
'LDORJ�ZLWK�D�3HUVRQDO�$VVLVWDQW�

Fabrício Enembreck1, Jean-Paul Barthès2

1 PUCPR, Pontifical Catholic University of Parana
PPGIA, Post-graduation Program in Applied Informatics,

1155 Imaculada Conceição St.
Curitiba PR - Brazil

fabricio@ppgia.pucpr.br

2 UTC – Technological University of Compiègne,
HEUDIASYC – Royallieu Research Center,

60205 Compiègne - France
barthes@utc.fr

$EVWUDFW� This paper describes a new generic architecture for dialog systems
which enable communication between a human user and a personal assistant,
based on speech acts. Dialog systems are often domain-related applications; a
system developed for specific applications and not reusable in other domains. A
major problem concerns the development of scalable dialog systems that might
be extended with new tasks without much effort. In this paper, we discuss
generic dialog architecture for a personal assistant. The assistant uses both ex-
plicit task representation and knowledge to attain an “intelligent” dialog. The
independence of the dialog architecture of both knowledge and tasks, allows the
agent extension without dialog structure modification. The system has been im-
plemented in a collaborative environment in order to personalize services and
facilitate the interaction with collaborative applications, such as e-mail clients,
document managers or design tools.

.H\ZRUGV� Dialog Systems, Natural Language, Personal Assistants

��,QWURGXFWLRQ�
When using computers to work or to communicate, one observes three major trends:
(i) the increasing complexity of user’s environment; (ii) cooperative work growth; and
(iii) knowledge management fast spread. Such complexity overwhelms users with
tasks accomplished through many different tools (e-mail managers, web browsers,
word processors, etc.). The resulting cognitive overload leads to disorganization,
which has negative impacts, particularly when different people share some informa-
tion. A major issue is thus, to develop better and more intuitive interfaces.

We are currently developing a Personal Assistant Agent in a project called AACC1
for collaboration support between French and American groups of students, located at
UTC (Université de Technologie de Compiègne) and at ISU (Iowa State University).
The students must design electro-mechanical devices by using assistant agents. In this
paper, we focus on the Personal Assistant (PA), discussing how a Natural Language
interface allows the user to attain efficient interaction with the Assistant, and how this
interaction can be used to increase the agent knowledge of the user. We developed a
generic dialog system using several models: dialog model, tasks models, domain
knowledge model and user model. We focus on the construction of the dialog model
and show how speech acts can be used to make the dialog model independent of do-
main data (tasks and knowledge).

The paper is organized as follows: Section 2 presents some theory on natural lan-
guage and dialog systems; Section 3 describes the architecture of our system. Section
4 discusses deployment and evaluation. Section 5 discusses related work and finally,
Section 6 concludes with our observations.

��1DWXUDO�/DQJXDJH�DQG�'LDORJ�6\VWHPV�
Communications using natural language (NL) have already been proposed. Early
attempts at it were done in the late sixties, early seventies. Szolovits et al. [1] or Gold-
stein and Roberts [6] developed formalisms and languages to stand for the knowledge
contained in English utterances. The internal language would support inferences in
order to produce answers. In the first project (OWL language), the application meant
to draw inferences from an object database, in the second one (FRL-0 language), it
meant to schedule meetings. The internal language was used to represent knowledge
and translate utterances. Such an approach can simplify the representations and infer-
ences, because only very specific applications are considered. However, for new do-
mains, a major part of the application must be rewritten, an unfortunate fact in an
environment involving several tasks (like collaborative work), when part of the dialog
must be recoded every time a new task is added to the system. Later, several research-
ers, including Schank and Abelson [13], Sowa [16] or Riesbeck and Martin [12],
proposed sophisticated knowledge representation techniques to handle natural lan-
guage and represent meaning. They made it possible to express complex relationships
between objects. The main difficulty toward such techniques is to define the right
level of granularity for the representation, because even very simple utterances can
produce very complex structures. Moreover, modeling concepts and utterances is a
very time consuming non-trivial task. The field of NL and machine understanding has
expanded since the early attempts. However, the techniques being used are fairly
complex and most of the time unnecessary for the purpose of conducting dialogs,
particularly in goal-oriented dialogs, since “it is not necessary to understand in order
to act.” Both NL techniques and dialog systems use internal structures, but the latter
uses simpler structures to represent knowledge, e.g., ontology, semantic nets, or frame

1 The AACC (Agents d’Aide à la Conception Coopérative) project is a project involving the

CNRS HEUDIASYC laboratory of UTC, and the LaRIA laboratory of UPJV in France.

systems. The emphasis however, is not on the adequacy of the knowledge representa-
tion, but rather on the dialog coordination done by a dialog manager. In addition, the
dialog systems are designed so that they can be used in other domains without changes
in the dialog structure, in order to save development time.

Many dialog systems implementing NL interfaces have been developed in applica-
tions like speech-to-speech translation [8], meeting schedule, travel books [2] [15],
telephone information systems, transportation and traffic information, tutorial systems,
etc. Flycht-Eriksson [5] has classified dialog systems into query/answer systems and
task-oriented systems. Query/answer systems include consultation systems such as
tourist information, time information, traveling, etc. Task-oriented systems guide the
user through a dialog to execute a task. Tasks range from very simple ones like “find a
document” to complex ones decomposed into several subtasks. We argue that, for a
dialog system to support collaborative work, it must be both of query/answer and task-
oriented types, because user problems can involve questions (“Where does Robert
work?”, “What does electrostatic mean?”) and tasks (“Find a document for me”,
“Send a message to the project leader”). We present our approach in the next section.

��$�3HUVRQDO�$VVLVWDQW�WKDW�3DUWLFLSDWHV�LQ�'LDORJV�
We discuss the different models that compose our dialog system and pay special atten-
tion to the dialog model.

1 User: Send a mail to Marco for me.
2 System: Who are the Carbon Copy receivers?
3 User: What is Leila’s address?
4 System: The address of Leila is “ 25 rue de Paris” .
5 System: Who are the Carbon Copy receivers?
6 User: none
7 System: What is the subject?
8 User: Ohh I’m sorry I made mistake!
9 System: Who are the Carbon Copy receivers?
10 User: Mary’s husband.
11 System: What is the subject?

� �

)LJ����� Open Dialog.

�����'LDORJ�0RGHO�
Our approach uses a speech act system. According to Searle [14], the speech act is the
basic unit of language used to express meaning through an utterance that expresses an
intention of doing something (to act). In our system, the users’ utterances express
questions and requests. Then, a PA starts a dialog to reach a state where an action is
triggered according to the intention of the user. The dialog states are nodes of a dialog
graph in which most speech acts are available at all times. For instance, consider the
dialog on Fig. 1. In lines 1-5, the user requests the task “ send mail” and the system
asks for additional information. The user enters a new question during the task dialog

(lines 3-4), the system answers it and returns to the previous dialog context. To ac-
complish this, the system keeps a stack of states. When a new task is requested, the
system pushes a number of states in the stack equal to number of slots required to
accomplish the task. When a slot is successfully filled, the system marks it as
“ popped.” This strategy also allows the user to return to previous states (Fig. 1 lines 5-
10).

Syntactic Analysis

Semantic Analysis

Syntactic
Structure

Semantic
Structure

Inference Engine

Phrase

Answer/Question

Dialog
Act

Query
(:object :slot :value)

Knowledge
(Ontology)

Inference Engine
(Concepts)

Semantic Network

Tasks
Templates

Tasks
Descriptions

Slots
Information

Terms
Information

Question

User
Actions

Dialog Model

Proposition/
Information

Task Model

User
Model

Domain
Model

Syntactic Analysis

Semantic Analysis

Syntactic
Structure

Semantic
Structure

Inference Engine

Phrase

Answer/Question

Dialog
Act

Query
(:object :slot :value)

Knowledge
(Ontology)

Inference Engine
(Concepts)

Semantic Network

Tasks
Templates

Tasks
Descriptions

Slots
Information

Terms
Information

Question

User
Actions

Dialog Model

Proposition/
Information

Task Model

User
Model

Domain
Model

)LJ����� Model-Based Architecture.

Our system (architecture Fig. 2) has been developed for dialog-based and ques-
tion/answer interaction. In a task-oriented dialog the system asks the user to fill slots
of a given task (like VHQG�H�PDLOV or ORFDWH�GRFXPHQWV). Then, the system runs the task
and presents the result. In a question/answer interaction, the user asks the system for
information. In this case, the assistant uses its knowledge base to provide correct an-
swers.

Fig. 2 shows that, when the system receives a simple question or information, the
syntactic analyzer produces a syntactic representation. The representation gives the
grammatical structure of the sentence (verbal phrase, nominal phrase, prepositional
phrase, etc). We developed a grammatical rule base, where each rule refers to a single
dialog act. The semantic analyzer uses this structure to build requests. The role of the
semantic analyzer is to identify objects, properties, values and actions in the syntactic
structure by using the object hierarchy and relations defined in the domain model. The
information is used to create a formal query. During the semantic analysis, the system
can either ask the user for confirmation or request additional information to resolve
conflicts. Finally, the inference engine uses the resulting formal query to retrieve the
required information and the system presents it to the user.

Whenever a task-oriented dialog starts, the semantic analyzer first tries to deter-
mine if a known task is concerned. If it is the case, it verifies the slots initially filled
with information and continues the dialog to acquire important information to execute
the task. To identify the task and concerned slots, the analyzer retrieves information
from task models (see Section 3.3). The recursive stack strategy allows the user to use
relations and concepts defined in the domain model (see Fig. 1, line 10) at all times.

In our system, the dialog coordination depends on the types of utterances denoted
by speech acts. Schank and Abelson [13] proposed a categorization of messages, of
which we keep the following:

Â� $VVHUWLYH: message that affirms something or gives an answer (e.g., “ Paul is profes-
sor of AI at UTC” , “ Mary’ s husband”);

Â� 'LUHFWLYH: gives a directive (e.g., “ Find a document for me.”);
Â� ([SOLFDWLYH: ask for explanation (e.g. “ Why?”);

,QWHUURJDWLYH: ask for a solution (e.g., “ Where does Paul work?”).
To maintain a terminological coherence, the previous categories will be referred to

by speech acts: Assert act for Assertive; Directive act for Directive; Explain act for
Explicative and WH/Question (where, what or which) or Y-N/Question (yes-no) for
Interrogative. Speech acts are used to classify nodes of the dialog state graph. The
dialog graph represents a discussion between the user and the system where nodes are
the user’ s utterances and arcs are the classification given to the node.

To improve communications we introduced new specialized speech acts:
Â� &RQILUP: used by the system to ask the user to confirm a given value;
Â� *R�EDFN: used by the user to go to the previous node of the dialog. For instance,

when the user made a mistake;
Â� $ERUW: used by the user to terminate the dialog;
Â� 3URSRVH: used by the system to propose a value to a question. This act can be fol-

lowed by a Confirm act.
Fig. 3 shows the functional architecture of the dialog coordination. Fig. 3 shows

how we implemented the semantic interpretation for each speech act. The interaction
with the user always starts with the “ Ask” system act. The default question is “ What
can I do for you?” Then, the user can ask for information or start a task. Based on the
user phrase the Task Recognizer classifies the user phrase as a “ General Utterance” or
a “ Task-Related Utterance.” The task recognizer compares the verbs and nouns of the
verbal and nominal parts of the utterance with the linguistic information previously
stored into task templates (section 3.3).

The semantic analyzer simply analyses a general utterance by taking into account
the speech act recognized during syntactic analysis. Four types of speech acts are
possible: Assertive (assert act), Explicative (explain act), Directive (directive act) and
Interrogative (wh/question or y-n/question acts). Finally, the Inference Engine can ask
the knowledge base for the answer. The Inference Engine does a top-down search in
the concepts hierarchy, identifying classes and subclasses of concepts, properties and
values, and filtering the concepts that satisfy the constraints specified in the queries.

The interpretation of a task-related utterance is more complex. First, the Task Rec-
ognizer locates the correct task based on the terms present on the nominal phrases by
using the terminological representation (Task Template on Section 3.3) about the
tasks. Next, the task recognizer matches the modifiers of these nominal phrases with
information about the parameters for filling the slots referred in the phrase. Then, the
Task Engine will ask the user about other parameters sequentially. For each parameter
an $VN act is executed by the system. At this point, the user can: simply answer the
question (in this case the task engine fills the slot and passes to the next one), ask for
([SODQDWLRQ, *R�EDFN to the last slot or $ERUW the dialog. When a user asks for ([SOD�
QDWLRQ, the Task Explainer presents the information coded on the task description
concerning the current parameter (SDUDPV�H[SODLQV on Section 3.3) and the task en-
gine resumes the dialog concerning the current parameter. The *R�EDFN act simply
makes the task engine roll back the dialog flow to the last parameter filled. When the

user enters an $ERUW act the Task Eraser reinitializes variables concerning the current
task and the system goes back to the default prompt or to the top task of the task stack.

Ask

Task
Recognizer

Task
Engine

Task
Eraser

Syntactic
Analyzer

Task
Executor

System Communication Act

Propose

Go-Back

Confirm

Abort

Explain

Question

Syntactic
Structure

Phrase

Wh
Question Explain Directive Assert

Y-N
Question

Task
Explainer

General
Utterance

User Communication Act

Semantic
Analyzer

Inference
Engine

Query

Answer

User Profile
Manager

Proposition
Question/Answer Communication Acts

Task Manager

Task Oriented Communication Acts

Utterance classified

Task or parameter
utterance

Answer
Information Flow
Transition Flow

Ask

Task
Recognizer

Task
Engine

Task
Eraser

Syntactic
Analyzer

Task
Executor

System Communication Act

Propose

Go-Back

Confirm

Abort

Explain

Question

Syntactic
Structure

Phrase

Wh
Question Explain Directive Assert

Y-N
Question

Task
Explainer

General
Utterance

User Communication Act

Semantic
Analyzer

Inference
Engine

Query

Answer

User Profile
Manager

Proposition
Question/Answer Communication Acts

Task Manager

Task Oriented Communication Acts

Utterance classified

Task or parameter
utterance

Answer
Information Flow
Transition Flow

)LJ����� Functional Architecture.

The system can also ask for confirmation and propose values with &RQILUP and
3URSRVH speech acts respectively. To confirm a given value, the system shows a de-
fault question like “ Confirm the value?” and waits for a valid answer. If a positive
answer is given, the system confirms the value and the dialog continues. Otherwise,
the task engine asks the question concerning the current parameter again. The 3URSRVH
act is executed before the $VN act. The User Profile Manager looks at the user model
seeking a value to propose to the user. If a value is found, it is presented to the user
and the system asks the user for a confirmation by executing a &RQILUP act.

Finally, when no more information is needed, the Task Executor executes the task
and presents either the solution or a feedback to the user. It also sends information to
User Profile Manager that saves the current task in the user model.

�����+RZ�WR�,QWHUSUHW�WKH�8VHU¶V�8WWHUDQFHV�
In our approach, we use a simple regular English grammar extended from Allen [1].
We divided the syntactic and semantic processing into two steps. The algorithm uses
nominal and prepositional phrases to locate known objects and properties. We imple-
mented an algorithm that analyzes the syntactic representation and the domain ontol-
ogy and generates well-formed requests. The semantic analysis is complemented by a
linguistic analysis of the phrase, where we try to identify if an action, e.g., “ leave” , or
some general modifier, e.g., “ time (when), quantity (how many)” is being asked by
using a list of verbs denoting actions and modifiers. Finally, the inference engine takes
the resulting formal query and does the filtering. The query is a conjunction of atomic
queries. The format of each query can be “ (:Object O: slot S: value V)” for object
selection or “ (:Object O: slot S)” for slot-value verification. “ O” and “ V” can be com-
plex recursive structures.

�����7DVN�0RGHO�
We divide a task into two parts: WHPSODWH and GHVFULSWLRQ. To identify the task re-
quested by the user and the information related to parameters, the semantic analyzer
uses the template part of the task. The template contains linguistic terms related to the
parameters and the verbs used to start the task. The task description describes all the
information required for the task execution. The data required in the task structure
definition are:
Â� 3DUDPV: the parameters of the task;
Â� Params-values: the values given by the user as parameters;
Â� Semantic-value: the specification of a function that must be executed on the value

given by the user. For instance, the function “ e-mail” can give the value “ car-
valho@utc.fr” for the term “ carlos” given by the user;

Â� Params-confirm: it is true if a confirmation for the value given by the user is neces-
sary;

Â� Params-labels: the question presented to the user;
Â� Params-save: the specification if the values of the parameters are used to generate

the user model (see next Section);
Â� Params-explains: if true, (for a parameter) an explanation is given to the user;
Â� Global-confirm: if true, a global confirmation for the task execution is made.

�����8VHU�0RGHO��80��
We use a dynamic UM generation process. All the tasks and query executions are

saved within the user model. Values are predicted with a weighed frequency-based
technique. We use UM dynamic generation to avoid manual modeling of users. The
main idea is to minimize the user’ s work during the execution of repetitive dialogs by
predicting values and decreasing the needs for feedback. A more elaborated discus-
sion about user model in dialog systems is beyond the scope of this paper.

�����'RPDLQ�0RGHO�
To allow the system to identify users’ problems and provide answers to particular
questions, it is necessary to keep a knowledge base within the assistant. The knowl-
edge of the agent is used to identify objects, relations and values required by the user.
Such objects can represent instances of various object classes (3HRSOH, 7DVN, 'HVLJQ,
etc.) and have a number of synonyms. Therefore, it is quite important to use efficient
tools to represent objects, synonyms and a hierarchical structure of concepts. In our
approach, we use the MOSS system proposed by Barthès [4] to represent knowledge.
MOSS allows object indexing by terms and synonyms. Several objects can share the
same index. MOSS has been developed at the end of seventies to represent and ma-
nipulate LISP objects. The objects can be versioned and modified simultaneously by
several users. The MOSS concepts have been further used in object-oriented data-
bases.

1 User: Joe is a professor of Artificial Intelligence at UTC.
2 System: OK.
3 User: What does Joe do?
4 System: Joe is a professor of Artificial Intelligence at UTC.
5 User: What is Joe’ s profession?
6 System: Joe is a professor of Artificial Intelligence at UTC.
7 User: Where does Joe works?
8 System: At UTC
9 User: Is Joe a professor of Artificial Intelligence?
10 System: Yes
11 User: Is Joe a professor of artificial intelligence at UTC?
12 System: Yes
13 User: Is Joe a professor of artificial intelligence at PUC?
14 System: I don’ t know. None information about this.
15 User: What does Joe teaches?
16 System: Artificial Intelligence

1 User: Joe is a professor of Artificial Intelligence at UTC.
2 System: OK.
3 User: What does Joe do?
4 System: Joe is a professor of Artificial Intelligence at UTC.
5 User: What is Joe’ s profession?
6 System: Joe is a professor of Artificial Intelligence at UTC.
7 User: Where does Joe works?
8 System: At UTC
9 User: Is Joe a professor of Artificial Intelligence?
10 System: Yes
11 User: Is Joe a professor of artificial intelligence at UTC?
12 System: Yes
13 User: Is Joe a professor of artificial intelligence at PUC?
14 System: I don’ t know. None information about this.
15 User: What does Joe teaches?
16 System: Artificial Intelligence

)LJ����� Intelligent Dialog.

Knowledge is important because it increases the system capability of producing ra-

tional answers. Consider the dialog reproduced in 4. Initially, the system has no in-
formation on Joe’ s occupation. The user starts the dialog with an “ Assert” dialog act
by stating Joe’ s occupation. Afterwards, the user asks several questions related to the
initial utterance and the system is able to answer them. The system can identify and
interpret correctly very different questions related to the same concepts (lines 3 and 5)
and answer questions about them. This is possible because the semantic meanings of
the slots are explored in the queries. Thus, a slot can play a role that is referenced in
different ways.

��'HSOR\PHQW�DQG�(YDOXDWLRQ�
We currently develop a personal assistant (PA) in the AACC project. We hope to use
the mechanisms discussed on this paper to improve the interaction with the present
assistant prototype. Then, students will have an assistant able to execute services,
help them with mechanical engineering tasks, and answer questions using natural
language.

The current state of the prototype did not allow its immediate application because
the current interface is not good enough. The interface is being redesigned to test our
dialogue approach during the mechanical engineering courses given to students. Dur-
ing the Spring semester of 2004, we will evaluate the results of students either using or
not the assistant, and we will measure the quality of the information provided by the
assistant. A formal evaluation of the system can be accomplished, for instance, with
the criteria presented by Allen et al. [2], however, for us; the main criterion is the
acceptation or the non-acceptation of the system by the students.

��5HODWHG�:RUN�
Grosz and Sidner [7] discuss the importance of an explicit task representation for the
understanding of a task-oriented dialog. According to the authors, the discourse is a

composite of three elements: (i) linguistics (utterances); (ii) intentions and (iii) atten-
tional states (objects, properties, relations and salient intentions at any given point of
the discourse). Our system presents some very close elements such as: linguistic in-
formation (template of tasks), intentions (given by speech acts) and specific informa-
tion about tasks and task properties. Very often, assistants communicate by using
ACLs (Agent Communication Languages) like KQML or FIPA (Foundations for In-
telligent Physical Agents) ACL. However, such messages are based on 3HUIRUPDWLYHV
rather than VSHHFK�DFWV. A basic difference between performatives and speech acts is
that they tell what to do when something is said (action) and do not express the mean-
ing of what is said (intention). In other words, ACL messages cannot express a Go-
back like speech act because there is not an explicit action in the utterance. Unlike
most dialog systems, the dialog flow implemented in Section 3.1 is completely ge-
neric. Thereby, new tasks and knowledge can be added to the system (Assistant) with-
out changing or extending the dialog structure. Generic dialog systems are relatively
rare. Usually, the developer specifies state transition graphs where a dialog flow
should be entirely coded like the dialog model discussed by McRoy and Ali [10].
Kölzer [9] discusses a generic dialog system generator. In the Kölzer’ s system, the
developer must specify the dialog flow using state charts. Such techniques make the
development of real applications quite hard. In contrast, in our approach, we need to
specify only task structures and domain knowledge concerned. Rich and Sidner [11]
also used the concept of generic dialog systems. The authors used the core of the
COLLAGEN system to develop very different applications. COLLAGEN is based on a
plan recognition algorithm and a complex model of collaborative discourse. The prob-
lem is that most part of the collaborative discourse must be coded using a language to
model the semantic of communicative acts. The representation includes knowledge
concerning the application. So, the knowledge of the system is intermixed with the
dialog discourse, which makes the application domain dependent. Allen et al. [3] used
speech acts to model the behavior and the reasoning of a deliberative autonomous
agent. Speech acts are separated into three groups: Interaction, Collaborative Problem
Solving (CPS) and Problem Solving (PS). Assuming we do not intent to model inter-
action with the user like a problem solving process, the PS and CPS speech acts pro-
posed by Allen are not relevant to our work, because they are domain-related. How-
ever, the interactions acts are very similar to the speech acts that we proposed.

��&RQFOXVLRQV�
In this paper we addressed the problem of communication between User and Personal
Assistant Agent (PA). In the AACC project, users need to communicate with a PA to
do collaborative work. We argued that natural language should be used to provide a
better interaction. A user assistant communication module was developed as a modu-
lar dialog system. To execute services and to ask for knowledge, the user enters a
dialog with his PA. In this application, the dialog coordination model should be ge-
neric to support the scalability of the system concerning the addition of new tasks
without much effort. Then, we introduced a new generic model of dialog based on

speech acts. Simple tasks and questions have been used to highlight the effectiveness
of the system and the advantages in relation to traditional collaborative work tools.

5HIHUHQFHV�
1. Allen, J. F., 1DWXUDO�/DQJXDJH�8QGHUVWDQGLQJ, The Benjamin/Cummings Publishing

Company, Inc, Menlo Park, California, 1986. ISBN 0-8053-0330-8
2. Allen, J. F.; Miller, B. W. et al. 5REXVW�8QGHUVWDQGLQJ�LQ�D�'LDORJXH�6\VWHP, Proc.

34 th. Meeting of the Association for Computational Linguistics, June, 1996.
3. Allen, J. ; Blaylock, N. ; Ferguson, G., $�3UREOHP�6ROYLQJ�0RGHO� IRU�&ROODERUDWLYH�

$JHQWV, Proc. of AAMAS’ 02, pp. 774 – 781, ACM Press New York, NY, USA ,
2002. ISBN 1-58113-480-0

4. Barthès, J-P. A., 0266����, Memo UTC/GI/DI/N 111, Université de Technologie de
Compiègne, Mars, 1994.

5. Flycht-Eriksson, A., $�6XUYH\�RI�.QRZOHGJH�6RXUFHV�LQ�'LDORJXH�6\VWHPV, Proceed-
ings of the (IJCAI)-99 Workshop on Knowledge and Reasoning in Practical Dialogue
Systems, International Joint Conference on Artificial Intelligence, Murray Hill, New
Jersey, Jan Alexandersson (ed.), pp 41-48, 1999.

6. Goldstein, I. P.; Roberts, R. B., 1XGJH�� $�.QRZOHGJH�%DVHG� 6FKHGXOLQJ�3URJUDP,
MIT AI memo 405, February, 23 pages, 1977.

7. Grosz, B. J., Sidner, C. L.. $WWHQWLRQ��LQWHQWLRQV� DQG�WKH�VWUXFWXUH�RI�GLVFRXUVH��Com-
putational Linguistics, 12(3):175--204, 1986.

8. Kipp, M.; Alexandersson, J.; Reithinger, N., 1999. 8QGHUVWDQGLQJ�6SRQWDQHRXV�1H�
JRWLDWLRQ� 'LDORJXH, Linköping University Electronic Press: Electronic Articles in
Computer and Information Science, ISSN 1401-9841, vol. 4, nº 027.

9. Kölzer, A., 8QLYHUVDO�'LDORJXH�6SHFLILFDWLRQ�IRU�&RQYHUVDWLRQDO�6\VWHPV, Linköping
University Electronic Press: Eletronic Articles in Computer and Information Science,
ISSN 1401-9841, vol. 4, nº 028, 1999.

10. McRoy, S., Ali, S. S., $�SUDFWLFDO��GHFODUDWLYH�WKHRU\�RI�GLDORJ. Electronic Transac-
tions on Artificial Intelligence, vol. 3, Section D, 1999, 18 pp.

11. Rich, C.; Sidner, C. L.; Lesh, N., &2//$*(1�� $SSO\LQJ�&ROODERUDWLYH�'LVFRXUVH�
7KHRU\� WR� KXPDQ�&RPSXWHU� ,QWHUDFWLRQ, AI Magazine, Special Issue on Intelligent
User Interfaces, vol 22, issue 4, pp. 15-25, Winter 2001.

12. Riesbeck, C., Martin, C., 'LUHFW� 0HPRU\� $FFHVV� 3DUVLQJ, Yale University Report
354, 1985.

13. Schank, R. C., Abelson, R. P., 6FULSWV��3ODQV��*RDOV�DQG�8QGHUVWDQGLQJ��/DZUHQFH�
(UOEDXP�$VVRFLDWHV, Hillsdale, NJ, 1977.

14. Searle, J., 6SHHFK�$FWV��$Q�(VVD\�LQ�WKH�3KLORVRSK\�RI�/DQJXDJH, Cambridge, Cam-
bridge University Press, 1969.

15. Seneff, S.; Polifroni, J.,)RUPDO�DQG�1DWXUDO�/DQJXDJH�*HQHUDWLRQ� LQ� WKH�0HUFXU\�
&RQYHUVDWLRQDO�6\VWHP, Proc. 6th Int. Conf. on Spoken Language Processing, Beijing,
China, October, 2000.

16. Sowa, J. F���&RQFHSWXDO�6WUXFWXUHV��,QIRUPDWLRQ�3URFHVVLQJ�DQG�0LQG�DQG�0DFKLQH,
Addison Wesley, Reading Mass� 1984.

17. Szolovits, P; Hawkinson L. B.; Martin W. A., $Q�2YHUYLHZ�RI�2:/��$�/DQJXDJH�IRU�
.QRZOHGJH�5HSUHVHQWDWLRQ, Technical Memo TM-86, Laboratory for Computer Sci-
ence, MIT, 1977.

