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Resumo

Este trabalho apresenta uma abordagem de aprendizagem profunda para image retrieval

e pattern spotting em coleções digitais de documentos históricos. Um algoritmo de pro-

posta de região foi usado para detectar candidatos a objetos nas imagens das páginas do

documento. Modelos de aprendizagem profunda foram utilizados para extração de carac-

terísticas, oferecendo duas variantes distintas que resultam em representações de código

real ou binário. Posteriormente, a similaridade de características entre as imagens candi-

datas e uma imagem de pesquisa é calculada para classificar os resultados. Para avaliar a

eficácia da abordagem proposta, foi seguido um protocolo experimental rigoroso usando

o banco de dados de imagens DocExplore. Os resultados experimentais demonstram que

os modelos profundos propostos superam os métodos de image retrieval do estado da

arte para imagens de documentos históricos, superando outros modelos profundos em

2,56 pontos percentuais no pattern spotting. Além disso, a abordagem proposta reduz

significativamente o tempo de busca em até 200 vezes e os custos de armazenamento em

até 6.000 vezes em comparação com trabalhos existentes baseados em representações de

valores reais.

Palavras-chave: Aprendizagem de máquina; Redes neurais convolucionais; Reconhec-

imento de objetos; Hashing; Localização de padrões.
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Abstract

This work introduces a deep learning approach for image retrieval and pattern recognition

in digital collections of historical documents. A region proposal algorithm is employed

to detect object candidates in the document page images. Deep learning models are

then utilized for feature extraction, offering two distinct variants that yield either real-

valued or binary code representations. Subsequently, the feature similarity between the

candidate images and a given input query is computed to rank the results. To evaluate the

effectiveness of the proposed approach, a rigorous experimental protocol is followed using

the DocExplore image database. The experimental results demonstrate that the proposed

deep models outperform state-of-the-art image retrieval methods for historical document

images, surpassing other deep models by 2.56 percentage points in pattern recognition.

Additionally, the proposed approach significantly reduces search time by up to 200 times

and storage costs by up to 6,000 times compared to existing works based on real-valued

representations.

Keywords: Machine learning; Convolutional neural networks; Object recognition;

Hashing; Pattern spotting

ix



Chapter 1

Introduction

Content-based image retrieval (CBIR), in particular the tasks of image retrieval

(IR) and pattern spotting (PS), quickly evolved in recent years and has become essential

in the area of computer vision. IR involves retrieving a set of images from a collection

that contains a specific search image (query) based on their content. For each new query,

a search is performed in the image collection, returning potential candidate images where

the query may be found. In the same way, pattern spotting provides candidate images

and identifies the precise locations of query occurrences. In the domain of historical

documents, candidate images typically correspond to images of document pages.

The exponential growth of image collections held by art museums, medical in-

stitutes, environmental agencies, and governmental organizations has led to a significant

information access challenge. Typically, these images are manually indexed by individuals

who assign keywords to categorize them and facilitate future retrieval. However, this in-

dexing process is time-consuming and expensive. An exemplary case is the digitization of

historical document collections, which aims to increase accessibility to their content while

ensuring the preservation of the original manuscripts. Since many of these documents

date back to the 10th–16th centuries, continued physical handling poses risks that could

damage these valuable artifacts. Consequently, historians rely on digitized documents

to establish correlations between various elements, such as text and graphics, without

further subjecting the fragile originals to harm.

Existing indexing methods rely on automated detection and search software, en-

abling efficient analysis of vast document collections. Nevertheless, with recent advance-

ments in computer vision and machine learning, it is now feasible to develop applications

capable of swiftly identifying correlations within seconds. These cutting-edge technologies

empower the automation of correlation discovery, revolutionizing the indexing process and

significantly expediting the retrieval of relevant information.
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Historical documents predominantly consist of handwritten texts but can also fea-

ture a variety of graphical elements (YARLAGADDA et al., 2010), as illustrated in Fig-

ure 1.1 (an example from the DocExplore database). These graphic objects encompass

special characters, text separators, intricate borders, stamps, coats of arms, and even

vivid depictions of festive scenes. For historians, the primary challenge lies in establishing

connections among diverse objects across multiple document collections. Such correla-

tions offer valuable insights into cultural and temporal heritage, enabling characterizing

patterns in figures and paintings, content-based document categorization, and analyzing

writing variations (YARLAGADDA et al., 2010).

Figure 1.1: Example of how a single page of a historical document can contain several
figures and special characters to be analyzed.

As mentioned earlier, IR involves searching for a page that contains the query

in its content, while PS focuses on locating the specific occurrences of the query within

that page (which may have multiple results). This close relationship between IR and PS

implies that IR is an integral part of the PS process, as providing the location of queries

within a document enables the identification of the corresponding page.

Various methods exist for object retrieval in images, but most involve offline and

online phases. In the offline step, document image files are processed by an object detector.

The candidate regions within these files are analyzed and segmented into separate files,

then stored in the system to create a candidate image database for future searches. The

processed images are indexed and organized into a predefined structure that includes

information such as each image’s page, position, and path. In the online phase, the

similarity between the search image and the images within the stored candidate regions is

computed, resulting in a similarity ranking. This ranking selects the n smallest distances

to form the outcomes for both the IR and PS tasks.
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One practical approach for calculating the similarity measure between the search

and candidate region images is through hashing comparison. Hashing is widely utilized

due to its computational and storage efficiency (CANTINI et al., 2021). The primary goal

of hashing is to convert high-dimensional feature maps into low-dimensional hash codes.

This transformation ensures that hash codes of similar objects are closer to each other,

while hash codes of different things are more distinct. Low-dimensional hash codes enable

faster similarity calculations compared to high-dimensional feature maps. Additionally,

this approach reduces the storage requirements for storing processed image resources, as

the hash codes are much smaller.

Figure 1.2: Image search process in IR. The image retrieval algorithm returns a list of
non-repeating pages ordered by the distance measure.

In the IR task, the shortest ranking distances of the Top n candidates are used to

return the list of pages where the query can be found, as shown in Figure 1.2. However,

in PS, the image location within the document is also required in addition to returning

the pages. For such an aim, the structure previously stored in the offline phase is used,

and it returns this location, as shown in Figure 1.3 (green rectangles).

Figure 1.3: Image search process in PS. The pattern spotting returns a list of non-
repeating positions ordered by the distance measure and the document page. These
positions are subject to minimal overlap between the query image and the processed
images measured through the IoU.
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The relevance of a candidate region is determined by its intersection over union

(IoU) with the query area. The IoU is obtained by dividing the intersection of the query

area and the candidate region’s area by their union. To analyze potential candidates,

a threshold of IoU ≥ 0.5 was utilized (EN et al., 2016a). Precision and recall metrics

are calculated, and the mean average precision (mAP) is then computed to evaluate the

overall result across all queries.

1.1 Objectives

The primary objective of this work is to enhance the existing results in terms

of processing time, storage cost, and accuracy of Segmentation based approaches. The

problem comprising the query and image candidates will be represented using deep hashing

techniques to achieve this goal. To fulfill this objective, the following tasks will be carried

out:

1. Conducting a literature review on image retrieval and pattern spotting, deep fea-

tures, deep hashing, and object candidate search methods;

2. Establishing a methodology for generating object candidates from collections of

document images;

3. Define a deep representation that is compact and discriminant for queries and image

candidates;

4. Implement the solutions using deep hashing for fast image retrieval and pattern

spotting;

5. Evaluating the proposed IR and PS solutions using a benchmark dataset, considering

accuracy, processing time, and storage cost. This evaluation will involve comparing

the performance of the proposed approach against state-of-the-art methods.

1.2 Hypotheses

Given the significance of research focused on IR and PS in historical documents,

this work presents several hypotheses, each of which will be examined and evaluated in

the following sections.

Hypothesis #1. The utilization of binary representations of features results in

reduced processing time for IR and PS tasks compared to real-value representations.
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Hypothesis #2. Binary representations of features lead to reduced storage costs

for IR and PS tasks compared to real-value representations.

Hypothesis #3. Binary representations yield higher precision levels in IR and

PS tasks than real-valued representations.

Hypothesis #4. Optimizing the parameters of the object detector (Selective

Search) improves the performance of image retrieval and pattern spotting tasks.

1.3 Proposal

This work presents an approach for addressing image retrieval and pattern spot-

ting tasks in the context of historical documents by leveraging deep learning techniques.

The primary objective is to enhance the current state-of-the-art methods by improving

accuracy, reducing processing time, and minimizing storage costs. To achieve these goals,

the proposed approach involves exploring and evaluating both real-valued and binary

representations generated using diverse deep model architectures.

The proposed method encompasses the following key steps:

1. Object Candidate Generation: A method will be devised to identify and generate

object candidates within the document images. This process aims to extract regions

of interest that may contain relevant information for retrieval and pattern spotting.

2. Deep Representation Design: The design of deep representations will be explored

to create compact yet discriminative feature embeddings for both the queries and

the generated image candidates. This step captures essential visual information and

characteristics for accurate matching and retrieval.

3. Deep Hashing for Efficient Retrieval: Deep hashing techniques will transform the

high-dimensional feature representations into dynamic binary codes. This enables

faster retrieval by efficiently comparing and matching the query with the stored

image candidates.

4. Performance Evaluation: A comprehensive evaluation framework will be employed

to assess the proposed solutions for image retrieval and pattern spotting tasks.

Accuracy, processing time, and storage cost will be considered as evaluation metrics.

The proposed approaches will be benchmarked against state-of-the-art methods to

demonstrate their effectiveness and superiority.

Through the execution of this research, the aim is to advance the field of im-

age retrieval and pattern spotting in historical documents by harnessing the potential
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of deep learning. The proposed methods and techniques are expected to yield substan-

tial improvements in accuracy, processing efficiency, and storage optimization, thereby

facilitating efficient exploration and analysis of historical document collections.

1.4 Contributions

The first contribution is applying a filtering strategy during the offline phase to

effectively reduce the number of candidate images generated by the Selective Search ap-

proach. This strategy aims to enhance the efficiency and effectiveness of subsequent

processing steps by eliminating irrelevant or redundant candidates. Reducing the candi-

date set reduces the overall computational load, leading to improved processing time and

resource utilization.

The second contribution is the proposal of a binary representation method to

address the challenges associated with storage space and query search time. This method

significantly reduces the space required to store feature maps during the offline phase and

speeds up the search process for a given query during the online stage. By utilizing binary

representations, the storage overhead is minimized without compromising the accuracy

of the retrieval and pattern spotting tasks. This approach enables faster query search

and reduces storage costs, making it more practical and efficient for large-scale historical

document collections.

Overall, these contributions enhance the existing methods for image retrieval and

pattern spotting in historical documents by improving processing efficiency, reducing stor-

age requirements, and maintaining or even improving the system’s accuracy. The proposed

filtering strategy and binary representation method collectively contribute to advancing

the field by addressing important challenges and providing more effective solutions for

efficient retrieval and analysis of historical document images.

1.5 Publications

• Caio da Silva Dias, Alceu de Souza Britto Jr, Jean Paul Barddal, Laurent Heutte

and Alessandro L. Koerich. Pattern Spotting and Image Retrieval in Historical

Documents using Deep Hashing. 2022 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), 2022.
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1.6 Organization

This work is structured into six chapters to provide a comprehensive analysis of

the IR and PS tasks, as well as the proposed methods and experimental results.

Chapter 2 focuses on presenting the problem statement of IR and PS tasks, as

well as discussing related topics. It is divided into six sections: Image retrieval, Pattern

spotting, Object detection, Feature extraction, Similarity measures and Distances, and

Final considerations. Each section delves into relevant concepts and theories related to

the tasks.

Chapter 3 discusses related works in the field and examines their contributions to

the current research. This chapter critically analyzes existing approaches and highlights

their impact on the development of the proposed methods.

In Chapter 4, the proposed IR and PS methods are presented in detail. Which

includes the candidate generation technique, feature extraction approaches utilizing con-

volutional neural networks, the evaluation protocol used, and the similarity measure em-

ployed. The chapter comprehensively explains the methodologies and algorithms em-

ployed in the proposed methods.

Chapter 5 presents the experimental results obtained from the conducted experi-

ments. This chapter showcases the outcomes of the IR and PS tasks and compares the

performance of the proposed methods with existing approaches documented in the liter-

ature. The performance of the proposed IR and PS methods is further compared with

available methods in the literature. This evaluation is conducted to assess the effectiveness

and efficiency of the proposed methods.

Finally, Chapter 6 concludes the work by summarizing the main findings and

presenting the conclusions drawn from the research. This chapter provides a concise

overview of the research outcomes and discusses potential directions for future research.



Chapter 2

Fundamentals

The storage of various data collections, including images, documents, books, and

more, provides information that specialists from different fields can explore. However,

in traditional collections, the organization and labeling of document information could

be better defined, particularly in collections composed of document images. This lack

of predefined structures poses challenges in defining suitable queries due to the inherent

difficulty in understanding the data semantics. The information retrieval community has

recognized this as a significant problem and has proposed various approaches to address

the indexing and retrieval of such collections.

Given the large volume and importance of these documents, developing efficient

methods for accessing this information is crucial. Numerous techniques can be employed

to retrieve information from an image collection. These techniques typically follow a

conventional process: first, the candidates extracted from the images are indexed and

represented in a suitable feature space. This indexing process is often performed in an

offline phase. Subsequently, during the online phase, users can submit queries to the

retrieval system, and a similarity measure is employed to compare the query with the

stored image candidates, resulting in a ranked list. This iterative process continues until

a stopping criterion is met.

To address these challenges and provide a comprehensive understanding of the

selected processes involved in the creation of an image retrieval and pattern spotting

system, this chapter presents the key definitions. Section 2.1 provides a literature review

of the Image Retrieval task, while Section 2.2 focuses on Pattern Spotting. The object

detection is discussed in Section 2.3. Furthermore, Section 2.4 emphasizes using deep

learning for feature extraction, which plays a crucial role in effectively representing the

images. Finally, Section 2.5 introduces various similarity measures that can be utilized in

the retrieval process.

8
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2.1 Image retrieval

Image retrieval is a fundamental task in the field of computer vision and infor-

mation retrieval, which aims to retrieve relevant images from a large collection based

on a given query. With the increasing availability of digital image collections, effective

image retrieval systems play a crucial role in various domains, including art, medicine,

e-commerce, and social media.

The primary objective of image retrieval is to provide users with efficient and

accurate means of searching and retrieving images based on their content, rather than

relying solely on textual descriptions or metadata (SMEULDERS et al., 2000). This

enables users to explore and navigate image databases in a more intuitive and visual

manner, facilitating tasks such as content-based image browsing, image organization, and

similarity-based image recommendation.

Conceptually, image retrieval involves two main components: representation and

similarity measurement.

1. Representation: The representation involves extracting and encoding the visual

content of images into a feature space that can capture the characteristics of the

images. These features can be derived from various visual descriptors, such as

color, texture, shape, and spatial layout. Popular techniques for feature extraction

include Convolutional Neural Networks (CNNs), which have demonstrated excep-

tional performance in learning rich and discriminative representations from images

(SMEULDERS et al., 2000).

2. Similarity Measurement: Once the images are represented by their respective feature

vectors, the next step is to measure the similarity or distance between the query

image and the images in the database. Various similarity metrics are employed,

such as Euclidean distance, Cosine similarity, or a combination of multiple distance

measures. The choice of similarity metric depends on the nature of the features and

the specific requirements of the application (SMEULDERS et al., 2000).

Image retrieval methods can be categorized into two main approaches: content-

based image retrieval (CBIR) and text-based image retrieval (TBIR).

1. Content-Based Image Retrieval: CBIR methods focus on retrieving images based on

their visual content. These methods leverage the extracted visual features of images

to measure the similarity between the query image and the images in the database.

CBIR systems are particularly useful when textual annotations or metadata are

limited or unavailable (MUNJAL; BHATIA, 2019).
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2. Text-Based Image Retrieval: TBIR methods, on the other hand, rely on textual in-

formation, such as captions, tags, or annotations, to retrieve images. These methods

involve matching the textual query with the available textual information associ-

ated with the images. TBIR systems are advantageous when textual descriptions

are well-curated and comprehensive (MUNJAL; BHATIA, 2019).

In recent years, there has been a growing trend towards integrating both textual

and visual information in hybrid image retrieval systems, aiming to exploit the comple-

mentary nature of these modalities for improved retrieval performance (MUNJAL; BHA-

TIA, 2019). This integration allows users to efficiently search and retrieve images from

large-scale collections by leveraging advanced techniques in feature representation and

similarity measurement. By combining textual and visual cues, image retrieval systems

provide valuable tools for visual exploration, organization, and recommendation.

The evaluation of image retrieval performance is essential to assess the effectiveness

of these systems. It involves returning a list of non-repeating images sorted by their

confidence level in containing the query object. Mean Average Precision (mAP) is a

commonly used metric for evaluating image retrieval tasks. It measures the area under

each query’s precision/recall curve, providing a comprehensive assessment of the system’s

ability to retrieve relevant images. By considering both precision and recall, mAP offers

a quantitative measure of the retrieval performance, allowing researchers to compare and

analyze different retrieval algorithms and techniques.

Precision is defined as the ratio of true positive images retrieved to the total number

of positive images retrieved, considering true positives (TP) and false positives (FP) as

shown in Equation 2.1.

Precision =
TP

TP + FP
(2.1)

Recall measures the ability of the retrieval system to identify all relevant images.

It is defined as the ratio of true positive images retrieved to the total number of positive

images in the corpus, considering true positives (TP) and false negatives (FN) as shown

in Equation 2.2.

Recall =
TP

TP + FN
(2.2)

It is important to note that if an image returned by the system does not contain

any correct occurrences of the query object but includes unrelated objects, it will be

considered irrelevant, and the evaluation system will disregard it in the result list. This

ensures that only relevant images are considered for performance evaluation.



11

2.2 Pattern Spotting

Pattern spotting (PS) is a fundamental task in computer vision that focuses on the

detection and localization of specific objects or patterns of interest within an image. Its

primary objective is to identify and localize instances of predefined objects or patterns,

which in turn enables automated analysis and comprehension of visual content. In recent

years, pattern spotting has made significant strides, driven by the advancements in deep

learning and the availability of large-scale labeled datasets. These advancements have

resulted in enhanced accuracy and robustness in localizing objects or patterns of interest,

paving the way for new applications in fields like autonomous vehicles, augmented reality,

and industrial automation. By precisely detecting and localizing objects or patterns of

interest, pattern spotting empowers advanced capabilities and provides valuable insights

in these domains.

Pattern spotting typically involves the use of machine learning techniques, par-

ticularly deep learning-based approaches, due to their ability to learn complex patterns

and features from data. Convolutional Neural Networks (CNNs) are commonly used for

pattern spotting tasks due to their effectiveness in capturing hierarchical representations

of visual features.

The process of pattern spotting consists of two main steps: training and inference.

During the training phase, a pattern spotting model is trained on a labeled dataset, where

the objects or patterns of interest are annotated with bounding boxes. The model learns

to recognize and localize these objects by extracting relevant features and optimizing the

parameters through the use of a loss function. Once the model is trained, it can be

used for inference on new, unseen images. During inference, the pattern spotting model

analyzes the input image and generates predictions of the presence and location of the

desired objects or patterns. These predictions are typically represented as bounding boxes

or pixel-level masks.

Evaluation in pattern spotting goes beyond the image retrieval task, as it assesses

not only the relevance of returned objects but also their precise alignment with the ground-

truth object positions. The evaluation involves analyzing the location accuracy of the

detected objects within the image. Instead of returning a list of non-repeated images,

the system generates a list of objects with the image name and corresponding bounding

boxes. To measure the system’s ability to locate image regions containing the object, the

Intersection over Union (IoU) criterion is utilized. IoU measures the overlap between the

bounding box of the true object (Region 1) and that of the returned object (Region 2),

as illustrated in Figure 2.1.
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Figure 2.1: Illustration of intersection over union (IoU).

The intersection considers the query area, represented by q1, and the area of the

candidate region, represented by o1, as defined by Equation 2.3 (NOWOZIN, 2014).

IoU(x, y) =
q1 ∩ o1

q1 ∪ o1
(2.3)

The sizes of the query and candidate regions influence the IoU value. For instance,

if the query region occupies 10% of the candidate region with an area of 10 units, the

maximum IoU value achievable is 0.1. This occurs when the entire query region is con-

tained within the candidate region, resulting in an intersection area of 1 unit and a union

area of 10 units.

2.3 Object Detection

Object Detection is a well-known technique in the field of Computer Vision that

plays a crucial role in localizing objects within images or video. The fundamental concept

involves creating bounding boxes that accurately encompass specific objects of interest.

These bounding boxes could be utilized in conjunction with a classification algorithm to

assign a probabilistic output, which provides information about the presence and type of

the enclosed object.

Exhaustive search method is a commonly used approach in object detection. This

method involves sliding windows of different sizes across an image to identify potential

objects. However, the need to search through a large number of windows, even for rela-

tively small-sized images, poses computational challenges. Although optimizations such

as employing windows of varying proportions can improve efficiency to some extent, the

overall effectiveness remains limited due to the sheer number of windows involved. To

address this challenge, researchers have proposed innovative methods over the years that

optimize the window application process for object localization.
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Incorporating these advancements, the object detection techniques employed in

this work offer improved performance in terms of both confidence and computational

efficiency. These methods leverage innovative optimizations in the application of windows

for locating objects in images, resulting in superior object detection capabilities. This

ensures that the system can accurately and efficiently identify objects within the images,

thereby supporting the overall objective of the pattern spotting system.

While the traditional approach for object detection involves using bounding boxes

and classification algorithms, some methods focus solely on object localization without

explicit classification. These methods leverage object proposals and keypoint detection

techniques to locate objects in images precisely. Here are a few notable examples:

1. EdgeBoxes (ZITNICK; DOLLÁR, 2014): A fast object proposal method that gen-

erates potential object bounding boxes by exploiting the edges present in an image.

It selects boxes based on their ability to fit objects, enabling efficient and accurate

object localization tightly.

2. CornerNet (LAW; DENG, 2020): An object detection method that focuses on de-

tecting object corners or keypoints instead of relying solely on bounding boxes. By

detecting corners and regressing to complete bounding boxes, CornerNet achieves

accurate and robust object localization.

3. Selective Search (UIJLINGS et al., 2013): An object proposal method that combines

multiple low-level image cues, such as color, texture, and size, to generate a diverse

set of potential object regions. These regions serve as candidate bounding boxes for

object detection.

These methods, prioritizing precise object localization rather than explicit classi-

fication, have demonstrated their effectiveness in various applications. By leveraging the

strengths of these techniques, researchers can develop object detection systems tailored

to specific requirements, such as those involved in pattern spotting or fine-grained object

recognition tasks.

2.3.1 EdgeBoxes

EdgeBoxes (ZITNICK; DOLLÁR, 2014) is a fast and efficient object proposal

method that leverages edge information for generating potential object bounding boxes in

an image. The method exploits the observation that objects in images are often associated

with solid edges. By capitalizing on this edge-based cue, EdgeBoxes aims to generate

accurate, tightly-fitting bounding boxes.
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The algorithm starts by computing edge responses using an edge detection tech-

nique like structured forests. These edge responses capture the presence of edges at differ-

ent orientations and scales within the image. Based on these edge responses, EdgeBoxes

performs a comprehensive search for potential object regions by evaluating rectangular

boxes of varying aspect ratios and scales. The algorithm assigns a score to each box based

on its ability to tightly enclose object-like regions.

To efficiently explore the search space, EdgeBoxes adopts a hierarchical grouping

strategy. It hierarchically groups similar boxes based on their location and appearance.

This grouping process helps eliminate redundant and overlapping proposals, significantly

reducing the number of candidate regions and improving computational efficiency.

After generating a set of potential bounding boxes, EdgeBoxes ranks them based

on their objectness score. The objectness score reflects the likelihood of a box containing

an object rather than background clutter. By selecting boxes with high objectness scores,

EdgeBoxes provides a diverse set of high-quality proposals that cover a wide range of

objects in the image.

The EdgeBoxes method offers several advantages. It operates in a computation-

ally efficient manner, allowing real-time object detection applications. Additionally, it

balances recall and efficiency well, generating a compact set of proposals while maintain-

ing high recall rates. These characteristics make EdgeBoxes a valuable tool in object

detection pipelines, facilitating subsequent steps such as object classification and local-

ization (ZITNICK; DOLLÁR, 2014).

2.3.2 CornerNet

CornerNet (LAW; DENG, 2020) is an object detection method that takes a unique

approach by focusing on detecting object corners or keypoints instead of using traditional

bounding boxes. By detecting corners and regressing to complete bounding boxes, Cor-

nerNet achieves accurate and robust object localization.

The method consists of two main stages: corner keypoint detection and corner-

based box regression. In the keypoint detection stage, CornerNet generates a heatmap for

each corner keypoint, indicating the likelihood of a corner being present at each spatial

location in the image. This heatmap is generated using a convolutional neural network

(CNN) architecture trained to predict corner keypoints. To obtain accurate corner loca-

tions, CornerNet employs a keypoint grouping technique. It groups the corner keypoints

based on their spatial proximity and assigns each group a unique instance ID. This group-

ing process helps refine the corner keypoint locations and improve their accuracy.
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CornerNet regresses from the detected corner keypoints to complete bounding

boxes in the box regression stage. It predicts the offsets between the corner keypoints

and uses them to reconstruct the bounding box coordinates. By leveraging the corner

keypoints, CornerNet achieves precise localization of objects in the image.

CornerNet introduces an innovative and efficient architecture called the CornerNet-

Saccade. This architecture utilizes a two-stage cascaded network that progressively refines

the corner keypoint locations. The first stage, the detection network, focuses on capturing

global information to generate an initial set of corner keypoints. The refinement network’s

second stage operates at a higher resolution and refines the corner keypoint locations with

finer details.

The CornerNet method has shown impressive performance in object detection

tasks. It offers several advantages, including accurate localization and robustness to oc-

clusion and scale variations. By explicitly detecting corner keypoints, CornerNet provides

a more precise representation of object boundaries compared to traditional bounding box

methods. This makes it particularly useful in scenarios where precise object localization is

critical, such as fine-grained object recognition and pose estimation tasks (LAW; DENG,

2020).

2.3.3 Selective Search

Selective Search (SS) is a method introduced in 2012 (UIJLINGS et al., 2013) that

combines the strengths of exhaustive search and segmentation for object detection. This

approach aims to capture objects at various scales and orientations while diversifying

the grouping of regions based on different metrics. Selective Search captures both these

features, yet with some additional benefits:

1. Capturing all scales, addressing the fact that objects in images can present at dif-

ferent sizes and orientations. This step is based on the intuition of the hierarchical

structure of images. The initial regions are created via a graph-based greedy algo-

rithm, which starts grouping the most similar regions until the whole image becomes

a unique region;

2. Diversifying the grouping of regions according to different metrics. The authors

introduced four different diversification strategies based on color (C), texture (T),

size (S), and fill (F). For each feature, a similarity score (between each couple of

regions) is computed. The final similarity score is a linear combination of the above

four similarity scores;
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3. Finally, the method is computationally fast, compared with its predecessor exhaus-

tive search (UIJLINGS et al., 2013).

As a first part of the method, a hierarchical grouping algorithm is used to form

the basis of the SS. As the grouping process itself is hierarchical, it is naturally possi-

ble to generate locations at all scales, continuing the grouping process until the entire

image becomes a single region. This satisfies the condition of capturing all scales. The

method uses region-based features whenever possible because regions can provide richer

information than pixels. To obtain a set of small initial regions that ideally do not span

multiple objects, the fast method of Felzenszwalb and Huttenlocher (FELZENSZWALB;

HUTTENLOCHER, 2004) is used.

From there, the grouping procedure works as follows. First, (FELZENSZWALB;

HUTTENLOCHER, 2004) is used to create initial regions. Then, a greedy algorithm

is used to group the regions iteratively: first, the similarities between all neighboring

regions are calculated. The two most similar regions are grouped, and new similarities

are calculated between the resulting region and its neighbors. The process of grouping

the most similar regions is repeated until the entire image becomes a single region.

The first strategy is the use of Complementary Color Spaces, where different scenes

and lighting conditions are taken into account. Therefore, the hierarchical clustering algo-

rithm runs on a variety of color spaces with a variety of invariance properties. Specifically,

the following color spaces with an increasing degree of invariance: (1) RGB, (2) the inten-

sity (grey-scale image) I, (3) Lab, (4) the rg channels of normalized RGB plus intensity

denoted as rgI, (5) HSV, (6) normalized RGB denoted as rgb, and finally (8) the Hue

channel H from HSV.

The second strategy is the use of Complementary Similarity Measures, where four

complementary and fast-to-calculate similarity measures are defined. These measures are

all in the range [0,1] which facilitates combinations of these measures. The first measures

color similarity where for each region, the histogram of each color channel present in the

image is generated. Where 25 dimensions are used in the histogram of each color channel.

Which generates 75 dimensions (25 for each R, G, and B), and all channels are combined

into a vector (n = 75) for each region. The second measures texture similarity where for

each region, the texture measurement is calculated using 8 Gaussian derivations generated

from the image as a SIFT. After that, histograms with 10 dimensions are extracted for

each color channel. Which generates a 240-dimensional vector for each region. The

third encourages small regions to merge early. Suppose this similarity is not taken into

account. In that case, more significant regions will continue to merge with larger regions,
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and proposed multi-scale regions will be generated only at this location. Finally, the

fourth measures how well region ri and rj fit into each other. If two regions fill each other

well (for instance, one region is present in the other) they should be merged, if two regions

do not touch each other they should not be merged.

The final strategy is the use of Complementary Starting Regions, where a third

diversification strategy is used to vary the complementary starting regions. The algorithm

to image segmentation (FELZENSZWALB; HUTTENLOCHER, 2004) is used to generate

these initial regions. As noted earlier, different initial regions are obtained by varying

the color spaces, each with different invariance properties. In addition, the threshold

parameter k in (FELZENSZWALB; HUTTENLOCHER, 2004) is also varied. Figure 2.2

shows two examples of the selective search applied in different scales.

Figure 2.2: In this example, it is shown how the scale variation influences the final result.
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Selective Search has been shown to be computationally fast compared to exhaustive

search, making it a practical choice for object detection tasks. By capturing objects

at multiple scales, diversifying region grouping, and utilizing complementary strategies,

Selective Search provides an effective approach for localizing objects in images.

2.4 Feature Extraction

Feature extraction is the process of transforming raw data into numeric features

that can be effectively processed while preserving the relevant information in the original

dataset. It has proven to be more effective than directly applying machine learning algo-

rithms to raw data (ALPAYDIN, 2014). The feature extraction process can be performed

manually or automatically, depending on the context:

• Manual feature extraction involves identifying and describing the features that are

relevant to a specific problem and implementing methods to extract those features.

A good understanding of the domain or background knowledge can be valuable

in making informed decisions about useful features. Over the years, engineers and

scientists have developed handcrafted feature extraction methods for images, signals,

and text. For example, averaging a window on a signal can be a simple handcrafted

feature extraction method. Generally, methods using manual feature extraction are

referred to as handcrafted features.

• Automated feature extraction utilizes specialized algorithms or deep networks to

automatically extract features from signals or images without the need for human

intervention. This technique is particularly useful when moving quickly from raw

data to developing machine learning algorithms is needed. Wavelet scattering is an

example of an automated feature extraction method. Features extracted automati-

cally using deep networks are often referred to as deep features.

With the emergence of deep learning, feature extraction using deep networks has

largely replaced traditional feature extraction methods, especially in the domain of image

data. However, feature extraction remains a significant challenge for applications involv-

ing signals and time series, requiring domain knowledge and expertise to build effective

predictive models.
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2.4.1 Deep features

Deep features are characterized by the hierarchical response of neural networks,

starting from the input layer, passing through multiple hidden layers, and ending at

the output layer. In neural network-based approaches, the weights are learned using

large training datasets. This learning process involves iteratively adjusting the neural

network parameters and weights and requires a substantial amount of training data. The

performance of neural networks is related by the strategy employed for gathering and

selecting samples during the training process (KAMNITSAS et al., 2017).

The initial layers of convolutional neural networks (CNNs) compress the input

image by extracting low-level features such as edges and curves, focusing more on local

patterns. The hidden layers respond to and create their own feature filters for captur-

ing more complex patterns in the input data, such as textures, shapes, or variations of

previously processed features (GKELIOS et al., 2021).

Consequently, while a conventionally trained network may have downstream nodes

capable of identifying specific features, such as faces, they might not be able to distinguish

a face from similar objects. However, the response from deeper layers in the network

hierarchy serves as a feature filter that the model can utilize not only to differentiate

faces from non-facial objects but also to create new classifiers during classification tasks.

Deep neural networks have achieved remarkable success in high-dimensional fea-

ture extraction. With the introduction of convolutional neural networks for image pro-

cessing, several influential deep network architectures have been proposed and demon-

strated promising results. For instance, AlexNet (KRIZHEVSKY; SUTSKEVER; HIN-

TON, 2012) consists of five convolutional layers followed by three fully connected layers.

VGGNet (SIMONYAN; ZISSERMAN, 2014) increased model depth, resulting in improved

image classification performance. Researchers discovered that the depth of representations

plays a vital role in achieving high performance across various visual recognition tasks.

However, the challenge of vanishing/exploding gradients made it difficult to construct

very deep neural networks. ResNet (HE et al., 2016a) addressed this issue by employing

residual learning to deepen the network and benefit from extremely deep models.

Deep features have significantly transformed the field of computer vision by revolu-

tionizing the way we extract information from images. These features, obtained through

the hierarchical response of neural networks, have proven to be highly effective in captur-

ing rich and discriminative representations. This progress has led to the development of

diverse applications, with deep hashing standing out as a prominent example.
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2.4.2 Deep Hashing

When working with high-dimensional and large-scale data, the computational time

required to accurately find the closest sample to a query can be substantial. To address

this challenge, researchers have increasingly focused on approximate nearest-neighbor

search, as it often satisfies search requirements while significantly reducing search com-

plexity (LUO et al., 2021).

Hashing methods can be broadly classified into two main categories: local sensitive

hashing and learning to hash. Local sensitive hashing aims to map original data onto mul-

tiple hash buckets, grouping objects with similar distances in the original space into the

same bucket. However, to enhance retrieval accuracy, these methods often require the cre-

ation of numerous hash tables, limiting their applicability to large-scale datasets. As local

sensitive hashing is data-independent, researchers have focused on learning hash functions

to generate high-quality hash codes. Learning to hash has garnered significant interest

in academic fields such as machine learning and data mining, leading to the development

of pioneering methods like spectral hashing and semantic hashing (SALAKHUTDINOV;

HINTON, 2009; WEISS; TORRALBA; FERGUS, 2008).

On the other hand, learning to hash involves optimizing the parameters of deep

neural networks using extensive labeled datasets and loss functions designed explicitly for

binary code learning. By harnessing the power of deep learning, learning to hash enables

the creation of retrieval systems that are both effective and efficient. This approach has

gained considerable attention in recent years due to its ability to address the challenges

posed by traditional hashing methods while leveraging the rich representations learned

by deep neural networks to enhance retrieval performance and scalability. Deep hashing

offers several advantages for hash code generation in comparison to traditional methods.

Firstly, deep learning models, with their powerful representation capabilities, can

learn highly complex hash functions that capture intricate patterns and relationships in

the data. This enables the generation of more discriminative hash codes, enhancing the

performance of tasks such as similarity search, clustering, and information retrieval.

Secondly, deep learning facilitates the end-to-end generation of hash codes, which

proves to be highly advantageous in many applications. End-to-end deep hashing models

directly take raw data as input and output hash codes without requiring manual feature

engineering or intermediate steps. This streamlined approach eliminates the need for

handcrafted features and simplifies the overall process of generating hash codes. Further-

more, deep hashing methods are particularly useful for large-scale datasets, as they offer

scalable solutions that can handle the computational demands of high-dimensional data.
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Deep hashing has found applications in various domains. For instance, in image

retrieval tasks, deep hashing enables efficient similarity search in large image databases.

By mapping images to compact binary codes, retrieving visually similar images within a

reduced search space is feasible. Deep hashing techniques can efficiently index and search

through a vast collection of documents based on their semantic similarity in document

retrieval. This is particularly valuable in applications such as plagiarism detection, content

recommendation, and information retrieval systems.

Furthermore, deep hashing has also been applied to video retrieval, where it allows

for efficient searching and indexing of videos based on their visual content or semantic

information. It enables tasks such as video summarization, action recognition, and video

recommendation.

In summary, deep hashing techniques have emerged as a powerful solution for effi-

cient and effective approximate nearest-neighbor search. By leveraging the representation

capabilities of deep neural networks and enabling end-to-end hash code generation, deep

hashing methods offer improved performance and scalability for tasks involving high-

dimensional and large-scale data.

2.5 Similarity Measures and Distances

In pattern spotting or image retrieval tasks, the performance of a method relies

heavily on the numerical measure used to quantify the similarity between two images: the

query image and the candidate image present in the document. The similarity calculation

often involves the representation of images using feature maps. This section provides an

overview of several commonly used similarity and dissimilarity measures in the field of

computer vision.

The term "distance" is frequently used when referring to dissimilarity calculations.

In the context of this work, the distance is computed between feature maps extracted by

a convolutional neural network (CNN) to perform a retrieval task. The choice of distance

measure depends on the specific set of images and their representation. However, all

dissimilarity functions adhere to certain criteria (TAN; STEINBACH; KUMAR, 2005),

where d is the distance and x, y and z are the points:

• d(x, y) ≥ 0 for all x and y;

• d(x, y) = 0 only if x = y;

• d(x, y) = d(y, x), when the distance between two elements is equal;
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• d(x, y) + d(y, z) ≥ d(x, z), known as a triangular difference to x, y, and z points.

In the task of retrieving images from historical documents, the image collection is

organized as a set of feature maps, with cj = a1,j, a2,j..., an,j representing the feature map

of document candidate j, and qi = a1,i, a2,i, ...an,i representing the query vector with index

i. Here, n corresponds to the number of features in each image. To obtain a ranking of

results, the query must be compared against all candidate vectors in the collection, and

the results must be ordered according to the chosen measure. The following are some of

the main distance measures commonly found in the literature.

Minkowski distance is the generalization of the distance between two points in an

n-dimensional characteristic space (TAN; STEINBACH; KUMAR, 2005). The distance

is defined by Equation 2.4.

d(cj, qi) =

(
n∑

k=1

|ckj − qki|r
)1/r

(2.4)

where k is the index of cj and qi, and the parameter r can represent different values

and variations. The most famous are:

• r = 1. Hamming distance is used between two binary feature maps, defined by

Equation 2.5:

d(cj, qi) =
n∑

k=1

|ckj − qki| (2.5)

• Euclidean distance is a function that is traditionally used and corresponds to the

Equation 2.6:

d(cj, qi) =

√√√√ n∑
k=1

(ckj − qki)
2 (2.6)

In Cosine similarity, the attributes are used as a vector to find the normalized dot

product of a pair of bit vectors. Two vectors with the same direction have a similarity

equal to 1, and two opposite vectors have a similarity equal to -1. The similarity is

calculated by the Equation 2.7 (TAN; STEINBACH; KUMAR, 2005):

Similarity(cj, qi) =
c⃗j · q⃗i
|c⃗j| ∗ |q⃗i|

=

∑n
k=1 (ckj ∗ qki)√∑n

k=1 c
2
kj ∗

√∑n
k=1 q

2
ki

(2.7)
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where c⃗j · q⃗i is the dot product between the vectors cj and qi, in this way, the distance

between two correlated vectors is presented in Equation 2.8.

dcosine(cj, qi) = 1− cos−1 (Similarity(cj, qi)) (2.8)

The choice of similarity measure depends on the features used in the image repre-

sentation. Euclidean distance and cosine similarity are commonly used for cluster analysis

(EN et al., 2016b), while Hamming distance is appropriate for binary information (Riba

et al., 2017).

A comparison of different similarity measures, including Euclidean distance, and

cosine similarity, was performed in image retrieval approaches by (MALIK; BAHARUDIN,

2013). They concluded that Euclidean distance provides good precision. However, both

Euclidean distance and cosine similarity yield good results, as presented by (EN et al.,

2016b; Riba et al., 2017).

All these measures can be used in the context of historical document images. How-

ever, if the comparison needs to be applied to more complex data samples with features

of different dimensionality and types that may require compression before processing, us-

ing these measures alone would be inadequate. In such cases, a Siamese Neural Network

(SNN) may be the best choice (CHICCO, 2021). An SNN is a neural network archi-

tecture that combines two identical networks with the same configuration, parameters,

and weights. Two images are used as input to the network, and the output generated

by the SNN execution can be considered the semantic similarity between the projected

representations of these two input images (CHICCO, 2021).

2.6 Final Considerations

This chapter provides a comprehensive literature review focusing on content-based

image retrieval (CBIR) systems. Each step of the CBIR process, including candidate

generation, feature extraction using CNN models, and computation of similarity measures,

is discussed in detail. The subsequent chapter will delve into the specifically related works

that have served as a foundation for the current study.



Chapter 3

Related Works

In this work, the focus lies on the application of Content-Based Image Retrieval

(CBIR) methods in historical document images. The term Content-Based Image Retrieval

was first introduced in 1992 when experiments conducted by T. Kato aimed to automat-

ically retrieve images from a collection (HUNEITI; DAOUD, 2015). The primary goal of

CBIR methods is to retrieve information without relying on prior contextual knowledge.

Thus, the application needs to assess variations in color, texture, shape, and location of

the query within the image collection (EAKINS et al., 1999). The query itself can be

presented as either a complete image or specific regions of interest within the image.

With the continuous advancements in data storage and image acquisition technolo-

gies, the volume of image collections has witnessed a remarkable surge. As a result, the

need for efficient Content-Based Image Retrieval (CBIR) tools has become increasingly

crucial in order to effectively manage and navigate through these extensive collections

(TORRES; FALCãO, 2006). CBIR encompasses a wide range of techniques, tools, and

algorithms that draw upon diverse fields such as statistics, pattern recognition, signal pro-

cessing, and computer vision. The underlying goal of CBIR is to enable users to retrieve

images based on their visual content. To achieve this, CBIR techniques typically involve

two primary steps: image feature extraction and query processing.

In the initial step, an image is analyzed, and relevant features such as color, texture,

shape, and others are extracted (HEBBAR; NIRANJAN; MUSHIGERI, 2013). Numerous

features can be employed based on the specific objectives of the technique, and there are

various approaches to combining these features to enhance the retrieval outcomes. The

subsequent step involves query processing, which entails comparing the extracted features

from the query image with those of the images in the collection. A metric, such as the

Euclidean distance, is often employed to determine the closest matches to the query.

Smaller distances between images indicate higher similarity between them.
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When considering the application of CBIR in historical documents, the image

collection can be likened to a compilation of book pages or a collection of books. At the

same time, the query corresponds to a graphic element that may or may not be present

within these pages. Given that this is a relatively recent challenge in comparison to

other computer vision problems, only a limited number of approaches have been proposed

to address the issue of Pattern Spotting (PS) and Image Retrieval (IR) in historical

documents, particularly within the context of the DocExplore database (EN et al., 2016a).

A comprehensive system for image search and localization of small graphic objects

in medieval documents was proposed by Sovann et al. (EN et al., 2016b). The system is

based on extracting and indexing regions of interest within the images, representing these

regions using handcrafted descriptors, and employing compression and approximation

techniques to search for similarity between the query and image candidates.

The system consists of two main processing phases: the offline phase and the on-

line phase. The offline phase begins with a background filtering process to eliminate

non-informative areas that do not represent graphic elements. Subsequently, the informa-

tive zones undergo an analysis procedure for each filtered image using sliding windows.

Within each subwindow, a descriptor is extracted using one of the Bag-of-Visual-Words

(BoVW), Locally Aggregated Descriptor (VLAD), or Fisher Vectors (FV) representations.

To address memory consumption, the concept of product quantization (PQ) is utilized to

efficiently compress the vectors, with the later use of asymmetric distance computation

(ADC). However, directly applying PQ to the BoVW model may result in losses due to

the sparseness of the resource vectors. To mitigate this issue, Latent Semantic Analysis

(LSA) is employed to transform the BoVW space into a compressed low-rank topic space.

For VLAD and FV, Principal Component Analysis (PCA) is employed to project the

representation into a lower-dimensional feature space.

Additionally, to expedite the search in the online phase, the inverted file structure

(IVF) is utilized to avoid exhaustive searches in the subwindows. Finally, a similarity

measure determines the most suitable indexed subwindows to be returned. An overview

of the system can be observed in Figure 3.1, with the steps of the offline and online

procedure.

While this system has exhibited good performance on medieval document images

within the DocExplore database (EN et al., 2016a), it does possess certain limitations that

render it less suitable for other types of document images. For instance, it is sensitive

to variations in size, shape, color, and patterns that must be detected. Furthermore, the

system lacks scaling support and necessitates post-processing to accurately locate objects

in regions of interest using traditional correlation methods.
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Figure 3.1: Overview of the pattern spotting system proposed in (EN et al., 2016b).

In a different study, a method proposed by Ignacio et al. (ÚBEDA et al., 2019) in-

troduced an approach that utilizes convolutional neural networks (CNN) based on feature

pyramid networks (FPN) as the feature extractor for the system. Similar to the method

presented by Sovann et al. (EN et al., 2016b), this approach comprises an offline and an

online phase.

In the offline phase, the primary focus was on processing and indexing the col-

lection of historical documents, where subsequent searches would be conducted. The

processing step involved utilizing the FPN to extract descriptors from localized regions

of the documents, allowing for indexing at various scales with a single pass through the

network. Pre-processing techniques were employed, such as background removal from the

images within the DocExplore database (EN et al., 2016a) and image centering on a black

background canvas.

Moving on to the online phase, the query image was processed, and its features

were extracted and normalized in a manner similar to the offline phase. The subsequent

steps of this phase were centered around processing and locating multiple occurrences of

objects similar to the query image within the indexed document collection. An overview

of the pipeline can be observed in Figure 3.2.

Figure 3.2: Overview of the pattern spotting system proposed in (ÚBEDA et al., 2019).
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Although this approach demonstrated reduced memory requirements and process-

ing time compared to the system proposed by Sovann et al. (EN et al., 2016b), it does

have certain limitations. Firstly, in terms of retrieval tasks, it yielded a 13% lower mean

Average Precision (mAP) compared to the results obtained by Sovann et al. (EN et al.,

2016b). Furthermore, the FPN exhibited sensitivity to the shape of the object being

searched within the document collection, achieving good precision only for objects with

a square format.

In a separate study, Kelly et al. (WIGGERS et al., 2019) proposed an approach

that also incorporates offline and online phases, utilizing convolutional neural networks

(CNNs) in a Siamese Neural Network (SNN) framework. Transfer learning and fine-tuning

techniques were employed, leveraging a pre-trained CNN model. The selective search

algorithm (SS) proposed by Uijlings et al. (UIJLINGS et al., 2013) was also utilized in

this approach.

In the offline phase, Selective Search (SS) was applied as a pre-processing step

to generate candidate regions within the image collection. The goal was to capture all

possible object locations within the images of historical documents, regardless of their

sizes, shapes, and colors. As a result, candidate regions corresponding to the detected

objects were saved.

A pre-trained SNN based on the AlexNet model proposed by Krizhevsky et al.

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) was employed to measure the similarity

between the query image and the candidate regions. The SNN was trained using pairs of

positive and negative images from the Imagenet dataset, enabling the network to learn to

distinguish between similar and dissimilar objects. The Euclidean distance was used to

calculate the similarity between the query and the candidate regions. The AlexNet model

was further fine-tuned using images from the context of historical documents.

In the online phase, an interaction was performed for each candidate region re-

turned by the SS. The image of the candidate region object and the query image was fed

into the SNN, which produced a similarity value as output. A ranking was generated after

calculating the similarity between the query and all candidate objects. A post-processing

step was then carried out to merge candidate regions that had intersections with each

other. An overview of the system can be observed in Figure 3.3.

While this approach achieved improvements over the results obtained by Sovann

et al. (EN et al., 2016b) and Ignacio et al. (ÚBEDA et al., 2019) in the pattern spotting

(PS) task, it does have a significant drawback. The excessive number of candidate regions

that do not represent objects poses a challenge. As the query needs to be compared with

each of these regions, the search process becomes time-consuming.
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Figure 3.3: Overview of the pattern spotting system proposed in (WIGGERS et al., 2019).

3.1 Final Considerations

This chapter has provided an overview of relevant works that have applied Content-

Based Image Retrieval (CBIR) methods in the domain of historical documents, particu-

larly using the DocExplore database (EN et al., 2016a), which is also the dataset used

in the experiments of this study. Building upon the insights gained from these works,

the next chapter (Chapter 4) will present the proposed method, outlining a new and effi-

cient system for Image Retrieval (IR) and Pattern Spotting (PS) in historical documents.

The method aims to address the limitations of existing approaches and offer improved

performance in terms of accuracy and efficiency.



Chapter 4

Proposed Method

The proposed method represents a significant advancement in the field of PS and

IR in historical documents, effectively addressing various limitations observed in previous

approaches. One of the primary areas for improvement of prior methods is their high

computational complexity, resulting in lengthy search times for a query. Additionally,

these methods often require substantial storage space to store feature maps, further im-

peding their efficiency. Moreover, achieving scalability with previous methods proves to

be a challenging task.

To overcome these limitations, the proposed method introduces several key en-

hancements. Firstly, it incorporates the selective search algorithm, as illustrated in Fig-

ure 4.1, to detect object candidates within the document images effectively. This algo-

rithm enables a more focused and precise analysis, enhancing the accuracy of subsequent

steps. Furthermore, deep learning models are employed for feature extraction, leverag-

ing their ability to capture intricate patterns and representations in the data. These

models can produce either real-valued or binary code representations, depending on the

application’s specific requirements.

In the final stage of the proposed method, candidate images are ranked based on

their feature similarity with the given input query. This similarity calculation enables

the system to identify and present the most relevant and closely related images to the

user. The method significantly reduces search times and enhances the overall retrieval

performance by employing efficient feature comparison techniques.

The proposed method offers a more streamlined and efficient approach to PS and

IR in historical documents. Integrating selective search, deep learning models, and feature

ranking addresses previous shortcomings and provides an effective solution for retrieving

and spotting patterns in historical document collections.

29



30

Figure 4.1: Overview of the proposed method with selective search and siamese networks.

4.1 Object Detection with Selective Search

The method utilizes the Selective Search (SS) algorithm (UIJLINGS et al., 2013)

for object recognition in the offline phase. However, when applied to historical docu-

ment images, this approach encounters specific difficulties, resulting in the detection of

numerous invalid regions, such as antiquity stains, ink smudges, and page edges, which

do not represent objects of interest. To address this issue, a modified version of the

SS algorithm was employed, considering only one scale variation using the Felzenszwalb

and Huttenlocher algorithm (FELZENSZWALB; HUTTENLOCHER, 2004) and utilizing

the CTSF (Color, Texture, Size, and Fill) combination for measuring region similarity.

While this modification significantly reduces the number of candidate regions compared

to the approach in (WIGGERS et al., 2019), it still generates a considerable number of

invalid regions. Consequently, a post-processing algorithm was developed to filter out

these invalid regions.

The purpose of the post-processing algorithm is to exclude invalid regions, and

regions that are either too small or too large along the x and y axes. To filter regions based

on texture, an edge detection filter was applied to highlight the edges within the image.

Based on Gaussian derivatives, this filter calculates gradient intensities and reduces noise

effects. The potential edges are then reduced to 1-pixel curves by removing non-maximum

pixels from the gradient magnitude. Subsequently, a hysteresis thresholding technique is

applied to retain or discard edge pixels based on the magnitude of the gradient. The

result is a binary image with a value of 1 representing the object edges.
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Algorithm 1: Invalid candidate region filter
Input : A image Img of dimension h× w of the candidate region and a threshold α
Output : Is the candidate region valid

[1]binaryImage ← GetBinaryImage(Img[h,w]);

[2]if Mean(binaryImage) < α then
[3] return false; // candidate region is invalid

[4]/* generate eight sections from binary image */
[5]sectors ← GetSectors(binaryImage, 8);
[6]sectorsInvalid ← 0;

[7]for sector in sectors do
[8] if Mean(sector) < α then
[9] sectorsInvalid ← sectorsInvalid + 1;

[10] if sectorsInvalid > 4 then
[11] return false; // candidate region is invalid

[12]return true; // candidate region is valid

The binary images undergo specific manipulations. First, the mean pixel value of

the image is computed. Next, a minimum average threshold, denoted as α, was established

empirically. If the proportion of edge pixels to the total number of pixels falls below α, the

image is immediately excluded. However, some invalid regions may go undetected using

only the mean threshold. To address this, the image is segmented into eight sectors, and

the average is computed for each sector. If more than 50% of the sectors have an average

value lower than α, the image is excluded. The pseudo-code for the invalid candidate

region filter is shown in Algorithm 1. This filter reduces the number of candidate regions

the SS algorithm returns by up to 1/5, without requiring any training on the context

images. The training was avoided to ensure the generalization of the proposed method

when applied to other image databases. Figure 4.2 provides examples of invalid regions

that have been successfully filtered out.

Figure 4.2: Examples of regions filtered out by the invalid candidate region algorithm.
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Finally, features are extracted from the remaining valid candidate regions and

stored for use in the online phase. In the following section, two CNN architectures are

evaluated as base feature extractors, and their performance is discussed in detail.

4.2 Feature Extraction using Deep Learning

The proposed method utilizes a Siamese neural network (SNN) to compute the

similarity between the query and image candidates. As an initial approach, two convolu-

tional neural networks (CNN) architectures were evaluated as alternatives for composing

the SNN: VGG19 (SIMONYAN; ZISSERMAN, 2014) and ResNet50V2 (HE et al., 2016b).

These architectures were chosen for their well-established feature extraction capabilities

and their convenient availability within the deep learning framework used for the experi-

ments.

VGG19 is a CNN architecture composed of 19 layers that have been specifically

designed for large-scale image classification tasks. It is structured with five convolutional

blocks, each followed by a max-pooling layer. The experiments conducted in this study

revealed the potential of utilizing VGG19 as a feature extractor. By extracting the outputs

from each block and concatenating them to create a feature map, it was observed that

specific color and shape characteristics were effectively emphasized in the final outcome.

Additionally, the exploration of combining pairs of blocks was carried out to optimize the

feature extraction process, as elaborated in Chapter 5.

ResNet50V2 belongs to the family of residual deep networks, which are known for

their remarkable depth and high precision (HE et al., 2016a). The philosophy of VGG

networks inspires this architecture (SIMONYAN; ZISSERMAN, 2014) and employs 3×3

filters in its convolutional layers. The design principles of ResNet50V2 ensure that the

number of filters remains consistent for the same output feature map size and is doubled

if the feature map size is halved. ResNet50V2 comprises 50 convolutional layers, along

with max-pooling and average-pooling layers.

To leverage transfer learning, both VGG19 and ResNet50V2 were pre-trained on

the supervised ImageNet dataset (RUSSAKOVSKY et al., 2015), which consists of 1.28

million training samples and 50 thousand validation samples distributed across 1,000

classes, encompassing various contexts and objects. Multiple SNN models were con-

structed to comprehensively compare the two architectures and explore variations within

each architecture. In the subsequent sections, the performance and effectiveness of these

CNN architectures and the variations introduced will be thoroughly examined and ana-

lyzed. This evaluation will provide insights into the suitability of these architectures.
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To train the Siamese neural networks (SNNs), pairs of images were generated

from the ImageNet dataset. The images were resized to a dimension of 224×224 pixels

using bilinear interpolation, as depicted in Figure 4.3. In total, 250,000 image pairs

were generated, consisting of 150,000 negative pairs and 100,000 positive pairs. This

ratio of 1.5× more negative pairs than positive pairs follows the approach proposed by

(MELEKHOV; KANNALA; RAHTU, 2016).

Figure 4.3: Example of data preparation for the training set created using the Imagenet
dataset.

Each pair of images was used as input for the SNNs during the experiment. The

resulting feature maps were then utilized to calculate the Euclidean distance, measuring

the similarity between the images. A dense layer with a sigmoid activation function was

employed to ensure a normalized distance measurement, as illustrated in Figure 4.4. This

step enhances the interpretability and comparability of the similarity scores.

The contrastive loss function, as proposed in (HADSELL; CHOPRA; LECUN,

2006), was chosen as the loss function for training the SNNs. This particular loss func-

tion was selected because it facilitates the learning process by encouraging the SNNs to

minimize the distance between positive pairs and maximize the distance between negative

pairs. The optimization of the SNNs using contrastive loss aims to improve the network’s

capability to discern between relevant and irrelevant image pairs, thereby enhancing its

discriminative power.
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Figure 4.4: Structure example of a Siamese Neural Network.

Two variants of the ResNet50V2 network model were constructed for feature ex-

traction. After applying the flattening operation to the convolution filters, the first variant

utilizes the last convolutional layer, resulting in 100,352 features. This variant is referred

to as ResNet Conv. The second variant utilizes the global average pooling layer, which

yields 2,048 features. This variant is referred to as ResNet GAPool. By employing differ-

ent layers for feature extraction, the capabilities of the ResNet50V2 architecture can be

explored, and the impact of feature dimensionality on the performance of the proposed

PS and IR system can be assessed.

Four variants of the VGG19 network architecture were developed to facilitate fea-

ture extraction. As previously mentioned, the VGG19 architecture’s block outputs exhibit

high sensitivity to color and texture variations, making them well-suited for feature rep-

resentation. To determine which blocks yield superior feature extraction performance,

models were created by concatenating all blocks as well as pairs of these blocks. The first

variant, named VGG19 Blocks, incorporates all blocks and produces 1,472 features. The

second variant, VGG19 Block4-5, combines blocks 4 and 5 to generate 1,024 features. The

third variant, VGG19 Block2-3, merges blocks 2 and 3, resulting in 384 features. Lastly,

the fourth variant, VGG19 Block2-5, combines blocks 2 and 5, producing 640 features.

These variants allow for the evaluation of different feature extraction configurations, en-

abling the identification of the most effective combination of blocks for system.
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Once the models were created, they were utilized to build the Siamese neural

networks (SNNs) and trained using pairs of positive and negative images. Following the

training process, the six models were employed to extract features from all candidate

images, and the resulting feature values were stored in separate files. Up to this point,

the features were represented using 32-bit floating-point values, which incurred significant

storage costs.

To address this storage issue, deep hashing techniques were employed. The pri-

mary objective of deep hashing is to transform the feature maps, initially represented

by floating-point values, into a more compact feature map using a binary code represen-

tation. By employing deep hashing, the storage requirements for the feature maps are

significantly reduced, thereby alleviating the storage burden.

4.3 Feature Extraction using Deep Hashing

Deep hashing is a technique that enhances computation and storage efficiency

in information retrieval systems. Its goal is to convert high-dimensional original features

into compact hash codes, ensuring similar objects have similar hash codes while dissimilar

objects have diverse hash codes. This involves mapping the original feature space to a

Hamming space, resulting in binary hash codes composed of 0s and 1s, which are highly

efficient for computation and storage in the binary form (LUO et al., 2021).

In this solution, the deep learning models that were previously developed were

enhanced to incorporate deep hashing as an additional step. To enable the conversion of

floating-point feature values into binary values, a new layer was introduced at the end of

each network. This layer played a crucial role in discretization, mapping each element in

the continuous interval to a binary value. During the construction of this layer, a margin

value of 1 was considered, ensuring an effective discretization procedure.

By incorporating the discretization layer into the Siamese neural networks (SNNs)

extractors, the models were re-trained using pairs of negative and positive images fol-

lowing the same process previously explained. The layer weights of the models served

as initial weights, allowing for a seamless transition. Additionally, all layers of the mod-

els underwent fine-tuning to optimize their performance with the updated output. This

comprehensive re-training ensured that the models were equipped with the knowledge to

generate binary hash codes from the input feature vectors effectively.

However, instead of using traditional similarity calculations like Euclidean distance,

the Hamming distance was employed as the similarity measure for the hash codes. This

enables efficient comparison and evaluation of similarity between binary hash codes.
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After the training phase, the six models with deep hashing capabilities were used to

extract features from the candidate images, marking the completion of the offline phase.

These hash-based features provide a compact representation of the images, facilitating

efficient storage and computation during the subsequent online phase of the approach.

4.4 Similarity Calculations

The system is ready to transition into the online phase after completing the offline

phase. This phase involves extracting features from the query and comparing them with

the entire list of candidates generated during the offline phase. For features represented

by floating-point values, the comparison is performed using the Euclidean distance. On

the other hand, binary code features are compared using the Hamming distance, which

is calculated as the sum of the absolute differences between each corresponding feature.

Additionally, the XOR operation can be applied when dealing with binary or single-bit

values. In this operation, equal values yield 1, while different values yield 0. The processor

can perform the XOR operation more efficiently, as it is a native bitwise operation. After

comparing all elements, the results are summed, as indicated in Equation (4.1).

d =
n∑

i=1

(qi XOR pi) (4.1)

After the calculation, the results for each query are sorted based on both the Eu-

clidean and Hamming distances. Subsequently, lists of the top n candidates are generated

to evaluate the models further.

It has been observed by En et al. (EN et al., 2016b) and Wiggers et al. (WIG-

GERS et al., 2019) that multiple candidate images often only partially cover the query

or overlap with each other, which can hinder system performance. To address this issue,

a post-processing step is proposed, wherein a union of the selected candidate images is

performed to identify rectangular regions that can improve the effectiveness of the Pattern

Spotting task. To implement this, the first β candidates are selected, and the union step

is applied, considering an Intersection over Union (IoU) threshold of γ. If two images

have an IoU measurement greater than γ, the image with the smaller distance is retained,

while the other image is discarded. After the union process, the result is returned to the

evaluation system for further analysis.
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4.5 Final Considerations

In this chapter, the methods proposed to improve the results obtained in the study

by (WIGGERS et al., 2019) have been outlined. Deep hashing techniques were developed

to reduce processing time and storage space. The subsequent chapter (Chapter 5) will

present the experimental results derived from the application of these methods. These

results will offer valuable insights into the effectiveness and performance enhancements

achieved through the utilization of deep hashing within the context of this study.



Chapter 5

Experimental Results

The Experiments section is structured as follows: Section 5.1 provides an overview

of the experimental protocol adopted for the work. Section 5.2 presents the results ob-

tained and the improvements achieved through the utilization of Selective Search. Subse-

quently, Section 5.3 discusses the results obtained for the IR task, while Section 5.4 delves

into the results of the PS task. Finally, the last section presents the findings related to

the processing time and storage costs of the proposed method.

5.1 Experimental Protocol

This section outlines the experimental protocol followed for training the SNN mod-

els. The training dataset comprised 250,000 pairs of images derived from the ImageNet

database. A holdout strategy was employed to ensure a robust evaluation, a holdout

strategy was used, allocating 70% of the data for training and the remaining 30% for

validation.

The training set comprised 105,000 negative pairs and 70,000 positive pairs, while

the validation set consisted of 45,000 negative pairs and 30,000 positive pairs. This di-

vision ensured a diverse representation of negative and positive pairs in the training and

validation sets, allowing for effective model training and performance evaluation.

All models were trained using the same holdout strategy, with a total of 25 epochs.

The selection of this epoch count was determined through iterative experimentation, con-

sidering the need to balance model convergence and computational efficiency. The ob-

jective was to train the models consistently and for an adequate number of epochs to

capture optimal weights and ensure robust performance across all evaluated models in

the subsequent experiments.
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5.1.1 DocExplore

The experiments utilized the DocExplore database (EN et al., 2016a), a special-

ized resource for historical document analysis. The database consists of 1,500 images of

historical documents from the 10th to the 16th century, as depicted in Figure 5.1. The Mu-

nicipal Library of Rouen, France, provided the original documents, which were subjected

to high-resolution scanning at 600 dpi. The resulting images had varying dimensions

between 3000 and 4000 pixels.

The images were compressed to optimize computational resources and storage re-

quirements, limiting the maximum size to 1024 pixels in each dimension and reducing the

resolution to 72 dpi. This compression approach maintained the images’ suitability for

analysis while effectively mitigating computational burdens and storage demands.

The DocExplore database includes 1,447 unique queries, encompassing various

document sizes. The query images exhibit diverse dimensions, ranging from 20×11 pixels

to 1307×319 pixels, effectively representing the various characteristics encountered in

historical documents. These queries constitute an extensive and comprehensive set of test

cases, enabling evaluating of the proposed methods’ performance.

Figure 5.1: Samples of historical document pages available in DocExplore.
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5.2 Selective Search

The application of the selective search algorithm in the DocExplore database in-

volved utilizing diversification strategies that combined color, texture, size, and fill ele-

ments. This approach resulted in the generation of 976,486 candidate regions of objects.

Through initial experimentation, a value of 0.06 was established for the α parameter of

the invalid region filter function, removing invalid regions and subsequently reducing the

number of candidate regions to 786,718. This reduction amounted to a decrease of 19.4%.

In contrast, the algorithm employed by Wiggers et al. (WIGGERS et al., 2019)

produced a significantly higher number of candidate regions, with a total of 36,159,870,

this is approximately 46 times larger than the number obtained in this work. It is worth

noting that such a high number of candidate regions not only imposes more significant

storage costs but also increases processing time. This is due to the need to compare the

query against a substantial number of candidates. This approach effectively mitigates

the challenges associated with storage and processing resources by achieving a notable

reduction in the number of candidate regions.

5.3 Image Retrieval Task

The experimental results for the image retrieval (IR) task, utilizing the ResNet50V2

and VGG19 architectures applied to the set of candidate images returned by selective

search (SS), are presented in Table 5.1. In addition to ResNet50V2 and VGG19, the

performance of the AlexNet network, as used by Wiggers et al. (WIGGERS et al., 2019),

was also evaluated. The AlexNet architecture underwent training following the same steps

described in Wiggers et al. (WIGGERS et al., 2019) and was applied to the same set

of candidate images as ResNet50V2 and VGG19. For the IR task, the evaluation was

conducted on the top 100, 300, 500, 700, and 1000 best results.

Among the tested architectures, VGG19 Block4-5 achieved the best result in all

the rankings, with a mean average precision (mAP) of 53.21% in top 1000. This perfor-

mance surpassed that of AlexNet by 10.4 percentage points and exceeded the result of

Wiggers et al. (WIGGERS et al., 2019) by 14.6 percentage points. Notably, Wiggers et

al. (WIGGERS et al., 2019) utilized selective search with a significantly more significant

number of candidate images, totaling 36,159,870. The results indicate that employing

a filtered selective search approach, which returns a reduced number of candidates, can

positively impact the image retrieval outcome. This finding underscores these proposed

methods’ effectiveness in enhancing the IR task’s performance.
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Table 5.1: Image Retrieval results

mAP for Image Retrieval

Method Top n
100 300 500 700 1000

VGG19 Block4-5 0.4313 0.5058 0.5247 0.5307 0.5321
VGG19 Block2-5 0.4227 0.4939 0.5153 0.5217 0.5233
ResNet GAPool 0.4058 0.4617 0.4797 0.4880 0.4928
ResNet Conv 0.3956 0.4395 0.4567 0.4659 0.4723
VGG19 Block2-3 0.3303 0.4060 0.4276 0.4346 0.4355
VGG19 Blocks 0.3293 0.3934 0.4193 0.4279 0.4291
AlexNet used in (WIGGERS et al., 2019) 0.3168 0.3996 0.4220 0.4271 0.4282

To evaluate the performance of the models incorporating deep hashing, the two

top-performing networks from each of the ResNet50V2 and VGG19 architectures were

selected. The experimental protocol remained consistent, with the only modification

being the adoption of the Hamming distance as the similarity calculation. Table 5.2

presents the results obtained by this deep hashing (H) networks.

Table 5.2: Image Retrieval results with Hashing

mAP for Image Retrieval

Method Top n
100 300 500 700 1000

VGG19 Block4-5 H 0.3952 0.4564 0.4744 0.4822 0.4862
VGG19 Block2-5 H 0.3302 0.3777 0.3939 0.4026 0.4090
ResNet GAPool H 0.2945 0.3437 0.3632 0.3727 0.3784
ResNet Conv H 0.0754 0.0854 0.1012 0.1169 0.1257

The results highlight the impact of deep hashing on the image retrieval task. Com-

paring the performance of the deep hashing models to the models using floating-point

features, a minor reduction in mean average precision (mAP) was observed. However,

this reduction is outweighed by the benefits of deep hashing in terms of efficiency and

scalability, making it a highly valuable technique for image retrieval.

The results in Table 5.2 demonstrate the performance achieved by the networks

utilizing deep hashing. When comparing the experimental results with state-of-the-art

approaches, it becomes apparent that the method proposed by En et al. (EN et al.,

2016b) outperforms both the VGG19 Block4-5 and VGG19 Block4-5 Hashing methods

by 4.8 and 9.4 percentage points, respectively. An important observation is that the
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methods proposed in this work offer the advantage of not depending on any information

from the DocExplore database to refine their results. This characteristic ensures that the

models presented are independent and can be applied to diverse datasets.

A comprehensive overview of the main results achieved by state-of-the-art ap-

proaches and the best results obtained in this work can be seen in Table 5.3. This

comparison clearly demonstrates the competitiveness and effectiveness of the proposed

models in image retrieval. Despite being outperformed by the approach proposed by En

et al. (EN et al., 2016b), the methods in this work still exhibit good performance, thereby

highlighting their potential for practical applications in various domains.

Table 5.3: Comparison of the methods with the state-of-the-art of IR.

Methods IR Top 1000
En et al. (EN et al., 2016b) 0.580
VGG19 Block4-5 0.532
VGG19 Block4-5 H 0.486
Wiggers et al. (WIGGERS et al., 2019) PP 0.386
Ubeda et al. (ÚBEDA et al., 2019) PP 0.386
Ubeda et al. (ÚBEDA et al., 2019) ES 0.286

5.4 Pattern Spotting Task

In the pattern spotting (PS) task, the mean average precision (mAP) was evalu-

ated considering an intersection over union (IoU) threshold of ≥ 0.5. The evaluation used

the top 100, 300, 500, 700, and 1000 best similarity results. This allowed for a compre-

hensive assessment of the performance of the PS methods across varying levels of result

granularity. The detailed results of the pattern spotting task applied in all models are

presented in Table 5.4.

Similar to the image retrieval task, the evaluation of the models using deep hashing

in the pattern spotting (PS) task involved selecting the top-performing networks from the

ResNet50V2 and VGG19 architectures. Table 5.5 presents the results obtained when ap-

plying deep hashing (H) to these networks. Contrary to initial expectations, the VGG19

Block4-5 network demonstrated superior performance in the binary code representation

compared to the floating-point values. This unexpected outcome highlights the effective-

ness of the deep hashing technique in enhancing the performance of the VGG19 Block4-5

network specifically for the PS task.
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Table 5.4: Pattern Spotting results

mAP for Pattern Spotting

Method Top n
100 300 500 700 1000

ResNet Conv 0.1447 0.1705 0.1738 0.1751 0.1761
ResNet GAPool 0.1225 0.1478 0.1524 0.1542 0.1557
VGG19 Block2-5 0.1118 0.1339 0.1386 0.1407 0.1425
VGG19 Block4-5 0.0997 0.1196 0.1237 0.1254 0.1268
VGG19 Blocks 0.0724 0.0848 0.0876 0.0888 0.0898
VGG19 Block2-3 0.0643 0.0761 0.0795 0.0811 0.0825
AlexNet used in (WIGGERS et al., 2019) 0.0610 0.0674 0.0689 0.0697 0.0703

Table 5.5: Pattern Spotting results with Hashing

mAP for Pattern Spotting

Method Top n
100 300 500 700 1000

VGG19 Block4-5 H 0.1094 0.1341 0.1388 0.1409 0.1426
VGG19 Block2-5 H 0.0935 0.1129 0.1163 0.1176 0.1186
ResNet GAPool H 0.0911 0.1040 0.1061 0.1070 0.1077
ResNet Conv H 0.0303 0.0311 0.0313 0.0314 0.0315
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Post-processing was applied using specific parameter values to refine the results

obtained from the PS task. The parameter β was set to 3000, allowing the selection of the

top 3000 candidates based on their similarity scores. For the IoU parameter γ, a value

of 0.85 was chosen, ensuring that regions with an IoU greater than 0.85 were merged

together.

After performing the union operation, the resulting regions were further evaluated

using the mAP metric. The top 100, 300, 500, 700, and 1000 regions with the highest

mAP scores were selected for further analysis. Notably, an improvement in mAP was

observed across all these result sets after applying the post-processing step (PP). This

indicates that the post-processing procedure effectively enhances the accuracy and quality

of the PS task results.

Table 5.6: Pattern Spotting results with PP

mAP for Pattern Spotting

Method Top n
100 300 500 700 1000

ResNet Conv PP 0.1716 0.1946 0.1974 0.1986 0.1996
ResNet GAPool PP 0.1432 0.1674 0.1712 0.1729 0.1743
VGG19 Block2-5 PP 0.1331 0.1535 0.1577 0.1598 0.1615
VGG19 Block4-5 H PP 0.1302 0.1531 0.1572 0.1593 0.1610
VGG19 Block4-5 PP 0.1181 0.1364 0.1401 0.1417 0.1429
VGG19 Block2-5 H PP 0.1119 0.1294 0.1322 0.1335 0.1345
ResNet GAPool H PP 0.1059 0.1173 0.1192 0.1200 0.1207
VGG19 Blocks PP 0.0861 0.0975 0.1000 0.1011 0.1021
VGG19 Block2-3 PP 0.0755 0.0867 0.0899 0.0915 0.0927
AlexNet used in (WIGGERS et al., 2019) PP 0.0691 0.0753 0.0768 0.0775 0.0781
ResNet Conv H PP 0.0332 0.0340 0.0342 0.0344 0.0345

When comparing the results with state-of-the-art methods, it could be observed

that the ResNet Conv PP method outperforms the approach proposed by Wiggers et

al. (WIGGERS et al., 2019) PP by 2.56 percentage points. This improvement highlights

the effectiveness of the proposed method in the context of the PS task.

Table 5.7 provides a comprehensive overview of the main results achieved by state-

of-the-art methods and the results obtained by the models presented in this paper. The

comparison allows us to assess the competitiveness and performance of the proposed

models in pattern spotting. While the method using deep hashing may not outperform

all state-of-the-art approaches, it still demonstrate good performance and hold promise

for practical applications in various domains.
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Table 5.7: Comparison of the methods with the state-of-the-art PS

Method PS Top 1000
ResNet Conv PP 0.1996
Wiggers et al. (WIGGERS et al., 2019) PP 0.1740
Ubeda et al. (ÚBEDA et al., 2019) PP 0.1730
VGG19 Block4-5 H PP 0.1610
En et al. (EN et al., 2016b) 0.1570
Ubeda et al. (ÚBEDA et al., 2019) ES 0.1390

Figure 5.2 displays the qualitative results obtained from the search process using

the ResNet Conv PP feature map, which has 100,352 dimensions for five different queries.

The results are visually promising, as most of the top five retrieved images closely re-

semble those used as search queries. This indicates that the retrieval system successfully

captures and retrieves similar images, highlighting the approach’s effectiveness in this

work. Figure 5.3 shows the qualitative results of VGG19 Block4-5 Hashing for the same

five queries. It is important to note that this network extracts a 1,024-dimensional binary

feature map.

Figure 5.2: Qualitative results of the search of some queries in the DocExplore database.
The figure shows the image used in the query and its first five results returned by the
ResNet Conv method.
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Figure 5.3: Qualitative results of the search of some queries in the DocExplore database.
The figure shows the image used in the query and its first five results returned by the
VGG19 Block4-5 Hashing method.

5.5 Search Time and Storage Cost

The Table 5.8 presents the average query search time and the corresponding storage

requirements for the feature maps of all candidates during the offline phase. The average

time is calculated based on 50 different queries, providing a comprehensive overview of the

system’s efficiency. The storage space refers specifically to the size of the feature maps,

excluding any additional structures implemented for indexing and storage optimization.

These metrics offer insights into the computational demands and storage considerations

associated with the approach in this work.

5.6 Final Considerations

The experimental results indicate that the models based on the VGG19 archi-

tecture outperformed the ResNet50V2 models in the Image Retrieval (IR) task, which

involves finding the best occurrence of a query on a page. On the other hand, the

ResNet50V2 models achieved better performance in the Pattern Spotting (PS) task, where

the objective is to identify and locate multiple similar images on a page.
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Table 5.8: Results for processing time and storage

Method Features Time (s) Storage (GB)
FP Binary FP Binary

ResNet Conv 100 352 44.59 20.75 294.11 9.19
ResNet GAPool 2 048 4.54 3.07 6.00 0.19
VGG19 Blocks 1 472 4.19 — 4.31 —
VGG19 Block4-5 1 024 4.10 2.94 3.00 0.09
VGG19 Block2-3 384 3.91 — 1.13 —
VGG19 Block2-5 640 3.94 2.85 1.88 0.06
AlexNet used in (WIGGERS et al., 2019) 4 096 12.81 — 12.00 —
Wiggers et al. (WIGGERS et al., 2019) 4 096 588.65 — 551.76 —
FP: Floating-point.

One of the significant contributions of this work lies in the substantial reduction of

computational effort required to solve the problem. While the previous method proposed

by Wiggers et al. (WIGGERS et al., 2019) involved more than 36 million candidate re-

gions, the proposed method successfully reduced this number to approximately 780 thou-

sand candidate regions, confirming Hypothesis #4. This optimization not only improved

the overall results but also significantly reduced the processing time, as demonstrated in

Tables 5.7, 5.3, and 5.8. For instance, while the method proposed by Wiggers et al.

(WIGGERS et al., 2019) required over 580 seconds to search for a query, the proposed

method accomplished the same task in a maximum of 45 seconds, with superior results

and confirming Hypothesis #1.

Another advantage of the approach in this work is the application of deep hashing

techniques. The performance was relatively maintained despite transforming the feature

representations into binary values. In contrast, considering that the query search in

the method proposed by Wiggers et al. (WIGGERS et al., 2019) could take 200 times

longer than using hashing methods, the trade-off between search time and result quality

is favorable. Additionally, the storage cost was significantly reduced as well. While the

previous method would require over 550 GB of storage, the approach using VGG19 with

Hashing requires less than 0.09 GB, confirming Hypothesis #2.

The transformation of feature representations to the binary domain can sometimes

yield improved results, as observed in the VGG19 Block4-5 model, where an improvement

of nearly two percentage points was achieved, which could confirm Hypothesis #3. Fur-

thermore, converting to binary codes resulted in approximately a 30% reduction in query

search time for methods utilizing VGG19. In terms of storage, the transition from 32-bit

floating-point values to 1-bit binary codes reduced the overall storage cost by a factor of

32.
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Conclusions

This research addressed the challenges of the Image Retrieval (IR) and Pattern

Spotting (PS) tasks for a collection of historical document images. Two distinct ap-

proaches were proposed to improve the performance and efficiency of these tasks.

The first approach focused on enhancing an existing method by reducing the num-

ber of candidate images returned by the selective search algorithm. This optimization

improved multiple aspects, including mAP, processing time, and storage cost. The reduc-

tion in the number of candidates yielded more accurate and efficient results. However, it

was observed that while the IR task benefited significantly from this improvement, the PS

task did not necessarily exhibit the same performance gains across different convolutional

neural network (CNN) architectures.

The second approach aimed to reduce storage costs and processing time by lever-

aging deep hashing techniques. The storage requirements were drastically reduced by

transforming feature representations into binary codes, and the search process became

more efficient. Interestingly, this investigation revealed that in some instances, the con-

version to the binary domain could even enhance the performance compared to using

real-valued features. Even when performance gains were not achieved, the trade-off be-

tween reduced computational resources and minor performance loss made the approach

viable.

Future research efforts will focus on fine-tuning the CNNs used as feature ex-

tractors for historical document images. Currently, these CNNs are pretrained on the

ImageNet dataset, which might not capture historical documents’ unique characteristics

and nuances. By fine-tuning the CNNs on images of a similar context, it is expected that

the mAP could be further improved, leading to more accurate and reliable results in the

IR and PS tasks.

48
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