
Eric Kenzo Taniguchi Onuki

Bringing Awareness to Energy Consumption
in Data Stream Mining

Thesis project presented to the Graduate
Program in Informatics of Pontifícia Univer-
sidade Católica do Paraná (PUCPR) as par-
tial requirement for the degree of Master in
Informatics.

Curitiba
2022

Eric Kenzo Taniguchi Onuki

Bringing Awareness to Energy
Consumption in Data Stream Mining

Dissertation project presented to the Gradu-
ate Program in Informatics of Pontifícia Uni-
versidade Católica do Paraná (PUCPR) as
partial requirement for the degree of Master
in Informatics.

Major Field: Computer Science

Adviser: Jean Paul Barddal
Co-adviser: Andreia Malucelli

Curitiba
2022

Contents

Contents i

List of Figures v

List of Tables vii

List of Abbreviations ix

Abstract x

Resumo xi

Chapter 1

Introduction 1

1.1 Research Questions . 4

1.2 Objectives . 4

1.3 Financial support . 4

1.4 Overview . 5

Chapter 2

Machine Learning in Data Streams 6

2.1 Data Streams . 8

2.2 Data Stream Mining . 9

2.3 Concept drift and Change detection . 10

2.3.1 Drift Detectors . 13

2.3.2 Error rate-based Drift Detection . 14

2.3.2.1 DDM - Drift Detection Method 14

2.3.2.2 EDDM - Early Drift Detection Method 14

2.3.2.3 ADWIN - Learning from Time-Changing Data with Adap-

tive Windowing . 14

2.3.3 Data Distribution-based Drift Detection 15

2.3.4 Multiple Hypothesis Test Drift Detection 15

2.3.5 Energy Efficiency of Drift Detection 16

2.4 Data Stream Classifiers . 17

i

2.4.1 Naive Bayes . 17

2.4.2 k-Nearest Neighbors . 18

2.4.3 Decision Trees, Hoeffding Trees and VFDT 20

2.4.4 Bagging and its variants . 22

2.4.5 Adaptive Random Forests . 23

2.5 Validation . 24

2.5.1 Prequential . 24

2.5.2 Interleaved Chunks . 24

2.6 Tools for Data Stream Mining . 26

2.6.1 MOA . 26

2.6.2 Scikit-multiflow . 26

2.6.3 Remarks . 27

2.7 Concluding remarks . 27

Chapter 3

Energy Efficiency 28

3.1 Green AI x Red AI . 29

3.2 CPU time versus idle process in Data Stream Mining 30

3.3 Static Power, Energy Leakage and Idle Energy Consumption 31

3.4 CPU Energy Footprint versus Peripherals Energy Footprint 32

3.5 Vertical and Horizontal Scaling . 32

3.6 Tools for measuring energy consumption 34

3.6.1 PowerAPI . 35

3.6.2 PowerTOP . 37

3.6.3 Running Average Power Limit (RAPL) 37

3.6.4 Hardware Solutions . 38

3.7 Concluding Remarks . 39

Chapter 4

Related Works 40

4.1 Strands of the related works . 41

4.1.1 Energy Measurement of data stream mining 41

4.1.2 Optimizations and new models . 42

4.2 Gaps of the knowledge . 42

4.3 Concluding Remarks . 43

ii

Chapter 5

Scienti�c Method 44

5.1 Overview . 45

5.2 Premises . 45

5.3 Plugin development method . 46

5.3.1 Inclusion and exclusion criteria of the measurement hardware . . . 46

5.3.2 Inclusion and exclusion criteria of the measurement software 47

5.3.3 Comparison of the hardware tool against the software tool 48

5.3.4 Development of a plugin for MOA 49

5.3.5 Comparison of the energy consumption of di�erent data stream

model con�gurations . 50

5.3.6 Measurements comparison . 51

5.3.7 Concluding remarks . 51

Chapter 6

Experimental Setup and Plugin Development 52

6.1 A Plugin for Assessing Energy Consumption in Data Stream Mining 52

6.2 Experimental setup . 54

6.2.1 Overview of the experiments . 55

6.3 Experiment Phase One: Validation of Software Energy Measurements as

Viable alternatives to Hardware Measurements. 55

6.3.1 Experiment One Setup . 55

6.3.2 Experiment Phase One Hypotheses 56

6.4 Experiment Phase Two: Measurement of the Energy Footprint of Well

Known Data Stream Mining Models, and evaluators with and without drift 56

6.4.1 Experiment Two Setup . 57

6.4.2 Experiment classi�ers, drift detectors, and validation scenarios . . . 57

6.4.3 Stream Generator . 57

6.4.4 Online vs O�ine training . 59

6.4.5 Experiment Two Hypotheses . 59

6.5 Experiment three Setup . 59

6.5.1 Experiment Three Hypotheses . 60

6.6 Experiment four Setup . 60

6.6.1 Experiment Four Hypotheses . 60

6.7 MOA Plugin . 60

6.8 Research Questions . 61

iii

6.9 Concluding remarks . 63

Chapter 7

Experimentation 65

7.1 Experiment 1 - Comparison of measurements done through a hardware

solution and a software solution. 66

7.2 Experiment 2 - Comparison of di�erent data stream classi�ers energy con-

sumption . 68

7.3 Experiment 3 - Comparison of energy consumption in prequential and in-

terleaved chunks validation schemes . 71

7.4 Experiment 4 - Comparison of energy consumption with and without con-

cept drift . 76

7.5 Discussion . 86

7.5.1 Hypotheses . 87

7.5.1.1 Experiment One . 87

7.5.1.2 Experiment Two . 87

7.5.1.3 Experiment Three . 87

7.5.1.4 Experiment Four . 88

7.5.2 Concluding Remarks . 88

Chapter 8

Conclusions 89

Bibliography 93

iv

List of Figures

2.1 Data Stream Algorithm Cycle, as the model must always be ready to pre-

dict, queries one sample, processes it, and creates a model, iterating over

it for the model's life. 11

2.2 Beginner chess player's response to 1. e4 11

2.3 Player learns a new response to 1. e4 . 12

2.4 Examples of concept drift. Sudden, when a change occurs at once, gradual,

in which there is a time with mixed results from the old and the new out-

put, incremental when the change from the old output happens over small

increments and reoccurring, when the output changes to an old concept

from time to time, and goes back to the usual output. Image adapted from

(LU et al., 2020). 13

2.5 The prequential validation method loops inde�nitely in a cycle, receiving

one instance, testing, and training. In this �gure, each circle corresponds

to a sample, and the color represents a class. 25

2.6 This �gure demonstrates how interleaved chunks work, as it is almost like

prequential, except it works in batches, depicted by the hexagons. 25

3.1 An example of vertical scaling. In this example, one machine composes the

computational stack. One possible vertical scaling is increasing the amount

of installed Dynamic Random Access Memory (DRAM). In this case, the

amount increased from 32 gigabytes to 128 gigabytes. 34

3.2 An example of horizontal scaling. In this example, the horizontal scal-

ing adds more machines to the computational stack, distributing the work

between all computational units. 35

v

6.1 The core of the framework, measuring energy consumption at each step

of the data stream model. We will have how much the model spends to

acquire samples, how much it uses during its training phase and how much

it uses during its prediction phase. 53

6.2 Measuring energy consumption using RAPL. 54

6.3 Existing Massive Online Analysis (MOA) Graphical User Interface. Screen-

shot taken from MOA running on a MacOS 61

6.4 Screenshot taken from MOA running with the plugin on Ubuntu Desktop. 62

6.5 Detail of the energy results given by the plugin. 63

7.1 Setup for the �rst experiment. The computer tower is connected to a

wattmeter that is connected to the wall outlet. 67

7.2 Experiment 1's results. The graph shows the energy consumption measured

by a hardware solution(in blue) and a software solution(in green). In this

experiment, the software solution used was RAPL. 67

7.3 Experiment 2's results for Naïve Bayes. The graph shows the power con-

sumption over time for the second experiment. This modeling is very short,

so it only shows a peak of consumption during the initial stage of the ex-

periment. 69

7.4 Experiment 2's results for kNN. The graph shows the power consumption

over time for the second experiment. Aside from the very short initial peak

consumption, this experiment shows some peaks of consumption, that are

not very expressive. This type of small peaks can be considered noise. The

initial peak consumption can be considered low due to the fact that kNN

is a very simple model and requires almost no setup. 69

7.5 Experiment 2's results for Hoe�ding Tree. The graph shows the power

consumption over time for the second experiment. Here again we see the

initial peak consumption, some more consumption at the initial stages, but

does not show much di�erence as the experiment continues. 70

7.6 Experiment 2's results for Oza Bagging. The graph shows the power con-

sumption over time for the second experiment. In this experiment, the

cycles are clearly visible, with highs and lows in energy consumption, due

to the large amount of resources required by this model. When there is a

peak of energy, is when the computer is utilizing more resources that are

not CPU, and the lows are when only a part of the resources are being

utilized. 70

vi

List of Tables

7.1 Experiment 3's results. This table represents the average results from Table

7.2. 72

7.2 Experiment 3: The complete results for the runs. In this table, for each

classi�er/evaluator pair, the average results of total energy consumed, av-

erage accuracy, �nal accuracy and total CPU time for each run is presented. 72

7.2 Experiment 3: The complete results for the runs. In this table, for each

classi�er/evaluator pair, the average results of total energy consumed, av-

erage accuracy, �nal accuracy and total CPU time for each run is presented. 73

7.3 Experiment 3: Standard Deviation (Std Dev) and Coe�cient of Variation

(CV) between the runs. As can be seen, the CV is fairly small for all cases,

lower than 3% for all cases. 74

7.4 Experiment 4's average results. While some results indicate that an easier

concept drift increase the energy consumption on some classi�ers, while on

others it decreases the consumption. 78

7.5 Experiment 4's complete results. Some names were shortened because the

table was too large. All accuracies, both average and �nal were exactly the

same throughout all runs for the same parameters. The only values that

have a slight change are the energy consumption and the time, though as

seen in Table 5.6. 79

7.5 Experiment 4's complete results. Some names were shortened because the

table was too large. All accuracies, both average and �nal were exactly the

same throughout all runs for the same parameters. The only values that

have a slight change are the energy consumption and the time, though as

seen in Table 5.6. 80

vii

7.5 Experiment 4's complete results. Some names were shortened because the

table was too large. All accuracies, both average and �nal were exactly the

same throughout all runs for the same parameters. The only values that

have a slight change are the energy consumption and the time, though as

seen in Table 5.6. 81

7.5 Experiment 4's complete results. Some names were shortened because the

table was too large. All accuracies, both average and �nal were exactly the

same throughout all runs for the same parameters. The only values that

have a slight change are the energy consumption and the time, though as

seen in Table 5.6. 82

7.6 Experiment 4: Standard Deviation (Std Dev) and Coe�cient of Variation

(CV) between the runs. 82

7.6 Experiment 4: Standard Deviation (Std Dev) and Coe�cient of Variation

(CV) between the runs. 83

7.6 Experiment 4: Standard Deviation (Std Dev) and Coe�cient of Variation

(CV) between the runs. 84

7.6 Experiment 4: Standard Deviation (Std Dev) and Coe�cient of Variation

(CV) between the runs. 85

viii

List of Abbreviations

ICT Information and Communications Technology

MOA Massive Online Analysis

TIC Tecnologia da Informação e Comunicação

AI Arti�cial Intelligence

CPU Central Processing Unit

DDM Drift Detection Method

EDDM Early Drift Detection Method

ADWIN Adaptive Windowing

K-D K-Dimensional

kNN k-Nearest Neighbors

VFDT Very Fast Decision Tree

PHT Page-Hinkley Test

WEKA Waikato Environment for Knowledge Analysis

DRAM Dynamic Random Access Memory

API Application Programmable Interface

RAPL Running Average Power Limit

ix

Abstract

This work focuses on bringing awareness to green computing and energy e�ciency through-

out a data stream mining model's life cycle. Seldom during the model selection is energy

e�ciency a deciding factor. It usually becomes a relevant metric much later when the

model has grown to a point when it consumed too many resources. Energy consumption

measuring is often done physically, which may require speci�c tools and hardware, thus

becoming prohibitive and costly. The primary objective is to bring awareness to the en-

ergy consumption of data stream models by developing a software method that measures

its energy consumption in its development phase. In order to accomplish the objective,

it is essential to develop a well-accessible form of measuring energy consumption avail-

able for general use that does not require custom build hardware. Therefore, this work

comprises (i) an analysis of available hardware and software tools to measure the energy

consumption of a data stream mining model, (ii) the de�nition of a plugin for the Mas-

sive Online Analysis (MOA) that measures the energy consumption of a computer via

software, and (iii) an evaluation of the energy impact of changing the validation protocol

and having a concept drift. Therefore, di�erent classi�ers and evaluators were selected

and evaluated under stable and concept drifting scenarios to assess energy consumption.

The results obtained indicate that data stream classi�ers' energy modeling is a complex

task. The energy measurement is a straightforward process, but generalizing the results

in a mathematical equation seems unfeasible, and the evidence is noticeable in the results.

Finally, as a contribution to the community, the energy measurement tool created will be

available as a plugin for the MOA software.

Keywords: Green computing; Data stream mining; Energy Consumption Measure-

ment.

x

Resumo

Este trabalho se concentra em conscientizar a computação verde (green computing) e a

e�ciência energética em todo o ciclo de vida do modelo de mineração de �uxo de da-

dos. Raramente, durante a seleção do modelo, a e�ciência energética é um fator decisivo.

Geralmente se torna uma métrica relevante mais tarde, quando o modelo cresceu a um

ponto em que já consumiu muitos recursos. A medição do consumo de energia geralmente

é feita �sicamente, o que pode exigir ferramentas e hardwares especí�cos, tornando-se

proibitivo e caro. O objetivo principal é conscientizar sobre o consumo de energia dos

modelos de �uxo de dados, desenvolvendo um método de software que mede seu consumo

de energia em sua fase de desenvolvimento. Para atingir o objetivo, é essencial desenvolver

uma forma acessível de medir o consumo de energia disponível para uso geral que não exija

hardware. Portanto, este trabalho compreende (i) a análise de ferramentas de hardware

e software disponíveis para medir o consumo de energia de um modelo, (ii) a de�nição de

um plugin para o Massive Online Analysis (MOA) que mede o consumo de energia de um

computador via software, e (iii) a avaliação do impacto energético de alterar o protocolo

de validação e ter uma mudança de conceito. Para tanto, diferentes classi�cadores e avali-

adores foram selecionados e avaliados em cenários estáveis e de mudança de conceito para

avaliar o consumo de energia. Os resultados obtidos indicam que a modelagem energética

dos classi�cadores de �uxo de dados é uma tarefa complexa. A medição de energia é um

processo direto, mas generalizar os resultados em uma equação matemática é inviável e

a evidência é perceptível nos resultados. Por �m, como contribuição à comunidade, a

ferramenta de medição de energia criada é disponibilizada como plugin para o MOA.

Palavras-chave: Computação Verde; Mineração de Fluxo de Dados; Medição de

consumo energético.

xi

Chapter 1

Introduction

Data generation and consumption are gaining momentum in the late years as

society is becoming more and more knowledge intensive (BIFET; KIRKBY, 2009). Con-

sequently, each passing second generates and stores more data than ever in human history

(MISHRA; YAZICI; MISHRA, 2012). Every sensor available today is potentially record-

ing a particular aspect of the world. Anyone with access to the internet can, with a few

clicks and keystrokes, explore a vast world of data that is made available (and at the same

time, generate more data through clicks and behaviors).

This massive increase in data generation solved a long time problem machine learn-

ing faced: lack of data. In the early days of machine learning, the limiting factor was the

insu�cient data to produce useful models (HALEVY; NORVIG; PEREIRA, 2009; SUN

et al., 2017). Due to this lack of data, models processed the same sample many times,

trying to extract the maximum amount of information, at the expense of e�ciency.

Traditional machine learning works with data in batches, mainly using databases as

the primary source of information (Moulet; Kodrato�, 1995). The massive amount of data

generated by today's devices is a huge problem for traditional models. Due to the sheer

volume of information available, batch machine learning has many problems to face (RAO

et al., 2017). For example, going back to the �rst example of a user clicking and generating

data, the user's actions are time-bound, meaning they mean something at that moment,

but they may not mean anything too much time later (HARIRI; MOBASHER; BURKE,

2015), as most batch machine learning algorithms do not take time into account. Another

problem is dealing with massive amounts of data. It is impossible to store everything,

hoping to process all data every time a model needs to update.

One possible solution is using data streams as the source. However, just changing

the data source is not enough. When changing the data source, most strategies need to

adapt, as traditional premises do not hold in a data stream scenario. Due to data streams'

1

2

nature to be possibly in�nite, change over time, and have di�erent degrees of availability

(GAMA, 2010), models dealing with them do have many adjustments over their batch

counterparts.

This area of study, data stream mining, studies how to generate models utilizing

a stream of data as its input. Data stream mining gained much interest in the past

decade or so due to increased computational power and data availability. Di�erent from

batch machine learning, it does not requires data available at the start of the training.

Furthermore, it does require re-training once new data becomes available. When the

amount of data tends to be never-ending, possibly in�nite, it poses a considerable problem,

as storage solutions will eventually run out of space and resources, so most data stream

mining models do not save all the data received, having some keeping track of a window

of samples, while others do not store any of the input samples.

While data stream mining does solve the problem of ever-growing learning time as

the dataset increases, it is still not nearly as e�cient as a time-constant learner and predic-

tor (VASEEKARAN, 2017). Therefore, one of the problems faced by data stream mining

is dealing with the energy e�ciency of the models (KARAX; MALUCELLI; BARDDAL,

2019). Even though data stream mining has a small resource footprint up to a certain

point, overall, data stream mining's resource footprint is higher than its batch model

counterpart.

Green Information and Communications Technology (ICT) (MISHRA; YAZICI;

MISHRA, 2012) is a hot trending topic in this millennia, along with the topic of the

energy footprint (directly related to carbon footprint). More people are aware of resource

consumption impacts on global warming (AKPAN; AKPAN, 2011) and the negative im-

pacts of this phenomenon (NTANOS et al., 2015).

As pointed by Schwartz et al. (2019), most of the cutting edge development in

machine learning leans more towards Red Arti�cial Intelligence (AI)1, trying to �nd the

best possible result for a given problem. Especially in a reasonably recent area such as

data stream mining, many e�orts go towards maximum accuracy in detriment to a healthy

balance between accuracy and resource usage. Though with fewer studies, e�ciency in

data stream mining has important studies such as Martín, Lavesson and Grahn (2015)'s

work.

An essential part of energy e�ciency is measuring (Energy Magazine, 2018). Al-

though vastly explored in ICT, measuring data stream mining is still a topic with much

1Red AI is the Arti�cial Intelligence that seeks to maximize the quality of the results. It does not try
to be energy e�cient. Green AI, on the other hand, tries to maximize the quality of the results, while
having constraints on the e�orts to obtain the result (see Section 3.1).

3

to explore. As seen in the work of García-Martín et al. (2019b), García-Martín et al.

(2019a), various methods aim measuring data mining resource consumption and data

stream-mining resource consumption. Green ICT applied to data stream mining is an

area of knowledge with much to research and has been a trend to reduce energy consump-

tion in data mining (MARTíN; BIFET; LAVESSON, 2020).

The main research question that is answered in this work is: �How to lessen the

pain of measuring the energy consumption of data stream mining models during their

development phase?� This question forks into other questions: �What is the impact of

di�erent data stream mining validation protocols in energy consumption?� and �What

is the impact of having a concept drift in energy consumption?�. Those questions are

presented in Section 1.1. To answer these question, it is, therefore, necessary to bring

forward a form of measuring energy consumption available for general use and that does

not require custom build hardware. Therefore, the main goal of this work is to develop

a plugin that measures energy consumption of data stream models. This plugin is an

extension for the Massive Online Analysis (MOA) tool (BIFET et al., 2010) (see Section

2.6) that allows data stream researchers and practitioners to verify the power consumption

over time.

There are many forms of measuring the consumption of a machine learning model.

Most of the hardware solutions do measure the consumption of the entire machine, though

García-Martín et al. (2019b) mentions ways to narrow down which processes consume

energy in a server, de�ned by performance counters, Central Processing Unit (CPU) uti-

lization, and other techniques. This approach may re�ect the exact usage of an individual

process in a multi-task environment. In a real-world scenario applied to data streams,

one has to consider the idle period in which the model is not training or predicting. As

shown by Barroso and Hölzle (2007), servers seldom use one hundred percent of their

capacity, staying between ten and �fty percent of usage most of the time. For a data

stream predictor used at a large scale application, one can assume the same, as it shares

the same availability requirements that regular web servers have. It is not desirable to

reach the server's full capacity or full inactive state, producing undesirable delays.

Due to the above reasons, this work's focus is the overall consumption with a

dedicated server. Since most servers are not energy proportional (BARROSO; HÖLZLE,

2007), and the dynamic voltage range applies mainly to CPUs, this work takes static

energy consumption (see Section 3.3) into consideration.

4

1.1 Research Questions

The main driving research question for this work is: �how to lessen the pain of

measuring the energy consumption of data stream mining models during their develop-

ment phase.?� To tackle the challenge of measuring energy consumption by a data stream

model, we have the following questions that lie at the intersection of data stream mining

and green computing.

ˆ What is the impact of di�erent data stream mining validation protocols in energy

consumption?

ˆ What is the impact of having a concept drift in energy consumption?

1.2 Objectives

Thus, with the research questions in mind, this work has the following objective:

ˆ To provide a plugin for energy consumption measurement of data stream mining

models that is available for the general audience of data stream mining.

The speci�c objectives include:

ˆ Instantiate the proposed plugin for Massive Online Analysis (MOA) (see Section

2.6.1) tool, which controls and measures the model acquisition, training, and pre-

diction phases.

ˆ Compare the results given by the measurements, verifying if each change in the

model will increase or decrease its energy consumption.

ˆ Evaluate the impact on energy consumption when switching validation protocols

and when concept drift occurs on a data stream model.

1.3 Financial support

This study was �nanced in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

5

1.4 Overview

This work has the following structure: Chapter 2 introduces the reader to concepts

of Data Mining, Data Streams, Data Stream Mining, and Data Stream Mining tools.

Chapter 3 introduces the concepts of Energy Consumption, Green ICT, and tools for

Energy Consumption Measurement. Chapter 4 presents the current state of the art, and

the gaps of knowledge that are tackled in this work. Chapter 5 presents the scienti�c

method. Next, Chapter 6 brings forth the experimental setup and a description of the

plugin developed to help the researcher in measuring the energy consumption. Chapter 7

presents the results of the experiments and Chapter 8 presents the conclusions based on

the evidence, alongside limitations found and envisioned future works.

Chapter 2

Machine Learning in Data Streams

Arthur Lee Samuel coined the term machine learning in the 1950s. They ap-

peared in the paper �Some Studies in Machine Learning Using the Game of Checkers.�

(SAMUEL, 1959) In this particular study, the author describes the method utilized to

create a computer program capable of learning from experience. Back then, many won-

dered if those machines would acquire intelligence and think by themselves. And not too

late, they started to be programmed to perform �intelligently.�

�Enough work has been done to verify the fact that a computer can be pro-

grammed so that it will learn to play a better game of checkers than can be

played by the person who wrote the program.� (SAMUEL, 1959)

In those early days, computers solved many problems that are considered di�cult

for humans, but relatively straightforward for computers, like problems that can be solved

by a set of formal mathematical rules (GOODFELLOW; BENGIO; COURVILLE, 2016).

However, it has proven that the real challenge for machine learning is to perform tasks

that are easy for humans, such as intuitive tasks and pattern recognition, things a human

performs without thinking much, and it almost feels automatic.

In today's understanding, machine learning is one category of arti�cial intelligence,

a much broader area that includes most forms of computer knowledge. Machine learning

is any form of arti�cial intelligence that can evolve with experience, e.g., data.

According to (BISHOP, 2006), machine learning is another facet of pattern recog-

nition. An algorithm is said to be learning when it learns from experience. In other

words, the task that produces a speci�c result with some accuracy can self adjust auto-

matically utilizing sets of data. After each training session, the performance can vary,

often producing more accurate results.

Data mining is the task focusing on discovering �nd di�erent patterns, anomalies,

6

7

and correlations in sets of data, also referred to as knowledge discovery in databases. It

accomplishes its results by making use of machine learning algorithms.

�The �eld combines tools from statistics and arti�cial intelligence (such as

neural networks and machine learning) with database management to analyze

large digital collections, known as data sets.� (CLIFTON, 2020)

Also, according to Moulet and Kodrato� (1995), Data Mining is a process in which

one is concerned with �the construction or the completion of the correction of a knowledge

base, by building rules, domain theories, discovering concepts, and so on, in order for the

learner to be able to solve new problems better or to predict new situations.�

One of the main goals of data mining is �nding hidden patterns that cannot be

easily seen or reasoned. The human mind excels at �nding patterns, and trivial patterns

are not necessarily the goal of data mining. There are many trivial examples one can

think of, such as identifying that all women who gave birth were pregnant, or that all

pregnant people were female.

The main goal of data mining is to �nd the real hidden gems inside all the raw

data. One may or may not have heard of the story �beers and diapers.� It is not for this

study to investigate whether this story is real or not, but the story goes like this:

Wal-Mart, the world's largest retailer, supposedly found out that there are

certain times at which beer and diapers sell particularly well together � when

on Friday evenings young men make a last dash to the supermarket to get beer

and their wives call after them, �Pick up some diapers, too, honey!� (XIAO,

2014)

Although this story may not be real, it highlights one of the goals of data mining,

which is �nding meaningful hidden observations inside the data available.

One can think of traditional data mining as a batch process, in which all the

available information is processed at once, outputting the model at the end of it.

In batch learning, the algorithm usually uses a static dataset, which is available

to the algorithm in its entirety. At every learning cycle, all instances are processed

(sometimes multiple times), producing an output model (GAMA, 2010).

Nonetheless, the data generation trend of growth is rising way faster than the

speed in which new processors develop, or more memory becomes available. This trend

has generated the need for new techniques to handle data, which also encompasses machine

learning models.

8

Furthermore, traditional machine learning often does not take into consideration

the time factor when dealing with the data available. It assumes all data comes from the

same probability distribution and does not take into account how it changes over time.

One possible solution is to utilize incremental and adaptive learning to build e�ective

predictive models from data streams. Data streams are in�nite sequences of data that

may change over time. (BIFET; KIRKBY, 2009) When utilizing machine learning in

data streams, new possibilities, and challenges appear. This chapter provides details on

data streams and data stream mining, i.e., the scenario in which incremental and adaptive

machine learning algorithms are applied to extract useful patterns from such type of data.

2.1 Data Streams

A stream is a continuous �ow of liquid and gas. Moreover, the number of particles

that go through that stream can be considered unlimited. A stream in computational

terms is the continuous �ow of computational elements. Per de�nition, a data stream is

a sequence of encoded data used to represent information in transmission. Like streams,

a data stream does not necessarily have an end, potentially having an in�nite amount of

samples. (MARGARA; RABL, 2019)

Intuitively, it is easy to imagine that the sheer number of samples will become

insurmountable to �t in a single machine, and it is a challenge to process the data stream

at once.

In the early days of computing, the amount of data generated was not much, as not

many sensors were collecting this data, so all this data could �t in databases. Its growth

was manageable by simply inputting in the existing database technologies and updating

the data at regular intervals.

In recent decades, the growth of data gathering was astonishing, to a point where it

became impossible to utilize the same database technique. The amount of data collected

in a day surpasses, by far, the amount of data saved in a year thirty years ago, be it by

more variables, more connected sensors, or other factors (REINSEL; GANTZ; RYDNING,

2018).

In comparison to databases, data streams do not provide the data at once, but

they provide a variable sampling size.

Two data streams main characteristics are (GAMA, 2010): a potentially in�nite

source of data and evolution of the stream input over time.

Imagining a simple thought experiment: one has a computer that has ten units of

memory and can process one unit per hour. If the data generation is one unit per year,

9

it will take ten years for the computer to reach its memory capacity. It will take ten

hours to process this information, starting at one hour in the �rst year, and in the tenth

year, it would take ten hours to process all the data units. In this scenario, it is possible

to follow with a database strategy, as eventually, one would replace the hardware with

a more powerful one, but time would be an ally. If the data generation is one unit per

hour instead, in the �rst hour, the computer will utilize one hour to process it. When

the second unit is available, the computer will take two hours to process. When the third

unit becomes available, the computer is still working on the combination of the �rst and

second samples.

The above example is how batch processing works. It processes all the samples,

again and again, every time a new model is required. One argument is that one could

space out the creation of the model, maybe once a day. Eventually, the processing time

will be over that interval, reaching unimaginable levels. Moreover, at the mark of ten

hours, the computer would run out of memory and to change hardware every ten hours

or so seems impractical at best.

The fact that the impossibility to process the ever-increasing amount of data is

upon us, and knowingly that the processing time is proportional to the amount of available

data, there is a need for more e�cient algorithms to process these streams of data.

The next chapter discusses some of the challenges of dealing with data streams

when trying to extract knowledge from them, such as concept drift, memory consumption,

and processing time.

2.2 Data Stream Mining

As of today, data generation is continuously increasing. Companies are collecting

data about all aspects of the world, ranging from temperature measurements, to every

click and move that a user performs when navigating in a web page.

A speci�c user's behavior while navigating a speci�c webpage throughout the entire

webpage lifetime is a potentially in�nite source of data. Imagining that one wants to

analyze the user behavior to improve its user experience, it is seldom bene�cial waiting

for all the samples to start the analysis. For once, if the website lifetime is over, there will

be no e�ect in improving that particular user experience, so it is imperative to analyze

the data as they are generated for most of the cases. Because of the uncertainty about

when the data will be complete, one has to treat it as an in�nite stream of data. Another

point to add is concerning the temporality of the data. The user behavior on the webpage

may change over time, for many reasons, be it becoming more pro�cient at navigating

10

or changing its interests (WANG; WANG, 2012). The fact is that users do change their

usual behavior, evolving as time passes.

Data stream mining is the application of data mining to data streams. When

applying data mining concepts to data streams, it becomes clear that it is a challenge to

cope with the sheer amount of data that an in�nite source of data presents.

Along with the fact that traditional data mining processes data all at once, streamed

data does change over time. Traditional data mining would treat any sample with the

same approach. However, old behaviors may not be bene�cial to predictive models' out-

come, as only the most recent data may contain the essential data and patterns. Treating

old and new data as di�ering only by its static probability would not only result in inac-

curate models, as it would hinder the ability to extract meaningful information.

As outlined by Bifet and Kirkby (2009), there are certain requirements that must

be met for data mining in streams:

ˆ Requirement #1 : Process an example at a time, and inspect it only once (at

most);

ˆ Requirement #2 : Use a limited amount of memory;

ˆ Requirement #3 : Work in a limited amount of time;

ˆ Requirement #4 : Be ready to predict at any point; and

ˆ Requirement #5 : Be able to detect and adapt to concept drifts (see Section 2.3).

Figure 2.1 outlines one possible cycle in the algorithms that mine data streams.

It begins by querying the stream, inspecting it exactly once. The received instance is

then processed by the system, considering its limitations. Next, the predictive model

is generated or updated. This model can be used to predict and evaluate how well the

system performs.

2.3 Concept drift and Change detection

A peculiar facet of data streams is concept drift. When looking at batch machine

learning, it is fair to assume that the model will �t the training set. If successful, it

will have reasonably good accuracy when presented with new data that follows the same

pattern as the training set. However, this assumes that the input data will not change

because it is presented all at once. It also assumes there is no temporality in the data and

that it does not evolve. When the result of the modeled phenomenon changes over time,

11

Figure 2.1: Data Stream Algorithm Cycle, as the model must always be ready to predict,
queries one sample, processes it, and creates a model, iterating over it for the model's life.

we have a concept drift. In other words, its when the result of a speci�c input changes

due to unknown or untracked factors (hidden context).

So, any �shift in the statistical properties of the data, more than what can be

attributed to chance �uctuations� (BIFET et al., 2018) can be considered a concept drift.

The concept drift changes can either be gradual or abrupt, with the main di�erence

between them being the number of instances it takes for them to occur.

To exemplify a concept drift, one could take as an example depicted in Figure 2.2,

where a beginner chess player that has learned to some extent one or two chess openings,

when that particular player plays black and faces the King's Pawn Opening (1. e4), the

usual response is (1 ... e5). With enough games, a model for that player will predict that

Figure 2.2: Beginner chess player's response to 1. e4

12

when faced with that arrange of pieces, the play will be (1 ... e5).

Later on, this player learns more openings, broadening his repertoire, and he learns

how to play the Sicilian Opening (1. e4 c5). So the model predicts that the player will

move (1 ... e5), and instead, the player will start responding with (1 ... c5), resulting in

a concept drift (Figure 2.3).

There are di�erent types of concept drift (LU et al., 2020) (see Figure 2.4):

ˆ Sudden drift: It is when the change occurs abruptly. In this case, the transition

period from the old output to the new output is minimal, i.e., it occurs between two

subsequent instances.

ˆ Gradual drift: the change between prior and subsequent posterior concepts changes

within a time interval. During this interval, instances might be drawn from either

prior and posterior concepts.

ˆ Incremental drift: this type of drift is when the output changes to the new output

with small increments over time.

ˆ Reoccurring concepts: A concept might occur multiple times in a data stream. The

change between concepts might be sudden or gradual, yet. This behavior is often

observed in seasonal scenarios, where the relationship between predictive features

and the output class is driven by timely and seasonal components.

Drift detection is one of the most tackled problems in data stream learning. The

next section brings forward an outlook on drift detectors.

Figure 2.3: Player learns a new response to 1. e4

13

Figure 2.4: Examples of concept drift. Sudden, when a change occurs at once, gradual,
in which there is a time with mixed results from the old and the new output, incremental
when the change from the old output happens over small increments and reoccurring,
when the output changes to an old concept from time to time, and goes back to the usual
output. Image adapted from (LU et al., 2020).

2.3.1 Drift Detectors

Handling concept drift has become a popular research topic due to its multidis-

ciplinary nature. In the past decade, a vast body of literature has been produced by

the scienti�c community. The many surveys and overviews show the di�erent methods

developed to address drift, such as (GEMAQUE et al., 2020), (KHAMASSI et al., 2018),

(GAMA et al., 2014), (BARROS; SANTOS, 2018), and (HU; KANTARDZIC; SETHI,

2020).

Drift detectors are classi�ed into three categories, depending on the statistic tests

they apply (LU et al., 2020):

ˆ Error rate-based Drift Detection.

ˆ Data Distribution-based Drift Detection.

ˆ Multiple Hypothesis Test Drift Detection.

Each of the detector categories will be summarized next.

14

2.3.2 Error rate-based Drift Detection

As per Lu et al. (2020), this forms the largest category of algorithms. These track

the changes in the online error rate of the base classi�ers. When a change in the error

rate is statistically signi�cant, a drift alarm is triggered.

2.3.2.1 DDM - Drift Detection Method

One of the most referenced algorithm is the Drift Detection Method (DDM) (drift

detection method) (GAMA et al., 2004). It pioneers de�ning warning level and drift level.

DDM makes use of a landmark time window, that is, a window of time where the initial

point is set and considers all samples acquired until the last received sample. When it

evaluates new data, DDM detects if the overall online error has increased signi�cantly in

the landmark window. When the con�dence level of the error reaches the warning level,

DDM triggers the creation of a new learner to replace the old one. It still uses the old

learner for predictions between the warning and the drift levels. It replaces the old learner

when it reaches the drift level.

2.3.2.2 EDDM - Early Drift Detection Method

The Early Drift Detection Method (EDDM) detection method, proposed by (BAENA-

GARCÍA et al., 2005) is an error-based concept drift detection method, much like the

other methods listed in this Section 2.3. It possesses both warning and drifts trigger

levels. Other approaches, such as LLDD, use the error to determine whether a drift has

occurred or not based on the probability of the error occurring. The main characteristic

of this detection method is its approach to the analysis of the errors. Instead of using

the error rate, it uses the distance between two consecutive errors. The threshold for this

method is thirty errors. It then gets the distance between each error and validates the

distribution. When the distribution approaches the drift distribution, it signals that a

drift occurred.

2.3.2.3 ADWIN - Learning from Time-Changing Data with Adaptive Windowing

Adaptive Windowing (ADWIN) (BIFET; GAVALDÁ, 2007) is another popular

two-window error-based drift detector. Di�erent from STEPD, ADWIN does not require

the user to set the window size in advance.

ADWIN is a variable sliding window with variable length and change detector

15

(BIFET; GAVALDÁ, 2007). ADWIN keeps a history of recent examples, as long as they

have the same probability. The length of the window grows as long as there are no

changes in the input. ADWIN shrinks the window length whenever a change is detected,

discarding old values that do not conform to the new probability. Essentially, it prunes

the values that do not conform to the current probability of the input.

2.3.3 Data Distribution-based Drift Detection

Data distribution-based drift detection is considered the second largest category of

drift detectors. These detectors use the distance between the distribution of historical data

and new data to detect concept drifts. Since this category of algorithms detects the drift

from the root cause (the underlying probability of the input), it is possible to determine

the drift's time and location accurately. However, as indicated by Lu et al. (2020), these

algorithms have reported a higher computational cost than the ones mentioned in Section

2.3.2. A general strategy adopted by this category is to utilize one �xed-size and one

sliding window. If there is a signi�cant di�erence between the distributions, it triggers a

warning and starts to build a new model, and when it detects the drift, it replaces the

model with the new one.

2.3.4 Multiple Hypothesis Test Drift Detection

The detectors that befall on this category use related techniques from Section 2.3.2

and Section 2.3.2. The originality, in this case, is the usage of multiple hypothesis tests

to detect the drift. Those algorithms fall on two categories (LU et al., 2020):

ˆ Parallel Multiple Hypothesis.

ˆ Hierarchical Multiple Hypothesis.

In parallel multiple hypothesis, many hypotheses are working in parallel to decide if

there is a drift or not. Depending on the structure of the algorithm, those hypotheses will

address the detection di�erently. For instance, e-Detector (Ensemble of Detectors) (DU

et al., 2015) proposes detecting an ensemble of di�erent drift detectors. Then, following

the ensemble logic, it decides whether it drifted or not.

Hierarchical Multiple Hypothesis, on the other hand, applies one test to detect

drift, then validates in another test, essentially chaining the drift detection tests. Algo-

rithms in this category include:

ˆ e-Detector - Ensemble of Detectors (DU et al., 2015): The core concept behind an

16

ensemble of detectors is the same as an ensemble of classi�ers: Some ensembles

may be more robust at detecting an abrupt drift, while others may be stronger at

detecting a slow drift. An ensemble of detectors will have the combined strength of

them, thus stronger overall than each detector by itself.

ˆ Three Layer Concept Drift (ZHANG et al., 2017): The three-layer concept drift is

a detector applied to text data streams. It works by detecting three types of drift:

a change in the label space, a change in the feature space, and a change in the

mapping relationship between features and labels.

2.3.5 Energy E�ciency of Drift Detection

At its base, most drift detectors work in a two-step manner. The �rst step happens

when it detects a deviation in the pattern up to a certain threshold (it signals a warning),

and the next step is when it determines the drift is above the drift threshold when it

signals a drift. Despite di�erences on how detection takes place, the goal is to reset or

change the predictive model accordingly so that it re�ects the reality depicted in the

data distribution more accurately. Each learner copes with changes di�erently, but most

models require either pruning of parts that do not conform to the new paradigm, e.g.,

decision trees, while the remainder discards the model entirely.

A recent approach used to combine drift detectors and learning algorithms, is to

create a new model whenever a warning is issued. This mechanism is called �background

learning� (GOMES et al., 2017). This new model will learn in parallel to the old one (still

used for predictions) while the drift detector does not meet the drift threshold. After the

drift threshold is reached, the old model is discarded and it is replaced with the new one.

When a new model starts training in the warning period, it will utilize resources

from the machine it is running on, i.e., CPU time, memory, and storage space. This usage

will increase as time goes on, increasing the model's overall consumption, accounting for

all of the present models, the detection algorithms, and the new models in training.

When it �nally reaches the drift threshold, the discarded model may have a di�er-

ent resource footprint as the old model, smaller or larger. However, it is fair to assume it

will utilize a similar amount of resources, mainly because it uses the same technique and

technology.

In essence, any drift detector will utilize some resources to detect the drift atop

the model's resources. It also requires some algorithm that deals with the drift. This

algorithm also allocates some resources for itself, and �nally, the execution when it �nds

a drift. The transition between models also requires resources, so, when there are frequent

17

drifts in the model, it is fair to assume it will utilize more resources than a stationary

model.

2.4 Data Stream Classi�ers

A data stream classi�er is a classi�er adapted to work with data streams (GAMA,

2010). Many known data mining strategies need to adapt when dealing with data streams

because of their innate characteristics (see Section 2.1).

Moreover, one signi�cant di�erence from the traditional classi�cation is how train-

ing takes place in data stream learning. Since data streams are potentially in�nite, it is

impossible only to train if all the data is available. Also, due to its temporality charac-

teristic, a data stream classi�er has to train as samples arrive.

Some of the data stream classi�er's characteristics that it needs to follow include:

ˆ The data stream classi�er must carry just enough information to produce a model.

In other words, data stream classi�ers should not save all the received instances and

based all the data received, but instead, should have some logic that either keeps a

recent history of data, a summary of the data or both (BIFET; KIRKBY, 2009).

ˆ At any given time, the model must re�ect the classi�er's current state and be ready

to predict on demand (BIFET; KIRKBY, 2009).

The following sections describe data stream classi�ers used in the remainder of this

work. For an exhaustive list on existing works on data stream classi�cation, the interested

reader is referred to the works of (ZHENG et al., 2020; MEHMOOD; ANEES, 2020).

2.4.1 Naive Bayes

A Naive Bayes classi�er (WEBB, 2010) has its roots in Bayes theorem (1763).

Bayes and Price had a remarkable conversation that led to the theorem of Bayes (equation

2.1):

P(yjX) = P(y) �
P(X jy)
P(X)

(2.1)

In short, this theorem denotes that it is possible to �nd the probability ofy given

X , knowing the probability of X given y and the probability of X .

In the Naive Bayes classi�er, the learner naively assumes that the input features

are independent, such as depicted in Equations 2.2 and 2.3.

P(x i \ x j) = P(x i) � P(x j) j i 6= j (2.2)

18

P(x i) = P(x i jx j) j i 6= j (2.3)

More speci�cally, Equation 2.3 can be used due to the independence premise be-

tween the inputs, and it calculates the output probability of a given class as the multipli-

cation of the probabilities of all outputs, as depicted in Equation 2.4.

P(yjX) =
1

P(X)
� P(y) �

nY

i =1

P(x i jy) (2.4)

Because Naive Bayes learners do not require the input of complicated hyper-

parameters, it is one of the easiest and widely used classi�ers available. (MUKHERJEE

et al., 2019).

Naive Bayes learners are easy to implement in a data stream scenario. All one

needs to calculate the new probability is the number of instances of a class that appeared

for a particular input variable, since it only calculatesP(X) and P(x i jy) probabilities.

Since it assumes the input probabilities are independent (Equation 2.3), it is easy to

calculateP(x i jy).

For each new input, the learner updates the probabilities solely based on the count

and does not store the actual input. This characteristic gives this type of learner an

excellent edge in computational time, as it is constant in a data stream scenario, in both

memory and processing times. It also means that the model will not grow as the number

of instances increases, as the only change is the �uctuation of probabilities.

2.4.2 k-Nearest Neighbors

k-Nearest Neighbors (kNN) (KEOGH, 2010), is another supervised learning tech-

nique. Its name comes from Altman (1992). It consists of classifying or regressing a

sample based on its nearest similars. kNN works by asking the neighbors that mostly re-

semble the sample, e.g., but measuring the distance between the sample and a historical

one; what class they are, and utilizing a voting system (weighted or not), it decides what

class the query sample belongs to. One such way to compute the distance is to imagine

the attributes of the instance are the coordinates in a multidimensional space. There are

many metrics utilized to verify the neighbors, though two are very straightforward and

easy to reason: the Manhattan and Euclidean distances.

The Manhattan distance is the simple sum of the di�erence in each axis, given

by equation 2.5. In the equation,a and b are the two points to measure the distance,i

19

represents the axis, andnd is the number of dimensions of the measured space.

dManhattan =
ndX

i =1

jai � bi j (2.5)

The Euclidean distance is the distance in a straight line fromA to B, and it is

given by Equation 2.6. It uses the same notation as Equation 2.5.

dEuclidian =

vu
u
t

ndX

i =1

(ai � bi)2 (2.6)

kNN has a great property to be used in data streams. It does not require any

complex learning process, so updating it with a new sample requires constant time. Clas-

sical kNN increases the memory imprint linearly as it adds more samples to the model

(it just remembers the sample, and no processing is required). However, there are many

drawbacks to using kNN in a data stream scenario. For once, it cannot handle massive

datasets, as it runs out of memory. Imagine a scenario with a vast amount of samples,

namely ns. Given each sample occupies the same amount of memoryms, the memory

consumption isns � ms. If ns is massive, then the result is even more massive. It also

requires more computational time as it grows, as for a classi�er withns stored samples,

it requires the computation of ns distances. Furthermore, each distance computational

cost increases linearly with the increase in dimensionalitynd, so the minimum amount of

calculations required every time a new sample arrives isns � ms � nd.

To cope with an in�nitely growing dataset, kNN must prevent the bu�ered dataset

from exhausting all the available resources. One possible solution to limit the bu�er size is

the utilization of a sliding window. The sliding window can limit the number of instances

by the maximum number of instances or by a time frame. If the window has not reached

its space or time limit, it adds the new instance to the bu�er. If this limit is reached, it

bu�ers the new instance and discards the oldest data.

Due to a possibly massive number of instances for classi�cation, kNN must come

with a classi�cation solution to compare values. Since calculating the distance between

all instances in a multi-dimensional space is very time consuming, one possible solution

is the utilization of K-Dimensional (K-D) trees (BENTLEY, 1975). K-D Tree is a binary

tree, whose node values are points in a multi-dimensional space. The basic idea of a K-D

Tree is to create sub-planes aligned with the axis (so precisely one type of alignment for

each dimension) and successively split the points based on one of the alignments. For

example, a three-dimensional space would �rst have a plane aligned with the x-axis, then

a plane aligned with the y-axis, and �nally, a plane aligned with the z-axis. It would split

20

instances in two for each level of the tree based on whether they are to the left or to the

right of the plane that intersects the node value. Then, it would take a plane aligned to

the next axis for the next level, split the instances successively to the left and right.

2.4.3 Decision Trees, Hoe�ding Trees and VFDT

One of the main families of classi�ers utilized in machine learning is decision trees.

A decision tree is a structure that the values must travel in a path, performing many tests.

Each decision tree has a root that analyzes one of the attributes of the input. Depending

on the result of the analysis, it takes a speci�c path. This path may lead to another split

(decision) node or a leaf. If reaching a split node, it conducts another analysis, which

leads towards another subpath in the tree. If it reaches a leaf, it contains the class of the

input.

When training a decision tree, there are algorithms to decide what attribute each

node will test. There are many approaches to this, but not limited to: Iterative Di-

chotomiser 3 (ID3) (QUINLAN, 1986), C4.5 (SALZBERG, 1994), CART (BREIMAN,

1993), CHAID (KASS, 1980), amongst others. For each of the aforementioned algo-

rithms, one of the main concerns is the selection of the attribute for each node. All of

the traditional algorithms make use of some statistic that de�nes each attribute, how it

impacts the result, and how present it is in the population. Having the entire population

available to the training algorithm from the start makes this question irrelevant since one

can perform the statistical analysis for each of the attributes. Though decision trees are

easy to create and maintain in a batch scenario, it may not be straightforward when deal-

ing with a data stream scenario. A classical approach would recreate the tree every new

sample, and imagining that a data stream is continuously receiving new training data, it

is possible to extrapolate many of the pitfalls, such as increased processing time in the

order ofO(nsamples � nfeatures � log(n)) every time a sample is processed, andO(nsamples !)

overall. Other problems mentioned by Domingos and Hulten (2000) include:

ˆ Not all examples will �t into memory;

ˆ No guarantee that the model learned sequentially will be similar to the one generated

by a batch learner;

ˆ High sensitivity to example order; and

ˆ High cost and low e�ciency.

To overcome these trade-o�s, the same author proposed Hoe�ding trees. Hoe�ding

21

trees have a particular characteristic: the time to learn per example is, in the worst-case,

proportional to the number of attributes (DOMINGOS; HULTEN, 2000). That is, as

the number of inputs increases, the time to evolve the tree from more samples remains

uniform.

Very fast decision trees work by constructing decision trees using constant time

per sample. The decision on whether a split is performed or not is assessed as soon as

statistics about n samples are stored in a leaf node, a parameter referred to as `grace

period' (HAN; KAMBER; PEI, 2011; BARDDAL, 2019).

The Hoe�ding bound (the upper bound) is the probability that a speci�c attribute

will deviate from its real mean by an absolute value� (HOEFFDING, 1963)1. The Ho-

e�ding bound states that the when observingn samples, their true true meanr is at

least (r � �) with probability (1 � �). Hoe�ding trees calculate the Hoe�ding bound of

each attribute. It uses to compare the two best-ranked features according to the chosen

heuristic. If the gain is higher than the Hoe�ding bound, the node splits.

� =

s
R2 ln 1

�

2n
(2.7)

Domingos and Hulten (2000) also proposes Very Fast Decision Tree (VFDT) (Very

Fast Decision Trees learner), a type of decision tree based on Hoe�ding trees. So, the

�nal proposition for VFDT has many re�nements over Hoe�ding Trees, namely ties,G

computation, memory, handling of poor attributes, better initialization and rescans2.

It is also important to note that VFDT can hold processing several samples until it

meets a certain threshold. It also calculates the number of samples required to get within

the desired probability, given the acceptable� .

Though the authors refer to Hoe�ding Trees and VFDT as di�erent algorithms,

the community uses their names interchangeably, referring to Hoe�ding Trees when they

meant VFDT. Though Hoe�ding Trees are signi�cant improvements over decision trees

when it comes to data streams, it is not without drawbacks. One major drawback when

utilizing Hoe�ding Trees is that the tree is expected to grow inde�nitely as new data ar-

rives, as noted by experiments conducted in (KARAX; MALUCELLI; BARDDAL, 2019).

Due to the ever-growing size, any experiment projected to run forever poses a considerable

problem. If working with limited resources, there will be a point where the experiment

will come to a halt. If the experiment automatically allocates more resources as needed,

it will eventually consume many resources, probably more than anticipated. In terms of

1Note: � is used by Domingos and Hulten (2000), thus will be referred as� in this essay.
2Note: The improvements for VFDT can be further read in (DOMINGOS; HULTEN, 2000).

22

e�ciency, this is far from ideal, as the main interest here is to reduce energy usage, not

increase it.

2.4.4 Bagging and its variants

Bagging (BREIMAN, 1996) is a supervised learning algorithm that generates mul-

tiple models and combines them to create a stronger one. This aggregation of models is

an ensemble. Bagging is used because of its theoretical accuracy and proved to increase

the performance of the individual base models (OZA, 2005). The term bagging is an

acronym for Bootstrap Aggregating. The main idea behind bagging is to create multiple

learners with the same learning algorithms but fed with di�erent data (instances) from

the same underlying distribution (BREIMAN, 1996).

The bootstrap aggregating method's main characteristic is creating multiple sub-

sets of instances, one for each learner. Each subset is created with a "bootstrap" sample

with replacement from the inputs (BREIMAN, 1996). Each subset is then given to a

learner for training. That will form an ensemble of learners. When a new sample is made

available for testing, it is given to all models, that will produce a result. The total result

is the average or majority vote obtained from all learner's results.

Online bagging, proposed by Oza (2005), uses bagging to generate an ensemble

from a data stream. It behaves similarly as the batch learner version, in the sense that it

creates multiple learners and present random samples for each in for training. The main

di�erence lies in many facts: because the samples come one at a time, they must be pre-

sented to the learners di�erently. As each training exampleinstance = (x; y) is presented

to the ensemble algorithm, for each base model, choose the exampleK � Poisson(� = 1)

times and update the base model accordingly using the online base model learning algo-

rithm Lo. Consequently, each example will be chosen roughlyK � Poisson(� = 1) times

the number of learners available and distributed between the learners. Each learner that

received the sample then updates itself.

When classifying a sample, online bagging does the same as batch bagging: it

presents the instance to all models. Each model then presents a result that aggregates

into a vote. The �nal result is the class that got more votes in case of a classi�cation, or

the mean of the results in case of regression.

To tackle concept drifting data streams, authors in (BIFET et al., 2009) pro-

posed a combination of Online Bagging with drift detectors called ADWIN Bagging. The

main idea behind ADWIN Bagging is to trigger the reset of classi�ers when drifts are de-

tected. Each learner in the ensemble is associated with an ADWIN drift detector (BIFET;

23

GAVALDÁ, 2007), and when a drift is signaled by a detector, its corresponding learner

is reset (BIFET et al., 2009).

Leveraging bagging is another improvement to Online bagging, proposed by Bifet,

Holmes and Pfahringer (2010). The paper proposes two randomization improvements:

increasing resampling and the usage of output detection codes. The increase in resam-

pling is a modi�cation to the Poisson(� = 1) distribution in the original algorithm. They

changed toPoisson(� = 6) , and according to the author, it is �increasing the diversity

of the weights and modifying the input space of the classi�ers inside the ensemble. How-

ever, the optimal value of� may be di�erent for each dataset.� The output detection

improvement in leveraging bagging adds randomization to the output of the ensemble

and is relevant for non-binary classi�cation problems. It builds a binary string of length

n, and n classi�ers, and each class is assigned a random binary code of lengthn. Each

classi�er is assigned to learn one bit. The full output is a binary code, and the resulting

class is the one that is more similar to the output. According to the author, this approach

improves diversity because each classi�er tries to learn a di�erent function, whereas, in

standard ensemble methods, all classi�ers try to learn the same function.

2.4.5 Adaptive Random Forests

A random forest (BREIMAN, 2001) is an ensemble-based classi�er, whose popu-

larity has grown over the past years due to many advantages it has over other methods.

Random forests have higher theoretical optimal accuracy when compared to individual

methods. Random forests have a high learning performance and can cope with a wide

variety of input shapes and forms (thus requiring very little input preparation and little

hyper-parameter tuning). Because of that, Random forests are among the most widely

used algorithms for batch learning. This phenomenon occurs because a random forest

possesses a high learning performance, demands little input preparation and low hyper-

parameter tuning (GOMES et al., 2017).

Like bagging and boosting, random forests are an aggregation of multiple classi�ers.

Focusing on data stream scenarios, the traditional algorithm for random forests is not

applicable, so authors in Gomes et al. (2017) proposed Adaptive random forests to address

this gap. The main idea of the adaptive random forest comes from Online Bagging (OZA,

2005). Thus, it usesPoisson(� = 6) whenever a new sample comes to the learner. It also

utilizes a drift detection algorithm, not speci�ed, though the authors tested with ADWIN

(BIFET; GAVALDÁ, 2007) and Page-Hinkley Test (PHT) (MOUSS et al., 2004).

As the main characteristics of Adaptive Random Forests, one can name the eval-

24

uation of features based on a random selection and background learning.

It is interesting to note that background learning is a technique that generates

another tree when it detects the current model that di�ers from what is being presented.

Therefore, it is very relevant in the energy consumption context.

2.5 Validation

There are various validation methods for batch learning, such as holdout, boot-

strapping, and cross-validation, to name a few (TANTITHAMTHAVORN et al., 2017).

Most of the methods used for batch learning rely on the fact that the data is available all

at once. However, data streams availability is di�erent, and instances are not available at

the start, nor are they sure to come regularly.

Thus, a data stream scenario may require di�erent methods to validate the models.

Two of the many available methods for validating data stream models are prequential and

interleaved chunks test-then-train (mini-batch learning).

2.5.1 Prequential

The Prequential validation method, proposed by Gama, Sebastião and Rodrigues

(2013), utilizes the idea that it �rst tests the model for each sample to check its accuracy

and then train with the instance, improving its accuracy. As mentioned by the author,

the advantage of prequential is that the model tests then trains with samples it had seen

before (see Figure 2.5), requiring no holdout set, fully utilizing the available data. It is

essential to mention that prequential does assume the availability of the labels before the

next sample arrival. This assumption might not be possible in a real-world scenario. The

prequential method possess both a sliding window and fading factor to account for old

data with smaller weights during assessment.

2.5.2 Interleaved Chunks

The interleaved chunks validation method (BIFET et al., 2018) uses the same

rationale as prequential in the sense that instances are �rst used for testing and later

for training. The di�erence between prequential and interleaved chunks is that the data

stream mining process takes place using data chunks instead of on an instance basis (see

Figure 2.6). Interleaved chunks is more realistic than prequential as it does not depend

on the prompt availability of instances' labels right after features are presented to the

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Resumo
	Chapter 1
	Introduction
	Research Questions
	Objectives
	Financial support
	Overview

	Chapter 2
	Machine Learning in Data Streams
	Data Streams
	Data Stream Mining
	Concept drift and Change detection
	Drift Detectors
	Error rate-based Drift Detection
	DDM - Drift Detection Method
	EDDM - Early Drift Detection Method
	ADWIN - Learning from Time-Changing Data with Adaptive Windowing

	Data Distribution-based Drift Detection
	Multiple Hypothesis Test Drift Detection
	Energy Efficiency of Drift Detection

	Data Stream Classifiers
	Naive Bayes
	k-Nearest Neighbors
	Decision Trees, Hoeffding Trees and VFDT
	Bagging and its variants
	Adaptive Random Forests

	Validation
	Prequential
	Interleaved Chunks

	Tools for Data Stream Mining
	MOA
	Scikit-multiflow
	Remarks

	Concluding remarks

	Chapter 3
	Energy Efficiency
	Green AI x Red AI
	CPU time versus idle process in Data Stream Mining
	Static Power, Energy Leakage and Idle Energy Consumption
	CPU Energy Footprint versus Peripherals Energy Footprint
	Vertical and Horizontal Scaling
	Tools for measuring energy consumption
	PowerAPI
	PowerTOP
	Running Average Power Limit (RAPL)
	Hardware Solutions

	Concluding Remarks

	Chapter 4
	Related Works
	Strands of the related works
	Energy Measurement of data stream mining
	Optimizations and new models

	Gaps of the knowledge
	Concluding Remarks

	Chapter 5
	Scientific Method
	Overview
	Premises
	Plugin development method
	Inclusion and exclusion criteria of the measurement hardware
	Inclusion and exclusion criteria of the measurement software
	Comparison of the hardware tool against the software tool
	Development of a plugin for MOA
	Comparison of the energy consumption of different data stream model configurations
	Measurements comparison
	Concluding remarks

	Chapter 6
	Experimental Setup and Plugin Development
	A Plugin for Assessing Energy Consumption in Data Stream Mining
	Experimental setup
	Overview of the experiments

	Experiment Phase One: Validation of Software Energy Measurements as Viable alternatives to Hardware Measurements.
	Experiment One Setup
	Experiment Phase One Hypotheses

	Experiment Phase Two: Measurement of the Energy Footprint of Well Known Data Stream Mining Models, and evaluators with and without drift
	Experiment Two Setup
	Experiment classifiers, drift detectors, and validation scenarios
	Stream Generator
	Online vs Offline training
	Experiment Two Hypotheses

	Experiment three Setup
	Experiment Three Hypotheses

	Experiment four Setup
	Experiment Four Hypotheses

	MOA Plugin
	Research Questions
	Concluding remarks

	Chapter 7
	Experimentation
	Experiment 1 - Comparison of measurements done through a hardware solution and a software solution.
	Experiment 2 - Comparison of different data stream classifiers energy consumption
	Experiment 3 - Comparison of energy consumption in prequential and interleaved chunks validation schemes
	Experiment 4 - Comparison of energy consumption with and without concept drift
	Discussion
	Hypotheses
	Experiment One
	Experiment Two
	Experiment Three
	Experiment Four

	Concluding Remarks

	Chapter 8
	Conclusions
	Bibliography

