
Vinícius Augusto Pereira Queiroz

Inter-Opus Musical Motif Discovery in Symbolic
Music

Curitiba - PR, Brazil

2023

Vinícius Augusto Pereira Queiroz

Inter-Opus Musical Motif Discovery in Symbolic Music

Master’s Thesis submitted to the Graduate
Program in Computer Science at Pontifícia
Universidade Católica do Paraná in partial
fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Pontifícia Universidade Católica do Paraná - PUCPR

Graduate Program in Computer Science

Supervisor: Carlos Nascimento Silla Junior

Curitiba - PR, Brazil
2023

Dados da Catalogação na Publicação
Pontifícia Universidade Católica do Paraná

Sistema Integrado de Bibliotecas – SIBI/PUCPR
Biblioteca Central

Sônia Maria Magalhães da Silva – CRB 9/1191

 Queiroz, Vinícius Augusto Pereira
Q3i Inter-opus musical motif discovery in symbolic music / Vinícius Augusto Pereira
2023 Queiroz ; supervisor: Carlos Nascimento Silla Junior. – 2023
 89 f. ; il. : 30 cm

 Dissertação (mestrado) – Pontifícia Universidade Católica do Paraná, Curitiba,
 2023
 Bibliografia: f. 84-89

 1. Música. 2. Motif (Arquivo de computador). 3. Emoções. 4. Mineração de
 dados (Computação). 5. Informática. I. Silla Junior, Carlos Nascimento. II.
 Nascimento. III. Pontifícia Universidade Católica do Paraná. Programa de Pós-
 Graduação em Informática. III. Título.

 CDD. 20. ed. – 004

Rua Imaculada Conceição,1155 Prado Velho CEP 80215-901 Curitiba Paraná Brasil
Fone: (41) 3271-1669 e-mail: secretaria@ppgia.pucpr.br

Pontifícia Universidade Católica do Paraná
Escola Politécnica
Programa de Pós-Graduação em Informática

Curitiba, 13 de julho de 2023.

58-2023

DECLARAÇÃO

Declaro para os devidos fins, que VINICIUS AUGUSTO PEREIRA

QUEIROZ defendeu a dissertação intitulada “INTER-OPUS MUSICAL MOTIF

DISCOVERY IN SYMBOLIC MUSIC”, no dia 31 do mês de março do ano de

2023, a qual foi aprovada.

Por ser verdade firmo a presente declaração.

Prof. Dr. Emerson Cabrera Paraiso

Coordenador do Programa de Pós-Graduação em Informática

Acknowledgments

Agradeço à minha família e aos meus amigos por todo o suporte durante essa
fase da minha vida. Sem vocês este trabalho não seria concluído! À minha mãe Maria
Helena, pelas palavras de carinho e conforto. À minha irmã Carla, por compartilhar minha
empolgação, escutar a todos os meus descontentamentos, passar segurança e me incentivar
a seguir em frente. À minha companheira Carol, por todo o amor, parceria, e pelo apoio
durante dias e noites, enquanto eu focava neste trabalho. À minha filha Aurora, por me
dar motivação. Ao meu irmão Felipe, por todos os ensinamentos - os quais sigo até hoje.
Ao meu pai Carlos, por me passar resiliência. Ao meu psicólogo Thuan, pelo excelente
acolhimento profissional. Aos meus amigos que me ouviram e me deram conselhos em
relação ao mestrado - em especial, Rodrigo, Chelles, Manu, Guy, Kviar, Stan, Lenin, Gian
e Henrique.

Agradeço também a todos aqueles que influenciaram na qualidade desse trabalho.
Ao meu orientador e amigo Carlos Silla, por compartilhar sua vasta experiência, pelas
oportunidades e por todas as conversas no meio da madrugada. Aos demais professores do
PPGIa pelo excelente acompanhamento e didática. Aos colegas, por compartilharem as
alegrias e as dores dessa jornada, mesmo que brevemente - em especial, André, Fábio e
Eric. Ao Gian, pelos conselhos técnicos e acadêmicos inestimáveis. À equipe do Champ-
Analytics, pela confiança. E à Pontifícia Universidade Católica do Paraná, pela excelente
infraestrutura.

Por fim, agradeço à CAPES e aos contribuintes, que permitiram que esse trabalho
fosse realizado com dedicação integral durante 2 anos.

“You don’t have to be the best in
whatever you choose to work with;

but you should choose to work with something that
will make you willing to give your best.”

Felipe Queiroz

Abstract
Musical motifs are short musical patterns found in one piece (intra-opus) or across multiple
pieces (inter-opus). Music can not only convey emotions, but also provoke emotional
responses in the listeners; and certain musical elements (such as the combination of mode
and tempo) convey different emotions. However, there is an open research question in
how music and emotions relate to one another: “Which elements from musical motifs
are responsible to conveying which emotions?”. To answer this question, we might use
computational methods to discover patterns in a music corpus labeled with the emotions
that each musical piece was meant to convey. Our objective is to design and implement a
system capable of finding motifs across multiple musical pieces, that outputs patterns that
are understandable by humans, in a manner that is easy to visualize. This system could
then be used in a dataset of musical pieces labeled with emotion tags. In this work we
present reasons to use Sequential Pattern Mining algorithms for the task. We also find
that the Maximally General Distinctive Pattern (MGDP) algorithm is currently one of
the state-of-the-art algorithms for inter-opus musical motif discovery, although a lack of
standardization in evaluation methods hinders the definition of state-of-the-art for the task.
We extended the MGDP algorithm with novel methods to enable the discovery of musical
patterns that have a variable number of events in-between the events of the pattern. We
also designed and developed a method to automatically generate the visualizations of the
patterns embedded into musical scores.

Keywords: Music, Motif, Emotions, Pattern, Discovery, Identification, Mining.

List of Figures

Figure 1 – Relationship between the different kinds of musical motifs 21
Figure 2 – Melody excerpts from three soundtracks of the Super Mario World game,

which share the same melodic motif. The melodic contour is depicted
in red. The diatonic intervals are presented below each note 22

Figure 3 – Example of an intra-opus rhythmic motif, from Beethoven’s Symphony
No. 5 . 23

Figure 4 – Summarized Entity-Relationship Diagram depicting basic Opera concepts 25
Figure 5 – Overview of the structure of the Demofoonte opera, by Pietro Metastasio.

Shapes represent the characters that are singing the corresponding Aria.
Lines represent the recitatives. The number to the right represents the
scene number in the act. Numbers to the left represent the position of
the opera in the dramatic text, by number of poetic lines 26

Figure 6 – MIDI Event List example . 27
Figure 7 – MIDI Piano Roll visualization example 28
Figure 8 – Different types of MIDI controllers . 29
Figure 9 – MusicXML “Hello World” file excerpt, with visual indicators of each

block’s purpose . 30
Figure 10 – Visualization of the MusicXML “Hello World” in MuseScore 31
Figure 11 – Example of generation of a Lexicographical Sequence Tree 35
Figure 12 – Viewpoint representation of a music piece excerpt. ⊥ represents an

undefined value. 45
Figure 13 – Depiction of the definition of distinctive patterns. 46
Figure 14 – Depiction of MGDPs in a Sequence Tree 47
Figure 15 – Overall MGDP algorithm as a simplified block diagram 47
Figure 16 – First step of the MGDP algorithm . 48
Figure 17 – Second step of the MGDP algorithm 48
Figure 18 – Third step of the MGDP algorithm . 49
Figure 19 – Fourth step of the MGDP algorithm 49
Figure 20 – Example of a Subsumption Graph of featuresets 50
Figure 21 – Subsumption Graph from Figure 20 after pruning the infrequent nodes 50
Figure 22 – Examples of possible results from converting the Subsumption Graph

of Figure 21 to a Subsumption Tree . 51
Figure 23 – Fifth step of the MGDP algorithm . 52

Figure 24 – Pattern 7̂-1̂-2̂-6̂-8̂, found by the MGDP_Bitmap() algorithm, manually
annotated in the two scores. Green notes indicate the first event of the
pattern, red notes indicate the last event of the pattern, and blue notes
indicate the rest of the occurrences of the events of the pattern. 57

Figure 25 – Pattern found by the MGDP_Bitmap_limitMaxJumpSize(maxJumpSize)
algorithm with maxJumpSize = 1, manually annotated in the two
scores’ excerpts. Depicts the pattern 2̂-3̂-5̂-6̂-8̂, Green notes indicate
the first event of the pattern, red notes indicate the last event of the
pattern, and blue notes indicate the rest of the occurrences of the events
of the pattern. 58

Figure 26 – Automatically annotated score output from the MGDP_InstanceMap()
algorithm, visualized in MuseScore 4. Green notes indicate the first
event of the pattern, red notes indicate the last event of the pattern,
and blue notes indicate the rest of the occurrences of the events of the
pattern. 63

Figure 27 – Output from the MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize)
algorithm, with maxJumpSize=1, visualized in MuseScore 3. Depicts
the automatically annotated score. Each box corresponds to one event.
Boxes are stacked up vertically from top down, corresponding to the
order in which their associated events appear. Green notes indicate the
first event of the pattern, red notes indicate the last event of the pattern,
and blue notes indicate the rest of the occurrences of the events of the
pattern. 64

Figure 28 – Introduction riff from Beethoven’s 5th Symphony written with two
different time signatures, but sounding exactly the same 70

Figure 29 – Complete block diagram representing the implemented MGDP algorithm.
Blocks are steps of the algorithm, and arrows indicate the input hyper-
parameters of the algorithm and the outputs from each step 71

Figure 30 – One of the patterns sent to be analyzed by the musicologist 74
Figure 31 – Pattern outputted by the MGDP_InstanceMap_limitMaxJumps()

algorithm, with maxJumpSize = 1, with only one viewpoint 76
Figure 32 – Pattern outputted by the MGDP_InstanceMap_limitMaxJumps()

algorithm, with maxJumpSize = 1, but with 3 viewpoints 77
Figure 33 – Box plot distributions of the execution time of Bitmaps and InstanceMaps

algorithms’ runs, when setting maxJumpSize (lower is better) 78
Figure 34 – Box plot distributions of memory consumption of Bitmaps and In-

stanceMaps algorithms’ runs, when setting maxJumpSize (lower is
better) . 79

Figure 35 – Box plot distributions of memory consumption of Bitmaps and In-
stanceMaps algorithms’ runs, when NOT setting maxJumpSize (lower
is better) . 80

Figure 36 – Box plot distributions of execution time of Bitmaps and InstanceMaps
algorithms’ runs, when NOT setting maxJumpSize (lower is better) . 80

List of Tables

Table 1 – Popular songs that contain the chord progression I-V-vi-IV, exemplifying
an inter-opus harmonic motif . 24

Table 2 – Sequence Database example . 33
Table 3 – Sequential patterns found in the SDB of Table 2, with minSup = 3 . . . 34
Table 4 – Another Sequence Database example . 36
Table 5 – Verticalized SDB example . 37
Table 6 – Result of i-extension operation through vertical bitmaps 37
Table 7 – Result of s-extension operation through vertical bitmaps 38
Table 8 – Examples of some possible viewpoints 45
Table 9 – MGDP discovery algorithm combination of strategies 55
Table 10 – MTC dataset’s genres, genres abbreviations, number of songs in each

genre, and average(±standard deviation) number of events per song,
grouped by genre . 67

Table 11 – Pairwise memory consumption comparison (in MB) between algorithms
using different data structures, when maxJumpSize is not set. Values in
the same row presents runs with the same hyper-parameter configuration
(apart from the Data Structure). Lower is better 81

List of Algorithms

1 The i-extension algorithm for InstanceMaps 60
2 The s-extension algorithm for InstanceMaps 62
3 The s-extension algorithm for InstanceMaps, limiting the maxJumpSize . . 65

Contents

1 INTRODUCTION . 14
1.1 Motivation . 14
1.2 Objectives . 16
1.3 Contributions . 17
1.4 Structure of the Document . 17

2 THEORETICAL FRAMEWORK . 19
2.1 Computational Musicology . 19
2.2 Musical Motifs . 21
2.3 Opera and Arias . 24
2.4 Symbolic Music Representation . 25
2.4.1 MIDI . 27
2.4.2 MusicXML . 28
2.4.3 MEI . 31
2.5 Sequential Pattern Mining . 32
2.5.1 SPAM . 34
2.5.1.1 Vertical Bitmaps . 36

3 TOOLS AND METHODS . 39
3.1 Computational Musicology Tools . 39
3.1.1 music21 . 39
3.2 Inter-Opus Musical Motif Discovery 39
3.2.1 Sequence Clustering VS Sequential Pattern Mining 39
3.2.2 Related Work . 41
3.2.3 Viewpoint Data Representation . 44
3.2.4 MGDP sequences . 46
3.2.5 MGDP Algorithm . 47
3.2.5.1 Read MusicXML and Apply Viewpoints . 48
3.2.5.2 Split SDB . 48
3.2.5.3 Verticalize SDB . 48
3.2.5.4 Create Subsumption Tree . 49
3.2.5.5 MGDP Discovery . 51

4 PROPOSED ALGORITHMS . 54
4.1 MGDP Algorithms Implementations 54
4.1.1 MGDP_Bitmap() . 55

4.1.2 MGDP_Bitmap_limitMaxJumpSize(maxJumpSize) 56
4.1.2.1 Bitmap s-extension with maxJumpSize - the Bitmatrix 58
4.1.3 MGDP_InstanceMap() . 59
4.1.3.1 The InstanceMap . 59
4.1.3.2 InstanceMap i-extension . 60
4.1.3.3 InstanceMap s-extension . 61
4.1.3.4 MGDP_InstanceMap() output . 62
4.1.4 MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize) 63

5 EXPERIMENTAL SETUP . 67
5.1 Dataset . 67
5.2 Implemented Viewpoints . 68
5.3 Experiments . 70
5.4 Hardware and Software . 71

6 RESULTS AND DISCUSSION . 73
6.1 RQ1 . 73
6.2 RQ2 . 75
6.2.1 Setting maxJumpSize . 76
6.2.2 Without setting maxJumpSize . 78

7 CONCLUSION . 82

REFERENCES . 84

14

1 Introduction

1.1 Motivation
Music has been historically present in various social contexts, such as in matrimonial

rituals, poetic declamations, funerals, banquets, and parties. It is used alongside medical
treatments, possibly improving the therapeutic efficiency, such as in treating Alzheimer’s
disease and other mental disorders (MOREIRA; JUSTI; MOREIRA, 2018). Given certain
conditions, music might be used to indirectly improve work productivity (HUANG; SHIH,
2011; LESIUK, 2005; SHIH; HUANG; CHIANG, 2012). Music might be used to foster 21st

century’s high-demand soft-skills, such as creativity (ENGELMAN et al., 2017). There
is a possibility that learning music in childhood might bring long-term positive impacts
in IQ scores and academic performance (SCHELLENBERG, 2006; SCHELLENBERG;
WEISS, 2013). But even with all these noble applications, it is arguable that the ultimate
purpose of music is to make life more enjoyable.

It has been shown by the Music Psychology field that music is able to not only
convey a musical emotion from the composer (simulating a language) (HUNTER; SCHEL-
LENBERG; SCHIMMACK, 2010), but also to evoke emotional responses in the listen-
ers (JUSLIN; VÄSTFJÄLL, 2008; LUNDQVIST et al., 2009). In fact, given certain
conditions, music is able to evoke even peak-emotional responses, such as tearing and
chills/goosebumps (MORI; IWANAGA, 2017). Music can also serve as a significant emo-
tional enhancer in narrative contexts (i.e., movies, video games, theater, opera, storytelling,
etc.) (BAUMGARTNER et al., 2006; LI; CHENG; TSAI, 2019; FU, 2015; BEZDEK;
GERRIG, 2008).

Some researchers try to find correlations between musical features and emotions.
Schellenberg, Krysciak and Campbell (2000) used music pieces that were labeled as sad,
happy, or scary to indicate that variations in pitch are more relevant to express emotions
than rhythm. Hunter, Schellenberg and Schimmack (2010) were able to show how the
combination of mode (Major/Ionian or minor/Aeolian) with tempo (slow or fast) conveys
and evokes different emotions (happiness or sadness). Ramos, Bueno and Bigand (2011)
used the seven Greek modes in their research (i.e., Ionian, Dorian, Phrygian, etc.), and one
of their findings was that the three major Greek modes might be related to both happiness
and serenity, depending on the tempo. Arjmand et al. (2017) found that changes in musical
motifs and instrumentation are the two primary factors associated to peak-emotional
responses, followed by high pitches, and high loudness.

Most of the researchers aiming to link music and emotions that we found try to

Chapter 1. Introduction 15

correlate music to the emotions perceived and felt from the listener’s perspective. However,
instead of looking from the listener’s perspective, we can also investigate how the music
writers use the musical features as tools to express, convey, and evoke emotions.

The personal report from soundtrack composer Douek (2013) mentions that he
believes most soundtrack composers do not know exactly how or why their compositions
are congruent with the emotions they wanted to convey - he claims they just follow their
intuitions. However, he gives some tips and tricks that composers can use for the purpose
of conveying specific emotions and feelings. Douek (2013) mentions, for example, that
changes in dynamics and tempo might convey the feeling of urgency and importance;
harmony/cadence and rhythm can be used to convey tension and release; a lack of resolution
might cause surprise or suspense; and musical motifs (i.e., any kind of repeating patterns in
music, be it melodic, harmonic, or rhythmic) might have their meaning changed according
to changes in mode or tempo.

As mentioned by Juslin and Västfjäll (2008), one of the psychological mechanisms
that induce emotions through music is the Emotional Conditioning (a.k.a. Evaluational
Conditioning) - i.e., the association of a music segment with a particular emotion through
repetition of associated contexts. In other words, the listener might associate a certain
musical element with a specific emotion because this musical element was heard paired with
that emotion multiple times. As an example, if a listener has watched 100 movies in which
some images that caused fear were associated with a back-and-forth minor second interval
in increasing tempo (much like the movie Jaws’ theme), the listener would associate the
back-and-forth minor second interval in increasing tempo with fear, even without seeing
the fearful images. Moreover, this Emotional Conditioning (EC) might be unconscious for
the listener.

Since music writers are, first and foremost, listeners, we hypothesize that when
they are creating music, they might be using their own EC patterns to analyze their
work’s emotional aspects, unconsciously perpetuating the EC from previous music writers
that serve as their references, causing a kind of chain reaction. Therefore, finding out
how exactly music writers map specific musical aspects into specific emotions could help
composers, songwriters, arrangers, and music producers to take informed and conscious
decisions while creating music, instead of blindly following anecdotal traditions, or relying
solely on inspiration.

One of the open research questions in the field of Music and Emotions is: “Which
elements from musical motifs are responsible to conveying which emotions?”. As an example,
one might wonder whether a melodic motif containing three ascending perfect fifths in
three successive strong beats is often used by composers to convey a feeling of boldness.
To answer this question, one might try to manually retrieve several pieces of music, label
them according to the emotion following some kind of guideline, and then analyze each

Chapter 1. Introduction 16

one of them, measure by measure, trying to find patterns that are repeated across multiple
songs, marking down and counting when they appear, while still considering the musical
variations they might have. This would be a very burdensome and repetitive task, would
take a very long time, would incur in a very high cognitive load for the human analyzers,
and would be prone to many errors due to human factors - especially when dealing with a
large corpus.

Fortunately, with the last century’s advance in technology, we might be able to
tackle the aforementioned research question through a computational approach. To do
so, we need a dataset consisting of digitized pieces of music and the corresponding labels
of the emotions meant to be conveyed in each piece of music. It could be, for example, a
dataset of opera Arias (see Section 2.3) labeled with the emotions that each Aria should
convey, according to the libretto - just like the one being done by Torrente and Llorens
(2022). Besides the data, we also need a computational method to find the most relevant
musical motifs for each emotion being analyzed. This computational method is what brings
special interest to this work.

One computational method that is used to find sequential patterns in symbolic
music is known in the literature as the Maximally General Distinctive Patterns (MGDP)
algorithm proposed by (CONKLIN, 2010a). The MGDP algorithm is based upon the
Sequential PAttern Mining (SPAM) algorithm (AYRES et al., 2002). One limitation of the
original MGDP algorithm is in the way that it explores the patterns in the music score. In
order to overcome this limitation in the MGDP algorithm it is necessary to change the
way it internally uses the SPAM algorithm.

1.2 Objectives
Our main goal is to develop a novel approach for the discovery of musical motifs

across pieces from a symbolic music corpus. In other words, we aim to develop a system
that, given a dataset of MusicXML files of music pieces that are somehow related (e.g.,
different pieces of the same genre), it can discover, search, and return a set of sequences
considered to be relevant musical patterns, repeated across two or more of these musical
pieces, possibly presenting some degree of musical variations between them.

Our specific objectives are to:

• Summarize essential theoretical concepts required to understand the Automatic
Musical Motif Discovery task;

• Search for existing methods of musical motif discovery available in the literature;

• Develop an end-to-end system capable of discovering musical motifs with musical
variations, shared by multiple pieces;

Chapter 1. Introduction 17

• Test the musical motif discovery system using a real music corpus.

Overall, we want to continue the work that has been done in the Computational
Musicology field. Ultimately, our objective is to aid humanity in reaching a better un-
derstanding of music using computational methods. This would enable music creators to
consciously explore musical features to their fullest potential, turning what they envision
into reality.

1.3 Contributions
This work has led to three main contributions:

• A Scientific Contribution. We have implemented four variations of the MGDP al-
gorithm - all aiming to enable the discovery of patterns with a dynamic number of
musical events in-between the patterns. Two of these variations use the same under-
lying data structure as the original MGDP algorithm - the Bitmap data structure.
In the other two variations we use a different data structure - the InstanceMap. For
each variation of the MGDP algorithm we implemented a different s-extension algo-
rithm. We performed a statistical comparison between these four modified MGDP
algorithms in terms of memory consumption and time complexity.

• A Technical Contribution, in the sense that we implemented variations of the MGDP
algorithm, considering that there were no public implementations of this algorithm
beforehand. We plan to release the source-code of our implementations soon. Also, the
code developed during this work was implemented with the utmost care for the best-
practices in Software Engineering (namely, following Clean Code, Design Patterns,
and Versioning), so that when it becomes publicly available, it is maintainable and
extendable.

• A Social Contribution, in the sense that this work develops new ways to automatically
generate visualizations of sequential musical patterns. This may aid musicologists to
utilize the information from these visualizations to derive new knowledge regarding
the correlation between sequential musical patterns and their topics of interest.

1.4 Structure of the Document
This master’s thesis is structured as follows:

• The current Chapter 1 informs the motivation for this project and its objective. We
presented the relationship between music and emotions according to the literature,

Chapter 1. Introduction 18

explaining why we intend to do this work, and stating how this work can help bridge
the gap of knowledge in music and emotions.

• Chapter 2 presents a theoretical review, covering foundational concepts that are
required to fully comprehend the remainder of this document. We explain what
the purpose of the Computational Musicology field is, and its difference from the
Music Information Retrieval (MIR) field. We also introduce some standard symbolic
music formats, an introduction to musical motifs, and the foundations of Sequential
Pattern Mining algorithms. In this chapter we explain the SPAM algorithm, which
is fundamental to understand our contributions.

• Chapter 3 presents some of the tools and methods that were useful during the
project development. We formally introduce the problem of Inter-Opus Musical
Motif Discovery, and we present a literature review on the few works that are related
specifically to the Inter-Opus Musical Motif Discovery task. In this chapter we bridge
the gap between the computational methods and the musicological aspects of this
work, by introducing the notion of Viewpoints. We describe in detail the original
MGDP algorithm, which we based our proposed methods upon. We also give more
details about the limitations of the MGDP algorithm.

• Chapter 4 introduces our proposed algorithms. We mention the opportunities of
improvement that the original MGDP presents, and we explain the four variations
of the MGDP algorithm that we implemented to address these opportunities of
improvement. In this chapter we also introduce the InstanceMap data structure that
we used in two of our novel MGDP variations.

• Chapter 5 presents the methodological process of the work. We give details on the
dataset that we used in this work, the research questions that we wanted to answer
with our experiments, and descriptions on the hardware and software environments
that we ran our experiments on. We define the viewpoints that we implemented for
the MGDP algorithm, and add some details about our specific implementations.

• Chapter 6 presents the results of the experiments and the answers to the proposed
research questions. We present a comparison of some of the patterns discovered with
different settings of the algorithms. We also show the results from statistical tests
comparing the computational performance of the implemented algorithms.

• Chapter 7 presents the conclusion of this thesis. We summarize what has been
discussed along the document, the limitations of this work, and some proposals of
future works.

19

2 Theoretical Framework

2.1 Computational Musicology
Volk, Wiering and Kranenburg (2011) define Musicology as the general study of

music in all of its facets, including five areas:

• Music Theory and Analysis - studies patterns in music (such as note pitches,
rhythm, tonality, harmony, form and structure, instrumentation), and their relation-
ships, seeks to define novel patterns that describe processes and general principles
in music composition, and uses these patterns to link with more abstract concepts
related to music, such as semiotics and aesthetics;

• Historical Musicology - studies the relation of music with the historical context
it is inserted in;

• Ethnomusicology - studies the relation of music with the cultural and social aspects
it is inserted in;

• Cognitive Musicology - studies the relation of music and its effects in the individual
human psyche;

• Musical Performance Research - studies the music performing activity, specially
the cases in which there are no exact definitions in the score.

Digital Humanities is the name of the research field that incorporates any humanities
subject that can be studied through the use of computational methods (BERRY, 2011),
such as history, philosophy, linguistics, sociology, law, music, theater, fine arts, and others.
The Digital Humanities discipline aims to extend these subjects’ traditional research
methods (which often rely solely on dialectics, or the results might be too subjective) into
more experimental and empirical studies. This is possible since the diffusion of computers
and computational methods enable the research to store and process a very large amount of
data in a consistent and thorough manner, often extracting complex information that would
take a lot of time if done manually. Although the computational methods do not substitute
completely the traditional dialectic methods (and, arguably, should not), they serve as a
complement to the research, either corroborating the results’ analysis, or contradicting
them - boosting the research’s reliability. Digital Humanities enables novel research to be
done with increasingly levels of complexity and scope, and enables traditional conjectures
and assumptions to be confirmed (or discarded) in a practical manner.

Chapter 2. Theoretical Framework 20

Computational Musicology is enclosed in the broader field of the Digital Humani-
ties (FRIELER, 2020), and may be defined as the scientific research area that aims to
study music through the use of computational approaches (VOLK; WIERING; KRA-
NENBURG, 2011). One may apply computational methods to any of the five areas of
Musicology (VOLK; WIERING; KRANENBURG, 2011). Many different computational
methods might be applied for different tasks within the Computational Musicology field.
Some of these tasks include Melodic Similarity, Melody Reduction, Melody Evolution,
Form and Structure Segmentation, Categorization (of genres, composers, rhythms, regions,
and others), Composition, Harmonization, among others (MOR; GARHWAL; KUMAR,
2020).

Music Information Retrieval (MIR), as the name suggests, might be defined as
the process of automatically extracting information directly from a piece of music. Frieler
(2020) considers that MIR is mainly applicable to audio signals, and that Computational
Musicology is only applicable to symbolic representations. However, Mor, Garhwal and
Kumar (2020) consider that MIR is a task encompassed within the Computational
Musicology field. The line between MIR and Computational Musicology seems to be
ill-defined.

Traditionally, MIR research has the ultimate goal of creating a music query system
that uses musical parameters (extracted directly from the piece of music) instead of relying
on manually annotated metadata (DOWNIE, 2003), but it does not require a thorough
understanding of the underlying patterns the query algorithm uses. As an example, one
might use a Deep Learning approach to retrieve all Pop songs from a database and have
100% accuracy, being perfect for its MIR purpose - but since the Deep Learning approach
is usually deemed as a black box system, it might not give any enlightenment to Musicology
whatsoever. On the other hand, Computational Musicology (as in Musicology) has the
goal of studying and understanding music and all of its different facets. With this in mind,
Volk, Wiering and Kranenburg (2011) conclude that Computational Musicology and MIR
are actually different fields that overlap, and should benefit from each other.

Frieler (2020) also defines the Digital Musicology research field, which comprises
the process of digitizing music, including the editorial process of encoding and storing
existing music from their available physical formats (e.g., Vinyl, Music Sheet) into digital
representation formats (e.g., MP3, MIDI, MusicXML). One of the tasks included in the
Digital Musicology field is the Optical Music Recognition (OMR) research line, which aims
to automatically convert a music sheet image into a digitally encoded music representation
(e.g., MusicXML) (BAINBRIDGE; BELL, 2001; CALVO-ZARAGOZA; HAJIČ; PACHA,
2019; HAJIC; PECINA, 2017; REBELO et al., 2012). Both MIR and Computational
Musicology are greatly benefited by the OMR field, since it enables the digitization of very
large corpora with all kinds of music; and is not limited to only western music notation.

Chapter 2. Theoretical Framework 21

2.2 Musical Motifs
In music, we might find certain patterns that repeat themselves along one song

(i.e., intra-opus). These patterns can be melodic, harmonic, rhythmic, or a combination
of these. Such patterns are usually referred to as a theme, or musical motifs1. Each
recurrence of the musical motif might present some degree of variation, either in the
intervallic structure, overall pitch, rhythm, harmony/accompaniment, instrumentation,
or dynamics (DRABKIN, 2008). When a musical motif has the purpose of representing
a person, object, place, idea, state of mind, supernatural force, or any other ingredient
in a dramatic work, the musical motif is usually called a leitmotif (WHITTALL, 2001).
Leitmotifs can be detected in any entertainment media that might involve music (e.g.,
theater, movies, TV shows, circus, video games, opera). Figure 1 depicts the relationship
between musical motifs, leitmotifs, melodic motifs, harmonic motifs, and rhythmic motifs.

Musical Motifs
Leitmotifs

Melodic Harmonic

Rhythmic

Figure 1 – Relationship between the different kinds of musical motifs

Musical motifs and leitmotifs are not restricted to the same piece of music. Figure 2
gives an example of a musical motif being applied to the melodies of three different
soundtracks of a popular video game from the 1990s. It is visually observable that the
same melodic contour (i.e., the shape that the melody forms with its variation in pitch)
is present in the three melody excerpts, but with variations in mode, rhythm, tempo,
time signature, and instrumentation. Moreover, if we analyze the diatonic intervals (i.e.,
the interval between the tonal center and the note being analyzed), and we discard the
note qualities (i.e., minor, Major, Perfect, etc.), we can observe that all three tracks share
the pattern 3̂-1̂-5̂-6̂-1̂ in the first half, and then 5̂-1̂-5̂-3̂ in the second half (with slight
variations in some cases, such as the repetition of P1 in the second half of track (b)). This
1 Some musicologists consider that musical motifs consist in a very short pattern, and a theme would be

a slightly longer (but still short) pattern. In this work, we do not differentiate motifs from themes, so
we consider that sequential musical patterns with any length are considered motifs

Chapter 2. Theoretical Framework 22

depicts an example of an inter-opus musical motif, since the same musical motif happens
in more than one musical piece (as opposed to being intra-opus, when the analysis is done
in a single piece of music). Specifically, it is a melodic motif, since the similarities are, in
this case, mostly in the melodic contour and in the interval structure of the melody.

(a)

(b)

(c)

Figure 2 – Melody excerpts from three soundtracks of the Super Mario World game, which
share the same melodic motif. The melodic contour is depicted in red. The
diatonic intervals are presented below each note

Looking further into the three tracks presented in Figure 2, we can observe that
the time signature for the track (b) is 3/4, while tracks (a) and (c) are in a 4/4 meter. The
rhythm for each piece is different, although some rhythmic relationships are maintained,
such as the duration of the last two notes in tracks (b) and (c), or the quarter length
rest in the beginning of the third bar in tracks (a) and (c). Although all tracks use F
as their tonal center, tracks (a)2 and (c) use a Dorian Pentatonic Scale, while track (b)
uses an Ionian/Major Pentatonic Scale - being one of the reasons that track (b) might be
perceivable as more “positive”, “bright”, or “serene” than the other two. The tempo and
instrumentation is different for each piece. Even with all these differences, all tracks share
2 Track (a)’s scale is actually debatable. It could be also perceived as a Major Pentatonic, at least in the

second half of the theme. Another interpretation is that it would be a Raga Mohanangi Scale, due to
the bend in the last note that goes from m3 to M3

Chapter 2. Theoretical Framework 23

the same melodic motif (i.e., they all have a very similar melodic contour and/or a similar
intervallic structure in the melody), so we can perceive the similarities in the melodies.

Figure 3 shows an example of a rhythmic motif. The rhythmic pattern shown in
Figure 3a, consisting of three short notes followed by a longer one, is perceived during
the whole piece of Beethoven’s Symphony No. 5. Figure 3b shows some examples of the
rhythmic motif being applied in the musical piece. We can see that some musical variations
are present, such as in the contour, the contour direction, the overall pitch, the intervallic
structure, and even in part of the rhythmic structure (e.g., instead of 3 eighth notes
followed by a half note, we can see there are variations in which the half note is replaced
by a whole note, or a half note linked with an eighth note).

(a) A rhythmic motif, consisting of three eighth notes,
followed by a half-note

(b) The rhythmic motif denoted in (a), be-
ing applied in several passages from
Beethoven’s Symphony No. 5

Figure 3 – Example of an intra-opus rhythmic motif, from Beethoven’s Symphony No. 5

Source: Adapted from (ANDERS, 2007)

As for the harmonic motifs, we could search for patterns in the chord progressions,
vertical intervals, and/or harmonic cadences. It is important to note that chord progressions
that are repeated along one musical piece, but only due to repeating sections (such as
a pop song with a Verse A and then Verse B with the same chord progression) would
not be considered as a harmonic motif - it is a consequence of a pattern in the structural

Chapter 2. Theoretical Framework 24

level. As an example, Table 1 presents a list of a few popular songs that contain the chord
progression I-V-vi-IV, being considered an inter-opus harmonic motif.

Table 1 – Popular songs that contain the chord progression I-V-vi-IV, exemplifying an
inter-opus harmonic motif

Artist Title
U2 With Or Without you
Journey Don’t Stop Believing
Jason Mraz I’m Yours
Maroon 5 She Will Be Loved
The Beatles Let It Be
Green Day When I Come Around
Lana Del Rey Love
Red Hot Chili Peppers Under The Bridge
Ed Sheeran Photograph
Avenged Sevenfold Afterlife

2.3 Opera and Arias
In this section, we will give a brief overview of the structure of opera and arias. Our

main reference for this section is the work by Muñoz-Lago et al. (2020). Figure 4 presents
an Entity-Relationship Diagram (ERD) following Chen’s notation, which summarizes the
basic concepts that will be introduced in this section.

Opera is a form of dramatic audiovisual performance. One opera’s structure is
defined by one libretto. The libretto contains the dramatic text of the narrative being told
and is divided into acts. Each act contains a small set of scenographic settings that might
be changed during the opera (e.g., a forest scenery, then a castle one). Each act is further
divided into scenes, marked by the entrance or exit of characters from the stage, and/or
changes of scenery.

An opera alternates between two main types of vocal performances: fully musical
pieces (i.e., Arias, Duets, Choirs, etc.) with singers and, often, orchestral ensembles; and
passages that are more closely related to dialogues (i.e., recitatives). Arias are sung by a
soloist, whereas Duets have two singers with equal importance, and Choirs have many
concomitant singers. Since Arias, Duets, Choirs, and other groupings (e.g., Trios) are
the most “musical” sections of an opera, they are usually the musical highlights in an
opera. In this work, we will use the term Aria interchangeably with Duets, Choirs and the
other groupings, to represent the most “musical” sections of an opera. Figure 5 depicts
an overview of an opera, through one of the novel visualization approaches proposed by
Muñoz-Lago et al. (2020).

Chapter 2. Theoretical Framework 25

Act

Has

1

N

Scene

Has

N

1

Librettist Libretto1

Opera title

Writes N

Number

Accompanies

Number

Composer

1

Musical Score

Composes

N

Poetic Lines

Has N1 Vocal
Performance

Scenographic
Setting

Is Aria?

N

1

Emotions
Characters

Figure 4 – Summarized Entity-Relationship Diagram depicting basic Opera concepts

The libretto itself does not contain a musical composition. There is also no ex-
plicit indication of what emotions should be conveyed in each Aria, although one can
infer the emotion that is meant to be conveyed by interpreting the libretto’s narrative
context (TORRENTE; LLORENS, 2022). Therefore, with the libretto in hands, composers
analyze what emotion(s) should be conveyed by a particular Aria through the overall
narrative context and the lyrics’ content, and then they write a fitting music score for
that Aria. Notwithstanding, the same opera might have different music composers. This
is what makes opera datasets specially interesting for analyzing musical motifs and their
relationship with emotions: all composers must compose original scores for one Aria, but
using the same lyrics, and trying to convey the same general emotion (TORRENTE;
LLORENS, 2022).

2.4 Symbolic Music Representation
Since the advent of computers, a handful of different ways to store music have

been invented and utilized for different purposes. These include, for example, the MIDI
(Section 2.4.1), the MusicXML (Section 2.4.2), the MEI (Section 2.4.3), the WAV, and the
ubiquitous MP3 file formats. MusicXML, MIDI, and MEI fall into the category of Symbolic

Chapter 2. Theoretical Framework 26

Figure 5 – Overview of the structure of the Demofoonte opera, by Pietro Metastasio.
Shapes represent the characters that are singing the corresponding Aria. Lines
represent the recitatives. The number to the right represents the scene number
in the act. Numbers to the left represent the position of the opera in the
dramatic text, by number of poetic lines

Source: (MUÑOZ-LAGO et al., 2020)

Music Representations, while WAV and MP3 are Digital Audio Coding Formats that store
digital audio signals. In this work, since we are dealing with the task of Computational
Musicology, we will focus only on the symbolic formats, as they are, commonly, the formats
used by musicologists.

Chapter 2. Theoretical Framework 27

2.4.1 MIDI

Musical Instrument Digital Interface (MIDI) is a complete technical standard
that aims to enable playing, recording, and editing digital music. It includes a set of
specifications for hardware implementation, electrical connectors, communication protocol,
and digital music storage (LOY, 1985). Although it was created to standardize synthesizers
communication, it has been through many updates, and is broadly used to this day,
including in song arrangement and producing, and live electronic performances.

A piece of music is symbolically represented in MIDI format as a binary file, which
contains an Event List of MIDI Messages, and other optional meta information (e.g., title,
author, tonality, time signature). An Event List example is shown in Figure 6, presented
in a human-readable fashion, where each line depicts one MIDI Message.

Figure 6 – MIDI Event List example

MIDI Messages are sequences of byte codes that contain information about how
the piece of music should be performed. Some examples of these information are: when to
start a note, when to stop a note, what instrument should be playing a given note, what is
the velocity of that note (which is a parameter often used to control loudness), and other
optional properties of that note (e.g., pitch bend, lyrics, sustain, modulation). As a quick
example, if one wants to send the MIDI message “Turn on the note with pitch A6, in
channel 0, with 127 velocity”, the message in binary code is ‘10010000 01101001 01111111’.
More information about MIDI Messages can be found in the tutorials by Brink (1995)
and Vandenneucker (2012), and detailed in the MIDI Specification (ASSOCIATION et al.,
1996).

Musicians often work with MIDI using a Piano Roll visualization, which is usually
embedded in a Digital Audio Workstation (DAW). Figure 7 shows the Piano Roll visual-
ization in the Cakewalk3 DAW. In a Piano Roll visualization, sequential notes are lined up
horizontally, and simultaneous notes of different pitches are lined up vertically. Usually, the
Piano Roll visualization software also enables editing and creation of MIDI files directly
through the graphical interface, eliminating the necessity of the end-user knowing any
of the byte codes for the MIDI messages used behind the scenes. Thus, the Piano Roll
visualization not only facilitates the editing and creation of MIDI files for the end-user,
3 <https://www.bandlab.com/products/cakewalk> - Accessed on 11 may 2021

https://www.bandlab.com/products/cakewalk

Chapter 2. Theoretical Framework 28

but also enables anyone with a computer keyboard and mouse to compose, arrange, and
produce music, with minimal music theory knowledge requirements - as long as they are
up to a lot of experimentation in a trial-and-error fashion.

Figure 7 – MIDI Piano Roll visualization example

One could also choose to create a MIDI file by recording their performance using a
MIDI Controller - an external hardware that aims to mimic a musical instrument. The
MIDI controller often takes the form of a keyboard/digital piano, a drum pad, or a mixing
console. Figure 8 illustrates these types of MIDI controllers. However, a MIDI controller
can take any physical form that the manufacturer chooses, as long as it follows the protocol
for sending MIDI messages to the computer in “real-time”. After the recording, it is still
possible to edit the stored MIDI file through the Piano Roll visualization - or directly
through binary code.

2.4.2 MusicXML

MusicXML is a set of Extensible Markup Language (XML) definitions aiming to
standardize the representation of music in western sheet notation for computers (GOOD,
2001). As any XML-based language, MusicXML is stored as a text file. MusicXMl defines
specific text strings to be used as tags, standardizing the properties we want to store, in a
hierarchically structured fashion. Figure 9 gives an example of a MusicXML file excerpt.

Figure 9 defines one part named “Music”, containing a single measure with a
G Major (or E minor) key signature, a 4/4 time signature, a treble clef, and has a C4
whole note. The XML header - which defines the file as a MusicXML format file - is
omitted. It is also possible to define metadata, (e.g., the score title, composer name),
Graphical User Interface (GUI) and appearance related attributes (e.g., font size, font type,
page layout), tempo, lyrics, harmony, instrumentation, dynamics, and even commentaries
through MusicXML - just as writing scores on paper.

MusicXML can also be used in an interactive fashion. Some MusicXML visualization
software enables the creation and editing of music sheet directly through their graphical
interface, very often offering keyboard shortcuts as well. These pieces of software are

Chapter 2. Theoretical Framework 29

(a) MIDI controller in keyboard shape (b) MIDI controller in drum pad shape

(c) MIDI controller in mixing console shape (d) MIDI controller with keyboard, drum pad and
mixing console

Figure 8 – Different types of MIDI controllers

often called “scorewriters”. By using digital instruments, some software also enables the
playback of the MusicXML, giving instant audible feedback for each modification in the
music sheet. The playback function also enables multiple instruments to be played at once,
even without any musicians available to play the physical instruments, facilitating the
composition and arrangement for bands and orchestras. MusicXML visualization software
include MuseScore, Finale, Guitar Pro, Sibelius, and many others. Figure 10 depicts the
way that the MusicXML in Figure 9 is visualized using the scorewriter MuseScore4. We
note that the part name (“Music”) is not shown since, by default MuseScore does not
show part names when there is only one part.
4 <https://musescore.com/> - Accessed on 1 Apr 2021

https://musescore.com/

Chapter 2. Theoretical Framework 30

Figure 9 – MusicXML “Hello World” file excerpt, with visual indicators of each block’s
purpose

The main advantage of MusicXML over MIDI as a symbolic music representation
format is that the former explicitly annotates rests, notes duration, and other specific
symbols (such as fermatas, mordents, and grupettos), while the latter does not annotate
such information at all. MIDI is also incapable of differentiating enharmonics (i.e., notes
with the same pitch frequency, but different pitch class names, such as A♭ and G♯. They
are heard exactly the same, but they might have a different musical meaning in the
context of the piece). This means that when one tries to convert MIDI to music sheet
notation (and vice-versa), the conversion algorithm will have to guess these missing

Chapter 2. Theoretical Framework 31

Figure 10 – Visualization of the MusicXML “Hello World” in MuseScore

information, occasionally making mistakes, and requiring manual review and correction
afterwards (GOOD, 2001).

2.4.3 MEI

Music Encoding Initiative (MEI) (ROLAND, 2002) is another symbolic representa-
tion of music in sheet notation, encoded in XML - much like MusicXML. However, MEI
has some defining differences, both in implementation, in philosophy, and in scope:

• While MusicXML prefers clarity over conciseness, MEI focus on the opposite - files
written in MEI are less readable than MusicXML, but occupies less memory space
in disk. Hence, MusicXML might be slightly easier to work with when developing
applications - although this should not affect most of the end-users directly, since
they will seldom work without visualization software.

• MusicXML was developed with the intention of standardizing music sheet notation
across multiple music sheet visualization and editing software, and to enable easy
transfer over the Web. Conversely, MEI was conceptualized to assist in musical
analysis and musicology research, annotating information that usually would not be
annotated in MusicXML.

• Currently, MusicXML is only able to represent music in Common Western notation,
while MEI is able to represent other notations as well - such as the Neume nota-

Chapter 2. Theoretical Framework 32

tion (from the Medieval period), or the Mensural notation (from the Renaissance
period) (ROLAND; HANKINSON; PUGIN, 2014).

Although MEI is meant to be more complete than MusicXML, MusicXML is still
the most used format for music sheet notation representation (KEPPER, 2009). There
is currently a lack of tools that use MEI - out of the popular music sheet visualization
software, only Sibelius has a third-party plugin that enables the use of files in MEI
format. Furthermore, the conversion between MusicXML and MEI may cause loss of
information (PARADA-CABALEIRO; TORRENTE, 2020).

2.5 Sequential Pattern Mining
This subsection aims to be a quick introduction to Sequential Pattern Mining

(a.k.a. Sequence Pattern Discovery), and to introduce the notation that will be used
hereinafter. For a more detailed explanation on the topic, we recommend reading the
survey by (FOURNIER-VIGER et al., 2017), which is the theoretical foundation for this
whole subsection.

The traditional Sequential Pattern Mining problem might be defined as: having a
sequence database SDB containing n sequences Si, find the k most frequent subsequences
sj ⊑ Si|1 ≤ i ≤ n ∧ 1 ≤ j ≤ k that occur in the SDB. An alternative to the hard-defined
number of outputs k is to define the minimum support threshold minSup - i.e., the
minimum appearance frequency in the SDB for a subsequence to be included in the
output.

While Frequent Itemset Mining algorithms work with a dataset of unordered sets
of items, sequences are defined as ordered sets of unordered sets of items. As a comparison,
Frequent Itemset Mining can be used to find sets of items that are frequently bought
together by the same person; whereas Sequential Pattern Mining can be used to find sets
of items that are frequently bought some time after a set of items were bought by the
same person.

As standard notation, sequences (ordered sets) will be enclosed by ⟨⟩, and unordered
sets will be enclosed by {}. Unordered sets contained in a sequence will be separated by
commas, showing that the rightmost set succeeds the leftmost one. Items contained in
unordered sets are also separated by commas, but items in the same unordered set occur
concurrently. As an example, in Table 2, in the sequence with Sequence Identifier (SID) 1,
the set {a, b} comes before the set {c} - i.e., {a, b} ≺ {c} - while the items a and b occur
concurrently. The length of a sequence, denoted by |Si|, is the number of unordered sets
contained in the sequence. For example, in Table 2, |S3| = 4 and |S4| = 2.

Chapter 2. Theoretical Framework 33

Table 2 – Sequence Database example

SID Sequence
1 ⟨{a, b}, {c}, {f, g}, {g}, {e}⟩
2 ⟨{a, d}, {c}, {b}, {a, b, e, f}⟩
3 ⟨{a}, {b}, {f, g}, {e}⟩
4 ⟨{b}, {f, g}⟩

Source: adapted from (FOURNIER-VIGER et al., 2017)

There are multiple ways to define how to measure the support of a subsequence in
a SDB. In this work, we will use the following definitions:

1. As shown in Equation 1, the absolute support of a sequence sj in a SDB, denoted
by absSup(sj, SDB), is the number of sequences Si in the SDB that contain the
subsequence sj - only one occurrence of sj is counted per sequence Si.

absSup(sj, SDB) = ∥{Si|Si ⊒ sj}∥∀Si ∈ SDB (1)

where the ∥∥ delimiters represents the cardinality (i.e., the number of items) of the
enclosed unordered set.

2. The relative support of a subsequence sj in a SDB, denoted by relSup(sj, SDB),
is defined as in Equation 2. It is the proportion of sequences Si that contain the
subsequence sj, relative to the number of sequences in SDB.

relSup(sj, SDB) = absSup(sj, SDB)
n

(2)

where n is the number of sequences in the SDB.

3. The total support of a subsequence sj in a SDB, denoted by totalSup(sj, SDB), is
defined in Equation 3. It is the total number of times the subsequence sj appears
in the SDB, taking into consideration if it happens more than once in the same
sequence as well.

totalSup(sj, SDB) = COUNT (sj, SDB) (3)

where COUNT (sj, SDB) is the number of times the subsequence sj appears in the
dataset SDB.

We note that there might be cases in which two instances of the same subse-
quence might overlap. In such cases, we would count the total support up by
only one. As an example, suppose we have a SDB with a single sequence S1 =
⟨{a}, {b}, {a}, {b}, {c}⟩, and we want to calculate the total support of the subse-
quence sj = ⟨{a}, {b}, {c}⟩. We might consider that one instance of sj in S1 is the

Chapter 2. Theoretical Framework 34

first two itemsets and the last one from S1; and we also might consider that the other
instance of sj in S1 is the three last itemsets of S1. However, since these two instances
overlap, we consider only one of these instances, and so totalSup(sj, SDB) = 1.

As an example for these support measures, the subsequence ⟨{a}⟩ from Table 2
has absSup = 3, relSup = 3

4 = 0.75, and totalSup = 4.

Considering minSup = 3, the absSup as the support measure, and without any
other constraints, a Sequential Pattern Mining algorithm would output the subsequences
(patterns) presented in Table 3. We can see, for example, that {a} ≺ {f} in the sequences
S1, S2, and S3, thus absSup(⟨{a}, {f}⟩) = 3.

Table 3 – Sequential patterns found in the SDB of Table 2, with minSup = 3

Pattern absSup
⟨{a}⟩ 3
⟨{a}, {f}⟩ 3
⟨{a}, {e}⟩ 3
⟨{b}⟩ 4
⟨{b}, {g}⟩ 3
⟨{b}, {f}⟩ 4
⟨{b}, {f, g}⟩ 3
⟨{b}, {e}⟩ 3
⟨{e}⟩ 3
⟨{f}⟩ 4
⟨{f, g}⟩ 3
⟨{g}⟩ 3

Source: adapted from (FOURNIER-VIGER et al., 2017)

Sequential Pattern Mining algorithms differ between themselves by the way they
model and search for the frequent patterns, and by the additional constraints that are
imposed to find the most relevant patterns applied to a specific problem. For this work,
we are interested in one algorithm, called SPAM (AYRES et al., 2002), since the MGDP
Algorithm (CONKLIN, 2010a) was based upon it.

2.5.1 SPAM

SPAM (AYRES et al., 2002) uses a lexicographical tree representation for sequences.
It assumes that exists an underlying order between items in an unordered set, purely for
algorithmic purposes (even if there is no actual order in reality). As an example, the letter
“a” precedes the “b” in the dictionary, so the item a will precede b in an unordered set
with a lexicographical order.

The root of the tree is denoted by ∅. Each node of the tree is a sequence that is the
result of either a sequence-extension (s-extension) or an itemset-extension (i-extension).

Chapter 2. Theoretical Framework 35

A s-extension consists in appending an unordered set with a single item in it to the
end of a sequence. For example, the result of a s-extension of the sequence ⟨{a, b, c}⟩
could be ⟨{a, b, c}, {a}⟩ or ⟨{a, b, c}, {b}⟩, but could not be ⟨{a, b, c}, {a, b}⟩. An i-extension
consists in appending a single item to the last unordered set of a sequence, given that the
item being appended succeeds all items that are already in that unordered set, following
the lexicographical order. For example, one result of an i-extension of the sequence
⟨{a, b}, {a, c}⟩ could be ⟨{a, b}, {a, c, d}⟩, but could not be ⟨{a, b}, {a, b, c}⟩. Figure 11
depicts the process of generating a Lexicographical Sequence Tree through a series of
s-extensions and i-extensions, considering a SDB containing only two items (a and b),
and presenting only sequences with a maximum sequence length of 2.

Figure 11 – Example of generation of a Lexicographical Sequence Tree

Source: adapted from (AYRES et al., 2002)

The Sequence Tree is traversed through a Depth-First Search approach. Following
the Apriori principle (AGRAWAL; SRIKANT, 1994), if a node j contains a sequence sj

with a support smaller than minSup, then there is no need to verify any of the children of
the node that contains sj, since they will, consequently, also be infrequent.

Given a node j containing a sequence sj, we can associate two sets with the node
j: the set of candidate items to be appended to sj during an s-extension, denominated Σj ;
and the set of candidate items to be appended to sj during an i-extension, denominated

Chapter 2. Theoretical Framework 36

Ij. Using the Apriori principle, we can also reduce the size of both Σj and Ij during the
generation of the tree in two cases.

In the first case, consider that we have a node j containing a sequence sj. Now,
suppose sj has two s-extensions, sa

j = ⟨sj, {ia}⟩ and sb
j = ⟨sj, {ib}⟩, and that sa

j is frequent
but sb

j is not frequent. Following the Apriori principle, we can then assume that both
⟨sj, {ia, ib}⟩ and ⟨sj, {ia}, {ib}⟩ are going to be infrequent, since sb

j is contained in both
these sequences. Thus, we can safely remove the item ib from both Σk and Ik. where k is
any node that contains a frequent s-extension of sj. This process is called S-step Pruning.

In the second case, consider that we have a node j containing a sequence sj =
⟨s′, {i1, ..., in}⟩. Now, suppose sj has two possible i-extensions: sa

j = ⟨s′, {i1, ..., in, ia}⟩ and
sb

j = ⟨s′, {i1, ..., in, ib}⟩, and that sa
j is frequent but sb

j is not frequent, and also that ia ≺ ib

following the lexicographical order. Then, we can assume that, by the Apriori principle,
⟨s′, {i1, ..., in, ia, ib}⟩ cannot be frequent. Thus, we can safely remove the item ib from Ik

where k is any node that contains a frequent i-extension of sj. Additionally, if ⟨sj, {ic}⟩
is infrequent, then we can assume that ⟨sa

j , {ic}⟩ is also infrequent given that sa
j is any

frequent i-extension of sj. Thus, we can also remove ic from Σk where k is any node
that contains a frequent i-extension of sj. Note that ic would be the same item that was
removed during the S-step pruning, so there is no need to re-verify the frequency of this
sequence. This process is called I-step Pruning.

2.5.1.1 Vertical Bitmaps

SPAM converts the sequences into a vertical bitmap representation to efficiently
traverse through the tree. To illustrate this conversion process, consider the example given
in Table 4. The verticalization of this SDB consists in constructing a Bitmap that maps
the positions in which the patterns are present for each sequence in the database.

Table 4 – Another Sequence Database example

SID Sequence
1 ⟨{a, b, d}, {b, c, d}, {b, c, d}⟩
2 ⟨{b}, {a, b, c}⟩
3 ⟨{a, b}, {b, c, d}⟩

Source: adapted from (AYRES et al., 2002)

The result of the verticalization of Table 4 is shown in Table 5. We can see that
for the Sequence with ID 1, the pattern ⟨{a}⟩ is present in the first position, and is not
present in the second and third position of the sequence. Note that the Sequence with
ID 1 contains 3 featuresets, so its Bitmaps have a length of 3; while Sequences 2 and 3
contain 2 featuresets, and their bitmaps have a length of 2.

Chapter 2. Theoretical Framework 37

Table 5 – Verticalized SDB example

SID ⟨{a}⟩ ⟨{b}⟩ ⟨{c}⟩ ⟨{d}⟩

1
1 1 0 1
0 1 1 1
0 1 1 1

2 0 1 0 0
1 1 1 0

3 1 1 0 0
0 1 1 1

Source: adapted from (AYRES et al., 2002)

The verticalization of the SDB is efficient because it needs to be done only once,
and only for the canonical patterns (i.e., the patterns that contain only one featureset,
which, in turn, contain only one feature). Then, we apply the s-extension and i-extension
operations, which uses only fast bitwise operations, discarding the need to go through the
whole dataset again.

To perform an i-extension on the Vertical Bitmaps, we simply perform a vertical
bitwise-AND operation over two bitmaps. For example, taking Table 5 as a starting point,
if we want to perform an i-extension on the pattern ⟨{a}⟩, adding the feature b to it, we
would bitwise-AND the two bitmaps corresponding to the patterns ⟨{a}⟩ and ⟨{b}⟩. The
result of this operation is illustrated by Table 6.

Table 6 – Result of i-extension operation through vertical bitmaps

SID ⟨{a}⟩ ⟨{b}⟩ ⟨{a, b}⟩

1
1 1 1
0 1 0
0 1 0

2 0 1 0
1 1 1

3 1 1 1
0 1 0

Source: adapted from (AYRES et al., 2002)

To perform an s-extension operation on vertical bitmaps, we first have to construct
an auxiliary bitmap from the existing pattern bitmap, and then we bitwise-AND this
auxiliary bitmap with the bitmap from the feature being appended to the pattern. This
auxiliary bitmap is constructed by first finding out the index kSID that corresponds to the
position of the first occurrence of the pattern in the bitmap (i.e., the index of the first
element that is set to 1 on the bitmap), for each sequence in the SDB. Then, for each
sequence in the SDB, we have a bitmap in which all indexes bigger than kSID is set to
1, while all indexes less than or equal to kSID is set to 0. Take Table 7 as an example.
We want to perform a s-extension of pattern ⟨{a}⟩ with feature ⟨{b}⟩. To do so, we first

Chapter 2. Theoretical Framework 38

construct the auxiliary bitmap ⟨{a}⟩s, and then we bitwise-AND the auxiliary bitmap
⟨{a}⟩s with the bitmap for ⟨{b}⟩.

Table 7 – Result of s-extension operation through vertical bitmaps

SID ⟨{a}⟩ ⟨{a}⟩s ⟨{b}⟩ ⟨{a}, {b}⟩

1
1 0 1 0
0 1 1 1
0 1 1 1

2 0 0 1 0
1 0 1 0

3 1 0 1 0
0 1 1 1

Source: adapted from (AYRES et al., 2002)

Note that the resulting bitmap of the s-extension does not store the occurrence
of every featureset of the pattern - it only stores the occurrences of the last featureset of
the pattern (given that the anterior featuresets have already occurred in the sequence).
This is an important limitation of this algorithm: we output just whether a pattern occurs
in a sequence, and the positions of the last featureset of the pattern that appeared after
all other featuresets of the pattern. But we do not output the positions of occurrences of
the previous featuresets of the pattern. In the example shown in Table 7, the bitmap for
⟨{a}, {b}⟩ outputs the positions of every occurrence of {b} that appears after an {a} has
occurred, but we do not know the positions of any occurrences of {a}.

39

3 Tools and Methods

3.1 Computational Musicology Tools

3.1.1 music21

The music21 toolkit for Python that offers a set of tools aiming to aid musicologists
in analyzing, transforming, and searching for patterns in symbolic music. It is shipped with
a large corpus of Bach Chorales, which might be used to test and benchmark algorithms.
Cuthbert and Ariza (2010) introduces the toolkit, along with some examples of practical
applications in which music21 can be used.

music21 has a built-in feature extraction module, which includes some features
extracted with the jSymbolic toolkit, and some features that are native to music21. It
is also possible to write custom feature extractors and append them to the music21
toolkit (CUTHBERT; ARIZA; FRIEDLAND, 2011).

Phon-Amnuaisuk (2019) utilized music21 to analyze the tendency of chord pro-
gressions and cadences in Bach Chorales. Sampaio et al. (2013) extends music21 with
a Countour Analysis algorithm, which was used to extract, describe, and compare the
melodic contours of the different voices of Bach Chorales. Garfinkle et al. (2017) utilized
music21 to make a Content-Based Music Retrieval system for polyphonic symbolic music.
Liang et al. (2017) utilizes music21 as part of their BachBot system, which automatically
generates Bach Chorales using Deep Long Short-Term Memory (LSTM) Recurrent Neural
Networks (RNN).

3.2 Inter-Opus Musical Motif Discovery
The task of Inter-Opus Musical Motif Discovery in Symbolic Music Corpus con-

sists in automatically finding the repeating patterns and their variations in a sequence
of notes from multiple pieces of music represented in a symbolic format (e.g., music
sheet) (CONKLIN, 2010a). In this section we will define some particularities of this task.

3.2.1 Sequence Clustering VS Sequential Pattern Mining

One of the ways to formally define the problem of Inter-Opus Musical Motif
Discovery could be: given a set C containing n sequences (Si)i∈n ⊂ C, identify k clusters,
such that each cluster contains subsequences (sij)j∈mi! ⊆ Si that are sufficiently similar to
the other subsequences in the same cluster, where mi is the number of elements in (Si).

Chapter 3. Tools and Methods 40

This definition of the problem falls into the Sequence Clustering problem definition.
However, there are some particularities of this Sequence Clustering problem when consid-
ering the application domain of Musical Motif Discovery, which raises these Challenges:

1. We have to consider the possibility of slight variations in rhythm, melodic contour,
harmony, etc. when clustering the musical motifs;

2. Each subsequence (sij) might have different lengths, which complicates the similarity
measuring;

3. We don’t know the length of the subsequences (sij) in advance, meaning one solution
might correctly identify the presence of similar musical motifs, but present them
shortened or elongated. This might complicate the solution’s overall efficacy measure,
and the similarity measuring;

4. For a sequence (Si) of length mi we have mi(mi+1)
2 possible subsequences. This means

we would need to spend a very high quantity of computational resources just to find
and store all possible subsequences of a sequence - O(n2);

5. Each sequence (Si) might have different lengths mi, which complicates the search
and comparison of similar subsequences contained in them;

6. Similar subsequences might be in different positions. This means we would need to
spend a very high quantity of computational resources just to compare the similarity
of a subsequence with all the other subsequences in another sequence - O(n2);

7. The number of clusters k is not known in advance.

To find a solution for the Inter-Opus Musical Motif Discovery task following the
Sequence Clustering approach, we might split the problem into four Sub-Tasks, while
keeping in mind the aforementioned particularities of the application domain, and trying
to keep the problem solvable in feasible time:

1. Define an approach to model the symbolic music into a format acceptable to the
subsequent steps;

2. Define a similarity measure method to compare the musical motifs, considering all
the possible musical variations;

3. Define a fitting Sequence Clustering algorithm;

4. Define an evaluation method to measure the solution’s efficacy.

Chapter 3. Tools and Methods 41

The same Inter-Opus Musical Motif Discovery task might also be tackled through
a Sequential Pattern Mining approach, which consists in finding frequent and relevant
subsequences sij in the sequence database C (see Section 2.5). In this case, we might be able
to use popular algorithms such as GSP (SRIKANT; AGRAWAL, 1996), SPADE (ZAKI,
2001), SPAM (AYRES et al., 2002), and others - or a variation of them.

Since finding a similarity measure is not required for the Sequential Pattern Mining
approach, we could substitute Sub-Tasks 2 and 3 with one single step, consisting in defining
a fitting Sequential Pattern Mining algorithm. However, discarding the similarity measure
Sub-Task means that the Sequential Pattern Mining approach will not be able to directly
tackle Challenge 1 unless we either model the symbolic music into a musical variation
invariant (sic) format, or we embed the musical variation invariance into a Sequential
Pattern Mining algorithm, somehow, or we consider only very short musical motifs.

As an advantage, the Sequential Pattern Mining approach would be able to point
specifically what are the common patterns between each subsequence, while the Sequence
Clustering approach would only be able to point that a subsequence is similar to another
subsequence, without pointing exactly why that is the case - unless the similarity measure
method chosen is somewhat interpretable. Karsdorp, Kranenburg and Manjavacas (2019)
investigated the use of Siamese Recurrent Neural Networks for an automatic melodic
similarity measure learning. However, even though it was successful in its task, due to
the black-box nature of the deep learning algorithms used, we have no insights into
what musical features the RNN takes into consideration for its output. As mentioned in
Section 2.1, the Computational Musicology field has the goal of understanding music. For
this reason, interpretability is highly valued in this project. Even if we were to use some
kind of Machine Learning Explanation algorithm similar to SHAP (LUNDBERG; LEE,
2017), we might get to faulty conclusions (RUDIN, 2019), confusing the knowledge that we
already have, and hindering our goal of a better understanding of music. Thus, we chose
to follow the Sequential Pattern Mining approach instead of the Sequence Clustering one.

3.2.2 Related Work

Mongeau and Sankoff (1990) developed a method for localizing similar portions of
two scores. They model the pieces as a two-dimensional array - consisting in pitch and
duration - and use a dynamic programming approach to compute a similarity measure
between each piece’s portions. It can align two monophonic melodies, even with small
variations in pitch and rhythm. This method could be extended to a corpus containing
more than 2 scores; however, it might not be computationally feasible to use it with a large
corpus, and it is not ideal for finding novel, musically interesting patterns (CONKLIN;
ANAGNOSTOPOULOU, 2001).

Conklin and Anagnostopoulou (2001) implemented a faster method for discovering

Chapter 3. Tools and Methods 42

musical patterns in a large corpus of music by employing a search-and-count through a
Suffix Tree Data Structure. A method to define if a musical pattern is relevant was also
developed: sequences are deemed relevant if there is a statistically significant difference
between the frequency they occur in the corpus and the frequency in which they would
occur following a Markov Model baseline. However, since the Markov Model represents
just a simulation of actual music, using it as a baseline might lead to the presentation of
many musically uninteresting patterns (CONKLIN, 2010a).

Conklin and Bergeron (2008) changed the pattern search algorithm from the Suffix
Tree Data Structure to a Lexicographical Sequence Tree method, based on the SPAM
algorithm (AYRES et al., 2002). However, they mention that they use an Instance Map
that tracks the position in which the patterns occur (and do not mention Bitmaps),
although not much details are given regarding this matter. It is not clear whether they use
a method to track the indices of all musical events (i.e., notes/rest/chords) that compose
a pattern, or if it tracks only the index of the end of the pattern, just like the Bitmap do.
They also use a Subsumption Tree to avoid visiting patterns in the search space that do
not exist on the dataset, and to avoid visiting the same pattern in the search space more
than once. They compare a complete search space method with an heuristic method. They
do mention a limitation of their algorithm: “the pattern discovery method developed here
does not permit insertions or deletions of events while computing pattern occurrences”.

Conklin (2010a) introduces the Maximally General Distinctive Patterns (MGDP)
for music, and also replaces the Markov Model with an anticorpus for determining the
musical relevance of the discovered patterns. The anticorpus might be defined as a set
of negative samples; e.g., if one is trying to find patterns of folk music, the anticorpus
would consist in non-folk music. A pattern is considered distinctive if it has a support
(frequency ratio) in the corpus that is sufficiently higher than its support in the anticorpus.
The distinctiveness of a pattern is the ratio of supports from the corpus and anticorpus.
A distinctive pattern (sij) is considered a MGDP if there is not any other distinctive
pattern in the corpus that is a subsequence of (sij). To discover the MGPDs of a corpus, a
variation of the SPAM algorithm (AYRES et al., 2002) was employed, following the work
from Conklin and Bergeron (2008).

Conklin (2013) reutilizes the concept of MGDP and the anticorpus introduced
by Conklin (2010a) to find the antipatterns of a corpus - i.e., patterns that are absent
or have a surprisingly low frequency in a corpus. Antipatterns enlighten patterns that
should be absent in a piece of music to match the corpus’ class - e.g., medieval Gregorian
chants should have few or none tritones. To find the antipatterns, they find the MGDP
of the anticorpus in respect to the corpus. They apply this method to find patterns and
antipatterns in 1561 Basque folk music, labeled by genre. They also introduce the idea of
the one-vs-all for a multi-class comparative analysis. To define if a pattern or antipattern

Chapter 3. Tools and Methods 43

is indeed associated with a given a class, a Fisher statistical significance test is performed.

Meredith (2013) introduces new sequence pattern discovery algorithms, called
COSIATEC and SIATECCompress. The proposed algorithms were tested in the JKU
Patterns Development Database, which contains 5 samples in symbolic format (MIDI) and
intra-opus musical motif annotations from reference books in the music theory field. The
algorithms are proposed for intra-opus pattern discovery. Although the algorithms seem to
perform well when comparing with the manual annotations, the author questions the use
of manually annotated musical motifs as the ground-truth for assessing the performance
of musical motif discovery algorithms. They argue that the claim of “interestingness” or
importance of a pattern by a single analyst does not mean much without a thorough
explanation of why a pattern is interesting and another is not.

Neubarth and Conklin (2016) extends the method from Conklin (2013), that finds
patterns that contrast multiple groups using the one-vs-all strategy. Three case-studies
are presented, demonstrating different strategies to model music, different pattern mining
methods, and use cases with different datasets. They also show algorithms for discovering
both sequential patterns (i.e., musical motifs/themes), and global patterns (i.e., instead of
focusing in sequential patterns of musical events, the focus is in features that describe the
piece as a whole, such as time signature, tonality, etc.).

Kranenburg and Conklin (2016) reassess the performance of the method described
in Neubarth and Conklin (2016) by applying it to the Meertens Tune Collection (MTC-
ANN), which is a dataset of 360 Dutch Folk melodies with intra-opus annotations. Similar
to Meredith (2013), they also question the use of manually annotated musical motifs to
evaluate the musical pattern discovery algorithms, suggesting that the ground-truth would
be too subjective. Nonetheless, they obtained a high precision, demonstrating that it can
match the human-annotated musical motifs.

Nuttall et al. (2019) proposes the use of the TF-IDF statistic to find inter-opus
distinctive patterns. It is used to find melodic patterns in collections of pieces of music
(called nawba), from the Moroccan Arab-Andalusian region. Scores are represented as a
bag-of-patterns in a n-gram fashion, containing only the pitch of each note and discarding
the n-grams that contain rests. The TF-IDF is calculated for each n-gram of each score, and
then they are averaged for each nawba, giving a measure of importance of each pattern for
each nawba. Then, they apply some filtering rules to discard the most musically irrelevant
patterns. They evaluate their algorithm objectively by comparing the algorithm’s outputs
with the patterns annotated by one specialist, through the comparison of logistic regression
classifiers that are meant to classify each nawba using either the specialist’s patterns or the
discovered patterns. The mean accuracy of the classifier that used the patterns discovered
by the algorithm slightly outperformed the one with the specialist annotated patterns,
although no statistical significance test was reported.

Chapter 3. Tools and Methods 44

Nuttall et al. (2021) implements a system to discover distinctive melodic patterns
for each melodic mode from 145 Arab-Andalusian songs. It utilizes the MGDP algo-
rithm (CONKLIN, 2010a) alongside the TF-IDF-based algorithm (NUTTALL et al., 2019),
and a variation of the SIA algorithm (MEREDITH; LEMSTRÖM; WIGGINS, 2002) that
enables SIA to find inter-opus patterns instead of just intra-opus, as originally proposed.
Then, a pattern selection from the pool of candidate patterns of all three algorithms is
proposed and performed to try and prune the most musically irrelevant patterns. They
evaluate the algorithm objectively by comparing the results with the annotated patterns
made by one specialist, and reporting the Precision, Recall and F1-Score for each melodic
mode.

The Inter-opus Musical Motif Discovery task currently lacks a well-defined state-
of-the-art algorithm (NUTTALL et al., 2021). This is probably due to the difficulty
in evaluating the algorithms efficacy, apart from time complexity. We saw that a lot
of papers use expert annotations, while other state that expert annotations are too
subjective (MEREDITH, 2013; KRANENBURG; CONKLIN, 2016), since even experts
might disagree with themselves in what are relevant patterns and what are not. One
approach that might deal with this evaluation issue is to compare automatic classifier
performances using the discovered patterns from each algorithm, similar to what has been
done by Nuttall et al. (2019). Also, we should have in mind that different algorithms might
be used for different purposes; e.g., MGDP might be more useful in inter-opus contexts,
while closed-sequence discovery algorithms could be more adequate in the intra-opus
context (CONKLIN, 2021).

3.2.3 Viewpoint Data Representation

Conklin and Witten (1995) introduces a new data representation for music modeling.
They define a feature set consisting in a set of key-value pairs for each sequential musical
event (i.e., note, rest, or chord). Each key-value pair is called a feature. The key is the
name of a function related to one event, and is called a viewpoint, while the value is
the result of that function. The process of converting each event to feature sets is called
saturation. Table 8 shows an example of some viewpoints that are possible to extract from
each note and Figure 12 depicts the result from a transformation of a music excerpt using
the viewpoints defined in Table 8.

Each feature can be seen as an item, and feature sets can be seen as unordered
sets (or itemsets), as described in Section 2.5. In this way, we can use the viewpoint repre-
sentation to model music scores as sequences, enabling the use of variations of standard
Sequential Pattern Mining algorithms to automatically discover musical patterns (CON-
KLIN; BERGERON, 2008).

One crucial difference of the viewpoint sequences from traditional itemset sequences

Chapter 3. Tools and Methods 45

Table 8 – Examples of some possible viewpoints

Viewpoint Description Range set
pitch pitch of event as MIDI number {0, ..., 127}
spell pitch class name {A, A♯, B♭, ..., G, G♯}

dur
duration of event
(in sixteenth notes) R∗+

onset
time of onset of event
(in sixteenth notes) R∗+

contour(pitch) direction of melodic interval from the
last event to the current {⊥, =, +,−}

contour(dur) direction of duration ratio between
the last and the current events {⊥, =, +,−}

rest event is preceded by a rest {0, 1}

pcint
pitch class melodic interval
(independent of melodic direction) {⊥,Z+}

diaintc
diatonic melodic interval
(independent of melodic direction) {P1, m2, M2, m3, M3, ...}

Source: Adapted from (CONKLIN; BERGERON, 2008) and (CONKLIN, 2010a)

Figure 12 – Viewpoint representation of a music piece excerpt. ⊥ represents an undefined
value.

Source: (CONKLIN, 2010a)

is that the latter have only boolean attributes, indicating only that a given item is present
or not in an itemset; whereas the former might contain other data types for the value of
the viewpoint (e.g., integers to represent the pitch of a note). One way to deal with this
difference is to consider each key-value pair as a different item during i-extensions and
s-extensions, but not allowing more than one of the same viewpoint in the same unordered
set.

Chapter 3. Tools and Methods 46

3.2.4 MGDP sequences

To understand what are the requirements for a sequence to be considered a
Maximally General Distinctive Pattern (MGDP) according to Conklin (2010a), first we
need to introduce the concept of the anticorpus. An anticorpus is a subset from the dataset
of musical pieces that are different in some way to the corpus being analyzed. As an
example, if we want to analyze a corpus consisting of opera Arias that are meant to
convey the emotion sadness, then the anticorpus might consist in other opera Arias that
are meant to convey any other emotions that are not sadness. If there are more than
two emotions present in the dataset, and all emotions of the dataset should be analyzed,
then an approach similar to a one-vs-all approach for multi-class classification can be
followed, where each emotion is selected as the corpus and the rest as the anticorpus in
each iteration of the analysis, until all emotions are analyzed. Note that the use of an
anticorpus implies that the dataset should be labeled.

A pattern sj is considered to be distinctive if it is found significantly more frequently
in the corpus than in the anticorpus (CONKLIN, 2010a). Figure 13 illustrates this definition
of distinctive patterns. If we consider that Label 1 is the corpus, then Label 2 and Label
3 are the anticorpus. The shaded (gray) area represents the patterns that are specific to
Label 1, and only to Label 1 - so the gray shaded area represents the distinctive patterns
for Label 1.

Figure 13 – Depiction of the definition of distinctive patterns.

A measure for the Raw Distinctiveness ∆ of a pattern can be calculated as

∆(sj, SDB⊕) ≡ relSup(sj, SDB⊕)
relSup(sj, SDB⊖) (4)

where relSup is defined by Equation 2, SDB⊕ is the corpus being analyzed, and SDB⊖ is
the anticorpus of SDB⊕. Then, a threshold θ might be empirically defined. If ∆(sj, SDB⊕) >

θ|θ > 1, then the pattern sj is considered a distinctive pattern in the corpus SDB⊕. If
relSup(sj, SDB⊖) = 0, then ∆(sj, SDB⊕) =∞ (CONKLIN, 2010b).

Another way to verify if a pattern is distinctive is by performing a Fisher’s Exact
Test on the contingency table formed by the presence of the pattern in the corpus and in

Chapter 3. Tools and Methods 47

the anticorpus (CONKLIN, 2013). For this task, a maximum p-value is set. Then, if the
result for the Fisher’s Exact Test results in a p-value less than the p-value threshold, the
pattern can be considered distinctive.

A pattern sj is said to be more general than (subsume) a pattern sk if sj ⊏ sk.
Didactically, we can assume that the more general pattern sj has fewer elements than the
more specific pattern sk, given that sj ⊏ sk. In other words, sj is more general than sk if
sj is a subsequence of sk.

A pattern sj is a Maximally General Distinctive Pattern (MGDP) if sj is distinctive,
and if there are no other distinctive patterns sk that are more general than sj. Figure 14
depicts a Sequence Tree with MGDPs highlighted. The MGDPs can be seen as the
distinctive patterns that are closer to the tree’s root node.

Figure 14 – Depiction of MGDPs in a Sequence Tree

Source: Adapted from (CONKLIN, 2010a)

3.2.5 MGDP Algorithm

The MGDP algorithm for inter-opus musical pattern discovery (CONKLIN, 2010a)
involves 5 main steps. The overall algorithm is depicted as a simplified block diagram in
Figure 15.

Read XML and
Apply

Viewpoints

Verticalize
SDBs

Create
Subsumption

Tree

Discover
MGDPsSplit SDB

Figure 15 – Overall MGDP algorithm as a simplified block diagram

Chapter 3. Tools and Methods 48

3.2.5.1 Read MusicXML and Apply Viewpoints

The first step involves reading the MusicXML files and applying the defined
viewpoints through saturation, as described in Section 3.2.3. This step outputs the
Sequential Database to be used in the following steps. It is possible to use the music21
package (Section 3.1.1) to read the MusicXML files and implement the viewpoints. This
step needs to be done only once, and can be done in parallel for each MusicXML file.
Figure 16 depicts the inputs and output of this step.

Read XML and
Apply

Viewpoints

MusicXML
Files SDB

Viewpoints

Figure 16 – First step of the MGDP algorithm

3.2.5.2 Split SDB

The second step involves splitting the SDB into a corpus and an anticorpus,
following the one-vs-all method described in Section 3.2.4. This step and the subsequent
ones are done once for each label that we want to find the MGDPs for. Figure 17 illustrates
the inputs and outputs of this step.

SDB
Split SDB

Corpus

Anticorpus

Labels

Figure 17 – Second step of the MGDP algorithm

3.2.5.3 Verticalize SDB

The third step of the MGDP algorithm involves verticalizing the SDB as mentioned
in Section 2.5.1.1. This step is a requirement of the last step, that involves using the tree
search algorithm based on the SPAM method (AYRES et al., 2002) to actually discover
the MGDPs. It is necessary to perform the verticalization of both the corpus and the
anticorpus, outputting a vertical corpus and a vertical anticorpus, as depicted in Figure 18.

Chapter 3. Tools and Methods 49

Verticalize
SDBs

Vertical
CorpusCorpus

Anticorpus Vertical
Anticorpus

Figure 18 – Third step of the MGDP algorithm

3.2.5.4 Create Subsumption Tree

The fourth step regards the creation of the Subsumption Tree. Figure 19 depicts the
inputs and output of this fourth step of the MGDP algorithm. Conklin and Bergeron (2008)
reports that a description logic classification algorithm is used to generate a Subsumption
Tree from the featuresets that were found to be frequent in the SDB, using a method from
Brachman and Levesque (2004), which we assume is the algorithm reported in Section
9.5.2 of Brachman and Levesque (2004). Next, we will give details of our interpretation on
how this algorithm was used.

Create
Subsumption

Tree

Vertical
Corpus Subsumption

Tree

Min
RelSup

Figure 19 – Fourth step of the MGDP algorithm

A Subsumption Graph (a.k.a. Subsumption Network, Subsumption Taxonomy)
might be defined as a Directed Acyclic Graph (DAG) with a single source node consisting
in an empty set, where each node sk is connected to the nodes sj , given that sj ⊏ sk. It is
possible to obtain a Subsumption Graph of the featuresets of a SDB by making one pass
through the whole SDB, obtaining all the unique featuresets present in it. These unique
featuresets will be the leaf-nodes of our graph. Then, for each node, we recursively remove
one feature contained in the featureset and make a new node with this reduced featureset,
making this new, more general node a parent node of the more specific node. We repeat
this process until we reach the empty featureset, and do this for all features of all nodes.
Figure 20 depicts an example of a Subsumption Graph of featuresets. In this example, we
would start from the unique featuresets {a, c}, {a, b}, and {b, c} as leaf-nodes, then we
would apply the algorithm to get the nodes {a}, {b}, and {c}, and the empty featureset.

Conklin and Bergeron (2008) prunes the nodes from the Subsumption Graph that
are infrequent. For example, if it is found that the node that contains the featureset {a, b}

Chapter 3. Tools and Methods 50

∅

{a} {b} {c}

{a, c} {b, c}{a, b}

Figure 20 – Example of a Subsumption Graph of featuresets

Source: Adapted from (CONKLIN; BERGERON, 2008)

from Figure 20 is infrequent in the corpus (i.e., has a support lower than the minimum
support threshold minSup), then we can prune that node from the Subsumption Graph.
And, because of the Apriori principle (AGRAWAL; SRIKANT, 1994), we can prune all of
its children from the Subsumption Graph as well, resulting in the Subsumption Graph
depicted in Figure 21.

∅

{a} {b} {c}

{a, c} {b, c}

Figure 21 – Subsumption Graph from Figure 20 after pruning the infrequent nodes

A Subsumption Graph is different from a Subsumption Tree in the sense that
the former might contain multiple connections to the same, more specific (child) node,
while the latter will contain only child nodes with one parent node. One can obtain a
Subsumption Tree from a Subsumption Graph by pruning the redundant connections,
making sure that the in-degree of every node in the directed graph is not greater than 1.
For example, in Figure 21, the node {a, c} has an in-degree of 2 (there are two nodes that

Chapter 3. Tools and Methods 51

are parents of {a, c}: the node {a} and the node {c}). The same is true for the node {b, c}.
We want to prune the redundant edges that lead to these nodes until there is only one edge
connecting to them. Note that there are multiple possible results from this conversion, as
depicted in Figure 22. Also, note that in Figure 22c, we would have the node {c} with an
out-degree equal to 2, but this is not a problem, since there are no nodes with an in-degree
greater than 1.

∅

{a} {b} {c}

{a, c} {b, c}

(a)

∅

{a} {b} {c}

{a, c} {b, c}

(b)

∅

{a} {b} {c}

{a, c} {b, c}

(c)

∅

{a} {b} {c}

{a, c} {b, c}

(d)

Figure 22 – Examples of possible results from converting the Subsumption Graph of
Figure 21 to a Subsumption Tree

3.2.5.5 MGDP Discovery

The fifth and last step of the MGDP algorithm involves mining/searching for the
MGDPs. For this, an algorithm based on the Sequential PAttern Mining (SPAM) (AYRES
et al., 2002) is used (see Section 2.5.1). A tree is generated through i-extensions and
s-extensions of feature sets in Viewpoint representation, through a depth-first search.
Figure 23 presents the inputs and outputs of the MGDP Discovery step. Next, we will
give details on the differences between the SPAM algorithm and the MGDP Discovery
algorithm.

Chapter 3. Tools and Methods 52

Discover
MGDPs

Vertical
Anticorpus

Subsumption
Tree

Min
RelSup

Distinctiveness
Threshold

MGDPs

Vertical
Corpus

Figure 23 – Fifth step of the MGDP algorithm

The first difference is that Conklin and Bergeron (2008) discard the Lexicographical
constraint of the Sequence Tree when expanding the search space. Giving more context, a
Subsumption Tree is different from a Sequence Tree (as in a Lexicographical Sequence
Tree) in the sense that the former’s nodes contains only (unordered) featuresets; while
the latter’s nodes contains (ordered) sequences of featuresets (compare Figure 22a with
Figure 11, for example).

The Subsumption Tree is used in the MGDP Discovery step to populate the set Ij

of all possible i-extensions of the node sj , for all nodes sj in the Sequence Tree. With this,
there is no need to use a Lexicographical constraint, since the Subsumption Tree already
guarantees that there won’t be any types of improper i-extensions such as multiple features
with the same viewpoint in one featureset. Also, since there are no nodes with an in-degree
greater than 1 in the Subsumption Tree, we can safely assume that no pattern will be
visited more than once, avoiding unnecessary calculations during the MGDP Discovery
step. Finally, by using the Subsumption Tree as reference for the i-extensions, since it is
populated based on only the existing unique featuresets of the SDB, the search space does
not contain any impossible combinations of features.

While Ayres et al. (2002) uses a Bitmap data structure to perform the i-extensions
and the s-extensions operations, Conklin and Bergeron (2008) mention that Instance Maps
are used, and Conklin (2010a) mention that Instance Lists are used. We presume that
both Instance Maps and Instance Lists refer to the same structure as the Bitmaps that
are used by Ayres et al. (2002), since no more details are given besides that these data
structures they are implemented as associative arrays (CONKLIN; BERGERON, 2008)
or hash maps (CONKLIN, 2010a) that maps each pattern and song to the positions of
occurrence of the patterns using boolean values. This means that, just as the Bitmaps
from Ayres et al. (2002), only the positions of the end of the sequential patterns are stored,
and not the positions of the individual events that compose the pattern.

Chapter 3. Tools and Methods 53

Another crucial difference - one that brings a major limitation to the original
MGDP algorithm - is that Conklin and Bergeron (2008) performs all s-extensions by
appending an empty featureset to the end of the pattern. As an example, supposing we have
a subsequence in viewpoint representation sj = ⟨{pcint : 3}⟩, an i-extension of sj could
be sa

j = ⟨{pcint : 3, dur : 1}⟩, while an s-extension of sj would be sb
j = ⟨{pcint : 3}, {}⟩.

The empty featureset might be present in the middle of the final MGDPs discovered and
outputted by the algorithm. When this occurs, it means that any event (i.e., note, chord,
or rest) would fit in that position of the pattern. But it also means that there must be
an event in that position of the pattern - while the original SPAM algorithm (AYRES et
al., 2002) is capable of finding patterns that are spaced by any number events between
them. Multiple empty featuresets could also be chained together, but it is also possible
to avoid this by hard-limiting the number of empty featuresets that might be present
in the patterns (CONKLIN, 2010a). One might also prohibit any empty featureset as a
component of the patterns (CONKLIN, 2010a). To perform the s-extension operation on
the bitmaps, Conklin and Bergeron (2008) apply an offset to the bitmap of the pattern.

One more difference of the MGDP Discovery from the original SPAM algorithm
is the measure of distinctiveness (CONKLIN, 2010a). After calculating the support of
a pattern in the corpus, if it is frequent it is also necessary to calculate the support of
the pattern in the anticorpus, to then calculate the distinctiveness of the pattern (using
either the Equation 4, or the Fisher’s Exact Test as mentioned in Section 3.2.4). Since
only MGDPs are sought, the search in a branch of the tree can be stopped as soon as a
distinctive pattern is found in that branch, since the first distinctive pattern found will
be also the most general pattern in the branch, as stated in Section 3.2.4, making it, by
definition, a MGDP.

54

4 Proposed Algorithms

4.1 MGDP Algorithms Implementations
Since there were no publicly available implementations of the original MGDP

algorithm used in (CONKLIN; BERGERON, 2008), (CONKLIN, 2010a), and (CONKLIN,
2013), we implemented 4 different algorithms from scratch and compared their performances.
In our implementations we modified the original MGDP algorithm slightly, to address two
opportunities of improvement:

1. If we want to highlight each note that composes the pattern in a song, we would
have to use a sequential search algorithm, after discovering the pattern.

2. If one song shares a pattern with other songs, but it has an additional note in-between
the pattern, then the original MGDP discovery algorithm would fail to recognize it on
this song. The original MGDP algorithm is able to find patterns with slight variations
using the “empty featureset” strategy, but even so, it only recognizes patterns in
sequences with same length. As an example, the original MGDP algorithm would
not recognize the pattern 5̂-1̂-5̂-3̂ in the second half of the SMW Swimming excerpt
(Figure 2b from Section 2.2), since there is an additional P1 in the middle of the
pattern.

To address the first opportunity of improvement, we designed a modification in
the base data structure of the algorithm. In 2 out of these 4 algorithms, we used the
same data structure as in (CONKLIN; BERGERON, 2008) and in (CONKLIN, 2010a),
which we believe is the same data structure that Ayres et al. (2002) used - the Bitmap,
which is described in more details in Section 2.5.1. In the other two algorithms, we used
a data structure that, to our best knowledge, was not previously reported as being used
for the Sequential Pattern Mining task. We call this data structure an InstanceMap
(not to be confused with the Instance Map from (CONKLIN; BERGERON, 2008), nor an
Instance List from (CONKLIN, 2010a). As mentioned in Section 3.2.5.5, we consider that
both Instance Maps and Instance Lists are the same as Bitmaps). In summary, instead of
storing whether a pattern occurs or not in a given position as a boolean, we store all the
positions in which each of the featuresets in the pattern occur, as a list of integers. We
give more details about the InstanceMap in Section 4.1.3.1.

To address the second opportunity of improvement, all 4 of our implementations
have a different tree traversal algorithm from the original MGDP discovery algorithm.
Instead of appending an empty featureset in every s-extension, we directly append a

Chapter 4. Proposed Algorithms 55

featureset with one feature (a viewpoint and its value) to the end of the sequence. The
set Σ of possible features to append to the end of the sequence is a constant given by
the successors of the root node of the Subsumption Graph. With this, we can use the
very same s-extension and i-extension algorithms as described in (AYRES et al., 2002).
This means that our algorithm will be able to consider that sequences might have any
number of events/featuresets in-between them, but still belonging to the same pattern,
given that the sequence fits all the pattern’s constraints. We implemented this method
with the Bitmap data structure, and applied modifications to work with the InstanceMap
data structure as well.

We also designed and implemented two alternate s-extension algorithms (one for the
Bitmaps and one for the InstanceMaps) that limits the maximum number of events that
might be present in-between the pattern. Differently from the original MGDP algorithm,
our alternate s-extension algorithms can take into consideration that sequences with
different lengths might still share the same pattern, even when limiting the number of
events in-between the pattern.

Table 9 summarizes the differences between the 4 algorithms that we used. All
these algorithms share a lot of functionality. Thus, to avoid code duplication, we followed
Software Engineering best practices, using a combination of the Strategy Design Pattern
and the Factory Design Pattern (GAMMA et al., 1996). We detail these 4 algorithms in
the following sub-sections. Apart from the differences that will be pointed in the next
sub-sections, the algorithm follows what is described in Section 3.2.5.

Table 9 – MGDP discovery algorithm combination of strategies
MGDP Discovery Algorithm Name Data Structure s-extension strategy

MGDP_Bitmap() Bitmap Any number of events
in-between the pattern

MGDP_Bitmap_limitMaxJumpSize(maxJumpSize) Bitmap Limit maximum number of events
in-between the pattern

MGDP_InstanceMap() InstanceMap Any number of events
in-between the pattern

MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize) InstanceMap Limit maximum number of events
in-between the pattern

4.1.1 MGDP_Bitmap()

This algorithm uses the Bitmap data structure and the i-extension and s-extension
methods exactly as described in (AYRES et al., 2002). This means that we do not
follow the s-extension strategy as done by Conklin and Bergeron (2008) and described in
Section 3.2.5.5 (i.e., append one empty featureset to the pattern during the s-extension,
and shift the bitmap to the right, to reflect the new end of the pattern). We perform the
bitwise-AND operation between the auxiliary bitmap of the pattern and the bitmap of

Chapter 4. Proposed Algorithms 56

the feature being appended to the end of the pattern. For more details, see Section 2.5.1.1
or (AYRES et al., 2002).

By following this s-extension strategy, we address the second opportunity of improve-
ment mentioned in Section 4.1. This implementation of the MGDP_Bitmap() algorithm
is capable of considering that sequences of different lengths might belong to the same
pattern, given that the sequences fills the requirements of the pattern, independently of
the number of events that might be between the events that compose the featuresets of
the pattern.

As an example, one MGDP that this algorithm was able to find is the pattern
consisting of diatonic intervals without quality 7̂-1̂-2̂-6̂-8̂ for the genre Femmes. This
pattern was detected in more than 84% of the songs of the genre, and was found to occur
26 times more often in the Femmes genre than in the combination of all other genres
(following Equation 4). We manually annotated this pattern for two songs in which this
pattern occurs. The annotated score is presented in Figure 24. Note the different number
of events (notes, rests, or chords) in-between the 2̂ and the 6̂ in both songs - in Figure 24a
we have 3 notes, while in Figure 24b we have only 2 notes. Also note that the first note of
the pattern is very far from the second note of the pattern, in both cases.

The MGDP_Bitmap() algorithm does not address the first opportunity of improve-
ment, since its base data structure is the Bitmap (see Section 2.5.1.1). This means that to
enable the pattern visualization of the example in Figure 24, we actually had to choose
two scores in which the pattern occurred, then manually scan through these two scores,
looking for each event of the pattern, and manually highlighting each one of the relevant
events. This had to be done after the algorithm finished running and outputted the found
MGDPs and the songs in which they occur.

4.1.2 MGDP_Bitmap_limitMaxJumpSize(maxJumpSize)

There might be cases when having big jumps between the occurrences of events of
a pattern is undesirable. For example, in Figure 24, we have a jump with the size of 10
events between the occurrence of the event 7̂ and the next occurrence of the event 1̂, in
both songs. Some musicologists might find this pattern uninteresting because of this big
space between the notes of the pattern, arguing that motifs and themes should be made of
events that are close to each other. To address this need, we modify the Bitmap s-extension
algorithm slightly, to set a limit of the number of events that might appear in-between the
occurrences events of the pattern (i.e., limit the maxJumpSize of a pattern).

When setting maxJumpSize = 0, the algorithm will only look for occurrences of
the pattern with continuous events - the pattern must be identical in the pieces. When
setting maxJumpSize = 1, the algorithm considers that there might be 0 or 1 events

Chapter 4. Proposed Algorithms 57

(a)

(b)

Figure 24 – Pattern 7̂-1̂-2̂-6̂-8̂, found by the MGDP_Bitmap() algorithm, manually anno-
tated in the two scores. Green notes indicate the first event of the pattern,
red notes indicate the last event of the pattern, and blue notes indicate the
rest of the occurrences of the events of the pattern.

Chapter 4. Proposed Algorithms 58

in-between any occurrence of the events of a pattern. Figure 25 demonstrates a pattern
found with maxJumpSize = 1. Note that both excerpts start from measure number 7.
Also, note that on Figure 25a, the pattern has a jump between the event with 5̂ and
6̂, while on Figure 25b, there is no such jump. However, our algorithm considers that
both pieces share the same pattern - which was not the case with the original MGDP
algorithm (CONKLIN; BERGERON, 2008; CONKLIN, 2010a; CONKLIN, 2013).

(a)

(b)

Figure 25 – Pattern found by the MGDP_Bitmap_limitMaxJumpSize(maxJumpSize)
algorithm with maxJumpSize = 1, manually annotated in the two scores’
excerpts. Depicts the pattern 2̂-3̂-5̂-6̂-8̂, Green notes indicate the first event of
the pattern, red notes indicate the last event of the pattern, and blue notes
indicate the rest of the occurrences of the events of the pattern.

4.1.2.1 Bitmap s-extension with maxJumpSize - the Bitmatrix

We designed a novel algorithm capable of limiting the jump size during the s-
extension, while using Bitmaps, and still retaining the property to address opportunity
of improvement number 2. This algorithm uses what we called a Bitmatrix, which is
a stack of Bitmaps, combined row-wise (i.e., each row of the Bitmatrix corresponds to
one Bitmap). All Bitmaps in a Bitmatrix derive from the same root Bitmap, but each
of them is shifted to the right by i + 1 bits, being i the zero-based row index of the
corresponding Bitmap in the Bitmatrix. The number of rows in the Bitmatrix is equal to
maxJumpSize + 1. For example, suppose we have a root Bitmap [0, 1, 0, 0, 1], and that
we have maxJumpSize = 1; the corresponding Bitmatrix would be

[
0 0 1 0 0
0 0 0 1 0

]
.

Chapter 4. Proposed Algorithms 59

The s-extension algorithm is very similar to the one used originally by (AYRES et
al., 2002) (described in Section 2.5.1.1). The key difference is in how we derive the auxiliary
bitmap. The Bitmatrix corresponding to the existing pattern is converted into our new
auxiliary bitmap. To do so, we perform a row-by-row bitwise-OR operation with all rows
of the Bitmatrix. In our example, the resulting auxiliary bitmap would be [0, 0, 1, 1, 0].
Finally, we perform a bitwise-AND operation of the resulting auxiliary bitmap with the
feature bitmap that is being appended through the s-extension, just like the original SPAM
algorithm does.

4.1.3 MGDP_InstanceMap()

Both of the implementations using the Bitmap data structure fail to address the first
opportunity of improvement mentioned in Section 4.1. We designed a new data structure
that can be used as a replacement for the Bitmap that solves the first opportunity of
improvement. We call this new data structure an InstanceMap. As the name suggests, the
MGDP_InstanceMap() algorithm is based on the InstanceMap, which is described next.

4.1.3.1 The InstanceMap

We define an InstanceMap as a list of lists of integers. E.g.,
[
[0, 3, 5], [2, 3, 5], [6, 8, 12]

]
could be an InstanceMap. One InstanceMap refers to all the occurrences of a sequential
pattern in a sequence. Each inner list refers to an occurrence of the pattern. And each
integer in the inner lists refers to an event of the pattern. The integers map the position
of the events related to the pattern.

As an example, suppose we have a sequence S = ⟨{a, b}, {c}, {f, g}, {g}, {d}⟩ and
we want to make an InstanceMap of the pattern s1 = ⟨{c}, {g}, {d}⟩. If we use zero-based
indexing, the featureset {c} would be present in the position 1 of S, {g} would be present
both in positions 2 and 3, and {d} would be present in the position 4. This means that we
would have two occurrences of the pattern, and the InstanceMap of the pattern s1 would
be

[
[1, 2, 4], [1, 3, 4]

]
. The featureset {g} appears twice in the sequence, and both times it

appears after the preceding featuresets of the pattern ({c}), so we have two inner lists in
our InstanceMap - each one corresponding to one occurrence of the pattern.

Note that the number of elements in the inner lists of the InstanceMap correspond
to the number of featuresets in the pattern. E.g., if s2 = ⟨{a, b}, {f}⟩, then the InstanceMap
of pattern s2 would be

[
[0, 2]

]
. Lastly, if a pattern does not occur in the sequence, then the

InstanceMap corresponds to an empty list. E.g., the InstanceMap of pattern s3 = ⟨{g}, {a}⟩
would be

[]
.

Chapter 4. Proposed Algorithms 60

4.1.3.2 InstanceMap i-extension

Since we are now using InstanceMaps instead of Bitmaps, we need a different
strategy to perform the i-extension operation. Recall that the i-extension objective is to
explore the occurrence of a new pattern, by appending a feature to the last featureset of
an already explored pattern. For example, if we want to to apply an i-extension to the
pattern s1 = ⟨{a, b}, {c}⟩ with the feature f1 = a, then the result would be the pattern
s2 = ⟨{a, b}, {c, a}⟩. With the InstanceMap of the feature f1 and the InstanceMap of the
already visited pattern s1, we should be able to infer a new InstanceMap for the new
pattern s2 without the need of scanning through the whole Sequence again.

The i-extension with InstanceMaps algorithm’s pseudocode is presented in Algo-
rithm 1. In summary, our algorithm to perform an i-extension with InstanceMaps works as
follows: given a list of positions of occurrences of a feature, check if any of these positions
coincides with the position of occurrence of the last featureset of the pattern. We make
this check for every occurrence of the pattern, and for every occurrence of the feature. An
implementation1 of the algorithm is presented in Code 1. Note that the input parameter
flattened_feature_instanceMap is actually a list of integers, instead of being a list of lists of
integers like the pattern_instanceMap. The InstanceMap of a feature will always contain inner
lists with only one integer, (e.g.,

[
[0], [2], [6], [8]]

]
). Thus, to facilitate the computation of

the algorithm, we can first flatten the feature InstanceMap to be just a list of integers
(e.g.,

[
0, 2, 6, 8

]
).

Algorithm 1 The i-extension algorithm for InstanceMaps
Input: pattern_instanceMap ▷ List of list of integers
Input: flattened_feature_instanceMap ▷ List of integers
Output: new_pattern_instanceMap ▷ List of list of integers

function IExtension(pattern_instanceMap, flattened_feature_instanceMap)
new_pattern_instanceMap← NewList()
for each pattern_occurrence in pattern_instanceMap do

if Last item of pattern_occurrence exists in flattened_feature_instanceMap then
AddItem(new_pattern_instanceMap, pattern_occurrence)

end if
end for

return new_pattern_instanceMap
end function

As an example, suppose we have a sequence S = ⟨{a, b}, {c}, {f, g}, {g}, {d}⟩, an
already visited pattern s0 = ⟨{c}, {g}⟩, and we want to perform an i-extension of s0

with the feature f . The resulting pattern will be s1 = ⟨{c}, {g, f}⟩. Now we need to
compute the new pattern InstanceMap. We have pattern_instanceMap =

[
[1, 2], [1, 3]

]
and

1 Our real implementation actually uses Python-specific concepts (such as List Comprehensions and
frozensets), and the function is actually implemented as a class method. However, to ease the under-
standing of the algorithm, we present a simplified implementation

Chapter 4. Proposed Algorithms 61

Code 1 – Python implementation of the i-extension operation with InstanceMaps
1 def get_i_extension_instanceMap(
2 pattern_instanceMap: list[list[int]],
3 flattened_feature_instanceMap: list[int]
4) -> list[list[int]]:
5
6 new_pattern_instanceMap = []
7 for pattern_occurrence in pattern_instanceMap:
8 position_of_last_featureset_of_occurrence = pattern_occurrence[-1]
9 if position_of_last_featureset_of_occurrence in flattened_feature_instanceMap:

10 new_pattern_instanceMap.append(pattern_occurrences)
11
12 return new_pattern_instanceMap

flattened_feature_instanceMap =
[
2

]
. For each inner list of integers in pattern_instanceMap we

check if its last element is present in the list given by flattened_feature_instanceMap. The
last element in the first inner list [1, 2] is 2, and is present in flattened_feature_instanceMap,
so we add the inner list to the new_pattern_instanceMap. For the second inner list [1, 3], its
last element (3) is not present in flattened_feature_instanceMap, so this inner list is not
appended to the new pattern InstanceMap. As a result, the new pattern InstanceMap
will be new_pattern_instanceMap =

[
[1, 2]

]
. Observe that the result is consistent with what

was expected: the InstanceMap of the new pattern s1 = ⟨{c}, {g, f}⟩ indicates that the
featureset {c} occurs in position 1 of S, and that the featureset {g, f} occurs in position
2 of S (recall that a featureset is unordered). Each inner list corresponds to one pattern
occurrence, so we also know there is one and only one occurrence of the sequential pattern
s1 in S.

4.1.3.3 InstanceMap s-extension

To perform a s-extension with InstanceMaps we need to compare the positions
of occurrence of the feature with the position of the last featureset of the pattern oc-
currences. If the position of occurrence of the feature is greater than the position of
the last featureset of the pattern occurrence, we append that position of the feature to
the inner list corresponding to the pattern occurrence. For example, suppose we have a
sequence S = ⟨{a, b}, {c}, {f, g}, {g}, {d}⟩, an already visited pattern s0 = ⟨{c}, {g}⟩, and
we want to perform a s-extension of s0 with the feature d. Our new pattern will be s0 =
⟨{c}, {g}, {d}⟩. We have pattern_instanceMap =

[
[1, 2], [1, 3]

]
and flattened_feature_instanceMap

=
[
4

]
. The position of the last featureset of the first pattern occurrence is 2, and 4 is

bigger than 2, so we append 4 to the inner list [1, 2], resulting in the list [1, 2, 4]. The
same is true for the second pattern occurrence, resulting in the list [1, 3, 4]. These two new
inner lists compose the resulting InstanceMap of the new pattern: new_pattern_instanceMap

=
[
[1, 2, 4], [1, 3, 4]

]
.

Algorithm 2 presents the pseudocode for the s-extension with InstanceMaps, and

Chapter 4. Proposed Algorithms 62

Code 2 – Python implementation of the s-extension operation with InstanceMaps
1 def get_s_extension_instanceMap(
2 pattern_instanceMap: list[list[int]],
3 flattened_feature_instanceMap: list[int]
4) -> list[list[int]]:
5 new_pattern_instanceMap = []
6
7 for position_of_feature_occurrence in flattened_feature_instanceMap:
8 for pattern_occurrence in pattern_instanceMap:
9 position_of_last_featureset_of_occurrence = pattern_occurrence[-1]

10 if (
11 position_of_feature_occurrence >
12 position_of_last_featureset_of_occurrence
13):
14 new_pattern_occurrence = pattern_occurrence.copy()
15 new_pattern_occurrence.append(position_of_feature_occurrence)
16
17 new_pattern_instanceMap.append(new_pattern_occurrence)
18 return new_pattern_instanceMap

Code 2 presents one possible implementation for this algorithm. Observe that we apply a
complete scan through the two lists - the pattern InstanceMap and the feature InstanceMap.
This algorithm could probably be optimized by leveraging the fact that the InstanceMaps
are semi-ordered. Nonetheless, for simplicity, we used the algorithm as it is presented.

Algorithm 2 The s-extension algorithm for InstanceMaps
Input: pattern_instanceMap ▷ List of list of integers
Input: flattened_feature_instanceMap ▷ List of integers
Output: new_pattern_instanceMap ▷ List of list of integers

function SExtension(pattern_instanceMap, flattened_feature_instanceMap)
new_pattern_instanceMap← NewList()
for each position_of_feature_occurrence in flattened_feature_instanceMap do

for each pattern_occurrence in pattern_instanceMap do
position_of_last_featureset_of_occurrence← Last item of pattern_occurrence
if position_of_feature_occurrence is less than position_of_last_featureset_of_occurrence then

new_pattern_occurrence← position_of_feature_occurrence
AddItem(new_pattern_occurrence, pattern_occurrence)
AddItem(new_pattern_instanceMap, new_pattern_occurrence)

end if
end for

end for

return new_pattern_instanceMap
end function

4.1.3.4 MGDP_InstanceMap() output

The MGDP_InstanceMap() algorithm outputs exactly the same MGDPs as the
MGDP_Bitmap() algorithm, as expected. However, as mentioned in the beginning of
Section 4.1, the InstanceMap approach enables the MGDP algorithm to output the position
of the events of the pattern, enabling us to automatically highlight the notes in the score,
addressing the opportunity of improvement number 1.

Chapter 4. Proposed Algorithms 63

We implemented the automatic generation of annotated MusicXML files with
excerpts of the pieces of music in which the patterns occur, presenting not only what
is the pattern itself, but also an example of this pattern, highlighting each event of the
pattern and presenting the corresponding viewpoints and their values - without any human
intervention. Figure 26 shows an example of a pattern found by the MGDP_InstanceMap()
algorithm, which was automatically generated as a MusicXML file, and visualized in the
MuseScore software. Note that, by design, the algorithm only outputs the measures relevant
to the pattern occurrence, trimming the measures that appear before the beginning or
after the end of the pattern occurrence. The note heads’ colors and the textboxes with the
viewpoints and their values are automatically generated and positioned. The textboxes’
x-axis’ centers are aligned with the end of the measure of the events that they correspond
to.

Figure 26 – Automatically annotated score output from the MGDP_InstanceMap() al-
gorithm, visualized in MuseScore 4. Green notes indicate the first event of
the pattern, red notes indicate the last event of the pattern, and blue notes
indicate the rest of the occurrences of the events of the pattern.

4.1.4 MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize)

Similar to the MGDP_Bitmap_limitMaxJumpSize(maxJumpSize) algorithm (Sec-
tion 4.1.2), we implemented an InstanceMap variation to limit the number of events that
might appear in-between the occurrences of events of a pattern. The MGDPs found with
this new MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize) algorithm are the same

Chapter 4. Proposed Algorithms 64

as the ones found by the MGDP_Bitmap_limitMaxJumpSize(maxJumpSize) algorithm,
but it has the advantage of addressing opportunity of improvement number 1 as well.
Figure 27 presents an output of the algorithm, which corresponds to exactly the same
MGDP depicted in Figure 25, but which was generated automatically by the algorithm,
without any human intervention.

Figure 27 – Output from the MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize)
algorithm, with maxJumpSize=1, visualized in MuseScore 3. Depicts the
automatically annotated score. Each box corresponds to one event. Boxes are
stacked up vertically from top down, corresponding to the order in which their
associated events appear. Green notes indicate the first event of the pattern,
red notes indicate the last event of the pattern, and blue notes indicate the
rest of the occurrences of the events of the pattern.

To make this modification, we need to design a new s-extension algorithm using
the InstanceMaps. This algorithm is presented in Algorithm 3. In this new algorithm,
instead of just checking whether the position of occurrence of the feature is greater than
the position of the last featureset of the pattern occurrence, we need to also check if
the position of the feature is not greater than the maximum position stipulated by the
maxJumpSize. Compare the if-statement in lines 10-13 of Code 2 with the if-statement in
lines 11-15 of Code 3. In Code 3 we have added the check position_of_feature_occurrence

<= (position_of_last_featureset_of_occurrence+1+maxJumpSize). Notice that apart from the new
parameter maxJumpSize, the algorithm is the same in both cases, apart from the if-statements.

As an example, suppose we have a sequence S = ⟨{a, b}, {c}, {f, g}, {g}, {d}⟩, an
already visited pattern s0 = ⟨{a, b}, {c}⟩, and we want to perform a s-extension on s0

adding the feature d. The resulting new pattern would be s1 = ⟨{a, b}, {c}, {d}⟩. We have

Chapter 4. Proposed Algorithms 65

Algorithm 3 The s-extension algorithm for InstanceMaps, limiting the maxJumpSize
Input: pattern_instanceMap ▷ List of list of integers
Input: flattened_feature_instanceMap ▷ List of integers
Input: maxJumpSize ▷ Integer
Output: new_pattern_instanceMap ▷ List of list of integers

function SExtension(pattern_instanceMap, flattened_feature_instanceMap, maxJumpSize)
new_pattern_instanceMap← NewList()
for each position_of_feature_occurrence in flattened_feature_instanceMap do

for each pattern_occurrence in pattern_instanceMap do
position_of_last_featureset_of_occurrence← Last item of pattern_occurrence
if (position_of_feature_occurrence is less than position_of_last_featureset_of_occurrence) and

(position_of_feature_occurrence is greater than or equal to (position_of_last_featureset_of_occurrence + 1
+ maxJumpSize)) then

new_pattern_occurrence← position_of_feature_occurrence
AddItem(new_pattern_occurrence, pattern_occurrence)
AddItem(new_pattern_instanceMap, new_pattern_occurrence)

end if
end for

end for

return new_pattern_instanceMap
end function

Code 3 – Python implementation of the s-extension operation with InstanceMaps, limiting
the maxJumpSize

1 def get_s_extension_instanceMap(
2 pattern_instanceMap: list[list[int]],
3 flattened_feature_instanceMap: list[int],
4 maxJumpSize: int
5) -> list[list[int]]:
6 new_pattern_instanceMap = []
7
8 for position_of_feature_occurrence in flattened_feature_instanceMap:
9 for pattern_occurrence in pattern_instanceMap:

10 position_of_last_featureset_of_occurrence = pattern_occurrence[-1]
11 if (
12 position_of_last_featureset_of_occurrence <
13 position_of_feature_occurrence <=
14 (position_of_last_featureset_of_occurrence + 1 + maxJumpSize)
15):
16 new_pattern_occurrence = pattern_occurrence.copy()
17 new_pattern_occurrence.append(position_of_feature_occurrence)
18
19 new_pattern_instanceMap.append(new_pattern_occurrence)
20 return new_pattern_instanceMap

Chapter 4. Proposed Algorithms 66

pattern_instanceMap =
[
[0, 1]

]
, and flattened_feature_instanceMap =

[
4

]
. Suppose we also set

maxJumpSize = 1 (meaning that there might exist at most 1 event in-between the events that
occur in a pattern). Thus, (position_of_last_featureset_of_occurrence+1+maxJumpSize) = 3. Since
position_of_feature_occurrence = 4, we have 4 > 3, and thus the new pattern’s InstanceMap
will be the empty list

[]
. This makes sense, since we have two events between the event

{c} and the event {d} in S (the events {f, g} and {g}), so the jump between the events
{c} and the event {d} is 2 > maxJumpSize = 1, making this occurrence of the pattern
to be discarded during the computation of the new InstanceMap.

67

5 Experimental Setup

5.1 Dataset
During the development of this work, we could not gather a dataset of digitized

sheet music that were reliably labeled by emotion. However, an algorithm that is capable
of mining patterns in any dataset of labeled music sheets is also capable of mining patterns
in a dataset labeled by emotion. Thus, to conduct this research we used a public dataset
named MTC-ANN-2.0.1 (KRANENBURG; JANSSEN; VOLK, 2016) - hereinafter called
MTC.

The MTC dataset consists of a collection of 360 dutch folk songs in MusicXML
format, labeled by their genre1, with 26 genres available. Table 10 presents all 26 genres,
the abbreviations used hereinafter, and the number of samples of each genre in the dataset.

Table 10 – MTC dataset’s genres, genres abbreviations, number of songs in each genre,
and average(±standard deviation) number of events per song, grouped by genre

Genre Genre abbreviation #Samples Avg. #events
(±std)

Daar_ging_een_heer_1 Heer 16 42.9(±2.9)
Daar_reed_een_jonkheer_1 Jonkheer 12 39.9(±8.0)
Daar_was_laatstmaal_een_ruiter_2 Ruiter2 17 54.5(±12.5)
Daar_zou_er_een_maagdje_vroeg_opstaan_2 Maagdje 10 55.8(±10.0)
Een_Soudaan_had_een_dochtertje_1 Dochtertje 13 45.5(±10.2)
Een_lindeboom_stond_in_het_dal_1 Lindeboom 9 33.2(±1.3)
En_er_waren_eens_twee_zoeteliefjes Zoeteliefjes 16 43.6(±4.8)
Er_reed_er_eens_een_ruiter_1 Ruiter1 27 49.8(±14.5)
Er_was_een_herderinnetje_1 Herderinnetje 11 86.3(±2.0)
Er_was_een_koopman_rijk_en_machtig Koopman 17 55.9(±3.6)
Er_was_een_meisje_van_zestien_jaren_1 Meisje 15 34.2(±6.8)
Er_woonde_een_vrouwtje_al_over_het_bos Vrouwtje 12 68.5(±14.0)
Femmes_voulez_vous_eprouver Femmes 13 66.9(±21.4)
Heer_Halewijn_2 Halewijn2 11 35.6(±2.1)
Heer_Halewijn_4 Halewijn4 11 32.9(±4.2)
Het_vrouwtje_van_Stavoren_1 Stavoren 8 64.0(±8.6)
Het_was_laatst_op_een_zomerdag Zomerdag 17 39.8(±2.1)
Het_was_op_een_driekoningenavond_1 Driekoningenavond 12 45.8(±9.9)
Ik_kwam_laatst_eens_in_de_stad Stad 18 37.2(±1.8)
Kom_laat_ons_nu_zo_stil_niet_zijn_1 Stil 11 74.0(±9.5)
Lieve_schipper_vaar_me_over_1 Schipper 15 40.1(±9.1)
O_God_ik_leef_in_nood Nood 8 80.1(±20.2)
Soldaat_kwam_uit_de_oorlog Soldaat 17 56.7(±10.2)
Vaarwel_bruidje_schoon Bruidje 11 58.2(±8.7)
Wat_zag_ik_daar_van_verre_1 Verre 15 42.7(±9.0)
Zolang_de_boom_zal_bloeien_1 Boom 18 45.3(±9.4)

Source: adapted from (KRANENBURG; JANSSEN; VOLK, 2016)

1 Musicologists believe that a lot of dutch folk songs share the same base song, but due to oral tradition
the base songs went through successive modifications, until they became new songs altogether. The
songs in the MTC dataset are clustered according to what the musicologists believe are songs that
share the same base song, and these clusters are called tune families. Thus, the genre is actually the
tune family of the song. (KRANENBURG; WIERING; VOLK, 2013)

Chapter 5. Experimental Setup 68

The MTC dataset is distributed in the Humdrum **kern format. Thus, we made a
simple Python script that converts the songs into MusicXML format using the converter
included in the Music21 toolkit. This script ran only once, and converted the files in
parallel using concurrent programming, taking just a few minutes to complete.

The MTC dataset also comes with a set of pattern annotations, discovered manually
by humans. However, these annotations are found as intra-opus patterns instead of inter-
opus. So, as also noted by (KRANENBURG; CONKLIN, 2016), these annotations are not
ideal for usage as a ground-truth for inter-opus pattern discovery algorithms. Thus, in our
work, we disregard these annotations.

All songs contain only the vocal part and the lyrics. Table 10 shows the distribution
of musical events (i.e., notes, rest, or chords) per song, grouped by each genre. The songs
are relatively short (avg. 49.9± 16.4 events).

5.2 Implemented Viewpoints
We implemented some viewpoints for the experiments. We have not exhausted the

list of possible viewpoint implementations, as finding the optimal viewpoints is not in the
scope of this project. The implemented viewpoints are described as follows:

• isRest: indicates whether the event is a rest.

• durationQuarterLength: the duration of the event as a ratio of quarter notes.
For example, a quarter note has durationQuarterLength = 1. An eight note has
durationQuarterLength = 0.5. A half rest has durationQuarterLength = 2.

• relativeDuration: the durationQuarterLength divided by the value of the denomi-
nator of the time signature in quarter lengths.

• diatonicInterval: the interval between the tonic of the piece and the event. E.g., if
the tonic is a C, and the event is a D♯, then the diatonicIntervalNoQuality = M2.

• diatonicIntervalNoQuality: the interval between the tonic of the piece and the
event, but with the quality of the interval discarded. E.g., if the tonic is a C, and
the event is a D♯, then the diatonicIntervalNoQualit = 2.

• contour_pitch: the sign of the difference in pitch between the previous note and the
current note event. E.g., if the previous note has a MIDI pitch value of 52, and the
current note event has a MIDI pitch value of 49, then contour_pitch = −, since the
current pitch is smaller than the previous pitch. If both notes are the same, then
contour_pitch = =.

Chapter 5. Experimental Setup 69

• contour_duration: the sign of the difference in duration (in quarter lengths) be-
tween the previous event and the current event. E.g., if the previous event was a
quarter rest, and the current event is a half note, then the duration increased, so
contour_duration = +.

We have not found any descriptions in the literature regarding the use of something
as the relativeDuration as a feature to analyze rhythmic patterns. Figure 28 gives an
example of where the relativeDuration viewpoint could be useful: in Figure 28a we
have a 4/4 time signature and a 260bpm tempo, while in Figure 28b we have a 4/8
time signature and a 130bpm. Although these two scores are written differently, they
sound exactly the same. The first three notes in Figure 28a are quarter notes, so their
durationQuarterLength = 1, and the time signature’s quarter length value is also 1, so
their relativeDuration = 1

1 = 1. In Figure 28b, the first three notes are eight notes, so their
durationQuarterLength = 0.5, and the time signature’s quarter length value is also 0.5, so
their relativeDuration = 0.5

0.5 = 1. The whole note in Figure 28a has relativeDuration =
4
1 = 4, while the half note in Figure 28b has relativeDuration = 2

0.5 = 4. In conclusion,
by dividing the quarter length value of each event by the time signature’s denominator we
have a way to compare both song’s rhythmic structure in a fair way: even with different
duration values, both songs have the same relativeDuration for all events.

The advantage of this approach over the dr (duration ratio) from Conklin and
Bergeron (2008) is that, by using the time signature’s denominator as an anchor, we have a
way to compare one song with another even if they have different time signatures, without
depending on the previous event value. The property of rightfully comparing one song
with another even if they are written in different time signatures (or key signatures) is of
utmost importance, since we are dealing with the inter-opus pattern discovery task.

Regarding the diatonicInterval and the diatonicIntervalNoQuality, both of them
use the tonic (a.k.a. tonal centar) of the piece in their computation. These viewpoints
are similar to the intfref viewpoint from (CONKLIN; WITTEN, 1995), but with a
key difference in how they compute the pedal/root/tonic/bass drone note. The intfref

viewpoint by (CONKLIN; WITTEN, 1995) use the key signature to determine what is
the tonic of the piece (which is called the referent by (CONKLIN; WITTEN, 1995)).
However, we realized that songs that are converted from MIDI to MusicXML are usually
annotated with an atonal key signature (which would be interpreted as C Major). Also,
humans might annotate keys wrongly, especially when transcribing by ear. Lastly, the
key signature might be selected due to the easiness in reading the score, minimizing the
number of accidentals; however, there might be cases in which the songs are in modes
different than Ionian or Aeolian, which would cause confusion in the determination of
the root note only by the key signature. Thus, we decided to use the Bellman-Budge’s
Automatic Key Analysis (BELLMANN, 2005) method to automatically determine the key

Chapter 5. Experimental Setup 70

(a)

(b)

Figure 28 – Introduction riff from Beethoven’s 5th Symphony written with two different
time signatures, but sounding exactly the same

signature from the pieces, using music21’s implementation. It is noteworthy reinforcing
that our objective by using the Bellman-Budge’s algorithm is not to determine the key of
the music pieces, but only their tonic, so that we can calculate the interval between the
tonic and the current event. The Bellman-Budge’s algorithm method to find keys is to
find the most prominent notes in the song, so this algorithm is fit for the task of finding
the tonic.

5.3 Experiments
We setup our experiments to answer the following Research Questions:

• RQ1: Does limiting the maximum number of jumps between events of a pattern
results in more interesting patterns in the musicological aspect?

• RQ2: Which data structure (Bitmap or InstanceMap) is the most efficient in terms
of memory consumption and processing time?

To answer these research questions we implemented the algorithms described in
Section 4.1, based on the MGDP algorithm described in Section 3.2.5, and applied them
to the dataset described in Section 5.1. We permuted the input hyper-parameters of the
MGDP algorithm (indicated in Figure 29). Note that we added two hyper-parameters
that were not previously implemented by (CONKLIN, 2010a) - the Max Jump Length
(equivalent to the maxJumpSize described in Section 4.1.2), and the Maximum Pattern

Chapter 5. Experimental Setup 71

Length (to limit the maximum number of events that can compose a pattern - a way to
avoid very long processing times).

Read XML and
Apply

Viewpoints

MusicXML
Files SDB Verticalize

SDBs

Create
Subsumption

Tree

Vertical
Corpus Discover

MGDPsSplit SDB

Corpus

Anticorpus

Vertical
Anticorpus

Subsumption
Tree

Viewpoints

Min
RelSup

Distinctiveness
Threshold

MGDPs

Labels

Maximum
Pattern Length

Max Jump
Length

Figure 29 – Complete block diagram representing the implemented MGDP algorithm.
Blocks are steps of the algorithm, and arrows indicate the input hyper-
parameters of the algorithm and the outputs from each step

We did not implement the I-Step Pruning nor the S-Step Pruning from the SPAM
algorithm (AYRES et al., 2002). This does not affect the results, though. Conklin and
Bergeron (2008) also do not mention using this feature from the original SPAM algorithm
in their implementation.

We also did not prune the Subsumption Graph into a Subsumption Tree (as done
by Conklin and Bergeron (2008) and described in Section 3.2.5.4). We did implement the
pruning algorithm, and the tree was correctly generated, but for some unknown reason,
the number of MGDPs found were not deterministic when we followed this approach. This
became evident when dealing with many viewpoints and long patterns. Thus, we decided to
use the unpruned Subsumption Graph as the source of the set Ij of possible i-extensions of
the nodes. To avoid visiting the same pattern more than once, after generating the extended
pattern, and before calculating the new pattern’s Bitmap/InstanceMap, we instead do
a check if the pattern already exists in our Sequence Tree. Since the Sequence Tree is
actually implemented as a hash map, looking for the existence of a pattern is O(1), so it
does not hinder the performance of the algorithm too much. Further investigation needs
to be done to determine if this results’ stochasticity was produced by an implementation
bug, or by a flaw in the algorithm.

5.4 Hardware and Software
To perform our experiments, we setup a containerized development environment

using the Docker platform, with a PySpark image2. Most of our experiments were done on
a single-node machine with 32GB RAM and 4 CPU cores, but some experiments were
also done on another single-node machine with 8GB RAM and 8 CPU cores. We use the
PySpark framework only for the 4 initial steps of the algorithm - which do not take many
2 https://hub.docker.com/r/jupyter/pyspark-notebook

Chapter 5. Experimental Setup 72

computational resources when compared to the actual MGDP Discovery step - so we
refrain ourselves of doing any analysis regarding the number of CPU cores in this work.

Our algorithm was implemented using various Python third-party libraries, includ-
ing:

• NetworkX3, for the Subsumption Graph and Subsumption Tree creation;

• NumPy4, for dealing with Bitmaps and Bitmatrices;

• Music215, for reading the MusicXML dataset, applying the viewpoints, and out-
putting the patterns as highlighted MusicXML scores;

• SciPy6, for performing the Fisher’s Exact Test as a measure of distinctiveness.

We also used several other internal Python libraries (e.g., functools, dataclasses, abc, math)
for other tasks.

To perform our results’ analyses, we used the Pandas7 framework and the Plotly8

library for the exploratory data analysis and the data visualization. We also used the
SciPy library to perform statistical analyses on the results.

3 https://networkx.org/
4 https://numpy.org/
5 http://web.mit.edu/music21/
6 https://scipy.org/
7 https://pandas.pydata.org/
8 https://plotly.com/python/plotly-express/

73

6 Results and Discussion

In this section we will present the results from our analyses, aiming to answer the
Research Questions raised in Section 5.3.

6.1 RQ1
To answer RQ1 (i.e., “Does limiting the maximum number of jumps between events

of a pattern results in more interesting patterns in the musicological aspect?”) we sent
some of the patterns discovered to a musicologist, so that they could analyze them. One
of the patterns that the musicologist analyzed was the one depicted in Figure 30, which
was discovered by using the MGDP_InstanceMap() algorithm (i.e., without setting a
maxJumpSize).

The feedback we received was that there was not much “musical logic” in the
patterns discovered, and that the patterns presented “quite random musical fragments
with elements that could appear in any musical style”. The musicologist understood what
the algorithm was capable to do, but they mentioned that they did not understand what
they could do with the patterns discovered.

We believe that this feedback could be due to two main reasons:

1. The combination of various viewpoints in one pattern. E.g., isRest, contour_pitch

and contour_duration in Figure 30;

2. The big jumps between notes that compose the pattern. E.g., the many events between
the first (blue) rest and the second (green) rest in Figure 30a and Figure 30b.

These two characteristics of the patterns sent to the musicologist could mean that the
patterns discovered are not “hearable”. It is indeed hard to imagine what the pattern
⟨{isRest T rue}, {isRest T rue}, {contour_pitch =, contour_duration =}, {contour_duration =, contour_pitch −}⟩

sounds like, especially when this pattern can occur with any number of events in between
them. In fact, even by playing these piece’s excerpts one after another, and visually
following the pattern’s notes, this pattern is still not obvious to the listener.

To test the hypothesis that these two characteristics are what deems the pattern as
musically irrelevant, we analyzed patterns discovered by the MGDP _InstanceMap_limitMaxJumps()

algorithm, with maxJumpSize = 1. The first pattern we analyzed was the one de-
picted in Figure 31. The pattern was present in more than 92% of the pieces of the
genre Femme, but in Figure 31 we show it in only 3 pieces. It was also found to be

Chapter 6. Results and Discussion 74

(a)

(b)

(c)

Figure 30 – One of the patterns sent to be analyzed by the musicologist

more than 45-fold over-represented in the genre Femme than in the combination of all
other genres. This pattern contains only one viewpoint (diatonicIntervalNoQuality),

Chapter 6. Results and Discussion 75

and has maxJumpSize = 1. We have set the algorithm’s hyper-parameters as follows:
MIN_REL_SUP = 0.9, DISTINCTIV ENESS_THRESOLD = 29 (using the Raw
Distinctiveness), and MAX_PATTERN_LENGTH = 7. This pattern is much easier
to visualize and understand than the one depicted in Figure 30. In fact, by hearing this
pattern, it becomes obvious how they are very similar in the 3 pieces depicted (and in
9 other pieces of the genre Femme, in which this pattern was also present). Note that
even by having songs with different keys, the same pattern applies, and it is still easy to
recognize the pattern by visualizing it in the score and by hearing it - Figure 31c is on a
E♭ Major key, while the other two are on a G Major key.

To further confirm our hypothesis, we analyzed the pattern depicted in Figure 32,
which was discovered using the same algorithm with maxJumpSize = 1, but with 3
viewpoints instead of 1. The algorithm’s parameters were also the same, apart from the
Maximum Pattern Length, which was set to 4. This pattern was also present in over 92%
pieces of the genre Femme, and was 29-fold over-represented in the corpus than in the
anticorpus. Although this pattern is more recognizable than the pattern from Figure 30,
we find that it presents more cognitive complexity than the one from Figure 31, which
might limit its usefulness.

All patterns from Figures 30, 31 and 32 share similar measures of relSup, Raw
Distinctiveness (∆), and number of events (4 and 5), but they have varying degrees of
complexity. Unfortunately, we did not find a way to objectively measure which of these
patterns is the most recognizable and interesting in the musicological aspect. However, to
answer RQ1, after analyzing these patterns we do believe that, in general, limiting the
number of jumps between events of a pattern results in more interesting patterns. This
answer also depends on what is the purpose of the algorithm: if the objective is finding
motifs, recurring phrases, or themes, then limiting the number of patterns might indeed
be interesting; however, if the objective is to find patterns in song structure, then limiting
the number of jumps between events of a pattern might not be ideal.

6.2 RQ2
We will break RQ2 (i.e., “Which data structure (Bitmap or InstanceMap) is the most

efficient in terms of memory consumption and processing time?”) into two sub-questions,
which will be answered in the following subsections:

1. Which Data Structure is the most efficient when setting the maxJumpSize?

2. Which Data Structure is the most efficient when using the algorithms that do not
set maxJumpSize?

Chapter 6. Results and Discussion 76

(a)

(b)

(c)

Figure 31 – Pattern outputted by the MGDP_InstanceMap_limitMaxJumps() algo-
rithm, with maxJumpSize = 1, with only one viewpoint

6.2.1 Setting maxJumpSize

We ran the MGDP_Bitmap_limitMaxJumpSize() and the MGDP_InstanceMap_limitMaxJumpSize()

algorithms pairwise, varying the hyper-parameters each time, and pairing the runs with

Chapter 6. Results and Discussion 77

(a)

(b)

(c)

Figure 32 – Pattern outputted by the MGDP_InstanceMap_limitMaxJumps() algo-
rithm, with maxJumpSize = 1, but with 3 viewpoints

Chapter 6. Results and Discussion 78

the same hyper-parameters settings from each Data Structure, to analyze them using
the Wilcoxon’s non-parametric statistical significance test. In total, we ran 20 pairwise
comparisons (summing up to 40 MGDP Discovery runs).

Figure 33 depicts the box plot distributions of the execution time of the algorithms’
runs. The two-tailed paired Wilcoxon’s tests resulted in p = 0.000002 < 0.05 for the Execu-
tion Time comparison, with an average of 319s(±697s) for the InstanceMap algorithm, and
an average of 481s(±910s) for the Bitmap algorithm. This indicates that the InstanceMap
algorithm is significantly faster to run than the Bitmap algorithm when using the versions
of the algorithms that limits the maximum jump size.

InstanceMap Bitmap

0

500

1000

1500

2000

2500

3000

3500

4000

Execution Time comparison between Data Structures with LimitMaxJumps algorithms

Data Structure

Ti
m

e
(s

)

Figure 33 – Box plot distributions of the execution time of Bitmaps and InstanceMaps
algorithms’ runs, when setting maxJumpSize (lower is better)

The box plot distributions of the memory consumption of the algorithms’ runs are de-
picted in Figure 34. The two-tailed paired Wilcoxon’s tests resulted in p = 0.189348 >= 0.05
for the Memory Consumption comparison, which indicates that there is not a statistically
significant difference in Memory Consumption between the Data Structures used in the
algorithms, when setting the limit maxJumpSize.

6.2.2 Without setting maxJumpSize

Similar to what has been done in Section 6.2.1, we ran the MGDP_Bitmap() and the
MGDP_InstanceMap() algorithms pairwise, varying the hyper-parameters each time, and pairing
the runs with the same hyper-parameters settings from each Data Structure, to analyze

Chapter 6. Results and Discussion 79

InstanceMap Bitmap

0

2k

4k

6k

8k

10k

Memory usage comparison between Data Structures with LimitMaxJumps algorithms

Data Structure

U
S

S
 M

em
or

y
(M

iB
)

Figure 34 – Box plot distributions of memory consumption of Bitmaps and InstanceMaps
algorithms’ runs, when setting maxJumpSize (lower is better)

them using the Wilcoxon’s non-parametric statistical significance test. We ran 6 pairwise
comparisons (12 runs in total).

Figure 35 depicts the box plot distributions of the memory consumption of the
algorithms’ runs. The two-tailed paired Wilcoxon’s tests resulted in p = 0.031250 < 0.05
for the Memory Consumption comparison, with an average of 17715MB(±1144MB) for the
InstanceMap algorithm, and an average of 240.8MB(±321.4MB) for the Bitmap algorithm.
This indicates that the InstanceMap algorithm consumes significantly more memory to
run than the Bitmap algorithm when using the versions of the algorithms that do not
limit the maximum jump size.

The box plot distributions of the execution time of the algorithms’ runs are depicted
in Figure 36. The two-tailed paired Wilcoxon’s tests resulted in p = 0.031250 < 0.05 for
the Execution Time comparison, with an average of 254.9s(±34.27s) for the InstanceMap
runs, and an average of 35.21s(±53.77s) for the Bitmap runs. This indicates that the
InstanceMap algorithm takes significantly more time to run than the Bitmap algorithm
when using the versions of the algorithms that do not limit the maximum jump size.

The results were similar for all 6 pairwise runs of the algorithms without setting a
limit with maxJumpSize: the runs using the Bitmap took much less time and consumed
much less memory than the runs using the InstanceMap. Table 11 presents the memory
consumption of the 6 pairwise comparisons. It is noticeable how the InstanceMap is

Chapter 6. Results and Discussion 80

InstanceMap Bitmap

0

5k

10k

15k

Memory usage comparison between Data Structures
in algorithms without setting LimitMaxJumps

Data Structure

U
S

S
 M

em
or

y
(M

iB
)

Figure 35 – Box plot distributions of memory consumption of Bitmaps and InstanceMaps
algorithms’ runs, when NOT setting maxJumpSize (lower is better)

InstanceMap Bitmap

0

50

100

150

200

250

300

Execution Time comparison between Data Structures
in algorithms without setting LimitMaxJumps

Data Structure

Ti
m

e
(s

)

Figure 36 – Box plot distributions of execution time of Bitmaps and InstanceMaps algo-
rithms’ runs, when NOT setting maxJumpSize (lower is better)

Chapter 6. Results and Discussion 81

Table 11 – Pairwise memory consumption comparison (in MB) between algorithms using
different data structures, when maxJumpSize is not set. Values in the same
row presents runs with the same hyper-parameter configuration (apart from
the Data Structure). Lower is better

InstanceMap Bitmap
16896.0 298.1
16281.6 828.4
16896.0 298.4
18739.2 6.8
18739.2 6.6
18739.2 6.6

consistently using much more memory than the Bitmap. In fact, most InstanceMaps
runs from our experiments crashed because they reached the maximum RAM memory
available on the Docker container (which was set to 27GB), while the Bitmap runs with
the same hyper-parameters finished relatively fast and without consuming much memory.
We discarded these crashed runs for our statistical tests.

In summary, to answer RQ2, the MGDP_InsntanceMap_limitMaxJumpSize(maxJumpSize) algo-
rithm is slightly more efficient than the MGDP_Bitmap_limitMaxJumpSize(maxJumpSize) algorithm,
whereas the MGDP_Bitmap() algorithm is much more efficient than the MGDP_InstanceMap()

algorithm.

82

7 Conclusion

In the previous chapters we summarized information that were deemed necessary
to complete the given task of Inter-Opus Musical Motif Discovery in Symbolic Music. We
presented the motivation for the project; a review of basic theoretical concepts required
to understand this work; the particularities and requirements of the system; a literature
review on existing systems for the given task; a description of some computational tools
and methods that could be used to tackle the given problem; a thorough description
of novel algorithms to bring new capabilities to the current state-of-the-art methods; a
statistical analysis of the performance of these new algorithms; and a dialectical analysis
of the musical patterns found.

This work has two main contributions:

1. Novel computational methods to allow mining of musical patterns with a variable
limit on the maximum number of events in-between the events of a pattern

2. A method to automatically create a visualization of the found sequential musical
patterns without the need of re-scanning the pieces;

Our results showed that the approaches using the InstanceMap data structure proposed in
this work have the benefit of enabling the automatic pattern visualization without the
need of a re-scan of the score after the pattern was found. The InstanceMap is also more
efficient in Execution Time and without a significant difference in Memory Consumption
when comparing to the Bitmap in a setup when there is a limit in the number of events
that might be in-between the events of the pattern - which is a better fit for finding musical
motifs and recurring themes across multiple pieces. The algorithms with variable limit
on the maximum number of events in-between the events of a pattern are able to find
patterns that would be discarded by the original MGDP algorithm(CONKLIN, 2010a).

When we use the variants of the algorithms that do not set a limit for the number
of events that might be in-between the events of the pattern, we see that the Bitmap
method outperforms the InstanceMap by a large margin; thus, when trying to find patterns
related to the song structure, using the Bitmap and then, for the visualization, performing
a re-scan of the piece looking for the discovered patterns might be more efficient than
trying to store all occurrences of the events of the pattern in all pieces (which is what the
InstanceMap does).

The main limitation of this work is the lack of objective metrics to quantify
the quality of the patterns found. It is expected that the algorithm finds a reasonable

Chapter 7. Conclusion 83

number of patterns to be further analyzed by human musicologists, and that these
patterns are interesting and useful. However, apart from the distinctiveness metrics and
the Corpus Relative Support, we cannot objectively measure whether the algorithm is
finding interesting patterns or not.

Another limitation of this work is that we performed our tests on only one dataset
in this work. The algorithms’ performances might be dependent on the length of the pieces,
so it would be interesting to analyze the results with other datasets as well.

Some possible future works that stem out from this one are:

1. Trying to optimize the algorithms using extensions written in efficient languages
(e.g., implementing a C++ or Rust extension module to deal with the InstanceMap
and Bitmap calculations);

2. Implement these algorithms as a plugin for one of the popular music score visualization
software (e.g., MuseScore), possibly enhancing the pattern visualization.

3. Implement a distributed version of the algorithm (e.g., using the SPAMC-UDLT
(CHEN; SHUAI; CHEN, 2017), which could also mitigate the high memory con-
sumption problem of the InstanceMap algorithm);

4. Analyze the difference in cognitive load of the patterns found when varying the
Viewpoints (e.g., is analyzing two separate patterns with two different viewpoints
more interesting than analyzing one pattern found with the combination of the two
viewpoints?);

5. Investigate the impacts of varying the maximum number of events that might appear
in-between the events of a pattern (both musicologically and computationally);

We believe that, with this work, we took another step into unveiling the mysteries
behind the sequential patterns of musical events that lead to the conveying of specific
emotions. We hope that this work will be useful in this endeavor, by applying the proposed
algorithms to a dataset that is labeled by emotions, in the future.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001

84

References

AGRAWAL, Rakesh; SRIKANT, Ramakrishnan. Fast algorithms for mining association
rules. In: Proc. of 20th International Conference on Very Large Data Bases, {VLDB’94}.
[S.l.: s.n.], 1994. Cited 2 times, on pages 35 and 50.

ANDERS, Torsten. A model of musical motifs. In: International Conference on
Mathematics and Computation in Music. [S.l.: s.n.], 2007. ISSN 18650929. Cited on page
23.

ARJMAND, Hussain Abdulah; HOHAGEN, Jesper; PATON, Bryan; RICKARD, Nikki S.
Emotional responses to music: Shifts in frontal brain asymmetry mark periods of musical
change. Frontiers in Psychology, v. 8, 2017. ISSN 16641078. Cited on page 14.

ASSOCIATION, MIDI Manufacturers; OTHERS. The complete MIDI 1.0 detailed
specification. [S.l.]: Los Angeles, CA, The MIDI Manufacturers Association, 1996. Cited
on page 27.

AYRES, Jay; FLANNICK, Jason; GEHRKE, Johannes; YIU, Tomi. Sequential pattern
mining using a bitmap representation. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. [S.l.: s.n.], 2002. Cited 17 times,
on pages 16, 34, 35, 36, 37, 38, 41, 42, 48, 51, 52, 53, 54, 55, 56, 59, and 71.

BAINBRIDGE, David; BELL, Tim. The challenge of optical music recognition. Computers
and the Humanities, v. 35, n. 2, 2001. ISSN 00104817. Cited on page 20.

BAUMGARTNER, Thomas; LUTZ, Kai; SCHMIDT, Conny F.; JäNCKE, Lutz. The
emotional power of music: How music enhances the feeling of affective pictures. Brain
Research, v. 1075, 2006. ISSN 00068993. Cited on page 14.

BELLMANN, Hector. About the determination of key of a musical excerpt. In: . [S.l.:
s.n.], 2005. p. 76–91. ISSN 03029743. Cited on page 69.

BERRY, David M. The computatonal turn: Thinking about the digital humanities.
Culture Machine, v. 12, p. 1–22, 2011. ISSN ISSN 1465-4121. Cited on page 19.

BEZDEK, Matthew A.; GERRIG, Richard J. Musical emotions in the context of narrative
film. 2008. Cited on page 14.

BRACHMAN, Ronald J.; LEVESQUE, Hector J. Knowledge Representation and
Reasoning. [S.l.: s.n.], 2004. Cited on page 49.

BRINK, David Van. The MIDI Specification. 1995. Available at: <https://www.cs.cmu.
edu/~music/cmsip/readings/davids-midi-spec.htm>. Acessed on: 22 mar 2021. Cited on
page 27.

CALVO-ZARAGOZA, Jorge; HAJIČ, Jan; PACHA, Alexander. Understanding optical
music recognition. 2019. Cited on page 20.

https://www.cs.cmu.edu/~music/cmsip/readings/davids-midi-spec.htm
https://www.cs.cmu.edu/~music/cmsip/readings/davids-midi-spec.htm

References 85

CHEN, Chun Chieh; SHUAI, Hong Han; CHEN, Ming Syan. Distributed and scalable
sequential pattern mining through stream processing. Knowledge and Information Systems,
v. 53, 2017. ISSN 02193116. Cited on page 83.

CONKLIN, Darrell. Discovery of distinctive patterns in music. Intelligent Data Analysis,
v. 14, 2010. ISSN 1088467X. Cited 14 times, on pages 16, 34, 39, 42, 44, 45, 46, 47, 52,
53, 54, 58, 70, and 82.

CONKLIN, Darrell. Distinctive patterns in the first movement of Brahms’ String Quartet
in C minor. Journal of Mathematics and Music, Taylor & Francis, v. 4, n. 2, p. 85–92,
2010. Cited on page 46.

CONKLIN, Darrell. Antipattern discovery in folk tunes. Journal of New Music Research,
v. 42, 2013. ISSN 09298215. Cited 5 times, on pages 42, 43, 47, 54, and 58.

CONKLIN, Darrell. Mining contour sequences for significant closed patterns. Journal of
Mathematics and Music, 2021. ISSN 1745-9737. Cited on page 44.

CONKLIN, Darrell; ANAGNOSTOPOULOU, Christina. Representation and discovery of
multiple viewpoint patterns. International Computer Music Conference, 2001. Cited on
page 41.

CONKLIN, Darrell; BERGERON, Mathieu. Feature set patterns in music. Computer
Music Journal, v. 32, 2008. ISSN 01489267. Cited 12 times, on pages 42, 44, 45, 49, 50,
52, 53, 54, 55, 58, 69, and 71.

CONKLIN, Darrell; WITTEN, Ian H. Multiple viewpoint systems for music prediction.
Journal of New Music Research, v. 24, 1995. ISSN 17445027. Cited 2 times, on pages 44
and 69.

CUTHBERT, Michael Scott; ARIZA, Christopher. Music21: A toolkit for computer-aided
musicology and symbolic music data. In: Proceedings of the 11th International Society for
Music Information Retrieval Conference, ISMIR 2010. [S.l.: s.n.], 2010. Cited on page 39.

CUTHBERT, Michael Scott; ARIZA, Christopher; FRIEDLAND, Lisa. Feature extraction
and machine learning on symbolic music using the music21 toolkit. In: Proceedings of the
12th International Society for Music Information Retrieval Conference, ISMIR 2011. [S.l.:
s.n.], 2011. Cited on page 39.

DOUEK, Joel. Music and emotion -a composer’s perspective. Frontiers in Systems
Neuroscience, v. 7, 2013. ISSN 16625137. Cited on page 15.

DOWNIE, J. Stephen. Music information retrieval. Annual Review of Information Science
and Technology, v. 37, 2003. ISSN 00664200. Cited on page 20.

DRABKIN, William. Motif. Oxford Music Online, 2008. Available at: <https:
//www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/
omo-9781561592630-e-0000019221>. Acessed on: 07 may 2021. Cited on page 21.

ENGELMAN, Shelly; MAGERKO, Brian; MCKLIN, Tom; MILLER, Morgan; EDWARDS,
Doug; FREEMAN, Jason. Creativity in authentic steam education with earsketch. In:
Proceedings of the Conference on Integrating Technology into Computer Science Education,
ITiCSE. [S.l.: s.n.], 2017. Cited on page 14.

https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000019221
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000019221
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000019221

References 86

FOURNIER-VIGER, Philippe; CHUN, Jerry; LIN, Wei; KIRAN, Rage Uday; KOH,
Yun Sing; THOMAS, Rincy. A survey of sequential pattern mining. Data Science and
Pattern Recognition, v. 1, 2017. Cited 3 times, on pages 32, 33, and 34.

FRIELER, Klaus. Miles Vs. Trane. Computational and Statistical Comparison of the
Improvisatory Styles of Miles Davis and John Coltrane. Jazz Perspectives, Taylor &
Francis, v. 12, n. 1, p. 123–145, 2020. ISSN 17494079. Cited on page 20.

FU, Jiulin Zhang Xiaoqing. The influence of background music of video games on
immersion. Journal of Psychology & Psychotherapy, 2015. Cited on page 14.

GAMMA, E; HELM, R; JOHNSON, R; VLISSIDES, J. Design patterns: Elements of
reusable software. Addison-Wesley Professional Computing Series, 1996. ISSN ISBN:
0-201-63361-2. Cited on page 55.

GARFINKLE, David; ARTHUR, Claire; SCHUBERT, Peter; CUMMING, Julie;
FUJINAGA, Ichiro. PatternFinder: Content-Based Music Retrieval with music21. In:
ACM International Conference Proceeding Series. [S.l.: s.n.], 2017. Cited on page 39.

GOOD, Michael. MusicXML: An internet-friendly format for sheet music. XML
Conference and Expo, 2001. Cited 2 times, on pages 28 and 31.

HAJIC, Jan; PECINA, Pavel. The MUSCIMA++ Dataset for Handwritten Optical Music
Recognition. In: Proceedings of the International Conference on Document Analysis and
Recognition, ICDAR. [S.l.: s.n.], 2017. ISBN 9781538635865. ISSN 15205363. Cited on
page 20.

HUANG, Rong Hwa; SHIH, Yi Nuo. Effects of background music on concentration of
workers. Work, v. 38, 2011. ISSN 10519815. Cited on page 14.

HUNTER, Patrick G.; SCHELLENBERG, E. Glenn; SCHIMMACK, Ulrich. Feelings and
perceptions of happiness and sadness induced by music: Similarities, differences, and
mixed emotions. Psychology of Aesthetics, Creativity, and the Arts, v. 4, 2010. ISSN
19313896. Cited on page 14.

JUSLIN, Patrik N.; VÄSTFJÄLL, Daniel. Emotional responses to music: The need
to consider underlying mechanisms. Behavioral and Brain Sciences, v. 31, 2008. ISSN
0140525X. Cited 2 times, on pages 14 and 15.

KARSDORP, Folgert; KRANENBURG, Peter Van; MANJAVACAS, Enrique. Learning
similarity metrics for melody retrieval. In: Proceedings of the 20th International Society
for Music Information Retrieval Conference, ISMIR 2019. [S.l.: s.n.], 2019. ISBN
9781732729919. Applies Deep Learning to learn the Melodic Similarity Metric using the
MTC dataset. Cited on page 41.

KEPPER, Johannes. XML-basierte Codierung musikwissenschaftlicher Daten — Zu den
Voraussetzungen einer digitalen Musikedition. it - Information Technology, v. 51, n. 4,
2009. ISSN 1611-2776. Cited on page 32.

KRANENBURG, Peter Van; CONKLIN, Darrell. A pattern mining approach to
study a collection of dutch folk-songs. In: Proceedings of the 5th International
Workshop on Folk Music Analysis (FMA 2016). [s.n.], 2016. p. 71–73. Available at:
<http://www.ehu.eus/cs-ikerbasque/conklin/papers/fma2016.pdf>. Cited 3 times, on
pages 43, 44, and 68.

http://www.ehu.eus/cs-ikerbasque/conklin/papers/fma2016.pdf

References 87

KRANENBURG, Peter Van; WIERING, Frans; VOLK, Anja. On operationalizing the
musicological concept of tune-family for computational modeling. In: Proceedings of the
Third International Workshop on Folk Music Analysis. [S.l.: s.n.], 2013. Cited on page 67.

KRANENBURG, Peter van; JANSSEN, Berit; VOLK, Anja. The meertens tune
collections: The annotated corpus (mtc-ann) versions 1.1. and 2.0.1. In: Meertens Online
Reports. [S.l.: s.n.], 2016. Cited on page 67.

LESIUK, Teresa. The effect of music listening on work performance. Psychology of Music,
v. 33, 2005. ISSN 17413087. Cited on page 14.

LI, Chia Wei; CHENG, Tzu Han; TSAI, Chen Gia. Music enhances activity in the
hypothalamus, brainstem, and anterior cerebellum during script-driven imagery of
affective scenes. Neuropsychologia, v. 133, 2019. ISSN 18733514. Cited on page 14.

LIANG, Feynman; GOTHAM, Mark; JOHNSON, Matthew; SHOTTON, Jamie.
Automatic stylistic composition of bach chorales with deep LSTM. In: Proceedings of the
18th International Society for Music Information Retrieval Conference, ISMIR 2017. [S.l.:
s.n.], 2017. ISBN 9789811151798. Cited on page 39.

LOY, Gareth. Musicians Make a Standard: The MIDI Phenomenon. Computer Music
Journal, 1985. ISSN 01489267. Cited on page 27.

LUNDBERG, Scott M.; LEE, Su In. A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2017. v. 2017-December.
ISSN 10495258. Cited on page 41.

LUNDQVIST, Lars Olov; CARLSSON, Fredrik; HILMERSSON, Per; JUSLIN, Patrik N.
Emotional responses to music: Experience, expression, and physiology. Psychology of
Music, v. 37, 2009. ISSN 17413087. Cited on page 14.

MEREDITH, David. Cosiatec and siateccompress: Pattern discovery by geometric
compression. In: COSIATEC and SIATECCompress: Pattern discovery by geometric
compression. [S.l.: s.n.], 2013. Cited 2 times, on pages 43 and 44.

MEREDITH, David; LEMSTRÖM, Kjell; WIGGINS, Geraint A. Algorithms for
discovering repeated patterns in multidimensional representations of polyphonic music.
International Journal of Phytoremediation, v. 21, 2002. ISSN 15497879. Cited on page 44.

MONGEAU, Marcel; SANKOFF, David. Comparison of musical sequences. Computers
and the Humanities, v. 24, 1990. ISSN 00104817. Cited on page 41.

MOR, Bhavya; GARHWAL, Sunita; KUMAR, Ajay. A Systematic Literature Review on
Computational Musicology. Archives of Computational Methods in Engineering, 2020.
ISSN 18861784. Cited on page 20.

MOREIRA, Shirlene Vianna; JUSTI, Francis Ricardo dos Reis; MOREIRA, Marcos. Can
musical intervention improve memory in alzheimer’s patients? evidence from a systematic
review. Dementia e Neuropsychologia, v. 12, 2018. ISSN 19805764. Cited on page 14.

MORI, Kazuma; IWANAGA, Makoto. Two types of peak emotional responses to music:
The psychophysiology of chills and tears. Scientific Reports, v. 7, 2017. ISSN 20452322.
Cited on page 14.

References 88

MUÑOZ-LAGO, Paula; USULA, Nicola; PARADA-CABALEIRO, Emilia;
TORRENTE Álvaro. Visualising the structure of 18th century operas: A
multidisciplinary data science approach. In: 24th International Conference
Information Visualisation. [s.n.], 2020. p. 527–533. ISBN 9781728191348. Available at:
<https://didone.eu/wp-content/uploads/2020/10/913400a527.pdf>. Cited 2 times, on
pages 24 and 26.

NEUBARTH, Kerstin; CONKLIN, Darrell. Contrast pattern mining in folk music analysis.
In: MEREDITH, David (Ed.). Computational Music Analysis. [S.l.]: Springer International
Publishing Switzerland 2016, 2016. cap. 15, p. 393–424. Cited on page 43.

NUTTALL, Thomas; CASADO, Miguel G.; FERRARO, Andres; CONKLIN, Darrell;
REPETTO, Rafael Caro. A computational exploration of melodic patterns in
arab-andalusian music. Journal of Mathematics and Music, 2021. ISSN 1745-9737. Cited
on page 44.

NUTTALL, Thomas; CASADO, Miguel García; TARIFA, Víctor Núñez; REPETTO,
Rafael Caro; SERRA, Xavier. Contributing to new musicological theories with
computational methods: The case of centonization in arab-andalusian music. In:
Proceedings of the 20th International Society for Music Information Retrieval Conference,
ISMIR 2019. [S.l.: s.n.], 2019. Cited 2 times, on pages 43 and 44.

PARADA-CABALEIRO, Emilia; TORRENTE, Álvaro. Preventing Conversion Failure
across Encoding Formats: A Transcription Protocol and Representation Scheme
Considerations. In: Music Encoding Conference 2020. [s.n.], 2020. p. 105–107. Available at:
<http://dx.doi.org/10.17613/etwb-m434>. Cited on page 32.

PHON-AMNUAISUK, Somnuk. Exploring music21 and gensim for music data analysis
and visualization. In: Communications in Computer and Information Science. [S.l.: s.n.],
2019. v. 1071. ISSN 18650937. Cited on page 39.

RAMOS, D.; BUENO, J. L.O.; BIGAND, E. Manipulating greek musical modes and
tempo affects perceived musical emotion in musicians and nonmusicians. Brazilian
Journal of Medical and Biological Research, 2011. ISSN 0100879X. Modes and emotions
correlation. Cited on page 14.

REBELO, Ana; FUJINAGA, Ichiro; PASZKIEWICZ, Filipe; MARCAL, Andre R.S.;
GUEDES, Carlos; CARDOSO, Jaime S. Optical music recognition: state-of-the-art and
open issues. International Journal of Multimedia Information Retrieval, 2012. ISSN
2192662X. Cited on page 20.

ROLAND, Perry. The music encoding initiative (mei). In: MAX2002. Proceedings of the
First International Conference on Musical Application using XML. [s.n.], 2002. p. 55–59.
Available at: <http://xml.coverpages.org/MAX2002-PRoland.pdf>. Acessed on: 26 may
2021. Cited on page 31.

ROLAND, Perry; HANKINSON, Andrew; PUGIN, Laurent. Early music and the Music
Encoding Initiative. Early Music, v. 42, n. 4, 2014. ISSN 03061078. Cited on page 32.

RUDIN, Cynthia. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, v. 1, 2019.
ISSN 25225839. Cited on page 41.

https://didone.eu/wp-content/uploads/2020/10/913400a527.pdf
http://dx.doi.org/10.17613/etwb-m434
http://xml.coverpages.org/MAX2002-PRoland.pdf

References 89

SAMPAIO, Marcos da Silva; KROGER, Pedro; MENEZES, Mara Pinheiro;
ROCHA, Jean Menezes da; OURIVES, Natanael; CARVALHO, Dennis Queiroz de. The
Implementation of a Contour Module for Music21. ART Music Review, v. 24, 2013. Available
at: <http://www.revista-art.com/the-implementation-of-a-contour-module-for-music21>.
Acessed on: 08 may 2021. Cited on page 39.

SCHELLENBERG, E. Glenn. Long-term positive associations between music lessons and
iq. Journal of Educational Psychology, v. 98, 2006. ISSN 00220663. Cited on page 14.

SCHELLENBERG, E. Glenn; KRYSCIAK, Ania M.; CAMPBELL, R. Jane. Perceiving
emotion in melody: interactive effects of pitch and rhythm. Music Perception, v. 18, 2000.
ISSN 07307829. Cited on page 14.

SCHELLENBERG, E. Glenn; WEISS, Michael W. Music and Cognitive Abilities. 2013.
Cited on page 14.

SHIH, Yi Nuo; HUANG, Rong Hwa; CHIANG, Hsin Yu. Background music: Effects on
attention performance. Work, v. 42, 2012. ISSN 10519815. Cited on page 14.

SRIKANT, Ramakrishnan; AGRAWAL, Rakesh. Mining sequential patterns:
Generalizations and performance improvements. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). [S.l.: s.n.], 1996. v. 1057 LNCS. ISSN 16113349. Cited on page 41.

TORRENTE, Álvaro; LLORENS, Ana. The musicology lab: Teamwork and the
musicological toolbox. In: Music Encoding Conference Proceedings 2021. [S.l.: s.n.], 2022.
v. 2021. Cited 2 times, on pages 16 and 25.

VANDENNEUCKER, Dominique. MIDI Tutorial. 2012. Available at: <http:
//www.music-software-development.com/midi-tutorial.html>. Acessed on: 22 mar 2021.
Cited on page 27.

VOLK, Anja; WIERING, Frans; KRANENBURG, Peter Van. Unfolding the potential
of computational musicology. In: ICISO 2011 - Proceedings of the 13th International
Conference on Informatics and Semiotics in Organisations: Problems and Possibilities of
Computational Humanities, co-located with IWRA 2011 IFIP WG8.1 Working Conference.
[S.l.: s.n.], 2011. ISBN 9789490719005. Cited 2 times, on pages 19 and 20.

WHITTALL, Arnold. Leitmotif. Oxford Music Online, 2001. Available at:
<https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.
001.0001/omo-9781561592630-e-0000016360?rskey=wR4S1j&result=1>. Acessed on: 07
may 2021. Cited on page 21.

ZAKI, Mohammed J. Spade: An efficient algorithm for mining frequent sequences.
Machine Learning, v. 42, 2001. ISSN 08856125. Cited on page 41.

http://www.revista-art.com/the-implementation-of-a-contour-module-for-music21
http://www.music-software-development.com/midi-tutorial.html
http://www.music-software-development.com/midi-tutorial.html
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000016360?rskey=wR4S1j&result=1
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000016360?rskey=wR4S1j&result=1

	Title page
	Acknowledgments
	Epigraph
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the Document

	Theoretical Framework
	Computational Musicology
	Musical Motifs
	Opera and Arias
	Symbolic Music Representation
	MIDI
	MusicXML
	MEI

	Sequential Pattern Mining
	SPAM
	Vertical Bitmaps

	Tools and Methods
	Computational Musicology Tools
	music21

	Inter-Opus Musical Motif Discovery
	Sequence Clustering VS Sequential Pattern Mining
	Related Work
	Viewpoint Data Representation
	MGDP sequences
	MGDP Algorithm
	Read MusicXML and Apply Viewpoints
	Split SDB
	Verticalize SDB
	Create Subsumption Tree
	MGDP Discovery

	Proposed Algorithms
	MGDP Algorithms Implementations
	MGDP_Bitmap()
	MGDP_Bitmap_limitMaxJumpSize(maxJumpSize)
	Bitmap s-extension with maxJumpSize - the Bitmatrix

	MGDP_InstanceMap()
	The InstanceMap
	InstanceMap i-extension
	InstanceMap s-extension
	MGDP_InstanceMap() output

	MGDP_InstanceMap_limitMaxJumpSize(maxJumpSize)

	Experimental Setup
	Dataset
	Implemented Viewpoints
	Experiments
	Hardware and Software

	Results and Discussion
	RQ1
	RQ2
	Setting maxJumpSize
	Without setting maxJumpSize

	Conclusion
	References

