for a particular node are the descending
classes for this node and its own class, if the problem is a non-mandatory leaf node

prediction.

Let us consider the taxonomy from figure 18. If we take R/Viral parent node as an
example and retrieve the positive classes for it according to the siblings policy, defined in
section 2.3.1, they would be: R/Viral/COVID-19, R/Viral/SARS and the R/Viral class
itself, if the problem is non-mandatory leaf node prediction. Because of this, the R/Viral
node would have as positive data from the COVID-19 and SARS child nodes.

Another important part of the data retrieval is that all the descending classes from
a particular child node are relabeled to its parent class. In figure 18, if we were trying to
retrieve data for the root (R) node, we would have two levels until we reached the leaf
nodes. The classes that are not immediate child nodes of the root (R) class would need to
be relabeled. In this case, the data from classes COVID-19 and SARS would be relabeled
as R/Viral, for example. Table 17 shows the result of relabeling the data for the root (R)

node.

Table 17 — Relabeling of the data in the LCPN scenario for the R (root) node

Parent Class label Relabeled as
R/Normal not relabeled
R/Viral not relabeled
R/Viral/COVID-19 R/Viral
R/Viral/SARS R/Viral
R/Bacterial not relabeled

R/Bacterial /Streptococcus  R/Bacterial

R (Root) R/Bacterial/Mycoplasma  R/Bacterial
R/Bacterial/Klebsiella R/Bacterial
R/Bacterial/Legionella R/Bacterial
R/Fungal not relabeled

R/Fungal/Pneumocystis R/Fungal
R/Lipoid not relabeled
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4.3.1.2 LCN Scenario

In the LCN scenario, the main idea is that a specific node needs to be able to
distinguish data between any of its positive classes (its own class and descending nodes)
and the negatives ones. This means that the LCN approach utilizes one binary classifier in

each node of the hierarchy, instead of using multi-class classifiers as in the LCPN approach.

Again, let us use the figure 18 as an example. If the chosen node is R/Viral, then
the positive classes for this one are: R/Viral/COVID-19 and R/Viral/SARS. However, we
need to retrieve the negative classes as well. They are all the other classes that are derived
from the same parent as R/Viral, which means that they would be R/Normal, R/Fungal,
R/Lipoid, R/Bacterial and all its respective sub-classes. The table 18 presents which ones

are the positive and negative classes for the R/Viral node.

Table 18 — Positive and negative classes in the LCN scenario for the R/Viral node

Node Positive classes Negative classes
R/Viral R/Normal
R/Viral/COVID-19 R/Bacterial
R/Viral/SARS R/Bacterial/Streptococcus

R/Bacterial/Mycoplasma
R/Viral R/Bacterial/Klebsiella

R/Bacterial/Legionella

R/Fungal

R/Fungal /Pneumocystis

R/Lipoid

In the same way we need to relabel the data in the parent nodes of the LCPN
approach, we also need to do it for each node of the LCN strategy as well. However,
in this case the relabeling works slightly different. Here the positive classes (including
descending ones) will be relabeled to the current node’s class and the negative classes will
be relabeled to ‘Other’. If we use the R/Viral class as an example, all of its descending
classes (COVID-19 and SARS) would be relabeled to R/Viral only. Also, all the samples
from the negative classes, like R/Normal or R/Bacterial/Streptococcus would be relabeled
to ‘Other’. The result of the relabeling is presented in table 19.
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Table 19 — Relabeling of the data in the LCN scenario for the R (root) node

Node Class label Relabeled as
R/Viral not relabeled
R/Viral/COVID-19 R/Viral
R/Viral/SARS R/Viral
R/Normal Other
R/Bacterial Other

. R/Bacterial /Streptococcus  Other
R/Viral R;Bacterialél\/[ycoplasma Other
R/Bacterial /Klebsiella Other
R/Bacterial /Legionella Other

R/Fungal Other
R/Fungal/Pneumocystis Other

R/Lipoid Other

4.4 Data Resampling

In order to evaluate the effectiveness of using data resampling algorithms in the
imbalanced datasets, first we need to establish a baseline for comparison. Because of this,
the first experiments that will be performed are those without any approaches to deal

with class imbalanceness.

In addition to establishing a baseline, multiple resampling approaches will be
implemented and tested. In this work, we propose four approaches: flat resampling, local
resampling, threshold selective resampling and local selective resampling. These approaches
will be further detailed in sub-sections 4.4.1, 4.4.2, 4.4.3 and 4.4.4. It is important to
remember that first three resampling approaches (flat, local and threshold selective) are
executed as a data pre-processing step, while the last one (local selective) is executed
during the training process, which means that data is resampled during the training

procedure.

To give a concrete example of how the four approaches work, let us consider data
distribution from fold 1 in table 14. Before resampling the dataset, according to what was
defined in sections 4.2 and 4.3, the data will be split in 5 folds using the stratified k-fold
cross-validation and then the tree-like structure shown in figure 18 will be assembled. An
example of the class distribution after the k-fold split is presented in tables 14, 15 and 16.
The distributions presented in tables 15 and 16 are the ones used for the LCPN and LCN
scenarios. These number of samples will be used throughout this entire section to explain

in a more practical way how each approach works.
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4.4.1 Flat resampling

The simplest and most used approach to resample data in the literature is the
one that we will refer to as flat resampling. It consists of applying the algorithms before
training, without considering any local class distributions. Let’s use as an example the

training folds distribution from table 14.

When using this strategy, the training data will be resampled with the selected
algorithm before the training phase and that will result in the new class distribution
showed in table 20. For this example, we used the SMOTE algorithm.

Table 20 — New class distribution of the of the data from table 14, after the flat resample
approach was performed with the SMOTE algorithm

Class No. samples No. samples No. samples
Label before SMOTE after SMOTE (Testing)
(Training) (Training)
R/Normal 800 800 200
R/Viral/COVID-19 383 800 96
R/Fungal /Pneumocystis 24 800 6
R/Bacterial /Streptococcus 17 800 4
R/Viral/SARS 13 800 3
R/Lipoid/Non applicable 11 800 3
R/Bacterial /Mycoplasma 9 800 2
R/Bacterial /Klebsiella 8 800 2
R/Bacterial /Legionella 6 800 2

After the resampling is done, the new data is saved in separate Comma Separated
Values (CSV) files for each local classifier . The summary of the steps taken during the
resampling procedure are presented in algorithm 1. The process is also summarized by
figure 19, which illustrates all the steps from the algorithm. The terminology used in
the algorithm definitions is presented below. This terminology is used in the algorithm
definitions of sections 4.4.2, 4.4.3 and 4.4.4 as well.

o Tree: Represents the tree of local classifiers;

o Lc;: They represent the i local classifier object, composed by data (the subset of
data of the given local classifier) and [blPath (the label path for the given local

classifier);
o D: Represents the original dataset;
o (C'V: Represents the the list of Cross Validation splits;
o T'r: Training folds of data;

o T's: Test fold of data.
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Algorithm 1 Flat Resampling

Tree < [Lcy, Leg, ... Ley) > Set of Local Classifiers
D < loadData() > 1. Load original dataset
CV <« StratifiedCrossValidation(k = 5) > 2. Split data in train/test
for each T'r,Ts in CV do > 3. Iterate over the 5 different splits
Tr' < resample(T'r) > 4. Resample data
for each Lc in T'ree do > 5. Distribute data in the local classifiers
Le.data < findSubset(Tr', Le.lblPath) > 6. Find local classifier subset of data
saveF'ile(Lc) > 7. Save Data
end for
saveFile(T's) > 7. Save Data
end for

S—
1.0riginal
dataset

2. Stratified K-fold Cross
Validation (k = 5)

Test
fold

4. Resample|

S

———

Resampled
training set

5. Distribute

data in the local
classifiers

Figure 19 — Flat resampling approach flowchart
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4.4.2 Local resampling

Another strategy proposed in this work to overcome the imbalanced class distribu-
tion is the one here denominated as local resampling. It consists of applying the algorithms
to perform data balancing for each local classifier of the hierarchical structure defined in
section 4.3. With this strategy, we aim to make the class distribution of each local classifier
balanced. In this approach, the class hierarchy is considered when applying the data
resampling algorithms. Again, let’s use the taxonomy from figure 18 with the distribution

in table 14 as an example.

If we use the LCPN classification approach, we will have multi-class classifiers in
each parent node of the hierarchy, which in this case are the following ones: R, R/Bacterial
and R/Viral. The local resampling approach will apply the resampling algorithm in these

nodes. Table 21 presents the new distribution after resampling in these parent nodes.

Table 21 — New class distribution of the data from table 15 in the LCPN scenario after
the local resample approach was performed with the SMOTE algorithm

No. Samples No. samples No. samples

Class Label before SMOTE after SMOTE ('i‘esting)
(Training) (Training)

Parent Node: R/ (root)
R/Normal 800 800 200
R/Viral 396 800 99
R/Bacterial 40 800 11
R/Fungal 24 800 6
R/Lipoid 11 800
Parent: Node R/Bacterial
R/Bacterial /Streptococcus 17 17 5
R/Bacterial/Mycoplasma 9 17 2
R/Bacterial /Klebsiella 8 17 2
R/Bacterial/Legionella 6 17 2
Parent: Node R/Viral
R/Viral/COVID-19 383 383 96
R/Viral/SARS 13 383 3

However, if the LCN classification approach is applied, we will have binary clas-
sifiers for each node presented in the figure 18, with the exception of the root and the
R/Fungal /Pneumocystis nodes. So, except for these two nodes, all of the other nodes will
face data resampling. To exemplify this approach, let us consider the class distribution in
table 16. After the resampling is performed in all nodes, the new distribution will look
like the one in table 22.

After resampling the data, we save the data for each of the local classifiers in a
separate CSV file. We present in algorithm 2 a list of steps that summarize the Local

resampling procedure. Figure 20 also depicts the steps shown in the algorithm.
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Table 22 — New class distribution of the data from table 16 in the LCN scenario after the

local resample approach was performed with the SMOTE algorithm

No. samples No. samples No. samples
Class label IR  before SMOTE after SMOTE (’festing)
(Training) (Training)
R/Normal 0.59 800 800 200
Other ' 471 800 118
R/Lipoid 11 1260 3
Other 114.55 1260 1260 315
R/Fungal 51.96 24 1247 6
Other ' 1247 1247 312
R/Bacterial 3078 40 1231 10
Other ’ 1231 1231 308
R/Viral 991 396 875 99
Other ' 875 875 219
R/Bacterial /Streptococcus 135 17 23 4
Other ' 23 23 6
R /Bacterial /Klebsiella 40 8 32 2
Other ' 32 32 8
R/Bacterial/Mycoplasma 344 9 31 2
Other ' 31 31 8
R /Bacterial/Legionella 567 6 34 2
Other ' 34 34 8
R/Viral/COVID-19 0.0034 383 383 96
Other ' 13 383 3
R/Viral/SARS 20,46 13 383 3
Other ' 383 383 96
Algorithm 2 Local Resampling
Tree < [Lcy, Lea, ... Ley] > Set of Local Classifiers
D < loadData() > 1. Load original dataset
CV « StratifiedCrossValidation(k = 5) > 2. Split data in train/test
for each T'r,Ts in CV do > 3. Iterate over the 5 different splits
for each Lc in T'ree do > 4. Distribute data in the local classifiers
Le.data < findSubset(Tr, Le.lblPath) > 5. Find local classifier subset of data
L+ resample(Lc) > 6. Resample data
saveData(Lc) > 7. Save Data
end for
saveData(Tr) > 7. Save Data

end for




4.4. Data Resampling 61

—=
1.0riginal
dataset

2. Stratified K-fold Cross
Validation (k = 5)

3.5plit1,2,..5

Test
fold

4. Distribute

data in the local
classifiers
5. Ly 5.Lc, 5.Lc,

|6.Resample| |6‘Resample| |6.Resample I

Iy Lc Lcy

4

el

2
b

Figure 20 — Local resampling approach flowchart

4.4.3 Threshold selective resampling

This approach is an extension of the local resampling approach (section 4.4.2).
The only difference here is that the nodes which will go through data resampling are
chosen according to a criterion. We propose to use as a selection criterion a metric called
Imbalance Ratio, which is defined in (ORRIOLS-PUIG; BERNADO-MANSILLA, 2009)

as.

IR = Nmajority/Nminority (4 1)

Basically, we calculate the IR of a node by computing how many samples there
are in the majority class, dividing it by the amount of samples of the minority class. If
the IR is greater than 1, that means there are more samples from the majority class
than the minority one. One important reminder is that we considered this approach to
be more suitable for the LCN scenario, once they use binary classifiers for each node of
the hierarchy with the objective of predicting a data class as belonging to the positive or
negative class. The objective of this approach is to resample the binary classifiers where
the positive class is a minority class and do not resample the binary local classifiers where

the positive class is a majority class, in order to avoid negatively affecting the classification
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performance for the majority class. Because of this, we change equation 4.2 to:

IR = Nnegative/Npositive (42)

With equation 4.2, we are trying to find out if the negative class(es) for a particular
node outnumber the positive class. If so, that means IR > 1.0, then we need to resample
the data for that node. Otherwise, if IR < 1.0, we don’t need to resample the data to
overcome the imbalance towards the negative class. The value IR = 1.0 acts like the
threshold that will either enable or disable the resampling to be executed, and that’s why

we named the approach as Threshold Selective Resampling.

Let us use the class distribution of table 16 and the taxonomy from figure 18 as
an example to show how this will be performed. As stated before, only those nodes with
IR > 1.0 will go through resampling. From table 16, we can see that for the R/Normal
and R/Viral/COVID-19 classes, this condition is not true. Thus, these nodes will not
have their data resampled. The final distribution after applying the Threshold Selective
resampling with the SMOTE algorithm is shown in table 23.

Table 23 — Class Distribution of LCN scenario after the threshold selective approach was
performed with the SMOTE algorithm

No. samples No. samples No. samples
Class label IR  before SMOTE after SMOTE (’i‘esting)
(Training) (Training
R/Normal 0.59 800 800 200
Other ' 471 471 118
R/Lipoid 11 1260 3
Other 114.55 1260 1260 315
R /Fungal 51.96 24 1247 6
Other ' 1247 1247 312
R /Bacterial 30.78 40 1231 10
Other ’ 1231 1231 308
R/Viral 991 396 875 99
Other ' 875 875 219
R /Bacterial /Streptococcus 1.35 17 23 4
Other ' 23 23 6
R /Bacterial /Klebsiella 40 8 32 2
Other ' 32 32 8
R /Bacterial/Mycoplasma 344 9 31 2
Other ’ 31 31 8
R/Bacterial /Legionella 567 6 34 2
Other ' 34 34 8
R/Viral/COVID-19 0.0034 383 383 96
Other ' 13 13 3
R/Viral/SARS 99.46 13 383 3
Other ' 383 383 96

After applying the local resampling in all local classifiers that have an IR that is
bigger than the threshold of IR > 1.0, we save the data for each node in a separate CSV
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file. In algorithm 3 we present the summary of steps executed for this approach. In figure

21 we also illustrate these steps.

Algorithm 3 Threshold Selective Resampling

Tree < [Lcy, Les, ... Ley] > Set of Local Classifiers
D < loadData() > 1. Load original dataset
CV <« StratifiedCrossValidation(D, k = 5) > 2. Split data in train/test
for each Tr,Ts in C'V do > 3. Iterate over the 5 different splits
for each Lc in T'ree do > 4. Distribute data in the local classifiers
Le.data < findSubset(Tr', Le.lblPath) > 5. Find local classifier subset of data
IR < calculatel R(Lc) > 6. Calculate IR
if IR > 1.0 then > 7. IR exceeds threshold?
Lc <+ resample(Lc) > 8. Resample data
saveData(Lc) > 9. Save Data
else
saveData(Lc) > 9. Save Data
end if
end for
saveData(Tr) > 9. Save Data
end for
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Figure 21 — Threshold Selective resampling approach summarized

4.4.4 Local Selective Resampling

In order to understand this approach, we need to consider the data distribution

across the local classifiers. Let us use the LCPN scenario as an example, considering the
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distribution from table 15 and the tree from figure 4. In this scenario, as seen in table
15, we will have three parent node classifiers (In the nodes R, R/Bacterial and R/Viral).
Considering the data retrieval process described in section 4.3.1, we will then have three

subsets of data, one for each of these nodes.

The key behind the local selective resampling method is that we will be selecting
the most suitable resampling algorithm for each of the local subsets of each local classifier.
To do this, we will split each local subset in sub-train and validation using the stratified
hold-out technique, with 80% of the samples in the sub-train set and 20% in the validation

subset.

After the data is splitted, this sub-train set is resampled with a resampling algorithm.
Then, the local classifier is trained with the resampled set and validated with the validation
set. We test all of the resampling algorithms mentioned in section 4.4.5, and also without
any resampling algorithm. The Macro Averaged F1-Score for each of the tests is evaluated,
and then the classifier with the best performance is saved. The steps taken to execute this
procedure are summarized in algorithms 4 and 5, in two separate functions, one controlling
the local selective resampling main flow and another that executes the resampler selection.
These steps are also illustrated by figure 22. In addition to the terminology defined in

section 4.4.1, we also define new variables in the algorithms definition:

o R: List of resampling algorithms from section 4.4.5;

o clf: Best classifier obtained from the resampler selection procedure;
o best: Variable that stores the best Macro-Avg. F'1 Score;

o bestClf: Variable that stores the classifier with the best score;

o STr: Sub-train set, obtained after splitting the local classifier data in sub-train and

validation;
o STr': Sub-train set after resampling;

« Vs: Validation set, obtained after splitting the local classifier data in sub-train and

validation.

Let us consider the distribution in table 15. An example of a result of applying the
Local Selective Resampling strategy to a dataset is presented in table 24. In this table we
have the Macro-Avg F1 scores for each resampling algorithm tested in each of the local

classifiers.

In this example, the local classifier in node R performed better with the Borderline-

SMOTE resampling algorithm, the local classifier in node R/Bacterial performed better
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Algorithm 4 Local Selective Resampling

Tree < [Lcy, Leg, ... Ley| > Set of Local Classifiers
R < [None, ROS,SMOTE, ... > Set of Resamplers
D < loadData() > 1. Load original dataset
CV <« StratifiedCrossValidation(k = 5) > 2. Split data in train/test
for each Tr,Ts in C'V do > 3. Iterate over the 5 different splits
for each Lc in T'ree do > 4. Distribute data in the local classifiers
clf <resamplerSelection(7r, Lc, R) > 5. Call resampler selection
save(Tree, clf)
end for
predicted < predict(Ts, T'ree) > 6. Predict using the test fold
calculate M etrics(predicted) > 7. Calculate the metrics
end for

Algorithm 5 Resampler Selection function

best < 0.0

bestClf < null

Le.data < findSubset(T,., Le.lbl Path) > 5.1. Find local classifier subset of data

STr,Vs « StratifiedHoldout(Lc) > 5.2. Split data in train(80%)/test(20%)

for each resampler in R do > 5.3. Test all resampling algorithms
STr" < resample(STr) > 5.4. Resample data
clf < train(STr") > 5.5. Train local classifier
predictions < predict(V's, clf) > 5.6. Predict using the validation set
result < calculateMetrics(predictions) > 5.7. Calculate the metrics
if result > best then > 5.8. Check if it was the best result

bestClf < clf > 5.9. Save the best classifier

end if

end for

return bestClf

Table 24 — Local Selective Resampling result example

Local Borderline- SMOTE- SMOTE- Best

Classifier None ROS SMOTE SMOTE ADASYN ENN Tomek  Resampler
Borderline-

R 0.619 0.626  0.620 0.629 0.626 0.614 0.620 SMOTE

R/Pneumonia/ o 290 (943 (017 0.242 0.223 0.198 0.217 None

Bacterial

R/Pneumonia/ o0 (656 0.660 0.656 0.433 0.656 0.656 SMOTE

Viral
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Figure 22 — Local Selective Resampling approach summarized

without resampling, and the R/Viral one performed better with the SMOTE resampler. In
this scenario, we save the local classifier in R that was trained with a subset of data that
was resampled using Borderline-SMOTE, we save the local classifier for the R/Bacterial
node that was trained without resampling and finally, the classifier for the R/Viral node
that was trained with the dataset resampled with SMOTE. These local classifiers are
used in the final prediction, where other unseen samples are used for the validation of the

hierarchical classifier.

4.45 Resampling algorithms

For all the three approaches, we propose to use multiple resampling algorithms of
different types. The table 25 summarizes the algorithms used to resample the data. As
mentioned in section 2.4, there are three types of resampling algorithms: oversampling,
undersampling and the hybrid ones. In the scope of this work, the focus will be the

oversampling and hybrid strategies.
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Table 25 — Proposed resampling algorithms

Algorithm Type
ROS Oversampling
SMOTE Oversampling
Borderline-SMOTE Oversampling
ADASYN Oversampling
SMOTE + ENN Hybrid (Oversampling + Undersampling)

SMOTE + Tomek Links Hybrid (Oversampling + Undersampling)

4.5 Hierarchical Classification Approaches

In this work, the focus will be to investigate the hierarchical classification through
the use of local approaches. That includes the LCPN and the LCN, the two most common

local approaches in the literature.

In addition to this, there are other important definitions to help us to categorize
a hierarchical classification algorithm. The work of (SILLA; FREITAS, 2011) proposes
a unifying framework to categorize hierarchical classification algorithms according to its
features, as stated in section section 2.2. The four features that help us categorize the
algorithm are: whether it can predict labels in multiple or single paths in the taxonomy,

the prediction depth, which hierarchical structure the algorithm can handle.

According to the four features, we may define the algorithms being implemented in

this work as:

o SPP: That means we are looking to predict classes that have only one possible path

in the hierarchy.

o MLNP: we are looking for an algorithm that is capable of predicting full depth labels.

This means that only leaf nodes will be investigated.
o Tree: the datasets used in this work are suitable to be arranged in a tree structure.

o LCPN and LCN: in this work, we propose to use both LCPN and LCN approaches.

45.1 Local Classifier per Parent Node (LCPN)

The LCPN hierarchical classification approach is one of the local ones to be
evaluated in this work. The main differences between the different approaches are: how the
data is retrieved and relabeled in the taxonomy, which was explained earlier in sections
4.3.1.1 and 4.3.1.2, and the training and prediction phases of the hierarchical classification
task. The current section aims to explain these two phases in more detail for the LCPN

scenario.
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451.1 Training

The training process of the LCPN works similarly to a depth-first traversal. Starting
at the root (R) node, the training function trains the node marked as parent and goes
down the hierarchy by visiting each of its child nodes until it reaches a leaf node. When it
reaches a leaf node, the process returns to the previous parent node to verify if there are
any other nodes need to be trained, until it reaches the last leaf node of the tree. Figure
23 adapts the hierarchy showed in figure 18 to show which parent classifiers are trained
and in which order. The parent nodes are highlighted with a different border width. In
this case, R/Fungal is a parent node with only one child, thus there is no need for a parent

node classifier in this node.

Bacterial

[ Klebsiella ]

Figure 23 — Adaptation of the original hierarchy to show the trained nodes in the LCPN
scenario

Fungal]

Pneumocystis

= =

Streptococcus Mycoplasma Legionella COVID-19

’ SARS ‘

451.2 Prediction

The prediction process for the LCPN scenario is implemented using a top-down
approach, where a prediction is entirely dependent on the one from the previous level. The
main reason for doing this is to avoid inconsistencies in the predictions, like predicting
COVID-19 as a Bacterial type of pneumonia. In figure 24 we exemplify the prediction
for a sample from class COVID-19. In the first parent node classifier (step 1, root of the
tree), The prediction indicates that the sample belongs to the R/Viral class. In step 2, the
classifier predicts that sample is a COVID-19 sample.

It is important to remember that the example illustrated in 24 is for a leaf node
sample. In the case we have a NMLNP problem, such as for an instance from class R/Viral,

the prediction could have stopped earlier, in step 2.
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[Mycoplasma] [COVID-IS]

Figure 24 — Adaptation of the original hierarchy to show the prediction path in the LCPN
scenario

Pneumocystis Streptococcus Klebsiella Legionella

SARS ‘

4.5.2 Local Classifier per Node (LCN)

As stated earlier, the local approaches differ between them in the way the data
is retrieved, which was explained in section 4.3.1.2, and in the training and prediction
process. The current section explains in details how these two phases are performed for
the LCN scenario.

45.2.1 Training

The training process of the LCN scenario works slightly different from the LCPN
one. It starts at the root (R) node by training all of its child nodes. Each one of them
will have a binary classifier to identify the sample as belonging to its target class or not.
Figure 25 shows the order that the nodes are trained. If one of these nodes has more than
one child node, then the training process will go down to the next level of the hierarchy. In
this example, the nodes R/Normal, R/Lipoid, R/Fungal didn’t have multiple child nodes.
However, the R/Bacterial node has it, so the training will continue in the next level of the

hierarchy, until it reaches leaf nodes or those with a single child.

4522 Prediction

For the LCN scenario, the prediction phase works as it follows: it also starts at root
(R) level by checking all the binary classifiers from its child nodes. They are responsible
for predicting if a sample belongs or not to the given class. After the decision is made, in
the ideal scenario, we will have at least one of the classifiers predicting the positive class.
In the example presented in figure 26, this first step is marked as the number 1, where the
predicted class was R/Viral. After the first prediction, the prediction phase will continue

in the predicted node by repeating the same process as before, by testing its child node
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Bacterial

Pneumocystis

5 6 7 8 10 11

[Streptococcus] [Klebsiella] E’choplasma] [Legionella] [COVID-IQ] [ SARS ]

Figure 25 — Adaptation of the original hierarchy to show the trained nodes in the LCN
scenario

classifiers. In figure 26, the final predicted class was COVID-19, in the step marked as

number 2.

It is important to remember that the predicted path in figure 26 depicts a MLNP
problem. If we were to consider a NMLNP problem, the prediction could have stopped in

step 1.

Lipoid ] [Fungal

Normal
Predicted: Predicted:
Predicted: Predicted: Predilcted: Other R/Viral
'Other’ 'Other’ 'Other’
2

Klebsiella Legionella

Pneumocystis Streptococcus

Predicted: Predicted:
'R/Viral/COVID-19' 'Other’

[Mycoplasma]

Figure 26 — Adaptation of the original hierarchy to show the prediction path in the LCN
scenario

The previous example shows us the flow where no inconsistencies arise. However, in
complex data, it may not always be the case. What if we had no positive classes predicted?
Or, what if we had more than one binary classifier predicting a positive class? This is an
issue called the "blocking problem", and it was briefly described in section 2.3.4. In this

case, We would need to consider the probability given by the estimator for each class in
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order to resolve these inconsistencies.

One of the cases where an inconsistency may happen during the prediction is when
more than one classifier predicts that the sample belongs to the positive class, like the
example presented in figure 27. In this case, we have an inconsistent prediction at the
COVID-19 and the SARS classifiers. The first one is predicting the instance of data to be
a COVID-19 one with a probability of 0.75 and the second predicted that the instance
belongs to the SARS class, with a probability of 0.65. This conflict is solved by using the
prediction with the highest probability between them, which in this case is the COVID-19

class.

1

Viral/Other
(0.7/0.3)

[COVID-IQ ] ’ SARS ‘

COVID-19/Other SARS/Other
(0.75/0.25) (0.65/0.4)

Normal

[ Lipoid

Normal/Other Lipoid/Other Fungal}other
(0.1/0.9) (0.2/0.8) (0.25/0.75)

Pneumocystis] [Streptococcus]

Bacterial/Other
Fungal ] (0.35/0.65)

Mycoplasma]

Klebsiella Legionella

Figure 27 — LCN Path prediction showing a conflict between COVID-19 and SARS classi-
fiers

The second inconsistency scenario that may arise is when none of the classifiers
predicts a positive class, which means that none of them is sure if that instance of data
belongs to a particular positive class. This scenario is presented in figure 28, and in this
case, the COVID-19 and SARS classifiers both classified the sample as ‘Other’ (the negative
class). This problem will be solved in the same way it was solved for the scenario where
both classifiers predicted the positive class: by using the highest probability returned
by the estimators. In this example from figure 28, COVID-19 is predicted with a 0.45
probability while SARS had a 0.3. It is more likely that the sample is a COVID-19 one,
because of this, the highest probability will be used.

4.6 Evaluation Procedure

The evaluation procedure to assess the effectiveness of the use of different resampling
approaches and algorithms in the hierarchical classification task will make use of some

of the most common metrics to evaluate classification problems. For the current work
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Figure 28 — LCN prediction path showing the classifiers were not able to classify in
COVID-19 or SARS

in particular, which employs highly imbalanced datasets, using Accuracy wouldn’t be
adequate. If hypotetically, the RYDLS C-19 IDC dataset had 95% of the samples belonging
to the R/Normal class, and a trivial classifier predicted all of the samples to be normal, we
would still have 95% accuracy, but the interest classes represented by the lung infections
wouldn’t have any correct predictions. To avoid this kind of issue, different classical metrics

are employed. They are the following ones:

o Precision: It may be defined as the number of true positives (7,,) divided by the sum
of true positives (7),) and false positives (F},).In other words, it aims to calculate the

proportion of positive identifications that were classified correctly.

P (4.3)

« Recall: It may be defined as the number of true positives (7},) divided by the sum of
true positives (7},) and false negatives (F},) In other words, it aims to calculate the

proportion of the actual positive identifications were classified correctly.

TP
=P 4.4
R (4.4)
o F1-Score: It is calculated as the harmonic mean between the precision and recall:

_2*P*R

Fl= 4.5
P+ R (4:5)
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These are the versions suitable for binary classifiers, for multi-class classifiers we
have the micro and macro-averaged versions. The micro-averaged (VATEEKUL; KUBAT;
SARINNAPAKORN, 2014) version may be defined as it follows:

Zciec TP(Ci)

P = 4.6

= SeTy(e) + () (46)
Y oceC Tp(ci>

R, = C 4.7

Sl Ty(e) + Fala) (47)
B 2 % Pu * Ru

Pl = (4.8)

Where ¢; is the it class of the set of classes C, which represent all the classes
available in the dataset, T),(c;) the number of true positives for the i’ class, F,(c;) the
number of false positives for the same class and F,(¢;) the number of false negatives.
However, there is a problem with the micro-averaged version. The issue is that it is a lot
more difficult to notice changes on its values when the the minority classes are resampled,
because after resampling the data majority classes often suffer a decrease in performance,
which compromises the final score. This happens because the classes doesn’t have the

same weight in the final score. Because of this, we propose to use the macro-averaged
(VATEEKUL; KUBAT; SARINNAPAKORN, 2014) version of the metrics:

Plc

Py = Leec Pla) (4.9)

ne
R, — Sacc Bila) (4.10)

ne

2% Py o+ Ry

Fly=———-— 4.11
M Py + Ry ( )

Where n¢ represents the total number of classes from the set C', P(c;) the precision
for ith class of the set C' and R(c¢;) the recall for the same class. The macro-averaged
version of the metrics basically computes the metrics for each class and then it calculates
an average value based on the number of different classes. In this way, each one of the
classes has the same weight and thus the impact of resampling will be measured equally

throughout the classes.

Evaluating hierarchical classification algorithms is still an open question (FENG;
FU; ZHENG, 2017). Even though there are authors that use these classic metrics to evaluate
them, sometimes they are not the most suited for this kind of problem (KIRITCHENKO
et al., 2006), once they do not take into account hierarchy of the label. However, the
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hierarchical metrics proposed by (KIRITCHENKO et al., 2006) and explained in detail in
section 2.3.5 do not take into account the class imbalance and thus they might not be the
most appropriate for the scenario being explored in the current work. Because of this, we
propose to use the macro-averaged F'1 score as the main metric used in the evaluation of
the models.

Another part of the evaluation procedure is the how the different algorithms and

approaches will be compared among them. As part of this work, we propose to compare:

« Compare the different resampling approaches (Flat, Local, Threshold Selective and
Local Selective, or the baseline) between them, for both LCPN and LCN scenarios.

o Compare the use of different resampling algorithms for both LCPN and LCN when
used together with the aforementioned resampling approaches. The list of algorithms
to be used is the following: none (baseline), SMOTE, Borderline-SMOTE, SMOTE-
ENN, SMOTE-Tomek, ADASYN and ROS.

The most reliable way to compare them is through the use of statistical non-
parametric tests. The Wilcoxon Signed-Rank test will be used to individually test if each
one of the proposed resampling aproaches yields statistically significant improvement
(WILCOXON, 1945). We also proposed to use Friedman’s non-parametric test will be used
to check if there is significant difference between the algorithms or any of the different
approaches. If the difference is confirmed, use Nemenyi as a post-hoc test to check which
algorithms or approaches are the best ones (DEMSAR, 2006).
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5 Results and Discussion

In this chapter, we present and analyze our results. To obtain them, we employed the
methodology presented in chapter 4 to the datasets from section 4.1. In these experiments,
our objective was to assess the use of different resampling approaches and different
resampling algorithms and compare it with the baseline, where no resampling techniques

were used. In these experiments, the datasets from section 4.1 were used.

The experimental configurations are summarized in table 26. In all experiments,
we used the following classification algorithms: Decision Trees (DT), Random Forest (RF),
Multilayer Perceptron (MLP), Support Vector Machine (SVM), Naive Bayes (NB) and
K-Nearest Neighbors (kNN). Another important fact is that we used the Stratified Cross-
Validation technique (with k = 5), where each Cross-Validation split could be considered
a different experiment. With this information in mind, it is possible to say that a total of
1020 experiments for each of the six datasets were executed, which means a total of 6120

experiments.

It is noteworthy that some of the preliminary results obtained during the develop-
ment of this work were used in a paper that was accepted and presented at the 21st IEEE

International Conference on Biolnformatics and BioEngineering (BARROS et al., 2021).

Table 26 — Summary of the experiments performed

Hierarchical Resampling Resampling Classification g)(c)l.);fiments
Classifier Algorithms Algorithm (per dataset)
None None [S?;f\LRI\];\]’;\%ﬁm 30
LCPN Flat [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 180
° ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]
Local [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 180
ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]
Local Selective [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 30
ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]
DT, RF, MLP,
None None [SVM, NB, KNN] 30
LON Flat [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 180
ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]
Local [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 180
ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]
Threshold Selective [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 180
- T | ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]
Local Selective [ROS, SMOTE, Borderline-SMOTE, [DT, RF, MLP, 20
ADASYN, SMOTE-ENN, SMOTE-Tomek] | SVM, NB, KNN]

In order to make it easier to understand how the analysis is going to be presented,

we propose the definition of a new terminology that will simplify how the results are
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presented. We propose to concatenate the resampling approach column with the resampling
algorithms column from table 26 and call the result of it as resampling strategy. So, for
example, if we used the flat resampling with SMOTE algorithm, we used a Flat-SMOTE
resampling strategy. In the case of the Local Selective resampling, we will refer the strategy
as Local Selective only, because the resampling algorithm used is dynamic as already
mentioned in section 4.4.4, and it depends on the experiment execution. Besides this, we
also would like to make it clear that each of these resampling strategies was used together
with each one of the classifiers from the classification algorithm column. The summary of

this new terminology is presented in table 27.

Table 27 — Summary of the new terminology used in the result analysis

Hierarchical | Resampling Classification
Classifier Strategy Algorithm

Baseline DT, RF, MLP,
SVM, NB, KNN]

LCPN [Flat-ROS, Flat-SMOTE, Flat-Borderline, [DT, RF, MLP,
Flat-ADASYN, Flat-SMOTE-ENN;, Flat-SMOTE-Tomek] SVM, NB, KNN]

[Local-ROS, Local-SMOTE, Local-Borderline, [DT, RF, MLP,
Local-ADASYN, Local-SMOTE-ENN, Local-SMOTE-Tomek] SVM, NB, KNN]

Local Selective DT, RE, MLP,
SVM, NB, KNN]

Baseline [DT, RF, MLP,
" SVM, NB, KNN]

LON [Flat-ROS, Flat-SMOTE, Flat-Borderline, [DT, RF, MLP,
Flat-ADASYN, Flat-SMOTE-ENN, Flat-SMOTE-Tomek] SVM, NB, KNN]

[Local-ROS, Local-SMOTE, Local-Borderline, [DT, RF, MLP,
Local-ADASYN, Local-SMOTE-ENN, Local-SMOTE-Tomek] SVM, NB, KNN]

[Threshold-ROS, Threshold-SMOTE, Threshold-Borderline, [DT, RF, MLP,
Threshold-ADASYN, Threshold-SMOTE-ENN, Threshold-SMOTE-Tomek] | SVM, NB, KNN]

Local Selective DT, RF, MLP,
SVM, NB, KNN]

5.1 Experimental Setup

Following the methodology defined in section 4, we applied the stratified k-fold
cross-validation technique, randomly splitting our dataset in k = 5 stratified folds, where
each fold maintains the proportion of number of samples per class from the original dataset
(KOHAVI, 1995). For each iteration of the k-fold procedure, one of these folds is selected

for evaluating the classifier while the other four are used for training the classifier.

For all of the resampling algorithms that are based on a Nearest Neighbors algorithm
(e.g. SMOTE), the number of neighbors used was k = 5.

As mentioned in Section 4.1, we filter our dataset to exclude any classes with
less than 7 samples in that class. Considering some resampling algorithms that use a

Nearest Neighbors strategy to oversample, and we define our k = 5, there is a minimum
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requirement of k + 1 = 6 samples per class in the conjuction of all training folds. But as
we are using a stratified k-fold algorithm, there will be at least one sample per class in the

test fold. Thus we need at least k + 2 = 7 samples per class in our dataset.

The classification algorithms used for these experiments as well as the hyper-
parameter configurations used in them are listed in table 54 of Appendix B. In all of them

the scikit-learn’s' implementation was used.

For the non-parametric statistical tests that were performed during the analysis,
we utilize the SciPy-Stats Module?. To have a better visualization of the Nemenyi post-hoc

tests’ results, we utilize the Orange Data Mining Library?.

Lastly, we focused our experiments on hierarchical classification problems structured
in trees, with mandatory leaf node prediction (MLNP) and we used the siblings policy for
the LCPN experiments and the less-inclusive policy for the LCN experiments.

5.2 Classification Results

First, we present in figure 29 the mean macro-averaged F1 score across all datasets
and all classifiers, for both LCPN and LCN experiments. These values were calculated
based on the scores obtained from the experiments with different classifiers and different
resampling approaches. We present these values in the "Avg." column in tables 55 and 62

in Appendix B.

Besides calculating the mean values for all datasets, we also calculated the mean
values for each dataset separately. In figures 30 and 31, the mean macro-averaged F'1
Score for the LCPN and LCN classifiers is presented, where each subfigure represents a
the results for a single dataset. The results for each dataset used to calculate these mean
values are presented in tables 56 through 61 for the LCPN experiments and 63 through 68
for the LCN experiments. All of these tables are available in appendix B.

5.3 Discussion and Analysis

In order to analyze and discuss the results, let us recapitulate that the hypothesis

of this work (presented in section 1.2) is:

o Hypothesis: The proposed resampling approaches outpeform the baseline approach

(without resampling) for hierarchical classification problems.

<https://scikit-learn.org>
<https://docs.scipy.org/doc/scipy /reference /stats.html>

3 <https://orange-data-mining-library.readthedocs.io/en /latest /reference/evaluation.cd.html>


https://scikit-learn.org
https://docs.scipy.org/doc/scipy/reference/stats.html
https://orange-data-mining-library.readthedocs.io/en/latest/reference/evaluation.cd.html
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Figure 29 — Mean macro-averaged F'1 score across all datasets
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Figure 30 — Mean macro-averaged F1 score results for the LCPN experiments in each
dataset

Which we can split in two statements: a Null hypothesis H, and an alternative

hypothesis Hi:

e Hjy: The proposed resampling approaches do not outpeform the baseline approach

(without resampling) for hierarchical classification problems.

e H;: The proposed resampling approaches outpeform the baseline approach (without
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Figure 31 — Mean macro-averaged F'1 score results for the LCN experiments in each dataset

resampling) for hierarchical classification problems.

In order to prove that the alternative hypothesis is valid, we consider the results

obtained in the classification experiments, presented in section 5.2, and we use non-

parametric statistical tests to either prove or refute the hypothesis. In all the statistical

tests in this analysis we used a significance of 95 % (a = 0.05).

First, we need to prove that each of the resampling strategies employed in the
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experiments was effective and improved the classification results compared to the base-
line. To test this, we propose to use a Wilcoxon Signed Rank test for paired samples
(WILCOXON;, 1945). In this test we filter the baseline results and compare to each of the
resampling strategies individually. In this case, our samples are the macro-averaged F1
score results obtained for the baseline and for each resampling strategy. We use this test
because we ran experiments with the same classification algorithms, with exactly the same

data folds and also the same datasets for all the resampling approaches.

Besides testing if there was statistically significant difference between the exper-
iments with resampling and the baseline, in order to accomodate those cases where we
could not observe statistically significant improvement over the baseline, we also calculate
the difference between each strategy and the baseline. This calculation tells us if there was

any improvement over the baseline, even in those cases that are not statistically significant.

Lastly, to check which resampling strategy was the best ranked, we also calculated
the average ranks of each strategy using the Friedman non-parametric test together with
Nemenyi as a post-hoc (DEMSAR, 2006). With this test we were able to check which of
the approaches presented the best performance for the task at hand. A summary of all the
tests applied to the results and how they were performed is presented in table 28. It is
important to remember that each one of these tests was executed for all datasets at once
and also for each dataset separately. We also analyzed the results for the LCPN and LCN

experiment separately.

Table 28 — Tests performed during the analysis

Test Procedure Objective
Compute a pair-wise comparison Check if there is statistically significant
Wilcoxon Signed-Rank | between the baseline and each difference between the baseline and
of the resampling strategies. each of the resampling strategies
. . Compute thC. difference between Check if there was improvement over
Baseline difference each resampling strategy

and the baseline. the bascline

Check if there is statistically significant
difference between the resampling approaches,
including the baseline and also compute

the average ranks and obtain a CD plot.

Compute a comparison between multiple
Friedman/Nemenyi groups, where each group is a different
resampling strategy.

5.3.1 Wilcoxon Test

The objective of the first test was checking if there was statistically significant
difference between the baseline and each one of the resampling strategies employed in the
experiments, which means that we fixed the baseline results and tested against each of the
strategies. We used the Wilcoxon Signed-Rank test with the alternative hypothesis being
that the results where resampling was used were greater than the baseline (WILCOXON,
1945). The results of the test are the p-values. The results for the LCPN experiments are
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presented in tables 29 (all datasets) and 30 (for each dataset). The highlighted values

indicate p-values less than o (a = 0.05), once we are using a 95% significance.

Table 29 — Results for the Wilcoxon Signed-Rank test applied to the LCPN experiments.
Highlighed values mean p < a (o = 0.05)

Strategy p-value
flat-adasyn 1.43 x 1071
flat-borderline 8.70 x 10~
flat-ros 2.20 x 107
flat-smote 1.47 x 1073
flat-smote-enn 9.73 x 107!
flat-smote-tomek ~ 1.93 x 1072
local-adasyn 2.01 x 107!
local-borderline 1.41 x 1072
local-ros 8.96 x 108
local-selective 3.65 x 1073
local-smote 7.49 x 107°
local-smote-enn 7.98 x 107!

local-smote-tomek 2.23 x 107°

Table 30 — Results for the Wilcoxon Signed-Rank test applied to the LCPN experiments,
for each dataset. Highlighed values mean p < a (o = 0.05)

Strategy Actinopterygii CI_{EDII]‘)SC Diptera ImCLEF07D iCOPE Instrument
flat-adasyn 8.20 x 107! 1.66 x 1072 1.00 3.44x 1072 991 x107" 1.11x107*
flat-borderline 2.16 x 1072 3.44 x 1072 1.00 1.80 x 1073 7.41x 107" 210 x 10~*
flat-ros 8.38 x 10~* 7.94 x 1072 1.00 342x107% 1.91x10"' 3.76 x 107>
flat-smote 6.87 x 107! 2.34 x 1073 1.00 138 x 107% 937 x 107!  3.97 x 107°
flat-smote-enn 1.00 2.36 x 1072 1.00 5.55 x 1072 1.00 6.43 x 10~*
flat-smote-tomek 9.58 x 107! 481 x 107 9.98 x 107! 464 x 1073 9.95x 107! 4.09 x 107°
local-adasyn 1.00 9.23 x 1072 1.00 890 x 1072 3.13x 107" 264 x 10°*
local-borderline 9.84 x 107! 2.66 x 1073 1.00 6.02x 1072 233 x107' 2.06 x 1073
local-ros 6.80 x 1072 411 %1073 980 x 107" 1.31x107* 150x1072 1.29x 103
local-selective 9.82 x 107! 1.75x 1072 9.88x 107!  6.60x10~* 2.20x 107! 1.31x10~*
local-smote 9.63 x 107! 2.66 x 107% 836 x 107" 321 x107% 555 x 1072 4.09 x 10~°
local-smote-enn 9.99 x 107! 578 x 1072 997 x 107t 825 x 1072 9.62x 107" 4.81 x 10~*

local-smote-tomek 8.89 x 107! 1.80 x 1073 7.86 x 107! 1.35 x 1072 1.22x 1072 1.53 x 10~*

For the LCPN experiments, we can see in table 29 that considering all datasets,
the following resampling strategies improved the classification: Flat-Borderline, Flat-ROS,
Flat-SMOTE, Flat-SMOTE-Tomek, Local-Borderline, Local-ROS, Local-Selective, Local-
SMOTE and Local-SMOTE-Tomek. However, if we look at table 30, we can see that
this improvement is valid only in particular datasets. In the Diptera dataset, resampling
did not increase the classification scores with statistical significance for any scenarios.
For the Actinopterygii, RYDLS C19-IDC, InCLEF07D and iCOPE datasets, there was
improvement only in a few cases. The only dataset where there was improvement with
every strategy was in the Instrument dataset. In total, there are 78 scenarios (13 strategies
for 6 datasets), and the results reported statistically significant improvement in 36 out of
the 78 scenarios (46.15%).
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For the LCN experiments, we had in total 114 scenarios (19 strategies for 6 datasets),

the results of the analysis are presented in tables 32 (all datasets) and 33 (each dataset).

Table 31 — Results for the Wilcoxon Signed-Rank test applied to the LCN experiments.
Highlighed values mean p < a (a = 0.05)

Strategy p-value
flat-adasyn 8.40 x 107!
flat-borderline 3.01 x 107t
flat-ros 1.61 x 107!
flat-smote 3.40 x 1071
flat-smote-enn 8.78 x 107!
flat-smote-tomek 8.08 x 1072
local-adasyn 7.71 x 107°
local-borderline 5.07 x 1079
local-ros 2.09 x 10~
local-selective 5.68 x 10712
local-smote 2.69 x 10~17
local-smote-enn 4.17 x 10710
local-smote-tomek 5.05 x 10~
threshold-adasyn 3.62 x 10710
threshold-borderline 2.90 x 10710
threshold-ros 2.12 x 10~
threshold-smote 5.40 x 10~

threshold-smote-enn 1.26 x 10712
threshold-smote-tomek 5.34 x 101

Table 32 — Results for the Wilcoxon Signed-Rank test applied to the LCN experiments.
Highlighed values mean p < o (o = 0.05)

p-value p-value
Strategy (LCPN)  (LCN)
flat-adasyn 1.43 x 1071 8.40 x 1071
flat-borderline 8.70 x 10* 3.01 x 107!
flat-ros 2.20 x 10> 1.61 x 107!
flat-smote 1.47 x 1073 3.40 x 107"
flat-smote-enn 9.73 x 107! 8.78 x 107!
flat-smote-tomek 1.93 x 1072 8.08 x 1072
local-adasyn 2.01 x 107 | 7.71 x 107°
local-borderline 1.41 x 1072 5.07 x 107
local-ros 8.96 x 108 2.09 x 10713
local-selective 3.65 x 1073 5.68 x 10712
local-smote 7.49 x 107°  2.69 x 1077
local-smote-enn 7.98 x 107! [4.17 x 10710
local-smote-tomek 2.23 x 107° 5.05 x 10714
threshold-adasyn n/a 3.62 x 10710
threshold-borderline n/a 2.90 x 10710
threshold-ros n/a 212 x 1074
threshold-smote n/a 5.40 x 1071
threshold-smote-enn n/a 1.26 x 10712
threshold-smote-tomek n/a 5.34 x 10715

In table 32, we notice that considering all the datasets, there was no improvement
in those experiments that used the Flat Resampling strategy, while in all the other ones

there was statistically significant improvement. However, if we look at table 33, we can see
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Table 33 — Results for the Wilcoxon Signed-Rank test applied to the LCN scenario. High-
lighed values mean p < a (a = 0.05)

Strategy Actinopterygii CP-{E]:)I[]SSC Diptera ImCLEF07D iCOPE Instrument
flat-adasyn 7.35 x 1071 9.91 x 1071 1.00 272x10°7  359x 107" 9.80 x 10°°
flat-borderline 4.00 x 10~* 9.94x 107" 9.91x107'  439x107'  4.07x107" 3.40 x 1073
flat-ros 4.49 x 1072 8.20 x 107! 1.00 578 x 1072 5.86 x 107! 3.00 x 1073
flat-smote 1.50 x 1071 983 x 107" 9.84x 107! 6.80x1072 7.55x 107! 7.80 x 1073
flat-smote-enn 9.96 x 107! 9.80 x 1071 7.00 x 107*  4.49 x 1072 1.00 3.90 x 1073
flat-smote-tomek 3.91 x 107! 9.66 x 107" 3.00 x 107! 7.64x 1072 578 x 107" 4.00 x 10~*
local-adasyn 1.31 x 1074 6.17x 107" 6.91 x107* 555 x 1072  1.64x 107"  6.19 x 107©
local-borderline 3.58 x 10~* 537 x 107" 447 x107* 958 x 1072 233 x 107! 1.18x 107
local-ros 1.29 x 1073 191 x 107" 486 x10° 210x107* 578x1072 2.36x 107
local-selective 1.19 x 107 7.00x 1071 130 x 107  6.99 x 10=%  7.07 x 1072 9.60 x 10~7
local-smote 6.19 x 1076 111 x 107 867 x 1077 1.11x10* 9.23x10°2 867 x 1077
local-smote-enn 5.18 x 10~ 831 x 107t 867x 1077 1.79x10~* 6.41x107" 8.67 x 107”7
local-smote-tomek 2.90 x 10~° 352x 107t 867 x 1077 1.03x107* 245x107' 8.67 x 107”7
threshold-adasyn 8.99 x 10~° 6.71 x 107" 3.08x 107*  1.66 x 1072 1.54 x 107! 1.70 x 107°
threshold-borderline 2.04 x 107° 6.63x 107" 142x107* 135x10°2 385x107" 1.76 x 10°°
threshold-ros 3.86 x 10~* 1.57x 107" 1.19x 107 8.02x107° 825x10°2 3.49x 1076
threshold-smote 8.20 x 1076 269 % 107" 867x1077 680x10° 3.83x107! 3.49x10°°
threshold-smote-enn 8.99 x 10 9.44 x 107" 867 x 1077 2.04 x 107° 1.31 x 107 4.23 x 10

threshold-smote-tomek 3.17 x 1076 3.77x 1071 867 x 1077 7.39x107° 6.17x 107! 8.67 x 10~

that the difference was not observed in all datasets. For the RYDLS C-19 IDC and the
iCOPE datasets, there was no improvement at all. In all the other datasets, the difference
was mostly concentrated around the Local, Local Selective and Threshold approaches,
with this last two being approaches proposed in this work. Considering a total of 114

possible scenarios, there was statistically significant improvement in 60 of them (52.63%).

From this first analysis using the Wilcoxon non-parametric test, we may conclude
that, overall, resampling the data brings statistically significant improvement to the
classification results. It was also possible to observe that even though this is valid in the
analysis across all datasets, this is not valid for all of them individually, as depicted in
tables 30 and 33.

5.3.2 Difference to the baseline

Besides analyzing if there was statistically significant difference between each of
the resampling strategies and the baseline by using the Wilcoxon test, we also analyzed
the difference in the macro-averaged F1 scores between the resampling strategies and the
baseline. This was done to give us an idea of how many scenarios where at least a minimal
improvement was reported, even if it was not statistically significant. First, we analyzed
the difference considering all datasets, for both the LCPN and LCN classifiers. To do this,
we used the mean scores from tables 55 and 62 and calculated the difference between each
result with resampling and the baseline. If the value is positive, it means that resampling
improved the scores. If it is negative, it means that scores decreased compared to the

baseline. The results are presented in tables 34 and 36.
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Table 34 — Difference between the baseline and each resampling strategy for the LCPN
experiments, considering all datasets.

Strategy

Difference (%)

flat-adasyn
flat-borderline
flat-ros
flat-smote
flat-smote-enn
flat-smote-tomek
local-adasyn
local-borderline
local-ros
local-selective
local-smote
local-smote-enn
local-smote-tomek

0.018 5.20
0.020 5.78
0.026 7.97
0.025 7.13
-0.011 -3.04
0.022 6.36
0.011 3.33
0.017 4.87
0.031 8.96
0.026 7.61
-0.006 -1.59
0.027 7.86
0.027 7.86

Table 35 — Difference between the baseline and each resampling strategy for the LCN

scenario.

Strategy

Difference (%)

flat-adasyn
flat-borderline
flat-ros

flat-smote
flat-smote-enn
flat-smote-tomek
local-adasyn
local-borderline
local-ros

local-smote
local-smote-enn
local-smote-tomek
threshold-adasyn
threshold-borderline
threshold-ros
threshold-smote
threshold-smote-enn
threshold-smote-tomek
local-selective

-0.004 -1.16
0.001 0.28
0.008 2.64
0.001 0.28
-0.014 -4.68
0.006 2.04
0.047 15.64
0.046 15.36
0.058 19.27
0.067 22.25
0.045 14.76
0.063 20.87
0.053 17.62
0.049 16.19
0.058 19.11
0.062 20.43
0.054 17.90
0.065 21.37

0.048 16.02
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Table 36 — Difference between the baseline and each resampling strategy for the LCN

scenario.
Strategy difference % difference %
(LCPN) (LCPN) (LCN) (LCN)
flat-adasyn 0.018 5.20 -0.004 -1.16
flat-borderline 0.020 5.78 0.001 0.28
flat-ros 0.026 7.57 0.008 2.64
flat-smote 0.025 7.13 0.001 0.28
flat-smote-enn -0.011 -3.04 -0.014 -4.68
flat-smote-tomek 0.022 6.36 0.006 2.04
local-adasyn 0.011 3.33 0.047 15.64
local-borderline 0.017 4.87 0.046 15.36
local-ros 0.031 8.96 0.058 19.27
local-smote 0.026 7.61 0.067 22.25
local-smote-enn -0.006 -1.59 0.045 14.76
local-smote-tomek 0.027 7.86 0.063 20.87
local-selective 0.027 7.86 0.048 16.02
threshold-adasyn n/a n/a 0.053 17.62
threshold-borderline n/a n/a 0.049 16.19
threshold-ros n/a n/a 0.058 19.11
threshold-smote n/a n/a 0.062 20.43
threshold-smote-enn n/a n/a 0.054 17.90
threshold-smote-tomek n/a n/a 0.065 21.37

In the differences reported in tables 34 and 36, we can observe that in most cases,
resampling the data brought a positive impact in the scores. When considering the LCPN
experiments, there was a positive difference in 11 out of the 13 possible scenarios, with
increases in performance of up to 8.96%. For the LCN classifier, there was improvement in

17 out of the 19 scenarios, with increases in performance up to 22.25%.

We also did the same analysis considering the results for each dataset separately.
The results of the differences are presented in tables 69 through 72. Considering the LCPN
experiments in table 69, resampling had a mixed impact in the results. For three datasets
(RYDLS C-19 IDC, ImCLEF07D and Instrument), we found that there were more positive
than negative differences. However, for the Actinopterygii, Diptera and iCOPE datasets,
there were more negative values than positive ones, which means that in most of the
scenarios for these datasets, resampling did not bring any improvements. Our conclusion
considering this analysis is that resampling was only effective in some datasets. However,
for the LCN experiments in table 71, we had a different result. In these experiments we
observed that, in five out of the six datasets positive differences compared to the baseline

were reported in most of the scenarios.

Based on these tables 69 and 71, we may summarize the results in terms of which
percentage of the scenarios were positive or negative differences. The summary in presented
in table 37.
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Table 37 — Summary of the baseline difference analysis for each dataset

LCPN LCN
Result No. . % No. . %
Scenarios Scenarios
Positive 50 64.10 90 78.95
Negative 28 35.90 24 21.05
No Difference 0 0.00 0 0.00
Total 78 100.00 114 100.00

From the summary presented in table 37, we can conclude that, for both LCPN
and LCN experiments, we had positive differences in most of the cases. For the LCPN, we
had improvement in the scores in 64.10% of the scenarios tested. In the LCN experiments,
we found improvements in 78.95% of the scenarios. As a comparison, in section 5.3.1,
the results reported scenarios showing statistically significant improvement in 46.15% of
the LCPN scenarios and 52.63% of the LCN scenarios. With this information in mind,
we can conclude that data resampling improved the macro-averaged F1l-scores for the
experiments in most scenarios, even if the improvement was not statistically significant.
However, to evaluate which strategy is the best ranked one, we propose to apply both
Friedman and Nemenyi tests (DEMSAR, 2006). The Friedman test tells us if there is
a significant difference between the groups (in this case represented by the resampling
strategies) and if there is, Nemenyi’s post-hoc test is used to verify which one had the

best performance over the others.

5.3.3 Friedman Test

First, we start by analyzing the LCPN experiments by applying the Friedman test
with a significance level of 95% (p < 0.05) (DEMSAR, 2006) and the Nemenyi post-hoc
test. The table 38 shows us the average ranks for each strategy and figure 32 illustrates
the Nemenyi tests’ results through Critical Difference (CD) plots. In these plots, each
resampling algorithm is placed in a horizontal axis according to their average ranks, and
horizontal lines connects the algorithms that do not have significant difference between

them. Lower ranks (more to the left in the plots) means higher macro-averaged F1-Scores.

Looking at table 38 and figure 32 we noticed that the Flat-SMOTE strategy was
the best ranked one with an average rank of 6.31, followed very closely by Flat-ROS,
Local-SMOTE (both with average ranks of 6.40) and Local-SMOTE-Tomek with an
average rank of 6.48. Considering the result from table 29, all of these approaches also

showed statistically significant difference when individually compared to the baseline.

Besides analyzing which resampling strategy was the best one for all datasets, we

also ran the same analysis for each one of the datasets, and the results are presented in
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Table 38 — Average Ranks for each resampling strategy, with a CD = 148 and p =
1.97 x 10726, Results for the LCPN experiments.

Resampling Strategy Avg. Rank.

flat-smote 6.31
flat-ros 6.40
local-smote 6.40
local-smote-tomek 6.48
local-ros 6.57
flat-smote-tomek 6.66
flat-borderline 6.99
flat-adasyn 7.94
local-selective 7.94
local-borderline 8.02
baseline 8.12
local-adasyn 8.84
flat-smote-enn 9.12
local-smote-enn 9.20
cb
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Figure 32 — CD plot from Nemenyi’s test (o« = 0.05), comparing the resampling strategies
used with the LCPN Hierarchical classifier

table 39. Based on these results, we also plotted the CD plots depicted in Appendix B in
figures 34 through 39. The top 3 results for each dataset are highlighted.

Based on the ranks from table 39 and based on figures 34 through 39 from Appendix
B, we can see the reason why the Flat-SMOTE strategy was the best one throughout all
datasets. In three out of the six datasets, the Flat-SMOTE strategy was in the top 3 of

those datasets.

When the Friedman’s test was applied to the results of the LCN experiments, we
also obtained a p < 0.05, which means that we had significant difference between the
groups (resampling strategies). The average ranks, considering the LCN experiments across
all datasets are presented in table 40. Using these results, we also plotted the CD plot
depicted in figure 33.

Based on these results from table 40 and figure 33, we can conclude that using flat
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Table 39 — Average Ranks for each resampling strategy and each dataset separately. Results
for the LCPN experiments.

Strategy Actinopterygii CP_?;DII];)SC Diptera ImCLEF07D iCOPE Instrument
flat-adasyn 6.63 7.53 11.60 7.73 9.27 4.87
flat-borderline 4.90 8.00 7.33 7.00 8.13 6.60
flat-ros 4.18 8.23 7.90 5.53 6.47 6.10
flat-smote 6.43 6.18 7.03 5.25 8.55 4.42
flat-smote-enn 11.38 7.73 9.50 7.47 11.10 7.53
flat-smote-tomek 8.02 5.78 6.73 5.35 9.27 4.83
local-adasyn 9.80 8.10 9.60 10.20 6.72 8.63
local-borderline 7.87 6.03 8.43 9.23 6.67 9.87
local-ros 4.78 6.87 6.90 6.33 5.02 9.53
local-selective 8.77 8.30 6.60 9.23 6.17 8.57
local-smote 7.18 6.87 5.33 6.67 6.13 6.23
local-smote-enn 10.83 8.70 8.70 8.63 8.83 9.50
local-smote-tomek 7.62 6.27 4.70 7.23 5.73 7.33
baseline 6.60 10.40 4.63 9.13 6.95 10.98

Table 40 — Average Ranks for each resampling strategy with a CD = 2.21 and p =
3.00 x 107193, considering the LCN experiments.

Resampling Strategy Avg. Rank.

threshold-smote-tomek 6.34
threshold-smote 6.43
local-smote 6.86
threshold-smote-enn 7.36
local-smote-tomek 7.43
threshold-ros 8.26
local-ros 9.24
threshold-adasyn 9.32
local-smote-enn 9.51
local-selective 9.75
threshold-borderline 10.06
local-adasyn 10.81
local-borderline 11.27
baseline 12.96
flat-smote-tomek 13.27
flat-smote 13.79
flat-ros 13.94
flat-borderline 14.19
flat-smote-enn 14.44

flat-adasyn 14.78
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Figure 33 — CD plot from Nemenyi’s test (o = 0.05), comparing the resampling strategies
used with the LCN Hierarchical classifier

resampling in the LCN experiments was not effective at all, since their performance was
below the baseline. Also, we noticed that the Threshold Selective resampling approach,
which was proposed in this work, was the best ranked one when used together with the
SMOTE-Tomek algorithm. The Threshold Selective approach used together with the
SMOTE algorithm also had good results, having a performance that was very close to the
Threshold-SMOTE-Tomek strategy.

In order to have a more detailed look at these results, we also ran the same statistical
tests separately for each of the six datasets. The average ranks obtained in these tests are
presented in table 41. The CD plots for each one of them were also created, and they are
presented in the Appendix B, in figures 40 through 45. The top 3 ranked strategies for
each dataset are highlighed in table 41.

From table 41 and figures 40 to 45 in Appendix B, we can observe an interesting
trend in the average ranks. In five out of the six datasets, the Threshold-SMOTE-Tomek
strategy was in the top 3 approaches for these datasets. Also, the Threshold-SMOTE
strategy was in the top 3 in four out of the six datasets, which is consistent with our
previous analysis where we considered all datasets, in table 40. Another trend that we
observed is that, most of the best results for each dataset are concentrated in the Threshold
Selective resampling approach. The only outlier was the iICOPE dataset, which did not have
good ranks using the Threshold Selective approach and performed better with the Local
resampling approach. With that in mind, we can conclude that the proposed approach,
Threshold Selective resampling, was the best one for the LCN experiments when used
together with the SMOTE-Tomek algorithm.
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Table 41 — Average Ranks for each resampling strategy and each dataset separately, con-
sidering the LCN scenario.

Strategy Actinopterygii Cl_?;DII[J)SC Diptera ImCLEF07D iCOPE Instrument
flat-adasyn 15.00 13.90 18.40 16.00 10.05 15.33
flat-borderline 11.47 14.67 16.23 16.27 10.65 15.87
flat-ros 13.00 12.87 16.80 12.80 11.83 16.37
flat-smote 13.93 13.07 16.07 13.63 11.40 14.67
flat-smote-enn 16.30 13.53 10.63 13.30 16.77 16.10
flat-smote-tomek 14.13 12.40 13.80 13.70 11.77 13.80
local-adasyn 10.20 10.67 11.90 12.73 9.13 10.20
local-borderline 10.97 10.45 13.17 13.50 9.82 9.73
local-ros 10.97 9.15 10.83 6.90 8.98 8.63
local-selective 9.63 10.53 7.23 12.77 8.12 10.20
local-smote 8.50 6.48 4.80 7.50 9.02 4.83
local-smote-enn 12.57 9.65 7.33 6.87 11.23 9.40
local-smote-tomek 8.73 8.18 5.00 8.00 9.60 5.03
baseline 14.80 9.67 14.53 11.07 10.45 17.23
threshold-adasyn 6.73 9.97 10.03 10.43 9.80 8.97
threshold-borderline 7.83 9.98 11.37 10.47 11.32 9.37
threshold-ros 8.53 8.52 9.03 5.77 9.57 8.13
threshold-smote 5.47 7.22 4.00 6.43 10.65 4.83
threshold-smote-enn 6.43 10.97 4.50 5.60 9.30 7.33

threshold-smote-tomek 4.80 8.13 4.33 6.27 10.55 3.97
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Imbalanced data is an issue that may affect data distribution across many different
domains. It is a known issue in classification tasks, and it is usually associated with rare
patterns, which could be a kind of data that is difficult to collect or it is just a kind of
observation that does not happen very often. When we model a classification problem,
these rare patterns are usually known as the minority classes while the most frequent
ones are the known as the majority classes. The class imbalance affects different kinds of
classification problems as well. From simple binary classification, like in the credit card

fraud detection, to more complex ones, like hierarchical classification problems.

This imbalanceness in the class distribution usually causes the classifiers to be
biased towards the majority classes, which sometimes is not good to the problem we are
evaluating. In some domains, like medical imaging, where the minority classes are often
associated with diseases, we are a lot more interested in detecting the rare patterns. Another
example would be the credit card fraud detection, where the fraudulent transactions are
also patterns that do not occur very often, but they are the ones we want to be able to
identify. For these kind of classification problems, where we are more interested in the
minority classes, dealing with class imbalance is a very important part of the process to

develop and train an accurate classifier.

There are multiple ways to deal with class imbalance in the literature, and the most
versatile one is the data level approach, where we use resampling algorithms to generate
new data samples in order to make the dataset balanced (LOYOLA-GONZALEZ et al.,
2016). We proposed in this work to use different resampling approaches and algorithms,

adapting it to a hierarchical classification task.

As part of this work, we proposed to investigate and evaluate the use of data
resampling in Local Hierarchical Classification. First, we proposed to establish a baseline
where no data resampling is used and then compare the results with different resampling
approaches, such as the Flat, Local, Threshold Selective and Local Selective approaches
mentioned in section 4.4. It is important to note that in this work we proposed two new
approaches to resample the data: the Threshold Selective and the Local Selective. For
all the resampling approaches, we used different resampling algorithms available in the

literature.

After gathering the results for the baseline and for each of the proposed resampling
approaches, we analyzed the results using non-parametric statistical tests in order to
prove with statistical significance if there were statistically significant improvements in

the classification results of those experiments where resampling was used.
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We divided our analysis in three steps: first, we evaluated each resampling strategy
individually against the results obtained with the baseline using a Wilcoxon Signed-Rank
(WILCOXON, 1945) test for paired samples, in order to verify if there was statistically
significant improvement when using resampling, compared to the baseline. In a second
moment, in order to cover those cases where there was no statistically significant difference,
we simply calculated the difference in the scores, subtracting the scores of each resampling
approach and the baseline. Positive results indicated the experiments where there was
any improvement and negative results indicated those where the performance decreased.
Lastly, we analyzed which of the approaches were the best ones by using the Friedman
and Nemenyi tests (DEMSAR, 2006).

From the results presented in tables 29 through 33, we can observe that for both
LCPN and LCN hierarchical classification approaches, there were resampling strategies
that yielded statistically significant improvements. If we observe the results that considered
all datasets in tables 29 and 32, we may notice that, out of the 13 strategies tested,
9 yielded improvements for the LCPN classifier. For the LCN classifier, from the 19
strategies tested, 13 of them yielded statistically significant improvements. Based on this
analysis, and in our hypothesis stated in section 1.2, we may accept the hypothesis that
that resampling the data in local hierarchical classification problems brings statistically

significant improvements to the classification results.

However, if we take a deeper look at the results for each dataset separately in
tables 30 and 33, we may notice that this is not true for every dataset. Resampling the
data was more effective in some datasets than others. For the LCPN classifier, we observed
statistically significant improvement in 36 out of the 78 scenarios (46.15%). In the Diptera
dataset, no improvements in any scenario were found. For the LCN classifier, we noticed
statistically significant improvement in 60 out of the 114 scenarios (52.63%). In this case,
we did not find any improvement when using the RYDLS C-19 IDC and iCOPE datasets.

In the second step of the analysis, we analyzed the difference between the baseline
and the resampling approaches by doing the subtraction between the score reported with
each approach and the one obtained in the baseline. Our objective with this analysis
was finding out all the scenarios that any improvement was recorded, even if it was not
statistically significant. From tables 34 and 36, where the analysis was performed across all
datasets, it is possible to observe that in most cases, data resampling resulted in positive
differences, which means that it improved the classification performance. In the LCPN
experiments, there was a positive difference in 11 out of the 13 scenarios while in the LCN

experiments there was a positive difference in 17 out of the 19 scenarios.

In the separate analysis performed for each dataset, summarized in table 37, it is
possible to notice that data resampling yielded positive differences in most of the scenarios

as well. For the LCPN experiments, there was improvement in 64.10% of the scenarios,
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while in the LCN experiments there was improvement in 78.95% of the scenarios.

In the third and last step of our analysis, we analyzed which resampling strategies
were the best ones with the average rank results presented in tables 38 through 41 and
the CD plots in figures 32 and 33 and also in in Appendix B, in figures 34 through 45.

For the LCPN experiments, it is possible to observe that the best ranked resampling
strategy considering all datasets was the Flat-SMOTE strategy with an average rank of
6.31, as presented in table 38. When analyzing the performance for each dataset separately,
we noticed that the Flat-SMOTE appeared in the top 3 ranked approaches of each dataset
in three out of the six datasets. For the LCN experiments, based on the average ranks from
table 40 we noticed that the Flat Resampling approach was not effective in any scenarios.
From these results, it is also possible to notice that, one of the resampling approaches
proposed in this work, the Threshold Selective Resampling was the best ranked one when
used together with the SMOTE-Tomek algorithm (Threshold-SMOTE-Tomek approach),
with an average rank of 6.34. By looking at the results presented in table 41 for each
dataset separately, we noticed that the Threshold-SMOTE-Tomek approach appears in
the top 3 results for each dataset in five out of the six datasets. The other resampling
approach proposed in this work, called Local Selective Resampling, was not among the
best ranked ones and because of this we may conclude that it still needs adjustments on

its methodology.

Based on this analysis and in the objectives defined in 1.1, it is possible to conclude
that, after comparing the results where data resampling was used with those obtained for
the baseline, data resampling in local hierarchical classification yields statistically significant
improvements in some scenarios, and an increase in the classification scores in most of the
scenarios. It was also possible to conclude that one of the proposed resampling approaches,
the Threshold Selective, was effective and yielded the best average ranks for the LCN
experiments. Because of this, we may conclude that the Threshold-Selective resampling
approach may be a good solution to mitigate losing performance in the classification of
majority classes while still resampling the minority ones. On the other hand, we also
concluded that the other approach proposed in this work, called Local Selective, still needs

some amendments in order to produce better results.

Some of the limitations of this work are: only MLNP and tree-based problems
were investigated, and a limited number of resampling approaches were tested. As future
research direction, we suggest investigating NMLNP and graph-based problems as well as

conducting further investigation in other resampling approaches.
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Appendix



APPENDIX A — Complete class distribution

of all datasets

Table 42 — Class Distribution of the Actinopterygii dataset

Class Count
R/perciformes/pomacentridae/chromis/c-chrysura 3593
R/perciformes/pomacentridae/dascyllus/d-reticulatus 3196
R/beryciformes/holocentridae/myripristis/m-kuntee 3004
R/perciformes/pomacentridae/amphiprion /a-clarkii 2985
R/perciformes/acanthuridae/acanthurus/a-nigrofuscus 2511
R/perciformes/chaetodontidae/chaetodon/c-lunulatus 2494
R/perciformes/pomacentridae/plectroglyphidodon/p-dickii 2456
R/perciformes/pomacentridae/dascyllus/d-aruanus 904
R/perciformes/chaetodontidae/chaetodon /c-trifascialis 375
R/perciformes/pomacentridae/abudefduf/a-vaigiensis 306
R/perciformes/acanthuridae/zebrasoma/z-scopas 271
R/perciformes/labridae/hemigymnus/h-melapterus 147
R/perciformes/pomacentridae /neoglyphidodon /n-nigroris 129
R/perciformes/pempheridae/pempheris/p-vanicolensis 49
R/perciformes/chaetodontidae /chaetodon/c-speculum 24

Table 43 — Class Distribution of the Diptera dataset

Class Count
R/drosophilidae/drosophila/d-melanogaster 2005
R/muscidae /musca/m-domestica 2005
R/drosophilidae/drosophila/d-suzukii 2005
R/chironomidae/chironomus/c-xanthus 2005
R/culicidae /anopheles/a-aquasalis/a-aquasalis:f 1505
R/culicidae/aedes/ae-albopictus/ae-albopictus:f 1505
R/culicidae/culex/cx-quinquefasciatus/cx-quinquefasciatus:m 1505
R/culicidae/aedes/ae-albopictus/ae-albopictus:m 1505
R/culicidae/culex/cx-quinquefasciatus/cx-quinquefasciatus:f 1505
R/culicidae/culex/cx-tarsalis/cx-tarsalis:f 1505
R/culicidae/anopheles/a-aquasalis/a-aquasalis:m 1505
R/culicidae/aedes/ae-aegypti/ae-aegypti:f 1505
R/culicidae/aedes/ae-aegypti/ae-aegypti:m 1505

R/culicidae/culex/cx-tarsalis/cx-tarsalis:m 157
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Table 44 — Class Distribution of the Instrument dataset

Class Count
R /aerophone/wood /flute 1029
R/aerophone/brass/tuba 1009
R/aerophone/wood/clarinet 977
R/aerophone/wood/saxophone 860
R/aerophone/brass/trombone 823
R /aerophone/wood /bassoon 760
R/aerophone/brass/horn 696
R/aerophone/wood/oboe 631
R/aerophone/brass/trumpet 556
R/idiophone/fibrousmaterial /marimba 303
R/membranophone/bimembranophone/snare 198
R/idiophone/fibrousmaterial /xylophone 185
R/chordophone/pizzicato/guitar 106
R/chordophone/pizzicato/doublebass 104
R/eletrophone/electronic/synthesizer 103
R/membranophone/unimembranophone/tambourine 102
R/chordophone/arco/violadarco 100
R/chordophone/arco/cello 95
R/membranophone/bimembranophone/bassdrum 94
R/chordophone/arco/violin 90
R/chordophone/pizzicato/mandolin 80
R/idiophone/metal /cymbal 7
R/chordophone/pizzicato/banjo 74
R/eletrophone/electroacoustic/electricguitar 73
R/eletrophone/electronic/keyboard 58
R/membranophone/unimembranophone/timbale 33
R/membranophone/bimembranophone/toms 45
R/eletrophone/electroacoustic/bass 44
R/idiophone/metal /bells 41
R/idiophone/metal /gong 28
R/idiophone/metal/crotale 25
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Table 45 — Class Distribution of the InCLEF07D dataset

Class Count
R/1/2/0 2788
R/1/2/7 2166
R/1/1/0 1704
R/2/1/1 952
R/2/1/0 642
R/2/3/0 605
R/2/4/0 322
R/2/2/0 315
R/4/a/0 173
R/1/1/5 172
R/4/1/0 151
R/3/1/0 148
R/2/0/0 140
R/4/9/0 131
R/4/3/0 114
R/3/2/0 107

R/4/2/0 94
R/1/2/1 86
R/1/1/2 51
R/4/b/0 41
R/1/2/f 32
R/4/6/0 17
R/1/1/6 16
R/1/2/9 15
R/2/2/8 12
R/2/2/9 12

Table 46 — Class Distribution of the iCOPE dataset

Class Count
R/Pain 42
R/NoPain/Rest 36
R/NoPain/Friction 20

R/NoPain/Movement 15
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Table 47 — Class Distribution of the RYDLS C-19 IDC dataset

Class Count
R/Normals 1000
R/Pneumonia/Viral/COVID-19 476
R/Pneumonia/Fungal /Pneumocystis 24
R/Pneumonia/Bacterial /Streptococcus 18
R/Pneumonia/Viral /SARS 16
R/Tuberculosis 11
R/Pneumonia/Viral/ MERS-CoV 10
R/Pneumonia/Bacterial /Legionella 9
R/Pneumonia/Bacterial /Klebsiella 9
R/Pneumonia/Lipoid 8

Table 48 — Hierarchical Class Distribution of the Actinopterygii dataset

1st level 2nd level 3rd level 4th level

dascyllus 4100 | d-reticulatus 3196

d-aruanus 904

chromis 3593 | c-chrysura 3593

pomacentridae 13569 | amphiprion 2985 | a-clarkii 2985

plectroglyphidodon 2456 | p-dickii 2456

abudefduf 306 | a-vaigiensis 306

neoglyphidodon 129 | n-nigroris 129

perciformes 19440 | acanthuridae 2782 | acanthurus 2511 | a-nigrofuscus 2511

zebrasoma 271 | z-scopas 271

c-lunulatus 2494

chactodontidae 2893 | chaetodon 2893 | c-trifascialis 375

c-speculum 24

labridae 147 | hemigymnus 147 | h-melapterus 147

pempheridae 49 pempheris 49 | p-vanicolensis 49

beryciformes 3004 | holocentridae 3004 | myripristis 3004 | m-kuntee 3004

Table 49 — Hierarchical Class Distribution of the Diptera dataset
1st level 2nd level 3rd level 4th level
drosophilidae 4010 | drosophila 4010 | d-melanogaster 2005 | — -

d-suzukii 2005 | n/a n/a
muscidae 2005 | muscidae 2005 | musca 2005 | m-domestica 2005
chironomidae 2005 | chironomidae 2005 | chironomus 2005 | c-xanthus 2005
ae-albopictus 3010 | ae-albopictus:m 1505
aedes 6020 ae-albopictus:f 1505
ae-aegypti 3010 | ae-aegypti:f 1505
ae-aegypti:m 1505
culicidae 13702 cx-quinquefasciatus 3010 | cx-quinquefasciatus:m 1505
culex 4672 cx-quinquefasciatus:f 1505
cx-tarsalis 1662 | cx-tarsalis:f 1505
cx-tarsalis:m 157
anopheles 3010 | a~aquasalis 3010 | a-aquasalis:f 1505
a-aquasalis:m 1505
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APPENDIX A. Complete class distribution of all datasets

Table 50 — Hierarchical Class Distribution of the Instrument dataset

1st level 2nd level 3rd level

flute 1029

clarinet 977

wood 4257 | saxophone 860

aerophone 7341 bassoon 760
oboe 631

tuba 1009

brass 3084 | trombone 823

horn 696 |

trumpet 556

guitar 106

pizzicato 364 | doublebass 104

mandolin 80

chordophone 649 banjo 74
violadarco 100

arco 285 | cello 95

violin 90

electroacoustic 117 | bass 44

eletrophone 278 electricguitar 73
electronic 161 | keyboard 58

synthesizer 103

snare 198

bimembranophone 337 | bassdrum 94

membranophone 492 toms 45
unimembranophone 155 | tambourine 102

timbale 53

fibrousmaterial 488 | marimba 303

xylophone 185

idiophone 659 cymbal T
metal 171 | bells 41

gong 28

crotale 25
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Table 51 — Hierarchical Class Distribution of the InCLEF07D dataset

1st level | 2nd level | 3rd level
0 1704
1 1943 5 172
2 51
6 16
1 7030 0 2788
7 2166
2 5087 |1 86 |
f 32
9 15
0 140 0 140
1 1594 1 952
0 642
2 3000 0 315
2 339 8 12
9 12
3 605 0 605
4 322 0 322
3 255 |1 148 0 148
2 107 0 107
1 151 0 151
2 94 0 94
3 114 0 114
4 721 6 17 0 17
9 131 0 131
a 173 0 173
b 41 0 41

Table 52 — Hierarchical Class Distribution of the iCOPE dataset

Table 53 — Hierarchical Class Distribution of the RYDLS C-19 IDC dataset

1st level

2nd level

Pain 42 | —

Rest

36

No Pain 71

Friction

20

Movement 15

1st level 2nd level 3rd level

Normals 1000 | - - | - -
COVID-19 476

Viral 502 | SARS 16

MERS-CoV 10

Pneumonia 570 Legionella 9
Bacterial 36 | Klebsiella 9

Streptococcus 18

Fungal 24 | Pneumocystis 24

Lipoid 8 | - -

Tuberculosis 11 | — - |- -
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APPENDIX B — Experimental setup and

results

Table 54 — Summary of the classification algorithms and the configurations used in the
experiments

Algorithm

Parameters

Decision Trees (DT)

criterion="gini’

splitter="best’

max_ depth = None

min_ samples_ split=2

min_ samples_ leaf=1
min_weight fraction leaf=0.0
max_ features=None
max_leaf nodes=None

min impurity decrease=0.0
class_ weight=None

Random Forest (RF)

n_estimators=150
criterion="gini’
max__depth=None

min_ samples_ split=2

min_ samples_ leaf=1

min_ weight_ fraction_ leaf=0.0
max_features="auto’
max_leaf nodes=None
min_impurity _decrease=0.0
bootstrap=True
oob_score=False
class_weight=None
cep__alpha=0.0
max_samples=None

Multilayer Perceptron (MLP)

hidden layer sizes = (100,)
solver="lbfgs’
activation="relu’
alpha=0.0001

learning_ rate=’constant’
learning_ rate init=0.001
max__iter=1000
shuffle=True

tol=1e-4

momentum=0.9

early stopping=False
max_ fun=15000

SupportVector Machine (SVM)

SVC

kernel="rbf’

C=1.0

degree=3
gamma="scale’
coef0=0.0

tol=1e-3

class  weight=None
max_ iter=-1
decision_ function_ shape=’ovr’
break ties=False
probability=True

Naive Bayes (NB)

GaussianNB()
var__smoothing=1e-9

K-Nearest Neighbors (kNN)

n_neighbors=5
weights="uniform’
algorithm="auto’

leaf size=30

p=2
metric="minkowski’
metric_ params=None
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Table 55 — Mean macro-averaged F1 core for the LCPN experiments, considering all

datasets

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.389 0.409 0.287 0.260 0.459 0.271 0.346
flat-adasyn 0.357 0.439 0.313 0.247 0.506 0.321 0.364
flat-borderline 0.365 0.440 0.291 0.251 0.499 0.349 0.366
flat-ros 0.393 0.455 0.275 0.253 0.500 0.356 0.372
flat-smote 0.373 0432 0.289 0.257 0.524 0.348 0.371
flat-smote-enn 0.339 0.405 0.251 0.249 0449 0.319 0.335
flat-smote-tomek  0.388 0.438 0.287 0.259 0.502 0.333 0.368
local-adasyn 0.372 0423 0.285 0.237 0.511 0.316 0.357
local-borderline 0.380 0.424 0.291 0.239 0.494 0.348 0.363
local-ros 0.389 0.445 0.316 0.257 0493 0.361 0.377
local-smote 0.385 0.432 0.287 0.254 0.517 0.358 0.372

local-smote-enn 0.358 0.381 0.280 0.252 0.459 0.312 0.340
local-smote-tomek 0.394 0.426 0.294 0.259 0.510 0.355 0.373
local-selective 0.376 0.417 0.355 0.259 0.483 0.348 0.373

Table 56 — Mean macro-averaged F1 score for the LCPN experiments, for the Actinoptery-
gii dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.551 0.360 0.114 0.175 0.659 0.045 0.317
flat-adasyn 0.519 0.342 0.208 0.188 0.647 0.047 0.325
flat-borderline 0.538 0.371 0.097 0.192 0.671 0.053 0.320
flat-ros 0.561 0.308 0.040 0.190 0.688 0.053 0.323
flat-smote 0.515 0.354 0.099 0.190 0.655 0.053 0.311

flat-smote-enn 0.384 0.268 0.081 0.185 0.446 0.027 0.232
flat-smote-tomek ~ 0.509 0.347 0.068 0.191 0.637 0.050 0.300

local-adasyn 0.518 0.306 0.057 0.130 0.635 0.078 0.287
local-borderline 0.531 0.343 0.086 0.134 0.651 0.074 0.303
local-ros 0.558 0.350 0.144 0.150 0.685 0.087 0.329
local-smote 0.530 0.323 0.049 0.155 0.647 0.088 0.299

local-smote-enn 0.398 0.237 0.100 0.152 0.443 0.078 0.235
local-smote-tomek 0.524 0.320 0.107 0.155 0.638 0.086 0.305
local-selective 0.485 0.294 0.160 0.155 0.613 0.089 0.299

Table 57 — Mean macro-averaged F1 score for the LCPN experiments, for the RYDLS
C-19 IDC dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.330 0.230 0.284 0.256 0.248 0.160 0.251
flat-adasyn 0.241 0.347 0.344 0.241 0.350 0.213 0.289
flat-borderline 0.262 0.309 0.351 0.234 0.298 0.258 0.285
flat-ros 0.257 0.355 0.315 0.212 0.308 0.231 0.280
flat-smote 0.281 0.338 0.335 0.267 0.356 0.226 0.301
flat-smote-enn 0.260 0.310 0.301 0.256 0.358 0.220 0.284
flat-smote-tomek ~ 0.312 0.338 0.325 0.266 0.353 0.226 0.303
local-adasyn 0.254 0.308 0.250 0.268 0.378 0.192 0.275
local-borderline 0.250 0.316 0.348 0.288 0.346 0.213 0.294
local-ros 0.300 0.352 0.304 0.265 0.339 0.198 0.293
local-smote 0.264 0.323 0.310 0.278 0.374 0.198 0.291

local-smote-enn 0.273 0.258 0.310 0.269 0.339 0.179 0.271
local-smote-tomek 0.297 0.323 0.321 0.278 0.363 0.198 0.297
local-selective 0.332 0.312 0.238 0.269 0.335 0.177 0.277
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Table 58 — Mean macro-averaged F1 score for the LCPN experiments, for the Diptera

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.395 0.441 0.493 0.301 0.505 0.473 0.435
flat-adasyn 0.390 0.418 0.459 0.277 0.490 0.424 0.410
flat-borderline 0.401 0.435 0.473 0.294 0.497 0.449 0.425
flat-ros 0.395 0.429 0.479 0.291 0.502 0.448 0.424
flat-smote 0.399 0433 0.480 0.293 0.498 0.450 0.426
flat-smote-enn 0.412 0.414 0.440 0.309 0.456 0.420 0.409
flat-smote-tomek  0.408 0.434 0.467 0.300 0.498 0.451 0.426
local-adasyn 0.395 0.408 0.462 0.264 0.511 0.463 0.417
local-borderline 0.395 0.417 0.465 0.273 0.513 0.468 0.422
local-ros 0.400 0417 0.478 0.286 0.510 0.478 0.428
local-smote 0.402 0425 0.483 0.288 0.515 0.480 0.432

local-smote-enn 0.426 0.415 0.458 0.295 0.482 0.450 0.421
local-smote-tomek 0.407 0.430 0.481 0.290 0.512 0479 0.433
local-selective 0.408 0.421 0.463 0.287 0.509 0.474 0.427

Table 59 — Mean macro-averaged F1 score for the LCPN experiments, for the ImCLEF07D

dataset
Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.299 0.613 0.538 0.316 0.410 0.571 0.458
flat-adasyn 0.294 0.605 0.573 0.270 0.542 0.663 0.491
flat-borderline 0.308 0.621 0.574 0.264 0.526 0.663 0.493
flat-ros 0.326 0.639 0.549 0.267 0.526 0.670 0.496
flat-smote 0.320 0.610 0.572 0.294 0.560 0.666 0.504

flat-smote-enn 0.317 0.589 0.506 0.288 0.577 0.643 0.487
flat-smote-tomek ~ 0.321 0.610 0.565 0.294 0.563 0.666 0.503

local-adasyn 0.304 0.560 0.558 0.266 0.500 0.658 0.474
local-borderline 0.316 0.559 0.581 0.248 0.509 0.657 0.478
local-ros 0.327 0.623 0.599 0.297 0.490 0.656 0.499
local-smote 0.311 0.589 0.572 0.315 0.516 0.664 0.495

local-smote-enn 0.318 0.540 0.556 0.299 0.536 0.618 0.478
local-smote-tomek 0.313 0.589 0.533 0.316 0.508 0.664 0.487
local-selective 0.300 0.575 0.581 0.321 0.489 0.649 0.486

Table 60 — Mean macro-averaged F1 score for the LCPN experiments, for the iCOPE

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.223 0.189 0.286 0.240 0.262 0.121 0.220
flat-adasyn 0.168 0.179 0.252 0.229 0.236 0.075 0.190
flat-borderline 0.162 0.181 0.231 0.243 0.264 0.175 0.209
flat-ros 0.296 0.189 0.221 0.262 0.274 0.188 0.238
flat-smote 0.191 0.118 0.202 0.223 0.306 0.150 0.198
flat-smote-enn 0.144 0.144 0.168 0.182 0.103 0.075 0.136
flat-smote-tomek ~ 0.248 0.162 0.243 0.225 0.195 0.066 0.190
local-adasyn 0.265 0.248 0.307 0.226 0.296 0.073 0.236
local-borderline 0.278 0.219 0.252 0.231 0.212 0.243 0.239
local-ros 0.248 0.232 0.338 0.265 0.234 0.255 0.262
local-smote 0.273 0.224 0.281 0.202 0.289 0.223 0.249

local-smote-enn 0.230 0.168 0.185 0.217 0.239 0.075 0.186
local-smote-tomek 0.302 0.188 0.299 0.231 0.293 0.209 0.254
local-selective 0.225 0.226 0.271 0.242 0.226 0.224 0.236
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Table 61 — Mean macro-averaged F1 score for the LCPN experiments, for the Instrument

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.535 0.620 0.006 0.275 0.674 0.258 0.395
flat-adasyn 0.529 0.746 0.039 0.277 0.770 0.503 0.477
flat-borderline 0.520 0.723 0.018 0.278 0.741 0.496 0.463
flat-ros 0.524 0.717 0.038 0.296 0.703 0.547 0.471
flat-smote 0.531 0.739 0.046 0.278 0.770 0.543 0.485
flat-smote-enn 0.519 0.706 0.008 0.277 0.752 0.531 0.466
flat-smote-tomek ~ 0.529 0.738 0.054 0.278 0.764 0.542 0.484
local-adasyn 0.495 0.711 0.078 0.267 0.746 0.433 0.455
local-borderline 0.510 0.690 0.016 0.261 0.735 0.434 0.441
local-ros 0.502 0.695 0.035 0.279 0.702 0.494 0.451
local-smote 0.528 0.705 0.024 0.284 0.760 0.496 0.466

local-smote-enn 0.504 0.667 0.069 0.279 0.715 0.475 0.452
local-smote-tomek 0.520 0.705 0.023 0.284 0.745 0.495 0.462
local-selective 0.503 0.673 0.415 0.279 0.729 0.478 0.513

Table 62 — Mean Macro-Avg F1 Score for the LCN experiments, considering all datasets

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.334 0.444 0.253 0.236 0.341 0.208 0.303
flat-adasyn 0.300 0.442 0.263 0.208 0.356 0.226 0.299
flat-borderline 0.306 0.446 0.258 0.205 0.364 0.242 0.304
flat-ros 0.304 0.500 0.257 0.215 0.349 0.239 0.311
flat-smote 0.307 0.433 0.261 0.220 0.366 0.234 0.304
flat-smote-enn 0.278 0.448 0.232 0.209 0.332 0.232 0.289
flat-smote-tomek 0.314 0.452 0.266 0.217 0.368 0.236 0.309
local-adasyn 0.317 0.471 0.359 0.211 0.428 0.314 0.350
local-borderline 0.323 0.484 0.348 0.208 0.412 0.320 0.349
local-ros 0.321 0.519 0.364 0.236 0.387 0.339 0.361
local-smote 0.342 0.490 0.371 0.232 0.439 0.346 0.370
local-smote-enn 0.340 0.415 0.339 0.243 0.421 0.326 0.347
local-smote-tomek 0.337 0.482 0.361 0.233 0.442 0.340 0.366
threshold-adasyn 0.328 0.476 0.351 0.219 0.426 0.336 0.356
threshold-borderline 0.324 0.486 0.339 0.221 0.406 0.334 0.352
threshold-ros 0.311 0.516 0.339 0.243 0.404 0.350 0.361
threshold-smote 0.336 0.497 0.321 0.233 0.450 0.350 0.365

threshold-smote-enn 0.335 0.430 0.343 0.244 0.439 0.350 0.357
threshold-smote-tomek 0.324 0.489 0.361 0.231 0.453 0.346 0.367
local-selective 0.306 0.431 0.369 0.245 0414 0.342 0.351
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Table 63 — Mean macro-averaged F1 score for the LCN experiments, for the Actinopterygii

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.420 0.299 0.055 0.161 0.500 0.043 0.246
flat-adasyn 0.403 0.305 0.057 0.172 0.482 0.044 0.244
flat-borderline 0.422 0.335 0.059 0.177 0.502 0.050 0.258
flat-ros 0.410 0.352 0.041 0.180 0.508 0.046 0.256
flat-smote 0.414 0.316 0.042 0.178 0.495 0.044 0.248
flat-smote-enn 0.353 0.289 0.050 0.160 0.396 0.050 0.216
flat-smote-tomek 0.405 0.314 0.060 0.177 0.480 0.045 0.247
local-adasyn 0.436 0.353 0.070 0.137 0.620 0.103 0.287
local-borderline 0.440 0.367 0.051 0.138 0.593 0.098 0.281
local-ros 0.416 0.388 0.0564 0.154 0.552 0.106 0.278
local-smote 0.435 0.366 0.080 0.158 0.612 0.108 0.293
local-smote-enn 0.417 0.336 0.067 0.158 0.539 0.086 0.267
local-smote-tomek 0.433 0.368 0.061 0.159 0.608 0.110 0.290
threshold-adasyn 0.437 0.375 0.079 0.154 0.638 0.146 0.305
threshold-borderline 0.440 0.380 0.071 0.155 0.600 0.146 0.299
threshold-ros 0.414 0.401 0.080 0.159 0.555 0.148 0.293
threshold-smote 0.441 0.376 0.067 0.161 0.626 0.149 0.303

threshold-smote-enn 0.442 0.375 0.057 0.163 0.610 0.147 0.299
threshold-smote-tomek 0.437 0.375 0.090 0.162 0.629 0.149 0.307
local-selective 0.418 0.330 0.207 0.161 0.573 0.107 0.299

Table 64 — Mean macro-averaged F1 score for the LCN experiments, for the RYDLS C-19
IDC dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.412 0.627 0.088 0.216 0.259 0.197 0.300
flat-adasyn 0.318 0.392 0.140 0.171 0.286 0.133 0.240
flat-borderline 0.318 0.448 0.134 0.161 0.282 0.156 0.250
flat-ros 0.296 0.753 0.147 0.163 0.255 0.136 0.292
flat-smote 0.328 0.449 0.150 0.181 0.290 0.139 0.256
flat-smote-enn 0.288 0.559 0.140 0.171 0.285 0.139 0.264
flat-smote-tomek 0.337 0.479 0.158 0.189 0.299 0.126 0.265
local-adasyn 0.306 0.470 0.206 0.183 0.320 0.227 0.285
local-borderline 0.322 0.581 0.183 0.174 0.320 0.204 0.297
local-ros 0.329 0.737 0.207 0.169 0.265 0.214 0.320
local-smote 0.370 0.601 0.217 0.171 0.347 0.226 0.322
local-smote-enn 0.336 0.391 0.234 0.214 0.289 0.199 0.277
local-smote-tomek 0.357 0.577 0.218 0.167 0.359 0.199 0.313
threshold-adasyn 0.317 0472 0.182 0.184 0.317 0.245 0.286
threshold-borderline 0.350 0.575 0.167 0.175 0.295 0.209 0.295
threshold-ros 0.310 0.737 0.173 0.177 0.316 0.211 0.321
threshold-smote 0.368 0.600 0.163 0.179 0.347 0.230 0.315

threshold-smote-enn 0.317 0.391 0.171 0.205 0.287 0.200 0.262
threshold-smote-tomek 0.373 0.574 0.153 0.174 0.377 0.200 0.309
local-selective 0.223 0.343 0.279 0.232 0.306 0.227 0.268
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Table 65 — Mean macro-averaged F1 score for the LCN experiments, for the Diptera

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.312 0.397 0.381 0.296 0.395 0.312 0.349
flat-adasyn 0.310 0.387 0.361 0.272 0.376 0.294 0.333
flat-borderline 0.309 0.403 0.356 0.289 0.388 0.299 0.341
flat-ros 0.310 0.399 0.340 0.286 0.393 0.302 0.338
flat-smote 0.312 0.401 0.385 0.286 0.387 0.303 0.346
flat-smote-enn 0.337 0.422 0.366 0.290 0.403 0.373 0.365
flat-smote-tomek 0.318 0.408 0.372 0.291 0.393 0.316 0.350
local-adasyn 0.326 0.400 0.472 0.251 0.491 0.467 0.401
local-borderline 0.323 0.400 0.463 0.264 0.484 0.465 0.400
local-ros 0.311 0.407 0.482 0.295 0.437 0.484 0.403
local-smote 0.331 0.416 0.490 0.304 0.496 0.490 0.421
local-smote-enn 0.332 0.413 0.480 0.302 0.483 0.484 0.417
local-smote-tomek 0.330 0.417 0.480 0.305 0.493 0.490 0.419
threshold-adasyn 0.321 0.405 0.476 0.274 0.492 0.485 0.409
threshold-borderline 0.319 0.405 0.463 0.286 0.487 0.481 0.407
threshold-ros 0.314 0.409 0.491 0.297 0.440 0.488 0.407
threshold-smote 0.333 0.418 0.486 0.305 0.495 0.492 0.422

threshold-smote-enn 0.336  0.419 0.487 0.304 0.489 0.492 0.421
threshold-smote-tomek 0.332 0.419 0.491 0.304 0.493 0.491 0.422
local-selective 0.325 0.414 0.482 0.305 0.486 0.489 0.417

Table 66 — Mean macro-averaged F1 score for the LCN experiments, for the InCLEF07D

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.223 0.538 0.466 0.287 0.274 0.446 0.372
flat-adasyn 0.196 0.589 0.469 0.200 0.283 0.510 0.375
flat-borderline 0.195 0.596 0.473 0.188 0.269 0.508 0.372
flat-ros 0.206 0.616 0.482 0.204 0.298 0.517 0.387
flat-smote 0.213 0.587 0.469 0.219 0.317 0.510 0.386
flat-smote-enn 0.227 0.576 0.470 0.219 0.317 0.503 0.385
flat-smote-tomek 0.213 0.590 0.470 0.218 0.315 0.508 0.386
local-adasyn 0.202 0.597 0.471 0.231 0.297 0.551 0.392
local-borderline 0.206 0.607 0.467 0.234 0.281 0.545 0.390
local-ros 0.217 0.628 0.482 0.278 0.336 0.561 0.417
local-smote 0.218 0.619 0.485 0.287 0.334 0.549 0.415
local-smote-enn 0.234 0.534 0.492 0.282 0.359 0.559 0.410
local-smote-tomek 0.222 0.619 0.473 0.28 0.329 0.557 0.414
threshold-adasyn 0.216 0.616 0.472 0.227 0.301 0.564 0.399
threshold-borderline 0.214 0.627 0.481 0.223 0.293 0.554 0.399
threshold-ros 0.223 0.631 0.475 0.284 0.340 0.568 0.420
threshold-smote 0.218 0.635 0.477 0.287 0.343 0.556 0.419

threshold-smote-enn 0.230 0.558 0.505 0.285 0.383 0.577 0.423
threshold-smote-tomek 0.220 0.634 0.481 0.286 0.336 0.554 0.419
local-selective 0.207 0.582 0.453 0.283 0.323 0.527 0.396
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Table 67 — Mean macro-averaged F'1 score for the LCN experiments, for the iCOPE dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.245 0.220 0.256 0.239 0.223 0.146 0.222
flat-adasyn 0.193 0.237 0.304 0.237 0.270 0.174 0.236
flat-borderline 0.210 0.174 0.262 0.222 0.298 0.215 0.230
flat-ros 0.228 0.164 0.257 0.245 0.219 0.203 0.219
flat-smote 0.183 0.111 0.304 0.262 0.243 0.155 0.210
flat-smote-enn 0.069 0.137 0.139 0.212 0.143 0.075 0.129
flat-smote-tomek 0.208 0.187 0.254 0.228 0.251 0.175 0.217
local-adasyn 0.240 0.264 0.317 0.242 0.285 0.119 0.245
local-borderline 0.238 0.222 0.304 0.196 0.238 0.184 0.230
local-ros 0.264 0.227 0.312 0.254 0.221 0.178 0.243
local-smote 0.268 0.198 0.307 0.217 0.249 0.219 0.243
local-smote-enn 0.296 0.170 0.212 0.253 0.255 0.160 0.224
local-smote-tomek 0.249 0.170 0.293 0.228 0.273 0.201 0.236
threshold-adasyn 0.278 0.237 0.260 0.261 0.243 0.130 0.235
threshold-borderline 0.211 0.196 0.296 0.260 0.212 0.171 0.224
threshold-ros 0.195 0.188 0.344 0.272 0.270 0.179 0.241
threshold-smote 0.221 0.212 0.264 0.210 0.289 0.170 0.228

threshold-smote-enn 0.241 0.193 0.314 0.250 0.265 0.200 0.244
threshold-smote-tomek 0.149 0.191 0.317 0.208 0.282 0.186 0.222
local-selective 0.257 0.220 0.289 0.242 0.226 0.237 0.245

Table 68 — Mean macro-averaged F1 score for the LCN experiments, for the Instrument

dataset

Strategy DT kNN MLP NB RF SVM Avg.
baseline 0.390 0.583 0.274 0.218 0.397 0.106 0.328
flat-adasyn 0.383 0.740 0.248 0.196 0.439 0.200 0.368
flat-borderline 0.385 0.722 0.265 0.195 0.445 0.222 0.372
flat-ros 0.372 0.714 0.274 0.212 0.420 0.230 0.370
flat-smote 0.390 0.736 0.216 0.196 0.462 0.252 0.375
flat-smote-enn 0.391 0.705 0.229 0.202 0.451 0.251 0.372
flat-smote-tomek 0.402 0.735 0.281 0.199 0.468 0.246 0.389
local-adasyn 0.395 0.742 0.622 0.221 0.554 0.419 0.492
local-borderline 0.407 0.726 0.622 0.243 0.558 0.421 0.496
local-ros 0.387 0.727 0.646 0.264 0.511 0.489 0.504
local-smote 0.428 0.740 0.649 0.253 0.593 0.483 0.524
local-smote-enn 0.424 0.644 0.551 0.250 0.597 0.469 0.489
local-smote-tomek 0.432 0.740 0.644 0.251 0.592 0.484 0.524
threshold-adasyn 0.396 0.749 0.638 0.211 0.565 0.444 0.501
threshold-borderline 0.413 0.730 0.555 0.229 0.547 0.446 0.487
threshold-ros 0.408 0.729 0.468 0.268 0.504 0.503 0.480
threshold-smote 0.434 0.741 0469 0.255 0.598 0.501 0.500

threshold-smote-enn 0.442 0.646 0.526 0.255 0.601 0.487 0.493
threshold-smote-tomek 0.435 0.741 0.636 0.255 0.600 0.498 0.528
local-selective 0.408 0.699 0.506 0.248 0.572 0.464 0.483
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Table 69 — Difference between the baseline and each resampling strategy for the LCPN
scenario, for each dataset

Strategy Actinopterygii CI-{E)DII]JDSC Diptera ImCLEF07D iCOPE Instrument
baseline 0.317 0.251 0.435 0.458 0.220 0.395
flat-adasyn
flat-borderline
flat-ros
flat-smote

flat-smote-enn
flat-smote-tomek
local-adasyn
local-borderline
local-ros
local-selective
local-smote
local-smote-enn
local-smote-tomek

Table 70 — Percentage variation between the baseline and each resampling strategy for the
LCPN scenario, for each dataset

Actinopterygii RYDLS Diptera ImCLEF07D iCOPE Instrument

Strategy (%) C-19 IDC(%) (%) (%) (%) (%)

flat-adasyn
flat-borderline
flat-ros
flat-smote
flat-smote-enn
flat-smote-tomek
local-adasyn
local-borderline
local-ros
local-selective
local-smote
local-smote-enn
local-smote-tomek
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Table 71 — Difference between the baseline and each resampling strategy for the LCN
scenario, for each dataset

Strategy Actinopterygii CI_?;DII]JDSC Diptera ImCLEF07D iCOPE Instrument
baseline 0.317 0.251 0.435 0.458 0.220 0.395
flat-adasyn
flat-borderline
flat-ros
flat-smote

flat-smote-enn
flat-smote-tomek
local-adasyn
local-borderline
local-ros

local-smote
local-smote-enn
local-smote-tomek
threshold-adasyn
threshold-borderline
threshold-ros
threshold-smote
threshold-smote-enn
threshold-smote-tomek
local-selective

Table 72 — Percentage variation between the baseline and each resampling strategy for the
LCN scenario, for each dataset

Strategy Actinopterygii Cl_{};DII]E)SC Diptera ImCLEF07D iCOPE Instrument
(%) (%) (%) (%) (%) (%)
flat-adasyn
flat-borderline
flat-ros
flat-smote

flat-smote-enn
flat-smote-tomek
local-adasyn
local-borderline
local-ros

local-smote
local-smote-enn
local-smote-tomek
threshold-adasyn
threshold-borderline
threshold-ros
threshold-smote
threshold-smote-enn
threshold-smote-tomek
local-selective
local-selective
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Figure 34 — CD plot from Nemenyi’s test (« = 0.05) for the Actinopterygii dataset,
comparing the resampling strategies used with the LCPN Hierarchical classifier
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Figure 35 — CD plot from Nemenyi’s test (o = 0.05) for the RYDLS C-19 IDC dataset,
comparing the resampling strategies used with the LCPN Hierarchical classifier
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Figure 36 — CD plot from Nemenyi’s test (a« = 0.05) for the Diptera dataset, comparing
the resampling strategies used with the LCPN Hierarchical classifier
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Figure 37 — CD plot from Nemenyi’s test (a = 0.05) for the InCLEF07D dataset, com-
paring the resampling strategies used with the LCPN Hierarchical classifier
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Figure 38 — CD plot from Nemenyi’s test (o = 0.05) for the iCOPE dataset, comparing
the resampling strategies used with the LCPN Hierarchical classifier
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Figure 39 — CD plot from Nemenyi’s test (o« = 0.05) for the Instrument dataset, comparing
the resampling strategies used with the LCPN Hierarchical classifier
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Figure 40 — CD plot from Nemenyi’s test (« = 0.05) for the Actinopterygii dataset,
comparing the resampling strategies used with the LCN Hierarchical classifier
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Figure 41 — CD plot from Nemenyi’s test (o = 0.05) for the RYDLS C-19 IDC dataset,
comparing the resampling strategies used with the LCN Hierarchical classifier
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Figure 42 — CD plot from Nemenyi’s test (a = 0.05) for the Diptera dataset, comparing
the resampling strategies used with the LCN Hierarchical classifier
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Figure 43 — CD plot from Nemenyi’s test (o = 0.05) for the InCLEF07D dataset, com-
paring the resampling strategies used with the LCN Hierarchical classifier
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Figure 44 — CD plot from Nemenyi’s test (a = 0.05) for the iCOPE dataset, comparing
the resampling strategies used with the LCN Hierarchical classifier
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Figure 45 — CD plot from Nemenyi’s test (o = 0.05) for the Instrument dataset, comparing
the resampling strategies used with the LCN Hierarchical classifier
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