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Abstract 

Over the last years, the engine calibration task has been mostly conducted based on the 

engineers’ knowledge. However, due to the increased complexity of modern engines, 

finding their most suitable configuration became an unfeasible and costly task, causing 

engines to be produced with inadequate calibration settings, decreasing the lifespan of 

their components while also degrading their efficiency. In light of this, this work proposes 

a machine learning digital twin model for engine pressure prediction, split into two 

strategies. First, we extract statistical engine features based on a predefined time window 

to depict the engine behavior over time. Second, a digital twin implemented through a 

machine learning model is used for the prediction of future engine pressure levels. As a 

result, the predicted values can be used to assist the engine common rail system module 

to avoid undesired engine states. Experiments performed in a new dataset extracted from 

real diesel-based engines, composed of 208 features and over 1.3 million instances have 

shown the proposal’s feasibility. The proposed scheme is able to predict in an advance of 

0.1 seconds the engine pressure levels with only 0.057 of RMSE. In addition, it increases 

its error rate by only 10.6% if a 0.5 second of time advance is needed. 

Keywords: Digital Twin, Engine, Machine Learning.  
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Resumo 

Nos últimos anos, a tarefa de calibração do motor foi realizada principalmente com base 

no conhecimento dos engenheiros. Porém, devido ao aumento da complexidade dos 

motores modernos, encontrar sua configuração mais adequada tornou-se uma tarefa 

inviável e onerosa, fazendo com que motores fossem produzidos com configurações de 

calibração inadequadas, diminuindo a vida útil de seus componentes e também 

degradando sua eficiência. Diante disso, este trabalho propõe um modelo de gêmeo 

digital de aprendizado de máquina para previsão de pressão do motor, dividido em duas 

estratégias. Primeiro, extraímos os recursos estatísticos do mecanismo com base em uma 

janela de tempo predefinida para representar o comportamento do mecanismo ao longo 

do tempo. Em segundo lugar, um gêmeo digital implementado por meio de um modelo de 

aprendizado de máquina é usado para prever os níveis futuros de pressão do motor. 

Como resultado, os valores previstos podem ser usados para auxiliar o módulo do 

sistema common rail do motor a evitar estados indesejados do motor. Experimentos 

realizados em um novo conjunto de dados extraído de motores diesel reais, composto por 

208 features e mais de 1,3 milhão de instâncias, mostraram a viabilidade da proposta. O 

esquema proposto é capaz de prever com antecedência de 0,1 segundos os níveis de 

pressão do motor com apenas 0,057 de RMSE. Além disso, aumenta sua taxa de erro em 

apenas 10,6% se for necessário um avanço de 0,5 segundo no tempo. 

Palavras-chave: Gemeos digitais; Motores, Aprendizagem de Máquina. 
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Chapter 1  

 

Introduction 

1.1. Context 

In the last decade, companies of all sizes, all around the globe are facing ever more 

fast-paced, uncertain, and complex boundary conditions. A driver of this phenomenon is 

the growing digitization forcing companies to develop more cost and time efficiently. On 

the other hand, digital or virtual engineering also enables companies to cope with these 

challenges. In the course of this trend, a theory called Digital Twin has developed over 

the last two decades. The term describes the virtual representation of a physical system. 

In the beginning, Digital Twins were merely descriptive, but as computational and 

information and communication technologies evolved, it became possible to establish a 

bidirectional coupling between the digital and the physical system. (Grieves, 2016) 

Digital twin technology refers to the creation of a virtual representation or a digital 

counterpart of a physical object, process, system, or entity. It involves capturing real-time 

data from sensors, devices, and other sources to simulate the behavior, characteristics, 

and performance of the physical counterpart. (Singh, et al., 2021) 

Digital twins are dynamic models that mirror their physical counterparts and 

provide a virtual environment for monitoring, analysis, and optimization. A digital twin 

comprises several components, including data acquisition and integration systems, data 

analytics and visualization tools, and simulation capabilities. The data acquisition 

component collects real-time data from sensors, Internet of Things (IoT) devices, and 

other sources. The integration system ensures that the data is integrated and transformed 

into a usable format. Data analytics and visualization tools enable the interpretation and 

analysis of the collected data. Finally, simulation capabilities allow users to simulate 

different scenarios and test changes in the virtual environment. (Singh, et al., 2022) 
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A digital twin aims to accurately reflect the physical object properties, as 

represented by their sensors’ values. The values depict a series of the physical object 

conditions, which are then used to create the Digital Twin (DT). The DT can then be used 

to run simulations, investigate performance issues, and generate possible improvements 

and insights within the digital domain, which can then be applied back to the original 

physical object (Schluse, 2018). Several approaches have been proposed to create digital 

twin, wherein authors typically resort to machine learning techniques (Horchulhack, 

2022). 

Machine learning algorithms can be integrated into digital twins to enhance their 

capabilities. By leveraging machine learning techniques, digital twins can analyze large 

volumes of data, detect patterns, and make accurate predictions. Machine learning 

algorithms can also be used to automate processes, optimize performance, and enable 

autonomous decision-making within digital twins. 

Machine learning algorithms within digital twins can generate predictive analytics 

to forecast future behavior and optimize performance. By training models on historical 

data, machine learning can identify patterns and correlations, enabling accurate 

predictions. Machine learning algorithms can be applied within digital twins to detect 

anomalies and diagnose faults. (Goodwin, 2022) This helps in early detection of faults, 

enabling timely interventions and reducing the risk of equipment failure or system 

breakdowns. 

Digital twins integrated with machine learning can enable adaptive control and 

optimization. By continuously analyzing real-time data, machine learning algorithms can 

adjust control parameters and optimize system performance in real-time. This adaptive 

approach enhances efficiency, reduces energy consumption, and improves overall 

operational performance. In summary, digital twin technology offers immense potential 

across various industries. Its ability to create virtual replicas of physical objects, systems, 

and processes enables real-time monitoring, simulation, and optimization. By leveraging 

digital twins with machine learning, organizations can further enhance their capabilities, 

gain predictive insights, and achieve higher levels of performance, efficiency, and 

innovation. (Goodwin, 2022) 
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1.2. Motivation 

Developing new vehicle engines, especially those based on diesel fuel, is a 

challenging task that demands manufacturers to meet government legislation while 

ensuring engine efficiency (Knecht, 2008). To fulfill such a task, manufacturers must 

properly calibrate the fuel injection system, which is directly related to the exhaust gas 

system and the Common Rail System (CRS). In general terms, the common rail system 

calibration is based on a proportional–integral–derivative (PID) controller embedded in 

the Electronic Control Unit (ECU). The controller’s goal is to fine-tune the injection 

system’s real pressure based on the ECU’s required pressure signal. Engine 

manufacturers have been performing the calibration task based solely on engineers’ 

expertise following a previously settled guideline (Lygoe, 2010). Therefore, the 

calibration is only mutable during the development phase, and several quality levels must 

be met before the engine production can start. 

Original Equipment Manufacturers (OEMs) tackle multiple challenges, 

particularly during the engineering phase, where the fine-tuning of engine calibration 

becomes very important. Engine calibration, the process of optimizing engine parameters 

to achieve desired performance, efficiency, and emissions targets, is a delicate balancing 

act, necessitating a deep understanding of engine dynamics, combustion phenomena, and 

regulatory constraints. One of the biggest challenges confronting OEMs in this industry 

is achieving optimal trade-offs between conflicting objectives, such as power output 

versus fuel consumption and emissions reduction (Meli, 2024). Discovering an 

equilibrium between these opposing demands requires a complex calibration process, 

characterized by iterative adjustments to fuel injection timing, air-fuel ratio, turbocharger 

boost pressure, and exhaust gas recirculation (EGR) rates. Additionally, meeting emission 

standards, coupled with the dynamic nature of market requirements, aggravates the 

complexity of calibration tasks, leaving OEMs to adopt innovative methodologies and 

robust optimization techniques to handle this task effectively. 

Moreover, the different operating conditions makes it a challenging task to 

calibrate due to different ambient temperatures, altitudes, and load profiles. Diesel 

engines are found in a wide range of environments starting from the extremely cold Arctic 

or Antarctic regions all the way down to hot desert terrains that pose several challenges 



12 

 

regarding engine performance and emissions control. The calibrated model must 

incorporate robust control strategies that tune the engine parameters as they work within 

real time constraints for adjustments to reach the best performance and control the 

emissions (Laubichler, 2024). Transient operating conditions (such as rapid 

acceleration/deceleration) bring additional complexities calling for quick responses from 

engine management system. These concerns can only be addressed through approaches 

that combine advanced sensors, predictive algorithms, and model-based controls to make 

these calibration systems more flexible and responsive. 

The search for innovation in the competitive automotive landscape highlights the 

pressure on OEMs to deliver cutting-edge diesel engines that outperform rivals in terms 

of performance, efficiency, and reliability (Sandberg, 2024). In an era characterized by 

rapid technological evolution, staying ahead of your competitors by continuous 

refinement of calibration methodologies, leveraging advancements in computational fluid 

dynamics, machine learning, and virtual prototyping is needed to survive. However, this 

quest for innovation must be tempered with careful validation and verification processes 

to ensure robustness and compliance with regulatory standards.  

Balancing the constraints of innovation and validation represents a big challenge, 

where OEMs must be careful to meet the needs of customers and regulatory authorities. 

The calibration of diesel engines emerges not merely as a technical challenge but as a 

strategic necessity, shaping the competitive environment and defining the success 

trajectory of OEMs in the global automotive arena. (Nicoleta, 2011) 

In the scope of diesel engine development, the beginning of the common rail fuel 

injection system brought new opportunities, offering enhanced precision, flexibility, and 

control over fuel delivery. However, this technological advancement has brought a new 

set of challenges, and one of the main ones being the management of overshoots and 

undershoots in fuel pressure regulation, particularly during transient operating conditions. 

Overshoots and undershoots refer to deviations from the desired fuel pressure setpoint, 

occurring as a result of dynamic changes in engine load, speed, and operating conditions. 

(Lu, 2024) Effectively addressing these phenomena requires a multifaceted approach, 

encompassing advanced control algorithms, robust hydraulic components, and 

sophisticated sensor technologies. 
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As each system calibration comes out uniquely, finding possible failures and their 

root causes has become increasingly challenging considering the rising number of 

projects and their complexity (Xi, 2018). As an example of failure, a not adequately tuned 

controller may generate overshoots and undershoots that the CRS might face during its 

usage. Overshoots occur when the real pressure of the system exceeds the required 

pressure limits, reaching higher than desired levels. Undershoots lowers the system 

pressure beyond its intended operation level. Such situations may significantly decrease 

the engine lifespan while degrading its efficiency. In such a context, over the last years, 

several works have been proposed to improve the industry engine development process, 

wherein approaches based on digital twin have yielded promising results (Bhatti, 2021). 

One of the primary challenges in mitigating overshoots and undershoots lies in the 

fundamentally nonlinear and time-varying nature of the common rail fuel injection 

system. Traditional control strategies, such as proportional-integral-derivative 

controllers, often struggle to anticipate and compensate for rapid fluctuations in fuel 

demand, leading to transient pressure deviations. The presence of hydraulic dynamics, 

including pressure waves and fluid inertia, intensifies the complexity of the control 

problem, necessitating the development of model-based control techniques capable of 

capturing system dynamics with high fidelity (Soltanalizadeh, 2024). Likewise, the 

interaction between various components within the common rail system, such as 

injectors, high-pressure pumps, and pressure regulators, further complicates the control 

task, requiring a general approach to system modeling and control synthesis. 

Another critical challenge stems from the stringent performance requirements 

imposed by emissions regulations and customer expectations. Overshoots and 

undershoots in fuel pressure can have adverse effects on engine combustion dynamics, 

leading to increased emissions, reduced efficiency, and compromised drivability. 

Achieving compliance with emissions standards while simultaneously delivering optimal 

engine performance necessitates precise control over fuel delivery dynamics, 

necessitating the development of adaptive control strategies capable of dynamically 

adjusting control parameters in response to changing operating conditions (Deffo, 2024). 

Furthermore, the integration of predictive algorithms, leveraging machine learning and 

data-driven modeling techniques, can enhance the anticipatory capabilities of the control 

system, enabling proactive mitigation of transient pressure deviations before they 

manifest in engine output. 
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A behavioral model can be built by evaluating a training dataset composed of vast 

amounts of the physical object collected sensor values. As a result, the built model, acting 

as the DT, will be able to portray the data used during the training phase. Unfortunately, 

the building of a realistic DT training dataset is a challenging task. A realistic DT must 

collect training data under a variety of conditions. This should include faulty and normal 

events often not easily achieved during the engine development. The DT can often only 

portray the relationship between the collected sensor values even if a realistic training 

dataset is available. Therefore, the way they can be used for improvement purposes is 

neglected, for example, to improve system calibration in an engine fuel injection. 

1.3. Goals 

This document proposes a CRS DT model based on machine learning (ML) 

techniques to assist the engine calibration task, implemented through two strategies. First, 

we extract statistical features based on a predefined time window of the collected engine 

sensor values. The insight of such an approach is that historical statistical features can be 

used to represent the engine behavior in detecting future engine failures. Second, the 

extracted feature values are used as input by a machine learning model, which acts as the 

engine DT. The model is used to predict pressure levels in the fuel injection system. The 

main insight of such an approach is to use a DT to assist the engine calibration reliability 

while also predicting the system behavior and engine failures so that counteractions can 

be performed accordingly. 

To reach this main goal, the following specific goals must be met.  

A. Develop a new dataset 

A new dataset must be created to enable the digital twin model to be applied. 

This data set will contain the historical statistical features of the diesel engine. The dataset 

must be composed of huge amounts of samples from the environment, given that the 

machine learning model will be built accordingly. As it is described in this document, 

some data mining and pre-processing techniques must be applied to enable the 

development and evaluation of the digital twin machine learning algorithms. 

 

B. Develop digital twin machine learning algorithm 
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A new digital twin machine learning algorithm will be built using ML techniques 

combined with a digital twin framework and strategy. 

C. Develop a model prototype 

 

Based on the new dataset with real data, and the algorithm developed, a model 

prototype will be proposed to verify and meet the main goal of this work.  

 

D. Evaluation of machine learning algorithms 

The digital twin machine learning algorithms will bring results based on the new data set 

created. These results are evaluated based on selected metrics to validate the proposal, 

showing how the undershoots and overshoots can be anticipated in the development of 

diesel engines. 

The evaluation aims at answering the following research questions (RQ):  

• (RQ1) How does our proposed DT model work for predicting pressure 

levels in the fuel injection system?  

• (RQ2) What is the prediction performance of our model for a longer 

prediction time for the pressure levels? 

 

1.4. Contributions 

The main contributions of this document can be described in two main 

categories, a new digital twin dataset and a new digital twin model. 

A. Digital twin dataset 

A new digital twin dataset built through the collection of 208 sensor values from 

real diesel-based engines. It is composed by over 1.3 million of samples, corresponding 

to 10 minutes of data collection, including 57 and 52 thousand undershoot and overshoot 

failures, respectively. This data was collected in a diesel engine vehicle still in validation 

phase, where failures are still expected. 

B. Digital twin model 
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A new digital twin model based on machine learning techniques for the prediction 

of pressure levels in the fuel injection system. The proposed scheme can predict in 

advance of 0.1 seconds the pressure levels of the fuel injection system with only 0.057 of 

Root-mean-square deviation (RMSE). 

1.5. Publications 

This study was published in IECON 2022 (Qualis A2), the 48th Annual 

Conference of the IEEE Industrial Electronics Society (IES), focusing on contemporary 

industry topics ranging from electronics, controls, manufacturing, to communications and 

computational intelligence. The published paper named “A Machine Learning Digital 

Twin Model for Engine Pressure Prediction” by the authors Edwin P. Duarte, Eduardo K. 

Viegas and Altair O. Santin was presented in Brussels. 

 

1.6. Document structure 

This document is organized as follow: 

• Chapter I brings the introduction to the proposal. 

• Chapter II describes ML-based digital twin, bringing the background 

research on digital twin technologies, use cases, when machine learning is applied with 

this new technology. The pipeline required to develop a digital twin model, and the 

challenges when developing such a solution.  

• Chapter III describes related works on engine fault detection, using 

different techniques on how to face the main challenges. 

• Chapter IV presents our new dataset for engine fault detection and a 

preliminary evaluation.  

• Chapter V presents our proposal, describing the work done related to the 

data mining and the build of the digital twin machine learning model. 

• Chapter VII evaluates the digital twin machine learning performance based 

on the real dataset. 
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• Chapter VIII concludes the work with our outlook and proposed future 

works. 
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Chapter 2  

 

Background  

This chapter will bring the main concepts related to digital twin development and 

examples of use cases when a digital twin model brings benefits if correctly applied. The 

development of machine learning algorithms, with specific data-sets pre-processing and 

data mining techniques. 

2.1. Digital Twin 

The concept of DT was first proposed by Grieves at the University of Michigan 

in 2003. Grieves stated that product life cycle management (PLM) is intended to be the 

informational equivalent of being in physical possession and examining an item; this was 

considered the prototype of the DT concept. In the following years, Grieves updated his 

theory and named the concept a “mirrored spaced model” and an “information mirroring 

model”. (Grieves, 2016) 

In 2010, the National Aeronautics and Space Administration (NASA) introduced 

the concept of DT in the space technology roadmap (Shafto, et al., 2010), intending to 

use DT to implement comprehensive diagnosis and prediction functions for flight systems 

to ensure continuous and safe operation during their service life.  

The Air Force Research Laboratory (AFRL) introduced a conceptual model, in 

2011, that used DT technology to predict the life of aircraft structures and gradually 

extended it to the airframe condition assessment study. They also combined historical 

flight monitoring data to virtual flight to assess the maximum allowable load while 

ensuring airworthiness and safety, thereby reducing the life cycle maintenance, and 

increasing aircraft availability. Meanwhile, the US Department of Defense designed a 

digital thread (a physical based model instance), which became the basis for cross-domain 

data exchange.  
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It is possible to find many different explanations and definitions for digital twin 

in the literature. For example, in 2012, Glaessgen and Stargel first defined DT as an 

integrated Multiphysics, multiscale and a probabilistic simulation (Glaessgen, 2012). This 

simulation used physical models, sensor updates, and fleet history, to mirror its 

corresponding flying twin’s life. With the recent improvement of sensing, software, and 

hardware technology, combined with computing performance improvements, the DT 

concept has been further developed, especially in the real-time operation monitoring of 

products and equipment. 

Another example is the development of machines that involves complex system 

engineering, development requirements, system composition, product technology, 

manufacturing processes, test and maintenance, project management, working 

environment, and other issues. As a possible way to realize the interactive integration of 

the physical world and the digital world, DT is gradually applied to all aspects of the 

product life cycle, including product design, industrial production, and manufacturing 

services (Xie, et al., 2021). Use of DT for improving R&D quality, manufacturing, 

production efficiency, and predictive maintenance of equipment is of great significance.  

The DT application framework for the complex system closed-loop life cycle is 

depicted in Figure 1. It is important to note that the DTs have different forms at different 

stages of the whole life cycle. Specifically, in the design and test stage where there is no 

physical entity. In this case, the requirement for the DT is the user’s requirements. By 

inputting the quantitative user requirements into the DT and modifying its model, the 

system design’s reliability can be predicted. In the manufacturing/assembly and 

operation/service stages, the physical asset corresponds to the DT model (Xie, et al., 

2021). The physical system measurement parameters are transmitted to the DT in real-

time to realize the high fusion of virtual and real entities. In the scrapping/recycling stage, 

DT can be extended to the next cycle’s development process, forming a closed-loop life 

cycle, even though the physical entity does not exist.  



20 

 

 

Figure 1 - A general LCM framework with digital twin - image extracted from (Xie, et al., 2021) 

 

A digital twin (DT) aims to reproduce the behavior of a complex physical product 

using a probabilistic function, which is used to mirror the behavior of its corresponding 

twin (Anderl, 2018). Its main goal is to act as a digital copy of a physical asset. As a 

result, a DT can give assessments of how a system will perform under production. Thus, 

it can be used to identify and easily pave the way to efficiency improvements. A DT is 

typically utilized at the initial phases of development and design. It enables the precise 

reproduction of how specific systems and subsystems will perform in a set of predefined 

circumstances. 

2.2. Digital twin use cases 

Many DT technologies play an essential role in the life cycle of systems design, 

manufacturing, operation, and maintenance. In the product design stage, the model-based 
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definition (MBD) technology realizes the efficient expression of product data, and the 

lightweight model technology optimizes the model’s storage structure. The simulation 

and optimization technology makes the product DT model closer to the physical product’s 

functions and characteristics. In the manufacturing and assembly stage, DT uses multi-

level interconnection such as industrial Internet, IoT, and sensors, and collaborates with 

information technologies such as artificial intelligence, machine learning, data mining, 

and high-performance computing. These technologies play an essential role in 

multisource structure data collection, data integration display, product production 

supervision, quality management, intelligent analysis, and decision-making in complex 

dynamic spaces. In the operation and maintenance phase, DT comprehensively utilizes 

sensor technology, traceability technology, simulation technology, and IoT technology to 

support status tracking and monitoring, early fault warning, life prediction, and 

positioning analysis. The conceptual diagram of a wind turbine realizing DT is shown in 

Figure 2 

 

Figure 2 - Conceptual diagram of digital twin 

 

Aerospace/aeronautics fields were the pioneer areas where DT was explored first 

by NASA and by the U.S. Air Force. The main applications of DTs in this industry include 

optimizing the performance and reliability of the space vehicle/aircraft, predicting, and 

resolving maintenance issues, and making the missions safer for the crew. The main 

application of DT in this industry started with the intention to optimize the performance 

and reliability of the space vehicle/aircraft. According to the (Shafto, et al., 2010), the 

four applications of DT for them were: 
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• Simulating the flight before the launch of the actual vehicle to maximize 

the mission success. 

• Continuously mirroring the actual flight and updating the conditions such 

as actual load, temperature, and other environmental factors to predict 

future scenarios. 

• Diagnosing damage caused to the vehicle. 

• Providing a platform to study the effects of modified parameters that were 

not considered during the design phase. 

According to Singh, although the development of DT started from the Aerospace 

industry, the industry which is exploring the technology the most is the manufacturing 

industry. (Singh, et al., 2022). Any manufactured product goes through four main phases 

throughout its life cycle: design, manufacture, operation, and disposal (Figure 3). Smart 

manufacturers can leverage DTs in all four phases of the product 

 

 

Figure 3 - DT’s applications throughout a product’s lifecycle - image extracted from (Singh, et al., 2022) 

 

 

During the design phase, Digital Twins enable designers to virtually validate their 

product concepts, allowing them to explore various iterations and select the most effective 
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design. By leveraging real-time data from prior product models, designers gain valuable 

insights into which features resonate with consumers and which aspects may require 

enhancements. This streamlines and accelerates the design improvement process. A case 

in point is Maserati, which utilized DT to enhance the aerodynamics of automobile bodies 

through virtual wind tunnel simulations, a traditionally complex and costly approach. 

They also improved the interior acoustics of their vehicles by employing data collected 

from a microphone-equipped dummy during prototype testing. (Shao & Helu, 2020) 

The subsequent stage in manufacturing involves transforming raw materials into 

finished products. At this point, a Digital Twin can play a vital role in managing 

resources, planning production, and overseeing process controls. (Tao, 2018) 

Once the product is sold and in use, manufacturers can access real-time 

operational data through its corresponding Digital Twin, enabling them to devise 

maintenance strategies effectively. Fei Tao et al. noted that a Digital Twin can offer nine 

types of product services, including real-time status monitoring, energy consumption 

analysis and forecasts, user management and behavior analysis, operational guidance for 

users, intelligent optimization and updates, failure analysis and prediction, maintenance 

strategy development, virtual maintenance, and virtual operations. (Tao, 2018) 

The final stage of a product's life, often overlooked, pertains to disposal. 

Consequently, valuable insights that could inform future product or system developments 

are frequently lost upon the product's retirement. Xi Vincent Wang and Lihui Wang ( 

(Liu, 2022) introduced an innovative Digital Twin-based system designed to facilitate the 

recovery of waste electrical and electronic equipment, supporting manufacturing and 

remanufacturing efforts throughout the product life cycle from design to recovery. 

As already mentioned in this document, another use case for DT models is in the 

development of new engines, such as diesel-based engines. The development of engines 

is extensive, complex, and expensive especially when dealing with the critical system that 

requires calibration such as the common rail injection system (CRS). 

A CRS layout, as shown in Figure 4, which is commonly used by traditional 

diesel-based engines, such as the one used by a commercial vehicle with a 2.0 liters diesel 

engine 4×4 model. In the CRS, the pressure generation and the fuel injection are 

independent. The pressurization of the fuel takes place in the Common Rail, as the high-
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pressure pump supplies a continuous flow of diesel to it, ensuring the fuel is under the 

ideal pressure and ready to be injected. 

In common rail systems, a high-pressure pump stores fuel in a tank at pressures 

reaching and exceeding 2,000 bars (200 MPa). The term "common rail" indicates that all 

fuel injectors are supplied from a single fuel rail, essentially a pressure accumulator, 

where the fuel is maintained at high pressure. This accumulator ensures that multiple 

injectors receive fuel at the required high pressure. Consequently, the role of the high-

pressure pump is simplified, as it only needs to maintain the desired pressure, which can 

be controlled either mechanically or electronically. 

 

Figure 4 - Common rail injection system (CRS) layout is considered in our work. The layout depicts a 

CRS in a real vehicle as used in a commercial vehicle with a 2.0 liters diesel engine. 

 

The CRS system generally consists in supplying all cylinders by the common fuel 

rail. The system includes measuring elements, central control unit, low pressure pump, 

high-pressure pump, common rail, and injectors. 

To enable its proper operation, it is a must that the manufacturer ensures the 

appropriate calibration of the CRS, which is typically achieved by a proportional–

integral–derivative (PID) controller embedded in the Electronic Control Unit (ECU). The 

main calibration goal is to ensure that the pressure of the injection system reflects the 

required pressure signal from the ECU. Therefore, CRS operation can be typically 

described according to three main situations: 



25 

 

• Normal. Expected CRS injection system state wherein the system injects 

the expected fuel amount as computed by the PID controller. The CRS operates at the 

proper pressure, resulting in no waste of fuel and no degradation of the system 

components’ lifespan. 

• Overshoot. Failure state wherein the CRS injection system over-injects 

fuel. Fuel injection system pressure in- creases, causing fuel waste and degradation of the 

engine components’ lifespan. 

• Undershoot. Failure state wherein the CRS injection system under-injects 

fuel. Fuel injection system pressure decreases beyond expected, affecting the engine 

reliability, and driving comfort. 

Even though overshoots and undershoots are very common on diesel-based 

engines with CRS using the traditional PID controllers, the goal of the calibration phase 

is to eliminate them completely, unfortunately, due to the PID limitations, that is usually 

not the case. The real values of this type of miscalibration in engines are not shared by 

the manufacturers, as it directly impacts the lifespan of their engines and the fuel 

consumption of their vehicles. 

2.3. Machine learning  

Machine learning algorithms play a pivotal role in numerous applications, from 

recommendation systems to medical diagnostics, offering unprecedented opportunities 

for automation and decision-making. However, their development poses multifaceted 

challenges, spanning from data acquisition to model evaluation. Central to the process is 

the extraction of valuable insights from vast datasets, a task facilitated by sophisticated 

data mining techniques. As we embark on the journey of understanding machine learning 

intricacies, it becomes imperative to dissect the data mining process and unravel its 

significance in algorithmic development. (Carpenter, et al., 2018) 

Data mining serves as the basis of machine learning endeavors, which involves a 

range of methods for discovering patterns, relationships, and anomalies in raw data. The 

key is to extract useful information from different sources that will require an intelligent 

choice of mining algorithms based on specific goals (Chen, 2024). Data mining can be 

approached through two main techniques: classification and clustering. Classification 
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algorithms are designed to assign pre-defined labels to instances based on attributes for 

predictive modeling and pattern recognition purposes. Where clustering algorithms 

attempt at decomposing data into cohesive groups unveiling its underlying structures 

without knowing beforehand class labels (Kameshwaran, 2014). These approaches 

complement each other thus providing a complete grasp of data dynamics required to 

build subsequent models. 

Pre-processing serves as a critical precursor to model construction, encompassing 

a suite of techniques aimed at enhancing data quality and compatibility with machine 

learning algorithms. Raw data often holds inconsistencies, missing values, and irrelevant 

features, posing formidable challenges to algorithmic efficacy. Supervised pre-processing 

techniques lead to the suggestion of missing values, normalization of feature scales, and 

dimensionality reduction through techniques such as Principal Component Analysis 

(PCA) or feature selection (Kotsiantis, 2006). Equally, unsupervised pre-processing 

methods, such as outlier detection and noise removal, strive to cleanse the data of spurious 

artifacts, raising a more robust learning environment. By navigating the pre-processing 

environment, practitioners can mitigate data-related impediments and unleash the full 

potential of machine learning algorithms. 

Several approaches have been proposed for the creation of a DT in a variety of 

fields, including industry, medical, and even for monitoring purposes (Bulle, 2020) and 

(Viegas, et al., 2020). Authors generally resort to machine learning techniques, yielding 

promising reported results (Viegas, et al., 2020). In such a case, a machine learning model 

is built through a computationally expensive model training process, which evaluates the 

data available in a training dataset. The dataset must be composed of huge amounts of 

samples from the environment, given that the machine learning model will be built 

accordingly. As a result, the building of a realistic DT through machine learning means 

becomes a challenging task. This is because the data collected from the physical object 

sensors often cannot correctly depict the behavior of the to-be-digitalized object given 

that it must be monitored for a long time under a variety of environmental conditions. In 

such a case, the built machine learning model, acting as the DT, may present high 

accuracy in physical object representations. However, at the same time, it does not 

provide the expected level of realism to be used as a DT, e.g., to evaluate the physical 

object behavior under production or even pave the way to efficiency improvements. 
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A data set for machine learning-based digital twin model serves as the bedrock 

upon which accurate and robust simulations are constructed. Such a dataset summarizes 

a comprehensive representation of the underlying physical system, filtered from real-

world observations and measurements. Including raw sensor data, historical records, and 

operational logs, this dataset forms the substrate from which machine learning algorithms 

glean insights, patterns, and relationships, facilitating the creation of virtual replicas that 

mirror the behavior and dynamics of their physical counterparts. (Anon., 2021) 

This dataset is submitted to rigorous preprocessing and cleaning procedures to 

repair anomalies, address missing values, and standardize formats, ensuring its suitability 

for analysis and modeling. This preprocessing phase involves numerous tasks, including 

data cleaning, transformation, normalization, and feature engineering. Through these 

processes, the dataset is refined and enhanced, imbuing it with the integrity, fidelity, and 

relevance requisite for the development of accurate and actionable digital twin models. 

There is a data set for machine learning-based digital twin model which is used to 

capture the detailed and diverse relationships between phenomena that occur within the 

physical system. Exploratory data analysis (EDA) techniques are used in order to identify 

the underlying patterns, relationships and trends in the dataset (Sajal, 2024). This provides 

important information on how the system behaves and changes over time. In addition, 

visualizations, summary statistics and correlation analyses can provide stakeholders with 

an overview of its main features so that they can be taken into account when performing 

subsequent modeling exercises or selecting predictors. 

At last, a dataset for a machine learning based digital twin acts as an interface 

where practical insights and predictive power are derived from real-world experiences. 

Digital twin models are created through combination of real data and machine learning 

algorithms which mimic physical asset behaviors, enabling prescriptive decision-making 

capabilities, predictive maintenance actions as well as performance optimizations. Also, 

this potential has been enhanced by advents in areas such as data collection 

methodologies, pre-processing tools together with advanced analytics. Technology 

associated with digital twin is now potentially capable of changing industries entirely 

leading us into a new era of efficiency. 
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2.4. Challenges 

The utilization of real data from diesel engine vehicles brings a new set of 

challenges in the development of machine learning-based digital twin models. Unlike 

synthetic or simulated datasets, real-world data brings complexities, uncertainties, and 

characteristics fundamental to physical systems, presenting unique barriers to data 

preprocessing, analysis, and modeling. In this chapter, we explore the challenges 

encountered when working with real data from diesel engine vehicles, shedding light on 

the difficulties of feature engineering, data quality assurance, and domain-specific 

knowledge integration. 

The biggest challenge in using real data from diesel engine vehicles is the variety 

and collection of features contained in this dataset. Diesel engine systems are made up of 

various interconnected components each one producing different sensor data streams 

which monitor different operational parameters such as: temperature, pressure, fuel 

consumption, and exhaust emissions. Merging these types of information sources to 

create an input representation for machine learning entails serious difficulties that need 

thoughtful consideration about selection of variables as well as dimensionality reduction 

and representation learning methods. Also, the dataset is characterized by a dynamic 

nature of operating conditions; environmental factors as well as user behaviors that have 

unique complexities thereby demanding adaptive modeling approaches having temporal 

and spatial dependencies within it. 

Ensuring the quality and integrity of real data from diesel engine vehicles 

constitutes another challenge in digital twin development. Raw sensor data may be 

susceptible to noise, outliers, and measurement errors stemming from sensor 

malfunctions, environmental interference, or data transmission issues. Additionally, 

missing values, incomplete records, and data drift may further complicate the 

preprocessing and cleaning process, necessitating robust techniques for anomaly 

detection, imputation, and error correction. Discrepancies between sensor readings and 

ground truth measurements may arise due to calibration errors or instrumentation 

inaccuracies, challenging the validity and reliability of the dataset. Addressing these data 

quality issues requires meticulous attention to detail, extensive validation procedures, and 

domain-specific expertise to discern genuine signals from spurious artifacts. 
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When dealing with actual data from vehicles with diesel engines, it is difficult to 

embed information from the area of specialization into the process of making models. 

The physical processes and thermodynamics of diesel engine system are complex and 

intricate due to multiple interactions among components, fluids, and combustion process. 

In machine learning accurate and interpretable models must be developed, which requires 

a deep comprehension of these foundation mechanisms as well as domain knowledge 

about system dynamics, performance metrics and failure modes. Nonetheless, there are 

challenges in expressing such knowledge as actional features or interpretability criteria 

for models’ constraints. Therefore, this is where data scientists have to collaborate with 

domain experts and engineering practitioners in order to effectively link theory to 

practice. 

Despite these challenges, the utilization of real data from diesel engine vehicles 

offers unparalleled opportunities for advancing the state-of-the-art in digital twin 

technology. By confronting complexities, uncertainties, and idiosyncrasies head-on, 

researchers and practitioners can leverage real-world insights to construct accurate, 

robust, and actionable digital twin models that empower proactive decision-making, 

predictive maintenance, and performance optimization in the automotive domain. As 

advancements in data acquisition, preprocessing, and modeling techniques continue to 

evolve, the potential of real data-driven digital twins to revolutionize diesel engine 

development and enhance operational efficiency grows exponentially, driving innovation 

and resilience in an increasingly dynamic and interconnected world. 

In addition to the mentioned challenges of working with real data from diesel 

engine vehicles, the integration of a PID controller for detecting overshoots and 

undershoots in the common rail system introduces further complexities to digital twin 

development. A PID controller, a widely used feedback control mechanism, aims to 

regulate the fuel pressure within the common rail system by adjusting control parameters 

based on error signals derived from deviations between desired setpoints and actual 

measurements. However, tuning a PID controller to effectively mitigate overshoots and 

undershoots poses a non-trivial task, as it requires a deep understanding of system 

dynamics, response characteristics, and control loop stability. 

The interaction between real data features and the PID controller presents a unique 

challenge in digital twin development, as the efficacy of the controller hinges upon the 

accuracy and relevance of input features derived from the dataset. Features such as engine 
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load, temperature, and fuel flow rate serve as critical inputs to the PID controller, 

influencing its decision-making process and control actions. However, the dynamic 

nature of these features, coupled with uncertainties and noise inherent in real-world data, 

complicates the task of extracting meaningful signals and patterns that inform controller 

behavior. The time-based and spatial dependencies within the dataset may exhibit 

nonlinearities, discontinuities, or anomalies that challenge traditional control strategies, 

necessitating adaptive and robust control techniques capable of adapting to changing 

operating conditions and system dynamics. 

However, additional complexities and considerations are introduced when digital 

twin results are employed as inputs to the system itself in order to improve calibration 

quality. The feedback loop between digital twin predictions and real-world control actions 

must be validated, calibrated, and synchronized properly to maintain consistency, 

stability, and convergence. This implies that any differences or inconsistencies between 

the outputs of a digital twin and actual responses from a system may result in inaccurate 

decisions for control purposes hence poor performance or even instability within the 

control loop. It is therefore important for the error correction, feedback integration 

mechanisms and model refinement process to be put up so as to fully exploit the potential 

of digital twin technology towards improving calibration quality along with control 

performance. 
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Chapter 3  

 

Related works 

Many researchers have proposed different approaches for studying and 

implementing the digital twin concept with or without machine learning, not only for 

diesel engines but for many other areas of the industry. This chapter highlights the related 

works to the proposed research, with different techniques, approaches, and proposals 

As broadly discussed, digital twin concept is a famous area of research, however 

without many applications developed. Ghanishtha B. et al. explains the fundamentals 

regarding digital twin and tries to bridge the gap of individual research to provide a 

comprehensive review of digital twin outside of the aerospace sector (Bhatti, 2021). 

Aiming that, it is proposed the workflow of building and utilizing a complex digital twin 

with the main three stages of DT development in vehicle as archetype modeling, virtual 

sensors modeling and parameter update. Throughout the document many examples are 

giving on where this type of solution can be used with regards to vehicle development, 

such as: 

• Predictive mobility and autonomous motion control. 

• Advanced driver assistance systems. 

• Vehicle health monitoring and management. 

• Battery management system and intelligent charging 

All these examples expect to be developed using machine learning as an enabler 

for digital twin technology. 

Digital Twin frameworks are clearly impacting the entire product life cycle 

management even still being in its theoretical stage. Zheng et. al presents a systematic 

study about digital twin technology and application (Zheng, 2019) . The study says that 

Application framework of DT for product lifecycle management consists of three parts, 
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physical space, virtual space, and information-processing layer. In the application 

process, the DT technology can realize the full-physical system mapping, the life-cycle 

dynamic modeling and the whole process real-time optimization. The bidirectional 

mapping and interoperability of physical space and virtual space are realized through data 

interaction. Intelligent decision is realized through iterative optimization and regulatory 

interaction between two spaces. 

For instance, Airamadan A. et al. showcased the strength of machine learning 

models in imitating the operation of an advanced engine concept - the gasoline 

compression ignition at low loads (A. S. Airamadan, 2022). On this work, the authors 

show that machine learning model can be a useful tool in guiding the engine calibration 

process, however, without the use of the digital twin technology. It was showed that the 

machine learning models can predict seven engine performance parameters: fuel 

consumption, four engine-out emissions, exhaust temperature, and coefficient of variation 

(COV) in indicated mean effective pressure (IMEP). In this work, an experimental dataset 

from a study was used to development the ML model and tested in a single-cylinder 

engine equipped with a gasoline direct injector. 

As the authors mentioned, coupling machine learning models with suitable 

optimization algorithms can increase the quality with less cost of the traditional engine 

calibration approaches. They were able to achieve good results with the four different 

machine learning models capturing the complex relationship between the input 

calibration parameters and the desired outputs. 

On the other hand, M. Hinrichs used a traditional model-based approach to detect 

faults of a heavy-duty diesel engine based on the injected fuel (Hinrichs, 2021). The 

development of the study faced many challenges when handling modern’s engine control 

units (ECUs) with many monitoring and diagnostic functions. Many boundary conditions 

had to be established to enable the traditional model-based approach study to be carried 

out, such as securing that if the fuel is changed without adapting the ECU, a lot of faults 

will indicate interfering in the final result. The author was able to present new approaches 

to fault detection for pure diesel fuel, such as calculating the fuel mass based on the rail 

pressure signal, or as measuring the oxygen amount in the exhaust gas. Based on those a 

combustion model was developed to calculate the burnt fuel mass in combination with 

the intake air flow of the engine. The author presented that despite achieving satisfactory 

results, there are limitations in such traditional models. For example, the results can be 
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biased considering the difficulty of applying the model in different scenarios of engine 

functionality, such as rail vibrations and load points on the dataset.  

Similarly, di Gaeta et al. also worked with a common rail injection system 

technology (Gaeta, 2012). In this document, it was proposed a model-based gain 

scheduling approach for controlling the common-rail system for gasoline direct injection 

engines, aiming for best performance concerning emissions, fuel economy, drivability, 

and diagnostics. The proposed work made possible to vary the injection pressure over the 

entire engine speed range. The proposed method can be formalized as a triple-step 

procedure:  

• A steady-state control is deduced, playing the similar role of the map-based 

control strategy widely used in automotive control.  

• A feed-forward control is derived concerning the variation of the tracking 

reference. 

• The previous two steps result in an explicit and affine expression of the 

tracking error dynamics, based on that a non-linear error feedback can be 

easily designed for enhancing the closed-loop performance and rearranged 

into a state-dependent proportional–integral–derivative (PID) controller. 

Using experimental data, the authors analyzed different work conditions and with 

mathematical models they were able to validate and describe the pressure in the rail. On 

that sense, the model-based controller of the mean value pressure in the common rail 

device for gasoline engines was proved to be a suitable algorithm for effective 

implementation in commercial ECUs. 

Some diagnosis studies can also be found in the literature, such as J. Zheng et al. 

presented the possibility of using a classification algorithm to diagnose faults of the 

injector used in a diesel engine common rail system (Zheng, 2020). The proposal shows 

the prediction of the injection volume by Gaussian Process Regression model, according 

to the pressure of injector pressure chamber, the fault classification is carried out by 

machine learning based on the time domain feature of the pressure curve when the 

injection volume is out of tolerance. Using a model to simulate the common rail pressure, 

they used features such as pressure accumulator pressure, drive signal and fuel injector 

flow rate. The authors achieve promising results with an average error of the predicted 

data of only 0,24%. If the predicted data, an SVM algorithm is used for classifying the 
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fault according to the time-domain characteristics, with a classification accuracy as high 

as 93.7%. The outcome does not focus on the impact of the results on the calibration 

process itself, neither on any feedback towards the engine control unit. 

W. Chatlatanagulchai et al. proposed a quantitative-feedback theory controller 

designed and applied to a CRS of a diesel-dual-fuel engine. The resulting controller is 

robust to model uncertainties and external disturbances (Chatlatanagulchai, 2010). A 

quantitative measure of the achieved robustness is also provided and confirmed in 

simulation via experiments but without considering the effects of cylinder interactions. It 

is proposed integrator-augmented sliding-mode control on top of existing PIDs 

controllers with gain scheduling and feed-forward term. This proposed control system 

was implemented with four cylindrical diesel engines on an engine dynamometer and in 

a pick-up truck. Using real data, the results compared favorably with the best tuned gain 

scheduling regular PID controller.  Based on that, the possibilities of applying machine 

learning and digital twin concepts into engine development stages are evidenced. Yet, 

despite the promising prediction capabilities of the presented works, these models do not 

support the calibration process and do not anticipate possible faults. 

P. Garg et al. provides a comprehensive review of the latest advancements in 

Machine Learning (ML) techniques used for developing engine control systems, with 

particular emphasis on the often-lengthy calibration process (Garg, 2021). The review 

indicates that most research predominantly focuses on regression modeling to capture 

complex processes, minimize the number of model parameters, and create models 

suitable for real-time implementation in Electronic Control Units (ECUs). Promising 

avenues for future research in ML-driven engine control include the use of reinforcement 

learning to optimize engine performance in real-time and the application of unsupervised 

learning techniques for monitoring data quality. The author is able to prove that ML 

techniques can be combined with ECU logic, but unfortunately cannot provide real data 

to be assessed with the possible implementation. 

He, B. et al proposes in his paper a structure and operational mechanism of a 

digital twin model for tuning PID controllers. By leveraging the capabilities of virtual-

real mapping and data fusion provided by the digital twin model, along with online 

identification of the controlled object's model, the challenges associated with real-time 

feedback of the controller's actual control effects and the discrepancies in the virtual 

model due to changing working conditions are effectively addressed. This approach 
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enables the closed-loop self-tuning of the PID controller. Additionally, an intelligent 

optimization algorithm is proposed to enhance the efficiency and accuracy of the 

parameter tuning process for the PID controller (He, 2022). The paper also outlines the 

modeling methodology of the digital twin model across three dimensions: physical 

prototyping, twin service systems, and virtual prototyping. Finally, the practicality of the 

proposed method is validated through an example focused on tuning the controller for the 

stability of gear transmission, without being incorporated in a vehicle ECU. 

3.1. Discussion 

 

In this chapter we present the most relevant works in the literature for this 

research. A summary of the works was structured in Table 1. The works were organized 

considering the technique used to improve diesel engine calibration process and 

approaches to their solution, consolidated in the previous chapters. All these selected 

related works are proposing a solution using digital twin techniques and how it can 

influence today’s industry. 

 

Table 1 - Related works 
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Machine learning application X X X   X X X  X 

Contains a proposed DT/ML solution      X  X  X 
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Real data 
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The use of digital twin models with machine learning is not new in the automotive 

industry. As we can also see, there are proposals in the literature for the use of such 

technologies to assist in the engine calibration process. Unfortunately, until now, access 

to real and non-simulated data greatly prevents the possible application and 

implementation of such models in real conditions. The proposed solution in this work 

contemplates all the possibilities almost reaching a workable solution for the industry, 

getting this technology closer to being implemented in such cases. 

In this way, we summarize the work related to this project, thus concluding the 

chapter on related work. Continuing the work, Chapter 4 presents the methodological 

procedures of this work.  
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Chapter 4  

 

A machine learning-based digital twin 

model 

This section further describes new DT dataset and the proposed machine 

learning-based digital twin model for the Common Rail System (CRS) of a diesel-engine 

vehicle. This proposed model, following the DT application framework, is applied in the 

operational stage of the product life cycle. 

4.1. Digital-twin Diesel Engine Dataset (DTDED) 

This work presents a new DT dataset namely Digital- Twin Diesel Engine 

Dataset (DTDED). One of the first of its kind, the dataset depicts the data collected from 

a real diesel-based engine before the release for production. More specifically, DTDED 

was built through the data collected in one real commercial vehicle with a 2.0 liters diesel 

engine 4×4 model, with 4 injectors, still in the validation phase. The data collection took 

place from the controller area network (CAN) network (controller area network) 

responsible for managing all the information transmitted in the vehicle, from commands 

sent from the ECU to the reading of data from sensors spread across the other vehicle 

systems. 

In practice, DTDED showcases a miscalibration in a diesel-based engine. The 

miscalibration occurs due to bad operation by the Common Rail System (CRS), which 

can result in a Normal, or Overshoot/Undershoot failure situation. Undershoot situations 

are characterized when the fuel injection system’s real pressure (Preal) is at least 5% less 

than the fuel injection system’s desired pressure Pset. Overshoot situations are 

characterized when the Preal is at least 5% higher than the engine Pset. The fuel injection 

system Pset is computed and calculated in the ECU following a well stablished 
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mathematical formula in the automotive industry (Damyot & Chatlatanagulchai, 2013), 

according to Equation 1. 

 

 

Preal = Pset + (𝐾𝑃 + 𝐾𝑖  +  𝐾𝑑) (1) 

𝐾𝑃 = 𝑎 * 𝐾𝑝𝑐𝑟𝑖𝑡 (2) 

𝐾𝑖 = b * 𝐾𝑃 ∗  2π  ∗ fcrit (3) 

Kd =  𝐾𝑝𝑐𝑟𝑖𝑡 * (c - 𝑎) (4) 

 

Where: 

𝐾𝑃 Proportial gain 

𝑎 Factor in avoiding  𝐾𝑝𝑐𝑟𝑖𝑡 

𝐾𝑝𝑐𝑟𝑖𝑡 Proportional gain value that excites the system at a resonant frequency 

𝐾𝑖 Integral gain 

b Factor in maintaining correlation ship between gains 

fcrit Frequency equal or close to natural frequency 

Kd Derivative gain 

c Factor in maintaining correlation-ship between gains 

Preal Real fuel injection system pressure (hPa) 

Pset Desired fuel injection system pressure (hPa) 

 

The factors (𝑎, 𝑏 , 𝑐) used to calculate Pset may vary from system to system 

according to its configuration and intended usage. (Robert Bosch GmbH, 2006)  

This DTDED brings valuable information of not only the CRS operation, but 

from the entire vehicle and its mode of operation. Every system and boundary conditions 

of the vehicle can impact the behavior of the CRS, such as the vehicle speed, which 

correlates not only to the required torque of the engine, but also the amount of inlet air, 

and therefore amount of oxygen the engine is receiving. A summary with examples of the 

features can be found in Table 2. 

 

 



39 

 

Table 2 - Example of features found in the proposed DTDED 

Feature 
Sampling 

period 
Description Unit 

AFS_dm 10ms Sensed fresh air mass flow kg/s 

APP_r 10ms Standardized accelerator pedal position % 

BattU_u 100ms Battery voltage mV 

CoEng_st 10ms Engine operation state (shutoff / running) 0 / 1 

EnvP_p 1s Environmental pressure (measured or modelled) Pa 

Epm_nEng10ms 10ms Engine speed RPM 

InjCtl_qSetUnBal 10ms Current fuel injection quantity mg/injector 

Rail_pSetPoint 10ms Rail pressure setpoint hPa 

VehV_v 100ms Vehicle speed Km/h 

 

4.2. Machine learning-based digital twin model 

This work proposes a new machine learning-based digital twin model to assist 

operators with engine calibration and predicting the real pressure Pset in the fuel injection 

system to help the common rail injection system (CRS) to act before a failure occurs. The 

overall proposal is shown in Figure 5.  

  

 

Figure 5 - A digital twin model based on machine learning to predict the pressure in the fuel injection 

system, helping in the common rail injection system (CRS). 

 

The proposal considers a diesel engine with a CRS module that manages the fuel 

injection system pressure. The CRS module uses a digital engine twin that continuously 

evaluates the engine sensors’ data to predict pressure level in the fuel injection system. 
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The main insight of such an approach is that our proposal, based on a digital twin 

implementation, can predict pressure failure states in the fuel injection system (Overshoot 

and Undershoot) to assist the CRS module in proactively taking countermeasures. As a 

result, based on the digital engine twin, the proposal enables the CRS module to avoid 

situations wherein the fuel injection system pressure may affect the engine’s reliability. 

The proposal assumes that a diesel engine should not exceed or fall below a 

preset pressure in the fuel injection system. The engine manufacturer defines the pressure 

set-point to ensure the reliability of the engine over time. The CRS module must be 

calibrated to meet the manufacturer’s standards, ensuring that the intended pressure levels 

in the fuel injection system are met. However, the calibration task requires a lot of 

engineers’ time to achieve such a goal. As a result, CRS modules often go to the 

production line without proper calibration, generating under- and over-pressures in the 

fuel injection system over time. 

4.2.1. Data mining for a digital twin model 

This proposal aims to integrate a digital twin model to forecast undesired 

pressure levels in the fuel injection system. The digital twin aims to replicate the diesel 

engine behavior as time passes, providing the CRS module with an indicator of undesired 

pressure levels. The operation of our proposed scheme starts with the data collection by 

a Data Acquisition module (Figure 5). The module continuously collects engine sensor 

data through a CAN (Controller Area Network) bus. The collected sensors data values 

are used as a representation of the diesel engine’s current state. The data is used as input 

by a Time-series Feature Extraction module, which aims to compound a feature vector 

that depicts the historical behavior of the diesel engine. The module builds a feature vector 

through a sliding window of events rationale. As a result, the built feature vector depicts 

the diesel engine state in a given time window, thus, representing the engine behavior as 

time passes. The built time-series sensor values are used as input by a Time-series 

Pressure Prediction module. The module, in turn, acts as the digital engine twin to forecast 

pressure levels in the fuel injection system. To achieve such a goal, it applies a machine 

learning model, which predicts, within milliseconds in advance, the pressure levels in the 

fuel injection system. Finally, the CRS module can use the prediction outcome to take 
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counteractions before the pressure level in the fuel injection system reaches undesired 

states. 

Consequently, the proposed machine learning model for building a diesel engine 

digital twin enables operators to improve the operation of CRS modules. Nevertheless, 

CRS calibration can be facilitated during the engine development process since 

calibration inadequacy can be identified and fixed during CRS operations 

Data collected in the automotive context follows the Association for the 

Standardization of Automation and Measurement Systems (ASAM) definitions. 

Therefore, the data is made available in the Measurement Data Format version 4 (MF4) 

format, capable of supporting the recording of a high volume of attributes with a high 

acquisition rate. The data consists of 1,347,340 instances with 208 attributes each. Sample 

rates range from 1 second, 100 milliseconds, and 10 milliseconds. The collection of 

DTDED took place in a total period of 10 minutes of vehicle operation. 

In the DTDED, feature selection was performed using the information gain 

approach, measuring the amount of information that one variable (e.g., vehicle speed) 

provides about another variable (e.g., Preal). Specifically, the mutual_info_regression 

function from the scikit-learn library was employed to quantify the mutual dependence 

between each feature and the target variable. Mutual information measures the amount of 

information shared between two variables, capturing both linear and non-linear 

dependencies.  

For this analysis, features with a information gain above 0.8 were selected, 

ensuring that only the most significant features were retained for model training. This 

threshold was determined empirically to balance the trade-off between model complexity 

and predictive accuracy, focusing on features that contribute meaningfully to the 

regression task. This resulted in 70 selected features, as shown in Table 3 – the whole 

feature list available in the dataset can be found in Chapter 7 - Appendixes. The dataset 

and the features used in this research are proprietary and owned by engine manufacture. 

Due to confidentiality agreements and intellectual property restrictions, the dataset and 

descriptions of what each feature represents cannot be shared publicly. 
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Table 3 - Feature groups and descriptions 

Feature Groups Description Number of features 

Sensors and actuators 

of high pressure pump 

Data collected from sensor and signals sent from 

ECU to control the high pressure pump 
28 

Sensors and actuators 

of CRS 

Data collected from sensor and signals sent from 

ECU to control the Common Rail System 
22 

Vehicle 

drivability 

Data collected from sensors regarding driving 

behavior of the running vehicle 
9 

Environmental 

conditions 

Data from external sensors in the vehicle. (e.g. 

external temperature, etc) 
4 

Injection strategy 

Data collected from sensor and signals sent from 

ECU to control injectors and their strategy. (e.g. 

moment and duration of fuel injection) 

7 

 

4.3. Engine digital twin 

A proposal prototype was implemented considering the previously described 

DTDED dataset. A traditional machine learning process is considered for building our 

proposed digital twin (Figure 5). The DTDED dataset was split into training, validation, 

and testing datasets, each composed of 40%, 30%, and 30%, respectively, of the original 

dataset. This strategy was made possible because it is known that the failures are evenly 

spread in the dataset. Each dataset depicts the diesel engine operation in a given time 

window. The dataset sensor values were normalized through a min-max normalization 

procedure. 

Before building our DT model, a linear interpolation procedure was used, given 

that the dataset was made of 208 feature values collected from a variety of sensors. Each 

with a sample rate ranging from 1 second (e.g., fuel temperature), to 10 milliseconds (e.g., 

current amount of injected fuel). The resulted dataset depicts the engine values in a 10-

millisecond interval. 

Based on the insights provided by the features presented in Table 3 , the DT Time-

series Pressure Prediction module was implemented through a linear regression model. 

The model receives as input a feature vector built by the Time-series Feature Extraction 

module (Figure 5). The feature vector was built by concatenating the previously selected 

70 features considering a 3-sample window. 
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The model and the previously described data preprocessing were implemented 

through scikit-learn API v.1.1.1, and pandas API 1.4.2. The model was evaluated through 

the Root Mean Square Error (RMSE), Adjusted R Square (R2), and Mean Absolute Error 

(MAE), as usually made in related works. Each of these metrics provides different 

insights into the model's accuracy and effectiveness. 

By using RMSE, R2, and MAE together, a complete evaluation of the model's 

performance is completed. RMSE highlights larger errors, R2 shows the proportion of 

variation explained by the model, and MAE provides a direct measure of average error. 

This combination confirms that the model's accuracy is correctly measured across 

different aspects, matching both error magnitude and overall fit to the data. (Cabuk, 2023) 
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Chapter 5  

 

Analysis and evaluation 

Current DT datasets used in the literature often do not depict the complexities of 

the DT domain. This is because as a DT aim at building a digitalized copy of a physical 

object, the representation of a realistic behavior of the to-be-digitalized object requires 

the data collection to be made for a significant time, ensuring that even failures can be 

adequately collected. In contrast, in general, current datasets in the literature either 

generate the data in a simulated environment or monitor the to-be-digitalized object in 

unrealistic settings, thus, without data related to failure states. 

In this section, we investigate the data distribution of DTDED dataset. More 

specifically, we first evaluate how the amount of fuel injection from the engine relates to 

the pressure of the fuel injection system (Pset, Eq. 4), as shown in Figure 6. In practice, 

the engine fuel injection amount is highly correlated with the fuel injection system 

pressure, reaching a correlation value of 0.94.  

 

Figure 6 – Data Distribution of DTDED – Normalized fuel injection quantity vs Pset 
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However, it is possible to note a significant dispersion in the collected values 

caused by the collection of real values from a real diesel-based engine. We further 

investigate how the failures in DTDED dataset occur. Figure 7 shows a data fraction 

sample collected from our dataset, showing the occurrence of Undershoot and Overshoot 

failures as time passes.  

 

Figure 7 – Data Distribution of DTDED – Undershoot and Overshoot failures 

 

 

It is possible to note that such a failure continues to occur for a period in time, 

given the time needed for the Preal (real pressure data collected from the vehicle’s sensor) 

to reach the Pset (desired fuel injection system pressure being requested by the ECU based 

on PID calculations). Figure 8 shows the data distribution of our DTDED dataset 

according to the considered failure states. Considering both Overshoot and Undershoot, 

failure states account for only 8.14% of the total number of samples. 
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Figure 8 - Data distribution of the DTDED states in percentage 

 

 

Such data distribution disparity is expected from real diesel engines since failures 

must occur rarely to ensure proper engine operation. Unfortunately, the rarity of failures 

affects the construction of realistic DTs, since, in general, prior works relies on collecting 

data over a small-time window, or even making use of simulated environments. As a 

result, the DTDED dataset allows operators to construct realistic DTs, given that the 

engine faults are properly represented in the original dataset. Manufactures do not make 

it public how much percentage of failures will remain in the engines after the validation 

phase. 

The evaluation aims at answering the following research questions (RQ): (RQ1) 

How does our proposed DT model work for predicting pressure levels in the fuel injection 

system? (RQ2) What is the prediction performance of our model for a longer prediction 

time for the pressure levels? 

5.1. A digital twin model 

The first experiment aims at answering RQ1 and evaluates the prediction 

performance of our proposed DT model for pressure levels in the fuel injection system. 
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We consider a DT model that aims to predict the pressure level in the fuel injection system 

for the engine CRS 0.1 seconds before it occurs. This prediction time was defined based 

on calibration expert experience and the physical delay involving physical components 

like injectors, pumps, and sensors. These components have inherent delays in responding 

to control inputs due to mechanical and hydraulic limitations, such as the time taken for 

fuel pressure to change. On top of that, the response time of sensors, which provide 

feedback to the PID controller, may have latency in detecting changes in pressure or flow 

rates, causing delays in the controller's ability to react. On top of that, other prediction 

times will also be evaluated. 

The proposal error rates for predicting pressure level 0.1 seconds ahead reached 

an RMSE of only 0.057, thus, enabling the application of the proposed DT model to assist 

the CRS module. Figure 9, Figure 10 and Figure 11 show the performance of our proposal 

in a variety of DTDED dataset settings.  

 

Figure 9 - Proposal performance under different DTDED settings - Normal 
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Figure 10 - Proposal performance under different DTDED settings - Undershoot 

 

 

Figure 11 - Proposal performance under different DTDED settings - Overshoot 

 

 

Our proposed scheme was able to provide similar prediction performance when 

utilized under Overshoot and above Undershoot to the Normal situation. For instance, in 

an Overshoot setting, our proposed scheme was able to properly detect the future 
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undesired pressure level in the fuel injection system, with a normalized pressure error of 

only 0.005 (Figure 11, at ≈ 50 data points). Similarly, our scheme can detect an 

Undershoot setting with a pressure error of only 0.005 (Figure 10, at ≈ 60 data points). 

 

5.2. Prediction of Pressure Levels in the Fuel Injection System 

To answer RQ2, we further investigate how the fuel injection system pressure’s 

prediction time impacts our proposed scheme’s prediction performance. Specifically, we 

vary our model’s pressure level prediction time from 0.1 to 0.5 seconds for the fuel 

injection system. This is because the prediction time for pressure, in the fuel injection 

system, must be defined according to the expert’s needs and may vary according to the 

used engine configuration. Table 4 shows the prediction performance of our model 

according to the future prediction time. It is possible to note that the prediction time 

directly relates to our proposal measured error rates. For instance, the RMSE is increased 

by 0.006 (+10.6%) when the future prediction time increases from 0.1 to a 0.5 second 

setting. As a result, the proposed scheme can be by the CRS module to assist in the 

pressure management for the fuel injection system even if a higher future pressure time 

is needed. also shows the impact on the prediction performance based on the prediction 

time in seconds. 

Table 4 - Regression performance for predicting Preal. 

Prediction Time (s) Root Mean Square 

Error (RMSE) 

R Square (R2) Mean Absolute Error 

(MAE) 

0.1 0.057 0.949 0.037 

0.2 0.058 0.948 0.038 

0.3 0.059 0.947 0.039 

0.4 0.062 0.941 0.040 

0.5 0.063 0.940 0.041 

 

5.3. Prediction of Pressure Levels in PID system 

As already mentioned, the common rail system calibration is based on a PID 

controller embedded in the ECU. The controller’s goal to fine-tune the injection system’s 

real pressure can be improved by the usage of the proposed digital twin model. The DT 
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model provides promising results even for half a second in advance, as shown in Figure 

12. The DT model can provide input to the PID controller even before the overshoots and 

undershoots happen, reducing drastically the number of failures in the injection system. 

Furthermore, the merging of both models can create an auto tuning PID controller, 

using the digital twin framework, where no calibration is needed anymore, removing the 

dependency on experts’ knowledge, and reducing drastically the time in engines 

development and calibration. The merging of both models is a scope not covered in the 

document but recommended as future works.  

 

Figure 12 - Regression performance for predicting Preal based on prediction time in seconds 
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5.4. Discussions 

This work was able to show the prediction performance of our proposed Digital 

Twin (DT) model for forecasting pressure levels in a fuel injection system. The DT model 

aims to predict pressure levels 0.1 seconds before they occur but can also be used for 

predicting the level 0.5 seconds before. Our results demonstrate that the proposed model 

achieves a RMSE of just 0.057, showing its efficacy in assisting the CRS controller. 

Additionally, the model performs consistently across different scenarios, including 

overshoot and undershoot situations, with minimal normalized pressure errors (0.005). 

This performance highlights the model's robustness and its potential to mitigate future 

undesired pressure levels, thereby enhancing the system's reliability. 

To further assess the model's effectiveness, we explored how varying the 

prediction time affects performance. The model remains beneficial for CRS module 

integration, even under longer prediction intervals. Moreover, the potential for merging 

this DT model with the PID controller embedded in the ECU presents an exciting future 

direction.  

The method employed in this work proved to be successful, as it achieved the 

expected results and validated the effectiveness of the DT approach for this specific use 

case. By accurately predicting the pressure levels in the fuel injection system, the DT 

model demonstrated its capability to enhance system performance and reliability. The 

results emphasize the value of Digital Twin technology in providing real-time insights 

and predictive capabilities that can prevent system failures and optimize operations. This 

success highlights the potential of DT models to revolutionize fuel injection systems and 

similar complex engineering applications, showcasing their practical utility and 

transformative impact.  
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Chapter 6  

 

Conclusion 

Digital twin is the critical technology to fully fusion physical and virtual models. 

A technology that has been pursued for many years, but based on its complexity, it is still 

not common to see fully implemented frameworks in industries and final products. This 

work has proposed a digital twin model based on machine learning techniques to assist 

the vehicle engine development task. PIDs controllers are the barebone of the calibration 

processes of the main vehicle functions, and it has been proven reliable once properly 

used, but a time-consuming task that cannot be automatized by itself. 

The proposed scheme predicts pressure levels in the fuel injection system of a 

real diesel-based vehicle engine. It was shown that many data mining and machine 

learning techniques needs to be used to proof the digital twin value and impact, 

nevertheless, as a result, it can be used to assist the Common Rail System (CRS) module 

in preventing unwanted pressure levels in the fuel injection system, avoiding the engine 

from premature wear.  

Despite these challenges, the integration of a PID controller within the digital twin 

framework offers unprecedented opportunities for advancing diesel engine calibration 

and control. The usage of data mining and machine learning techniques are crucial for 

DT models, especially with time-series data. Furthermore, by incorporating digital twin 

results into the control loop, future researchers can achieve continuous improvement, 

proactive maintenance, and performance optimization, thereby realizing the full potential 

of digital twin technology to revolutionize diesel engine development and operation in 

the automotive domain. 

As future works, we plan to extend the proposed dataset, not only to work with 

more than 10 minutes of data collection, but also to include additional vehicles and 

incorporate the proposal in an actual engine, using the Digital Twin (DT) model as input 
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for the PID controller. This proposal can be extended in not only a reduction of overshoots 

and undershoots, but also a “non-fixed” calibration, adapting to external environments 

and different boundaries. 

Due to the collaborative nature of this work with engine manufacturer, data and 

information related to the investigation and development cannot be disclosed. Part of the 

content is sensitive and classified as confidential, as it involves proprietary knowledge 

and protected intellectual property. These restrictions are in place to honor the 

confidentiality agreements established with the company. 
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Chapter 7  

 

Appendixes  

Appendix A – DTDED Features 
 

 

Feature groups Features Frequency Description 

Environmental 

conditions 
Altitude 1s - 

Environmental 

conditions 
EnvP_p 1s 

Env. pressure, measured or 

modelled 

Environmental 

conditions 
EnvT_t 1s 

Environment temperature signal 

(with replacement reaction in case 

of sensor error) 

Environmental 

conditions 
FuelT_t 1s Temperature of fuel 

FIE CEngDsT_t 1s 
Coolant temperature at engine 

output 

FIE ETCtl_qPoI1 10ms 
Additive correction of retarded post 

injection quantity 

FIE InjCrv_phiMI1Des 10ms 
Desired reference angle for the start 

of MI1 

FIE InjCrv_phiMI1Set 10ms Desired SOD of MI1 

FIE InjCrv_qMI1Des 10ms Desired MI1 injection quantity 

FIE InjCrv_qPiI1Des_mp 10ms Desired quantity for PiI1 

FIE InjCrv_qPiI2Des_mp 10ms Desired quantity for PiI2 

FIE InjCrv_qPiI3Des_mp 10ms Desired quantity for PiI3 

FIE InjCrv_qPoI1Des_mp 10ms Post injection 1 setpoint quantity 

FIE InjCrv_qPoI2Des_mp 10ms Post injection 2 setpoint quantity 

FIE InjCrv_qPoI3Des_mp 10ms Post injection 3 setpoint quantity 
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FIE InjCtl_qCurr 10ms 
Torque generating engine fuel 

injection quantity 

FIE InjCtl_qSetUnBal 10ms Current injection quantity 

FIE MeUn_dvolAdaptCrvCor 100ms 
Adaptive correction of metering 

unit set point value 

FIE MeUn_dvolSet 100ms 
Setpoint value (volume flow) of rail 

pressure governing 

FIE MeUn_dvolSetAdapt 100ms 
Correction value of the adaption of 

the metering unit 

FIE Rail_pSetPoint 10ms Rail pressure setpoint 

FIE RailP_pFlt 10ms 
Maximum rail pressure of the last 

10ms 

FIE RailP_uRaw 100ms Raw value of rail pressure 

Inlet AIR SYSTEM AFS_dm 10ms Sensed fresh air mass flow 

Inlet AIR SYSTEM AFS_facAdjVal_[0] 1s 
Final Correction factor for the air 

mass for drift stored in EEPROM 

Inlet AIR SYSTEM AFS_facAdjVal_[1] 1s 
Final Correction factor for the air 

mass for drift stored in EEPROM 

Inlet AIR SYSTEM AFS_mAirPerCyl 10ms Air mass per cylinder 

Inlet AIR SYSTEM AFS_mAirPerCylFlt 10ms Filtered air mass per cylinder 

Inlet AIR SYSTEM AirCtl_mDesBasCor 10ms 
Calibration for desired air mass 

Base Correction 

Inlet AIR SYSTEM AirCtl_mDesVal 10ms 
Desired air mass value for low 

temperature combustion 

Inlet AIR SYSTEM AirCtl_rTVAClsdLoop_mp 100ms Ratio throttle valve Closed Loop 

Inlet AIR SYSTEM AirCtl_stMon 10ms 
Status: shutdown case of the 

governor 

Inlet AIR SYSTEM ASMod_dmIndAirRef 10ms 
Reference gas mass flow into the 

engine 

Inlet AIR SYSTEM PCR_pActVal 100ms Boost pressure actual value 

Inlet AIR SYSTEM PCR_pDesVal 100ms Limited boost pressure setpoint 

Inlet AIR SYSTEM ThrVlv_rAct 100ms Actuator position 

Inlet AIR SYSTEM ThrVlv_rDesVal 100ms - 

Inlet AIR SYSTEM TrbCh_rAct 100ms Actuator position 

Inlet AIR SYSTEM TrbCh_rDesVal 100ms Desired position 
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Outlet AIR SYSTEM ASMod_dmEGFld_[0] 100ms 
Air mass flow for exhaust upstream 

pressure calculation 

Outlet AIR SYSTEM DewDet_wLSU_[0] 1s 
Integrated heat quantity at sensor 

position. 

Outlet AIR SYSTEM DewDet_wLSU_[1] 1s 
Integrated heat quantity at sensor 

position. 

Outlet AIR SYSTEM LSU_rO2Act_[0] 100ms 

Actual oxygen value without filter 

and without freeze, only offset 

compensated 

Outlet AIR SYSTEM LSU_rO2Adap_[0] 100ms 
Adapted O2 ratio after over run 

correction 

Outlet AIR SYSTEM LSU_tRi_[0] 1s Temperature of lambda sensor 

Outlet AIR SYSTEM SmkLim_qLimSmk 100ms ramped smoke limitation quantity 

Vehicle states BattU_u 100ms Battery voltage 

Vehicle states T15_st 10ms Terminal 15 status after debouncing 

Vehicle states T50_st 1s Status of T150 signal 

Vehicle states ActMod_trqClth 10ms actual engine torque - clutch torque 

Vehicle states APP_r 10ms 
Standardized accelerator pedal 

position 

Vehicle states APP_uRaw 10ms 
Acceleration pedal position raw 

value 

Vehicle states Epm_nEng 100ms 
Average engine speed of one 

cylinder segment 

Vehicle states Epm_nEng10ms 10ms Engine speed calculated in 10ms 

Vehicle states Tra_numGear 100ms Current gear information 

Vehicle states Brk_st 100ms Brake switch state 

Vehicle states Brk_stMn 100ms State main brake switch 

Vehicle states Brk_stRed 100ms State redundant brake switch 

Vehicle states CoEng_st 10ms 
Value of CoEng_st if engine is 

running 

Vehicle states CoEOM_numStageAct 10ms 
Number of the active stage of the 

operation mode 

Vehicle states CoEOM_stOpModeAct 10ms Active operation mode 

Vehicle states CoETS_stCurrLimActive 10ms 
Status of active minimum of 

limitation torques 
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Vehicle states DnoxCtl_flgEngStopEna 10ms Engine stop enable by DnoxCtl 

Vehicle states DnoxCtl_tiEngOff 1s DnoxCtl internal engine-off-time 

Vehicle states EngDa_tiEngOn 1s Engine on time 

Vehicle states Epm_stOpMode 10ms State of EPM operation mode 

Vehicle states GlbDa_lTotDst 1s Total distance since first start 

Vehicle states SyC_stMn 100ms Current system/ECU state 

Vehicle states VehV_v 100ms Vehicle speed 

Vehicle states DewDet_stHtgLSUHeat_mp 100ms 

Status whether heat quantity 

exceeds heat threshold value after a 

certain delay 
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