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Abstract
No seguinte trabalho, é apresentado um sistema de reconhecimento de imagens de emoções
utilizando aprendizado autodidata. Vários Autoencoders Convolucionais serão treinados
para aprender a extrair características de um conjunto de dados de domínio diferente
do conjunto de dados alvo. O conjunto de dados alvo será passado pelos codificadores
para extrair as representações por imagem. A partir das representações geradas por cada
codificador, uma rede neural com várias camadas totalmente conectadas será aplicada sem
viés e com a ajuda dos mecanismos de atenção e da técnica de fusão, as multirrepresentações
serão combinadas e ponderadas, aumentando o desempenho da rede com o objetivo de
realizar a tarefa de classificação no conjunto de dados alvo. Com a validação cruzada
Leave-One-Subject-Out (LOSO), a métrica acurácia para os conjuntos de dados JAFFE e
CK+ foram de 68,94% e 88,60%, respectivamente, alcançando um desempenho comparável
ao trabalho referenciado. Palavras-chave: STL, Attention Mechanism, Facial Emotion
Recognition, Fusion model, Multi-view Learning.





Abstract
In this ensuing research endeavor, a sophisticated emotion image recognition system
utilizing self-taught learning methodology is expounded upon. The approach involves
training multiple Convolutional Autoencoders, enabling them to acquire proficiency in
extracting features from a domain dataset distinct from the ultimate target dataset.
Subsequently, the target dataset undergoes encoding processes through these trained
autoencoders to derive distinct representations for each image.

The representations generated by each encoder form the basis for a neural network,
incorporating several fully-connected layers. This network operates without bias, integrating
attention mechanisms and a fusion technique. Through the judicious combination and
weighting of multi-representations, the overall network performance is enhanced, with the
primary aim of accomplishing the classification task on the target dataset.

The evaluation of the proposed system involves Leave-One-Subject-Out (LOSO) cross-
validation. The attained accuracy metrics for the JAFFE and CK+ datasets stand at 68.94%
and 88.60%, respectively. This achievement is notably comparable to the performance
reported in the referenced work, validating the efficacy of the developed methodology.

Keywords: Self-Taught Learning, Attention Mechanism, Facial Emotion Recognition,
Fusion model, Multi-view Learning.
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1 Introduction

The construction of a model that generalizes well, most supervised learning methods
necessitate a substantial amount of labeled training data. However, in numerous real-world
scenarios, such data is often scarce, difficult to acquire, and expensive. Consequently, this
presents a significant limitation in deep learning tasks. To address the lack of labeled
data, knowledge transfer between tasks has emerged as an innovative learning framework.
One specific method within this framework is self-taught learning (STL), which leverages
data from distributions different from the target problem (RAINA et al., 2007). Unlike
conventional transfer learning, STL does not require labeled data from an auxiliary domain.
Instead, it learns representations without the need for labeling, effectively handling different
data distributions. By doing so, STL provides a versatile approach to improve learning
performance in situations where labeled data is insufficient, ultimately enhancing the
model’s ability to generalize across various tasks and domains.

One of the major advantages of STL has been the use of unlabeled data, as
mentioned by the author in their studies (BHANDARI et al., 2018). This is due to the
rationale behind STL, which incorporates concepts and principles borrowed from natural
human learning processes. It is believed that unlabeled data helps to provide a solid
foundation for high-level learning. In other words, STL is becoming a crucial component
when (1) there is little labeled data for training, or (2) even when there is a sufficient
amount of labeled data, using examples from outside the classes of interest enhances
the learning process due to greater generalization power. This approach enhances model
performance by leveraging the inherent value of diverse, unlabeled data to strengthen the
learning framework.

This paper is mainly concerned with STL and its application in facial emotion
recognition (FER). This application is challenging due to the diverse expressions influenced
by individual and cultural factors, where it is very common to find datasets with people
showing similar expressions for different emotions. This phenomenon is more noticeable in
some countries than in others. That being said, we believe that STL has a great opportunity
to achieve competitive results.

Our research expands on these studies by using Multi-View Learning, which
generates several representations from a single image to enrich the information. Our neural
network model integrates this attention mechanism to blend these diverse representations
effectively, resulting in significant enhancements in FER accuracy metric. This approach
not only builds on existing methods but also emphasizes the importance of utilizing
multiple views and focused attention to better understand and classify facial expressions.
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1.1 Definition of the problem

In the described context, our classification model of facial expressions in images
has the main problems:

Small Dataset : Both datasets (JAFFE and CK+) used in this work do not
contain more than 400 images and 7 classes, so if we applied a deep learning models
directly using LOSO validation protocol, it is not as effective due to its small amount of
data. Since it is well known in deep learning, the performance on vision tasks increases
logarithmically based on volume of training data size (SUN et al., 2017). Some examples
of these datasets we can see in Figure 1 and Figure 2. In addition, we have a problem that
visually all the emotions are very similar. This makes it an even more difficult problem to
solve. More details about the datasets can be found in a future section.

Figure 1 – JAFFE Dataset All Emotions Sample

Source: Author’s original work

Figure 2 – CK+ Dataset All Emotions Sample

Source: Author’s original work

Feature Extraction : Being a self-taught learning system, an unsupervised CNN
Auto-Encoder model was used to extract features from facial expressions. In this context,
we will use the latent vector or output of the encoder as the extracted representation of
the face. This work employs various strategies to obtain the best representations, making
achieving the best representations a challenge.

Classification model : Inspired by emotion recognition works in other modalities
(like image, audio, video, text, etc), the attention mechanism was implemented with
multi-view learning and fusion strategies from the representations for each image inside
the Neural Network with fully-connected layers.
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More details about all the datasets we will see in experimental results and discussions
section.

1.2 Motivation

Currently, the field of emotion recognition from images is experiencing significant
growth due to its wide range of applications in various disciplines. This research aims to
explore and contribute to this field of study, providing a Deep Learning model capable of
classifying facial expressions from visual images.

There are several solid reasons supporting this research:

Impact on Mental Health and Well-being: Emotion recognition can have a
positive impact on people’s mental health and well-being by allowing early detection of
emotional disorders, providing feedback in emotion-based therapies and improving medical
care in general.

Improved Human-Machine Interaction: Advances in emotion recognition can
lead to more natural and effective interaction between humans and machines, improving
the usability and adaptability of technologies, from virtual assistants to intelligent user
interfaces.

Applications in Marketing and Advertising: In the business world, under-
standing consumers’ emotions through images can revolutionize marketing and advertising
strategies, personalizing the customer experience and increasing the effectiveness of cam-
paigns.

Education and Personalized Learning: Education can benefit from emotion
recognition models to adapt teaching and provide personalized feedback to students,
thereby improving knowledge retention and motivation.

Interdisciplinary Research: This research offers opportunities for interdisci-
plinary collaboration by integrating concepts from psychology, neuroscience, computer
science, and other disciplines, thus enriching our understanding of how emotions manifest
visually.

Social and Cultural Impact: Advances in this field can influence culture and
society, from applications in entertainment and art to understanding emotional expression
in various cultures.

In summary, this thesis addresses a crucial topic in the field of artificial intelligence
and visual perception: the recognition of emotions from images. The results of this research
have a potential to significantly improve our understanding of human emotions and open
new doors in a wide range of practical applications and fields of study.
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1.3 Objectives
Develop a multi-view system which combine several unsupervised representations

for facial emotions recognition problem. To achieve this, we will use attention mechanism
with fusion strategy as it is explained in the next steps:

1. Determine the most effective strategy among modifying the latent vector dimension
(L), altering the architecture (A), or utilizing both strategies (L/A) in order to
generate more diversity.

2. Generate representations from autoencoders trained in an unsupervised manner.

3. Implement attention mechanism with concatenation of representations to improve
the classification of facial emotions with neural networks.

4. Evaluate its competitiveness against the current state of the art.

5. Measure the impact of the joint attention mechanism with fusion strategy against the
dynamic selection algorithm in the task of classifying unsupervised representations.

6. Assess the impact of the proposed method and determine its significance.

7. Define the best type of Attention Mechanism for the classification stage.

1.4 Research questions
The research questions propose the foundation for the investigation and guide the

direction of the study. In this subsection, the specific questions that the research aims to
address are formulated and presented.

• Is employing Convolutional Autoencoders trained with unlabeled databases competi-
tive for the Face Expression Recognition task?

• Can the utilization of Attention Mechanism and Multi-View Learning contribute to
enhancing the performance of a Face Expression Recognition system?

1.5 Work contributions
The Work Contributions subsection outlines the contributions made within the

framework of this thesis.

• A new model based on the combination of autoencoders and attention mechanisms
for Face Expression Recognition.
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• Competitiveness analysis of the new model when the target dataset has small data.

• Two papers were produced throughout the work:

- DELAZERI, Bruna; LEON, Leonardo; BARDDAL, J. P.; KOERICH, A. L.; DE, S.
B. Alceu. Evaluation of self-taught learning-based representations for facial emotion
recognition. 2022 International Joint Conference on Neural Networks (IJCNN), p.
1–8, 2022.

- LEON, Leonardo; DELAZERI, Bruna; Britto, Alceu. Multiview Attention Model
for Facial Emotion Recognition. 2024 European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN), 2024.(Sub-
mitted)

1.6 Work structure
Chapter 2 is about exploring theoretical foundations and related works that have

influenced this research. Chapter 3 explains the proposed method, including the generation
of representations, classification model with multi-view and attention mechanism, and
methodology. Chapter 4 shows the results obtained from the proposed method, including
discussion, comparisons with various strategies via tables, comparison with reference works,
and prospects for future work. Finally, chapter 6 named conclusions, summarizes whether
the objectives outlined in the introduction were achieved.
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2 Theoretical Foundation and Related Works

This chapter presents the works related to the proposed method for Face Expression
Recognition task. These were selected for their relationship with feature extraction,
combining and improving representations, and basic knowledge in order to understand all
this work.

2.1 Self-Taught Learning

Proposed by (RAINA et al., 2007), STL, also described as unsupervised transfer
or label-free data transfer, is a machine learning framework that requires little human
supervision.

Deep architectures take advantages of the ability of learning hierarchical and high-
level features from low-level features. Our STL will include deep architectures, so for
simplicity, we will refer to self-taught learning and deep self-taught learning in the same
way.

STL catched the attention of researchers, and empirical works already demonstrate
its significance in statistical machine learning (BASTIEN et al., 2010). STL simulates
the architectural depth of brain, which processes information through multiple stages
of transformation and representation, and aims at learning hierarchical and high-level
features obtained by the composition of low-level features (GAN et al., 2014).

In general terms, we will outline the stages followed in this framework:

• Representation Learning (Step 1): High-level representation is learned through
unlabeled data, which does not necessarily present the same distribution as the
labeled data of the target domain. Our way to learn that representations is using
AECNN.

• Feature Building (Step 2): Feature vectors are extracted from the labeled data
(target domain) using the representation learned in Step 1. In our system, encoders
from the AECNN are used to extract those representations for target domain.

• Training a Classifier (Step 3): The feature vectors (representations) extracted in
Step 2 are used to train a classifier (Fully-Connected Neural network with Attention
mechanism).
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2.2 CNN Autoencoder

The combination of autoencoders and CNN is used when the input data is images
or data with a similar structure. By incorporating convolutional layers in both the encoder
and decoder of the autoencoder, the network can learn more robust and meaningful
representations for images. The convolutional layers help capture spatial patterns and
feature hierarchies, which can be crucial for the effectiveness of the model (LECUN et al.,
1998) (GOODFELLOW; BENGIO; COURVILLE, 2016).

In the encoder, convolutional layers are used to extract important features from the
input. In our work, it will generate a new target database with new labeled features. Each
convolutional layer detects specific patterns in local regions of the image. After passing
through the convolutional layers, the data is reduced to a latent space representation.
This representation should contain the most important and compact information from the
original data (HINTON; SALAKHUTDINOV, 2006).

The network is trained by minimizing the difference between the input and the
reconstructed output (RAINA et al., 2007). This process adjusts the weights of the
convolutional layers to learn meaningful representations.

In summary, a CNN-based autoencoder is effective for learning efficient representa-
tions of visual data, such as images, which can be very useful in various applications like
anomaly detection (ZHOU; PAFFENROTH, 2017), text generation (BOWMAN et al.,
2016), image generation (KINGMA; WELLING, 2022), image reconstruction, image noise
removal, etc. In our work, this efficient representation is the feature extracted from each
image.

Figure 3 – Convolutional Autoencoder

Source: Mathworks
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2.3 Multi-view Learning
Multi-view learning (MVL) has attracted increasing attention and achieved great

practical success by exploiting complementary information of multiple features or modalities.
Recently, due to the remarkable performance of deep models, deep MVL has been adopted
in many domains, such as machine learning, artificial intelligence and computer vision
(YAN et al., 2021).

In Figure 4, we observe two widely used strategies in the field of MVL (Multi-View
Learning): one-view-one-network and multi-view-one-network. The first one (one-view-one)
consists of processing a network for each view as input, and then merging the outputs of
network into a final representation as illustrated in Figure 4a, which will serve as input for
some subsequent processing. The second one (multi-view-one) involves network receiving
as input all the representations, previously fused by some "Fusion" technique (for example
concatenate or pooling) and then generating a final representation as illustrated in Figure
4b .

Figure 4 – Multi-view Learning

Source: (YAN et al., 2021)

For our work, we will employ the initial strategy of One-view-one-network. In
this approach, each representation undergoes an attention mechanism, and the output
from this mechanism results in a representation of the same dimension as the input.
Subsequently, these representations are fused, giving rise to a final representation. This
final representation serves as input for the Fully-Connected layers.

2.4 Fusion strategy
As explained in (SC et al., 2020), there are three approaches to multi-modal learning

fusion, but instead of multi-modal we will talk about multi-views:
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Early Fusion: It combines different input feature views into a single feature vector
before feeding into a machine learning model. This can be achieved through concatenation,
pooling, or using a gated unit. It distinguishes between early fusion Figure 5 type I, which
merges original features, and early fusion Figure 5 type II, which fuses extracted features,
such as predicted probabilities from different views.

Joint Fusion: As seen in Joint fusion Figure 5, It merges learned feature represen-
tations from intermediate layers of neural networks with features from other views. Unlike
early fusion, the loss is back-propagated to the neural networks extracting features during
training, enhancing the representations.

Late Fusion: As seen in late fusion Figure 5, It leverages predictions from separate
models to make a final decision, known as decision-level fusion. Models are trained with
different views, and the final decision is made using an aggregation function, such as
concatenating, averaging, majority voting, weighted voting, or a meta-classifier based on
the predictions of each model. The choice of the aggregation function is empirical and
depends on the application and input views.

Figure 5 – Fusion strategies

Source: Types of strategies by (SC et al., 2020)

In our application, we use Early and Late Fusion. For example, when we concatenate
all the representations before the attention mechanism, we are using Early fusion. And
when we concatenate all the attended representations after the attention mechanism, we
are using Late Fusion.
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2.5 Attention Mechanism

The Attention Mechanism allows a model to focus its processing on specific parts
of the input data, rather than treating all the information uniformly. Inspired by human
visual attention, this approach is widely used in deep learning applications that require
selecting and highlighting certain parts of the data. By prioritizing the most relevant
information, the attention mechanism improves the model’s accuracy and efficiency.

For example, in machine translation, the attention mechanism helps the model
focus on key words and phrases in the text (LUONG; PHAM; MANNING, 2015). In
speech recognition, it highlights the most relevant segments of audio (CHOROWSKI
et al., 2015), while in computer vision, it identifies the most important regions of an
image for recognition tasks (MNIH et al., 2014). Similarly, in image caption generation,
the attention mechanism helps describe not only the objects in the image but also the
relationships between them (XU et al., 2015).

In our work, we employ the attention mechanism for the classification model in
such a way that it effectively captures the intra and inter-representations relationships
simultaneously through interactions between representations and within itself. In other
words, through interactions involving the joint vector and correlation matrices using linear
and non-linear operations, the attention mechanism learns which representations to focus
on more and the specific value for each representation. As a result, we obtain a better final
representation.

2.6 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction technique
widely used in machine learning and multivariate statistics. The main objective of PCA is
to transform a set of correlated variables into a new set of uncorrelated variables known as
principal components. These principal components are linear combinations of the original
variables and are ordered according to the variance they explain (JOLLIFFE, 2002). This
means that the first components capture the largest amount of variability in the data,
allowing the primary structure to be represented in fewer dimensions.

Mathematically, the PCA process starts by centering the data around the mean,
followed by calculating the covariance matrix between the variables. Then, the eigenvectors
and eigenvalues of this matrix are computed to determine the principal directions of
maximum variance, i.e., the principal components. The eigenvectors represent the new
dimensions, while the eigenvalues indicate how much of the data’s variance is explained by
each of these vectors.

A key property of PCA is that the principal components are orthogonal to each other,
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ensuring that there is no redundancy in the selected dimensions. This helps eliminate
multicollinearity among the original variables, which can be critical in models where
redundancy must be avoided to improve the interpretability of results (ABDI; WILLIAMS,
2010).

PCA is also effective at filtering noise in the data, as the principal components
that explain the least amount of variance often correspond to irrelevant variability or
noise. In machine learning applications, dimensionality reduction through PCA can help
decrease model complexity, improve computational efficiency, and facilitate faster training
of algorithms, especially when dealing with high-dimensional datasets.

In our work, PCA is applied to reduce the dimensionality of the latent vector
or image representations. By reducing these representations to their most significant
components, we simplify the complexity of the attention model, which not only speeds
up training but also helps filter out noisy features that could negatively impact model
performance.

2.7 Related works

In this section, we will present some previous works that served as a foundation
and inspiration for our research.

In (DELAZERI et al., 2022), we find a work that aims to generate unsupervised
representations through the concept of STL for facial emotion recognition. The idea behind
it is to use various CNN autoencoders to generate diverse representations, and then train
classification models to predict the respective emotion for each face.

In (BHANDARI et al., 2018), the authors perform experiments to compare the
performance of STL vs transfer learning for JAFFE in facial emotion recognition task.
Unlike us, they use CIFAR-10 as an auxiliary dataset. In the end they come to the
conclusion that the performance of transfer learning is superior to STL because this one
forces it to remain in a local minimum while transfer learning has a greater probability of
finding global minima.

Building upon the aforementioned, in our work, we utilized the STL concept and
the leave-one-subject-out (LOSO) strategy to validate our method and see if we could
improve upon the state-of-the-art.

Nowadays, NLP models have improved their performance due to the "attention"
technique (A. et al., 2017), allowing a model to focus on specific parts of an input
during execution. Instead of processing the entire input uniformly, attention assigns
variable weights to different parts, enabling the model to pay more attention to the
most relevant and contextually important parts. This same idea is applied in the field
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of computer vision (MH. et al., 2022), involving the fusion of features, filters, channels,
feature maps, etc., or whatever the respective data structure may be. An example of this
is (PRAVEEN et al., 2022), where a cross-attention model is proposed that can effectively
exploit complementary inter-modal relationships before and after merging image and audio
representations, allowing for accurate prediction of emotions.

Facial Expression Recognition (FER) techniques (SAJJAD et al., 2023) have
evolved significantly, encompassing both conventional learning-based methods and deep
learning-based approaches. Conventional methods, such as SVM, SURF, SIFT, HOG, and
Naive Bayes, rely on manual feature engineering techniques and have been extensively
employed in FER tasks. In contrast, deep learning has emerged as a powerful paradigm,
leveraging hierarchical networks to automatically learn features and perform end-to-end
FER. This introduction provides an overview of both conventional and deep learning-based
FER techniques, highlighting their distinct approaches and recent advancements.

2.7.1 Conventional Learning-based FER techniques

Conventional learning methods encompass features extractor and descriptors like
LBP, SURF, SIFT and HOG, and classifiers like SVM, Naive Bayes and MLP. Traditional
practices involve manual feature engineering techniques, such as pre-processing and data
augmentation, before feature extraction.

Here are some examples of the aforementioned techniques that will be discussed.
A mapped LBP feature was introduced for illumination-invariant FER. SIFT features,
resilient against image rotation and scaling, are employed for multi-view FER tasks. The
amalgamation of multiple descriptors of texture, orientation, and color, utilized as inputs,
aids in enhancing network performance.

In a similar vein, part-based representation involves feature extraction through the
exclusion of nonessential elements from the image and the utilization of key components
that are pertinent to the task. According to researchers in (CHEN et al., 2018), three
regions of interest (ROIs), namely the eyes, mouth, and eyebrows, have been identified as
significantly correlated with emotional variations. Table 1 provides an overview of recently
published conventional machine learning methods for Facial Expression Recognition (FER).
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Table 1 – Contributions of Face Expression Recognition Conventional Techniques for
JAFFE and CK+ datasets

Reference Technique Contribution

(SAJJAD et al., 2019) ORB, SVM ORB features were extracted and fed into an SVM.

(MAKHMUDKHUJAEV
et al., 2019) LPDP

An edge descriptor LPDP was developed which
considered statistical details of pixel neighbor-
hoods to collect meaningful and reliable informa-
tion.

(FERNANDEZ et al., 2019) FERAtt

An end-to-end architecture which focused on hu-
man faces was proposed.
The model applied a Gaussian space representa-
tion to recognize an expression.

(WANG et al., 2019) CNN, C4.5 classifier Features from CNN are combined with C4.5.

(DAMI et al., 2020) 3D CNN Deep spatiotemporal features were extracted
based on deep appearance and neural network.

(WANG et al., 2020) CNN
An activation function was proposed for CNN
models, and a piecewise activation technique was
proposed for the procedure of FER tasks.

(JING et al., 2020) LBP

LBP features extract images textures to catch
small faces movements. The network comprised
features extraction, attention module, reconstruc-
tion module, and classification module compo-
nents.

(LIANG et al., 2020) LBP, MSAU-Net

Fine-grained FER in the wild was primarily con-
sidered and FG-Emotion was proposed.
FG-Emotions provided several features such as
LBP and dense trajectories that facilitated the
research.

2.7.2 Deep learning-based FER techniques

In recent times, deep learning has garnered significant attention in the realm of
research and has demonstrated cutting-edge performance across various domains (DENG;
YU et al., 2014), including computer vision (ULLAH et al., 2022), (ULLAH et al., 2021b)
and time-series analysis and prediction (ULLAH et al., 2021a). Unlike traditional methods,
deep learning endeavors to capture complex abstractions by employing hierarchical networks
that consist of numerous nonlinear transformations and representations. In contrast to
conventional approaches for Facial Expression Recognition (FER), where feature extraction
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and classification are separate processes, deep networks carry out FER in an integrated
manner, thus enabling an end-to-end solution. Deep Neural Network (DNN) models are
capable of extracting features, which are subsequently fed into a conventional classifier like
Support Vector Machines (SVM) or Random Forest (RF) models for further processing.
Additionally, recent studies have introduced a covariance descriptor ((RAZAVIAN et al.,
2014), (DONAHUE et al., 2014)) computed from deep Convolutional Neural Network
(CNN) features, with classification being executed by Gaussian kernels on a symmetric
positive definition. Table 3 and 4 provide an overview of recently published conventional
machine learning methodologies.

Table 2 – Table of State-of-the-Art Supervised Models for JAFFE and CK+ datasets

Approach Protocol Database Performance

Transfer Learning DenseNet-161 (AKHAND et al., 2021) K-Folds JAFFE 99.51%

Multi-head Self-Attention (WASI et al., 2023) Holdout JAFFE 96.67%

ViT + SE (AOUAYEB et al., 2021) K-Folds JAFFE 94.83%

Attentional CNN (MINAEE; MINAEI; ABDOLRASHIDI, 2021) Holdout JAFFE 92.8%

Patch and Attention MobileNet (NGWE et al., 2023) K-Folds CK+ 100.0%

ViT + SE (AOUAYEB et al., 2021) K-Folds CK+ 99.8%

Frame Attention Network (MENG et al., 2019) K-Folds CK+ 99.7%

Nonlinear Eval on SL + SSL Puzzling (POURMIRZAEI; MONTAZER; ESMAILI, 2022) K-Folds CK+ 98.23%

Attentional CNN (MINAEE; MINAEI; ABDOLRASHIDI, 2021) Holdout CK+ 98.0%
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Table 3 – Contributions of Face Expression Recognition with Deep Learning Mechanisms
for JAFFE and CK+ datasets

Reference Technique Contribution

(MOHAMMADPOUR et al., 2017) CNN

A method based on the LeNet-5 architec-
ture, comprising five trainable parameter
layers, two subsampling, and a fully con-
nected layer, was proposed.
A SoftMax function was used for the final
FER classification.

(JAIN; ZHANG; HUANG, 2020) PHRNN, MSCNN

A deep evolutional spatial–temporal net-
work (composed of PHRNN and MSCNN)
was used to extract the partial-whole,
geometry-appearance, and dynamic-still in-
formation, thus effectively improving the
performance of FER.

(JAIN; ZHANG; HUANG, 2020) LSTM-CNN For the facial label prediction, the authors
used LSTM-CNN.

(HASANI; MAHOOR, 2017) 3D inception-ResNet-
LSTM

A model with layers of an Inception-ResNet
model were followed by an LSTM unit was
proposed.
This method extracted temporal and spa-
tial relations within facial images between
different frames in video

(BHANDARI et al., 2018) STL, Pre-trained CNN

Explores transfer learning and self-taught
learning in facial expression classification,
emphasizing transfer learning’s superiority
and deep network layer correlation during
weight transfer.

(LI et al., 2018) CNN, ACNN

A CNN with ACNN was proposed to per-
ceive occlusion regions in the face and em-
phasize the most discriminative unoccluded
regions.

(JAIN et al., 2018) CNN-RNN A hybrid CNN and RNN model was used
for FER.

(SAJJANHAR; WU; WEN, 2018)
Pre-trained CNN
Inception, VGG-
Face

Pre-trained state-of-the-art models were
used for FER.

(KARTALI et al., 2018)
AlexNet CNN,
FER-CNN, SVM,
MLP

Five different techniques for real-time basic
expression recognition from images were
compared.

(RUIZ-GARCIA et al., 2018) Hybrid CNN-SVM
Humanoid robot for real-time FER was pro-
posed based on convolutional self-learning
feature extraction and an SVM classifier.

(CHEN et al., 2019) FMPN

An FER framework called FMPN was pro-
posed, in which a branch was introduced for
facial mask generation to focus on muscle
movement regions.



2.7. Related works 35

Table 4 – Contributions of Face Expression Recognition with Deep Learning Mechanisms
for JAFFE and CK+ datasets

Reference Technique Contribution

(SUN; LV, 2019) SIFT, CNN Features were extracted from SIFT and
CNN.

(REFAT; AZLAN, 2019) Deep CNN
Different deep learning methods were em-
ployed, with a CNN selected as the best
algorithm for FER.

(CHEN et al., 2019) DCNN
A two-staged framework based on a DCNN
was proposed that was inspired by the non-
stationary nature of facial expressions.

(SUN et al., 2019) MDSTFN

A multi-channel network was proposed to
fuse and learn spatiotemporal features for
FER.
An optical flow was extracted from the
changes between the neutral and peak ex-
pression.

(HUA et al., 2019) CNN, EDLM

Based on ensemble learning model, an algo-
rithm was proposed comprising three sub-
networks with different depths.
The sub-networks comprised CNN models
that were trained separately.

(XI et al., 2020)
PNN, CNN, Residual
Network, Capsule Net-
work

A PNN model designed to combine texture
features was applied for FER.
This network was constructed using CNN,
capsule network, and residual network mod-
els.

(ZHANG et al., 2016) Firefly algorithm
An FER technique was proposed based on
the firefly algorithm, which was mainly used
for feature optimization.

(PENG et al., 2016) DNN
A DNN was proposed for the classification
of facial expression based on a naturalistic
dataset.

(TALELE et al., 2016) LBP, ANN
LBP was implemented for feature extrac-
tion from images.
GRNN was implemented for the classifica-
tion of FER based on frame features.

(LEE et al., 2016) Deep learning methods
A DNN was proposed based on a webcam
for a smart TV environment to recognize
human facial expressions.

2.7.3 Self-Taught Learning Models techniques

In Table 5, we present three works that represent the state of the art using the
self-taught learning framework for three different facial expression recognition datasets:
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JAFFE, Cohn-Kanade (CK+), and LFW. In all of these works, the first stage involved
a feature extractor based on an unsupervised model such as Sparse Autoencoder, ICA,
and CRBM, which were trained on unlabeled datasets. These datasets must belong to
a domain significantly different from the labeled dataset due to framework constraints.
Then, in the second and final stage, CNN, SVM, and Linear SVM classifiers were trained
using the extracted representations from the labeled datasets, employing cross-validation
and accuracy as the evaluation metric.

Table 5 – Table of State-of-the-Art Self-Taught Learning Models for JAFFE and CK+
datasets

Paper Feat. Extractor Classifier Unlabeled Dataset Labeled Dataset Performance

(BHANDARI et al., 2018) Sparse Autoencoder CNN CIFAR 10 JAFFE 56.45%

(LONG et al., 2012) ICA SVM Hateren’s Natural Video Cohn-Kanade 80.15%

(HUANG; LEE; LEARNED-MILLER, 2012) CRBM Linear SVM Kyoto Nat ural Images LFW 87.77%

2.8 Final Considerations
As seen in previous works, the tendency is to continue using CNN for this FER

task and since it is a NN, this demands a large amount of data for training, in addition to
fine tuning, so for a specific case it will always be a challenge. One way to deal with this
large demand for data is to use STL to reuse the learning on a different dataset.

After explaining all the concepts of the work, we will proceed with the explanation
of the proposed method in the next section.
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3 Proposed Method

In this section we describe the proposed method using Self-Taught learning frame-
work for the Face Expression Recognition problem, which can be found illustrated in
Figure 6 where we can see a pool of N autoencoders trained from an auxiliary dataset
(unsupervised). From them, we will extract the encoders that, once applied to the target
dataset (supervised), will generate representations. These representations will then pass
through a dimensionality reduction method to reduce the representation space and then
through a classification model with an attention mechanism, which will be trained. Finally,
with the trained classification model, we will perform inference on the target dataset to
obtain the accuracy metric.

Figure 6 – Self-taught Learning Process

Source: Author’s original work

In the Algorithm 1 we have three input variables: images of the auxiliary dataset
(X_a), images of the target dataset (X_t) and labels of the target dataset (y_t).



38 Chapter 3. Proposed Method

Algorithm 1: Proposed STL Framework Algorithm
Data: X_a, X_t, y_t
Result: Accuracy metric

1 pool_hyper_combination = Get_Hyper_Combination(); // Choose a strategy
2 size_pool_hyper_combination = Lenght(pool_hyper_combination);
3 att_model = Get_Attention_Model(); // Initialize attention model
4 for i← 1 to size_pool_hyper_combination do
5 autoencoder = Get_Autoencoder(pool_hyper_combination[i])
6 W_enc, W_dec = Train_Autoencoder(autoencoder, X_a);
7 X’_t = Get_Representations(W_enc, X_t);
8 X’_t_rd[i] = Reduction_Dimensionality_Method(X’_t);

9 accuracy = Train_Attention_Model(att_model, X’_t_rd, y_t);
10 return accuracy;

We start defining which pool_hyper_combination (line 1) (pool of combination
of hyperparamenters to init the autoencoders) we will use to train the autoencoders, as
shown in Table 6. For example, we can initialize an autoencoder using strategy A, which
means that we are going to define many autoencoders as possible only modifying the deep
of the network using values between 1 and 5 as showed in Table 6.

Immediately, we initialize the attention model in the variable att_model using the
Get_Attention_Model function (line 3).

Table 6 – Table of Hyperparameters strategy

Strategy Parameters
CAE - Network Arquitecture (A) Network Depth N = {5, 4, 3, 2, 1}

CAE - Latent Vector (L) Latent Vector Size I = [150, 200, 250, 300, 400,
500, 1000, 1500, 2000, 2500]

Once the initial variables are defined and initialized, we proceed to initialize the au-
toencoders using the Get_Autoencoder function (line 5), passing each one the hyperparam-
eter combination as a parameter. We train the autoencoders with the Train_Autoencoder
(line 6) function, passing the autoencoder and the auxiliary dataset as parameters. After
training each autoencoder, we extract the representation for each image in the target
dataset using the Get_Representation function (line 7), passing the encoder weights and
the images from the target dataset as parameters. Finally, we apply a reduction dimension-
ality method (line 8) to each representation, reducing its dimension to 150. We can do this
last method in 2 ways: applying the PCA method choosing the best subrepresentations of
size 150 or using a dense layer with 150 neurons where by training the system it will learn
to modify the representations values and transform them into a compressed version.

Once the process of obtaining new features for the target dataset is complete, we
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proceed to train the attention model using the Train_Attention_Model (line 9) function
with parameters: the initialized attention model (att_model), the new representations of
the target dataset (X’_t_rd), and the labels of the target dataset (y_t). After training,
the accuracy metric is calculated using testing dataset.

Section 3.1 called Generation of Unsupervised Representations, the strategies
employed to construct the autoencoders responsible for extracting features are detailed,
along with the specifics of their training.

Section 3.2 called Classification using Multi-view Attention Mechanism, outlines
the procedure for obtaining representations from the previously trained autoencoders.

3.1 Generation of Unsupervised Representations

This the first stage in our proposed method which consist in training autoencoders
in order to generate representations. The flow of the proposed method is as shown in
Figure 7 in the enclosed red box.

Figure 7 – Train Autoencoder Flow

Source: Author’s original work



40 Chapter 3. Proposed Method

In the context of autoencoders, to train our model, we feed the same images into
both the input and output using the auxiliary unlabeled dataset, with the objective of
minimizing the cost function to zero, so that the input, after passing through the network,
produces an output that is identical or very similar to the input (POLIC et al., 2019). The
concepts explained in the previous section are applied in the context of a convolutional
autoencoder, which is divided into two parts: an encoder and a decoder. In the encoder,
all the key transformations take place.

Going into more details about the autoencoders, the representation of the image is
obtained in the latent vector, which is situated between the encoder and the decoder, as
shown in equations 3.1 and 3.2.

z = Encoder(x) (3.1)

ŷ = Decoder(z) (3.2)

where x is the autoencoder input and z es the latent vector.

In this work, we add a significant term next to the classic autoencoder cost function,
as shown in the formula 3.3:

Loss(y, ŷ) = (y − ŷ)2 + c∑√∑
i (dist_w[i]− dist_w[−1])2

(3.3)

The loss function represents a Mean Square Error (MSE) expression in Machine
Learning Learning field. The first term compares the output of the autoencoder (ŷ) with the
expected label (y) and the second term contributes to create more diverse representations
penalizing representations close to the previous one. It incorporates a regularization
variable, c = 0.001, controlling the weighting of this term in the equation. Later, dist_w
represents a vector with the weights in the output layer of the encoder. The expression in
the denominator returns the sum of the distances between each weight and the last one in
the batch. In other words, this second expression penalize representations that are very
similar to the previous one. This allows the creation of more diverse representations.

The training of the model follows the hyperparameters in Table 6 of the section 3
to obtain the representations:

1. Modify Latent Vector dimension (L): The latent vector is altered with the
dimensions specified in Table 6. By choosing this strategy, we create different
autoencoders in such a way that the dimension of the latent vector varies between
150 and 2500, but only selecting values from the table mentioned before.
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2. Modify Architecture (A): The autoencoder is adjusted by varying the depth or
number of convolutional layers, as illustrated in Table 6. By choosing this strategy,
we create different autoencoders in such a way that their depth varies from one to
five layers.

3. Modify Latent Vector and Architecture (L/A): Both factors are adjusted
according to the mentioned items above. By choosing this strategy, a combination
of hyperparameters from strategies L and A are randomly selected. With these
parameters, the autoencoders are then created.

Once we have some autoencoders trained, we proceed with step two which can be
observed in the red box of the Figure 8. That Figure tells us that we have to pass images
from the annotated dataset through the encoder, the output of this one returns a vector
or representation (in our case). Once this representation is obtained, the dimensionality
of the representation is reduced using PCA or other method to 150 components. This
provides a fixed dimension for all representations, which is necessary for feeding into the
classification model. This one only accepts fixed sized input.

Finally, upon receiving all these representations generated by each encoder and
each image, they are combined into a new database referred to as the New Labeled Feature.

Figure 8 – Get Representation Flow

Source: Author’s original work
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3.2 Classification using Multi-view Attention Mechanism
In the final stage, we proceed to train the attention models. The first one is based

on paying attention to the channels (each channel is a representation) of the model’s input.
It is a simpler model, as shown in Figure 10, where the attention module consists of three
layers, and the output will be a vector of the same size as the number of channels, with
values between zero and one. Each value indicates the weight assigned to each channel or
representation.

The second one is based on a more complex mechanism, as illustrated in Figures
11, 13, 14, 15, and 16, using correlation matrices and representation fusion.

Figure 9 – Train Attention Model Flow

Source: Author’s original work

3.2.1 Approach 1: Channel Attention Mechanism (CAN) using CNN

The architecture of this approach was inspired by (BASTIDAS; TANG, 2019),
which is introduced as a promising option for multi-spectral images.

A CNN is implemented with two convolutional layers and two dense layers to
combine N=5 representations of the JAFFE and CK+ datasets. On the right side of Figure
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10, we can see an attention module which will estimate which representation to focus on
to obtain the best result.

Figure 10 – Channel Attention Mechanism

Source: Author’s original work

In the attention module we have three layers: Average Pooling , Conv2d with ReLU
activation function and another Conv2d with sigmoid activation function. The goal of
the Average layer Pooling is making an average of all representations and features maps.
Being the input dimension 5×150×64 we convert it to 5×1×64. We continue with the
Conv2d ReLU layer, which with a single layer we will obtain an output of 5×1×1. Finally,
the Conv2d Sigmoid layer outputs an array with a dimension equal to the number of
representations, with a range of values between 0 and 1, which will tell us the weight
of each representation in the final result. Once the vector of attention weights has been
calculated, we are going to multiply it by the initial representations and obtain attention
vectors. The latter is going to be squashed to one dimension and then passed through the
Fully-Connected layers. In the images we see that 1024 was used but in the experiments it
was also used with 128, 256 and 512 since they achieved better results.

The strategy used to validate the model was Leave-One-Subject-Out (LOSO),
where each round we leave out images of one emotion to be tested and the other ones for
training.

The training of the CNN was conducted with a batch size of 8, 35 epochs, employing
early stopping with a patience of 5, cross-entropy cost function, and the Adam optimizer.
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3.2.2 Approach 2: Joint Attention Mechanism with Fusion

In the search for a more efficient attention mechanism, we found that (PRAVEEN
et al., 2022) made significant contributions. As a result, we decided to implement their
strategy in our work, which essentially involves a combination of matrix multiplications
and fully connected layers, primarily in the initial stage, which we refer to as the attention
module (left side Figure 11). This is followed by a feature fusion stage (concatenation) of
the features obtained in the first part. Finally, the attended features are passed through
an MLP or FCN classification model (right side Figure 11), which predicts the respective
emotion. The entire process is detailed in Algorithm 2.

Algorithm 2: Attention Model Pseudocode
Data: X1..N

Result: class_id
1 J = Concatenation(X1..N)
2 for i← 1 to N; // Step 1 of Fig 11
3 do
4 Ci ← tanh

(
XT

i WjiJ√
d

)
5 Hi ← ReLU(WiXi + WciC

T
i )

6 Xatt,i ← WhiHi + Xi

7 Xatt = Concatenation(Xatt,1..N) ; // Step 2 of Fig 11
8 class_id = FCN(Xatt)
9 return class_id;

In Algorithm 2, we receive as input all the representations obtained in Section 4.3
from the JAFFE and CK+ target datasets. In line 1, we concatenate all the representations
into a vector J , referred to as the joint vector. From lines 2 to 6, we iterate over each
representation and apply the formulas outlined in lines 4, 5, and 6. This process forms part
of the attention module, as illustrated on the left side of Figure 11. Once the attention
process is completed, we obtain the attended representations, denoted as Xatt,i. In line
7, we concatenate all the attended representations into a single vector, and finally, in
line 8, we apply the classification model, which returns the class to which the image
representations belong. These last two steps are depicted in Figure 11.
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Figure 11 – Attention Mechanism Steps

Source: Author’s original work

As a summary of what has been explained above, we have Figure 12, which shows
that each representation Xi entering the attention module (step 1) results in an attended
representation Xatt,i, which is then concatenated or fused and serves as input to the FCN
(step 2)

Figure 12 – Overview Classification model with Attention Modules

Source: Author’s original work

Next, we will explain each step of Algorithm 2, Figure 11 and Figure 12 in greater
detail.

3.2.2.1 Fusion of representations

The fusion of the representations, where each representation Xi ∈ R1×di , di = 150
(output of PCA with 150 components), is achieved through concatenation. This one is
represented by the variable J ∈ Rd, where d = ∑n

i=1 di and i ∈ 1..n, as seen in Figure
13. The number of representations (also called that each representations belongs to one
modality in the context of fusion) can vary between 5 to 50 depending on the experiment
being carried out.
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Figure 13 – Fusion of Representations

Source: Author’s original work

3.2.2.2 Attention mechanism for each representation

In Figure 14, the process of the attention mechanism for each representation is
illustrated using a representation Xi as input and the joint vector J as concatenation of
all the representations.

Figure 14 – Attention Mechanism for Each representation

Source: Author’s original work
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First, we compute:

Ci = tanh
(

XT
i WjiJ√

d

)
(3.4)

where Ci ∈ Rdi×d is the joint correlation matrix for each feature i. This matrix
captures the semantic relevance of feature i across the modality (e.g., image), allowing
the model to represent interdependencies between the feature and the shared embedding
space. The function tanh introduces non-linearity, which helps normalize the correlation
values to a range between -1 and 1, ensuring stable gradients during training.

The matrix Wji ∈ RL×L represents a set of learnable parameters that scale and
project the joint features. In this case, L = 1, indicating that we treat each frame or
sample independently, without considering temporal relationships. This simplification is
due to the assumption that individual frames are uncorrelated with each other—each
frame is processed as a standalone entity without reference to past or future frames. Thus,
no temporal dependencies are modeled.

By scaling the product of the transposed input feature matrix XT
i , the learned

weights Wji, and the joint features J , we normalize the output by the factor
√

d, which
accounts for the dimensionality of the feature space d. This scaling prevents the magni-
tude of the product from growing too large, ensuring that the learning process remains
numerically stable, especially in high-dimensional spaces.

Since the dimensions of joint correlation matrices (Ci ∈ Rdi×d) and the features
of the corresponding modality Xi ∈ RL×di differ, we rely on different learnable weight
matrices corresponding to features of the individual modalities to compute attention
weights of the modalities. Let’s see how we combine these mentioned matrices.

Second, we compute:

Hi = ReLU(WiXi + WciC
T
i ) (3.5)

where Wci ∈ Rk×d and Wi ∈ Rk×L. The matrix Hi ∈ Rk×di represents the attention
maps for modality i. These attention maps serve to highlight the most relevant regions or
features within the input data for modality i.

To compute the attention weights, the joint correlation matrix Ci and the feature
matrix Xi are each multiplied by their respective learnable weight matrices Wci and Wi,
and then combined. The result is passed through a ReLU activation function, which
introduces non-linearity and ensures that the attention values are non-negative. This
step enables the model to focus on the most important features for each modality by
dynamically adjusting the attention weights based on both the joint correlations and the
input features.
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Finally, we will compute the attended representation for each modality i.

Xatt,i = WhiHi + Xi (3.6)

where Whi ∈ Rk×L denote the learnable weight matrices.

The term WhiHi adjusts or modulates the attention map Hi, emphasizing the most
relevant elements for modality i.

The term Xi represents the original input that is incorporated into the formula,
meaning that the attention mechanism does not exclusively rely on the attention map but
also retains information from the original input.

By summing these two terms, Xatt,i corresponds to the input modified by attention,
where the relevance is weighted by Hi and scaled by Whi. In this way, the attention
mechanism focuses on the most important parts of the input while still combining them
with the original input to create an enhanced representation.

In summary, this formula combines attention information with the original input,
allowing the model to prioritize specific parts of the input while keeping a reference to the
original data intact.

3.2.2.3 Merging attended representations

In Figure 15 we see that after performing step 3.2.2.2, a representation attended
obtained was Xatt,i for each input representation Xi. Then, we will apply fusion to
concatenate the N representations into one.

Figure 15 – Fusion of Attended representations

Source: Author’s original work
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3.2.2.4 Last Fully-Connected layers for classification

After concatenating to a single vector Xatt ∈ R1x(150xN), two fully connected of
dimensions 128 and 7 with dropout 0.6. The output is a 7-dimensional vector with the
probability of each emotion as we see in Figure 16.

Figure 16 – Last Fully-Connected layers for classification

Source: Author’s original work

The strategy to validate our method remains LOSO, and it includes using 50
epochs, a batch size of 4, cross-entropy as the cost function, and Adam optimizer with
a learning rate of 0.001. After completing all the epochs and with the assistance of the
validation dataset, the model with the highest validation accuracy is selected. Once that
model is obtained, the accuracy is calculated for the test dataset.

The parameters of our fusion model (Wci, Wi, Whi) are optimized according to
cross-entropy loss.

3.3 Final Considerations
In this chapter, the different stages of the proposed method were defined, starting

with the representation generation part until the stage of the classification model with
attention mechanism.

After describing the proposed method and providing details on the implementation
and training of the model, the discussion of the results will follow in the next section.
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4 Experimental Results

In this section, we discuss the results obtained from the proposed research method-
ology in Section 3. We divide in two parts, where the first one presents the results of the
first approach, second approach, and in comparison to the state of the art and other works.
In the second part, we delve into a discussion regarding the results.

Remember the types of strategies previously mentioned in section 3.1.1:

1. Modify Latent Vector dimension (L): We create different autoencoders in such
a way that the dimension of the latent vector varies between 150 and 2500, but only
selecting values from the Table 6.

2. Modify Architecture (A): We create different autoencoders in such a way that
their depth varies from one to five layers.

3. Modify Latent Vector and Architecture (L/A): A combination of hyperpa-
rameters from strategies L and A are randomly selected. With these parameters, the
autoencoders are then created.

4.1 Datasets
Accessing and utilizing datasets is a critical aspect of research, yet it is essential to

consider the source and permissions required for their use. The following section provides
details on the acquisition of four datasets: Kyoto (DOI et al., 2003), LFW (HUANG
et al., 2007), JAFFE (LYONS; KAMACHI; GYOBA, 2019), and CK+ (LUCEY et al.,
2010). While some datasets are publicly available and easily downloadable, others may
require permissions or agreements to ensure compliance with privacy policies and ethical
considerations. It is imperative to adhere to these guidelines to prevent any misuse or
violation of data usage policies.

4.1.1 Supervised

In the supervised learning paradigm, datasets are labeled, meaning each data point
is associated with a corresponding label or category. These labels serve as the ground
truth for training machine learning models to make predictions or classifications. In the
context of our research, we leverage two widely used supervised datasets, namely the
JAFFE dataset and the CK+ dataset. These datasets offer labeled facial expression data,
crucial for training our model to accurately recognize and classify facial expressions.
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4.1.1.1 JAFFE dataset

The Jaffe dataset includes 213 grayscale images showcasing various facial expressions
from 10 distinct Japanese female participants. Each subject was instructed to display 7
different expressions (6 fundamental expressions plus a neutral one), and the images were
labeled with average semantic ratings for each expression, provided by 60 annotators.

Since all the images come from Japanese women, the dataset does not capture
diversity in gender, race, or ethnicity, which may limit the generalization of models trained
on this dataset.

All the images were taken under controlled conditions, with uniform lighting and
aligned faces. This may not reflect the complexity of real-world situations, where lighting
and facial positions vary significantly.

The dataset can be downloaded from the creators’ website (https://zenodo.org/records/3451524),
but it is necesary to create an account and ask for permission to download their dataset.
It is a small dataset in grayscale color, it weighs 14.1 MB.

Figure 17 – JAFFE dataset

Source: Author’s original work

4.1.1.2 CK+ dataset

The CK+ dataset contains 593 video sequences from 123 distinct subjects, aged
between 18 and 50, representing a range of genders and ethnic backgrounds. Each video
captures a facial transition from a neutral expression to a specific peak expression. The
recordings were made at 30 frames per second (FPS) with a resolution of either 640x490
or 640x480 pixels.

Since our model does not require video sequences, we will extract the last frame
from each sequence and assign it the corresponding label based on the sequence. In the
end, we will have 593 images divided among 123 subjects, so each subject will have
approximately 5 facial images.

Same way like JAFFE dataset, it can be downloaded from the creators’ website
(https://www.jeffcohn.net/Resources/), but it is necesary to fill a couple of documents
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and send them for permission to download their dataset. It is not a small dataset when
you download it (its size is only 957MB), but we are only using a small part of it.

Figure 18 – CK+ dataset

Source: Author’s original work

4.1.2 Unsupervised

In contrast to supervised learning, unsupervised learning involves datasets with
unlabeled data points, where the objective is to discover patterns or structures inherent
in the data without explicit guidance from labeled examples. Our research also utilizes
an unsupervised dataset, namely the Kyoto dataset. This dataset provides unlabeled
facial images, allowing us to explore novel approaches for representation learning and
feature extraction without relying on pre-existing labels. Additionally, we briefly mention
the Labeled Faces in the Wild (LFW) dataset, which although labeled, is often used in
unsupervised or semi-supervised settings due to its large size and diverse range of facial
images.

4.1.2.1 Kyoto dataset

The dataset includes images of natural scenes, such as forests, mountainous areas,
bodies of water, and rural landscapes. These images focus on natural environments without
large human-made structures.

The dataset consist of 62 natural images of 256×200 pixels in RGB color space. It
is used by several works that apply the concepts of STL, thanks to its large variability for
example in lighting conditions, seasons of the year, and different types of vegetation and
natural landscapes.

It can be downloaded from its creator website (https://eizaburo-doi.github.io/kyoto_natim/).
This dataset is very small, it only weighs 1MB, because of the 62 small images in RGB.

4.1.2.2 Labeled Faces in the Wild (LFW) dataset

The images are of famous individuals, primarily taken in public situations such as
press conferences, interviews, and other events. These images were not captured under
controlled conditions, resulting in variability in lighting, posture, and facial expressions.
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Figure 19 – Kyoto dataset

Source: Author’s original work

It contains 13233 RGB faces images collected on the web from 5,749 people. Unlike
Kyoto, LFW was selected for our protocol because its images belong to a domain related
to the FER problem.

In this way, we aim to determine the impact of an auxiliary dataset that belongs
to the same or a different domain from the target dataset. It can be downloaded from CS
UMASS webiste (https://vis-www.cs.umass.edu/lfw/#download).

The Figure 20 presents a sample of LFW dataset.

Figure 20 – LFW dataset

Source: Author’s original work
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4.2 Experimental Results and Discussions

In this section, we present the results of our experiments and discuss the insights
derived from them. We begin by analyzing the results obtained when defining the unsuper-
vised dataset and explore how it impacts the model’s performance. Then, we examine the
outcomes of different approaches, like the channel attention mechanism and the multi-view
attention mechanism of representations . Additionally, we discuss the choice of dimensional-
ity reduction methods, such as Principal Component Analysis (PCA) and a Simple Dense
Layer, also explore the influence of the number of components on model performance.
Finally, we summarize and discuss the results in comparison with reference works and
offer conclusions on our proposed approach.

It’s important to mention that the way these accuracy values (percentages) were
chosen was performing the same experiment six times, or in other words, run the same
model with the same hyper-parameters in six different docker containers at same time.
Each docker container runs a model and returns a value, then we choose the biggest value
among those six and show it in the table.

4.2.1 Experiment to define Unsupervised dataset

One of the questions we raised at the beginning of this work was the variability
of auxiliary datasets. Variability largely depends on the similarity between the domains
of the datasets. We will present two datasets that are very different from each other
and measure the impact through the accuracy metric to determine whether the closeness
between domains matters or not.

Table 7 presents some comparisons of metric accuracy for the auxiliars datasets
LFW and Kyoto. The first one contains images close to the target domain; however, the
domain of the second dataset is very different from the target dataset as it does not contain
facial images. The comparisons are made for the three different strategies (L, A and L/A
). For this experiment, we limited to a single target dataset (JAFFE) for simplicity, since
we noticed similar behaviour for CK+ dataset in different experiments.

Table 7 – Table of Accuracy for the table datasets LFW and Kyoto vs Strategies vs
Number of Representations of JAFFE dataset as target dataset using Joint
Attention Mechanism

Rep/Strategy
LFW Kyoto

L A L/A L A L/A
10 13.19 19.26 13.62 65.10 68.94 67.49
20 15.15 16.41 17.77 65.34 63.85 67.53
30 15.53 18.38 14.51 63.45 64.32 66.20
50 18.34 18.79 16.89 65.14 68.52 66.68
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We see that the results are not competitive when using an auxiliary dataset that
has a similar domain to the target dataset.

While the accuracy of testing dataset for Kyoto dataset is 68.94%, the accuracy for
LFW dataset is 19.26%. So we can infer that in our Self-Taught learning framework, an
auxiliary dataset which belongs to a completely different domain of target dataset reach
much better results than an auxiliary dataset that belongs to a similar domain of the
target dataset.

We observe that the difference is significant, and we consider this to be due to
the fact that the LFW dataset is large, and the learned representations have been highly
biased towards this domain. On the other hand, with the smaller and more varied dataset,
no bias was achieved that could significantly affect the representations in a negative way.

4.2.2 Channel Attention Mechanism results (First approach)

This is our first implementation of an attention mechanism. We used the Channel
Attention Mechanism, which focuses on identifying which channel of the input data
structure has a greater impact on the final outcome.

Tables 8 and 9 present comparisons of accuracy for the different models: with
and without channel attention mechanism and the reference works of (DELAZERI et al.,
2022) SVM and Stacking SVM for the datasets JAFFE and CK+ using the Latent Vector
strategy (L).

Table 8 – Table of Strategy L vs Models for JAFFE dataset using first approach

Model evaluated in JAFFE L
With Attention 44.27

Without Attention 54.78
SVM (DELAZERI et al., 2022) 59.96

Stacking SVM (DELAZERI et al., 2022) 62.26

Table 9 – Table of Strategy L vs Models for CK+ dataset using first approach

Model evaluated in CK+ L
With Attention 78.83

Without Attention 81.50
SVM ((DELAZERI et al., 2022)) 87.00

Product SVM ((DELAZERI et al., 2022)) 86.99

Those comparisons of accuracy are presented using the L strategy where the latent
vector size is varied between 150 and 2500 choosing specific values as shown in the table 6.
The reason we use specific size values is because we want to make the most fair comparison
against state-of-the-art works.
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The two types of models that were evaluated with the attention mechanism and
without it. Where we hypothesized that the attention mechanism could better choose
which channel (another name for representation) to focus more on or give greater priority
and thus give us better results, but we see that it was not what we expected. Without the
attention mechanism we obtained better results for either the JAFFE or CK+ dataset of
about 10.51 and 2.67 points respectively.

Furthermore, comparing with other reference works where SVM and Stacking SVM
are used, up to a difference below 17.99 and 8.16 was obtained than expected for the
JAFFE and CK+ datasets respectively.

Then, having such a wide difference in the results between both models (with
Attention and Stacking SVM), it was decided that it was not worth continuing with other
experiments, for example by increasing the number of representations greater than five
(only five were used for the experiments) representations and other strategies in addition
to L using said channel attention mechanism since it was most likely to obtain similar
results, so it was decided to approach another solution.

4.2.3 Joint Attention Mechanism with Fusion results (Second approach)

This is our second implementation of an attention mechanism. We used Joint
Attention Mechanism, which focuses on using an joint vector (concatenation of all the
representations) performing calculations against each representation to identify how the
representations behave both against each other and internally within each representation.
Based on this, the influence of each representation on the final result is determined.

The tables 10 and 11 show the results of the accuracy metric for approach two
(Joint Attention Mechanism with Fusion) where on the one hand we have the three different
strategies (L, A and L/A) versus the number of representations per image for the JAFFE
and CK+ datasets.

Table 10 – Table of Strategies vs Number of Representation for JAFFE dataset using
second approach

Rep/JAFFE L A L/A
10 65.10 68.94 67.49
20 65.34 63.85 67.53
30 63.45 64.32 66.20
50 65.14 68.52 66.68

Since the experiments of the first approach were not successful at all, it was decided
to change to a very different method that explores a different type of attention mechanism
using fusion of representations and correlation matrices.
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Table 11 – Table of Strategies vs Number of Representation for CK+ dataset using second
approach

Rep/CK+ L A L/A
10 86.68 85.52 85.59
20 85.67 83.02 84.65
30 85.73 83.07 86.34
50 86.57 88.60 85.74

Unlike the first experiments, positive results were obtained according what it was
expected and it was also evaluated in different representations from 10 to 50 for both
datasets. As mentioned before in the discussions of the approach, it was decided to keep
the hyper-parameters of the strategies from related works, to make the fair comparisons
respect to the state-of-the-art and previous works.

As we see in the results of both datasets, there is a slight tendency to improve
accuracy as the number of representations increases, but at the same time, greater RAM
and GPU resources are needed to carry it out. On our machine, we were able to use
32GB of RAM and 11GB of GPU memory, but in order to run 70 representations and
four models at the same time (strategy to reduce testing and training time), we got
Out-of-memory (OOM) in every container docker. Even training for 50 representations
it lasted approximately four hours for the CK+ dataset that has more data. So we were
limited to work up to 50 representations for hardware and time limitations, but we believe
that we got good results.

4.2.4 Presence of Attention Mechanism

After conducting experiments with both attention mechanisms, we observed that
the second approach yielded better results. Therefore, we will continue using it for more
specific experiments moving forward. Next, we will determine whether the use of an
attention mechanism actually improves the accuracy of our classification model.

In table 12 and 13 we can see the results of the accuracy metric for approach two
in the JAFFE and CK+ datasets respectively, comparing three different strategies (L, A
and L/A) against the model with and without attention. For the sake of simplicity in our
experiments, we will fix the number of representations to 10 and copy the results from
experiment 4.2.1 for "w/ attention 10" for both datasets, as the same procedure is used.

Table 12 – Table of Strategies vs With and without attention for 10 representations in
JAFFE dataset using second approach

Rep/JAFFE L A L/A
w/ attention 10 65.10 68.94 67.49
wo/ attention 10 26.68 28.54 24.86
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Table 13 – Table of Strategies vs With and without attention for 10 representations in
CK+ dataset using second approach

Rep/CK+ L A L/A
w/ attention 10 86.68 88.60 86.34
wo/ attention 10 45.40 42.66 35.35

We see that there is an improvement in the accuracy of the models that present
the attention mechanism compared to those that don’t have it.

As mentioned before for approach 1, the channel attention mechanism was not as
effective for our problem unlike Joint Attention Mechanism with Fusion representations.
This is reflected in the notable improvement of almost 100% compared to the model
without attention mechanism for the two datasets.

4.2.5 Choice of dimensionality reduction method

We shows two types of dimensionality reduction methods: PCA and Fully Connected
Layer. As their names suggest, these methods aim to reduce the high dimensionality of
feature representations, which can reach up to 2500, down to a smaller value, such as
150. This reduction not only allows for faster system processing but also helps mitigate
overfitting. Additionally, these methods enable us to set a fixed input dimension for the
classification model.

We show that using an approach where we put a dense layer with 150 neurons
instead of PCA where at the moment of training the system, it will learn to modify the
representations values and transform them into a compressed version one. This is not a
very commom strategy but it worths in order to enrich our work with different ideas.

In Tables 14 and 15, the results are shown for the different amounts of representa-
tions of the accuracy metric for the second approach using Kyoto and LFW respectively
as auxiliary datasets and only the JAFFE dataset as the target dataset for reasons of
simplicity explained above. These mentioned results are compared with the three different
strategies (L, A and L/A) for a dimensionality reduction method based on Fully-Connected
Layer.

Table 14 – Table of Strategies vs Number of Representation using JAFFE as target dataset
and Kyoto as auxiliar dataset under the second approach not using PCA

Rep/JAFFE L A L/A
10 61.31 62.88 58.75
20 57.38 62.32 64.75
30 59.63 61.59 61.60
50 57.70 61.01 62.0
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Table 15 – Table of Strategies vs Number of Representation using JAFFE as target dataset
and LFW as auxiliar dataset under the second approach not using PCA

Rep/JAFFE L A L/A
10 16.31 14.57 13.07
20 16.43 17.75 17.19
30 17.85 15.97 16.40
50 16.79 16.50 18.13

As we see in the results of the tables above it was not possible to surpass the best
results obtained using PCA 68.94% for JAFFE 12.

4.2.6 Choice of the Number of PCA Components

Let’s find out how much information can be preserved by reducing the dimension-
ality of the data. By calculating the cumulative variance, we determine how much total
variance from the original data is preserved when retaining a specific number of principal
components.

Cumulative variance is useful for decision-making on how many principal compo-
nents to retain. When performing dimensionality reduction with PCA, we typically decide
how many principal components (or dimensions) to keep. Cumulative variance helps you
understand how much information you are retaining in relation to the total number of
components.

In Figure 21, we have randomly selected a pool of hyper-parameters that uses 10
representations. We will observe how the cumulative variance behaved against the number
of components for each representation of the target dataset.

For instance, deciding to retain 99% of the cumulative variance means that we
are willing to accept a loss of 1% of the original information. This approach can be
useful for eliminating noise and reducing model complexity, especially when working with
high-dimensional datasets, as is the case when dealing with data of up to 2500 components
or dimensions.

In practice, we plot the cumulative variance against the number of components and
select the number of components that allows us to retain the desired amount of variance.
This is often known as the "elbow" in the graph, and the point where the curve flattens
indicates the number of components to retain.

Judging by the "elbow" in the graphs, the number of components that occurs most
frequently is 150, making it a suitable candidate for use in our work.

Then, an important question to answer is whether it is worth applying PCA to the
representations, and the answer is ’yes’. Because, for the attention model, we need a fixed
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Figure 21 – Commulative Variance vs Number of Components

Source: Author’s original work

input, and historically, PCA has proven to be one of the best methods for dimensionality
reduction. In this way, we can reduce the dimension of all arrays with different sizes to a
fixed dimension, which is smaller or equal to all of them.

4.2.7 Final results

In Table 16 we see a comparison of the best results of the accuracy metric in the
JAFFE and CK+ datasets, for each model described in our work against some works used
as a reference that use a methodology similar to ours.

Table 16 – Table of Best results of the proposed method compared to the reference works

Rep/Dataset JAFFE CK+
(DELAZERI et al., 2022) 62.26 87.21

(BHANDARI et al., 2018) CNN 56.45 -
(LONG et al., 2012) SVM - 80.15

Channel Attention 44.26 78.83
Multi-view Attention (10 Reps limit) 68.94 86.68

Multi-view Attention 68.94 88.60
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4.2.8 General discussions of the results

Since the results obtained in (DELAZERI et al., 2022) were achieved with 10
representations, we will only consider our results in our experiments with the same amount
of representations, thus ensuring a fairer comparison. With this in mind, we observe that
for the JAFFE dataset, we outperform it by 6.68 points, in contrast to the CK+ dataset
where it surpasses us by 0.53 points. However, if we consider the results without restrictions
talking about number of representations, we surpass it in both datasets.

The way (BHANDARI et al., 2018) worked was using CNN as a classification
model in STL where the differential of our work was to use different initializations in the
weights for each layer and the best result obtained was 56.45 for the JAFFE dataset. With
this said, all our experiments for the JAFFE dataset manage to be better in the accuracy
metric except for approach one of Channel Attention. Unfortunately, that paper does not
mention any results for CK+.

After discussing the results, we move on to presenting the conclusions in the next
section.
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5 Conclusion

A multi-view of representations system with attention and fusion mechanisms
was developed, capable of surpassing the state of the art on both target datasets using
unsupervised representations.

We observe that the impact of an attention mechanism in a multi-view of represen-
tations was positive compared to the dynamic selection algorithm. In JAFFE and CK+, it
had a positive and negative impact of 6.68 and 0.53 points, respectively. However, without
the restrictions of the 10-repetition limit, the positive impact on both datasets increases
significantly. Finally, the best strategy was "Modifying Depth of Autoencoder" (A) for
JAFFE and CK+ datasets.

A strength of the method is that it is not reliant on large volumes of annotated
data to achieve competitive results. A weakness is accurately parameterizing the algorithm,
as it depends on several parameters to be adjusted.

As future work, we aim to address the challenge of generating representations with
greater diversity. For instance, modifying the cost function during autoencoder training,
determining new parameterization strategies for autoencoder initialization, and testing on
diverse datasets with greater variation.
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