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Preface

This digital edition of Pereira and Shieber’s Prolog and Natural-
Language Analysis is distributed at no charge by Microtome Pub-
lishing under a license described in the front matter and at the web
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free paper with library binding and including all appendices and two
indices (and without these inline interruptions), is available from
www . mtome . comand other booksellers.

Over the last few years, we have led a series of tutorials and classes introducing the
programming language Prolog by way of example programs that apply it to the prob-
lem of natural-language analysis and processing. This volume began as the notes for a
tutorial taught by one of the authors, Pereira, at the Twenty-Third Annual Meeting of
the Association for Computational Linguistics in Chicago during July of 1985. During
the fall of 1986, we organized a course at Stanford University on the same subject for
which the original notes were extended. The impetus for organizing and expanding
these various lecture notes into a more coherent text came from our colleagues at the
Center for the Study of Language and Information (CSL1I), and the project was made
possible by a gift from the System Development Foundation.

Along the way, we were aided by a number of our colleagues. Ray Perrault was
kind enough to allow us to pursue work on this project even when our other respon-
sibilities at SRI International were now and then overlooked. David Israel was in-
strumental in procuring the occasional grant under which the book was written and
without which it would not have been; we must also thank other members of the CSLI
administration—in particular, Jon Barwise, John Perry, and Brian Smith—for their
support and facilitation of this project.

The text was improved considerably by the efforts of several colleagues who vol-
unteered to read drafts of the book. John Bear, Mary Dalrymple, Robert Keller, Peter
Ludlow, Richard O’Keefe, Ray Perrault, and Ivan Sag all provided invaluable com-
ments, corrections and improvements. We attempted to use as much of their advice
as time permitted. We only wish that we had enough time to accomodate more of the
changes that we now realize are needed.

Editorial assistance from Dikran Karagueuzian of CSLI and Valerie Maslak of
SRI was also invaluable. Their efforts are especially appreciated given the stiff time
constraints under which they were forced to work. The project was further expedited
by the efforts of Emma Pease, Lynn Ruggles and Nancy Etchemendy, who aided us in
the formatting of the book, especially the figures and index.
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Many drafts of the manuscript and the final camera-ready copy were typeset with
the help of Leslie Lamport’s IATEX document preparation system and Donald Knuth’s
TeX typesetting system on which it is based. We thank them for creating and making
freely available those fine tools.

Finally, we want to thank Ana Pereira and Linda Sarnoff who bore the brunt of
our idiosyncratic behavior during the genesis of these notes. This book is dedicated to
them.

Prefaceto Millennial Reissue

This reissue of Prolog and Natural-Language Analysis varies only slightly from the
original edition. The figures have been reworked. Thanks to Peter Arvidson for the
setting of the new figures. A number of primarily typographical errata from the first
edition have been fixed in this reissue. Thanks to Cecile Balkanski, Mark Johnson,
Karen Lochbaum, John O’Neil, Ted Nesson, and Wheeler Ruml for pointing out errors
in the previous edition. Errors or misfeatures of a more substantial sort were not treated
in the present revision. Any remaining problems in the text are the authors’.
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1.1 Purpose

This book is an introduction to elementary computational linguistics from the point
of view of logic programming. The connection between computational linguistics and
logic programming has both formal and utilitarian aspects. On the formal side, we shall
explore the restricted logical language of definite clauses as a means of expressing lin-
guistic analyses and representations. On the utilitarian side, we shall introduce the
logic-programming language Prolog, whose backbone is the definite-clause formal-
ism, as a tool for implementing the basic components of natural-language-processing
systems.

The main goal of the book is to enable the reader to acquire, as quickly as pos-
sible, a working understanding of basic computational linguistic and logic program-
ming concepts. To achieve this goal, the book is organized around specific concepts
and programming techniques, with examples supported by working programs. Most of
the problems involve programming and also supplement the material in the main text.
Although we have emphasized experimental rather than analytic or comparative ques-
tions, all concepts and techniques covered are given rigorous, if informal, theoretical
justification.

1.2 Logic Programming and Language

One of the main goals of the development of symbolic logic has been to capture the
notion of logical consequence with formal, mechanical, means. If the conditions for a

1
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certain class of problems can be formalized within a suitable logic as a set of premises,
and if a problem to be solved can be stated as a sentence in the logic, then a solution
might be found by constructing a formal proof of the problem statement from the
premises.

For instance, in the linguistic case the premises might provide constraints on the
grammaticality of classes of utterances, and the problems to solve would have the
general form “there is some a such that a is an analysis (or interpretation) of the gram-
matical utterance u.” A constructive proof of this statement would not only show that
an analysis a exists but also find actual values for a.

A constructive proof procedure that not only creates proofs but also builds values
for the unknowns in the problem statement can thus be seen as a computational device
for determining those unknowns. From this perspective, the premises can be seen as
a program, the problem statement as an invocation of the program with certain input
values and output unknowns, and a proof as a computation from the program. This is
the basic intuition behind logic programming.

However, it is not enough to have some sound and complete set of rules of inference
and some procedure to apply them systematically to have a logic programming system.
To be satisfactory as a computation device, a proof procedure should not leave proof
possibilities unchecked (search completeness), that is the procedure should terminate
without a proof only if no proof exists. We do not want our programs to terminate with
no answer if there is one (except possibly for running out of computational resources
such as computer memory). Furthermore, a set of premises has many consequences
that are definitely irrelevant to the proof of a given consequence. The proof procedure
should be goal directed in that derivations of irrelevant consequences are avoided. We
do not want the computations of a program to include subcomputations that do not at
least potentially contribute in some way to the program’s output.

In fact, search completeness and goal directedness are very difficult to achieve in
general, but become more feasible in weaker logical languages. The problem then
becomes one of finding a good compromise between expressiveness of the logical
language and the constraints of sound and efficient computation. The development of
logic programming stemmed from the discovery of a reasonable compromise, definite
clauses, and its partial implementation in Prolog, the first practical logic programming
language.

Almost from its origin, the development of logic programming has been closely
tied to the search for computational formalisms for expressing syntactic and seman-
tic analyses of natural-language sentences. One of the main purposes in developing
Prolog was to create a language in which phrase-structure and semantic-interpretation
rules for a natural-language question-answering system could be easily expressed.

Phrase-structure rules for a language state how phrases of given types combine to
form larger phrases in the language. For example, a (simplistic) phrase-structure rule
for declarative sentences in English might state that a declarative sentence consists of
a noun phrase (the subject of the sentence) followed by a verb phrase (the predicate of
the sentence). Such rules have a very simple expression in first-order logic:

(Yu, v, W)NP(u) A VP(v) A conc(u, v, w) = S(w)

where NP represents the class of noun phrases, VP the class of verb phrases, S the class
of sentences, and conc holds of any strings u, v and w such that w is u followed by v,
that is, the concatenation of u and v. This expression in first-order logic thus states
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that any noun phrase u and verb phrase v can be concatenated to form a declarative
sentence w = uv. The term logic grammar has come to refer to such uses of logic to
formalize grammatical rules.

The above formula is an example of a definite clause. We shall see that many
important classes of linguistic rules and constraints can be put in this general form,
which states that any objects satisfying certain constraints (properties or relationships)
also satisfy some other constraint (property or relationship). The fact that linguistic
rules can be put in this format is the basis for the usefulness of definite clauses in
language analysis. This fact has not only theoretical but also practical importance, in
that linguistic rules encoded as definite clauses can be run directly by Prolog, providing
an efficient and direct computational realization of grammars and interpretation rules.

1.3 Programming In Prolog

Logic programming languages in general, and Prolog in particular, differ from conven-
tional programming languages (such as Pascal or Fortran) in several important ways.
First of all, Prolog can be thought of as a largely declarative language; that is, a Pro-
log program can be viewed as stating what is computed, independent of a particular
method for computation. Pascal, on the other hand, is procedural, in that what a Pas-
cal program computes is definable only in terms of how it performs the computation.*
Of course, Prolog also has a procedural interpretation; it uses a particular method
for computing the relations which a program can be viewed as declaratively stating.
Furthermore, certain “impure” portions of the Prolog language defeat its declarative
interpretation. But Prolog, as a first step toward a logic programming language, can to
a great extent be seen as a declarative language.

Second, Prolog programs are structured in terms of relations whereas traditional
languages for the most part are structured in terms of functions. The notions of calling
a function, returning a value, and so forth are foreign to Prolog. Instead, Prolog ex-
presses relations among entities. Function calls correspond to queries as to whether a
particular relation holds or not and under what conditions. This difference has tremen-
dous ramifications. For instance, it means that variables play a completely different
role in Prolog than they do in conventional languages.

From this relational structure, it follows that Prolog programs are nondeterminis-
tic, since several elements can be in a particular relation to a given element. Because
conventional languages are geared toward functions, that is, relations in which one ele-
ment is uniquely defined in terms of the others, computation proceeds deterministically
in such languages.

These three properties of Prolog make it quite different from other programming
languages. Consequently, a different way of thinking about programs and program-
ming is necessary in using Prolog. Learning a new programming language can often
be aided by analogy with previously learned languages. But Prolog might be most
easily learned by ignoring previous experience with other programming languages and
trying to absorb the Prolog gestalt from first principles.

Unfortunately, learning a language in this way requires many illustrative examples

1This is not to say that Pascal can have no denotational semantics but only an operational semantics.
Rather, any denotational semantics must make explicit reference to the state of the computation as encoded,
for instance, in an environment.
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of the language and much detailed explanation about how they work and how they were
derived. Since the goal of this book is to concentrate on natural-language processing
applications, we must often forego such detailed analysis. Therefore, as part of a first
course on Prolog, it is probably best to supplement the material here with one of the
texts discussed in the bibliographic notes below.

All the particulars of the interaction with a Prolog system that are used in the
present work are those of the Edinburgh family of Prolog systems, and when used
without qualification, the term “Prolog” means any system of that family.

1.4 Overview

The Prolog language is presented in this book through a graded series of sublanguages.
Chapter 2 presents database Prolog, a limited subset of Prolog that can express rela-
tionships between named individuals and constraints between those relationships. We
then describe how phrase-structure rules can be represented in this subset. Database
Prolog is extended in Chapter 3 to pure Prolog, the largest subset of Prolog that can be
viewed as a logic programming language. This extension allows us to represent more
complex kinds of linguistic rules and, in particular, the definite-clause grammar for-
malism. Techniques for linguistic analysis in definite-clause grammars are developed
further in Chapter 4, where issues of syntactic coverage and semantic interpretation
are discussed. Extralogical extensions to the pure subset of Prolog lead to the full
Prolog language, which is presented in Chapter 5. These facilities are used to develop
a simple natural-language question answering system which demonstrates the appli-
cation of many of the techniques developed in earlier chapters. Finally, in Chapter 6
we explore the metalevel programming capabilities of Prolog, showing how to imple-
ment logic-programming language and logic-grammar interpreters exhibiting different
control strategies from that provided directly by Prolog.

Throughout the book we have included exercises and problems. Exercises are
interspersed throughout the text and are intended to help readers verify their under-
standing of the concepts covered. Problems, collected into separate problem sections,
extend the material in the book and are appropriate for assignments in a course based
on this text. It should be noted that problems vary widely in difficulty; instructors
should take this variation into account.

Given the orientation of the book, we limited the discussion of issues of a more
general nature, such as comparisons with other computational linguistic techniques or
formal mathematical results. Three areas stand out among the omissions. First, we
do not compare the logic programming approach with other approaches to natural-
language processing, in particular the closely related unification-based grammar for-
malisms. Second, we do not present or compare the plethora of grammar formalisms
based on logic programming. Finally, we do not address formal-language-theoretic
issues of generative power and computational complexity for the formalisms and anal-
ysis mechanisms we present.

One of the major insufficiencies remaining in the text is a lack of linguistic sophis-
tication and coverage evinced by the analyses we use. The reader should not think that
such naiveté inheres in Prolog as a tool for natural-language analysis; the bibliographic
notes at the end of the chapters often cite work with more convincing analyses.
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1.5 Bibliographic Notes

In these bibliographic notes we give both the original sources for our material and
other works that elaborate or supplement topics discussed in this book. As is often
the case, the original source for a topic may no longer be the best place to learn about
it. Unless otherwise specified, the most recent reference we give for a topic, and in
particular a recent textbook, is to be preferred to other sources in a first approach to a
topic.

Prerequisites

This book presupposes some acquaintance with elementary notions from logic, formal-
language theory, computer science and linguistics.

The textbook Mathematical Methods for Linguistics by Partee, ter Meulen and
Wall (1987) covers much of the background material we require in logic, formal-
language theory and semantics (concepts such as first-order logic, quantifier scope,
extension and intension).

For a more computation-oriented introduction to logic and deduction, Robinson’s
book Logic: Form and Function (1979) covers in detail all the concepts from logic
and automated theorem proving used in this book. Gallier’s Logic for Computer Sci-
ence (1986) contains a mathematically more demanding coverage of the same material.
Kowalski’s Logic for Problem Solving (1980) gives an informal introduction to the use
of logic in a logic programming setting for representing computational problems. The
example problems are mostly taken from artificial intelligence applications including
simple examples of syntactic analysis by deduction. Finally, Automated Reasoning:
Introduction and Applications by Wos, Overbeek, Lusk and Boyle (1984) gives a com-
prehensive and readable discussion of many automated-deduction methods and their
applications to knowledge-representation tasks.

Most of the concepts we use from formal-language theory and theoretical com-
puter science (automata, context-free grammars, etc.) can be found in Hopcroft and
Ullman’s Introduction to Automata Theory, Languages and Computation (1979) or in
Harrison’s Introduction to Formal Language Theory (1978). Aho and Ullman’s ency-
clopedic Theory of Parsing, Translation and Compiling (1972) covers specific parsing
algorithms not included in the two preceding references.

Many of the basic concepts and terminology of modern [generative] syntactic the-
ory are used informally in this book. For an introduction to them, the first two chapters
of Baker’s Introduction to Generative-Transformational Syntax (1978) should be suffi-
cient. For readers interested in further background in the generative grammar tradition,
the terminology of which has now become standard in modern syntax and has occa-
sionally crept into this text, the remainder of Baker’s book and the clear and elegant
arguments of the volume by Soames and Perlmutter Syntactic Argumentation and the
Structure of English (1979) are good sources.

Winograd’s Language as a Cognitive Process. Volume I: Syntax (1983) gives a
computationally oriented introduction to some of the basic concepts from natural-
language syntax (e.g., parse tree, labeled bracketing, noun phrase, relative clause) used
in this book, in addition to much other related material. Chapter 3 is particularly rele-
vant.

Although this book is intended to be self-contained in its coverage of Prolog and
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basic logic-programming concepts, it could be usefully supplemented with a Prolog
textbook. Sterling and Shapiro’s The Art of Prolog (1986) is particularly suitable since
it amplifies many of the concepts used here with further discussion, examples, and
exercises. Except for divergences in some minor typographical conventions, the dialect
of Prolog used in that book is compatible with the one used here.

Historical Material

The basic ideas of logic programming emerged in the late 1960s and early 1970s from
work on automated deduction. Proof procedures based on Robinson’s resolution prin-
ciple (1965) operate by building values for unknowns that make a problem statement
a consequence of the given premises. Green (1968) observed that resolution proof
procedures could thus in principle be used for computation. Resolution on its own
is not a sufficient basis for logic programming, because resolution proof procedures
may not be sufficiently goal-directed. Thus, Green’s observations linking computation
to deduction (1968) had no effective realization until the development of more goal-
oriented linear resolution proof procedures, in particular Kowalski and Kuehner’s SL
resolution (1971). This development allowed Kowalski (1974a) to suggest a general
approach to goal-directed deductive computation based on appropriate control mech-
anisms for resolution theorem provers and the further specialization of SL resolution
to Horn clauses, and the corresponding procedural interpretation of Horn clauses, was
first described in principle by Kowalski (1974a; 1974b).

Even the SL resolution procedure and related theorem-proving methods were not
efficient enough for practical computation, mainly because they had to cope with
the full generality of first-order logic, in particular disjunctive conclusions. Further
progress required the radical step of deliberately weakening the language to one that
could be implemented with efficiency comparable to that of procedural languages.
This step was mainly due to Colmerauer and his colleagues at Marseille in the early
1970s. Their work proceeded in parallel with (and in interaction with) the theoretical
developments from the automated theorem-proving community. Inspired by his earlier
Q-systems, a tree-matching phrase-structure grammar formalism (Colmerauer, 1970),
Colmerauer started developing a language that could at the same time be used for lan-
guage analysis and for implementing deductive question-answering mechanisms. It
eventually became clear that a particular kind of linear resolution restricted to defi-
nite clauses had just the right goal-directness and efficiency, and also enough expres-
sive power for linguistic rules and some important aspects of the question-answering
problem. Their approach was first described as a tool for natural-language processing
applications (Colmerauer et al., 1973). The resulting deductive system, supplemented
with a few other computational devices, was the first Prolog system, known as “Mar-
seille Prolog”. The first detailed description of Prolog was the language manual for the
Marseille Prolog interpreter (Roussel, 1975).

As noted above, Prolog was originally developed for natural-language processing.
Besides the original application (Colmerauer et al., 1973), other early influential work
includes systems by Colmerauer (1982; 1978), Pasero (1973) and Dahl (1981). Many
other natural-language-processing systems and techniques based on logic program-
ming have since been developed, which we will refer to when the relevant topics are
discussed.

The collection Readings in Natural Language Processing (Grosz et al., 1986)
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reprints papers covering a wide variety of topics in natural-language processing, in-
cluding some of the papers referred to in this book. In the bibliography, we use the
original publication data, but we also indicate when the paper has been reprinted in
that collection.

Besides natural-language processing, logic programming and Prolog have been
used in many other application areas, particularly in artificial intelligence. For an idea
of the current areas of application, the reader is directed to the collection edited by
van Caneghem and Warren (1986) and the extensive logic-programming bibliography
prepared by Balbin and Lecot (1985).

Since the original implementation in Marseille, Prolog implementation techniques,
including compilation and various space-saving devices, have progressed to the point
that Prolog is today at least comparable with other symbolic-processing languages,
such as visp, for a variety of problems areas, in particular natural-language processing
(Warren et al., 1977; Warren, 1979; Warren, 1983).
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Chapter 2

Database Prolog: A Prolog
Subset

This digital edition of Pereira and Shieber’s Prolog and Natural-
Language Analysis is distributed at no charge by Microtome Pub-
lishing under a license described in the front matter and at the web
site. A hardbound edition (ISBN 0-9719997-0-4), printed on acid-
free paper with library binding and including all appendices and two
indices (and without these inline interruptions), is available from
www .mtome . comand other booksellers.

2.1 Databases and Queries

We will start by seeing how simple tables of information can be expressed in Prolog.
This may seem an odd way to start discussing a programming language (texts on, say,
Pascal, start by discussing numbers and expressions), but it is revealing of the nature of
Prolog as a language for declarative information, whether that information be simple
relationships between individuals or complex constraints between types of individuals.

211 A SimpleDatabase

Recall that Prolog programs are written in a subset of first-order logic (FOL). Like
FOL, the language includes constant symbols naming entities and predicate symbols
naming relations among the entities. Our first examples will use just this much Prolog
notation, which is actually only useful to encode the type of information one might
find in a relational database. For this reason, we call this subset database Prolog.

In Prolog, both predicate and constant symbols are written as tokens starting with
a lower-case alphabetic character. Predication is notated in the normal way for log-
ical languages using parentheses surrounding the arguments following the predicate,
thereby forming an atomic formula. With this much notation we can already state
some simple information in Prolog. For instance, a simple database of professors and
the books and computer programs they have written might be expressed by the follow-
ing Prolog program:
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Program 2.1
wrote(terry, shrdlu).
wrote(bill, lunar).
wrote(roger, sam).

wrote(gottlob, begriffsschrift).
wrote(bertrand, principia).
wrote(alfred, principia).

book(begriffsschrift).
book (principia).

program(lunar) .
program(sam) .
program(shrdlu).

Each line in this program is a clause formed from a single atomic formula and
ending with a period. As the clauses in this program have only a single atomic formula,
they are referred to as unit clauses. Later, we will see that clauses with several atomic
formulas are also allowed. In Program 2.1, an atomic formulawrote (X, Y) is intended
to mean that person X wrote entity Y, book (X) is intended to mean that X is a book,
and program(X) is intended to mean that X is a program. Thus the first clause in the
program states the fact that Terry wrote surpLu, and the last clause, that surpLu is a
program.

2.1.2 Queryingthe Database

Now that we have given some facts to the Prolog system as a set of axioms expressed
as clauses (which is really all that a Prolog program is) we can answer questions about
the information by having Prolog try to prove theorems from the axioms. We do this by
prefixing a goal G with the Prolog symbol for implication, the “:-" symbol, thereby
forming the query :- G. In this way we are asking Prolog “Does anything in the
axioms imply an answer to our question?”

For example, here is how the queries “Did Terry write surpLu?” and “Is Principia
a program?” are written.*

:- wrote(terry, shrdlu).
yes

;- program(principia).
no

It should be observed that the reply to the second query does not indicate that
“Principia is not a program” is true, but rather that Prolog could not prove “Principia
is a program” from the axioms in Program 2.1. This subtle distinction is the basis of
much logic programming research on what assumptions about a database warrant the
conclusion that “P is false in the database” from “P is not provable from the database”
and we will have more to say about it in Section 5.1.3.

1Throughout this text, user’s input is typeset in a typewriter font, the Prolog system’s answer is
typeset in a slanted typewriter font.
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2.2 Extending the Query Language

Such limited potential for querying a Prolog program would of itself hardly consti-
tute a useful programming language. Prolog extends this potential through the use of
variables, complex queries, and rules.

Variables

We can ask open-ended questions of Prolog by using variables in place of constants in
a query. To distinguish variables from constants, Prolog uses tokens that begin with
upper-case letters for variables. We can ask whether anyone wrote surpLu with the
following query:

:- wrote(WWho, shrdlu).
yes

Since there exists an assignment to the variables in the query that makes it a con-
sequence of the program axioms (namely, the assignment in which Who = terry,?
Prolog replies “yes”. Such assignments to variables are also called bindings.

Of course, we are usually interested not only in whether such an assignment exists
but also in what it looks like. To request Prolog to indicate what assignment led to
the proof of the goal, we simply use “?-" instead of “:-" to introduce the goal. For
instance,

?- wrote(Who, shrdlu).
Who = terry

yes

The assignment is printed, along with the “yes” that means that a solution was found.

If there are several different ways to assign values to variables that make the goal
statement a consequence of the program, the Prolog execution mechanism will gen-
erate alternative bindings to the goal variables. Prolog prints one such solution at a
time and then waits for a one-character command: a semicolon (*;”) to produce the
next solution, or a newline to stop generating solutions for the query. For example, the

query “Who wrote Principia?” has two satisfying assignments:

?- wrote(Who, principia).
Who = bertrand ;

Who = alfred ;

no

Notice that the final Prolog reply is “no” meaning that after this second assignment,
no more solutions could be found.

°The slanted typewriter font will be used for assignments as well as Prolog output to emphasize
the fact that they are computer-generated structures.
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Complex Queries

More complex queries can be constructed from goals consisting of multiple conditions,
interpreted conjunctively, by separating the conditions by commas (“,”). For example,
suppose we define an author as a person who has written a book. Then, if we want to
discover who the authors are according to the database, we might ask the conjunctive
query “What person Person is such that there is a book Book and Person wrote

Book?”, which can be phrased as a Prolog query as

?- book(Book), wrote(Person, Book).

Person = gottlob, Book = begriffsschrift ;
Person = bertrand, Book = principia ;
Person = alfred, Book = principia ;

no

Rules

The query above demonstrates that the property of being an author is implicit in the
given database. The utility of the database can be increased by making this prop-
erty explicit through the addition of a unary predicate author corresponding to this
property. But this predicate is best defined not in terms of an exhaustive list of unit
clauses—as previous predicates have been—but rather as a general rule for determin-
ing whether the property of being an author holds. In fact, the conjunctive query above
gives just such a rule. A person Person is an author just in the case that the goal
book (Book) , wrote(Person, Book) holds. The Prolog implication symbol “: -”
(read “if”) allows the encoding of this general rule.

author (Person) :-
book (Book) ,
wrote(Person, Book).

This clause can be read “Person is an author if there is a book Book and Person wrote
Book,” or, more simply, “an author is a writer of a book.” Because clauses such as this
one are composed of several atomic formulas, they are referred to as nonunit clauses.
The left-hand side of the clause is often called the head of the clause, the right-hand
side the body. Some people take the anatomical analogy a step further, referring to the
: - operator itself as the neck of the clause.

The author clause defines a simple property. However, multiplace relations can
be defined in this way as well. Consider the relation of a person Person being the
author of a book Book. This author_of relation can be axiomatized similarly.

author_of(Person, Book) :-
book (Book),
wrote(Person, Book).

Exercise 2.1 Write a Prolog clause that defines a programmer as a person who wrote
a program.
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Exercise 2.2 Consider the following augmentation of the sample database:

professor(terry).
professor(roger).
professor(bertrand) .
professor(gottlob).

concerns(shrdlu, blocks).
concerns (lunar, rocks).
concerns(sam, stories).

concerns(principia, logic).
concerns(principia, mathematics).
concerns (begriffsschrift, logic).

Write a Prolog clause that defines a logician as a professor who wrote a book con-
cerning logic.

2.3 The Logic of Prolog

We have alluded to the relationship between database Prolog and first-order logical
languages. In this section we describe this relationship in more detail, although still at
an informal level.

First-order logic (FOL) is a logical language that includes predicate and function
symbols and constants, from which are formed atomic formulas representing primitive
propositions. An atomic formula is an expression of the form p(ts, ..., t%), where p
is a predicate symbol of arity k applied to terms tj. A term is a constant, a variable,
or a compound term f(ty,...,ty), where f is a function symbol of arity m and the t;
are terms. Following standard practice, we will use letters p, g, r, etc. and upper case
letters for predicate symbols and letters f, g, h, etc. for function symbols. Variables will
be denoted by (possibly subscripted) x, y, z, etc. A term without variables is called a
ground term. For the nonce, we will ignore the role of function symbols and compound
terms in FOL, returning to them when we discuss the relation between FOL and full
Prolog in the next chapter.

The well-formed formulas of FOL are defined inductively, starting with the atomic
formulas and combining simpler formulas into larger formulas with operators from
some sufficiently rich set, e.g., conjunction (A), disjunction (V), negation (=), impli-
cation (=), and universal (V) and existential () quantification. If ¢ and y are well-
formed formulas and x is a variable, ¢ A ¥ (¢ and ¥), ¢ V ¢ (¢ or ¥), =¢ (not @),
¢ = ¢ (¢ implies ) (YX)¢ (for every x, ¢) and (Ix)¢ (there is an x such that ¢),
with extra parenthesization to avoid ambiguity if necessary, are well-formed formulas.
Both in (YXx)¢ and (3X)¢, the formula ¢ is the scope of the quantifier, and x is the vari-
able bound by the quantifier. Closed well-formed formulas are those in which every
variable occurrence is within the scope of a quantifier binding that variable.

Many important automated deduction methods, and in particular those from which
Prolog is derived, do not operate on general FOL formulas, but only on formulas in
clausal form (clauses). A formula is in clausal form if it is a disjunction of literals,
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where a literal is an atomic formula or the negation of an atomic formula. All variables
in the disjunction are universally quantified by quantifiers whose scope includes the
whole disjunction. Thus, a clause can be written in the form

PovVPiVv---V=NgV =N V---

The P; are positive literals; the =N; are negative literals. Note that we have left off
the quantifiers, under the convention that all variables are quantified universally at the
outermost level unless specified otherwise. The usefulness of clausal form stems from
the fact that any closed formula ¢ can be mechanically transformed into a conjunction
of clauses P such that ¢ is inconsistent if and only if # is. Notice that in general ¢
and % are not equivalent, because the transformation into clausal form may require the
introduction of auxiliary functions to remove existential quantifiers (so-called Skolem
functions).® However, as we will see below, the intended use of clausal form is in
proofs by contradiction, so preservation of inconsistency is all we need.
Using deMorgan’s law

-P v =Qifandonly if =(P A Q)
and the definition of implication in terms of negation and disjunction, i.e.,
P=Qifandonlyif-PvQ ,
we can reexpress clauses as a single implication
(NoANgA--)=>(PoVPiVv:--)

The left-hand side of the implication is its antecedent, the right-hand side its conse-
quent. Henceforth, we will refer to the N; and P; as the literals composing the clause,
although, strictly speaking, the negative literals in the clause are of the form =N;, rather
than N;.

By expressing a clause as an implication as explained above, we see that a clause
states that at least one of the atomic formulas in the consequent holds whenever all the
atomic formulas in the antecedent hold. In particular, if a clause contains no negative
literals, it will have an empty antecedent when written as an implication. Therefore
an empty antecedent should be interpreted as standing for truth: The clause states that
under all conditions at least one of the atomic formulas in the consequent holds. Con-
versely, if a clause has no positive literals, it asserts that at least one of the formulas in
its antecedent is false, that is, the conjunction of the atomic formulas in the antecedent
is false. When written as an implication, such a clause has an empty consequent. An
implication is equivalent to the negation of its antecedent provided that its consequent
is false. Thus an empty consequent corresponds to falsity. Finally, the empty clause,
with empty antecedent and consequent, corresponds to the implication true = false,
which is equivalent to false.

Theorem-proving in first-order logic—and hence clausal form FOL—is a compu-
tationally difficult task and an area of active research. As we indicated in Section 1.2,
for computational feasibility Prolog is not based on full clausal form, but on a strictly
less expressive subset, Horn clauses, which are clauses with at most one positive lit-
eral. Thus there are only three types of Horn clauses:

3Thus even a formula without function symbols may be transformed into a clause with function symbols,
outside the database subset we have been considering. But since the subset is just a stopping-off point to full
Prolog, and the arguments are meant to be indicative only, we will ignore this subtlety.
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e Unit clauses: with one positive literal, no negative literals, i.e., of the form P
(or, equivalently, = Py).

e Nonunit clauses: with one positive literal, one or more negative literals, i.e., of
the form Po vV =Ng vV =Nz V - - - (or, equivalently, Ng A Ny A - - - = Py).

¢ Negative clauses: with no positive literals, one or more negative literals, i.e., of
the form =Ng Vv =Ny Vv - - - (or, equivalently, Ng A Ny A - - - =).

The first two types of Horn clauses are collectively referred to as definite clauses
because they have exactly one positive literal—a single definite conclusion to the
implication—unlike general clauses with their potentially disjunctive, indefinite, con-
sequent.

Each type of Horn clause plays a different role in an axiomatization of a particular
problem. Unit clauses, of the form Py, assert the truth of their consequents. We might
call such clauses facts.

A nonunit clause states that its consequent is true if its antecedent is true. Such
clauses thus serve as general rules by which the consequent can be determined to hold.

Finally, a negative clause

NoAN{A--- >

has the equivalent form
-(No ANgA--")

That is, a negative clause denies the truth of its antecedent. Negative clauses can be
seen as queries as to under what conditions their antecedent is true, by the following
reasoning. Suppose we have a set of facts and rules # (a program) and a conjunction

No ANpA--- . (21)

We want to determine values for the variables in (2.1) that make it a consequence of
. In other words, we want a constructive proof, from P, of

(EIXQ,...,Xk)(No/\ Nl/\'--) . (22)

One way of attempting to prove (2.2) is by contradiction, that is, by showing that
the conjunction of the clauses in # and the negation of (2.2) is inconsistent. From the
inconsistency of the conjunction, we can infer that (2.2) follows from # because P
itself, being a set of definite clauses, cannot be inconsistent on its own.

Now, the negation of (2.2) can be put in the form

(VXo, - -+» Xk)=(No A N1 A - - ) (2.3)
which is just another notation for the negative clause
NoAN{A--- > . (24)

A constructive proof of the inconsistency of (2.3) with # will provide a counterexam-
ple for the universal statement (2.3). It will yield values vy, ..., vi for the variables
Xo, - . . , Xi such that

PA-(NoANpLA--Y) (2.5)
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with each v; substituted for x; is false.

The proof of falsity comes about because we are proving inconsistency of (2.3)
with #. The actual values for the variables follows from the fact that the proof is
constructive. It is easy to see from the proof of the falsity of (2.5) that (2.1) under
that same substitution of values for variables is a consequence of . Assume P is true.
Then =(Ng ANz A---) must be false, and therefore (2.1) true, under the given values for
variables. This concludes the constructive proof of the original existential query (2.2)
from the program #. Thus (2.4) can be seen as a query about the truth of its antecedent
(2.1) relative to the program.

This method of proving an existential statement is called refutation, because the
proof proceeds by refuting the negation of the statement.

As we have seen, Prolog programs follow this paradigm exactly. Facts and rules,
presented with the Prolog implication and conjunction operators “: - and “,” respec-
tively, are queried using a negative clause. The only difference is that the Prolog : -
operator puts its antecedent and consequent “backwards”, that is, : - corresponds to
<,s0that P = Qiswrittenas Q :- Pand P = iswrittenas : - P. A Prolog proof
of a goal includes an assignment of values to variables in the goal which makes it a
consequence of the program. It becomes apparent, then, why the notation “: - G” was
chosen for queries. We are merely presenting the goal statement to Prolog directly in
its negated form.

Exercise 2.3 (For the logically inclined.) Recall that the discussion above assumed
that any set of definite clauses is consistent. Why is this so?

2.4 The Operation of Database Prolog

Intuitively, our definition of, for instance, author_of in terms of subsidiary predicates
seems correct from the logical standpoint just outlined. But how does the Prolog sys-
tem make use of this predicate? Suppose we ask Prolog for the writings of Bertrand
Russell with the following query:

?- author_of(bertrand, What).
What = principia
yes

How does Prolog determine that a correct assignment to satisfy the goal (i.e., disprove
its negation) is What = principia? What is the procedural interpretation of Horn
clauses that Prolog uses in actually executing a goal? In this section we describe the
execution of a Prolog goal informally, returning to a more precise discussion of the ex-
ecution mechanism, and its relation to the logical basis for Prolog through a technique
called resolution, in Section 3.5.

To execute a goal, Prolog searches forward from the beginning of the program for
the first clause whose head matches the goal. We will have more to say about this
matching process, called unification, when we further discuss the theory of Prolog
in Section 3.5. For the time being, think of two literals matching if there exists an
assignment to the variables in them under which they become identical. For instance,
the literal author_of(bertrand, What) matches the literal author_of(Person,
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Book) under the assignment Person = bertrand, Book = What, because if the
literals are modified by replacing the variables in the assignment with their assigned
value, both literals become author_of (bertrand, What).

If a match is found, the selected clause is activated. The matching assignment is
applied to both the goal and a copy of the clause by replacing variables with their bind-
ing value, e.g., replacing Person with bertrand and Book with What. The literals in
the body of the instantiated clause (if any) are then executed in turn, from left to right.
If at any time the system fails to find a match for a goal, it backtracks, that is, it rejects
the most recently activated clause, undoing any substitutions made by applying the
assignment engendered by the match to the head of the clause. Next it reconsiders the
original goal that activated the rejected clause, and tries to find another clause whose
head also matches the goal. When finding alternative clauses, Prolog always works
from the top of the program to the bottom, trying earlier clauses first.

We will trace through the operation of the system for the “writings of Russell”
example. We begin by executing the goal author_of(bertrand, What). Prolog
finds a clause in its database whose head matches the goal. In this case, the only
matching clause is

author_of(Person, Book) :-
book (Book) ,

wrote(Person, Book).

The head of this clause matches the goal under the bindings Person = bertrand,
Book = What as described above. Under these bindings, the body of the rule be-
comes book (What), wrote(bertrand, What). Prolog activates the clause taking
this conjunction on as its new goal, executing the conjuncts one by one, working from
the left to the right.

Executing book(What) requires finding a clause whose head matches
it.  But in this case there are two such clauses, namely the unit clauses
book (begriffsschrift) and book (principia). When faced with several clauses
to choose from, Prolog chooses the textually earliest one that has not been considered
in satisfying this goal; in this case, none have been considered, so the first matching
clause book (begriffsschrift) is chosen, which matches the goal book (What) un-
der the binding What = begriffsschrift. Under this binding, the second conjunct
iswrote(bertrand, begriffsschrift),and this becomes the next goal.

However, no clause head matches this goal, so the goal fails. Prolog backtracks to
its last choice among alternative clauses. In this case, the choice was between the two
unit clauses matching book (What). This time, in satisfying the goal, the next match-
ing clause is chosen, namely book (principia); the second conjunct then becomes
wrote(bertrand, principia). This goal matches the identical unit clause in the
database.

Thus we have satisfied all of the conjuncts in the antecedent of the author_of
clause, thereby satisfying the original goal itself. Perusing the bindings that were
necessary to satisfy the goal, we note that the variable What in the original goal was
bound to principia; the binding What = principiais therefore reported.
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author of (bertrand, principia)

book (principia) wrote (bertrand, principia)

Figure 2.1: A proof tree

241 Proof Treesand Traces

Often it is useful to have a method for summarizing the execution of a goal. We
describe two such methods here. The first one, the proof tree, describes the literals
that were proved in the course of the proof of the main goal and the dependencies
between them. For the “writings of Russell” example, the main goal proved, under the
satisfying assignment, was author_of(bertrand, principia). It dependedon the
proofs of two subsidiary literals, namely, book (principia) and wrote (bertrand,
principia). These literals were proved primitively with no dependent literals. Thus
the proof tree for this example is as given in Figure 2.1.

This proof tree makes explicit the steps in the execution of Prolog that led to a
successful proof of the goal under a given assignment. However, it abstracts away
from the parts of the execution that led down blind alleys, not becoming part of the
final proof. A second method of summarizing Prolog executions, the trace, is useful
when this higher level of detail is desired.

The particular tracing method we shall use is called the box model (Byrd, 1980),
since it models a predicate as a box with certain ports through which the computation
passes. The box model underlies the tracing and debugging facilities of most Edin-
burgh Prolog systems.

In a box-model trace, each step the system takes—whether it be the recursive prov-
ing of a literal, the activating of a clause to prove it, or the subsequent success or failure
of the subproof—is sequentially listed using the following general format:

M dp: G

Each goal G is given a goal number i which uniquely identifies it throughout the ex-
ecution. As the goal progresses through the execution, trace lines with the given goal
number show the state of instantiation of the goal at different points. The recursion
depth is given as d. The main goal has recursion depth 0, its subgoals, recursion depth
1, their subgoals, 2, and so forth.* Trace lines correspond to different kinds of steps
in the execution of a Prolog query. The port name p specifies the type of step in the
execution that the trace line records. The execution of a literal is started at a Call port
corresponding to the activation of the first matching clause. When the proof using this
clause is successful, a trace line with the port name Exit is listed. If the first clause
activated does not yield a successful proof, a Redo port line is added for each later
clause that is invoked. Finally, if all clauses fail to provide a proof for the given goal,
a Fail port trace line is used.

4We will also sometimes use indentation to reflect the depth of recursion of the execution in order to aid
readability.



2.5. Recursive Predicate Defi nitions 19

This digital edition of Prolog and Natural-Language Analysis is distributed
at no charge for noncommercial use by Microtome Publishing.

The following trace of the “writings of Russell” example may elucidate the Prolog
trace facility. Note especially the changing instantiation of the variables during the
trace. The Prolog tracing facility is invoked with the literal “trace”.

?7- trace.
Debug mode switched on.
yes

?- author_of(bertrand, What).
(1) 0 Call : author_of (bertrand,What)

(2) 1 Call : book(What)

(2) 1 Exit :  book(begriffsschrift)

(3) 1 Call : wrote (bertrand, begriffsschrift)
(3) 1 Fail : wrote (bertrand, begriffsschrift)
(2) 1 Redo :  book(begriffsschrift)

(2) 1 Exit :  book(principia)

(4) 1 Call : wrote(bertrand,principia)

(4) 1 Exit : wrote(bertrand,principia)

(1) 0 Exit : author_of (bertrand,principia)

What = principia
yes

Note that the exit lines leading to the final proof contain the same information as a
proof tree for the goal.

Not only does the trace make explicit the ordering in which the proof tree was tra-
versed by Prolog, it also shows all the blind alleys that Prolog tried before finding an
actual proof. These two phenomena are related. For example, if the second branch of
the proof tree (corresponding to the second literal in the clause defining author_of)
had been tried first, the only satisfying assignment for it would have been Book =
principia. Under this assignment, the first clause becomes book(principia),
which is immediately proved from the database. Thus no blind alleys are tried. This
behavior would be engendered by the following alternative definition of author_of:

author_of(Person, Book) :-
wrote (Person, Book),
book (Book) .

This example shows that although the ordering of literals within a clause does not
affect the logical meaning of the clause as a definition of a relation, it can have far-
reaching effects in terms of the control flow of the program. That is, although Prolog
can be viewed as a subset of a logical language, we cannot forget that it is still a
programming language, and issues of control are still important.

2.5 Recursive Predicate Definitions

The relations discussed above—author, logician, and so forth—are defined di-
rectly in terms of other relations, which ultimately are defined in terms of the original
database. However, it is not possible to give such definitions for relations that involve
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chains of relationships of arbitrary lengths. To define such relations, we need to use
recursive definitions in which a predicate is defined (possibly indirectly) in terms of
itself.

As asimple illustration of the need for recursive definitions, consider the following
database, which encodes a portion of the family tree of Bertrand Russell.

parent (katherine, bertrand). parent(amberley, bertrand).

parent (katherine, frank). parent (amberley, frank).
parent (katherine, rachel). parent (amberley, rachel).
parent (dora, kate). parent (bertrand, kate).
parent (dora, john). parent (bertrand, john).
parent (peter, conrad). parent (bertrand, conrad).
female(katherine). male(amberley).

female(rachel). male(frank).

female(dora). male(bertrand).

female(peter). male(conrad).

female(kate). male(john).

Here a literal parent (X,Y) is intended to mean that X is a parent of Y. The infor-
mation in this database is conveniently factored among the parent, male, and female
predicates so that there is no duplication as there would be if the same information were
expressed in terms of, for instance, father, mother, male and female.

Exercise 2.4 Write Prolog clauses defining father, grandmother, uncle, cousin,
etc., in terms of the primitives parent, male, and female.

Suppose we wanted to define a notion of ancestor. Intuitively, a person 01d is an
ancestor of a person Young if there is some chain of parent relationships of arbitrary
length connecting 01d to Young. We could start by writing clauses like:

ancestor(0ld, Young) :-
parent (0ld, Young).

ancestor (0ld, Young) :-
parent (0ld, Middle),
parent (Middle, Young).

ancestor(0ld, Young) :-
parent (0ld, Middle),
parent (Middle, Middle2),
parent (Middle2, Young).

Clearly, no finite axiomatization in this style is possible. Instead, we define ancestor
recursively. At the base, one’s closest ancestors are parents. All other ancestors are
parents of closer ancestors. Stating this in Prolog, we have

Program 2.2
ancestor(0ld,Young) :-

parent (01d,Young).
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ancestor(0ld,Young) :-
parent (01d,Middle),
ancestor (Middle, Young) .

The execution of the query ancestor(katherine, kate), under this definition of
ancestor, proceeds as follows:

?- ancestor(katherine, kate).
(1) 0 Call: ancestor(katherine, kate)

(2) 1 Call: parent (katherine, kate)
(2) 1 Fail: parent (katherine, kate)
(3) 1 Call: parent (katherine, Middle_3)
(3) 1 Exit:  parent(katherine, bertrand)
(4) 1 Call: ancestor (bertrand, kate)
(5) 2 Call: parent (bertrand, kate)
(5) 2 Exit: parent (bertrand, kate)
(4) 1 Exit: ancestor (bertrand, kate)
(1) 0 Exit: ancestor(katherine, kate)
yes

The reader should confirm that this definition of ancestor works appropriately by fol-
lowing the trace and executing similar queries.

Exercise 2.5 What is the proof tree corresponding to this execution?

The reader with some knowledge of model theory for first-order logic might be
wondering about our use of recursive predicate definitions like the one above. In gen-
eral, the transitive closure of a binary relation is not first-order definable (Boolos and
Jeffrey, 1980). That is, given a binary predicate p there is no first-order formula T (x, y)
with free variables x and y such that for all interpretations of predicate symbols, con-
stants and free variables, T (X, y) holds in the interpretation if and only if the values for
x and y in the interpretation are in the transitive closure of the relation interpreting the
predicate p. Thus, the above definition, and others like it used in the rest of this book,
seem not to really define what they are supposed to define. The solution of this co-
nundrum is that definite-clause programs must be interpreted with a specific model in
mind, the least Herbrand model (van Emden and Kowalski, 1976; Lloyd, 1984) for the
program, rather than in terms of arbitrary first-order models. In the intended model, a
program like the above indeed defines the transitive closure of the base relation.

25.1 Variable Renaming

In previous examples we have ignored the issue of the scope of variable names. We
have been implicitly assuming that several occurrences of variables with the same
spelling all occurring in one clause are to be considered instances of the same variable.
Thus, in the first clause of Program 2.2, the two occurrences of Young are intended to
notate the same variable. When one is bound in an assignment, they both are. However,
these two occurrences and the two in the second clause are not intended to notate the
same variable. For instance, in the trace above, each of these rules is used once in
the proof, the first under the assignment 01d = bertrand, Young = kate and the
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second under the assignment 01d = katherine, Middle = bertrand, Young =
kate. These two assignments are incompatible, assigning different values to 01d. Yet
their use in the execution of the query is not inconsistent because they arose from
different invocations of clauses. Thus we need some way of distinguishing variables
in different clauses—or different invocations of the same clause—that happen to be
spelled the same.

One way of doing so would be to require that the programmer always use different
variables in each clause. But not only would this be cumbersome, it would not solve the
problem for different invocations for the same clause, which recursive definitions make
possible. Therefore, each invocation of a given clause in a proof conceptually requires
the renaming of the variables in the clause to new variables. In this book, we will
represent the variables in a clause invocation resulting from renaming by x_i where x
is the textual name of the original variable and i is the number of the invocation. For
instance, in the execution trace above, the third clause invocation has a variable that
is an instance of the variable Middle from the second clause of Program 2.2. It is
therefore listed as Middle_3 in the trace. Thus variables from different invocations
are guaranteed to be unique.

In practice, Prolog systems use less obvious (but more efficient) variable-renaming
mechanisms. Typically, new variables are internally represented as an index into Pro-
log’s working storage, and are displayed with the notation “_i” where i encodes the
index.

25.2 Termination

In ancestor we find our first example of a predicate whose definition has to be care-
fully designed to avoid nontermination. The idea of the definition of ancestor given
above is that in the recursive second clause the proof procedure will have to follow a
specific parent link in the family tree or graph before recurring to follow other links.
As the family graph is finite and acyclic, at some point we will run out of parent links
to explore and the procedure will terminate.

In contrast, the following definition is possibly more natural but causes nontermi-
nation problems for the Prolog interpreter.

Program 2.3
ancestor(0ld,Young) :-

ancestor(0ld,Middle),

ancestor (Middle,Young) .
ancestor(0ld,Young) :-

parent (01d, Young) .

The definition can be read “an ancestor is a parent or an ancestor of an ancestor”
and includes directly an instance of the transitivity axiom schema which would be
expressed in FOL as

R(x,y) AR(Y,2) = R(X,2)

However, when Prolog tries to prove ancestor (X, z) for any terms x and z, it falls into
an infinite loop, because the first subgoal it attempts to prove is ancestor(x,Y_1),
which in turn leads to an attempt to prove ancestor(x,Y_2) and so on.

If the two clauses are interchanged, we have
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ancestor(0ld,Young) :-
parent (01d,Young) .

ancestor(0ld,Young) :-
ancestor(0ld,Middle),
ancestor (Middle,Young) .

In this case, Prolog will first try to use parent facts and therefore produce a solu-
tion in finite time if one exists. However, if we ask for more solutions by backtracking,
there will come a point when all the parent facts will have been used in all possible
ways, and Prolog will go into a loop using the recursive clause alone.

The source of the difficulty in these cases is that one of the clauses is left recur-
sive, that is, the leftmost antecedent literal in a clause defining a predicate is itself a
reference to that same predicate. In general, left recursive predicates cause problems
for the left-to-right, depth-first control regime that Prolog uses. In fact, the left recur-
sion need not even be direct. If by following a chain of leftmost literals we can cycle
back to a predicate previously used, the Prolog proof procedure may follow this chain
depth-first, fruitlessly searching for a way out. It should be noted that there are more
sophisticated Horn-clause proof procedures that will not loop with transitive relation
definitions. Unfortunately, those procedures are in general so expensive that it is infea-
sible to use them for general programming tasks. However, some of them are useful
for certain parsing problems as we will see in Chapter 6.

Thus, in the avoidance of termination by clause and literal ordering, just as in
the previous discussion of using such ordering to reduce search, we see that control
issues must be carefully considered in writing Prolog programs, very much as when
programming in other languages. In Prolog we can ignore some low-level details of
data representation and execution control, but that does not mean that we can ignore
all issues of data representation and control. Each programming language places this
kind of abstraction barrier in a different place. One of the main difficulties in learning
Prolog after learning other programming languages is Prolog’s particular placement of
the barrier.

2.6 Problem Section: Semantic Networks

Semantic networks are graph structures often used for knowledge representation in
artificial intelligence. The simplest form of semantic network consists of nodes repre-
senting individuals and directed arcs representing binary relationships between nodes.
For example, the network in Figure 2.2 contains several types of arcs representing re-
lationships between nodes. For instance, the isa arcs represent membership relations,
e.g., Ole Black is a Mustang (that is, is a member of the class of Mustangs). Similarly,
ako, which stands for a kind of, represents the inclusion relation between classes. For
instance, Mustangs are a kind of automobile.

Problem 2.6 Find a way of representing this simple semantic network in Prolog us-
ing unit clauses. It should be possible with your representation to answer queries
paraphrasable as “What class is Ole Black a member of?”” (the answer should be
mustang) or “What companies are there?” (the answers should be gm and ford).
Demonstrate that your representation can handle these queries.
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Ole Black

Figure 2.2: A semantic network

We can ask Prolog what individuals satisfy a given relation. However, we can-
not ask directly what relations hold between given individuals. In semantic network
representations, we often want to ask the latter kind of question, for instance, “What
relationships hold between Ford and the class of companies?”

Problem 2.7 Modify your representation of semantic networks to allow both this new
kind of question and the kind in the previous problem. (HINT: Treat semantic network
relations as Prolog individuals. This is an important Prolog programming technique,
sometimes called reification in philosophical circles.)

Semantic networks are often used to represent taxonomies with property inheri-
tance. A taxonomy, like the one in the example above, places individuals in classes,
and specifies which classes are subclasses of other classes. If all the members of a class
necessarily have a certain property, we say (abusing language slightly) that the class
has the property. Further, we say that all individuals in the class, and all subclasses of
the class, inherit the property. The following three conventions are usually followed
for economy of representation:

e Class containment statements are given only between a class and the smallest
classes in the taxonomy that contain it. (For instance, we do not have an explicit
representation of the fact that Mustangs are physical objects.)

e Class membership statements are given between an individual and the small-
est classes in the taxonomy that contain it. (For instance, we do not explicitly
represent that Ford is a legal person.)
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e Properties are associated with the largest class in the taxonomy that has them.
(For instance, we explicitly associate the property of being self-propelled with
automobiles but not with Mustangs).

The transitivity of class containment is then used to deduce from the explicit data
whether specific individuals or classes have certain properties or are in certain classes,
for example, that Mustangs are physical objects.

Problem 2.8 Use your Prolog encoding of semantic networks for a general encoding
of taxonomies of the kind described. Define the following Prolog predicates in terms
of your representation:

e is_instance(Individual, Class) holds when Individual is an element
of Class.

e has_property(Individual,Property) holds when Individual has Prop-
erty.

e subclass(Classl, Class2) holds when Classl is a [possibly improper]
subclass of Class2.

Test your program by demonstrating that GM is a legal person, that Ole Black is self-
propelled, and that Mustangs are physical objects.

In Prolog, we can have predicates of any number of arguments. \We may,
for example, represent the fact that Ford built Ole Black in 1965 by the clause
built(ford,ole_black,1965). However, in the simple form of semantic network
discussed so far, we can only represent directly binary relations.

Problem 2.9 Find a way of representing n-ary predicates using nodes and labeled
arcs in a semantic network. How would you represent “Ole Black was built by Ford in
1965” with this encoding? How would you ask Prolog to determine which company
built Mustangs in 19677

2.7 Context-Free Grammars

We begin the discussion of natural-language analysis and the role Prolog can play
therein with a discussion of context-free grammars and their axiomatization in the
database subset of Prolog.

Context-free grammars (CFG) constitute a system for defining the expressions of a
language in terms of rules, which are recursive equations over expression types, called
nonterminals, and primitive expressions, called terminals. The standard notation for a
context-free rule is

No = Vi---Vp

where Ng is some nonterminal and the V; are nonterminals or terminals. Such a rule
has the following informal interpretation: “if expressionswi, ..., w, match Vq, ..., Vp,
respectively, then the single expression wy - - - wy, (the concatenation of the w;) is itself
of expression type No.” By an expression w; matching a V; we mean that either V; is a
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terminal (a primitive expression) and identical to w;, or V; is a nonterminal (an expres-
sion type) and w; is of that type (presumably by virtue of some rule in the grammar).

Consider, for example, the following context-free grammar for a fragment of En-
glish:

S— NP VP
NP — Det N OptRel
NP — PN
OptRel — €
OptRel — that VP
VP — TV NP
VP — IV

PN — terry
PN — shrdlu
Det — a
N — program
IV — halts
TV — writes

We have notated nonterminals with upper-case names and terminals with lower-case.
The nonterminal names we have used here are, for the most part, standard in current
linguistics. For reference, we include below a table of the terms they abbreviate.

symbol abbreviates

S Sentence

NP Noun Phrase

VP Verb Phrase

v Intransitive Verb

TV Transitive Verb

PN Proper Noun

Det DETerminer®

N Noun

OptRel | OPTional RELative clause

The grammar above classifies strings as being of zero or more of these types. For
instance, by virtue of the ninth rule, the expression “surporLu” is classified as a PN.
An alternate terminology is often used in which the nonterminal PN is said to cover
the string “suroLu”. Similarly, the string “halts” is covered by the nonterminal IV.
Furthermore, by the twelfth rule, “halts” is also classified as a VP. The first and third
rules allow the conclusion that the entire phrase “surpLu halts” is an S.

This classification of an expression and its subexpressions according to a context-
free grammar can be summarized in a phrase-structure tree or parse tree. The tree for
the sentence “sarpLu halts” is given in Figure 2.3. Each local set of nodes, consisting
of a parent node and its immediate children, corresponds to a rule application. For
instance, the top set of nodes corresponds to an application of the rule S — NP VP. The
leaves of the tree, that is, the symbols at the bottom with no children, correspond to the
primitive expressions, the terminals, and the interior nodes correspond to nonterminals.

5Determiners (like the and a) are also sometimes called articles.
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S
NP VP
| |
PN v
|
SHRDLU halts

Figure 2.3: Parse tree for a simple sentence

NP VP

DET N OptRel v

a program halts

Figure 2.4; Parse tree including empty constituent

The expression covered by a given node is just the fringe of the subtree whose root is
that node. Such a phrase-structure tree for a string provides a sort of proof that the
string is classified as the nonterminal at the root.

The symbol “€”, which occurs in the first rule for optional relative clauses, is used
to mark a rule with zero elements on the right-hand side, hence, covering the “empty
string”. For example, the string “a program halts” is classified as an S as illustrated by
the parse tree of Figure 2.4. Note that since the OptRel rule has no elements on the
right-hand side, it requires no dependents in the parse tree and covers no portion of the
string.

Any procedure for determining the parse tree corresponding to an expression must
perform the rule applications in a given order. Such an ordering of the applications
summarized in the tree is called a derivation of the string. In the particular example
“surpLU halts”, we might derive the string performing lower applications in the tree
before those higher up, as we did in the informal description above. Alternatively,
we might start by applying the first rule to the root symbol S, then expanding the
NP and VP and so forth, working down from the top of the tree. Derivations of the
former sort are referred to as bottom-up derivations, those of the latter type as top-
down derivations. On an orthogonal dimension, we can have depth-first or breadth-
first derivations, depending on whether an entire subtree is or is not derived before
the derivation of its siblings begins. Many other possible derivation orderings are
possible, combining facets of top-down versus bottom-up, depth- versus breadth-first,
left-to-right versus right-to-left orderings, and so forth. The parse tree abstracts away
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from all these ordering issues manifested in particular derivations, just as a proof tree
abstracts away from ordering issues manifested in particular traces.

As a side note, it is traditional to separate a grammar of this sort into two parts,
one which contains the grammar rules proper and one which contains the rules with a
single terminal on the right hand side. The latter part is called the dictionary or lexicon
for the grammar. Dictionary rules correspond to the lines in the parse tree connecting
a preterminal—a nonterminal immediately covering a terminal—and the terminal it
covers.

Exercise 2.10 What expression types are the following expressions classified under
according to the context-free grammar just given?

halts

writes a program

a program that Terry writes

Terry writes a program that halts

a program that halts writes a program that halts
Terry halts a program

a program that Terry writes halts

N o ok owdhe

Exercise2.11 For each classification of each expression in the preceding exercise,
give the parse tree for the derivation of that expression under that classification.

2.7.1 Axiomatizing Context-Free Grammars

In parse trees like the one given in Figure 2.4, nonterminals can be interpreted not
only as a classification of expressions (viz., the expressions that are the fringes of
trees labeled with the given nonterminal) but also as binary relations on positions in
the expression, where a position divides an expression into two subexpressions which
concatenated together form the original expression. For example, string positions for
the the sample parse tree of Figure 2.4 are shown in Figure 2.5. Position 2, for example,
divides the expression into the two subexpressions “a program” and “halts”.

The nonterminals can now be seen as binary relations on the positions. The pair
of positions (0, 2) is in the NP relation because the nonterminal NP covers the subex-
pression between positions 0 and 2. Using logical notation for the relation, this fact
can be notated as NP(0,2). Similarly, S(0,3) holds because the nonterminal S covers
the expression between positions 0 and 3. The empty optional relative clause covers
the string between position 2 and itself, i.e., OptRel(2,2).

In fact, the general statement made by the context-free rule

S - NP VP

can be summarized using relations on positions with the following logical statement:

NP(po, p1) A VP(p1, p) = S(po, p)
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S
NP VP
DET N OptRel v
a program halts
0 1 2 3

Figure 2.5: Parse tree with string positions

that is, if there is an NP between positions po and p; and a VP between positions p;
and p, then there is an S between positions pg and p. Indeed, any context-free rule of
the form

No = Vi---Vp

can be axiomatized as

V1(Po, P1) A - -+ A Vn(Pn-1, p) = No(Po, p)

2.7.2 Context-Free Grammarsin Prolog

To express a context-free grammar in Prolog, then, we merely note that this general
form for axiomatizing rules is itself in definite clause form. Thus, it can be directly
stated in Prolog. For instance, the sentence formation rule is expressed

s(P®, P) :- np(PO®, P1), vp(P1l, P).
A full axiomatization of the English fragment would be as follows:

Program 2.4
s(P®, P) :- np(PO®, P1), vp(Pl, P).
np(PO®, P) :- det(PO®, P1), n(Pl, P2), optrel(P2, P).
np(PO®, P) :- pn(PO®, P).
vp(PO®, P) :- tv(PO, P1), np(P1, P).
vp(P®, P) :- iv(PO, P).
optrel(P, P).
optrel (PO, P) :- connects(that, PO, P1), vp(P1l, P).

pn(P®, P) :- connects(terry, PO, P).
pn(P®, P) :- connects(shrdlu, PO, P).
iv(P®, P) :- connects(halts, PO, P).
det(PO®, P) :- connects(a, PO, P).
n(PO®, P) :- connects(program, PO, P).
tv(P®, P) :- connects(writes, PO, P).
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We have used the literal connects(Terminal, Positionl, Position2) to mean
that the terminal symbol Terminal lies between consecutive positions Positionl
and Position2.

This axiomatization of a CFG in Prolog can be seen as the output of a general
mapping or algorithmic translation from CFGs into Prolog. The mapping takes any
CF rule and forms a corresponding Prolog clause as follows:

e For each nonterminal, construct a literal applying a binary predicate for that
nonterminal to two position arguments (e.g., the nonterminal NP becomes the
literal np(P1, P2)).

e For each terminal, construct a literal applying the predicate connects to
three arguments, viz., the terminal symbol expressed as a Prolog constant
and two position arguments (e.g., the terminal halts becomes the literal
connects(halts, P1, P2)).

Furthermore, as exemplified above, the position arguments for each constituent form
a sequence po,. .., Pn Such that the constituent defined by the rule relates pg to pn
and subconstituent i in the right-hand side of the rule relates p;_; to p;. The ability
to describe this mapping algorithmically is the basis for interpreters for this and other
grammar formalisms. We will investigate such formalisms and interpreters in Chapter
6.

2.7.3 Prolog as Parser

Given our usage of the connects predicate, an expression can be axiomatized by
stating which terminal symbols in the string connect the string positions. For instance,
the string “a program halts” is represented by the following unit clauses:

connects(a, 0, 1).
connects(program, 1, 2).
connectsChalts, 2, 3).

This axiomatization of expressions and context-free grammars in definite clauses
allows any Horn-clause proof procedure to serve as a parser (or, strictly speaking, a
recognizer) for expressions.® The Prolog proof procedure, in particular, gives us a
top-down, depth-first, left-to-right parsing mechanism because the derivations Prolog
assigns to a string by its execution correspond to top-down, depth-first, left-to-right
traversal of the parse tree. A query of the form s(®, 3) will hold if the string between
positions 0 and 3 is a sentence according to the grammar.

?7- s(0, 3).
yes
?7- s(0, 2).
no

A recognizer is a program that determines whether or not an expression is grammatical according to
the grammar. A parser is a recognizer that furthermore determines the structure under which grammatical
strings are admitted by the grammar.
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Tracing the execution by Prolog explicitly exhibits the derivation order implicit in
using Prolog as a parser of grammars encoded in this way. The execution trace of the
grammar given above with the input sentence “a program halts” represented by unit
clauses clearly shows Prolog’s top-down, depth-first, left-to-right behavior.

7- s5(0,3).
(1) 0 Call : s(0,3)
(2) 1 Call : np(0,P1_2)
(3) 2 Call : det (0,P1_3)
(4) 3 Call : connects(a,0,P1_3)
(4) 3 Exit : connects(a,0,1)
(3) 2 Exit : det (0,1)
(5) 2 Ccall : n(1,P2_5)
(6) 3 Call : connects (program,1,P2_5)
(6) 3 Exit : connects (program,1,2)
(5) 2 Exit : n(1,2)
(7) 2 Call : optrel(2,P1_2)
(7) 2 Exit : optrel(2,2)
(2) 1 Exit : 1p(0,2)
(8) 1 Call : vp(2,3)
(9) 2 Call : tv(2,P1_9)
(10) 3 Call : connects(writes,2,P1_9)
(10) 3 Fail : connects(writes,2,P1_9)
(9) 2 Fail : tv(2,P1_9)
(11) 2 Call : iv(2,3)
(12) 3 Call : connects (halts,2,3)
(12) 3 Exit : connects (halts,2,3)
(11) 2 Exit : iv(2,3)
(8) 1 Exit : vp(2,3)
(1) 0 Exit : s(0,3)
yes

The trace shows that Prolog parses by searching for a derivation of the expression start-
ing at the top node in the parse tree and working its way down, choosing one rule at a
time and backtracking when dead ends in the search are reached. For pure context-free
grammars, many other better parsing mechanisms are known, so this parsing technique
is not very interesting for CFGs. It becomes more interesting for the more general
grammars discussed in Section 3.7. Furthermore, alternative axiomatizations of CFGs
can engender different parsing mechanisms, and Prolog interpreters for grammars can
make use of alternative algorithms for parsing. These possibilities are explored further
in Chapter 6.

The axiomatization of grammars just presented makes more precise the sense in
which a parse tree provides a kind of proof of the grammaticality of an expression, as
the parse tree for a sentence corresponds directly to the proof tree that Prolog devel-
ops in recognizing the expression. This can be readily seen for the sample sentence
whose proof tree is given in Figure 2.6 (cf. Figure 2.5). In fact, this isomorphism is
exploited further in Section 3.7.1, in developing a grammar that builds the parse tree
corresponding to a given derivation.
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s (0,3)
np (0, 2) vp (2, 3)
det (0,1) n(l,2) optrel(2,2) iv(2,3)
connects(a,0,1) connects (program, 1, 2) connnects (halts, 2, 3)

Figure 2.6: Proof tree for parse of sentence

2.8 Problem Section: Grammars

In this problem section, we will develop alternative ways of encoding languages in
Prolog. First, we will consider how to encode the syntax of database Prolog itself us-
ing the encoding technique described in Section 2.7.2 but with a much freer encoding
of the primitive expressions. Then we will look at various other mechanisms for en-
coding languages based on adding operations like intersection or using different data
structures like graphs.

2.8.1 A Syntactic Analyzer for Database Prolog

We will consider here the question of how to build a syntactic analyzer for a program-
ming language, in this case the database subset of Prolog we have seen so far. This
subset has a very simple syntax:

e A clause is a clause term followed by a period.

e A clause term is an atomic formula (a unit clause) or an atomic formula fol-
lowed by an implication followed by a sequence of atomic formulas separated
by commas (a nonunit clause).

e An atomic formula is a predicate symbol (a constant) optionally followed by a
parenthesized list of comma-separated arguments.

e Anargument is a constant or a variable.

Prolog syntactic analyzers, like those for other programming languages, do not
usually analyze character strings directly but rather strings of lexical tokens produced
by a lexical analyzer (Aho and Ullman, 1977). We will assume in this problem that the
results of lexical analysis of a string are expressed not by connects clauses but rather
by Prolog unit clauses of the following forms:

e constant(Constant,From,To), meaning that there is a constant token be-
tween points From and To in the string with spelling Constant.

e variable(Variable,From,To), meaning that there is a variable token be-
tween points From and To in the string with spelling Variable.
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e punctuation(Punct,From,To), meaning that there is a punctuation mark be-
tween points From and To in the string with “spelling” Punct.

For example, for the Prolog clause
ancestor(0ld,Young) :- parent(0ld,Young).
we can assume that the following assertions will be in the Prolog database:

constant (ancestor,1,2).
punctuation(’ (', 2,3).
variable(’01d’,3,4).
punctuation(’,’,4,5).
variable(’Young’,5,6).
punctuation(’)’,6,7).
punctuation((:-),7,8).

punctuation(’.’,14,15).

Note that punctuation and capitalized constants (denoting the spelling of variables)
must be in quotes so they are read as constants by Prolog, and not as operators or
variables, respectively. Also note the extra parentheses in the seventh clause. These
are required by Edinburgh Prolog syntax because of the precedences of operators in
order to prevent the interpretation of : - as a prefix operator.

Problem 2.12 Write a context-free grammar for dbProlog. Translate it to Prolog, and
test it with some of its own clauses as data. (We recommend choosing short clauses
for the data as the encoding is tedious. Chapter 3 discusses better string position
encodings.)

2.8.2 Extending CFGswith Intersection

Context-free grammars can be generalized by using the intersection operator “&”. A
rule of the form

X->a&B (2.6)

is interpreted as saying that a string is an X if it is simultaneously an « and a 8. This
extended notation thus represents intersections of context-free languages, which in
general are not context-free (Hopcroft and Ullman, 1979, pages 134-135).

Problem 2.13 Extend the standard mapping of context-free rules to Prolog (discussed
in Section 2.7.2) to allow for rules with the intersection operator. Demonstrate the
mapping by writing and testing a Prolog program defining a grammar for the non-
context-free language made of all strings of the form a"b"c" for n > 0.
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Figure 2.7: A graph

2.8.3 Transtion Networks

Transition networks are an alternative to formal grammars for defining formal lan-
guages (i.e., sets of strings). Whereas a formal grammar defines a language in terms
of combinations of types of strings, a transition network for a language is a kind of
abstract machine for recognizing whether strings are in the language. The machine
can be in one of a set of states, and the transitions from state to state correspond to
processing successive symbols in the string to be recognized. Certain special states
correspond to acceptance or recognition of the string. If the machine finishes process-
ing when in such a state, the string is accepted as being in the language recognized by
the machine. If the machine does not end up in such a state, the string is not accepted.
The problems in this section cover the writing of interpreters for transition networks
of both nonrecursive and recursive varieties.

Graph Languages

The states and state transitions of a machine like the kind just described form a kind of
graph or network with the states as the nodes and the transitions as the arcs. For this
reason, we will start by looking at a simple way to recognize languages using graphs,
and move on to the more complex networks in later problems.

A finite directed labeled graph is a finite set G of triples (n, I, m), where n and m
are elements of a set of nodes and | is an element of a set of labels. A path through the
graph is a string of labels I - - - I, such that there exist graph nodes no, . . ., ng for which
the triples (no, 11, n1), ..., (Nk_1, Ik, Nk) are in the graph. The graph’s path language is
the language whose strings are all paths in g.

For example, the graph {(1, a, 2), (2, b, 3), (3, ¢, 2)} can be depicted as in Figure 2.7.
This graph describes a language containing, among other strings, ¢, a, ab, bc, cbchbc,
and so forth.

Problem 2.14 Write a Prolog program that can be combined with a Prolog represen-
tation of an arbitrary finite directed labeled graph and a Prolog representation of a
string to recognize that string as belonging to the path language of the graph.

Nonrecursive Transition Networks

Transition networks can be seen as a kind of graph where the nodes are called states
and the arcs state transitions. More formally, a nonrecursive transition network is a
labeled directed graph N (as in the previous problem) together with a distinguished
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Figure 2.8: A nonrecursive transition network

initial state i and a set of final states F. A string s = I;... ¢ is accepted by the network
(or is in the language of the network) if and only if there is a path in N given by the
triples (no, I, n1), ..., (Nk_1, Ik, Nk) such that ng is the initial state and ny is a final state.

For example, Figure 2.8 depicts a transition network with initial state 1 (signified
by the arrow “>") and final state 5 (signified by the concentric circles). This network
will accept strings such as “every professor’s professor’s program halts”, but not “pro-
gram halts” (because it does not start at the start state) or “every professor’s professor”
(because it does not end in a final state).

Problem 2.15 Write a Prolog program that will recognize the strings in the language
of an arbitrary transition network described by an appropriate set of unit clauses. Test
the program at least on the example in Figure 2.8. (Your solution of Problem 2.14
might be useful here.)

Recursive Transition Networ ks

A recursive transition network (RTN) is a transition network with a set of labeled
initial states each labeled by a different label, instead of a single initial state. Initial
state labels play the same role as nonterminals in CFGs. Of all the initial state labels,
we distinguish a start label (or start symbol).

A string s is recognized as an X by RTN N if and only if

1. X is the label of an initial state x, and

2. there is a path (string of labels) I; - - - Iy that is accepted by N seen as a nonrecur-
sive transition network with initial state x, and

3. there are strings sy, ..., Sk suchthat s = s3 - - - s, and

4. for each s;, either s; = Ij or s; is recognized (recursively) as an I; by N. (We will
extend this part of the definition shortly.)

Astring s is recognized by an RTN N with start label S if and only if s is recognized
asan S by N. The language of an RTN is the set of strings it recognizes.

Consider the sample RTN in Figure 2.9. A labeled initial state n with label | is
represented in the example by | : n. By convention in such drawings of transition
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Figure 2.9: A recursive transition network

networks, terminal symbols are written in lower case and nonterminal symbols (sub-
network labels) are written in upper case. Of the nonterminal symbols in the example,
only S, NP, VP and REL have corresponding subnetworks. Rather than give subnet-
works for the other nonterminals which correspond to preterminal categories (DET, N
and TV), we treat them specially. A preterminal P will match a word w in the string if
w is listed as a p in a dictionary external to the network. That is, we are extending Part
4 of the definition given above of what it means for a string element to match a label
to allow a case where s; is listed in a dictionary under the preterminal category ;.
The network of Figure 2.9 would therefore recognize sentences like

every professor’s student wrote a program

assuming that ‘every’ and ‘a’ are listed as DETS; ‘professor’, ‘program’, and ‘student’
are Ns; and “‘wrote’ is a TV in the dictionary.

Problem 2.16 Extend your solution of the previous problem to recognize the strings in
the language of an arbitrary recursive transition network plus dictionary, represented
by appropriate unit clauses for both the network and the dictionary. Test it at least on
the example RTN of Figure 2.9.

2.9 Bibliographic Notes

The database subset of Prolog (Section 2.1) is discussed in more detail by Sterling
and Shapiro (1986). The relationship between first-order logic and Prolog is covered
to some extent in that book, and is also addressed in the books by Kowalski (1980),
Gallier (1986) and Clocksin and Mellish (1981). The dual interpretation of logic pro-
grams, declarative and procedural, was first discussed by Kowalski (1974a; 1974b),
and related to denotational semantics for programming languages by van Emden and
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Kowalski (1976). Lloyd’s book (1984) gives a detailed mathematical account of the
semantics of definite-clause programs.

The family tree of Bertrand Russell (Section 2.5) was derived from Katherine Tait’s
biography of her father (1975).

The more general question of the relationship between clausal form and full first-
order logic (Section 2.3) is discussed in detail in every book on automated theorem-
proving, a few of which were mentioned in Section 1.5. The concepts underlying
clausal form and Skolem functions were used in logical investigations for several
decades, as can be seen in the papers by Skolem (1920) and Herbrand (1930) in the
van Heijenoort collection (1967). Building upon Herbrand’s work, Robinson (1965)
developed the resolution inference procedure for clausal form.

The tracing and debugging of Prolog programs (Section 2.4.1) has unique diffi-
culties that can be attributed to the nondeterminacy of clause selection. Proof trees
are commonly used in logic to represent the relationship between premises and con-
clusions in a proof. The space of alternatives in the search for a proof can also be
represented by a tree, and the combination of the two trees forms an and-or tree. These
concepts are discussed by Kowalski (1980).

Tree representations are convenient in proof theory and for heuristic purposes, but
are unwieldy when tracing large Prolog executions. Byrd’s box model (1980), the
first practical framework for debugging Prolog programs, has been implemented in
many Prolog systems. More advanced models have since been proposed, in particular
the family of algorithmic debugging methods that started with Shapiro’s dissertation
(1983).

Semantic networks (Section 2.6) were originally proposed by Quillian (1967).
They have been the object of much work in artificial intelligence, including that of
Hendrix (1979), from which we derived our example. The connections between
semantic networks and logic are discussed, for instance, by Woods (1975) and by
Deliyanni and Kowalski (1979).

Context-free grammars (Section 2.7) originated in the formalization of the notions
of immediate constituent and phrase structure in structural linguistics, in particular
with the work of Chomsky (1956). A detailed history of the development of these
ideas is given by Greibach (1981), who also supplies a comprehensive bibliography of
formal-language theory. A linguistically oriented overview of context-free grammars
can be found in the book by Partee et al. (1987). A full mathematical treatment of
context-free grammars, their properties, and parsing algorithms is given, for instance,
by Harrison (1978). The representation of context-free grammars in first-order logic
has been in the folklore for a long time, but the first reference to the idea in print that
we know of is by Kowalski (1974a).

The problem in Section 2.8.1 requires the text of Prolog programs to be given in
a “predigested” tokenized form. The techniques of lexical analysis required to pro-
duce that form are discussed in any compiler-design reference, e.g., (Aho and Ullman,
1977).

The problem in Section 2.8.2 introduces intersections of context-free languages,
which in general are not context free. Classes of languages are partly characterized by
how languages in the class behave under set operations such as intersection. Proofs
that a certain language is not in a certain class (e.g. context free) often depend on the
closure properties of language classes under set operations (Ginsburg, 1966; Harrison,
1978). Such results can be useful in linguistic argumentation (Shieber, 1985b).
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Transition networks (Section 2.8.3) are a common representation of abstract string-
recognition devices. In the nonrecursive case, they are just another notation for non-
deterministic finite-state acceptors, which are discussed in any introductory book on
compilers or formal-language theory (Hopcroft and Ullman, 1979; Aho and Ullman,
1972; Harrison, 1978). Recursive transition networks are closely related to the non-
deterministic pushdown acceptors, which are the abstract machine counterparts of
context-free grammars (Hopcroft and Ullman, 1979; Aho and Ullman, 1972; Har-
rison, 1978). However, the actual notion of recursive transition network used here
comes from Woods’s work on transition networks for natural-language analysis (1970).
Woods extends recursive transition networks with data registers that can be set by ac-
tions and tested by conditions on arcs. The resulting formalism, augmented transition
networks (ATNS), is very powerful; in fact, an ATN can be written to recognize any
recursively enumerable language. Bates (1978) gives a very good tutorial on ATNs
and their application in natural-language processing. Pereira and Warren (1980) have
compared ATNs with logic grammars in detail.
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Chapter 3

Pure Prolog:
Theory and Application

This digital edition of Pereira and Shieber’s Prolog and Natural-
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lishing under a license described in the front matter and at the web
site. A hardbound edition (ISBN 0-9719997-0-4), printed on acid-
free paper with library binding and including all appendices and two
indices (and without these inline interruptions), is available from
www . mtome . comand other booksellers.

In the database subset of Prolog we have seen so far, the arguments to predicates
have been constants or variables. Like FOL, however, Prolog allows arbitrary terms
to serve as arguments of predicates, of which constants and variables are but two sub-
classes. Terms also include recursive structures formed by applying function symbols
to other terms, using the parenthesized syntax familiar from logic.

The extension of database Prolog to include terms of arbitrary complexity is called
pure Prolog because it is a pure subset of FOL, containing no extralogical features
(except for those in Section 3.4.1). Full Prolog, discussed in Chapter 6, does have such
features; consequently, its declarative semantics and procedural operation diverge. But
pure Prolog is a pure logic programming language. It has a procedural interpretation
that is potentially sound (though not complete) with respect to its declarative interpre-
tation.!

3.1 Prolog Notation Revisited

At this point, let us review the notation for Prolog that we have been using and augment
it to include compound terms formed with function symbols, as mentioned in Section
2.3. We give a simplified CFG for the Prolog syntax introduced so far, augmented to
include functions and terms formed from them.

THowever, because of the lack of the “occurs check” in Prolog systems (Section 3.5.2), this potential
soundness is not realized in most implementations.

39
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Program — Clause
Program — Clause Program

Clause — AtForm : - Condition .
Clause — AtForm .

Condition — AtForm
Condition — AtForm , Condition

AtForm — Predsym
AtForm — Predsym ( TermSeq )

TermSeq — Term
TermSeq — Term , TermSeq

Term — Constant

Term — Number

Term — Variable

Term — Funcsym ( TermSeq )

The primitive types of expressions, then, are constants, function symbols (Func-
sym), predicate symbols (Predsym), and variables. Constants are either numbers (such
as 0, 99.99, -129) or atoms. Atoms are tokens beginning with a lower-case alpha-
betic or composed of a sequence of special characters or composed of any characters
surrounded by single quotes. For instance, the following are atoms: a, bertrand, =,
:=, ’Bertrand Russell’, [].

Function symbols and predicate symbols (often collectively referred to as functors)
are also notated with atoms.

Compound expressions (a functor applied to a sequence of term arguments) are
by default represented in parenthesized prefix notation as in Funcsym ( TermSeq ) or
Predsym ( TermSeq ) above.

3.2 Terms and Unification

To illustrate the notation, here is an example program that axiomatizes addition in
successor notation:

Program 3.1
add(®, Y, V).
add(succ(X), Y, succ(Z)) :- add(X, Y, 2).

In this program, the simple term @ is intended to represent the number 0, the term
succ(®) the number 1, succ(succ(®)) the number 2, and so forth. (The function
symbol succ is so-called because it corresponds to the integer successor function.)
Thus, the first clause states that 0 added to any number is that number. The second
clause states that the successor of any number x added to y is the successor of the sum
zof xandy.

Unlike in imperative languages, the succ function symbol when applied to a term
will not “return a value”; the term succ (8) does not equal (reduce to, return, evaluate
to, etc.) the term 1 or any other structure. The only relationship between the terms and
the numbers is the meaning relationship we, as programmers and users, attribute to the
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terms. The program respects this attribution because it holds of three terms just in case
the numbers they represent are related by the addition relation. We can see this in the
following queries:

?- add(0®, succ(®), Result).
Result = succ(0)
yes

?- add(succ(succ(0)), succ(succ(®)), Result).
Result = succ(succ(succ(succ(0))))
yes

These queries correspond to computingthat 0 + 1is 1 and 2 + 2 is 4.

Prolog augmented with terms works in exactly the same way as the database sub-
set discussed in the previous chapter. The only difference is that the matching of a
goal literal with the head of a rule, the process of unification informally defined in
Section 2.4 and more fully discussed in Section 3.5.2, must in general apply to arbi-
trary compound terms. Recall the informal definition of unification given previously.
Two atomic formulas unify if there exists an assignment to the variables in them un-
der which the two formulas become identical. Applying this definition to an example,
consider the unification of the two atomic formulas

add(succ(succ(0)), succ(succ(®)), Result)
and

add(succ(X), Y, succ(Z))
This unification succeeds because the assignment

X = succ(0), Y = succ(succ(0)), Result = succ(Z)
transforms both formulas into

add(succ(succ(0)), succ(succ(0)), succ(Z2))

The execution of a goal to add 2 and 2 (encoded in successor notation) would then
proceed as follows: The initial goal is

add(succ(succ(0)), succ(succ(®)), Result)

This fails to unify with the first clause for add, but unifies with the head of the second
clause with the unifying assignment as above. Under this assignment, the body of the
clause becomes

add(succ(®), succ(succ(0)), Z2)

Now this clause also matches the head of the second clause (which we will write with
variables renamed to X_1, Y_1 and Z_1 to avoid confusion as per Section 2.5.1). This
time the unifying assignment is




42 Chapter 3. Pure Prolog

A hardbound edition of Prolog and Natural-Language Analysis is available
from www.mtome . com and other booksellers.

X 1 =0, Y_1 = succ(succ(0)), Z = succ(Z_1)
The body of this second activation of the clause becomes
add (0, succ(succ(®)), Z_1)
This goal matches the unit clause add(®, Y, Y) under the assignment
Y_2 = succ(succ(0)), Z_1 =Y_2 ,

and the execution is complete. In looking at the assignments that were in-
volved in the proof, we note that Result was bound to succ(Z), Z to
succ(Z_1), Z_1 to Y_2, and Y_2 to succ(succ(®)). Thus, aggregating assign-
ments, we have Result = succ(Z) = succ(succ(Z_1)) = succ(succ(Y_2))
= succ (succ (succ (succ(0)))). The query thus computes that 2 + 2 = 4.

3.3 Functions in Prolog and Other Languages

In logics that include equality between terms as a primitive notion, the reducibility
of one term to another enables a powerful technique for reasoning about functions.
Conventional programming languages—and even more so, so-called functional pro-
gramming languages—make use of this by basing their constructs on equalities (usu-
ally in the guise of function definitions). These equalities are typically interpreted as
rewriting rules that can be used to reduce terms to simpler ones, and eventually to irre-
ducible terms that are identified with “values”. In imperative programming languages,
this notion is implicit in the notion of a function call that returns a value. All of this,
of course, depends on the language in some sense embodying axioms of equality. For
instance, reduction corresponds to the substitutivity of equality. In fact, proof proce-
dures for equality could be used as the basis for functional computation very much as
Horn-clause proof procedures are the basis for relational computation.

General proof procedures for logics with equality are very difficult to control, and
therefore have to date been too inefficient to use in logic programming. It was ob-
served, however, that much of the work of equations and function symbols could be
done instead by relations. For example, instead of representing addition as a function
+ with axioms

succ(X) +y = succ(x+Y)
0+x

X

we can use the ternary predicate add with the Prolog definition given in Program 3.1.

The simple observation that subject-domain functions can be represented as rela-
tions was a crucial step in making logic programming practical. However, this step
is not without losses. For example, the uniqueness of function values, a consequence
of the equality axiom schemata in FOL with equality, is not available for reasoning
when the relational encoding of functions is used. It may be that the Prolog definition
of a function gives only one output for each input (as is the case with add above), but
this is a contingent property of a particular predicate definition rather than a necessary
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property as it is with functional notation. Another disadvantage is that relational syn-
tax requires the introduction of intermediate variables for function composition, often
impairing the readability of programs.

Of the standard equality axioms and their consequences, the only one that is left in
Prolog, because it is definable in the language, is the reflexivity axiom x = x, which
can be implemented in Prolog with the unit clause

Program 3.2
X =X.

In fact, the infix = operator is built in to most Prolog systems.

The lack of more powerful equality axioms in Prolog means that in Prolog it is not
possible to reason about whether two distinct terms denote the same object. In other
words, the value of applying a function to some arguments can only be represented by
the term expressing that application and not by some other (presumably simpler) term
representing the “value” of the function on those arguments. Thus, in Prolog we look at
functions as constructors, one-to-one functions with disjoint ranges. Each ground term
is seen as denoting a distinct element in the domain, and function symbols are means of
constructing new elements from old, analogous to constructor functions such as cons
in uisp or record constructors in Ada. Compound terms in Prolog have the same role as
record structures in other languages, namely, representing structured information. For
instance, in the addition example above, the succ function symbol applied to an argu-
ment a does not “return” the successor of the argument. It merely constructs the larger
term succ (@). We may choose to interpret the terms 0, succ(0), succ(succ(0)),
... as representing the nonnegative integers (which they are isomorphic to). We can
then compute with these terms in ways consistent with their interpretation as integers,
as we did in the addition example.

To extend our analogy between Prolog terms and data structures, note that unifica-
tion between terms plays both a structure selection role, picking up the arguments of
functions, and a structure construction role, instantiating variables to compound terms.
For example, recall the query

add(succ(succ(®)), succ(succ(0)), Result)
This literal matched the head of the second clause for add under the assignment
X = succ(0), Y = succ(succ(0)), Result = succ(Z)

Note how unification between the first arguments of the goal and head has decomposed
the argument, performing a selection role. The body of the clause, the new goal, was

add(succ(0),succ(succ(®)),Z) ,
which succeeded with the unifying assignment
Z = succ(succ(succ((0)))
Thus the original goal succeeds with

Result = succ(Z) = succ(succ(succ(succ(0))))
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The unification between the third arguments of goal and head are this
time playing a construction role, building the representation of the result
succ (succ(succ(succ(0)))) from succ(succ(succ(®))), the intermediate re-
sult. This simple example of addition demonstrates that computations that might have
been formulated in functional-equational terms in another language can be formulated
as a relational computation over terms in Prolog.

Compound terms in Prolog thus play the same role as complex data structures
such as lists, trees, or records in other programming languages. But whereas in Lisp,
for example, every list (S-expression) is fully specified once it is built, terms with
variables in Prolog stand for partially specified data structures, possibly to be further
specified by variable instantiation in the course of a proof. This role of variables as
“stand-ins” for as yet unspecified structures is very different from the roles of variables
as formal parameters or updatable locations in functional and imperative languages
like Lisp and Pascal. To distinguish Prolog variables from variables in other languages,
the Prolog type of variable has often been called a logical variable.

3.3.1 Alternate Notations for Functors

We digress here briefly to discuss a useful extension to Prolog notation. In addition
to the default parenthesized prefix notation for compound terms, Prolog allows unary
functors to be used with a prefix or postfix notation, and binary functors in infix nota-
tion, given appropriate operator declarations. For example, the expressions

succ succ 0 3+4 f* =
are convenient notations for
succ (succ(0)) +(3,4) *(*(£))

Prefix, postfix, and infix operators must be declared to Prolog. For Prologs of the
Edinburgh family, the system can be informed about the operators used in this example
by executing the following queries:

:- op(500, yfx, +).
:- op(300, fy, succ).
- op(300, yf, *).

The final argument of the op predicate is simply the operator being declared. The first
argument is the relative precedence of the operator, with larger numbers indicating
lower precedence, that is, weaker binding and wider scope. Thus * will have a lower
precedence number than +. The second argument provides its position (prefix, infix,
postfix). In addition, it determines the iterability or associativity of the operator. We
call a unary operator iterable if it can apply to an expression whose main functor has
the same precedence. Noniterable can only apply to expressions whose main functor
has lower precedence. Thus, succ above is an iterable operator, whereas the standard
prefix operator ?- is noniterable. Nonassociative operators are defined analogously.
The affixing behavior of operators is determined according to the following table:
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symbol | position associativity
fx prefix noniterable

fy prefix iterable

xf postfix | noniterable

yf prefix iterable

xfx infix nonassociative
yfx infix left associative
xfy infix right associative

The intuition behind these symbols is that in the case of an expression with two
operators of equal precedence, one will be chosen as main functor such that the other
occurs to the same side of the main functor as the y occurs to the side of the £. For
example, since the + operator is declared y£x in Prolog, X+Y+Z will be parsed as
(X+Y)+Z. The subordinate + comes on the left side of the main +. If the symbol
associated with an operator has no y in it, expressions where it occurs with scope
immediately over an operator of equal precedence will not be allowed at all.

Clearly, operator declaration queries are being executed for their side effects. As
such, op is extralogical, and hence, not part of pure Prolog. These declarations should
therefore be thought of as imperative commands to the system, not as part of the logical
structure of a program. For further information about such declarations, refer to the
manual for your Prolog system.

3.4 Lists

Returning to the main topic of the use of compound terms in Prolog programming, we
consider a particular kind of data structure, lists, that will be especially useful in later
programs.

The abstract notion of a finite sequence is a basic notion in mathematical descrip-
tions of many concepts. For example, the sentences of a language can be represented as
sequences of words. Formally, a sequence can be seen as a function from an initial seg-
ment of the natural numbers to some set, the elements of the sequence. Another view
of sequences, which will be more useful here, is an inductive one following closely the
inductive definition of the natural numbers. Given some set X of sequence elements,
the set X* of finite sequences of elements of X can be informally characterized as the
smallest set satisfying the following conditions:

e The empty sequence () is a sequence.

o If sisasequence and e an element of X, the pair (e, s) is a sequence with head e
and tail s.

Thus (1, (2,(3,¢)))) is a sequence of three elements: 1, 2, and 3. Notationally, of
course, the more common expression of this sequence is (1, 2, 3). In the angle bracket
notation, {es, ..., €,) expresses the list whose head is e; and whose tail is expressed by
(€2,...,€n).

Sequences are represented in Prolog by lists. In Edinburgh Prolog, the empty se-
quence is represented by the empty list constant [ ], and the sequence (e, s) with head
e and tail s is represented by the expression [e|s]. More generally, the sequence
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(e1, (-~ - (en, 8) - --)) is represented by the term [eq,...,en|s]. This can be abbreviated
when s is the empty sequence to [e1,...,en].
For example,

[Head|Tail] [a,b|X] [a,b]

are respectively the Prolog representations of a sequence with head Head and tail Tail,
a sequence with head a and tail the sequence with head b and tail X, and the sequence
(a,b). The inductive conditions defining lists given above can then be represented by
the Prolog program

list([D).
list([Head|Tail]) :- element(Head), list(Tail).

where the predicate element tests whether its argument belongs in the element do-
main. More generally, lists with any Prolog terms (including lists!) as elements can be
characterized by the following program.

list([D).
list([_Head|Tail]) :- list(Tail).

In this program we used the common Prolog notational convention of giving a
name beginning with an underbar to variables whose role is not to pass a value but
merely to be a place holder, as the variable _Head is in the preceding program. Prolog
further allows so-called anonymous variables, notated by a single underbar. Each
occurrence of “_" as a variable name in a clause represents a distinct place-holder
variable. For example, the two anonymous variables in £(_,_) are distinct, so the
unification of that term with £(a,X) does not bind X to a. Anonymous variables are
used for place-holder variables for those rare occasions in which naming the variable
would detract from program readability.

Although we have introduced lists as a special notation for sequences, lists are
Prolog terms like any other. Our inductive conditions for sequences involve two in-
gredients: the empty sequence and the pairing function that puts together an element
and a sequence to make a longer sequence. As we have seen, the empty sequence is
represented by the empty list constant [ ], which is just a Prolog constant. The pair-
ing function is represented by the special notation [e|s], but in fact corresponds to a

binary function symbol which in most Prolog systems is named “.”. Thus, the lists
shown earlier are shorthand notation for the Prolog terms
. (Head,Tail) .(a,.(,X)) .(G@,.(,[1N

Exercise 3.1 What terms (expressed using the binary operator ““.””) do the following
Prolog expressions abbreviate?

[a,b,c]

[al [b,c]]
[[a,b],c]
[[a,b]]c]
[[AIB]IC]

o &~ D oRE
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conc(la,b]l, [c,d], [a,b,c,d])

conc ([b], [c,d], [b,c,d])

conc([], [c,d]l, [c,d])

Figure 3.1:; Proof tree for concatenation query

34.1 List Processing

Lists and the list notations above play an important role in the remainder of these notes.
As examples of the definition of predicates over lists, we will give Prolog programs
to concatenate, shuffle, and sort lists. Along the way, we will introduce some useful
Prolog concepts—maodes of use of Prolog predicates and Prolog arithmetic tests.

The basic form of list processing programs has been demonstrated by the 1ist
predicate itself, namely, the separating of two cases, one for the empty list, and one for
nonempty lists of the form . (Head, Tail) or, equivalently, [Head | Tail].

List concatenation

The definition of the concatenation of two lists to form a third divides similarly into
two cases. The base case occurs when concatenating the empty list to any list, which
yields the latter unchanged. For nonempty lists, the concatenation is the head of the
first list added to the recursive concatenation of the tail of the first list and the entire
second list. The concatenation relation is implemented in Prolog by the predicate
cong, which holds of three lists I, r, and c if ¢ is the concatenation of | and r. Using
juxtaposition to represent concatenation, the constraint can be stated ¢ = Ir.

Program 3.3
conc([], List, List).
conc([Element |Rest], List, [Element|LongRest]) :-
conc(Rest, List, LongRest).

As an example of the operation of conc, consider the following goal:

?- conc([a,b], [c,d],Result).
Result = [a,b,c,d]
yes

Its proof tree is given in Figure 3.1. Note that although list concatenation is func-
tional, in the sense that the third argument is uniquely defined by (hence functionally
dependent on) the other two, it is implemented relationally in Prolog. We will see an
advantage of this relational view of concatenation in the next example.
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Shuffling lists

The shuffie of two lists consists of taking a few elements from the first list, the next few
from the second, some more from the first, and so forth until the lists are exhausted.
More formally, the shuffle relation holds between three lists I, r and s (i.e., s is a
shuffling of I and r) if and only if there are (possibly empty) lists I4, ..., lxand rq, ..., rg
suchthatl =11---lg, r=ry---reand s = Iyry - - - Igrg. That is, s contains interspersed
all the elements of | and r, but maintains the original order of elements of | and r.

We can break this definition down recursively by considering the concatenation of
l; and ry separate from the concatenations for the rest of | and r. In particular, we
define s to be the shuffle of | and r if s = I1r1Sreg, Where | = l1lie and r = rqirreg and
Sreq IS @ shuffle of l,eg and rreqt. TO guarantee that this definition is well-founded, i.e.,
that the recursive shuffle is a smaller problem than the original, we require that one of
11 and ry be nonempty. In fact, without loss of generality, we can assume that it is ry
that is nonempty. Further, we can assume that ry contains exactly one element; call it
e.

Exercise 3.2 Why are these assumptions valid?

We still must settle on the base case for the recursion. Because each recursive
shuffle decreases the length of the second list by exactly one element, we can stop
when this list is empty. In this case, the shuffle of | with the empty list is simply I. This
definition can be translated directly into Prolog as follows:

Program 3.4
shuffle(L, [], L).

shuffle(L, [E|Rrest], S) :-
conc(L1l, Lrest, L),
shuffle(Lrest, Rrest, Srest),
conc(L1l, [E|Srest], S).

In this program, the last argument is the shuffle of the first two. It is conventional in
Prolog programming to place the arguments that tend to be thought of as inputs before
those that are outputs.

Nondeter minism and modes

The shuffle program exhibits several important facets of Prolog programming. First,
the notion of a shuffie of two lists, unlike the notion of concatenation, is intrinsically
nondeterministic. But this causes no problem for the Prolog definition. Our definition
will merely compute all the various shuffies by backtracking, e.g.,

?- shuffle([a,b], [1,2], Shuffle).
Shuffle = [1,2,a,b] ;

Shuffle = [1,a,2,b] ;

Shuffle = [1,a,b,2] ;

Shuffle = [a,1,2,b] ;

Shuffle = [a,1,b,2] ;

Shuffle [a,b,1,2] ;

no
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Second, shuffle demonstrates the reversibility of Prolog programs. In particular,
the predicate conc is used in shuffle not only to concatenate two lists together (i.e.,
combining L1 and [R1]|Srest]), but also to take a list apart into two sublists (i.e.,
splitting L into L1 and Lrest). Because Prolog programs like conc can be used to
compute any of their arguments from any others, they are said to be reversible.

To capture the idea of which arguments are being computed on the basis of which
others, the notion of a mode for a Prolog predicate can be defined. A mode tells which
arguments are used as inputs and which as outputs. That is, it specifies which argu-
ments on execution of the predicate are nonvariables and which are variables. Modes
are typically notated by marking the input arguments with the symbol + and the out-
puts with -. Thus, the normal mode for conc in its use as a program for concatenating
lists is conc(+,+,-). But the mode of the first use of conc in the shuffle pro-
gram is conc (-, -,+). By reversibility of Prolog programs, we merely mean that the
same program can be used in different modes, whereas in other languages, different
programs must be designed for each mode.

Although the third argument to conc is functionally dependent on the other two, in-
verses of functions are not in general themselves functional. Thus using conc in mode
conc (-, -,+) is nondeterministic. Indeed, this is the source of the nondeterminism of
the shuffle predicate itself.

There are severe restrictions on the reversibility of Prolog programs. Pure Prolog
programs that terminate when used in one mode may no longer terminate when used
in another mode. Full Prolog programs with their metalogical facilities can exhibit
completely different behavior when executed in different modes. Nonetheless, the use
of Prolog programs with different modes is often a useful technique, and it is important
to note that pure Prolog programs will never allow contradictory solutions just on the
basis of being used in different modes. The worst that can happen is that execution in
certain modes will not terminate.

Arithmetic tests and operations

While on the subject of mode limitations, we will mention some useful built-in pred-
icates that are restricted to operate only in certain modes. These restrictions arise
for reasons of efficiency or implementation ease but are in no way part of the logic.
One may think of the restricted predicates as approximations to ideal, logically correct
predicates, which the Prolog system has not implemented in their full generality.

The situation that arises when a restricted predicate is called in the wrong mode,
that is, with improperly instantiated arguments, is called an instantiation fault. Dif-
ferent Prolog systems handle instantiation faults differently, but most will at least
produce some kind of error message and stop the execution of the faulting goal.
Therefore, when using restricted predicates, it is important to keep track of call-
ing patterns for predicates to make sure that the restricted ones are called with the
correct modes. This is shown clearly by the mergesort example in the next sec-
tion.

Among the constants that Prolog allows are numbers. Numbers can be compared
using a set of built-in Prolog predicates. For instance, the binary infix operator “<”
holds of two numbers if the first is less than the second. The “<” operator operates
only in the mode + < +, that is, neither argument may be a variable. Other arithmetic
tests include “>” (greater than), “=<" (less than or equal to), and “>=" (greater than or
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equal to) and have the same mode restrictions. Without these mode restrictions, Prolog
would either have to be able to backtrack through all pairs of numbers satisfying an
arithmetic comparison, leading to combinatorial explosion, or to delay the execution of
the comparisons until both arguments are instantiated. The latter approach has actually
been implemented in a few experimental Prolog systems.

In fact, in Edinburgh Prolog the arithmetic predicates are sensitive not only to the
modes of their arguments but also to their types, since only arithmetic expressions are
allowed as the arguments of comparisons. An arithmetic expression is a term built
from numeric constants and variables with various arithmetic operators such as +, *,
-,and /, which is to be evaluated according to the usual arithmetic evaluation rules to
produce a number. When an arithmetic-predicate goal is executed, all the variables
in its expression arguments must be bound to numbers so that the expression may be
evaluated to a number.

The best way to understand arithmetic expressions is to think of them as shorthand
for sequences of calls to arithmetic relations defining the basic arithmetic operations.
Thus, the goal

X*X + Y*Y > Z*%Z
could be read as an abbreviation of

times(X, X, V1),
times(Y, Y, V2),
plus(Vi, V2, V),
times(Z, Z, W),
V>TW

where times and plus are hypothetical predicates that compute the obvious functions
of their first two arguments.

For arithmetic calculations, Edinburgh Prolog provides the binary infix predicate
is with mode ? is + (where ? in a mode is intended to mean that the input/output
distinction is not being determined for this argument). The second argument of is is
some arithmetic expression, and the first argument (typically a variable) is unified with
the result of evaluating the second argument.

It should be noted that type restrictions on the arguments of a predicate are of a
different nature from mode restrictions. Mode restrictions indicate that the implemen-
tation of a predicate is not able to cope with uninstantiated arguments, usually because
the implementation needs to know more about the arguments to do anything sensible.
The appropriate action for Prolog to take is therefore an instantiation-fault report. In
contrast, failure to prove is the conceptually correct action in the face of arguments of
incorrect type (e.g., non-numbers given to an arithmetic comparison predicate), since
these arguments are merely outside the extension of the predicate. However, many
Prolog systems signal an error on type restriction violations as an aid to debugging.

Sorting numbers

The final example is a program to sort lists of numbers. The algorithm we will use is
called mergesort because the basic operation is the merging of two previously sorted
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lists. The merge of two sorted lists is a shufile of the lists in which the output list is
sorted.

Program 3.5

merge(A, [], A).

merge([], B, B).

merge([A|RestAs], [B|RestBs], [A|Merged]) :-
A < B,
merge (RestAs, [B|RestBs], Merged).

merge([A|RestAs], [B|RestBs], [B|Merged]) :-
B =< A,
merge([A|RestAs], RestBs, Merged).

Note that this merge operation is redundant, in the sense that there are two proofs
for the goal merge([]1, [], Merged). As aresult, we get the following behavior.

?- merge([], [], Merged).
Merged = [] ;

Merged = [] ;

no

We will carefully avoid invoking the merge predicate in this way, so that the redun-
dancy will not affect the behavior of other programs.

Sorting using the merge operation consists of splitting the unsorted list into two
smaller lists, recursively sorting the sublists, and merging the results into the final
answer. The recursion bottoms out when the list to be sorted is too small to be split
into smaller lists, that is, it has less than two elements, in which case the sorted list is
identical to the unsorted.

Program 3.6

mergesort([], [1).

mergesort([A], [AD).

mergesort([A,B|Rest], Sorted) :-
split([A,B|Rest], L1, L2),
mergesort(L1l, SortedLl),
mergesort (L2, SortedlL2),
merge (SortedLl, SortedL2, Sorted).

A simple (though nonoptimal) method for splitting a list into two lists of roughly equal
size is to add alternate elements in the list to the sublists. Again, the base case of the
recursion occurs when the list is too short.

Program 3.7
split([1, [1, [D).
split([A]l, [A]l, [DD.
split([A,B|Rest], [A|RestA], [B|RestB]) :-
split(Rest, RestA, RestB).

We can demonstrate the mergesort program and its various ancillary predicates
with the following queries.
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?- mergesort([3,1,4,2], [1,2,3,4]).
yes

?- mergesort([3,1,4,2], Sorted).
Sorted = [1,2,3,4]
yes

Note that mergesort cannot be used to “unsort” a sorted list (i.e., to generate
permutations of a sorted list); it cannot be used in mode sort(-,+). If it were so
used, the execution of merge inside would be with mode merge(?,?,-). Then the
third clause of merge would execute < with mode ? < -. But < must be executed in
mode + < +. Consequently, mergesort will not execute correctly in an “unsorting”
mode. The impurity of < infects all programs that are built using it. Thus, the merging
and sorting programs are not in the pure subset of Prolog.

Exercise 3.3 Rewrite merge so that it does not generate redundant solutions.

Exercise 3.4 Write a definition for the binary predicate member, which determines
whether its first argument is an element in the list that is its second argument. For
instance, the following queries should work:

?- member(a, [a,b,c]).

yes

?- member(d, [a,b,c]).

no

?- member(£(X), [gCa),f(b),h(c)]).
X =D

yes

Exercise 3.5 Write a definition for the binary predicate reverse, which holds of two
arguments if one is a list that is the reverse of the other. For instance, the following
queries should work:

?- reverse([a,b,c], [c,b,al).
yes

?- reverse([a,b,c], [c,b,b,a]).
no

?- reverse([a,X,c], [Y,b,al]).
X=b,Y=c

yes

Exercise 3.6 Write an alternative definition of sp1it which works by placing the first
half of the elements on one list and the rest on another. (HINT: The dificult part is
determining when you have reached the middle of the list. Use a copy of the list as a
counter to help you determine when you have moved half the elements.)
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3.4.2 Representing String Positionswith Lists

An application of lists which we will use extensively is their use in representing string
positions. This representation can serve as the basis of an alternative method for ax-
iomatizing phrase-structure grammars. Instead of a specific set of connects clauses
representing an input string as in Section 2.7.3, we have a single general clause:

Program 3.8
connects(Word, [Word|Rest], Rest).

Effectively, this clause induces a representation of each string position by the sub-
string following the position. In particular, the position after the last word is repre-
sented by the empty list [ ]. For example, to use the grammar of Program 2.4 to parse
the sentence

Terry writes a program that halts.

we need not put in unit clauses for the individual words. Instead, we use the list en-
coding of the string itself as the initial position and the empty list as the final position:

:- s([terry,writes,a,program,that,halts],[]).
yes

The single connects clause then describes the relation between the words and their
surrounding positions.

3.5 The Logic and Operation of Prolog Revisited

The operation of pure Prolog should by now be relatively familiar. It seems appropri-
ate, then, to return to the logical foundations of Prolog, the presentation of which was
begun in Section 2.3, and extend it to the operation of Prolog presented informally in
Sections 2.4 and 3.2.

For a logical language to be used for logic programming, we must have an effec-
tive proof procedure to test whether a goal statement is a consequence of the program.?
This proof procedure must be efficient enough to make a proof step analogous in com-
putational cost to, say, a function call in a traditional programming language; only in
this way is the program execution (proof generation) sufficiently predictable in perfor-
mance to qualify the proof procedure as a program execution mechanism.

Because of the strict requirements on the computational behavior of programs in
the language, Prolog programs are restricted to definite clauses and queries to negative
clauses. In this section, we discuss the proof procedure that this restriction makes pos-
sible, an instance of a class of Horn-clause proof procedures known as SLD resolution.
First, however, we clarify some terms that have been used in the informal discussions
of Prolog execution, namely substitution and unification.

2 ctually, if the logical language is powerful enough to express all the kinds of relationships normally
expressed by programs (i.e., all recursive relations), then the proof procedure will be only a semidecision
procedure: If the goal statement is a theorem, the procedure will terminate with success, but it may loop
for nontheorem goal statements—corresponding to the fact that the language can express partial recursive
functions that are not total.
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3.5.1 Substitutions

A substitution is a function from a set of variables X1, ..., Xk to terms ty, ..., t. Such
a function is notated {x; = t3,..., Xk = tx}. The application of a substitution ¢ to an
expression e, notated [e]o, is the expression with all instances of the x; replaced by the
corresponding t;. For example,

[f(x. g]ix =a,y = h(a,2)} = f(a.g(h(a.2)))

If, for some o, [e1]o = ey, then e; is said to be an instance of e; and ey is said to sub-
sume e. Thus f(x, g(y)) subsumes f(a, g(h(a, 2))). If e; subsumes e, but not vice versa,
then ey is more general than e,. Thus f(x, g(y)) is more general than f(a, g(h(a, 2))),
but is not more general than f(z, g(w)).

3.5.2 Unifi cation

Given two expressions e; and e,, some substitutions o may have the property that
[e1]o = [e2]o; the substitution o serves to transform the expressions into identical
instances. Such a substitution is called a unifying substitution or unifier for e; and
e,. Not all pairs of expressions have unifiers. For example, there is no unifier for the
expressions f(a, x) and f (b, y). However, when two expressions do have a unifier, they
have one that can be considered most general. A most general unifier is a unifier that,
intuitively speaking, makes no commitments that are not called for by the expressions;
no extra variables are instantiated, nor are variables instantiated to more complex terms
than is necessary. More formally, o is a most general unifier for e; and e, if and only
if for every unifier o’ of e; and ey, [e1]o subsumes (is no less general than) [e]o”.
When two expressions have a most general unifier, then that unifier applied to either
of the two expressions is a unification of the two expressions.

The effect of most general unifiers is unique up to renaming of variables, in the
sense that if o- and 6 are most general unifiers of e; and e;, then [e1]o- and [e1]6 either
are identical or differ only in the names of variables. Since the naming of variables
in an expression is really an incidental property—unlike the sharing structure of the
occurrences of the variables—we can think of uniqueness up to renaming as being, for
all intents and purposes, actual uniqueness.

An algorithm that computes the most general unifier of two expressions is called
a unification algorithm, and many such have been designed. We will not discuss the
details of unification algorithms here, but mention one aspect of their design. A unifi-
cation algorithm constructs a unifying substitution by finding “mismatches” between
the two expressions and adding appropriate bindings to alleviate them. But consider
the case of two expressions f(x) and f(g(x)). Although there is no unifying substitu-
tion for these terms, a naive unification algorithm might note the mismatch between the
variable x and the term g(x) and construct the substitution {x = g(x)}. But applying this
substitution to the two terms, we have f(g(x)) and f(g(g(x))) respectively, which are
not identical. Thus, the substitution is not a unifier for the expressions. This example
demonstrates that an algorithm to compute most general unifiers must be careful not
to construct substitutions in which a variable is assigned a term in which that variable
occurs. For a unification algorithm to be correct, it must check that such occurrences
do not exist; this test is typically referred to as the occurs check.
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3.5.3 Resolution

Given the tools of substitutions and unification, we can return to the issue of proof pro-
cedures for Prolog. The use of refutation to construct proofs, as discussed in Section
2.3, is characteristic of Robinson’s resolution principle. We will not discuss resolu-
tion in general here, but merely present its specialization to Horn clauses, which for
historical reasons is called SLD resolution.

SL D Resolution: From a query (a negative Horn clause)
NoA---ANiA---ANp=

and a definite clause
CoA---ACk= Py

where o~ is a most general unifier of Py and N;j, produce the new query

[NoA -~ ANi_1 ACoA--- ACKkANjz1 A+ ANplo =

The new query is called the resolvent of the original query and clause, obtained by
resolving Py and N;. If the resolvent contradicts the program from which the definite
clause was taken, then the original query does also.

As we have seen in Section 2.3, to find an instance of a goal G of atomic formu-
las that follows from a program, we try to show that the query G = contradicts the
program. We show such a contradiction with SLD resolution by constructing an SLD
derivation of G, a sequence Ry, .. ., R, of queries such that Rg is G =, R, is the empty
clause and each element of the sequence is obtained from the preceding one by an
SLD resolution step. Since the empty clause indicates contradiction, we have shown
that the original query G = contradicts the given definite-clause program.

Each step in the derivation, from R;_; to R;, has an associated substitution oj. The
goal instance [G =]o;1 - - - o7y IS @ counterexample to the query, which as we have seen
means that [G]o1 - - - o is a consequence of the program. Because the substitutions
are most general unifiers, this consequence is the most general instance of the goal that
follows by using this particular sequence of program clauses. The derivation sequence
can be seen as a traversal of a proof tree for the goal.

3.5.4 Prolog'sproof procedure

Prolog’s proof procedure, then, amounts to a particular instance of SLD resolution.
As described above, resolution is nondeterministic in that there are many resolvents
that follow from a given query, corresponding to the choice of literal in the query to
resolve, and the choice of rule to resolve the query literal against. The Prolog proof
procedure makes these choices as follows: literals in a query are resolved from left to
right, and rules are tried in order from top to bottom in a depth-first, backtrack search.

The proof procedure is depth-first because all ways of refuting a given resolvent
are tried before backtracking to try a different resolvent (by choosing a different rule
to resolve against). As should be apparent, the discussions of Prolog execution in
Sections 2.4 and 3.2 were merely informal descriptions of the Prolog variant of SLD
resolution.
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3.55 Semanticsof Prolog

Because of their relationship to Horn-clause logic, Prolog programs have both a declar-
ative and a procedural semantics. The declarative semantics of a program plus query
is derivative on the semantics of the Horn-clause subset of FOL. A goal follows from
a program just in case the conjunction of its negation and the program is unsatisfiable.

Note that the declarative semantics makes no reference to the sequencing of literals
within the body of a clause, nor to the sequencing of clauses within a program. This
sequencing information is, however, very relevant for the procedural semantics that
Prolog gives to Horn clauses.

The procedural semantics reflects SLD resolution. A goal follows from a program
just in case the negated goal and program generate the empty clause by the Prolog
proof procedure, that is, left-to-right, top-to-bottom, depth-first, backtracking SLD
resolution.

The Prolog proof procedure gives Horn-clause programs an interpretation in
terms of more usual programming constructs. The set of clauses with a particular
predicate in the consequent is the procedure that defines the predicate. Each clause
in a procedure is like a case in a case or conditional statement. Each literal in the
antecedent of a clause is a procedure call.

This analogy with programming concepts for Algol-like languages is the basis of
very efficient implementation techniques for Prolog. However, this efficiency is bought
at some cost. The two semantics for Prolog diverge at certain points. The procedural
semantics lacks completeness and soundness relative to the declarative semantics.

The lack of completeness in the Prolog proof procedure results from the fact that
Prolog’s depth-first search for a proof may not terminate in some cases where in fact
there is a proof. We saw this problem in Program 2.3.

The lack of soundness comes from a property of the Prolog proof procedure that
we have heretofore ignored, namely, the lack of an occurs check (Section 3.5.2) in
Prolog’s unification algorithm. The occurs check is too expensive for general use in
a basic operation of a computation mechanism as unification is in Prolog; thus the
unification algorithm used by Prolog is not sound. However, this unsoundness is not a
problem for the great majority of practical programs.®

Further divergence of the two semantics results from extralogical mechanisms that
have been introduced into Prolog. Some of these are discussed in Chapter 5.

3.6 Problem Section: Terms and Lists

Tree Manipulation

Suppose we encode trees like the parse trees of Section 2.7 using Prolog terms in the
following way. Internal tree nodes will be encoded with the binary function symbol
node whose first argument is the node label, and whose second is a list of the children
of the node. Leaves of the tree will be encoded with the unary function symbol 1leaf
whose single argument is the label at the leaf. Thus the tree of Figure 2.4 would be
encoded as the Prolog term

SThere is also a way to reinterpret the Prolog proof procedure in a domain of [conceptually] infinite
terms such that it is sound with respect to that class of interpretations (Colmerauer, 1986; Jaftar and Stuckey,
1986.)
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node(s, [node(np, [node(det, [leaf(a)l]),
node(n, [leaf(program)]),
node(optrel, [1D1),
node(vp, [node(iv, [leaf(halts)])1)D)

Although this method for encoding trees is more complex than the one we will use
for parse trees in Section 3.7.1, this method is preferable for general tree-manipulation
programs because it limits the number of functors introducing tree nodes to two.

The fringe of a tree is just the leaves of the tree in order. Thus, the fringe of the
example tree is the list [a, program, halts]. In formal-language theory, the fringe
of a parse tree is called the yield of the tree.

Problem 3.7 Write a program implementing the relation fringe(Tree, List),
which holds just in case Tree, a tree encoded as above, has fringe List.

Simplifying Arithmetic Expressions

Terms can represent arithmetic expressions. Using function symbols + and * and rep-
resenting variables by the term x(V) and constants by c(C), we can represent the
expression

X1+ X2 % (0+ 1)

by the term
+(x(1), *(x(2), +(c(®, c(1))))

or, using the fact that + and * are infix operators in most Prologs,
x(1) + x(2) * (c(® + c(1))

However, this arithmetic expression can be simplified using certain identities. Because
zero is the additive identity, 0 + 1 can be simplified to 1. Because one is the multiplica-
tive identity, X2+ 1 can be simplified to x,. Thus the whole expression can be simplified
1o X1 + Xo.

Problem 3.8  Write a program that implements the binary relation simplifies_to
such that the following behavior is engendered:

7- simplifies_to(x(1) + x(2) * (c(®) + c(1)), ).
S =x(1) + x(2)
yes

You can use simplifications such as the multiplicative and additive identities, dis-
tributivity of multiplication over addition, multiplication by zero, and so forth. (HINT:
In general it is preferable to simplify an expression after simplifying its arguments.)
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Figure 3.2: A tree rewrite

Tree Grammars?

In the same way as phrase-structure grammars define sets of strings in terms of rules
that rewrite nonterminal symbols, one may define certain classes of trees in terms of
rules that rewrite certain nonterminal tree nodes into other trees. This is best explained
in terms of the representation of trees as logic terms.

Let X be a set of function symbols and X a set of variables. Then the set of X-terms
over X Tx(X) is the least set of terms satisfying the following inductive conditions:

o If x € X then x € Tx(X).

e If f € X is a n-ary function symbol and ti,...,t, are terms in 7x(X), then
f(ts,...,tn) € T=(X).

That is, 75(X) is the set of terms built from the variables in X with the function sym-
bols in X. In this definition and in what follows, constants are identified with nullary
function symbols.

Let = = N UT where N (the nonterminals) and T (the terminals) are two disjoint
sets of function symbols. Nonterminals stand for tree nodes that may be rewritten into
subtrees, terminals for nodes of the final trees. A tree all of whose nodes are terminal
is called a terminal tree.

Tree rewriting is done by productions that are the tree analog of phrase-structure
grammar rules. A production over X is a pair (A(Xg, . . ., Xn), t) (Which is conventionally
written A(Xg,...,Xy) — t). Ais an n-ary nonterminal, X,..., X, are variables and
t € 7=({X1,...,Xn}). This production states that a term with main function symbol
A and subterms ty,...,t, may be rewritten into the new term [t]o-, where o is the
substitution {x; = t1,..., X, = ty}. Notice that by definition every variable that occurs
in t is one of the x;.

For example, consider N = {S3}, T = Ay, By, C»,ap,bo, Co and the production
S (X1, X2, X3) — S(A(a, X1), B(b, X2), C(c, x3)). Figure 3.2 shows the application of this
rule to a node of a tree to derive a new tree.

In general, productions can apply to any node of a tree and not only to the root
node. To define this formally, consider a set of productions II, a ground term t, and
one of its subterms s. Clearly, there is a unique nonground term ¢ € 7x({x}) such that
t = [c]{x = s}. Assume that there is a rule s’ — u in IT such that " and s unify with
most general unifier o-. Then we say that t rewrites into t’ = [c]{x = [u]o}, in symbols
t = t’. Informally, we have applied the production to the subtree s of t and replaced s

4This section and the included problems are intended primarily for the formally inclined reader.
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in t by the result [u]o- of the production. As usual, we will use the notation t = t’ for
the reflexive-transitive closure of the rewriting relation.

Formally, a context-free tree grammar is a triple (%, S, IT) of a finite function sym-
bol (tree node) alphabet divided in terminals and nonterminals as above, a finite set I1
of productions over X and a finite set S of start trees, which are ground terms over X.
A terminal tree (term) t is the tree language generated by the grammar if there is a start

tree s € S such that s = t. Finally, the string language yielded by a tree grammar is
the set of the yields of the trees generated by the grammar.

Context-free tree grammars are so called because productions apply freely to tree
nodes without regard for the form of the tree above or below the node. One should
carefully distinguish this notion of context-freeness from the one for string grammars.
The string languages yielded by context-free tree grammars are in general in the class
of indexed languages, which is a larger class than that of context-free languages (Aho,
1968; Rounds, 1969).

Problem 3.9 Write a context-free tree grammar whose yield is the set of strings a"b"c"
forn > 0.

In the problems that follow, you may want to take advantage of the encoding for
trees used in the previous section.

Problem 3.10 Define an encoding of context-free tree grammars in Prolog. You
should give encodings for terminals, nonterminals, start trees, and productions.

Problem 3.11 It can be shown (Maibaum, 1974) that when constructing a derivation
of a terminal tree from a start tree of a context-free tree grammar it is only necessary
to consider production applications to outermost nonterminal nodes, that is, nodes
whose ancestors are all terminals. This strategy is called outside-in (O-1) rewriting.
Using the encoding from the last problem, write a program that performs O-I rewriting
to nondeterministically generate terminal trees in the tree language of an arbitrary
context-free tree grammar. In this problem, you must use the search order of Prolog
to avoid looping without producing any answers. Use the grammar of Problem 3.9 to
test your program.

3.7 Definite Clause Grammars

In Section 2.7 we saw how to translate CFGs into Horn clauses, in fact into definite
clauses. This translation method can be used as the basis for an extension of CFGs
based on definite clauses, definite-clause grammars (DCGS).

The general form of the definite clause associated with a context-free grammar rule

No — Vi---Vy
is (in Prolog notation)

nd0(PO®, P) :- v1(PO, P1), ..., vn(Pn-1, P).
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We can generalize such an axiom by allowing, in addition to the two predicate argu-
ments for the string positions, additional arguments that further specify the expres-
sion type. For instance, suppose we want to distinguish the number of noun and verb
phrases—whether they are singular or plural—so as to guarantee that sentences are
composed of NPs and VPs with the same number. We might extend the axiomatiza-
tion of the grammar and dictionary with an additional argument in certain predicates
(e.g., np, vp, pn) encoding number. A fragment of such a grammar would look like
this:

Program 3.9

s(PO®, P) :-
np (Number, PO, P1),
vp (Number, P1, P).

np (Number, PO, P)
pn(Number, PO, P).

vp (Number, PO, P)
tv(Number, PO, P1),
np(_, P1, P).

vp (Number, PO, P)
iv(Number, PO, P).

pn(singular, PO, P) :- connects(shrdlu, PO, P).
pn(plural, PO, P) :- connects(they, PO, P).
iv(singular, PO, P) :- connectsChalts, PO, P).
iv(plural, PO, P) :- connects(halt, PO, P).
tv(singular, PO, P) :- connects(writes, PO, P).

As an example, the first rule in this grammar encoding states that an s (sentence) may
be an np (noun phrase) with number value Number followed by a vp (verb phrase)
with the same number. Note the use of an anonymous variable (Section 3.4) for the
object NP in the transitive verb rule as a way of ignoring the number of the object.
This grammar admits the sentence “surpLu halts” but not “*surpLu halt”® even though
both verbs are intransitive.

:- s([shrdlu,halts], [1).

yes
:- s([shrdlu,halt], [1).
no

:- s([they,halt], [1).
yes

Just as the two-argument-predicate clauses can be seen as encoding context-free
grammars, these multiple-argument-predicate clauses can be seen as encoding a gen-
eralization of context-free grammars, called definite-clause grammars (DCG). DCGs
differ from CFGs just in the way this extended encoding of rules in Horn clauses differs

5We are here using the convention from the linguistics literature that in discussions of grammaticality,
ungrammatical strings are prefixed with asterisks to highlight the fact that they are not expressions of En-
glish. Of course, this is just an expository device; the asterisks themselves have no place in grammars that
people write.
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from the simple two-argument encoding: A DCG nonterminal may have arguments
just like the arguments of a predicate, and a terminal symbol may be an arbitrary term.
For instance, the extended Prolog encoding above axiomatizes the following definite-
clause grammar. (We here use the FOL conventions for variables and constants dis-
cussed in Section 2.3.)

S — NP(Xnum) VP (Xnum)
NP (Xnum) — PN(Xnum)
VP (Xnum) = TV(Xnum) NP (Yrum)
VP (Xnum) = 1V(Xnum)

PN(s) — shrdlu

PN(p) — they
IV(s) — halts
IV(p) — halt
TV(s) — writes

The meaning of a DCG rule is given by translating the rule into a definite clause
using the same mapping as for context-free rules except that now an n-argument non-
terminal is translated into an n + 2-argument literal in which the final two arguments
represent string positions.

Definite-clause grammars are so useful that Prolog systems often include a special
notation for encoding them directly, rather than having to go through the clumsy trans-
lation described above. In particular, the notation used within Prolog to notate a DCG
rule is the following:

e Predicate and function symbols, variables, and constants obey normal Prolog
syntax.

e Adjacent symbols in the right-hand side of a DCG rule are separated by the “,
operator, just like literals in a clause.

e The arrow ina DCG rule is “-->".
e Terminal symbols are written inside Prolog list brackets “[” and “]”.

e The empty string is represented by the empty list constant “[ ]”.

For example, the DCG grammar painstakingly encoded in Program 3.9 could be
directly stated in Prolog using the Prolog DCG notation as:

s --> np(Number), vp(Number).

np (Number) --> pn(Number).
vp(Number) --> tv(Number), np(_).
vp(Number) --> iv(Number).

pn(singular) --> [shrdlu].
pn(plural) --> [they].
iv(singular) --> [halts].
iv(plural) --> [halt].
tv(singular) --> [writes].
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The Prolog DCG notation allows context-free grammars to be stated directly in
Prolog as well, since CFGs are a special case of DCGs. In so doing, the Prolog state-
ments of the grammars are considerably more succinct. For instance, the English
fragment of Program 2.4 could be directly stated in Prolog as:

Program 3.10
S --> np, Vp.
np --> det, n, optrel.

np --> pn.
vp --> tv, np.
vp --> iv.

optrel --> [].
optrel --> [that], vp.

pn --> [terry].
pn --> [shrdlu].
iv --> [halts].
det --> [a].

n --> [program].
tv --> [writes].

In fact, Prolog systems typically perform the appropriate translation from DCG rules
like these to Prolog clauses immediately upon reading the program, and the clauses
are stored internally in the fully expanded form. Consequently, queries will receive the
same replies as the expanded version, e.g.,

:- s([terry,writes,a,program,that,halts],[]).
yes

The connection between definite-clause grammars and Prolog is a close one. But
it is important to keep in mind that DCGs are a formal language independent of their
Prolog encoding just as Horn clauses are of their instantiation in Prolog programs.
For instance, just as Prolog is an incomplete implementation of Horn-clause theorem-
proving, the DCG notation as interpreted by Prolog is incomplete for DCGs in the
abstract. We have tried to emphasize the difference by using a different notation (akin
to that of CFGs) for DCGs in the abstract, before presenting the Prolog notation. The
distinction between DCGs in the abstract and their statement in Prolog using the spe-
cial notation is important to keep straight as it has, in the past, been the source of
considerable confusion.

3.7.1 Treesfor Simple Sentences

The DCG ability to add arguments to the nonterminals in a grammar is useful in a
variety of ways. The addition of more detailed syntactic information such as agreement
features, which we saw in the previous section and which will be explored in more
detail in later problems, is just one of these. Indeed, much of the remainder of these
notes is merely elaboration on this basic capability.

As a simple example of the utility of argument-passing in DCGs we will develop a
grammar which not only recognizes the strings in the fragment of English of Program
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Det Nom Verb NP

Figure 3.3: A partially specified tree

3.10, but also builds a representation of the parse tree for the sentence, encoded as a
Prolog term.

Terms can be seen as partially specified trees in which variables correspond to as
yet unspecified subtrees. For example, the term

s(np(Det,Nom) ,vp(Verb,NP))

corresponds to the (partial) tree of Figure 3.3 in which the variables may be replaced
by any trees.

It is therefore only natural to use terms to represent parse trees in definite clause
grammars. To do this, every nonterminal predicate will have an argument representing
the parse tree for that portion of the string covered by the nonterminal. For each
nonterminal there will be a homonymous function symbol to represent a node of that
type. Finally, we will use a constant, epsilon, to represent an empty subtree.

The following DCG covers the same fragment of English as the CFG axiomatized
in Program 3.10, but it adds an argument to each nonterminal predicate to carry the
parse tree. Once the DCG is translated into a Prolog program, the execution of the
resulting program is very similar to that of the earlier one, except that unification in-
crementally builds the tree for the sentence being analyzed.

Program 3.11
s(s(NP,VP)) --> np(NP), vp(VP).
np(np(Det,N,Rel)) --> det(Det), n(N), optrel(Rel).
np(np(PN)) --> pn(PN).
vp(vp(TV,NP)) --> tv(TV), np(NP).
vp(vp(IV)) --> iv(IV).
optrel(rel(epsilon)) --> [].
optrel (rel(that,VP)) --> [that], vp(VP).

pn(pn(terry)) --> [terry].
pn(pn(shrdlu)) --> [shrdlu].
iv(iv(halts)) --> [halts].
det(det(a)) --> [a].
n(n(program)) --> [program].
tv(tv(writes)) --> [writes].

For example, the analysis of “Terry writes a program that halts” would be as fol-
lows:
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?- s(Tree, [terry,writes,a,program,that,halts],[]).
Tree = s(np(pn(terry)),
vp(tv(writes),
np(det(a),
n(program),
rel (that,
vp(iv(halts))))))

yes

Notice that the parse tree for a noun phrase without a relative clause still includes
a relative clause node covering the symbol epsilon representing the empty string.

?- np(Tree, [a, program], []).
Tree = np(det(a),
n(program),
rel(epsilon))
yes

3.7.2 Embedding Prolog Callsin DCGs

The abstract DCG formalism augments CFGs by allowing nonterminals to take extra
arguments which, through the sharing of logical variables, allow passing of informa-
tion among subphrases. However, no other form of computation other than this shar-
ing of information is allowed. The Prolog notation for DCGs goes beyond this limited
form of computation in DCGs by providing a mechanism for specifying arbitrary com-
putations over the logical variables through direct execution of Prolog goals. Prolog
goals can be interspersed with the terminals and nonterminals on the right-hand side
of a DCG rule. They are distinguished from the grammatical elements notationally by
being embedded under the bracketing operator “{---}”.

Removing extraneoustree nodes

As a simple example, we will modify the parse-tree-building grammar in such a way
that noun-phrase parse trees do not include nodes for empty relative clauses. There are
several methods for achieving this behavior. We take the simple expedient of building
the parse tree for the NP using a separate Prolog program for this purpose. Thus, the
only change to the grammar involves a modification of the NP formation rule.

np(NP) --> det(Det), n(N), optrel(Rel),
{build_np(Det,N,Rel,NP)}.

The build_np predicate operates in mode build_np(+,+,+,-), building the parse
tree for an NP from the trees for the subconstituents. In the case where the relative-
clause tree is empty, no node is included in the output parse tree.

build_np(Det, N, rel(epsilon),
np(Det,N)).
build_np(Det, N, rel(that,VP),
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np(Det,N,rel(that,VP))).

Using this modified grammar, the behavior of the grammar on simple noun phrases
becomes:

?- np(Tree, [a, program], []).
Tree = np(det(a),

n(program))
yes

Simplifying the lexicon

One of the most common uses for adding Prolog goals to a DCG is the simplification
of the encoding of the lexicon. Imagine a DCG with a large lexicon. Rather than
encoding the lexicon with separate DCG rules for each lexical item, e.g.,

n --> [problem].
n --> [professor].
n --> [program].

it is much simpler and less redundant to have a single DCG rule:
n --> [Word], {n(Word)}.

that says that the nonterminal n can cover any terminal symbol that is an n. Along with
this single rule, we need a dictionary like this:

n(problem).
n(professor).
n(program)

The utility of this technique is magnified in the context of lexical items associated
with extra arguments. If an argument is directly computable from the word itself, the
lexical entry can perform the computation and the dictionary entry need not give a
value for the argument. Such is the case for the parse trees associated with terminal
symbols. Thus, for the parse-tree-building grammar, the lexical entries might look like

n(n(Word)) --> [Word], {n(Word)}.

And for arguments that are idiosyncratically related to the word, for example, gram-
matical number, the dictionary entry will contain this information in tabular form.

n(Number) --> [Word], {n(Word, Number)}.

n(professors, plural).
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n(program, singular).
n(programs, plural).

In fact, a more succinct encoding of grammatical paradigms uses unit clauses to list
the entries in the paradigm as a table and uses the lexicon rules to decode the table.
For instance, for nouns we might have

n(singular) --> [Word], {n(Word, _)}.
n(plural ) --> [Word], {n(_, Word)}.

n(professor, professors).
n(project, projects).
n(program, programs) .

For verbs, the table might include entries for each form of the verb, as is done in
Appendix A.

Using this technique in the English fragment we have been developing, we have
the following grammar, with dictionary augmented to include some lexical items we
will find useful in later examples.

Program 3.12
S --> np, vVp.

np --> det, n, optrel.
np --> pn.

vp --> tv, np.
vp --> iv.

optrel --> [].
optrel --> [that], vp.

det --> [Det], {det(Det)}.
det(a). det(every).
det(some). det(the).

n --> [N], {n(N)}.
n(author). n(book).
n(professor). n(program) .
n(programmer). n(student).

pn --> [PN], {pn(PN)}.
pn(begriffsschrift). pn(bertrand).
pn(bill). pn(gottlob).
pn(lunar). pn(principia).
pn(shrdlu). pn(terry).
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tv --> [TV], {tv(TV)}.
tv(concerns). tv(met).
tv(ran). tv(wrote).

iv -—> [IV], {iv(IW)}.
iv(halted).

3.8 Problem Section: DCGs

3.8.1 The Syntax of First-Order Logic
First-order formulas are built from the following vocabulary:
o A countable set of variables V,

e Countable sets Fp of n-ary function symbols for each n > 0 (the elements of Fg
are also called constants),

e Countable sets Py, of n-ary predicate symbols for each n > 0,
e The connectives V, 3, v, A, =, and

e The punctuation marks (, ), and ,.
The set of first-order terms is the smallest set satisfying the following conditions:

e Each variable is a term.

o If f is an n-ary function symbol (an element of Fy,) and ty, . . ., t, are terms, then
f(ty,...,tn) is a term. As a special case, if n = 0, f as a term can be written
without parentheses. In such a case, f is referred to as a nullary function or,
more simply, a constant.

The set of well-formed formulas (wff5) is the smallest set satisfying the following con-
ditions:

e If p is an n-ary predicate symbol (an element of Py) and ty,...,t, are terms,
p(ty, ..., tn) is a wit.

o If pisawffand x is a variable, (¥x)p and (3Ix)p are wifs.
e If py and p, are wits, (p1 Vv p2) and (p1 A p2) are wits.
o If pisawff, —pisawff.

For example
(Vx)(= (x,0) v (Jy) = (s(¥). X))

is a wif assuming that x and y are in V, O is in Fg, sisin Fy and = is in Py.
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Problem 3.12 Define an encoding of the vocabulary of first-order logic as Prolog
terms. Your encoding should represent each vocabulary item as a distinct Prolog term
in such a way that the representation of each type of item (variable, function symbol,
predicate symbol, etc.) is distinguishable from all the others. Using this representa-
tion, write a DCG defining the set of wff5. (HINTS: Make sure you can distinguish
function and predicate symbols of different arities; if for your solution you need an
encoding of numbers, you can either use the successor notation for numbers or the
built-in arithmetic facilities of Prolog discussed in Section 3.4.1).

A term or wit occurs in a wif iff the term was used in constructing the wff according
to the inductive definition of wffs given above. A string of one of the forms “(¥x)’ or
‘(3Ax)’ is a binder for x. In a wif of the form B p where B is a binder and p is a wff,
p is the scope of B. An occurrence of a variable x is bound in a wif if and only if the
variable occurrence occurs within the scope of a binder for x. A wif is closed if and
only if every one of its variable occurrences is bound. For example,

(YX)p(x, X)
is closed but

(Yx)p(x,y)
is not.

Problem 3.13 Modify your wjff analyzer to accept only closed wi.

A binder for x in a wit is vacuous if there is no occurrence of x in the scope of the
binder. For example, the binder (3x) is vacuous in

(@)p(@)

Problem 3.14 Modify your wjf analyzer to accept only closed wffs without vacuous
binders.

3.8.2 Extending Syntactic Coverage

The following problems deal with extending the sophistication of the syntactic treat-
ments in the grammars we are developing.

Possessives

The grammar of Program 3.12 does not accept sentences using the English possessive
construction, such as “Every student’s professor’s book concerns some programmer’s
program”. In general, a noun phrase followed by the possessive suffix ’s plays the
same syntactic role as a determiner. Thus, an appropriate parse tree for the sentence
above would be Figure 3.4.

Problem 3.15 Extend the DCG above to accept the English possessive construction
according to the analysis exemplified in this analysis tree. Assume that the possessive
suffix is represented by the constant s in the input string. Testing the DCG will probably
be unsuccessful as the analysis will undoubtedly be left-recursive.
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Figure 3.4: Parse tree with possessives
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The analysis of possessives illustrated in the tree of Figure 3.4 is left-recursive,
that is, a phrase type X has a possible analysis as Xa. (In this particular case, the noun
phrases may be analyzed as a noun phrase followed by an ’s and a noun.)

As the discussion in the previous problem and Section 2.5.2 show, left-recursive
analyses cause problems with the use of Prolog as a DCG parser. A possible technique
to avoid this problem is to transform (by hand, or, in some cases, automatically) a
left-recursive grammar into one without left-recursion that is weakly equivalent to the
original one, that is, that accepts exactly the same strings even though it assigns them
different structures.

Problem 3.16 Develop a non-left-recursive grammar for the English sentences cov-
ered by the grammar in the last problem. To what extent are systematic methods for
converting left-recursive CFGs to weakly equivalent non-left-recursive ones (such as
are discussed by Hopcroft and Ullman (1979, pages 94-99)) applicable to definite-
clause grammars?

Problem 3.17 (Easy) Modify your solution of the previous problem to produce a parse
tree, as was done in the previous section.

Problem 3.18 (More difficult) Modify your solution of Problem 3.16 to produce left-
recursive parse trees like the one given above. How general is your method?

Problem 3.19 Modify your solution so that so-called heavy NPs, e.g., noun phrases
with relative clauses, are disallowed in possessives. For instance, the following NP
should be ungrammatical according to the grammar: ““* a program that halts’s pro-
grammer™.

Prepositional Phrases

Prepositional phrases (PP) are used in English in a variety of ways. They can play
the role of an adverbial phrase modifying the entire action described by a verb and its
complements, as in

Terry wrote a program with a computer.
Every professor wrote a book for a dollar.

And like relative clauses, they can modify a class of objects given by a noun, e.g.,

Every program in Bill’s book halts.
Alfred met a student with a problem.

In Problem 4.6, we will see yet another role for PPs.

Typical analyses of the structure of English sentences containing PPs place them
as siblings to the constituent they modify. Thus, adverbial PPs are siblings of VVPs
(or, under certain conditions, Ss), and noun-modifying PPs are siblings of N (like
relative clauses). There are two ways that such a configuration could come about.
Consider the VP-modifying adverbial PPs. The PP could occur under the S node, just
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as the VP does. Alternatively, a new node under the S could cover both the VP and
the PP. Usually, this node is considered to be a VP itself, thus allowing for a left-
recursive VP structure. Linguistically, this analysis may be preferred because it allows
for several adverbials to follow a \VVP. The left recursion, however, presents a problem
for Prolog; therefore, we will assume the former analysis. Indeed, the positioning of
relative clauses directly under NP as a sibling of the noun was chosen for the same
reason, to avoid the left recursion implicit in the more traditional analysis.

Note that the first and last example sentences include the same categories of lexical
items, i.e.,

PN TV DetN P Det N

Yet intuitively the first PP modifies the verb phrase—it is the writing of the program
that is performed with a computer—while the second does not modify the VP—it is
not the meeting of the student that is performed with a problem. These two sentences
are thus syntactically ambiguous, though semantically only one of the two readings
seems plausible. This phenomenon of ambiguity in the structural placement of PPs is
often called the PP attachment problem.

Problem 3.20 Write DCG rules to allow adverbial and NP-modifier PPs such as those
above. You will need rules not only for the prepositional phrases themselves but also
for their use in modifying VPs and NPs. Is your grammar ambiguous, that is, does
it display the PP attachment ambiguities discussed above? How might you augment
the grammar (presumably with semantic information) so that spurious readings are
filtered out?

Subj ect-Verb Agreement

In Section 3.7 we alluded to the phenomenon of subject-verb agreement in English.
This problem explores the phenomenon in greater detail.

In English, subjects agree with the verb they are the subject of both in person (first,
second or third) and in number (singular or plural). For instance, the string “*I writes
programs” is not a grammatical English sentence because the word “I” is a first-person,
singular noun phrase, whereas the verb “writes” is third-person, singular. On the other
hand, “I write programs” is grammatical because “write” is a first-person singular verb.
Of course, it is also second-person singular as in “you write programs” and any-person
plural as in “they write programs”, “we write programs”, etc.

The problem is compounded in that in complex noun phrases, such as “a program-
mer” or “all programmers”, both the determiner and the noun carry agreement infor-
mation. So we have “all programmers write programs” but not “* all programmers
writes programs” or “* a programmers write programs” or “* a programmers writes
programs”. A final complication is the fact that certain determiners, nouns, and verbs
are unmarked for person or number or both. For instance, as we have seen above,
the word “write” viewed as a plural verb is unmarked for person. The determiner
“the” is unmarked for number, as seen in “the programmer” and “the programmers”.
Rarer are nouns that are unmarked for number. Examples include so-called summation
plurals (e.g., scissors, binoculars, jeans), certain foreign words (e.g., corps, chamois,
although there is a difference in pronounciation despite identical spelling in the sin-
gular and plural), certain other words ending in -s (e.g., crossroads, species, series),
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some nationality terms (e.g., Chinese, Eskimo) and some other idiosyncratic nouns
(e.g., offspring, aircraft), and certain zoological terms (e.g., fish, sheep, salmon, etc.

Thus, we have “a fish swims” and “all fish swim”. We could handle this phe-
nomenon by having separate lexical entries for the singular noun fish and the plural
noun fish just as we would have separate entries for the noun fish and the verb fish, but
a nicer solution is to allow entries to be unmarked for person and/or number. Nonethe-
less, the less elegant solution is still needed for the first/second-person singular verb
write, since leaving it unmarked for person would allow the string “* he write a pro-
gram” as a sentence.

Problem 3.21 Extend the grammar so that it requires that subjects agree with verbs in
sentences and that determiners and nouns agree as well. You should do this by adding
a single extra argument to appropriate nonterminals to hold agreement information.
Discuss the following facets of the solution:

1. How the various strings are or are not admitted (parsed) by the grammar.

2. How certain lexical entries can be underspecified for certain agreement infor-
mation. Demonstrate at least the full paradigm of agreement of the verb halt
and the verb be, that is, make sure you have sufficient lexical entries for all the
forms of the verb.

3. What you do for proper nouns and pronouns.

4. Why it is preferable to use only one argument position for agreement.

(For the purposes of these problems you can think of pronouns like I, we, he, etc.
as merely a type of proper noun.)

Relative Clause Agreement

Agreement in English does not stop at the subject and the verb of the whole sentence.
Even subclauses like relative clauses display this phenomenon. Thus the string

A program that concerns Bertrand halted.
is a grammatical sentence whereas
*A program that concern Bertrand halted.

is not, even though in both cases the subject “a program...” agrees with the verb halted.
The problem, of course, is that the implicit subject of the verb phrase in the relative
clause “concern Bertrand” is that same phrase “a program” (often called the head of
the relative clause), but the verb concern is either plural or first- or second-person
singular, whereas “a program” shows third-person singular agreement.

Problem 3.22 Extend your grammar so that it captures the phenomenon of agreement
between heads of relative clauses and the verbs in the relative clause. Again demon-
strate that your solution interacts appropriately with normal subject-verb agreement,
underspecified lexical entries, etc.
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Subcategorization

We have seen in previous grammars that different verbs require different complements,
that is, phrases following them in the verb phrase. So, for instance, the verb wrote
requires a single noun phrase following it as in the VP “met Bertrand”. Thus the string
“*met Bertrand a book” is not a grammatical VP (or anything else for that matter),
nor is “*met”. On the other hand, the verb gave requires (or, in the linguistics jar-
gon, subcategorizes for) two NPs, not one, as in the VP “gave Bertrand a book”, but
not “*gave Bertrand”. This phenomenon of subcategorization has been primitively
encoded in previous grammars in the distinction between TVs (transitive verbs) and
IVs (intransitive verbs). In this problem we will investigate subcategorization in more
detail.

One possible solution to the subcategorization problem is to associate another ar-
gument to each verb, its subcategorization type. Then for each type, we would have
a rule that admitted only verbs of the appropriate type. Here is a piece of a grammar
using this method of subcategorization (but ignoring agreement, verb form, etc.):

Program 3.13
vp --> v(intransitive).
vp --> v(transitive), np.
vp --> v(ditransitive), np, np.
vp --> v(dative), np, pp.

v(intransitive) --> [halted].
v(transitive) --> [met].
v(ditransitive) --> [gave].
v(dative) --> [gave].

(By dative here we mean that the verb requires a noun phrase and a prepositional
phrase with the preposition to as in “gave the book to Bertrand”. Thus the verb gave
has two subcategorization frames: ditransitive and dative.)

The phenomenon has been called subcategorization because the extra argument
puts verbs into subclasses, or subcategories, of the main category verb. Estimates by
linguists as to the number of different subcategorization frames, i.e., types of subcat-
egorization, vary, but at least 30 such rules are postulated for English by Gazdar et al.
(1985) and probably many more would be required. Estimates run as high as the tens
of thousands (Gross, 1975). For this reason (and the fact that we have already given
this solution), we will not use this sort of attack on the problem.

Instead, we will use a different technique for handling subcategorization. We will
have a single rule allowing a verb phrase to be formed from a verb followed by a
sequence of zero or more complements where a complement is either a noun phrase
or a prepositional phrase. The verb will have a list of complement types in its lexical
entry. For instance, the verb gave might have the list [np,np], the verb halted might
have the empty list [ 1. While building up the sequence of complements, the grammar
will keep track of the types of the complements and make sure they match the list in
the lexical entry for the verb. The sequence of complements “Bertrand a book” would
have the associated list of types [np,np]. Since this matches the lexical entry for the
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verb gave, the grammar would allow “gave Bertrand a book” but since it doesn’t match
the empty list, the grammar would disallow “*halted Bertrand a book”.

Problem 3.23 Extend your grammar so that it handles subcategorization require-
ments of verbs in the way just described. Demonstrate that it allows appropriate verb
phrases and sentences and conversely for non-sentences. Then extend the solution to
capture the fact that the verb gave requires a prepositional phrase with the preposition
to whereas bought requires a PP with the preposition from, e.g., “bought a book from
Bertrand”.

Notice that in either of the subcategorization methods mentioned here a PP com-
plement is (a subconstituent of) a sibling of the verb, rather than a sibling of the VP as
adverbial PPs are. This can be a further source of the kind of grammatical ambiguity
discussed in Problem 3.20.

3.9 Bibliographic Notes

Edinburgh Prolog syntax is so simple that a detailed account of the syntax is rarely
required when programming. The manual for each particular Prolog implementation
usually contains a full description of the syntax for reference purposes. Appendix |
of the DEC-10 Prolog manual contains such a description for the Edinburgh family of
Prologs (Bowen, 1982).

Functional programming (Section 3.3) has been developed for many of the same
reasons as logic programming has been (Backus, 1978). Efforts to introduce func-
tional and equational notions into logic programming languages have been numerous.
A good cross-section can be found in the book by DeGroot and Lindstrom (1986).
Equality (i.e., equational logic) as a sufficient basis for logic programming is devel-
oped by O’Donnell (1985).

The term “logical variable” (Section 3.3) was introduced by D. H. D. Warren
(1977) to distinguish the specific procedural properties given to the variables in def-
inite clauses by Prolog, or more generally by SLD proof procedures, from both the
variables of imperative languages (names for assignable locations) and the variables
of functional languages (hames for values). The distinguishing characteristics of logi-
cal variables include their role in standing for as yet unfilled parts of a term and their
ability to become coreferential through variable-to-variable bindings.

Lists as a data structure (Section 3.4) are heavily used in languages other than Pro-
log. In particular, the programming language visp (which stands for wList processing)
makes heavy use of lists. Many introductory Lisp books are available, but few intro-
duce the subject as simply and clearly as the original Lisp 1.5 Programmers’ Manual
(McCarthy, et al., 1965). The modern Lisp dialect scueme is thoroughly discussed in
an excellent textbook by Abelson and Sussman (1985).

The notion of modes (Section 3.4.1) for predicates in logic programs appeared first
in the DEC-10 Prolog. Mode declarations allowed the DEC-10 Prolog compiler to
generate better code for predicates known to be used only in certain modes (Warren,
1977; Warren, 1979). The concept has since then been explored as an additional con-
trol mechanism for logic programs (Clark and McCabe, 1981; Naish, 1986) and in
global program-optimization techniques (Mellish, 1985).
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Mode assignments depend on the particular order of calls in a program. Thus
correct mode assignments are program properties tied to the program’s procedural in-
terpretation. Other properties, such as what types of arguments predicates accept, de-
pend only on the declarative interpretation of programs (Mycroft and O’Keefe, 1984;
Mishra, 1984). Type assignments to predicates can be useful both for program ver-
ification and for compilation. Methods to compute both declarative and procedural
properties of Prolog programs, among them mode and type assignments, often rely
on the techniques of abstract interpretation, a means of analyzing the properties of
programs by interpreting them over simplified data domains in which the properties of
interest are computable (Mellish, 1986; Jones and Sgndergaard, 1987).

As we noted before, the resolution method (Section 3.5) is due to Robinson (1965).
Resolution, substitutions, and unification are covered in any of the automated deduc-
tion books mentioned on Section 1.5; Robinson’s treatment (1979) is particularly clear.
The special case of SLD resolution is discussed by Lloyd (1984), who gives a detailed
mathematical account of the semantics of Prolog.

Definite-clause programs define relations over the Herbrand universe, the set of
all ground terms built from the constants and function symbols in the program. It is
possible to represent the tape of a Turing machine as a term, and it is then not difficult
to show that the relation betweeen initial and final configurations for any Turing ma-
chine can be represented by a definite-clause program (Téarnlund, 1977). Furthermore,
it is possible to show that any computable function on terms, for a suitable defini-
tion of computation on terms, can be represented without encoding of the data by a
definite-clause program (Andreka and Nemeti, 1976). The overall computation model
given by SLD resolution is rather similar to the alternating Turing machine model
(Shapiro, 1982). Background material on notions of computability and decidability
from computer science and logical perspectives can be found in the books by Hopcroft
and Ullman (1979) and Boolos and Jeffrey (1980) respectively.

The concept of definite-clause grammar (Section 3.7) was introduced by Pereira
and Warren (1980). DCGs are a simplification of Colmerauer’s metamorphosis gram-
mars (1978), which were the first grammar formalism based on Horn clauses. Meta-
morphosis grammars and definite-clause grammars are two instances of logic gram-
mars, grammar formalisms whose meaning is given in terms on an underlying logic.
Even from a fixed logic such as definite clauses, one can construct distinct formalisms
depending on what grammatical notions one chooses to make part of the formalism
instead of representing explicitly by grammar rules. Examples of such formalisms
include extraposition grammars (Pereira, 1981), definite-clause translation grammars
(Abramson, 1984) and gapping grammars (Dahl and Abramson, 1984). The basic
notion of logic grammar has also been instantiated within other logics, in particular
Rounds’s logics for linguistic descriptions, which formalize certain aspects of DCGs
to give logical definitions for natural recognition-complexity classes of formal lan-
guages (Rounds, 1987).

The construction of efficient sorting algorithms (Section 3.4.1) is of course a very
important problem in computer science. The most thorough design and analyses of
sorting algorithms (Knuth, 1973) have usually been done for random-access memory
machine models. It is possible to rewrite many of those algorithms (eg. bubblesort,
quicksort) for Prolog’s declarative model, but in general the computational cost of the
algorithm will change, because the sequences to be sorted are encoded as lists rather
than as arrays with direct access to all elements. Algorithms specifically designed to
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sort lists, such as mergesort, are more suitable for implementation in Prolog, which is
the reason for our choice of example.

Tree grammars (Section 3.6) were introduced as the grammatical counterparts of
generalized automata that operate on trees (Rounds, 1969). The yields of regular tree
grammars (finite-state-tree automata) are exactly the context-free languages, and the
yields of context-free tree grammars are exactly the indexed languages (Rounds, 1970).
Indexed languages have another characterization, the indexed grammars introduced by
Aho (1968; Hopcroft and Ullman, 1979), which are much closer in form to definite-
clause grammars.

Arithmetic expression simplification is a particular case of the general problem of
rewriting an expression according to a set of equations giving the algebraic laws of
the operators in the expressions, e.g., associativity or commutativity. The rewriting
method we suggest in Section 3.6 is rather simple-minded. More sophisticated ap-
proaches involve methods to determine an orientation for equations so that the result
of applying an equation is in some appropriate sense simpler than the starting expres-
sion, and methods for completing a set of equations so that the order of application of
oriented equalities does not matter. These techniques are surveyed by Huet and Oppen
(1980) and Buchberger (1985).

Subcategorization has been a primary phenomenon of interest in modern linguis-
tics, and there are as many analyses of the phenomenon as there are linguistic theories,
if not more. We start by using a subcategorization method (Program 3.12) loosely
based on the terminology of Montague grammar. The first augmentation (Program
3.13) is inspired by Gazdar et al. (1985). Section 3.8.2 works toward an analysis com-
mon in the logic programming field; it was first published by Dahl (1981) and extended
by several authors such as McCord (1982). Similar analyses employing lists, but in
slightly different ways, can be found in HPSG (Sag and Pollard, 1986) and PATR-11
(Shieber, 1985a).

The PP attachment problem (Section 3.8.2) has received much attention in the
computational linguistics literature. A particularly detailed discussion is that of Church
(1980; Church and Patil, 1982). Pereira (1982) discusses the problem from a logic
grammar perspective.
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In this chapter, we will be concerned with extending the capabilities and cover-
age of grammars in two ways. First, we will explore grammars that express not only
syntactic but also semantic relationships among constituents. These grammars incor-
porate constraints on how the meaning of a phrase is related to the meanings of its
subphrases. Second, we will extend the range of syntactic constructions covered by
previous grammars. Both of these kinds of extensions will prove useful in the next
chapter in the development of a simple natural-language question-answering system.

4.1 Semantic Interpretation

First, we turn to the incorporation of semantic information into a DCG. A common
way to model the semantics of a natural language is to associate with each phrase
a logical form, that is, an expression from some logical language that has the same
truth conditions as the phrase. A simple recursive method for maintaining such an
association is possible if the logical form associated with a phrase can be composed
out of the logical forms associated with its subparts. This compositional method for
modeling the semantics of a natural language is the hallmark of the highly influential
work by the logician Richard Montague and his students and followers.

Montague used a higher-order logic based on the typed lambda calculus, inten-
sional logic, as the language for logical forms. We will describe a vastly simplified
form of compositional semantics inspired by Montagovian techniques but using first-
order logic extended with an untyped lambda calculus as the logical form language.

77
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Then we will show how such a semantics can be encoded in a DCG which builds
logical forms in the course of parsing. A technique of general utility, partial execu-
tion, will be introduced as a method with which we can simplify the DCG. We will
then proceed to discuss several topics in the encoding of semantics, namely, quanti-
fiers, quantifier scope, and (after the appropriate syntactic background in Section 4.2)
filler-gap dependencies.

411 ThelLambda Calculus

In the semantics we will develop, logical forms for sentences will be expressions in
first-order logic that encode propositions. For instance, the sentences “suroru halts”
and “Every student wrote a program” will be associated with the first-order logic ex-
pressions halts(shrdlu) and (¥s)student(s) = (3p)(program(p)&wrote(s, p)), respec-
tively.

We again emphasize the differences between the FOL notation we use here (see
Section 2.3) and the notation for Prolog. The differences help to carefully distinguish
the abstract notion of logical forms from the particular encoding of them in Prolog.
FOL formulas will later be encoded in Prolog not as Prolog formulas, but as terms,
because our programs are treating the formulas as data.

Most intermediate (i.e., nonsentential) logical forms in the grammar do not encode
whole propositions, but rather, propositions with certain parts missing. For instance,
a verb phrase logical form will typically be a proposition parameterized by one of the
entities in the situation described by the proposition. That is, the VP logical form can
be seen as a function from entities to propositions, what is often called a property of
entities. In first-order logic, functions can only be specified with function symbols. We
must have one such symbol for each function that will ever be used. Because arbitrary
numbers of functions might be needed as intermediate logical forms for phrases, we
will relax the “one symbol per function” constraint by extending the language of FOL
with a special function-forming operator.

The lambda calculus allows us to specify functions by describing them in terms of
combinations of other functions. For instance, consider the function from an integer,
call it x, to the integer x + 1. We would like to specify this function without having to
give it a name (like succ as we have done previously). The expression x + 1 seems to
have all the information needed to pick out which function we want, except that it does
not specify what in the expression marks the argument of the function. This problem
may not seem especially commanding in the case of the function x + 1, but when we
consider the function specified by the expression x +y, it becomes clear that we must
be able to distinguish the function that takes an integer x onto the sum of that integer
and y from the function that takes an integer y onto the sum of it and x.

Therefore, to pick out which variable is marking the argument of the function,
we introduce a new symbol “A” into the logical language (hence the name “lambda
calculus”). To specify a function, we will use the notation

X

where x is the variable marking the argument of the function and ¢ is the expression
defining the value of the function at that argument. Thus we can specify the successor
function as Ax.x+1 and the two incrementing functions can be distinguished as Ax.x+y
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and Ay.x +y. We will allow these lambda expressions anywhere a functor would be
allowed. For instance, the following is a well-formed lambda calculus term:

(Ax.x+1)(3)

Intuitively, such a function application expression should be semantically identical to
the expression 3 + 1. The formal operation called (for historical reasons) g-reduction
codifies this intuition. The rule of 8-reduction says that any expression of the form

(Ax.¢)a

can be reduced to the (semantically equivalent) expression

[¢lix=2a}

that is, the expression ¢ with all occurrences of x replaced with a. We ignore here and
in the sequel the problem of renaming of variables, so-called a-conversion, to avoid
capture of free variables. In the examples to follow, we will always make sure that
variables in the various lambda-calculus expressions being applied are distinct. The
scoping rules of Prolog (Section 2.5.1), being geared toward logical languages in the
first place, guarantee the appropriate scoping of variables in the case of the encoded
logical language as well. In fact, this is one of the advantages of using Prolog variables
to encode variables in the logical form language, as we will do in Section 4.1.3 below.

We will see in the next section how the lambda calculus and g-reduction can be
used to provide a simple compositional semantics for a fragment of English.

4.1.2 A Simple Compositional Semantics

We will now consider how to specify a semantics for the fragment of English given
as the context-free grammar in Section 2.7 and axiomatized in Programs 2.4 and 3.10.
We will associate with each context-free rule a corresponding rule for composing the
logical forms of the subconstituents into the logical form for the parent constituent.
For instance, associated with the rule

S—= NP VP
we will have the rule?

Semantic Rule 1: If the logical form of the NP is NP’ and the logical form for
the VP is VP’ then the logical form for the S is VP’(NP’).

and with the rule
VP — TV NP
we will associate

Semantic Rule 2: If the logical form of the TV is TV’ and the logical form of
the NP is NP’ then the logical form for the VP is TV’(NP’).

1By convention, we will notate variables representing the logical form associated with a nonterminal by
adding a prime suffix.
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wrote(bertrand, principia)

NP VP
bertrand Ay.wrote(y, principia)
bertrand v NP
Ax. Ay.wrote(y,x) principia
wrote principia

Figure 4.1: Parse tree with logical forms

For instance, the sentence “surpLu halts” can be decomposed into an NP and a VVP.
Suppose the logical form for the NP “surpru” is shrdlu and that for the VP “halts” is
halts. Then by Semantic Rule 1 above, the logical form for the whole sentence will be
halts(shrdlu), an expression which, under the natural interpretation and idealizations,
has the same truth conditions as the sentence “surprLu halts”. So far, no use of the
lambda calculus extension to first-order logic has been needed.

Now consider the sentence “Bertrand wrote Principia”. Again, we will have
the logical forms for the proper nouns “Bertrand” and “Principia” be bertrand and
principia respectively. The logical form for the transitive verb “wrote” will be
the lambda expression Ax.Ay.wrote(y, X). By the second rule above, the VP “wrote
Principia” will be associated with the expression (Ax.Ay.wrote(y, X))(principia),
which by B-reduction is equivalent to Ay.wrote(y, principia). Now by the first
rule above, the sentence “Bertrand wrote Principia” is associated with the logical
form (Ay.wrote(y, principia))(bertrand), which, g-reducing again, is equivalent to
wrote(bertrand, principia). The derivation can be summarized in the parse tree of
Figure 4.1, which has been annotated with appropriate logical forms. Similar semantic
rules could be given to the other context-free rules in the grammar to allow the building
of logical forms for a larger class of phrases.

Exercise4.1  What do the following lambda-calculus expressions reduce to?

1. (Ax.halts(x))(shrdlu)
2. ((Ay.Ax.halts(x))(shrdlu))(lunar)
3. (Ay.ap.ax.wants(x, p(y)))(shrdlu)(Az.halts(z))(terry)

4. (Ay.yy)(1y.yy)

4.1.3 Encoding the Semantic System in Prolog

We now turn to the issue of encoding such a grammar with compositional semantics
in Prolog. Several problems face us. First, we must be able to encode logical forms in
Prolog. Second, we must be able to associate with each constituent an encoded lambda
expression. Finally, we must be able to encode the process of 3-reduction.
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As mentioned before, we will encode all FOL expressions—both formulas and
terms—as Prolog terms, since we will be manipulating them as data within the DCGs.
As it turns out, we will encode FOL variables in Prolog as Prolog variables, and FOL
function symbols as Prolog function symbols, but this is where the isomorphism stops,
for FOL quantifiers, predicate symbols, and connectives will also receive encodings
as Prolog function symbols. In particular, we will encode the universal quantifica-
tion (Yx)¢ with the Prolog term all (X, ¢’), where ¢’ is the Prolog encoding of ¢.
Similarly, (3x)¢ is encoded as exists(X, ¢’).2 The implication and conjunction
connectives are encoded with the binary infix functor symbols “=>" and “&” respec-
tively. All FOL predicate and function symbols are encoded by their homonymous
Prolog function symbols.

Lambda expressions consist of a variable and a logical expression which uses that
variable. We will encode the pairing of the variable with the expression with a new
infix binary Prolog operator, the caret “"”. Thus the lambda expression Ax.x + 1 would
be encoded in Prolog as X~ (X+1). Similarly, the lambda expression Ax.Ay.wrote(y, X)
would be encoded as the Prolog term X" Y “wrote (Y, X), assuming right associativity
of “~» 3

We solve the second problem—associating an encoded lambda expression with
each constituent—using the by now familiar technique of adding an argument position
to each nonterminal to hold the logical form encoding. So a skeletal DCG rule for
combining an NP and VP to form an S (ignoring for the moment the constraints on the
logical forms expressed in Semantic Rule 1) will be:*

s(S) --> np(NP), vp(VP).

which can be read as “a sentence with logical form S can be formed by concatenating
a noun phrase with logical form NP and a verb phrase with logical form Vp”.

Finally, we model the application of a lambda expression and subsequent -
reduction with the predicate reduce. The intended interpretation of a literal
reduce(Function, Arg, Result) is that Result is the g-reduced form of the ap-
plication of the lambda expression Function to the argument Arg. We implement the
predicate with the following single unit clause.

Program 4.1
reduce(Arg Expr, Arg, Expr).

The earlier examples of g-reduction can now be handled by this Prolog encoding.
For instance, corresponding to the reduction of the application (Ax.halts(x))(shrdlu) to
the logical form halts(shrdlu) we have the following Prolog dialogue:

2From a strict logical point of view, the use of Prolog variables to encode FOL variables is incorrect,
being a case of confusion between object variables (those in the logical form) and metalanguage variables
(those in Prolog, the metalanguage used here to describe the relation between strings and logical forms).
It would be possible to avoid this confusion between object and metalanguage variables with a somewhat
more complicated description. However, this particular abuse of notation, if properly understood, is unlikely
to cause problems and brings substantial benefits in program simplicity.

SThere is precedent for the use of the caret to form lambda expressions. The notation that Montague
himself used for the lambda expression Ax.¢ was (ignoring details of intensionality operators) X¢, which we
have merely linearized.

“4For ease of expression within the Prolog syntax, we drop the priming convention when writing Prolog
clauses.
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?- reduce(X"halts(X), shrdlu, LF).
LF = halts(shrdlu)

The other examples are handled similarly.

The reduce predicate performs a single outermost reduction. It does not reduce a
lambda expression until no further reductions can be performed. That is, it does not re-
duce to canonical form. For instance, consider an expression that has a variable bound
by a A used as a function in the body of the lambda expression, e.g., Ap.p(a). When
this lambda expression is itself applied to, say, Ay.f(y), the result can be reduced to
f(a). The Prolog encoding of the former expression, PP (a), is not even well-formed.
Even if it were, the reduce predicate does not perform internal reductions, but only the
reduction associated with the outermost expression. When expressions with internal
applications like this are needed, we will be forced to implement the internal applica-
tions with explicit reduce literals. For instance, the troublesome lambda expression
Ap.p(a) could be implemented as P"Q where reduce (P, a, Q) holds.

Using the reduce predicate, we can now directly encode the compositional se-
mantic rules described above. For the first semantic rule applying the VP logical form
to that of the NP, we add to the DCG an appropriate extra condition.

s(S) --> np(NP), vp(VP), {reduce(VP,NP,S)}.
Similarly, for the verb-phrase rules, we have,

vp(VP) --> tv(TV), np(NP), {reduce(TV, NP, VP)}.
vp(VP) --> iv(VP).

Lexical entries must now include semantic information.

tv(X"Y wrote(Y,X)) --> [wrote].
iv(X"halts(X)) --> [halts].
np(shrdlu) --> [shrdlu].
np(terry) --> [terry].

Given this augmented grammar and lexicon, which is merely the direct encoding
of the type of compositional semantic rules presented at the beginning of this section,
we can parse simple sentences while building encodings of their logical forms in the
process.

?- s(LF, [shrdlu, halts], []).
LF = halts(shrdlu)
yes

?- s(LF, [terry, wrote, shrdlu]l, []).
LF = wrote(terry, shrdlu)
yes

and so forth.
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4.1.4 Partial Execution

In this section, we will introduce a technique called partial execution which is a device
of general utility for the manipulation of Prolog (and other logic and functional) pro-
grams. Partial execution of a program involves the replacing of certain computations
that would normally be performed at execution time by changes to the program itself.

Pure Prolog programs are particularly well suited for partial execution because this
technique is just a different way of applying the basic Horn-clause computation rule,
resolution, that is used for normal execution.

For instance, consider the DCG rule

s(S) --> np(NP), vp(VP), {reduce(VP,NP,S)}.

The computation of the reduce condition is deterministic and involves only the mutual
binding of several variables. If we change the clause by performing these bindings in
the clause itself, we can actually remove the reduce literal, since its purpose has been
fulfilled. In the case at hand, reduce merely requires that VP be of the form NP~S. If
we guarantee this in the clause, i.e.,

s(S) --> np(NP), vp(NP"S).

we can leave off the application, as it is already implicit in the clause. The clause is
said to have been partially executed with respect to the reduce predicate.
Similarly, we can partially execute the transitive VP clause to get

vp(VP) --> tv(NP"VP), np(NP).

Partial execution becomes more complex in the face of nondeterminism. If the
literal we are removing from a clause by partial execution has several solutions, we
must replace the original clause by all of the possible partial executions of the original.
Clearly, partial execution of a clause with respect to a literal is useful only if there
are a finite number of solutions to the literal in the context of the clause. If there are
potentially an infinite number, then we must in general wait until run time to execute
the literal, in the hope that the previous computation will provide enough restrictions
on the goal literal to limit the search space.

From now on, we will often eschew explicit reduce literals by implicitly partially
executing the clauses so as to remove them. We will discuss partial execution in more
detail in Section 6.4.

4.1.5 Quantifi ed Noun Phrases

In attempting to extend the technique of compositional semantics to the rest of the
context-free grammar in Program 3.12, we immediately run into problems with the
rule for quantified noun phrases. Consider a sentence such as “every program halts”.
The natural first-order logical form for this sentence is

(Yx)program(x) = halts(x)

Using the encoding of FOL as Prolog terms, this would be
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all(X, program(X) => halts(X))

Notice that the main functor of the expression is the universal quantifier, whereas
the application of the logical form for “halts” will always result in the main functor of
the output being the predicate halts. This problem in term manipulation is actually the
formal reflex of a much deeper problem noticed by Montague, which led to a drastic
reorganization of his compositional semantics. Unlike the simple two-rule grammar
above, in which verb-phrase logical forms apply to noun phrases, Montague required
noun phrases (which are, of course, the source of the quantifier functors) to apply to
verb phrase arguments. For instance, for the sentence “every program halts”, the verb
“halts™ will retain its logical form Ax.halts(x), but the noun phrase will have the LF
Aq.(Yp)program(p) = q(p). Applying the noun phrase LF to that of the verb phrase,
we have

(49.(Yp)program(p) = q(p))(4x.halts(x)) =
(Vp)program(p) = (Ax.halts(x))(p) =
(Vp)program(p) = halts(p)

The DCG rule encoding this revised application direction is
s(S) --> np(VP"S), vp(VP).

The verb phrase logical forms will be encoded as before. Noun phrases, on the
other hand will now be of the form

Q"all(M, (program(M) => R)) ,

where R is the application of Q to M, that is, reduce (Q,M,R) holds. (Recall that such
internal applications would not be performed automatically by the reduce predicate,
so we must list them explicitly.) In fact, we can remove this extra condition by partial
execution with respect to the reduce predicate, yielding the rather more cumbersome

(M"R) "all(M, (program(M) => R))

The LF associated with the noun “program” we will take to be the simple property of
being a program, that is, Ax.program(x) encoded in Prolog as X"program(X). Deter-
miners will be functors from noun logical forms (simple properties) to the complex NP
logical forms like that above. Thus, the determiner “every” will have the logical form

Ap.4q.(Yx)p(x) = q(x)
encoded in Prolog (with applications removed by partial execution) as
&P X'Q"allX, (P => Q)
The lexical entry for “every” is therefore
det( X"'P)"X"Q "allX,(® => Q) ) --> [every].

As implied above, determiners will be functions on their noun arguments, so the DCG
rule for NP formation (ignoring relative clauses for the moment) is:
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np(NP) --> det(N"NP), n(N).

Exercise 4.2 Check that these rules and lexical entries allow for the following parse,
and give its proof tree.

?- s(LF, [every, program, halts], []).
LF = all(X, (program(X) => halts(X)))
yes

Given the reorientation of application, we have developed an appropriate LF for
determined noun phrases, but we must rework the encoding of proper noun meanings
we were using before. Clearly, their LFs must be modified to respect the new appli-
cation direction. In particular a proper noun like “surprLu” must, like all NPs, be a
function from VP-type LFs to full sentence LFs; that is, it must be of the form

VP"S ,

where reduce (VP, shrdlu, S) holds. By partial execution, we have the relatively
unintuitive logical form

(shrdlu”S)”S
In any case, the lexical entry

np( (shrdlu“S)"S ) --> [shrdlu].
allows the parse

?- s(LF, [shrdlu, halts], []).
LF = halts(shrdlu)
yes

as before.

The logical form for “sarpLU” seems unintuitive because it is not the encoding of
any lambda expression. The position that should be occupied by a variable is occupied
by a constant shrdlu. Actually, we have seen a similar phenomenon before in LFs for
determiners and noun phrases, in which the same position is occupied by a full lambda
expression. Partial execution of applications can yield bizarre expressions, exactly
because the execution is partial. Only part of the work of g-reduction is done, the
remainder being performed at run time when the appropriate variables are instantiated.
Thus, we should not worry too much that the encoding of the lambda expressions we
are using has certain properties that the calculus in the abstract does not have.

Finally, modifying the transitive verb phrase rule, again changing the direction
of application, consider the verb phrase “wrote a program”, which should have the
LF Az.(Ap)program(p)&wrote(z, p). Recall that the LFs for “wrote” and for “a pro-
gram” are, respectively, Ax.1y.wrote(y, x) and Ag.(3p)program(p)&q(p). To simplify
the derivation, we vary the treatment of transitive verbs slightly, taking the LF for
“wrote” to be Ax.Ay.wrote(x, y). Thus we want the VP’s LF to be 1z.NP’(TV'(2)).
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Exercise 4.3 Check that this lambda expression is the appropriate one for NP’ and
TV’ as in the example above.

In Prolog, we have:

vp(Z~S) -->
tv(TV), np(NP),
{reduce(TV,Z,1IV),
reduce(NP,IV,S)}.

which through partial execution is equivalent to
vp(Z™S) --> tv(Z"IV), np(IV"S).

The full fragment of Program 3.12, augmented so as to produce logical forms, is
given below.

Program 4.2
:- op(500,xfy,&).
- op(510,xfy,=>).

s(S) --> np(VP"S), vp(VP).

np(NP) -->
det(N2"°NP), n(N1), optrel(N1°N2).
np((E"S)"S) --> pn(E).

vp(X"S) --> tv(X"IV), np(IV"S).
vp(IV) --> iv(IV).

optrel ((X"S1)"(X"(S1 & S2))) --> [that], vp(X~S2).
optrel(N"N) --> [].

det(LF) --> [D], {det(D, LF)}.
det( every, (X"S1)"(X"S2)"all(X,(S1=>S2)) ).
det( a, (X"S1) " (X"S2) "exists(X,S1&S2) ).

n(LF) --> [N], {n(N, LF)}.
n( program, X program(X) ).
n( student, X"student(X) ).

pn(E) --> [PN], {pn(PN, E)}.
pn( terry, terry ).
pn( shrdlu, shrdlu ).

tv(LF) --> [TV], {tv(TV, LF)}.
tv( wrote, XY wrote(X,Y) ).

iv(LF) --> [IV], {iv(IV, LF)}.
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iv( halts, X"halts(X) ).

Exercise 4.4 Check that the grammar as augmented now allows the following parses,
and give their proof trees:

?- s(LF, [terry, wrote, shrdlu], []).
LF = wrote(terry, shrdlu)
yes

?- s(LF, [every, program, halts], []).
LF = all(P,program(P)=>halts(P))
yes

?- s(LF, [every, student, wrote, a, program], []).
LF = all(S,student(S)=>
exists(P,program(P)&
wrote(S,P)))
yes

Exercise 4.5 How does this grammar handle the semantics of relative clauses?

The role of unification and the logical variable in incrementally building complex
representations is clearly evident in DCGs that describe the relation between natural-
language sentences and their logical meaning representations.

We can illustrate the order in which a logical form is built during parsing by the
analysis trace of the sentence “Every program halts”. The trace has been simplified by
replacing variables referring to string positions with ? and by omitting uninteresting
subgoals. String positions were changed from lists to integers for readability.

?- s(LF, 0, 3).
(1) 0 Call: s(S_1,0,3)

(2) 1 Call: np(VP_2°S_1,0,7)
(3) 2 Call: det(N2_3°VP_2"S_1,0,7)
(5) 3 Call: det (every,N2_3"VP_2"S_1)
(5) 3 Exit: det (every, (X_5°51_5)"
(X_5°52_5)"
all(X_5,81_5=>S2_5))
(3) 2 Exit: det ((X_5751.5)"
(X_5°52_5)"
all(X_5,81_5=>S2_5),0,1)
(6) 2 Call: n(N1_6,1,7)
(8) 3 Call: n(program,N1_6)
(8) 3 Exit: n(program,X_8 program(X_8))
(6) 2 Exit: n(X_8 program(X_8),1,2)
(9) 2 Call: optrel ((X_8 program(X_8))"

X_5°581.5,2,7)
(9) 2 Exit: optrel ((X_5"program(X_5))"
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X_5"program(X_5),2,2)

(2) 1 Exit: np((X_5752_5)"
all(X_5,program(X_5)=>S2_5),0,2)

(11) 1 Call: wvp(X_5"52_5,2,3)

(12) 2 Call: tv(X_5"IV_12,2,7)

(14) 3 Call: tv(halts,X_5"IV_12)

(14) 3 Fail: tv(halts,X_5"IV_12)

(12) 2 Fail: tv(X_5°IV_12,2,7)

(15) 2 Call: iv(X_5"582_5,2,3)

(17) 3 Call: iv(halts,X_5"S2_5)

(17) 3 Exit: iv(halts,X_5"halts(X_5))

(15) 2 Exit: iv(X_5"halts(X_5),2,3)

(11) 1 Exit: vp(X_5"halts(X_5),2,3)

(1) 0 Exit: s(all(X_5,program(X_5)=>

halts(X_5)),0,3)

LF = all(X_5,program(X_5)=>halts(X_5))
yes

During the DCG execution by Prolog, the np in the s rule is executed first, even
though part of its argument VP will be fully determined only when the vp literal is
executed. This pattern of operation pervades the grammar, and shows how the logical
variable helps put together a complex expression without having to know beforehand
the full specification of its parts.

4.1.6 Quantifi er Scope

The DCG of Program 4.2 and those of Problems 4.6 and 4.7 have a serious deficiency
in their handling of quantifier scope. For a sentence like

Every professor wrote a book.
the grammar assigns the single interpretation

all(P, professor(P) =>
exists(B, book(B) & wrote(P, B))) ;

that is, for every professor there is a book that he or she wrote. Now, this wide scope
interpretation of “every” might agree with our common sense, but it is not the only
combinatorially possible one. In the other, less intuitive interpretation, there is a single
book that every professor wrote:

exists(B, book(B) &
all(P, professor(P) => wrote(P,B)))

This narrow scope interpretation for “every” is in fact the more intuitive one in
sentences like

Every student ran a program that the professor wrote for his dissertation.
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It is clear that decisions on the likelihood of differently scoped logical forms for a
sentence depend on many sources of information, such as empirical knowledge about
the kind of situation being described and the actual order of words in the sentence.
In any case, scope decisions are too subtle to be determined purely by the syntactic
structure of sentences, as they are in the grammar of Program 4.2.

The overall issue of scope determination is therefore a very difficult open research
question (Woods, 1977; Vanlehn, 1978; F. C. N. Pereira, 1982). Here, we will address
the simpler question of scope generation: how to generate logical forms for a sentence
with all combinatorially possible quantifier scopings. Such a generator could then
be used to propose alternative scopings to scope critics that would use syntactic and
empirical information to choose likely scopings.

A scope generator has to satisfy two major constraints:

e Soundness: Every formula generated must be a closed well-formed formula (that
is, without free variables) corresponding to a correct scoping of the sentence.

e Completeness: Every combinatorially possible scoping will be generated.

A basic observation we need is that the meaning of a determiner is a function of
a noun meaning and an intransitive verb phrase meaning, the range and scope respec-
tively. Alternative quantifier scopings in the logical form correspond to alternative
choices of range and scope for the quantifiers in the sentence meaning. The job of
the scope generator is thus to consider the determiners in a sentence and generate all
possible choices of range and scope for the corresponding quantifiers.

The method we will use here for scope generation relies on building an interme-
diate representation, a quantifier tree, whose nonleaf nodes correspond to determiner
meanings (quantifier nodes) or logical connectives (connective nodes) and whose leaf
or predication nodes correspond to the translations of nouns, verbs and other content
words in the input sentence. The daughters of a quantifier node include a determiner
meaning and two subtrees from which the determiner meaning at the node will get its
range and scope. The quantifier nodes thus represent delayed decisions as to the range
and scope of their quantifiers. For example, the quantifier tree for

Every professor that wrote a book ran a program.

is shown in Figure 4.2.

In practice, we will represent a quantifier node by a term of the formq(D, R, S),
where D is the expression representing the determiner meaning and R and S are the
subtrees from which Ds range and scope will be obtained. A connective node is rep-
resented by the connective itself applied to its arguments, and a predication node with
contents P will be represented by ‘P. The backquote (“ ¢ ™) is used as a prefix op-
erator to syntactically distinguish predications that have not been scoped both from
predications that have been scoped and from the quantifier and connective nodes. The
use of the operator allows a simple check of the main functor to distinguish among the
various cases.

The following grammar is a simple modification of that of Program 4.2 that builds
a quantifier tree rather than a logical form directly.

Program 4.3
;- op(500,xfy,&).
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book (y) ran (X, Z)

wrote (X, Y)

Figure 4.2: Quantifier tree

:- op(510,xfy,=>).
- op(100,fx, ).

s(T) --> np(VP"S), vp(VP), {pull(S, T)}.

np(NP) -->
det(N2"°NP), n(N1), optrel(N1°N2).
np((E"S)"S) --> pn(E).

vp(X™S) --> tvX"IV), np(IV"S).
vp(IV) --> iv(IV).

optrel ((X"S1)"(X"(S1 & S2))) --> [that], vp(X"S2).
optrel(N"N) --> [].

det(LF) --> [D], {det(D, LF)}.
det( every, (X"S1)"(X"S2)"
q(P"Q"all(X,P=>Q),S1,S2) ).
det( a, X"S1)"(X"s2)"
q(P"Q exists(X,P&Q),S1,S2) ).

n(LF) --> [N], {n(N, LF)}.

n( book, X" (“‘book (X)) ).
n( professor, X" (‘professor(X)) ).
n( program, X" (‘program(X)) ).
n( student, X" (“student (X)) ).

pn(E) --> [PN], {pn(PN, E)}.
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pn( terry, terry ).
pn( shrdlu, shrdlu ).

tv(LF) --> [TV], {tv(TV, LF)}.
tv( ran, XY (‘ran(X,Y)) ).
tv( wrote, XY (‘wrote(X,Y)) ).

iv(LF) --> [IV], {iv(IV, LF)}.
iv( halts, X" (‘halts(X)) ).

This grammar generates the following quantifier tree for the sample sentence above.

q(P"Q"all(X,P=>Q),
‘professor(X)&q(R"S"exists(Y,R&S),
‘book (Y),
‘wrote(X,Y)),
q(T U exists(Z,T&U),
‘program(Z),
‘ran(X,2)))

This is just the term encoding of the tree of Figure 4.2.

In the first sentence rule, the extra condition pull(S, T) invokes the pull predi-
cate that defines the translation relation between quantifier trees and first-order formu-
las. Thus the quantifier tree is translated into FOL to provide a logical form for the
whole sentence.

The binary predicate pull is itself defined in terms of a ternary predicate, also
called pull, which defines the relation between a quantifier tree, a matrix, and a store
of quantifiers. The matrix is a formula with free variables, and the store is a list of
quantifiers whose ranges have been determined, but not their scopes. The name “pull”
suggests the idea of “pulling” quantifiers out of storage and applying them to a matrix
to produce a closed formula. The quantifiers in storage are represented by 1-expression
encodings. For example, the stored element for the noun phrase “every student” is the
termP"all(S, student(S) => P). Applyinga quantifier to a matrix is thus simple
function application with reduction.

The order of quantifiers in a store list indicates their relative scopes in the final
result. The quantifiers that appear earlier in the list, i.e., farther towards the front, have
been chosen to have wide scope over those at the back of the list.

The nondeterminism in the definition which produces alternative scopings comes
from the uses of the predicates shuffle and conc to operate on storage lists. These
predicates were defined previously as Programs 3.3 and 3.4 in Section 3.4.1, where
we noted that shuffle was nondeterministic, as was conc when used in its “reverse”
mode.

The ternary pull predicate turns a simple predication node into a matrix with
empty store.

pull(‘Predication, Predication, []).

A node with the conjunction connective & is treated as follows. Each conjunct is
separately pulled, thereby obtaining a matrix and store for both the left and the right
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conjunct. Now, we want to apply some of the remaining quantifiers in each of the
stores, passing some on for application at a higher level. The conc predicate is used
“backwards” to break each store list into a front and a back, the back to be applied
to the corresponding conjunct matrix and the front to be passed as part of the store of
the whole conjunction. Note that since we apply the back part only, we maintain the
condition that things earlier in the store have wider scope. After applying quantifiers
to each of the conjuncts, we shuffle the remaining quantifiers (the fronts of the lists for
both conjuncts) to form the store list for the whole conjunction.

pull (QuantTreel & QuantTree2,
Formulal & Formula2, Store) :-

pull (QuantTreel, Matrixl, Storel),

pull (QuantTree2, Matrix2, Store2),
conc(Passl, Applyl, Storel),

conc(Pass2, Apply2, Store2),
apply_quants(Applyl, Matrixl, Formulal),
apply_quants(Apply2, Matrix2, Formula2),
shuffle(Passl, Pass2, Store).

Finally, a quantifier node with quantifier Q is similar in its handling to a connective
node except that instead of two conjuncts, we have the range and scope of the quantifier
to scope recursively. Recursive calls to pull deliver a matrix and a store for both the
range and the scope trees of the quantifier. The range store list is split by conc into
a front and a back, the front quantifiers outscoping Q and the back quantifiers to be
applied to the range matrix to form the range of Q. Then, the front quantifiers are
concatenated with the singleton list [Q], because they have been chosen to have wider
scope than Q. Finally, the result is shuffied with the scope store to make the store for
the whole node. Note that it is not necessary to split the store associated with the scope
subtree, because the shuffie determines the position of Q in the overall store.

pull(g(Quantifier, RangeTree, ScopeTree),
Matrix, Store) :-

pull (RangeTree, RangeMatrix, RangeStore),
pull(ScopeTree, Matrix, ScopeStore),
conc (RangePass, RangeApply, RangeStore),
apply_quants(RangeApply, RangeMatrix, Range),
reduce(Quantifier, Range, StoreElement),
conc(RangePass, [StoreElement], Pass),
shuffle(Pass, ScopeStore, Store).

The predicate apply_quants takes a store list and applies all its quantifiers in
order to a matrix to produce a new matrix.

apply_quants([], Formula, Formula).
apply_quants([StoreElement |Elements],
Matrix, Formula) :-
apply_quants(Elements, Matrix, SubFormula),
reduce(StoreElement, SubFormula, Formula).
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The binary pull predicate itself merely scopes its quantifier-tree argument, yield-
ing a matrix and a store, and then uses apply_quants to apply all the outstanding
quantifiers to the matrix, resulting in a closed formula.

pull (QuantTree, Formula) :-
pull (QuantTree, Matrix, Store),
apply_quants(Store, Matrix, Formula).

As an example of the operation of pull, we will consider the possible scopings of
the quantifier tree for the sample sentence

Every professor that wrote a book ran a program.

The binary predicate pull first generates a matrix and a store from the tree by applying
some quantifiers in the tree and storing the rest. The outermost quantifier correspond-
ing to “every professor. ..” is dealt with by recursively pulling its range and scope. We
consider each of these recursive calls in order.

The range

‘professor(X)&q(R"S"exists(Y,R&S),
‘book (Y),
‘wrote(X,Y))

might be decomposed into matrix and store by placing the single quantifier into stor-
age, yielding the matrix

professor(X) & wrote(X,Y)
with store
[S"exists(Y, book(Y) & S)] ,

thereby leading to the wide-scope reading for the existential. Alternatively, the quan-
tifier might be applied directly, rather than stored, leading to the matrix

professor(X) & exists(Y, book(Y) & wrote(X,Y))

with empty store. We will pursue the former possibility here to demonstrate how the
wide-scope reading is achieved.

Once the range is pulled, the scope must be as well. Again, let us suppose that the
quantifier in the scope is placed in storage, so that the matrix

ran(X,Z2)
is associated with the store
[Utexists(Z, program(Z) & U)]

Now, to form the matrix for the whole tree (recall that the main quantifier we are
trying to scope is the universal for “every professor”), we take the store of the range
and decide which quantifiers should be applied to the range matrix (thereby taking
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narrow scope relative to the universal) and which should take wide scope. Again, let
us suppose the single element in the range store is to take wide scope. Then the formula
that serves as the range of the main quantifier is

professor(X) & wrote(X,Y)

and, applying the quantifer to the range, the appropriate store element corresponding
to the quantifier is

Q all(X, (professor(X) & wrote(X,Y)) => Q)

We now place this element in the store after the range quantifier we are passing on,
yielding the Pass store

[S"exists(Y, book(Y) & S),
Q"all(X, (professor(X) & wrote(X,Y)) => Q)]

This is shuffled with the store from the scope. The one element in the scope store can
be placed in any of three places in the combined store corresponding to its possible
scopings relative to the other two quantifiers in the sentence. We will choose the
placement of the scope store at the front of the list giving it widest scope. The full
store is then

[U"exists(Z, program(Z) & U),
S"exists(Y, book(Y) & S),
Q"all(X, (professor(X) & wrote(X,Y)) => Q)]

and the matrix, recall, is
ran(X, Z)

This decomposition of the quantifier tree into range and scope is only one of seven non-
deterministic possibilities. The binary pull predicate successively applies the three
quantifiers remaining in store to the matrix, the last getting narrowest scope as it is
applied first. This first application yields the formula

all(X, (professor(X) & wrote(X,Y)) =>
ran(X,Z))

The next derives

exists(Y, book(Y) &
all(X, (professor(X) & wrote(X,Y)) =>
ran(X,Z)))

Finally, the last quantifier is applied, giving the fully scoped form

exists(Z, program(Z) &
exists(Y, book(Y) &
all(X, (professor(X) &
wrote(X,Y)) =>
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ran(X,2))))

In all, seven fully scoped forms can be generated for this sentence—corresponding
to the seven decompositions of the quantifier tree into matrix and store—as can be seen
by backtracking through the solutions.

?- s(LF, [every,professor,that,wrote,a,book,
ran,a,program], []).

LF = exists(Z,program(Z)&
all(X,professor(X)&
exists(Y,book(Y)&
wrote(X,Y))=>
ran(X,2))) ;

LF = all(X,professor(X)&
exists(Y,book(Y)&
wrote(X,Y))=>
exists(Z,program(Z)&
ran(X,2))) ;

LF = exists(Z,program(Z)&
all(X,exists(Y,book(Y)&
professor (X)&
wrote(X,Y))=>
ran(X,2))) ;

LF = all(X,exists(Y,book(Y)&
professor (X)&
wrote(X,Y))=>

exists(Z,program(Z)&
ran(X,2))) ;

LF = exists(Z,program(Z)&
exists(Y,book(Y)&
all(X,professor(X)&
wrote(X,Y)=>
ran(X,2)))) ;

LF = exists(Y,book(Y)&
exists(Z,program(Z)&
all(X,professor(X)&
wrote(X,Y)=>
ran(X,2)))) ;

LF = exists(Y,book(Y)&
all(X,professor(X)&
wrote (X,Y)=>
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exists(Z,program(Z)&
ran(X,2)))) ;

no

The solution illustrated above is the fifth of the seven as listed in this query.

The quantifier scoping method outlined here is sound with respect to the quan-
tifier trees that are the output of the presented grammar. However, certain quantifier
trees involving nested quantifiers are not correctly handled by the algorithm; ill-formed
scopings are generated in which quantifiers do not outscope all variable occurrences
they were intended to bind. Such quantifier trees do not arise with the particular gram-
mar given here, although more complete grammars including both relative clause and
PP modifiers for nouns would exhibit the problem. Thus, the presented algorithm is
only an approximation to a fully general sound scoping mechanism. For a full discus-
sion of this issue and a particular solution (including a Prolog implementation), see
(Hobbs and Shieber, 1987).

4.2 Extending the Syntactic Coverage

In this section, we discuss several changes to the grammar we have been developing
that expand its coverage to include auxiliary verbs, full relative clauses, and various
types of questions.

4.2.1 Auxiliary Verbs

None of the grammars dealt with so far allow for auxiliary verbs like could, have,
and been in the sentence “Bill could have been writing a program”. In this problem
we extend the grammar to allow for this subclass of verbs. The simple analysis of
English auxiliaries which we will use is the following: a verb phrase can always have
an auxiliary prefixed to it if a certain condition holds, namely, that the form of the verb
phrase that follows the auxiliary is the form that the auxiliary requires.

This analysis depends on the fact that verbs come in different forms: finite, nonfi-
nite,% infinitival, and so forth. Every main verb (i.e., nonauxiliary) is of one of these
forms, as is every auxiliary verb. Furthermore, each auxiliary verb specifies a form for
the verb phrase it is attached to. Below are listed some examples of the forms of verb
phrases.

form examples
finite halts, halted, writes a program,
is halting, has been halting
present participle | halting, writing a program

past participle halted, written a program, been halting
nonfinite halt, write a program, be halting
infinitival to halt, to write a program,

to have been halting

5The class of verbs we call “nonfinite” is not the class of all verbs except for the finite ones. Rather it
consists of the base or stem forms of verbs only.
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Now the auxiliary verb be requires that the verb phrase following it be of present
participle form. Thus “be halting” is a grammatical verb phrase, but “*be halts” and
“*pe halt” are not. The auxiliary verb have requires that the verb phrase following it
be of past participle form, as in “have been halting” or “have halted” but not “*have
halting”.

We can even treat the word “to” (when used to introduce a verb phrase) as an
auxiliary verb, rather than a preposition. As an auxiliary verb, “to” requires a nonfinite
verb phrase, and is itself infinitival.

We will encode verb form information as an argument to the nonterminal ina DCG
grammar. For main verbs, this argument will contain one of the constants nonfinite,
infinitival, etc. For auxiliary verbs, the argument will contain a term of the form
Form/Requires, where Form is the form of the auxiliary and Requires is the form
that the auxiliary requires the following verb phrase to be.® We can think of the aux-
iliary as converting a Requires type of verb phrase into a Form type. Thus we will
have main verb entries like

iv(Form) --> [IV], {iv(IV, Form)}.
iv( halts, finite ).
iv( halt, nonfinite ).
iv( halting, present_participle ).
iv( halted, past_participle ).

and auxiliary verb entries such as

aux(Form) --> [Aux], {aux(Aux, Form)}.

aux( could, finite / nonfinite ).
aux( have, nonfinite / past_participle ).
aux( has, finite / past_participle ).
aux( been, past_participle / present_participle ).
aux( be, nonfinite / present_participle ).

The form of a simple verb phrase composed of a main verb and its various com-
plements is the form of the main verb itself. We can modify the VP rules to reflect this
as follows:

vp(Form) --> iv(Form).
vp(Form) --> tv(Form), np.

To combine an auxiliary verb with a verb phrase, it is only necessary that the verb
phrase be of the required form. The combined phrase will be of the form that the
auxiliary is.

vp(Form) --> aux(Form/Require), vp(Require).

6The use of “/” in this context is inspired by categorial grammar (Section 4.3.4).
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This augmented grammar will allow “could have been halting” as a VP because
“halting” is a present participle intransitive verb, hence a present participle VP which
satisfies the requirement of the verb “been”. Thus “been halting” is a well-formed
VP whose form is the form of “been”, namely past participle. “Have” requires a past
participle VP forming the nonfinite VP “have been halting”, which combines with
“could” to form the finite VP “could have been halting”.

The rule for forming sentences

s --> np, vp.

must be modified to account for the fact that VPs now have verb form information.
In deciding on the form of the VP in sentences, we note that the following NP-VP
combinations are not grammatical English:

* Bertrand write a book.
* The program been halting.
* Bill writing every program.

The pertinent restriction is that full-fledged sentences always incorporate a finite
VP. Thus the sentence formation rule should be

s --> np, vp(finite).

4.2.2 Yes-No Questions

Yes-no questions are formed in English exactly like declarative sentences, except for
two differences.

e Yes-no questions always have at least one auxiliary verb.
e The leftmost auxiliary verb occurs before, rather than after, the subject NP.

This switching of the placement of the leftmost auxiliary verb and the subject is
called subject-aux inversion. We will allow such inverted sentences with the following
rule for the new nonterminal sinv:

sinv --> aux(finite/Required), np, vp(Required).
This rule allows finite subject-aux-inverted sentences like

Could Bertrand write a book?
Has the program been halting?
Is Bill writing every program?

all of which are typical examples of English yes-no questions. We can state this in a
rule for forming questions from inverted sentences:

q --> sinv.

But, as we will see in Section 4.2.5, inverted sentences play a role in the formation of
WH-questions as well as yes-no questions.
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4.2.3 Filler-Gap Dependencies

The grammars that have been presented heretofore have included a very simple analy-
sis of relative clauses as verb phrases preceded by the word that. This analysis vastly
oversimplifies the variety of relative clauses possible in English. For instance, relative
clauses such as “that Bertrand wrote” (as in the NP “every book that Bertrand wrote™)
are not the concatenation of “that” and a VP; instead of a VP, a sentence missing its
object is substituted. Intuitively, the head of the noun phrase, i.e., “every book” fills
the role of the missing object, the thing(s) that Bertrand wrote. For this reason, the
phenomenon has been called a filler-gap dependency.

In general, a filler-gap dependency occurs in a natural-language sentence when
a subpart of some phrase (the gap or trace) is missing from its normal location and
another phrase (sometimes called the filler), outside of the incomplete one, stands for
the missing phrase. The occurrence of a gap is said to be licensed by the previous
occurrence of the filler, and we have a dependency between the gap and the filler
because the gap can only occur (i.e., the corresponding phrase be missing) when the
appropriate filler occurs.

The canonical instances of filler-gap dependency constructions in English are rel-
ative clauses and WH-questions. For example, in the sentence

Terry read every book that Bertrand wrote.

we have seen that there is a filler-gap dependency between the relative pronoun “that”
(the filler)” and the missing direct object (the gap). The parse tree for the sentence,
given in Figure 4.3, indicates the trace by the pseudo-terminal t;. The subscript i on
the trace and filler is intended to indicate the dependency between the two.

Filler-gap dependencies are a subclass of long-distance or unbounded dependen-
cies, so-called because the amount of material between the dependent phrases—the
gap and the filler in this case—can be arbitrarily large, and the path in the analysis tree
from the filler to the gap can in principle cross an arbitrary number of phrase bound-
aries (but only for some kinds of phrases). The long-distance behavior of filler-gap
dependencies is exemplified in such sentences as

Terry read every book that Bertrand told a student to write.
Terry read every book that Bertrand told a student to ask a professor to
write.

and so forth.

The obvious way of representing long-distance dependencies in a DCG is to use a
nonterminal argument to indicate the presence or absence of a gap within the phrase
covered by the nonterminal. If there is a gap, we must also indicate the syntactic
category (nonterminal) of the gap. Although the grammar we develop below does
not require this information (as only noun phrase gaps are allowed), the ability to ex-
tend the coverage by including, for instance, prepositional phrase gaps, motivates this
requirement. We will use the constant nogap as the value for the gap information ar-
gument to indicate the absence of a gap, and the term gap (T) to indicate the presence

7 Analyses differ as to whether the filler is the relative pronoun or the head of the NP as first mentioned.
Although the latter may be more intuitive, other factors lead us to the former, not the least of which is ease
of semantic interpretation.
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S
NP VP
/\
terry V NP
read DET N OPTREL
every book RELPRON; S
that NP VP

bertrand V NP

wrote t;

Figure 4.3: Parse tree including filler-gap dependency

of a gap with category T. For instance, the sentence “Bertrand wrote a book” would
be covered by the nonterminal s (nogap), whereas the incomplete sentence “Bertrand
wrote” (as in “the book that Bertrand wrote”) would be covered by the nonterminal
s(gap(np)).

To allow noun phrase gaps in the grammar, we add a special rule which introduces
an NP covering no string.

np(gap(np)) --> [].

This rule states that a noun phrase containing a noun phrase gap can cover the empty
string; that is, a noun phrase gap can be realized by omitting a noun phrase.

Now the information about the presence of a gap must be appropriately distributed
throughout the grammar so that “Bertrand wrote”, but not “Bertrand wrote a book”, is
associated with gap (np). For instance, the transitive VP rule must be modified so that
the VP is associated with the same gap information as its object. (We ignore verb form
information in this section and the next. The grammar in Appendix A contains both
verb form and filler-gap information in the nonterminals.)

vp(GapInfo) --> tv, np(GapInfo).
Similarly, the S rule must force the S and VP to share gap information.
s(GapInfo) --> np(nogap), vp(GapInfo).

In addition, the rule disallows subject NPs that contain gaps bound outside of them,
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thereby embodying a so-called island constraint that linguists have proposed as ac-
counting for the ungrammaticality of noun phrases like

* the book that the author of wrote Principia
as compared with
the book that the author of Principia wrote

Island constraints are so-called because they constrain certain constituents, e.g., sub-
ject noun phrases, to act as if surrounded by a boundary which allows no filler-gap
dependencies to cross.

There is considerable debate in the linguistics literature of the status of island con-
straints such as these. Certainly, some phrases with gaps within subjects seem quite
grammatical, e.g.,

the professor who a picture of has appeared in every newspaper in the
country

Furthermore, certain constructions can license the existence of a gap within an island.
For instance, the parasitic gap construction allows sentences with multiple gaps bound
by the same filler, even when one of the gaps is within an island.

the book that the author of wrote a letter about

We have merely represented here one traditional analysis of the phenomenon.
Other analyses, including ones in which filler-gap dependencies which cross a sub-
ject NP boundary were allowed, could easily be designed.

424 ReativeClauses

Relative clauses can be formed by concatenating a relative pronoun filler with a sen-
tence that contains the corresponding gap.

rel --> relpron, s(gap(np)).

This rule then embodies the actual filler-gap dependency and allows relative
clauses such as “the book that Bertrand wrote”. Unfortunately, because of the island
constraint disallowing gaps in subjects of sentences, this rule will admit only comple-
ment relatives, i.e., relative clauses in which a complement of a verb is gapped. Subject
relatives, in which the entire subject is gapped, as in “the professor who wrote Prin-
cipia” are not allowed by this rule. To remedy this problem, we introduce a special
rule for subject relatives, akin to the relative clause rule of Program 3.12.

rel --> relpron, vp(nogap).

In summary, here is the grammar of Program 3.12 augmented to handle both
subject- and complement- relative clauses.

Program 4.4
s --> s(nogap) .
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s(Gap) --> np(nogap), vp(Gap).

np(nogap) --> det, n, optrel.
np(nogap) --> pn.
np(gap(np)) --> [].

vp(Gap) --> tv, np(Gap).
vp(nogap) --> iv.

optrel --> [].
optrel --> relpron, vp(nogap).
optrel --> relpron, s(gap(np)).

det --> [Det], {det(Det)}.
det(a). det(every).
det(some). det(the).

n --> [N], {n(N)}.
n(author). n(book).
n(professor). n(program) .
n(programmer). n(student).

pn --> [PN], {pn(PN)}.
pn(begriffsschrift). pn(bertrand).

pn(bill). pn(gottlob).
pn(lunar). pn(principia).
pn(shrdlu). pn(terry).

tv --> [TV], {tv(TV)}.
tv(concerns). tv(met).
tv(ran). tv(wrote).

iv --> [IV], {iv(IWV)}.
iv(halted).

relpron --> [RelPron], {relpron(Relpron)}.
relpron(that). relpron(who) .
relpron(whom) .

425 WH-Questions

WH-questions, that is, questions introduced by a word starting with “wh”, as in

Who wrote Principia?
What did Bertrand write?
Who did Alfred tell Bertrand to write a book about?
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and so forth, also exhibit a filler-gap dependency. The filler this time is the WH word,;
the gap, as usual, can be arbitrarily deep in the adjacent sentence. We will use a
technique similar to that for relative clauses to handle WH-questions. Just as subject
relatives and complement relatives must be distinguished, we will distinguish subject
and complement questions.

Subject questions, such as

Who loves Mary?

are constructed from a WH pronoun and a finite VVP.
q --> whpron, vp(nogap).

Complement questions, for instance,
Who does Mary love?

are formed from a WH pronoun acting as a filler for a gap in a subject-aux-inverted
sentence.

q --> whpron, sinv(gap(np)).
Of course, the sinv rule must be modified to allow gaps.

sinv(GapInfo) --> aux, np(nogap), vp(GapInfo).

4.2.6 Semantics of Filler-Gap Dependencies

A treatment of semantics of relative clauses is possible by combining the syntactic
analysis of Program 4.4 with the semantic analysis of Program 4.2. The basic idea is
that a gap is analyzed very much like a proper noun, except that instead of supplying
a constant term to the logical form it supplies a variable which is carried as the second
argument of the gap information term gap (T, V).

np((X"S)"S, gap(np, X3) --> [].

A relative clause meaning is like an intransitive verb meaning, namely, a property.
However, relative clause meanings will be conjoined with a noun meaning to make a
complex property such as

M" (professor(M) & wrote(M, principia))

for “professor who wrote Principia”. In the case of a subject relative the meaning
comes directly, because the clause is itself a verb phrase.

optrel ((X"S1) " (X" (S1&S2))) -—>
relpron, vp(X“S2, nogap).

For complement relative clauses, the meaning representation is of the form X" S where
X is the variable associated to the argument position filled by the gap, and S is the
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encoding of the meaning of the sentence in the relative clause, in which X is a free
variable.

optrel ((X"S1) " (X" (S1&S2))) -—>
relpron, s(S2, gap(np, X)).

Thus, for the relative clause “that Bertrand wrote” we will have S =
wrote(bertrand,B), X = B, and the gap argument will have the form gap (np, B).

We interpret a question as a property which is to be true of the answers to the ques-
tion. For subject WH-questions, the property is that given by the VP. For complement
questions, it is the property that the S predicates of the gap.

q(VP) --> whpron, vp(VP, nogap).
q(X"S) --> whpron, sinv(S, gap(np, X)).

For yes-no questions, the property we want of the answers to the question is that
the answer be “yes” if the condition given by the inverted sentence holds.

q(yes™S) --> sinv(S, nogap).

For the time being, we ignore the contribution of the auxiliary to the meaning of the
inverted sentence.® Thus the rule for sinv, including semantics, is

sinv(S, GapInfo) -->
aux, np(VP"S, nogap), vp(VP, GapInfo).

A slightly different approach to the semantics of questions will be used in the talk
program developed in Chapter 5, in which the meaning of a question is an implication
of the form: If some condition holds of x then x is an answer.

Summarizing, the grammar for relative clauses and questions we have developed
in this chapter is the following:

Program 4.5
q(VP) --> whpron, vp(VP, nogap).
q(X"S) --> whpron, sinv(S, gap(np, X)).
q(yes”™S) --> sinv(S, nogap).

s(S) --> s(S, nogap).
s(S, Gap) --> np(VP"S, nogap), vp(VP, Gap).

sinv(S, GapInfo) -->
aux, np(VP"S, nogap), vp(VP, GapInfo).

np (NP, nogap) --> det(N2"NP), n(N1), optrel(N1°N2).
np((E"S)"S, nogap) --> pn(E).
np((X"S)"S, gap(np, X)) --> [].

8The talk program described in Chapter 5 can handle the semantics of simple auxiliaries, although the
logical forms provided lexically for auxiliaries do not happen to modify their VP arguments.
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vp(X"S, Gap) --> tv(X"VP), np(VP"S, Gap).
vp(VP, nogap) --> iv(VP).

optrel(N"N) --> [].

optrel ((X"S1) " (X" (S1&S2))) -—>
relpron, vp(X"S2, nogap).

optrel ((X"S1) " (X" (S1&S2))) -—>
relpron, s(S2, gap(np, X)).

det(LF) --> [D], {det(D, LF)}.
det( every, (X"S1)"(X"S2)"all(X,(S1=>S2)) ).
det( a, (X"S1)"(X"S2) "exists(X,S1&S2) ).

n(LF) --> [N], {n(N, LF)}.
n( program, X program(X) ).
n( student, X"student(X) ).

pn(E) --> [PN], {pn(PN, E)}.
pn( terry, terry ).
pn( shrdlu, shrdlu ).

tv(LF) --> [TV], {tv(TV, LF)}.
tv( wrote, XY wrote(X,Y) ).

iv(LF) --> [IV], {iv(IV, LF)}.
iv( halts, X"halts(X) ).

relpron --> [RelPron], {relpron(Relpron)}.
relpron(that). relpron(who) .
relpron(whom) .

4.2.7 Gap Threading

The technique used for passing gap information among the nonterminals in grammar
rules outlined in the previous section has two problems:

1. Several versions of each rule, differing only in which constituent(s) the gap in-
formation is passed to, may be needed. For instance, a rule for building dative
verb phrases

vp --> datv, np, pp.
would need two versions
vp(GapInfo) -->
datv, np(GapInfo), pp(nogap).

vp(GapInfo) -->
datv, np(nogap), pp(GapInfo).
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so as to allow a gap to occur in either the NP or PP, as in the sentences

What did Alfred give to Bertrand?
Who did Alfred give a book to?

2. Because of the multiple versions of rules, sentences with no gaps will receive
multiple parses. For instance, the sentence

Alfred gave a book to Bertrand.

would receive one parse using the first dative VP rule (with GapInfo bound to
nogap) and another with the second dative VP rule.

An alternative method for passing gap information, sometimes referred to as gap
threading, has been used extensively in the logic programming literature. It is based
on data structures called difference lists.

DifferenceLists

The encoding of sequences of terms as lists using the . operator and [ ] is so natural
that it seems unlikely that alternatives would be useful. However, in certain cases,
sequences may be better encoded with a data structure known as a difference list. A
difference list is constructed from a pair of list structures one of which is a suffix of the
other. Every list is a suffix of itself. Also, if the list is of the form [Head|Tail] then
every suffix of Tail is a suffix of the whole list. Thus the relation between lists and
their suffixes is the reflexive transitive closure of the relation between list and their tails.
We will use the binary infix operator “-” to construct a difference list from the two
component lists. A difference list List-Suffix encodes the sequence of elements in
List up to but not including those in Suffix. Thus the elementsin List-Suffixare
the list difference of the elements in List and the elements in Suffix. For instance,
the sequence of elements (1, 2, 3) might be encoded as the list [1,2,3] or as any of
the difference lists [1,2,3,4]-4], [1,2,3]1-[1, [1,2,3]X]-X

We will be especially concerned with the most general difference-list encoding of
a sequence, that is, the encoding in which the suffix is a variable. The final exam-
ple of a difference-list encoding of the sequence (1, 2, 3) is of this form. Any other
difference-list encoding of the sequence is an instance of [1,2,3|X]-X. Henceforth,
the term “difference list” will mean a most general difference list. We will also use the
terms front and back for the two components of a difference list. Note that the empty
difference list is X-X.

The difference-list encoding of sequences has one key advantage over the standard
list encoding. Concatenation of difference lists is far simpler, requiring only a single
unit clause.

Program 4.6
conc_dl (Front-Backl, Backl-Back2, Front-Back2).

The predicate conc_d1 performs concatenation of difference lists by simply unifying
the back of the first list with the front of the second. This engenders the following
behavior:
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?- conc_dl([1,2,3|X]-X, [4,5]|Y]-Y, Result).
Result = [1,2,3,4,5|Y]-Y
yes

Actually, we have seen difference lists before. The use of pairs of string positions
encoded as lists to encode the list between the positions is an instance of a differ-
ence list encoding. We can see this more clearly by taking the encoding of grammar
rules using explicit concatenation, as briefly mentioned in Chapter 1, and substituting
difference-list concatenation. Using explicit concatenation, the rule

S - NP VP
would be axiomatized (as in Chapter 1) as
(Yu, v, W)NP(u) A VP(v) A conc(u, v, w) = S(w)
or in Prolog,
s(W) :- np(U), vp(V), conc(U, V, W).
Substituting difference-list concatenation, we have
s(W) :- np(W), vp(V), conc_dl(U, V, W).

and partially executing this clause with respect to the conc_d1 predicate in order to
remove the final literal, we get the following clause (with variable names chosen for
obvious reasons):

s(PO-P) :- np(PO-P1), vp(P1-P).

Thus, we have been using a difference list encoding for sequences of words implicitly
throughout our discussion of DCGs.

Difference Listsfor Filler-Gap Processing

We now turn to the use of difference lists in filler-gap processing. First, think of the
gap information associated with each node as providing the list of gaps covered by
the node whose corresponding fillers are not covered by it. Alternatively, this cn be
viewed as the list of gaps whose filler-gap dependency passes through the given node.
We will call this list the filler list of the node. For the most part the filler list of each
constituent is the concatenation of the filler lists of its subconstituents. For instance,
for the dative VP rule, we have

vp(FL) --> datv, np(FL1), pp(FL2),
{conc_dl1(FL1, FL2, FL)}.

We include only those constituents which might potentially include a gap in the con-
catenation. Again, we remove the explicit concatenations by partial execution yielding

vp(FO-F) --> datv, np(F0-F1), pp(F1-F).
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Similarly, other rules will display this same pattern.

s(F®-F) --> np(FO-F1), vp(F1-F).
vp(FO-F) --> tv, np(FO-F).
vp(FO-FO®) --> iv.

We turn now to constituents in which a new filler or a new gap is introduced. For
instance, the complement relative clause rule requires that a gap be contained in the S
which is a sibling of the filler. It therefore states that the filler list of the S contains a
single NP.

optrel(F-F) --> relpron, s([gap(np) |F]-F).

The rule introducing NP gaps includes a single NP filler marker on the S, thereby
declaring that the S covers a single NP gap.

np([gap(np) |[F]-F) --> [].

Island constraints can be added to a grammar using this encoding of filler-gap
dependencies in two ways. First, we can leave out filler information for certain con-
stituents, as we did for verbs and relative pronouns. More generally, however, we
can mandate that a constituent not contain any gaps bound outside the constituent by
making its filler list the empty list (i.e., F-F). For instance, the sentence formation
rule above can be modified to make the subject of the sentence an island merely by
unifying the two parts of its filler list.

s(F®-F) --> np(FO-FO), vp(FO-F).

The gap-threading technique for encoding filler-gap dependencies solves many of
the problems of the more redundant gap-passing method described earlier. Each un-
threaded rule generates only one rule with appropriate gap information. The filler-list
information is added in a quite regular pattern. Fillers, islands, and gaps are all given a
simple treatment. All of these properties make the gap-threading technique conducive
to automatic interpretation as we will do in Section 6.3.3.

However, several problems with the gap-threading technique are known, most
showing up only in rather esoteric constructions such as parasitic gap constructions,
multiple gaps, crossing filler-gap dependencies, and so forth. Many of these problems
can be handled by using more complex combinations of filler lists rather than simple
concatenation. For instance, crossing dependencies can be handled by shuffling the
filler lists of subconstituents to yield the filler list of the full constituent. Of course,
this defeats the simple elegant pattern of variable sharing that difference-list concate-
nation engenders.

4.3 Problem Section: Grammar Extensions

These problems concern the extension of Program 4.2 to accept a few other English
constructions, namely some simple cases of noun complements and postmadifiers and
the corresponding gapped constructions. Since these examples require prepositional
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phrases in the grammar, you may want to refer to Problem 3.20 for background. In
addition, we will discuss a system of grammar writing used by Montague himself
for his semantic work. This system, categorial grammar, is quite different from the
phrase-structure-based methods we have been using previously.

4.3.1 Noun Complements

A noun phrase complement plays a similar role to that of an argument of a predicate.
For example, in the noun phrase “an author of every book” the noun author has as its
complement the prepositional phrase “of every book”. For the purposes of this section,
we will assume that nouns that take a complement are interpreted as binary predicates.
For example, the sentence

An author of every book wrote a program.
might have the logical form

all(B, book(B) =>
exists(A, author_of(A,B) &
exists(P, program(P) &
wrote(A,P))))

Notice that author is here translated by the binary predicate author_of. Note also
that the quantifier all that translates the determiner every in the complement of au-
thor is given a wider scope than the quantifier exists that translates the determiner
an of the phrase “an author ...”. This is not the only possible reading for the English
sentence, but for the time being we will assume that the quantifiers from noun com-
plements always outscope the quantifier for the determiner preceding the noun that
has the complement. To achieve this effect in a DCG, the translation of “an author”
must somewhow be given as an argument to the translation of the complement “of
every book”, in a way similar to the passing of an intransitive verb phrase meaning
into a noun phrase meaning to make a sentence meaning in the first rule in the DCG of
Program 4.2.

Problem 4.6 Add one or more DCG rules to the grammar in Program 4.2 to ana-
lyze and translate noun complements. We will assume that there is a separate lexical
category n2 for nouns that take a prepositional phrase as a complement. To simplify
the problem, we will also assume that all complements are prepositional phrases (see
Problem 3.20) introduced by the preposition of. Your DCG should be able to analyze
the sample sentence above and assign to it the given logical form. You need not handle
noun phrases with both a relative clause and a complement prepositional phrase.

4.3.2 Noun Postmodifi ers

A prepositional phrase can also appear as a noun postmodifier, where it does not supply
an argument to the noun but instead it further restricts the range of objects described
by the noun. In this case, such a postmodifier operates like a restrictive relative clause.
For example, the prepositional phrase “about Gottlob” in the sentence
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Bertrand wrote a book about Gottlob.

is a postmodifier of book that further restricts the book in question to be about Gottlob.
We may in this case interpret the preposition about very much like a transitive verb,
and give the sentence the translation

exists(B, (book(B) & about(B,gottlob)) &
wrote(bertrand,B))

We will assume that the quantifiers in the translation of the postmodifier have smaller
scope than that of the quantifier for the determiner preceding the modified noun. As
mentioned in the previous problem, such assumptions are overly restrictive, and we
will discuss how to do better in Section 4.1.6.

Problem 4.7 By adding appropriate lexical items and rules (or modifying existing
ones), change the DCG of Program 4.2 to handle prepositional phrases as noun post-
modifiers. The new rules for postmodifiers may be modeled closely on those for op-
tional relative clauses, and the resulting grammar should be tested on sentences like
the one above. Make sure that quantifiers from the postmodifier are properly scoped.

4.3.3 MoreFiller-Gap Constructions

Many other filler-gap constructions occur in English. In the next two problems we will
discuss gaps in the constructions introduced in the previous two problems. Later, in
Problem 6.15, we will see two more English filler-gap constructions.

Problem 4.8 Extend your solution to Problems 4.6 and 4.7 so that gaps are allowed
in prepositional phrases used as NP modifiers and complements and as adverbials.
The solution should allow sentences like

What did Bertrand write a book about?

Who did Terry meet a student of?

What did Terry write a program with?

The professor that Terry met a student of wrote a program.

Problem 4.9 Extend the solution to Problem 4.8 so that it can handle questions where
the filler is a prepositional phrase and the PP gap is playing an adverbial role, e.g.,
questions like

With what did Terry write a program?

Note that the grammaticality status of PP gaps used as NP modifiers or comple-
ments in English is unclear. Sentences containing such constructions often seem un-
grammatical.

*? About what did Terry write a program?
*? Of whom did Terry meet a student?

However, the data are unclear, and the correct analysis is certainly not a foregone
conclusion.
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4.3.4 Categorial Grammars

A categorial grammar (CG) specifies a language by describing the combinatorial pos-
sibilities of its lexical items directly, without the mediation of phrase-structure rules
(like CFG or DCG rules). Consequently, two grammars in the same categorial gram-
mar system differ only in the lexicon.

The ways in which a phrase can combine with other phrases are encoded in a
category associated with the phrase. The set of categories is defined inductively as
follows:

e A primitive category is a category. For the purposes of this problem, the primi-
tive categories are S and NP.

e If A and B are categories then A/B and A\B are categories. These are called
compound or functor categories.

e Nothing else is a category.
Combination of phrases is sanctioned by their categories according to two rules:

e Forward application (FA): A phrase p of category A/B can be combined with
a phrase p, of category B to form a phrase p; p, of category A.

e Backward application (BA): A phrase p; of category A\B can be combined
with a phrase p, of category B to form a phrase paps of category A.

Notice that the direction of the slash (“/” or “\”) determines which side of the functor
phrase its argument will be found on (right or left, respectively).

As an example of a categorial grammar, we might associate lexical items with
categories as follows:

type of word examples | category
proper nouns Terry NP
Bertrand
Principia
intransitive verbs | halts S\NP
transitive verbs wrote (S\NP)NP
met

Then combining “wrote” and “Principia” by FA, we conclude that “wrote Principia”
is of category S\NP. Combining this with “Bertrand”, we have that “Bertrand wrote
Principia” is an S. As usual, we can summarize the derivation in a parse tree as in
Figure 4.4

Problem 4.10 Write a Prolog program (including DCG rules) to implement a catego-
rial grammar system. Lexical entries can be encoded as unit clauses of the form

lex( bertrand, NP ).
lex( halts, S\NP ).
lex( wrote, (S\NP) /NP ).
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S
NP S\NP
Bertrand (S\NP)/NP NP
wrote Principia

Figure 4.4: Parse tree for categorial grammar derivation

Given a lexicon encoded as above, the program should be able to parse sentences
containing those lexical items.

Categorial grammars have been widely used in linguistic research concerning se-
mantics of natural language. The close relation between CG and semantic interpreta-
tion follows from the observation that forward or backward syntactic application of a
functor category to its argument corresponds to the semantic applications of the cor-
responding logical forms. Thus, the application rules can be used to control semantic
application as well as syntactic combinatorics. We merely make sure that lexical items
are associated with semantic functions which correspond to the syntactic functions im-
plicit in their categories. For instance, a phrase of category S/NP must semantically
be a function from NP-type items to S-type items. In terms of logical forms, it must
be associated with a lambda expression of the form Ax.¢ for ¢ a formula. (This re-
lationship can be made more rigorous by defining a notion of type and using a typed
lambda-calculus for the logical forms, as Montague in fact did.)

The logical forms of Section 4.1.2 are appropriate for the category assignments
above. Given these logical forms, we can determine the logical form for the entire
sentence by performing the applications according to the syntactic structure of the
sentence. For instance, since “wrote” is associated with a functor category applying
(by FA) to “Principia”, we apply its logical form Ax.1y.wrote(y, x) to that of its argu-
ment principia yielding Ay.wrote(y, principia). Similarly, by BA, we will associate
the whole sentence with the logical form wrote(bertrand, principia). The beauty of
this system is that the semantic constraints are universal, as opposed to the types of
grammars seen previously in which semantic constraints are stated on a rule-by-rule
basis. Merely augmenting the lexicon with primitive LFs determines LFs for all the
possible sentences admitted by the grammar.

Problem 4.11 Augment your solution to the previous problem so that logical forms
are built during parsing.

Problem 4.12 Using the solution to Problem 4.11 write a categorial grammar which
handles quantified NPs as in Section 4.1.5 and builds logical forms. You should need
to change only the lexicon. Take IV, N, and S to be the primitive categories.

As a side note to the discussion of categorial grammar, note that since the matching
of the argument category to the requirement of the functor category proceeds by unifi-
cation, we can use full terms instead of atoms as the primitive categories and thereby
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pass information among the categories in ways reminiscent of DCGs. In fact, this
extension to categorial grammar which we get “for free” is the correlate of the DCG
extension to CFGs. Systems that use unification for matching in categorial grammars
have come to be known as categorial unification grammars and are the subject of ac-
tive research.

4.4 Bibliographic Notes

Our discussion of semantic interpretation (Section 4.1) is loosely based on some of the
ideas of Montague grammar, although our goals are radically more modest than Mon-
tague’s. Basically, we take from Montague the idea of using some form of the lambda
calculus to represent the meanings of phrases and function application as the means
of combining the meanings of subphrases into the meaning of a phrase. The simpli-
fications in our presentation are made clear by observing that the fully reduced form
for the meaning of a sentence is given by a first-order sentence. In contrast, sentence
meanings in Montague have to be represented by sentences in the much richer system
of intensional logic (IL), because the English fragment under consideration includes
semantic phenomena such as intensional contexts (as in “John seeks a unicorn”).

Montague introduced his approach to the relation between syntax and semantics
of natural language in the articles “English as a Formal Language,” “Universal Gram-
mar,” and “The Proper Treatment of Quantification in Ordinary English” which have
been reprinted in the volume of his selected works edited by Thomason (1974). The
textbook by Dowty, Wall, and Peters (1981) gives a full account of Montague’s theory
and of all the required background material, which is omitted in Montague’s extremely
concise papers. For further details on the lambda calculus (Section 4.1.1), and in par-
ticular its logical and computational properties, we refer the reader to the book by
Hindley and Seldin (1986) for the untyped lambda calculus, and the book by Andrews
(1986) for the typed lambda calculus (Church’s simple theory of types).

Our Prolog encoding of semantic interpretation rules, and in particular the encod-
ing of B-reduction as unification, was implicit in the early work on logic grammars
(Colmerauer, 1982; Dahl, 1981; Pereira and Warren, 1980). Our presentation tries to
make clear the connection between the logic grammar techniques and the techniques
of compositional semantics. Some of our semantic rules are clearly too simplistic,
and were shown mainly to illustrate the power of the logical variable for incrementally
building complex descriptions. More sophisticated examples can be found in the Pro-
log natural-language analysis literature (McCord, 1982; F. C. N. Pereira, 1982; Dahl
and McCord, 1983). Compositional semantics based on Montague grammar has also
been used in natural-language processing systems not based on logic programming
(Rosenschein and Shieber, 1982; Warren and Friedman, 1982; Schubert and Pelletier,
1982). Moore (1981) surveys some of the main difficulties involved in constructing
logical representations for the meanings of a wider class of natural-language construc-
tions. Last but not least, it should be noted that the above work on computing logical
forms for natural-language derives many of its analyses and techniques from Woods’s
early and influential research (1977).

As we noted, the encoding of g-reduction in unification has to be used very care-
fully because of the lack of a full reduction mechanism for A-terms within Prolog. This
question has been discussed in detail by D. S. Warren (1983), and a general solution
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in the framework of a Prolog extension based on Church’s simple theory of types was
given by Miller and Nadathur (1986).

Partial execution has long been in the folklore of logic programming. The notion
is implicit in Kowalski’s connection-graph resolution proof procedure (1975; Eisinger,
1986). A related notion in functional programming is Burstall and Darlington’s unfold-
ing rule for program transformation (1977). Their techniques were extended to logic
programs by Clark and Sickel (1977) and Tamaki and Sato (1984), among others. Fur-
ther techniques involving deductive derivations of programs are discussed by Clark
and Tarnlund (1977) and Hogger (1981).

The discussion of quantifier scope in Section 4.1.6 presents a simplified version of
some of the concepts developed independently by Woods in a computational frame-
work (1977) and by Cooper in a compositional semantics setting (1983). In particular,
the explicit notion of quantifier storage is due to Cooper. Hobbs and Shieber (1987)
give a precise account of an algorithm for generating scope alternatives and prove some
important properties relative to its soundness and completeness. Reliable criteria for
choosing among scoping alternatives are notoriously hard to come by. Vanlehn (1978)
gives a comprehensive account of the difficulties. Various partial engineering solutions
for the problem have nevertheless been proposed (Woods, 1977; F. C. N. Pereira, 1982;
Grosz et al., 1987).

Our treatment of the English auxiliary system in Section 4.2.1 is based on that by
Gazdar et al. (1982).

The treatment of long-distance dependencies and, in particular, filler-gap depen-
dencies given in Section 4.2.3 is rather idealized, its goal being just to outline a few
basic techniques. For a linguistically sophisticated treatment of the problem covering a
much broader subset of English, see for example the book by Gazdar et al. (1985). The
analysis of subject relatives as being composed from VPs and not Ss follows Gazdar
(1981). Island constraints were originally proposed by Ross (1974).

As far as we know, the idea of gap threading appeared first, in form somewhat
different from the one used in Section 4.2.7, as part of the extraposition grammar
formalism (Pereira, 1981). It has been reinvented numerous times.

Categorial grammars as formal systems originated with the work of the Polish lo-
gicians Lesniewski and Adjukiewicz in the 1930s, but it was Bar-Hillel (1964) who
considered their application to natural-language syntax. With Gaifman and Shamir,
Bar-Hillel proved that the basic categorial grammars have the same weak generative
capacity as context-free grammars. Lambek (1961) provided important early research
in the area. Since this work, many different categorial accounts of the syntax and se-
mantics of natural languages have been developed, including those by Lewis (1972)
and by Cresswell (1973) from a philosophical perspective and that of Ades and Steed-
man (1982) from a linguistic one. Van Benthem (1986) provides a recent survey of
logical and semantic issues in categorial grammar. For discussion of categorial unifi-
cation grammars, see the papers by Karttunen (1986) and Uszkoreit (1986) and works
cited therein.
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Full Prolog and a
Simple Dialogue Program
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free paper with library binding and including all appendices and two
indices (and without these inline interruptions), is available from
www . mtome . comand other booksellers.

The subset of Prolog used up to this point has been pure in the sense that a Prolog
system can be viewed as a sound (though incomplete) inference engine for a particular
logic. However, the Prolog language includes several extralogical facilities which have
been found to be of considerable utility in writing large programs. Some of these facil-
ities are referred to as “metalogical” because their semantic domain is the domain of
logical expressions and proofs. This section introduces some of the most important ex-
tralogical mechanisms in Prolog by means of an example of a simple natural-language
dialogue program, talk.

5.1 Metalogical Facilities

5.1.1 Thecall predicate

The first metalogical predicate exemplifies the level-crossing involved in interpret-
ing Prolog terms as encoding Prolog clauses and goals. The call predicate takes
a single term argument which encodes a Prolog goal. The argument of call
is executed by reinterpreting it as the goal which the term encodes. Thus, ex-
ecution of call(conc([a,b],[c,d],A)) is equivalent to execution of the goal
conc([a,b], [c,d],A) directly. The utility of call comes about because the goal
to be executed can be a variable in the program, as long as it is instantiated to an
appropriate term by execution time. Since call depends on the instantiation of its
arguments and reinterprets terms as literals, it is clearly a metalogical predicate. Note
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that the argument to call can represent not only single literal goals but any clause body;,
including conjunctions, disjunctions and so forth.

The call predicate can be used to implement a simple Prolog interpreter, a unary
predicate which holds of its argument if Prolog would prove the argument when inter-
preted as a goal. The definition is trivial.

Program 5.1
prove(G) :- call(@).

We will see other more interesting examples of predicates that act like interpreters in
Chapter 6.

5.1.2 Thecut command

The behavior of a Prolog program is based on the depth-first, backtracking control
regime that the Prolog system follows. The Prolog interpreter will explore the entire
space of backtracking alternatives in search of a solution to a goal. This behavior, al-
though simple and (in the limit) complete, sometimes has undesirable consequences.
In this section we present a metalogical facility that changes the control regime of a
Prolog program and that can be used for several purposes including increasing effi-
ciency, eliminating redundancy, and encoding conditionals.

The cut command, notated by an exclamation mark “!”, is used to eliminate
branches of the search space. We refer to cut as a command, rather than a predicate
or operator, to emphasize that it does not fit smoothly into the logical view of Prolog,
and cannot be felicitously thought of as a predicate which holds or does not hold of
arguments.

The clauses for a predicate give alternative ways of proving instances of that pred-
icate. In proving a goal, Prolog chooses each alternative in turn until one leads to a
proof of the goal. The cut command always succeeds, but as a side effect it makes some
of the current clause choices permanent for the duration of the proof. Specifically, if a
clause

p - gl,...,gi,!,...,gn.

is being used to prove an instance of p and the cut is reached, then the choice of this
clause to prove that instance of p, as well as all choices of clauses in proving g1 through
gi, are made permanent for the duration of the overall proof of which the proof of p is
a part.

Another way of looking at the action of the cut command is as the converse of
the previous statements, that is, by examining which proofs the cut eliminates. When
Prolog backtracks to find an alternative proof of an occurrence of cut, not only is no
other proof found for the cut instance but also the whole goal that invoked the clause
with this cut instance is taken to have no proof (even if other clause alternatives might
lead to such proof in the absence of the cut).

The cut command can be used in several ways. If we have a series of clauses
for a particular predicate which we happen to know are all mutually exclusive, then
once one of the clauses has succeeded, there is no use in attempting to find other
solutions; all other branches in the search space will ultimately fail. We can eliminate
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the inefficiency engendered by searching these blind alleys by using cut to force the
clause choice.

For instance, consider the definition of a max_valued predicate which holds of
a nonempty list of terms and the term in the list with highest valuation according
to a binary comparison predicate higher_valued. (We assume that all objects in
the list have distinct valuations; there must be no “ties”.) Such a predicate might be
used, for instance, in implementing a priority system on terms. In the case where
higher_valued is simple arithmetic comparison of numbers, max_valued computes
the maximum number in a list.

The maximum-valued term of a nonempty list is the higher valued of the head
of the list and the maximum valued term of the tail of the list. We will use a ternary
max_valued predicate to capture this latter relationship between a list, a term, and
the maximum-valued element in the entire bunch.

max_valued([Head|Tail], Max) :-
max_valued(Tail, Head, Max).

The ternary predicate is easily implemented. If the list is empty, then the lone term is
the highest valued. Otherwise, we pick the highest valued of the head of the list, the
lone term, and the tail of the list, by using the ternary max_valued predicate recur-
sively.

max_valued([], Term, Term).

max_valued([Head|Tail], Term, Max) :-
higher_valued(Head, Term),
max_valued(Tail, Head, Max).

max_valued([Head|Tail], Term, Max) :-
higher_valued(Term, Head),
max_valued(Tail, Term, Max).

The clauses in the definition of ternary max_valued are mutually exclusive. In par-
ticular, the last two require different relative magnitudes of Head and Term. How-
ever, if the second clause is used and later failure causes backtracking, the third
clause will then be tried. The complete recomputation of higher_valued(Term,
Head) will be performed which, by virtue of the asymmetry of the notion “higher
valued”, will fail. However, arbitrary computation may have to be performed before
this mutual exclusivity of the two clauses is manifested, because the computation of
higher_valued(Term, Head) may be arbitrarily complex.

We can increase the efficiency of max_valued by making this exclusivity explicit
so that if the second clause is chosen, the third clause will never be backtracked into.
The following redefinition suffices:

max_valued([Head|Tail], Max) :-
max_valued(Tail, Head, Max).

max_valued([], Term, Term).
max_valued([Head|Tail], Term, Max) :-

higher_valued(Head, Term),
|
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max_valued(Tail, Head, Max).
max_valued([Head|Tail], Term, Max) :-

higher_valued(Term, Head),

max_valued(Tail, Term, Max).

In this version of the program, as soon as we have ascertained that Head is higher than
Term in value, we will eliminate the possibility of using the third clause, since we
know that its first literal is doomed to failure anyway.

This cut maintains the semantics of the program only for certain modes of exe-
cution of the program. In particular, if the mode is max_valued(-,?), then the cut
version may return fewer solutions than the uncut. However, use of max_valued in
this way will in any case generate instantiation errors if the arithmetic operators are
used within higher_valued.

In summary, using cuts in this way without changing the meaning of the program
can in some cases improve performance significantly. Nonetheless, this trick (and trick
it is) should only be used when necessary, not when possible.

A second use of cuts is for eliminating redundancy in a program. Consider the
alternate shuffle predicate defined by the following clauses:

shuffle(A, [], A).

shuffle([], B, B).

shuffle([A|RestA], B, [A|Shuffled]) :-
shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-
shuffle(A, RestB, Shuffled).

This shuffle program correctly implements the shujfie relation. However, the predi-
cate allows redundant solutions; we can see this by backtracking through the solutions
it allows.

?- shuffle([a,b],[1],Shuffled).
Shuffled = [a,b,1] ;
Shuffled = [a,b,1] ;
Shuffled = [a,b,1] ;
Shuffled = [a,1,b] ;
Shuffled = [a,1,b] ;
Shuffled = [a,1,b] ;
Shuffled = [1,a,b] ;
Shuffled = [1,a,b] ;
Shuffled = [1,a,b] ;
Shuffled = [1,a,b] ;
no

The problem is that if one of the lists is empty, the program has the choice either of
using one of the first two clauses to immediately determine the answer, or of traversing
the nonempty list using one of the last two clauses. In either case, the solution is
the same. One way to fix the predicate is to guarantee that the clauses are mutually
exclusive.
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shuffle([]1, [1, [D).

shuffle([A|RestA], B, [A|Shuffled]) :-
shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-
shuffle(A, RestB, Shuffled).

However, this solution might be seen as inefficient, since in the case that one of the lists
is empty, the other list is still entirely traversed. An alternative is to place cuts after
the first two clauses so that if one of the lists is empty, the use of one of the first two
clauses will cut away the possibility of using the later clauses to traverse the nonempty
list.

shuffle(A, []1, A) :- !.

shuffle([], B, B) :- !.

shuffle([A|RestA], B, [A|Shuffled]) :-
shuffle(RestA, B, Shuffled).

shuffle(A, [B|RestB], [B|Shuffled]) :-
shuffle(A, RestB, Shuffled).

As a matter of style, we prefer the nonredundant solution with no cuts to this final
one. The example was introduced merely as an illustration of the general technique of
removing redundancy.

The third use of cut we will discuss here is a technique for implementing condi-
tionals. Unlike the previous two uses, in which the declarative interpretation of the
programs was the same whether or not the cuts were inserted, this use of cut actually
changes both the procedural and the declarative interpretations. Such uses of cut are
often referred to as “red” cuts, to distinguish them from the less dangerous “green”
cuts we first discussed.

A conditional definition of a predicate p of the form “if condition then truecase
else falsecase” can be represented in Prolog using cuts as follows:

p :- condition, !, truecase.
p :- falsecase.

If the condition holds, the cut will prevent backtracking into the falsecase. On the
other hand, if the condition fails, the truecase will, of course, not be executed. Thus
the cases are executed just according to the normal notion of the conditional.

As an application of such a conditional, consider the merge function introduced in
Section 3.4.1.

merge(A, [1, A).
merge([], B, B).
merge([A|RestAs], [B|RestBs], [A|Merged]) :-
A < B,
merge (RestAs, [B|RestBs], Merged).
merge([A|RestAs], [B|RestBs], [B|Merged]) :-
B =< A,
merge([A|RestAs], RestBs, Merged).
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The last two clauses can be thought of as saying: “if A < B then pick A else pick B.”
The predicate can be reimplemented using cut to reflect this conditional:

merge(A, [1, A).
merge([], B, B).
merge([A|RestAs], [B|RestBs], [A|Merged]) :-

A < B,

.

merge (RestAs, [B|RestBs], Merged).
merge([A|RestAs], [B|RestBs], [B|Merged]) :-

merge ([A|RestAs], RestBs, Merged).

Certain versions of Prolog include a notation for conditionals which generalizes
those built with cuts in this way. The goal

condition -> truecase ; falsecase

is used for this purpose. Use of the explicit conditional is preferred to implicit condi-
tionals built with cut. With this notation, the merge example can be rewritten as

merge(A, [, A).
merge([], B, B).
merge([A|RestAs], [B|RestBs], [C|Merged]) :-

A<B
-> (merge(RestAs, [B|RestBs], Merged),
cC=24
;  (merge([A|RestAs], RestBs, Merged),
C = B).

Note the use of the = operator defined in Program 3.2.

5.1.3 The Negation-as-Failure Operator

In pure Horn clauses, it is possible to prove only positive conclusions; Prolog can
prove that something is the case, but never that something is not. However, some sit-
uations intuitively have the same character as reaching a negative conclusion, namely
those in which Prolog fails to prove a goal. We might assume that if Prolog cannot
prove something true, then it must be false. Implicit in this assumption is the idea that
the Prolog program from which Prolog could not prove the given goal has complete
information about its intended domain of interpretation. This “complete information”
interpretation (or closed world assumption as it is called) is so natural that we use it all
the time without noticing. For example, if a string cannot be analyzed as a sentence
for some grammar, we may conclude that the string is not grammatical. If two people
are not related by the ancestor relation in our family database, we may conclude that
neither is an ancestor of the other. Concluding the negation of a statement from fail-
ure to prove it has become known in logic programming as negation as failure (Clark,
1978).

Negation as failure is a reasonable interpretation of proof failure under the closed
world assumption because Prolog provides a complete proof procedure; that is, Prolog
will not conclude there is no proof of a goal when there is one. However, things are
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more subtle than the foregoing discussion implies. Since any Turing machine can be
represented by a pure Prolog program (Tarnlund, 1977), the recursive unsolvability of
the Turing-machine halting problem implies that the determination of whether a goal
is provable is in general an undecidable question. If a goal is unprovable, Prolog may
terminate with a failure answer, or it may loop forever (ignoring resource limitations!).
Because of its leftmost-literal selection rule, Prolog might in fact loop even for goals
for which a proof procedure with a different selection rule would terminate with failure.
In general, a goal is finitely failed (with respect to a program) if the proof procedure
terminates with failure for the goal.

All versions of Prolog provide some form of negation-as-failure operator. We will
here assume the Edinburgh \+ operator. A goal \+G succeeds if and only if Prolog
(finitely) fails to prove G. It turns out that \+ behaves exactly as if defined by the
program

\+ Goal :- call(Goal) -> fail ; true.

This program has no reasonable declarative interpretation. Procedurally, \+ tries
to execute its argument Goal in the first clause. If Goal succeeds, the fail causes the
whole call to \+ to fail. Otherwise, \+ Goal succeeds trivially in the second branch
of the conditional.

An important limitation of the above operator is that it does not achieve its in-
tended interpretation if its argument contains unbound variables. This is shown by the
different behaviors of the queries

?7-\+ pX), X = a.
and

?7- X =a, \+ pX).
with the program

p(b).

Tracing the execution of \+ in both queries, we see that the first query fails while the
second one succeeds, even though the two queries have the same logical interpretation.

The problem here is that the implementation of \+G behaves as if any unbound
variables in G were existentially quantified inside the operator, whereas, to be consis-
tent with the variable scoping conventions Prolog uses (as discussed in Section 2.3),
the variables should be treated as quantified at the outermost level in the enclosing
query or clause. In other words, a goal such as

- \+ p(X).

is executed as if it meant :- \+((AX)p(X)), while in fact it should mean
(VX):- \+p(X). As a consequence, \+ can be interpreted declaratively as negation-
as-failure only if its argument has no unbound variables. Some versions of Prolog, for
instance MU-Prolog (Naish, 1986), have a sound negation-as-failure operator, which
basically delays the execution of the negated goal until all of its variables have been
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sufficiently instantiated. (What “sufficiently” means here is beyond the scope of this
book.)

5.14 Thesetof predicate

The control regime of Prolog generates alternative solutions for a goal only through
backtracking. Unless some literal fails, an alternate solution to an earlier goal will
never be generated. On occasion, however, we may be interested not in some solution
to a goal, but in all solutions. The setof predicate allows execution of a goal—like
call—hbut in such a way that a list of all solutions is generated.

A literal of the form setof (T, G, S),whereT issome term (usually a variable)
and G is a goal (usually containing the variable), will hold just in case S is a list
representing the instantiations of T under all assignments generated as solutions to the
goal G. This goal can be read “the set of Ts such that G holds of each one is S”. For
instance, the query

?- setof(T, shuffle([a,b],[1],T), S).
S =1[[1,a,b],[a,1,b],[a,b,1]],
T=_3;

no

computes the set of shuffles of [a,b] and [1], encoded as a list.

An important issue concerns variables in the goal G other than those in T. For
instance, consider the goal setof(T, conc(T, U, [1,2,3]), S). We must dis-
tinguish between variables that are interpreted as bound by an existential quantifier
within the scope of a setof literal and variables that are bound outside the scope of
the setof, or, in other words, to distinguish between “the set of Ts such that there is
aU...” and “for some U, the set of Ts such that...”. As seen in the following query,
variables occurring in G that are not in T are in general treated as being outside of the
scope of the setof.

?- setof(T, conc(T, U, [1,2,3]), S).

T=_,

U= 1[],

S =1[[1,2,3]];
T=_,

U= [1,2,3],
S = [[]1] ;
T=_,

U= [2,3],
S = [[1]] ;
T=_,

U= [3],

S =1[[1,2]] ;
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no

To obtain behavior reflecting the narrow scope for binding of such variables, the setof
predicate allows “existentially quantified” variables to be prefixed to the goal G with
the infix operator “~”.*

?- setof(T, U'conc(T, U, [1,2,3]), S).
T=_,

U =

S
no

[01,011,01,2],[1,2,3]] ;

Note that a setof literal fails (rather than succeeding with S the empty list) if the
goal G has no solutions.

A related predicate, bagof, differs from setof only in that redundant solutions are
not removed.

?- setof(T, member(T, [1,1,2]), S).
T =

S
yes

I1,2]

?- bagof(T, member(T, [1,1,2]), S).

T=_,
s =[1,1,2]
yes

5.1.5 Theassert command

Interaction with Prolog as discussed so far consists of presenting queries to be ex-
ecuted against a static database of Horn clauses. The assert command (and related
commands like retract) allow a program to alter the clause database dynamically; the
program can “rewrite itself” as execution progresses. The idea of a program changing
itself while executing is both powerful and dangerous. The use of facilities to perform
such actions is therefore tendentious. Overuse of these facilities is one of the most
common errors of beginning Prolog programming.

A clause can be added to the database by calling assert with the clause as argu-
ment. For example, the clause

remembered([shrdlu, halts],
s(np(shrdlu),vp(iv(halts)))).

can be added to the database by execution of the following goal:

assert (remembered([shrdlu, halts],
s(np(shrdlu) ,vp(ivChalts)))))

1This use of " is unrelated to and should not be confused with its use in lambda-expression encodings.
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Here again Prolog relies on the trick of representing object-level variables by met-
alevel variables.

The following program, for instance, will compute the parse tree for a sentence
(assuming a DCG like that in Program 3.11). Furthermore, once the parse tree has
been computed, it is “remembered” by asserting a unit clause into the database. If the
parse tree for the sentence is ever again requested, the computation using the grammar
will not be done; instead, the appropriate unit clause will be used. The cut in the
program guarantees that even on backtracking, no recomputation of the parse tree is
performed.

remember (Sentence, Parse) :-
remembered(Sentence, Parse), !.

remember (Sentence, Parse) :-
s(Parse, Sentence, []),
assert (remembered(Sentence, Parse)).

This program can be understood only procedurally. It makes sense only under
certain execution modes and calling conventions. In particular, if the grammar was
ambiguous for a particular sentence, this ambiguity will never be manifested, since on
backtracking after the first call the cut eliminates further possibilities. We will see a
more coherent, useful application for assert as a tool for remembering lemmas (that
is, previously proven results) in Section 6.6.3.

5.1.6 Other Extralogical Predicates

We conclude our discussion of extralogical features of Prolog with a grab bag of built-
in Prolog predicates that we will find useful in later examples. Of course, since these
predicates fall outside the pure subset of Prolog they should be used sparingly and with
appropriate trepidation.

Perhaps the canonical metalogical predicate is var, which holds if its single ar-
gument is a variable at the time the literal is executed. Similarly, atomic holds of a
term if it is a constant (i.e., a number or atom) at execution time. Note that procedural
issues like literal ordering are crucial in determining the behavior of these predicates.
For instance, compare the two queries

?- var(X), X = a.
X =a
yes

?- atomic(X), X = a.
no

to the queries with literals reversed.

?7- X =a, var(X).
no
?- X = a, atomic(X).
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yes

A useful device for composing and decomposing terms is the binary infix operator
=. ., which holds of two arguments Term and List if Term is a term with functor of
arity k and List is a list of length k + 1 whose first element is the functor name of
Term and whose last k elements are the k arguments of Term. For example, we have

?7-T=.. [f, a, X, g(X].
T = f(a,X,g(X))
yes

?7- f(a,X,gX)) =.. L.
L=[f, a, X, g(X)]
yes

This predicate, like the arithmetic predicates of Section 3.4.1, is not so much extralog-
ical as incompletely implemented, in that execution of the predicate with improper
instantiation of its arguments results in an instantiation error rather than a failure of
the call. In particular, it must be called with either one or the other of its arguments
instantiated. Furthermore, if the first argument is uninstantiated, the second must be a
list whose first element is a constant. These restrictions follow from the requirement
that appropriate solutions for variables must be determinable at the execution time of
the predicate.?

5.2 A Simple Dialogue Program

We now turn to the design of the talk program, a simple natural-language question-
answering system which demonstrates some of the metalogical facilities just described.
Here is a typical dialogue that could be handled by talk.

?- main_loop.
>> principia is a book
Asserted "book(principia)."
>> bertrand wrote every book
Asserted "wrote(bertrand,B) :- book(B)."
>> which of the books did bertrand write
Error: too difficult.
>> what did bertrand write
principia.
>> every professor that wrote a program met bertrand
Asserted "met (P,bertrand) :-
professor (P), program(R), wrote(P,R)."

20ften the use of =.. can be replaced by the more efficient built-in predicates
functor(Term, Name, Arity), which holds when Term has main functor with name Name and
arity Arity, and arg(Number, Term, Arg), which holds when the argument of Term in position Number
is Arg. In the cases we will consider, the =. . operator is more readable.
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Notice that talk can give only extensional answers to questions; for example, to
the question “What did Bertrand write?” it can answer only with specific entities that it
can prove Bertrand wrote, and not with general answers such as “every book.” In fact,
the best way of understanding talk input is as convenient notation for Prolog clauses
to be added to the knowledge base and for Prolog goals to be proved.

talk is also limited in that it works with a predefined vocabulary, specified in
the grammar. It would not be difficult to add a simple mechanism to allow the user
to define new words, but such a mechanism would be usable only because of the
small grammatical and semantic capabilities of talk. The more general problem of
vocabulary acquisition for large natural-language processing systems is a separate
research topic (Grosz et al., 1987).

The talk program works by

1. Parsing a sentence, simultaneously building a representation of its logical form.
2. Converting the logical form to a Horn clause (if possible).

3. Either adding the clause to the Prolog database (if the sentence was declarative)
or interpreting the clause as a query and retrieving the answers to the query.

To perform these tasks, the program makes use of the metalogical facilities just
described. The cut command is used to encode conditionals. The assert command is
used to modify the Prolog database incrementally while the program is running. The
setof predicate is used to find all answers to a query.

5.21 Overall Operation

The main predicate is talk which when executed performs the three phases of com-
putation just described.

talk(Sentence, Reply) :-
parse(Sentence, LF, Type),
clausify(LF, Clause, FreeVars), !,
reply(Type, FreeVars, Clause, Reply).
talk(Sentence, error(’too difficult’)).

Note the use of cut. If the sentence cannot be parsed or if its logical form cannot
be converted to a Horn clause, the reply will be error(’too difficult’). The
cut encodes the conditional “if the sentence can be parsed and clausified then reply
appropriately else the sentence is too difficult”.

5.2.2 Parsing

The sentence is parsed by the parse predicate instantiating LF to the logical form
for the sentence (as in Section 4.1), and instantiating Type to query or assertion
depending on whether the sentence was interrogative or declarative.

parse(Sentence, LF, assertion) :-
s(finite, LF, nogap, Sentence, []).
parse(Sentence, LF, query) :-
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q(LF, Sentence, []).

The grammar used in the talk program is based on that developed in previ-
ous chapters, in particular Program 4.5, but modified to allow questions and declar-
ative sentences with the copular verb “be”. The analysis of the copula which we
use here is sorely inadequate. It serves merely as an expedient to allow certain sen-
tences needed for nontrivial dialogues. More sophisticated analyses of auxiliaries that
mesh more nicely with the copula could be inserted. Semantically, the verb “be” re-
quires a complement noun phrase which is existentially quantified, i.e., of the form
(X"Q) "exists(X,P&Q). The logical form of a sentence containing “be” is con-
structed by applying the subject LF to the property P, ignoring Q altogether.

As in Program 4.3, the terms that give the meanings of content words such as
book are now marked with the prefix operator “‘”, as in ‘book(X). This makes the
translation from logical form to Prolog easier, because it clearly distinguishes logical
connectives from subject domain operators.

The logical forms for questions are implications C => answer (a), meaning that
a is an answer for the question if condition C representing the text of the question
holds. For yes-no questions, the answer is yes if the text of the question holds. For
WH-questions, the answers are the instantiations of a that satisfy the goal. Note that
this differs from the semantics given by Program 4.5.

5.2.3 LF Conversion

Logical forms are converted to Horn clauses by the predicate clausify. A literal
clausify(Formula, Clause, Vars) holds if Clause is the clausal form of the
FOL formula Formula and Vars is a list of the variables free in the antecedent of the
clause. (The need for Vars will be explained later.)

The main point to note about clausify is that it is a partial function. Although all
logical forms generated by the grammar are closed first-order formulas, some of them
are not Horn clauses. For example, the question “Who wrote every book?” has the
logical form

all(B,book(B) => wrote(X,B)) => answer(X). ,

which is not a Horn clause. We leave as an exercise for the reader to determine what
sentence types may or may not be represented by Horn clauses. As we have seen,
Horn clauses must obey several restrictions. Outermost quantifiers must be universally
quantified. Thus, to clausify a universally quantified expression, we merely strip off
the quantifier and clausify the rest.

clausify(all(X,F®),F, [X|V]) :- clausify(FO,F,V).

If a clause has an implication symbol, the consequent must be a single literal, and
the antecedent must have variables existentially quantified with no other implication
symbols.

clausify(A0=>CO, (C:-A),V) :-
clausify_literal(C0,0),
clausify_antecedent(A0,A,V).
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Otherwise, if the clause has no implication symbol it must be a unit clause, a single
literal.

clausify(C0,C,[]) :-
clausify_literal(C0,0).

As mentioned above, antecedents must have variables quantified existentially, but
may consist of several literals, not just the one allowed in the consequent.

clausify_antecedent (LO,L,[]) :-
clausify_literal(LO,L).

clausify_antecedent (EO&FO®, (E,F),V) :-
clausify_antecedent(EO,E,V0),
clausify_antecedent(F0,F,V1),
conc(VO,V1,V).

clausify_antecedent (exists(X,F0®),F, [X|V]) :-
clausify_antecedent(FO,F,V).

Finally, literals are clausified merely by removing the backquote marker.
clausify_literal(‘L,L).

Note that each clause for clausify and clausify_antecedent includes a third
argument that keeps track of the variables free in the antecedent of the clause.

In the translation from logical form to Prolog we can also see how Prolog clauses
are represented as Prolog terms with the binary functors “: - and “,” used for impli-
cation and conjunction, respectively. On the second clause of clausify we have the
term (C:-A)° used to construct a clause representation, and in the second clause of
clausify_antecedent we have the term (E, F) being used to build a conjunction in
the antecedent of a clause.

Here also we see another instance of the previously discussed “confusion” between
object level and metalevel. In the clauses for clausify and clausify_antecedent,
variables are used to stand for fragments of logical forms and Prolog clauses. At
the same time, quantified variables in the logical form are also represented by Prolog
variables, and end up as the variables of the resulting Prolog clause.

5.24 Constructing A Reply

Finally, once the sentence has been parsed and its logical form converted to a clause,
a reply is constructed. If the sentence is declarative, the clause is merely asserted into
the Prolog database so that future queries will use it.

reply(assertion, _FreeVars, Assertion,
asserted(Assertion)) :-
assert(Assertion), !.

Clauses associated with queries are always of the form answer(Answer) :-
Condition, by virtue of the semantics given to questions in the grammar. The

3The parentheses are required as usual for reasons of operator precedence.
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Answers associated with all solutions of Condition are generated using setof and
this set forms the reply. If no answers are generated, the simple reply “no” is used.

reply(query, FreeVars,
(answer (Answer) :-Condition), Reply) :-
(setof(Answer, FreeVars“Condition, Answers)
-> Reply = Answers
; Reply = [no]), !.

For example, the question “Who wrote a book?” would be translated into the Prolog
clause

answer(X) :- book(B), wrote(X,B).
This is then evaluated by the goal
setof (X, [B] " (book(B) ,wrote(X,B)),S) ;

that is, S is the set of Xs such that there is a book B that X wrote. Note the use of
the set of free clause variables that we took pains to recover in the LF conversion
predicates. By existentially quantifying them inside the setof predicate, we guarantee
that all solutions for any assignment to the free variables are recovered, not just for one
assignment to them.

Finally, any other type of sentence generates an error message. The cuts in previous
clauses prevent backtracking into this clause once another clause has matched.

reply(_Type, _FreeVars, _Clause,
error (’unknown type’)).

5.3 User Interaction

The mode of interaction of the talk program as it stands requires putting to the Prolog
interpreter goals encoding the sentence as a list. For instance, we might have the
following dialog.

?- talk([principia, is, a, book], Reply).
Reply = asserted(book(principia))
yes

?- talk([bertrand, wrote, every, book], Reply).
Reply = asserted((wrote(bertrand,B) :-book(B)))
yes

?- talk([what, did, bertrand, write], Reply).
Reply = answer([principial)
yes
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A more natural mode of interaction would enable the user to type sentences di-
rectly, and receive replies from the system not as variable assignments, but as an ap-
propriate response to the input. To enable such interfaces to be written, Prolog systems
include built-in commands for performing input to and output from a terminal or other
device.

Input/output specification is typically the most idiosyncratic and variable part of
any programming language, and Prolog is no exception. We will therefore present just
a few very primitive commands—sufficient to write a user interface for talk—which
tend to be supported by most Prolog systems. Readers will undoubtedly want to refer
to the manuals for their own systems to determine the range of input/output commands
that are available.

Note that all of these commands work through side effects such as changing the
state of the terminal screen or input buffer. Since side effects have no place in the
declarative semantics of Prolog, these are all members of the strictly extralogical part
of Prolog. Retrying such commands or backtracking through them does not cause their
side effects to be undone, and they work only in certain modes.

5.3.1 Simplelnput/Output Commands

The unary write command prints its term argument to the standard output (usually
the terminal). Its inverse, read, reads a term delimited by a period and newline from
the standard input (usually the terminal as well) and unifies its argument with the term
that is read. Typically, it is called in mode read(-), so that its argument is a variable
that is bound to the term read.

Input/output behavior at the character rather than term level is possible with com-
mands get and put. The get command reads a single printing character from the input
stream, unifying its argument with the integer that is the ascur code for the character
read. Nonprinting characters (like spaces, tabs, newlines and control characters) are
skipped. Its companion command get® works the same, except that nonprinting char-
acters are not skipped. To print a character to the standard output, the put command
is called with the integer corresponding to the character to be printed as its argument.
The zero-ary predicate nl puts a newline character to the standard output.

5.3.2 A SimpleUser Interface

Using these commands, we can develop a simple user interface for the talk pro-
gram. First, we need a program to read sentences from the terminal. The predicate
read_sent will return a list of words which were typed separated by spaces and ended
by a newline character.

read_sent (Words) :-
get®(Char),
read_sent (Char, Words).

It gets the next character from the input stream as a lookahead and, depending on the
lookahead character, either continues reading or stops. If the lookahead is a newline,
input is ended.

read_sent(C, []) :- newline(O), !.
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If the lookahead is a space, it is ignored, as spaces are not part of the next word.

read_sent (C, Words) :- space(Q), !,
get®(Char),
read_sent (Char, Words).

Any other character is assumed to start a word. The auxiliary predicate read_word is
called to retrieve the characters that constitute the next word from the input. Then the
built-in predicate name packs this list of characters into an atom. Finally, more words
are read from the input.

read_sent(Char, [Word|Words]) :-
read_word(Char, Chars, Next),
name (Word, Chars),
read_sent (Next, Words).

Reading a word from the input stream proceeds similarly. The predicate
read_word takes the lookahead character and builds a list of characters starting with
the lookahead that comprise the word. The new lookahead, the delimiter following the
word, is matched with the third argument to read_word. Newlines and spaces delimit
the words.

read_word(C, [], C) :- space(C), !.
read_word(C, [], © :- newline(O), !.

All other characters are added to the list of characters to be formed into a word.

read_word(Char, [Char|Chars], New) :-
get®O(Next),
read_word(Next, Chars, New).

Using read_sent, we can write a top-level loop that reads sentences, computes
the appropriate reply with talk, and prints that reply.

main_loop :-
write('>> ),
read_sent (Words),
talk(Words, Reply),
print_reply(Reply),
main_loop.

The final recursive call of main_loop starts the read-compute-print loop over again.
Finally, a program to print the replies in a more satisfactory fashion was assumed in
the definition of main_loop. This predicate, print_reply, is listed in the Appendix
A code. As it presents no interesting problems, its definition is not repeated here.
Interacting with the talk program through this interface, although not ideal, is
considerably more natural as evidenced by the dialogue presented at the beginning of
Section 5.2. The full commented listing for the talk program is given in Appendix A.
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5.4 Bibliographic Notes

Most of the extralogical facilities of Prolog discussed in this chapter go back to the
original Marseille Prolog (Roussel, 1975). In that system, !, assert and =.. were
called respectively / (the slash, suggesting the cutting of alternative branches of the
search space), AJOUT, and UNIV.

The general question of extralogical facilities has led to much discussion in the
logic programming community. At their best, those facilities can be seen as operators
on axiom sets and derivations, for which a reasonable semantics might be forthcoming
(Bowen and Kowalski, 1981; Bowen and Weinberg, 1985). At their worst, extralogi-
cal facilites are just means of simulating imperative language features within Prolog.
Often, these simulations not only detract from the logical semantics of Prolog but also
incur considerable performance penalties, since the most efficient aspects of Prolog are
generally those with a clean semantics (Warren, 1977).

Of all extralogical operations in Prolog, the cut seems to be the most often used and
the source of most controversy. The primitive storage management techniques of early
Prolog systems meant that nondeterminate computations used very large amounts of
space. Since the cut operator makes a subcomputation determinate, “green” cuts were
used in early Prolog programs as the main method of storage conservation. More
recently, improved storage management techniques and better determinacy detection
in Prolog compilers (Warren, 1977; Tick and Warren, 1984; Pittomvils et al., 1985;
Bowen et al., 1986) have made that use of cut less important, at least for those with
access to state-of-the-art Prolog systems.

The use of cut to implement a limited form of negation as nonprovability also
goes back to Marseille, although it is difficult to give a precise reference to the first
appearance of the technique. The overall question of the meaning of negation-as-
nonprovability has been extensively researched. Lloyd’s book (1984) presents some
of the main theoretical concepts and results on the subject, originally discovered by
Clark (1978), Apt and van Emden (1982) and Jaffar, Lassez, and Lloyd (1983). These
results include denotational characterizations of the meaning of different possible no-
tions of negation, and proofs of the soundness and completeness of negation-as-failure
with respect to the completions of definite-clause programs. A more recent survey of
results and open problems was given by Jaffar, Lassez and Maher (1986). These theo-
retical developments proceeded in parallel with the discovery of computational mech-
anisms allowing sound implementations of negation-as-failure, embodied in Colmer-
auer’s Prolog-I1 (1986) and Naish’s MU-Prolog (1986). These mechanisms involve
delaying negations (or, as a special case, inequalities) until variables become “suffi-
ciently” bound.

The set construction operator setof we use here is due to D. H. D. Warren (1982)
and was first implemented in DEC-10 Prolog (Bowen, 1982). From a practical point
of view, the requirement that all narrow-scope existentially quantified variables be
explicitly marked with the ~ operator is sometimes burdensome. Other proposed set
operators (Morris et al., 1986) adopt the opposite convention.

Our talk program is a rather simplistic example of a natural-language interface to
a knowledge base. A comparable example program was given as an example of ap-
plication of Colmerauer’s metamorphosis grammars (1978). The program’s structure
and operation are closely modeled on those of more comprehensive Prolog natural-
language database interfaces such as those by Dahl (1981), F. C. N. Pereira (1982),
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Pereira and Warren (1982), and McCord (1982), even though those systems dealt only
with questions and not with assertions. The limitation of allowable assertions to those
whose meaning can be expressed by definite clauses circumvents the difficult ques-
tion of what to do with assertions that contradict existing system knowledge (Haas and
Hendrix, 1981). More generally, natural-language interface systems should be able to
deal with unmet presuppositions in questions and commands as well as with assertions
that contradict existing information (Winograd, 1972).

As we pointed out, our example program cannot acquire new words not in its ini-
tial vocabulary. In general, this is a difficult question. Besides the determination of
syntactic category and features, word acquisition should be able to determine use and
meaning constraints for the word, either from other information supplied in natural lan-
guage (Haas and Hendrix, 1981) or from specialized acquisition-dialogue mechanisms
(Grosz et al., 1987; Ballard and Stumberger, 1986).
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Chapter 6

Interpreters

This digital edition of Pereira and Shieber’s Prolog and Natural-
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lishing under a license described in the front matter and at the web
site. A hardbound edition (ISBN 0-9719997-0-4), printed on acid-
free paper with library binding and including all appendices and two
indices (and without these inline interruptions), is available from
www . mtome . comand other booksellers.

In previous chapters we have seen that a very powerful grammar formalism,
definite-clause grammars, can be used to describe a variety of NL-related phenom-
ena and can be directly embedded in Prolog. In so doing, the grammar engenders a
top-down, recursive-descent, backtrack parser for the language of the grammar. For
applications where such a parser is sufficient, this technique can be quite useful. We
have, however, already seen evidence of frailties of Prolog and DCGs. For instance,

e Since Prolog programs with left-recursion have termination problems, so will
direct Prolog execution of DCGs with left-recursive rules.

e Arguments in DCG rules having a regular, predictable structure—e.g., those
which enforce filler-gap dependencies, build parse trees, or construct logical
forms—tend to proliferate and complicate grammars.

These and similar problems have been addressed in logic-programming research.
Some of the tools for solving them—hby extending or modifying Prolog or the grammar
formalism—exist within Prolog itself, but rely on using the language in different ways.
Rather than embedding programs or grammars directly in Prolog, we can define an
interpreter for the extended language in Prolog itself. An interpreter is a meta-program
in that it uses other programs as data.® By writing specialized interpreters, it is possible
not only to cover new language constructs, but also to try out new evaluation strategies
for a language.

LFor this reason, what we call interpreters are sometimes referred to somewhat confusingly as meta-
interpreters, even though they do not in general interpret interpreters.
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6.1 Prologin Prolog

We will begin our discussion of interpreters with the basis for extensions to Prolog,
namely, an interpreter for pure Prolog, written in pure Prolog itself. Such interpreters
written in their own object language are often called meta-circular interpreters. In
fact, we have seen one meta-circular Prolog interpreter already, the predicate prove in
Program 5.1. In this less trivial example, we assume that the object-level Prolog pro-
gram to be interpreted is encoded with the unary predicate clause. For instance, the
conc predicate, defined as Program 3.3, would be encoded as data for the interpreter
by the clauses?

clause(( conc([], L, L) :- true )).
clause(( conc([E|R], L, [E|RL]) :-
conc(R, L, RL) ).

Notice that the clauses are encoded by Prolog terms and the object-level variables
by meta-level variables. We have seen this kind of “level-shifting” between object-
and meta-level before, for instance, in the use of Prolog (meta-level) variables to en-
code lambda-calculus (object-level) variables (see Section 4.1.3). In the writing of
interpreters, such level-crossing is ubiquitous.

The interpreter is implemented by the predicate prove, which takes an object level
goal (encoded as a term) and follows the Prolog proof procedure using the program ax-
iomatized by clause clauses. The intention is that the goal prove (Goal) be provable
by Prolog if the goal Goal is as well. Clearly, the trivial goal true is always provable.

prove(true).

Any other goal is provable only if there is some clause which matches it and whose
body is provable.

prove(Goal) :-
clause((Goal :- Body)),
prove(Body) .

Finally, if the body consists of the conjunction of two subgoals, they must be proved

independently.
prove((Bodyl, Body2)) :-

prove(Bodyl),
prove(Body2) .

These three clauses, summarized as Program 6.1, constitute a full interpreter for pure
Prolog written in Prolog.

Program 6.1
prove(true).

prove(Goal) :-

2The extra parentheses around each clause are required by Edinburgh Prolog syntax to inhibit Prolog
from interpreting the : - with its normal precedence, which would cause it to be taken as binding weaker
than the clause predicate itself. The parentheses force it to be interpreted in the natural way as taking just
the material inside the parentheses as arguments. The same trick was used in Section 2.8.1.
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clause((Goal :- Body)),

prove(Body) .
prove((Bodyl, Body2)) :-

prove (Bodyl),

prove (Body2) .

By tracing the execution of the program proving a goal and comparing it to the trace
of Prolog executing the same goal directly, as in Figure 6.1, we can see the parallelism
between the interpreter’s axiomatization of the object-level Prolog interpreter and the
object-level interpreter itself.

6.1.1 Absorption

The difference between the three-clause interpreter and the trivial one-clause inter-
preter using call (Program 5.1) resides in the amount of work of the interpreter that
is done by the Prolog execution mechanism the interpreter is being executed by. In the
case of the trivial interpreter, all of the interpretation process is absorbed by the Prolog
that is executing the interpreter. In the three-clause interpreter, much, but not all, of the
work is being absorbed. For example, the unification of goal literals and clause heads
is absorbed into the unification of terms in the executing Prolog. The order of clause
choice is also absorbed. In fact, the only part that is not absorbed is the selection of
literals in a conjunctive goal.

Interpreters are written so that portions of the interpretation process can be ma-
nipulated, changed, and otherwise investigated. The part of the interpretation process
absorbed by the program executing the interpreter is not subject to such manipulation.
Thus, if we are interested in experimenting with alternate literal selection rules, the
one-clause interpreter will be insufficient for our purposes (since it absorbs literal se-
lection), whereas the three-clause interpreter does allow changes in that area (since
it makes literal selection explicit). However, if we wish to experiment with alternate
unification methods (as is commonly done), neither of these interpreters suffices; they
both absorb unification into the underlying execution. Note that the interpreters pre-
sented so far all absorb the various facets of the control structure of Prolog by imple-
menting them with the same facets in the underlying execution. This circularity is not
necessary, but is often the simplest method of absorption.

6.1.2 Keeping Proof Trees

As an example of one sort of extension to the language that interpreters make possible,
we consider a version of Prolog that automatically generates proof trees for goals that
it proves. An extra argument in the interpreter keeps track of the proof tree of the goal
being proved. The proof tree encoding is as follows: If a literal L is proved by virtue
of subproofs P4, ..., Py, then the proof tree for L

L

N

P... P
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?- conc([a,b]

(1) 0 Call :

(2) 1 Call :

(3) 2 Call

(3) 2 Exit
(2) 1 Exit
(1) 0 Exit
A = [a,b,c,d]

yes

,[c,d],8).

conc([a,b], [c,d],L_1)

conc([b], [c,d],RL_2)

: conc([],[c,d],RL_3)

: conc([], [c,d], [c,d])
: conc([b]l, [c,d], [b,c,d])

: conc([a,b], [c,d], [a,b,c,d])

?- prove( conc([a,b],[c,d],A) ).

(1)
(2)
(2)

(3
(4)
(4)

(5)
(6)
(6)
(7)
(7)
(5)
(3
(1)
A =

yes

0 Call

1 Call
2 Exit
2 Call
3 Call
3 Exit
3 Call
3 Exit
2 Exit

1 Exit

0 Exit

[a,b,c,d]

: prove(conc([a,b], [c,d],L_1))
1 Call :
1 Exit :

clause((conc([a,b], [c,d],L_1):-Body_2))
clause((conc([a,b], [c,d], [alRL_2]) :-
conc([bl, [c,d],RL_2)))

: prove(conc([b], [c,d],RL_2))
2 Call :

clause((conc([b], [c,d],RL_2) :-Body_4))

: clause((conc([b], [c,d], [bIRL_3]):-

conc([], [c,d],RL_3)))

: prove(conc([], [c,d],RL_3))

: clause((conc([], [c,d],RL_3) :-Body_6))
: clause((conc([], [c,d], [c,d]) :-true))
: prove (true)

: prove(true)

: prove(conc([], [c,d], [c,d]))
: prove(conc([b], [c,d], [b,c,d]))

: prove(conc([a,b], [c,d], [a,b,c,d]))

Figure 6.1: Comparison of Direct Execution and Indirect Interpretation.
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is encoded as the Prolog term
L :-P1, ..., Pn
The following interpreter accomplishes this task:

Program 6.2
prove(true, true).

prove(Goal, (Goal :- BodyProof)) :-
clause((Goal :- Body)),
prove (Body, BodyProof).
prove((Bodyl, Body2), (BodylProof, Body2Proof)) :-
prove(Bodyl, BodylProof),
prove (Body2, Body2Proof).

As an example, the interpreter generates the following proofs (manually indented for
readability) for queries concerning the shuffle predicate defined as Program 3.4.

?- prove(shuffle([a,b],[1,2],S), Proof).

S =1[1,2,a,b],
Proof = shuffle([a,b],[1,2],[1,2,a,b]):-
(conc([], [a,b], [a,b]):-
true),
(shuffle([a,b], [2],[2,a,b]):-
(conc([], [a,b], [a,b]) :—
true),
(shuffle([a,b],[], [a,b]):-
true),
(conc([],[2,a,b],[2,a,b]) :-
true)),
(conc([],[1,2,a,b],[1,2,a,b]):~
true) ;

S = [1,a,2,b],
Proof = shuffle([a,b],[1,2],[1,a,2,b]):-
(conc([l, [a,b], [a,b]):-
true),
(shuffle([a,b], [2], [a,2,b]) :-
(conc([a], [b], [a,b]):—
(conc([1,[b], [b]):-
true)),
(shuffle([b], [], [b]):-
true),
(conc([a]l,[2,b],[a,2,b]):-
(conc([],[2,b],[2,b]):-
true))),
(conc([],[1,a,2,b],[1,a,2,b]):-
true)
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yes

Using techniques of this sort, one can imagine writing interpreters that trace the
execution of a program, detect looping in a program’s execution, or allow interactive
single-stepping of a program.

6.1.3 Unit Clauses

The three-clause Prolog interpreter does not allow unit clauses, e.g.,
conc([], L, L).

to be stated directly, say as
clause(conc([], L, L)).

Instead, they are encoded as
clause((conc([], L, L) :- true)).

Extending the interpreter to handle unit clauses correctly has one subtlety, in that the
straightforward “solution” of adding a new clause to the interpreter

prove(Goal) :-
clause(Goal).

does not accurately reflect the top-to-bottom clause ordering that Prolog uses. In-
stead, we could introduce a new predicate aclause, which picks up clauses from the
database and in the case of unit clauses, instantiates the body of the clause as true.

Program 6.3
aclause((Head :- Body)) :-

clause(Clause),
(Clause = (Head :- Body)
-> true
; (Clause = Head, Body = true)).

Because the clause goal does not distinguish unit from nonunit clauses, the top-to-
bottom clause ordering will be respected in backtracking through aclause.

6.2 Problem Section: Prolog Interpreters
6.2.1 Consecutively Bounded Depth-First Search

Because of its depth-first control regime, Prolog may fail to find a solution to a query
even when one exists. One solution to this problem is to substitute for depth-first
execution an alternative regime called consecutively bounded depth-first execution,
which we will define in terms of a simpler, but highly incomplete, control regime
called depth-bounded execution.
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In depth-bounded execution of a goal, the goal is proved in a depth-first manner
until a given depth of recursion is reached. At that point, if no solution has been found,
that branch of computation is considered to have failed, and the system backtracks.
For a given depth bound n, we will refer to n-depth-bounded execution.

A depth-bounded Prolog interpreter will never loop infinitely. However, it will fail
to find solutions that involve proofs that are deeper than the depth bound. A compro-
mise control regime that, unlike depth-bounded execution, can find arbitrarily com-
plex proofs, yet that will not loop infinitely in a depth-first manner, is consecutively
bounded depth-first execution. In this regime, a goal is executed by executing it under
a 1-depth-bounded regime. If no solutions are found, the system uses 2-depth-bounded
execution, then 3-depth-bounded, and so on. If a proof exists, the system will eventu-
ally attempt to execute the goal with a large enough depth bound, and the proof will
be found. Since each depth-bounded execution terminates, the consecutively bounded
regime has the benefit that if a proof exists, it will eventually be found—a property
that Prolog’s depth-first regime does not share.

Of course, consecutively bounded execution involves a redundancy in computa-
tion, since later depth-bounded executions reiterate all the computation of earlier ones.
The cost may not be as much as it appears at first blush, however, as the cost of ex-
ecuting the first n — 1 levels is only a constant factor of the cost of executing level n.
Further analysis of the cost of this method is well beyond the scope of this problem.

Problem 6.1 Write an interpreter for Prolog that uses a consecutively bounded depth-
first control regime. Try it on a left-recursive program like Program 2.3 to demonstrate
that it finds proofs where Prolog’s control regime would not.

6.2.2 An Interpreter For Cut

The interpreters devised so far have been concerned only with pure Prolog. In this
section we consider the problem of writing an interpreter for pure Prolog augmented
with the impure cut operator. For the purposes of this problem, we will assume that
clauses have at most one cut in them. There are two cases we must consider. If there
is no cut in the clause, we can interpret it as before. If there is a cut in the clause, we
must interpret the part before the cut, then cut away further choices of clause clauses,
and then interpret the part after the cut. (Notice the nice symmetry here: The pure
Prolog meta-circular interpreter was written in pure Prolog. Augmenting the object
language with cut requires the same augmentation to the meta-language. In essence,
we will absorb the execution of cut using the cut of the underlying execution.) We will
need a predicate, call it cut_split(Body, Before, After) which takes a Body of
a clause and finds the part Before and After the cut (if there is one). The predicate
fails if there is no cut.

Problem 6.2 Write cut_splitand use it to augment the interpreter to handle clauses
with at most one cut per clause. Make sure the top-to-bottom clause ordering is re-
spected.

Problem 6.3 (More difficult.) Write an interpreter that can correctly interpret Prolog
programs with more than one cut per clause.
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6.3 Interpreters for DCGs

Extensions to the DCG formalism can be implemented just as extensions to Prolog,
by extending an interpreter for DCGs. The DCG interpreter will use definite-clause
grammars encoded in Prolog using the same encoding as in Section 3.7, except that
the main functor will be ---> rather than -->, as declared by the following operator
declaration:

:- op(1200,xfx,--->).

We use a different arrow for the same reason we used the clause predicate in the
Prolog interpreters—to prevent the DCG from being automatically interpreted by the
normal Prolog mechanism, since it is merely data for the interpreter.

6.3.1 DCGin Prolog

We turn now to the design of a DCG interpreter in Prolog. The structure of the
interpreter—its use of pairs of string positions to keep track of the portion of string
parsed—should by now be familiar.

The interpreter is implemented by the predicate parse corresponding to the predi-
cate prove in the Prolog interpreter. The literal parse (NT, P®, P) holds if the string
between positions P® and P can be parsed as (i.e., is covered by) the nonterminal NT
according to the definite-clause grammar. A nonterminal covers a string between two
positions if the body of a matching rule does also.

parse(NT, P_0®, P) :-
(NT ---> Body),
parse(Body, P_0, P).

If the body has several parts, all must be matched, in order.

parse((Bodyl, Body2), P_0, P) :-
parse(Bodyl, P_0, P_1),
parse(Body2, P_1, P).

The empty string, encoded with [ ], covers no string.
parse([], P, P).

A list of terms is treated as a list of terminal symbols to be found directly connecting
the positions in the string.

parse([Word|Rest], P_0®, P) :-
connects(Word, P_0, P_1),
parse(Rest, P_1, P).

Finally, recall that the Prolog/DCG brace notation allows a kind of level-crossing be-
tween DCGs and Prolog—an “escape” to Prolog. To implement this level-crossing, we
need a way of interpreting terms as literals and executing them. The call predicate
serves this purpose; its use in implementing the DCG escape to Prolog is as follows:
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parse({Goals}, P, P) :- call(Goals).

For completeness, we repeat the definition of the connects predicate, originally de-
fined by Program 3.8 in Section 3.4.2.

connects(Word, [Word|Rest], Rest).

Exercise 6.4 Test the DCG interpreter just defined with a small DCG on a few sen-
tences to convince yourself that it actually implements the DCG correctly.

6.3.2 DCGinDCG

The astute reader may have noticed that the DCG interpreter presented above is in
just the form of a DCG translated into Prolog. Thus, the interpreter could have been
more succinctly stated by writing it as a DCG itself! In particular, the following DCG
implements a meta-circular DCG interpreter.

Program 6.4
:- op(1200,xfx,--->).

parse(NT) -->
{NT ---> Body},
parse(Body) .

parse((Bodyl,Body2)) -->
parse(Bodyl),
parse(Body2) .

parse([]) -—> [].

parse([Word|Rest]) -->
[Word],
parse(Rest).

parse({Goals}) --> {call(Goals)}.

Exercise 6.5 Extend the DCG interpreter in Program 6.4 so that it automatically
builds a parse tree representation of the parsed expression. This corresponds exactly
to the problem of automatically generating a proof tree in the Prolog interpreter. You
may want to refer to the discussion preceding Problem 3.7 for an applicable tree en-
coding method or use the =. . operator of Section 5.1.6 to build more standard tree
encodings.
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6.3.3 AnInterpreter for Filler-Gap DCGs

Filler-gap dependencies constitute a set of linguistic phenomena with a quite cumber-
some encoding in DCGs, as we have seen in Sections 4.2.3 and 4.2.7. This problem
has been noted by many people working on the design of logic grammars, and has been
the inspiration for a large number of the logic grammar formalisms extending DCGs.
As noted in Section 4.2.7, the gap-threading encoding of filler-gap dependencies lends
itself to use in implementing an extension of DCGs to handle filler-gap dependencies
because of the simple, regular structure of the extra filler-list argument it requires.

In this section we will develop a formalism, FG-DCG, that allows a simpler state-
ment of filler-gap constraints and construct an interpreter for it. FG-DCG rules appear,
for the most part, identical to DCG rules (except using the operator ---> as usual for
interpretation). However, to directly state filler-gap constraints we must add to DCGs
the ability to declare which constituents are fillers, which are islands, and what non-
terminals can be realized as gaps. Various extensions to DCGs to handle filler-gap
phenomena have taken different approaches to this notational problem. We will use
the following notations.

o A filler of type ¢ requiring a gap of type y will be notated as a term of the form
¢ £ills y, where £ills is an infix Prolog operator.

e An island of type ¢ will be notated as a term of the form ¢ island, where
island is a postfix Prolog operator.

e The fact that a gap of type y can be realized as « (usually, the empty string), is
notated by the FG-DCG rule:

gap(y) ---> a.

The interpretation of the special filler and island specifications in an FG-DCG rule
is as follows: A term ¢ £ills y matches a constituent of type ¢, but requires that a
gap of type y be found within some sibling to the right of ¢. A phrase covered by the
term ¢ island can never have a gap within it that is filled outside it. A use of a rule
of the form gap(y) ---> «a. must always fill a gap.

As a simple example of an FG-DCG grammar, we rewrite the grammar of Pro-
gram 4.4 in the new notation. For brevity, we leave out the lexicon, which is un-
changed from the earlier grammar. We also add a new rule for ditransitive verb phrases
to highlight the fact that this grammar does not fall prey to the difficulties mentioned
in Section 4.2.7.

Program 6.5
s ---> np island, vp.

np ---> det, n, optrel.
np ---> pn.

vp ---> dv, np, np.

vp ---> tv, np.

vp ---> iv.

optrel ---> [].
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optrel ---> [that] fills np, s.
optrel ---> [that], vp.

gap(np) ---> [].

Note that the grammar encodes the filler-gap dependencies that were implicit in the
earlier grammar far more simply and directly.

An interpreter for FG-DCGs is a straightforward extension to the DCG meta-
circular interpreter of Program 6.4. First, we declare the necessary operators.

:- op(1200,xfx,--->).
- op(300, xfx, fills).
- op(300, xf, island).

Next, we augment the parse predicate with an argument for the filler list. Thus
the clauses of the interpreter become

parse(NT, FO-F) -->
{NT ---> Body},
parse(Body, FO-F).
parse((Bodyl,Body2),F0-F) -->
parse(Bodyl,F0-F1),
parse(Body2,F1-F).

parse([], FO-FO) --> [].
parse([Word|Rest], FO-F) -->
[Word],
parse(Rest, FO-F).

parse({Goals}, FO-FO®) --> {call(Goals)}.

Finally, we require special rules for islands, fillers, and gaps. An island is parsed
as a constituent with empty filler list.

parse(NT island, FO-FO®) -->
parse(NT, FO-FOQ).

A list of nonterminals the first of which is a filler is parsed by parsing the filler, then
parsing the rest of the list but with an additional element on the filler list—the type of
gap that this filler corresponds to.

parse((NT fills GapType,Body2), FO-F) -->
parse(NT,F0-F0),
parse(Body2, [GapType|F0]-F).

Finally, a nonterminal NT can be realized as a gap corresponding to a filler in the filler
list if there is a rule

gap(NT) ---> Body.
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and the Body can itself be parsed. Of course, in most cases, Body will encode the
empty string, but this additional ability to specify nonempty bodies of “gap” con-
stituents allows us to use FG-DCGs for other long-distance dependencies such as re-
sumptive pronouns in which the filler is associated with a pronoun embedded in the
sentence.

parse(GapType, [GapType|F0]-F®) -->
{gap(GapType) ---> Body},
parse(Body, FO-FO0).

Exercise 6.6 Modify the grammar of Program 4.5 to use the FG-DCG notation.

6.4 Partial Execution and Compilers

Using an interpreter to interpret a Prolog program is in general much less efficient than
executing the program directly. Thus interpreters are of little use unless the language
they interpret is an extension of Prolog; otherwise, using Prolog itself is an equiva-
lent and more efficient method. We can recoup some of the efficiency lost in using
an interpreter by translating or compiling the extended language into Prolog rather
than interpreting it with an interpreter. For just this reason, DCGs are compiled into
equivalent Prolog programs upon their being read into the Prolog system.

From an intuitive standpoint, the difference between a compilation and subsequent
execution of a program and interpretation of the program is that the former moves
some of the predictable proof steps to an earlier phase of processing. The idea of
performing proof steps at an earlier stage is reminiscent of the notion of partial
execution introduced in Section 4.1.4. In this section, we ground this intuition by
developing a program to partially execute clauses and using it to build a compiler for
definite-clause grammars.

6.4.1 Partial Execution Revisited

Recall the basic Prolog proof step of SLD resolution (Section 3.5.3). Resolution pro-
ceeds by picking a literal in a clause and replacing it with the body of a matching
clause under the unifying substitution of the literal and the head of the clause. Partial
execution of a clause merely performs certain of these resolution steps at an earlier
stage of computation, called compile time. Since the order of resolutions is thereby
changed, partial execution is only sound in the subset of Prolog in which the order of
selection of literals is not critical to the correctness of execution of the program, that
is, in pure Prolog. A clause (which we will call the program clause) is thus partially
executed with respect to a set of predicates (called auxiliary predicates) by resolving
the clause on literals containing these predicates and recursively partially executing
the resolvent, until no more such resolutions can be performed.

Executing a goal involving the program predicate (the predicate defined by the
program clause or clauses) using all possible partial executions of the program clauses
is equivalent to executing it using the original program clauses plus all the auxiliary
clauses as well. Consequently, we can replace the program and auxiliary clauses by
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the clauses resulting from partial execution. It is not necessary to resolve literals in
the program clauses against the program clauses themselves, as their equivalents will
be available at run time anyway. Furthermore, it is fortunate that such recursive res-
olutions are not needed, as they might lead to nontermination of the partial execution
facility.

Partial execution thus requires a recursive traversal of a clause and its literals just
as an interpreter does. But instead of proving each subgoal, we replace it with its
definition. Thus the definition of a predicate to compute the relation between a program
clause and its partial executions follows the form of an interpreter relatively closely.
To partially execute a clause, we merely partially execute its body.

partially_execute((Head:-Body),
(Head:-ExpandedBody)) :- !,
partially_execute(Body, ExpandedBody) .

To partially execute a conjunction of goals, we partially execute the first literal and the
rest of the literals and conjoin their expansions.

partially_execute((Literal, Rest), Expansion) :- !,
partially_execute(Literal, ExpandedLiteral),
partially_execute(Rest, ExpandedRest),
conjoin(ExpandedLiteral, ExpandedRest,
Expansion).

We will replace literals with their definitions only if they are specified as auxiliary
literals. The predicate aux_literal specifies which literals are subject to partial
execution. Furthermore, we require that there exist at least one clause matching the
literal. Otherwise, the literal is left unchanged.

partially_execute(Literal, Expansion) :-
( aux_literal(Literal),
match_exists(Literal) )
-> ( clause((Literal :- Body)),
partially_execute(Body, Expansion) )
; Expansion = Literal.

Testing Existence and Double Negation

To determine whether a match exists, we can check that the set of clauses with the
literal as head contains at least one element.

match_exists(Literal) :-
setof(Body, Literal”clause((Literal:-Body)),
[_Clause|_Others]).

This definition, though correct, is quite inefficient. A naive implementation of
match_exists merely looks for a matching clause.

match_exists(Literal) :-
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clause((Literal :- Body)).

However, this definition has the unwanted side effect of actually binding variables
in Literal depending on what clause was found. Furthermore, if there are several
matching clauses, this definition will allow backtracking.

A common trick for solving problems of unwanted bindings is the double use of
the negation-as-failure operator \+. In the case at hand, we can change the definition
as follows:

Program 6.6
match_exists(Literal) :-

\+ \+ clause((Literal :- Body)).

Looking just at the logic, p and ——p are equivalent. However, the implementation
of negation as failure makes sure that in executing a goal \+ G all bindings to G will
be undone; thus match_exists will leave Literal unchanged.

This double use of negation is a very common device in Prolog metaprogramming.
It must be stressed that nothing in the device has a direct logical interpretation. In
particular, \+ is being used to undo bindings of variables, but as we have seen \+
cannot be interpreted as “failure to prove” if called with a nonground argument!

A Sample Partial Execution

Using this definition of partial execution we can check the earlier claims made about
it in Chapter 4. For instance, we can partially execute the clause at the end of Section
4.15

vp(Z~S) -->
tv(TV), np(NP),
{reduce(TV,Z,1IV),
reduce(NP,IV,S)}.

with respect to reduce literals

aux_literal( reduce(_,_,_) ).
under the definition of reduce given in Program 4.1

clause(( reduce(Arg Expr, Arg, Expr) :- true )).
with the query

?- partially_execute( (vp(Z"S, PO, P) :-
tv(TV, PO, P1),
np(NP, P1, P),
reduce(TV,Z,IV),
reduce(NP,IV,S) ),
Expansion ).
Expansion = vp(Z~S, PO, P) :-
tv(Z~1V, PO, P1),



6.4. Partial Execution and Compilers 149

This digital edition of Prolog and Natural-Language Analysis is distributed
at no charge for noncommercial use by Microtome Publishing.

np(IV-S, P1, P)
yes

Notice that this is just the Prolog encoding of the partial execution result given in
Section 4.1.5.

6.4.2 Compiling by Partial Execution

A simple compiler for an object language can be written using partial execution of
its interpreter. We divide the clauses of the interpreter (metaclauses) into program
and auxiliary clauses; the clauses that actually interpret the object clauses of the ob-
ject language are the program clauses, the rest auxiliary. We will distinguish the
two clauses by using the predicate clause for the auxiliary clauses (as above) and
program_clause for program clauses.

The compiler generates all possible partial executions of the program clauses with
respect to predicates defined in the auxiliary clauses and asserts the resolvents gener-
ated. The driver for the compiler is, then, quite simple.

compile :-
program_clause(Clause),
partially_execute(Clause, CompiledClause),
assert(CompiledClause),
fail.

This clause backtracks repeatedly (because of the fail) until no more partial execu-
tions of program clauses are possible. This method for cycling through solutions is
known as a failure-driven loop. As a side effect, it asserts all of the partial execu-
tions into the Prolog database. The Prolog interpreter, processing queries using these
asserted clauses, is executing a compiled form of the object language.

As an example, we build a compiler for DCGs. We merely separate the DCG
interpreter into a single program clause

program_clause(( parse(NT, P_0®, P) :-
(NT ---> Body),
parse(Body, P_0, P) ).

and several auxiliary clauses, treating parse and ---> as auxiliary predicates.

Suppose the DCG of Program 3.11 is compiled using this compiler, that is, the
compiler and the DCG (encoded using the operator --->) are loaded into Prolog,
and the compile predicate is invoked. One possible partial execution of the program
clause involves resolving the literal NT ---> Body against the first rule of the gram-
mar. This resolution requires the unifying substitution NT = s(s(NP,VP)), Body =
(np (NP),vp(VP)). The body of the unit clause is just true. The partial execution
of parse((np(NP), vp(VP)), PO, P) resultsin the conjunction parse (np(NP),
P®, P1), parse(vp(VP), P1, P).Conjoining thiswith the body of the unit clause
expanding the first literal leaves the former unchanged. Thus the full partial execution
of the program clause is, in this instance,

parse(s(s(NP,VP)), PO, P) :-
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parse(np(NP), PO, P1),
parse(vp(VP), P1, P).

Clearly, this is a compilation of the DCG rule into Prolog, albeit slightly more complex
than the standard compilation, namely

s(s(NP,VP), PO, P) :-
np(NP, PO, P1),
vp(VP, P1, P).

The full text of the compiler, including the program for partial execution and the
encoding of the interpreter is given in Appendix A. This version adds a rewriting step
to convert literals of the form

parse(nt(...), Pi, Pj)
to literals of the more familiar form
nt(..., Pi, Pj)
A sample run of the compiler using the grammar of Program 3.11 is as follows:

?- compile.
Asserting "s(s(NP,VP),PO,P):-

np (NP,PO,P1),vp(VP,P1,P). "
Asserting "np(np(Det,N,Rel),PO,P):-

det (Det,P0,P1),

n(N,P1,P2),

optrel(Rel,P2,P)."
Asserting "np(np(PN),PO,P):-pn(PN,PO,P)."
Asserting "vp(vp(TV,NP),PO,P):-

tv(TV,P0,P1) ,np(NP,P1,P)."
Asserting "vp(vp(IV),PO,P):-iv(IV,PO,P)."
Asserting "optrel (rel(epsilon),PO,P):-true."
Asserting "optrel (rel(that,VP),PO,P):-

connects (that,P0,P1),

vp(VP,P1,P)."
Asserting "pn(pn(terry),PO,P):-

connects (terry,P0,P)."
Asserting "pn(pn(shrdlu),PO,P):-

connects (shrdlu,P0,P)."
Asserting "iv(iv(halts),PO,P):-

connects (halts,PO,P)."
Asserting "det(det(a),PO0,P):-

connects(a,P0O,P)."
Asserting "n(n(program),PO,P):-

connects (program,P0O,P)."
Asserting "tv(tv(writes),PO,P):-

connects(writes,P0O,P)."
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Asserting "connects(Word, [Word|Rest],Rest):-true."
no

?- s(Tree, [terry,writes,a,program,that,halts], [1).
Tree = s(np(pn(terry)),
vp(tv(writes),
np(det(a),
n(program),
rel (that,
vp(iv(halts))))))

yes

Compare this behavior with that of the original DCG as described in Section 3.7.1.

6.4.3 Generality of the Method

The technique used here to build the DCG compiler is quite general. The compile and
partially_execute predicates can be thought of together as a metacompiler, in that
they will convert any interpreter for a language written in pure Prolog into a compiler
for the same language. Since the only operations performed on the interpreter are
resolutions, the compiler thereby derived is guaranteed to be sound with respect to
the interpreter. And since all possible resolutions are done, the compiler is complete
as well. Thus partial execution provides a way of generating correct compilers for a
language given an interpreter for the language.

Furthermore, by adjusting which clauses are program clauses whose partial execu-
tions will remain in the compiled version and which are auxiliary clauses that are to be
“compiled away”, the degree of compilation can be tuned. By increasing the number
of auxiliary clauses, more of the work is done at compile time and faster compiled
grammars are derived. However, there are limits to this process. If too much work is
attempted at compile time, the compile-time step may not terminate, or the compiled
grammar may grow explosively in size. The generality of this method allows solutions
to such trade-offs to be developed experimentally.

Another method for even more finely tuning the partial executor, beyond the abil-
ity to make clauses program or auxiliary clauses, is to predicate partial execution on
various conditions specified in the antecedent of auxiliary literals. For instance, we
could require that literals of a given auxiliary predicate be partially executed only when
the literal is of a certain mode or its arguments are of a certain form. An especially
interesting condition on partial execution is that the literal match exactly one clause in
the database. Under this requirement, partial execution will only remove literals that
can be resolved deterministically. Many other possibilities for controlling the partial
executor could be easily implemented in this way.

Exercise 6.7 Write a compiler which compiles DCGs into Prolog programs that
parse sentences while building parse trees for them simultaneously and automatically.
You may want to use the solution to Exercise 6.5.

Exercise 6.8 Suppose we compile the pure Prolog program for conc given in Program
3.3into Prolog using a compiler generated from the Prolog interpreter of Program 6.1.
What does Program 3.3 compile to?
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6.5 Bottom-Up Parsing

Prolog supplies by default a top-down, left-to-right, backtrack parsing algorithm for
DCGs. It is well known that top-down parsing algorithms of this kind will loop on
left-recursive rules (cf. the example of Program 2.3). Although techniques are avail-
able to remove left recursion from context-free grammars, these techniques are not
readily generalizable to DCGs, and furthermore they can increase grammar size by
large factors.

As an alternative, we may consider implementing a bottom-up parsing method
directly in Prolog. Of the various possibilities, we will consider here the left-corner
method in one of its adaptations to DCGs.

For programming convenience, the input grammar for the left-corner DCG inter-
preter is represented in a slight variation of the DCG notation. The right-hand sides of
rules are given as lists rather than conjunctions of literals. Thus rules are unit clauses
of the form, e.g.,

s ---> [np, vp].

or
optrel ---> [].

Terminals are introduced by dictionary unit clauses of the form
word(w,PT).

in which PT is the preterminal category of terminal w. As an example, the grammar of
Program 3.11 would be encoded in this format as

s(s(NP,VP)) ---> [np(NP), vp(VP)].
np(np(Det,N,Rel)) --->

[det(Det), n(N), optrel(Rel)].
np(np(PN)) ---> [pn(PN)].
vp(vp(TV,NP)) ---> [tv(TV), np(NP)].
vp(vp(IV)) ---> [iv(IWV)].
optrel(rel(epsilon)) ---> [].
optrel(rel(that,VP)) ---> [relpro, vp(VP)].

word(that, relpro).
word(terry, pn(pn(terry))).
word(shrdlu, pn(pn(shrdlu))).
word(halts, iv(iv(halts))).
word(a, det(det(a))).
word(program, n(n(program))) .
word(writes, tv(tv(writes))).

Before we discuss left-corner parsing, we need to introduce some terminology. The
left-corner of a phrase is the leftmost subconstituent of that phrase. Similarly, the left
corner of a rule is the first element on the right-hand-side of the rule. Often we will
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refer to the transitive closure of the left-corner relation using the term left corner as
well, letting context determine the particular sense we mean. Thus, in the parse tree of
Figure 2.4, NP is the left corner of S, but Det and S are left corners of S as well.

The basic idea of left-corner parsing is to key each rule off of its left corner. When
a phrase is found, rules that have that phrase type as their left corner are tried in turn
by looking for phrases that span the rest of the right-hand-side of the rule. If the rest
of a rule is satisfied, the left-hand side is used to iterate the process by picking rules
with that phrase type as left corner. Parsing thus proceeds bottom-up by looking for
phrases whose left-most subphrase has already been found. The entire process begins
with a subphrase that is guaranteed to be a left corner of the whole expression, namely,
the leftmost leaf of the parse tree. To parse an expression as being of type Phrase,
we take the next potential leaf in the expression and prove that it is a left corner of the
phrase.

parse(Phrase) -->
leaf(SubPhrase),
lc(SubPhrase, Phrase).

Terminal symbols are obviously candidate leaves of the parse tree. We use the
binary predicate word (Word, Cat) to encode the lexicon.

leaf(Cat) --> [Word], {word(Word,Cat)}.

In addition, a category can be considered a leaf if there is a rule admitting it with an
empty right-hand side.

leaf(Phrase) --> {Phrase ---> []}.

The proof that some subconstituent of type SubPhrase is a left corner of a
SuperPhrase involves parsing the part of SuperPhrase to the right of the left cor-
ner. The 1c(SubPhrase, SuperPhrase) literal thus covers all of the SuperPhrase
except for its left corner SubPhrase. The base case for proving the left corner rela-
tionship follows from any phrase being a left corner of itself.

lc(Phrase, Phrase) --> [].

Otherwise, we can infer that SubPhrase is a left corner of SuperPhrase if we can
find a rule that SubPhrase is a left corner of and parse the remainder of the rule, finally
proving that the left-hand side of the rule is itself a left corner of SuperPhrase.

lc(SubPhrase, SuperPhrase) -->
{Phrase ---> [SubPhrase|Rest]},
parse_rest(Rest),
lc(Phrase, SuperPhrase).

Parsing the rest of the right-hand side involves a standard list recursion.

parse_rest([]) --> [].
parse_rest([Phrase|Phrases]) -->
parse(Phrase),
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parse_rest (Phrases).

As an example of the operation of the left-corner parser interpreting a grammar,
we will consider the sentence “a program halts” parsed with the grammar above. The
initial query is

?- parse(s(Tree), [a, program, halts], []).

To prove this is a grammatical S, we find a leaf and prove it is the left-corner
of the S. There are two possible leaves at the beginning of the string, namely,
the leaf(det(det(a))) derived from the lexical entry for the word a, and the
leaf(optrel (rel(epsilon))) derived from the rule for empty relative clauses.
Choosing the former, we must prove 1c(det(det(a)), s(Tree)). Since the two
arguments are not unifiable, the first 1c rule is not appropriate. Instead, the second
rule is invoked. We must find a rule with a determiner as its left corner, namely

np(np(Det,N,Rel)) --->
[det(Det), n(N), optrel(Rel)].

Using this rule, we must parse the rest of the right-hand side to prove that the Det
is the immediate left corner of an NP. We will omit details of this subproof, which
proceeds by left-corner parsing itself. The proof does succeed, covering the string
“program” and instantiating N to n(program) and Rel to rel(epsilon). Finally,
we must prove that the np(np(det(a), n(program), rel(epsilon)) is the left
corner of the entire S. Notice that we have made some progress. We started out
attempting to prove that the Det is the left corner of the S and have generated the
smaller task of proving that the NP is.
The NP is the left corner of S by virtue of the rule

s(s(NP,VP)) ---> [np(NP), vp(VP)].

But two subgoals are required to be proved. First, we must parse the rest of the
right-hand side, the VP. Again, we will omit details, but note that the goal succeeds
binding VP to vp(iv(halts)). Then we must prove that s(...) is a left corner of
s(s(Tree)). This succeeds by the first 1c clause, binding Tree to the parse tree for
the entire sentence, namely

s(np(det(a),
n(program),
rel(epsilon))
vp(iv(halts)))

This completes the proofs of the various pending 1c goals and the original query
itself.

6.5.1 Linking

In the previous discussion, we glossed over a problem in the directedness of the
left-corner parser. The parser, in choosing among possible grammar rules or leaves
makes no use of information concerning what type of expression it is attempting to
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parse. For instance, in the discussion of the choice between leaf(det(det(a)))
and leaf(optrel(rel(epsilon))) at the start of the parse, we merely noted that
the former was correct. Of course, if the parser had chosen to pursue the latter, it
would eventually discover that it had followed a blind alley and backtrack to the cor-
rect choice. But a considerably more efficient way of eliminating the latter possibility
is to notice (by inspection of the grammar) that an optrel of any sort can never be a
left corner of an s.

Suppose we tabulate some very general constraints of this sort concerning possible
left corners, using (for historical reasons) the predicate 1ink.

link( np(L), s() )
link( det(), np(L) )
link( det(), s(L) ).
link( pn(2), np(L) R
link( pn(L), s() )
link( tv(0), vp() )
link( iv(l), vp() )
link( relpro, optrel(.) )
link( NT, NT ).

(The last clause says that any nonterminal is a left corner of itself.) We can use the
information as an inexpensive test of whether a branch in the parsing search space can
at least potentially yield a solution. For example, the parse clause could be changed
to make use of the 1ink table as follows:

parse(Phrase) -->
leaf(SubPhrase),
{link(SubPhrase, Phrase)},
lc(SubPhrase, Phrase).

With this modified definition, the leaf(optrel (rel(epsilon))) would fail the
linking test; consequently no further computation would be expended on that possi-
bility.

Similarly the second rule for 1c could be changed to

lc(SubPhrase, SuperPhrase) -->
{Phrase ---> [SubPhrase]|Rest],
link(Phrase, SuperPhrase)},
right(Rest),
lc(Phrase, SuperPhrase).

to limit rule choice to those which could at least potentially be left corners of the
SuperPhrase being looked for.

The modification of the left-corner parser using linking information provides an
element of top-down filtering into the parsing process. Such a parser does not follow a
purely bottom-up or a purely top-down regimen, but uses both kinds of information in
finding a parse.
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We will not pursue further here the question of finding good 1ink definitions.
Clearly, however, we would want to use automatic methods for developing the link
tables, rather than the hand coding used in this section.

6.5.2 Compiling DCGsinto Left-Corner Parsers

Using the techniques of Section 6.4.2, we can write a DCG compiler that converts DCG
grammars encoded as for the left-corner interpreter into left-corner Prolog parsers. The
program clauses are those that actually interpret the parts of the encoded grammar:
the two leaf clauses and the two 1c clauses. In addition, the single clauses defining
connects and parse are added as program clauses so that they will be passed through
unchanged into the compiled state, just as the connects clause was in the previous
compiler.

The rest of the clauses (including those embodying the DCG itself) are auxiliary
clauses defining the auxiliary predicates --->, word, and parse_rest.

Exercise 6.9 Modify the DCG compiler given in Appendix A as described above so
that it constitutes a program to compile DCGs into left-corner parsers. The final
rewriting step should be removed.

Executing the compiler on the encoded grammar of Program 3.11 yields the fol-
lowing behavior.

?- compile.
Asserting "connect (Word, [Word|Rest],Rest) :- true."
Asserting '"parse(Phrase,PO,P) :-
leaf (SubPhrase,P0,P1),
lc(SubPhrase,Phrase,P1,P)."
Asserting "leaf (pn(pn(terry)),P0,P) :-
connect (terry,P0,P)."
Asserting "leaf (pn(pn(shrdlu)),PO,P) :-
connect (shrdlu,PO,P)."
Asserting "leaf(iv(iv(halts)),PO,P) :-
connect (halts,PO,P)."
Asserting "leaf (det(det(a)),PO,P) :-
connect (a,P0,P)."
Asserting "leaf (n(n(program)),PO,P) :-
connect (program,PO,P) . "
Asserting "leaf (tv(tv(writes)),PO,P) :-
connect (writes,PO,P)."
Asserting "leaf (relpro,PO,P) :-
connect (that,PO,P)."
Asserting "leaf (optrel(rel(epsilon)),PO,P0):-true."
Asserting "lc(Phrase,Phrase,P0,P0) :- true."
Asserting "lc(np(NP),SuperPhrase,PO,P) :-
parse (vp(VP),P0,P1),
lc(s(s(NP,VP)),SuperPhrase,P1,P)."
Asserting "lc(det (Det),SuperPhrase,P0,P) :-
parse(n(N),P0,P1),
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parse (optrel(Rel),P1,P2),
lc(np(np(Det,N,Rel)),
SuperPhrase,P2,P)."
Asserting "lc(pn(PN),SuperPhrase,P0O,P) :-
lc(np(np(PN)),SuperPhrase,P0,P)."
Asserting "lc(tv(TV),SuperPhrase,P0,P) :-
parse (np (NP) ,P0O,P1),
lc(vp(vp(TV,NP)),SuperPhrase,P1,P)."
Asserting "lc(iv(IV),SuperPhrase,P0O,P) :-
lc(vp(vp(IV)),SuperPhrase,P0,P)."
Asserting "lc(relpro,SuperPhrase,P0,P) :-
parse (vp(VP),P0,P1),
lc(optrel(rel(that,VP)),
SuperPhrase,P1,P)."
no

?- parse(s(Tree),
[terry, writes, a, program, that, halts],
(.
Tree = s(np(pn(terry)),
vp(tv(writes),
np(det(a),
n(program),
rel (that,
vp(iv(halts))))))
yes

The first two rules are copies of the definitions for parse and connects. The next
six are the compiled version of the lexicon; these are followed by the single compiled
epsilon rule. Finally, the compiled versions of the other grammar rules are generated.
Again, the compiled grammar computes the same language and trees as if directly
interpreted by Prolog. However, Prolog’s top-down control strategy in executing
the compiled grammar produces the same behavior as that of the left-corner control
strategy in executing the original DCG. Furthermore, because the general left-corner
interpreter has been replaced by specialized rules, the resulting program will run much
faster than the interpreter operating over the original grammar.

6.6 Tabular Parsing

6.6.1 Inefficiencies of Backtracking

As we have seen, Prolog uses strict chronological backtracking to search for a proof
of a goal. If a particular subgoal cannot be resolved, all the work since the most recent
resolved goal for which there are still alternative clauses will be undone. Intuitively,
this is the reason for the worst-case exponential cost of backtrack search (Aho and
Ullman, 1972). In practical applications this theoretical worst case may not matter,
because there may be practical bounds on input length (e.g., typical English sentences
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are short) and the efficiency of Prolog may offset the potential gains of more sophisti-
cated search procedures for practically occurring inputs. Nevertheless, it is worthwhile
to look at the issue in more detail to get a good understanding of the tradeofts involved.

We will start with a very simple example. A ditransitive verb like give can be used
in two ways.

Alfred gave a book to every student
Alfred gave every student a book

An obvious way of covering these two constructions is to use the two rules

vp --> dv, np, pp(to).
vp --> dv, np, np.

Now suppose that we are using these DCG rules to analyze the verb phrase in
the second sentence above, and that we have appropriate rules for the noun phrase,
prepositional phrase, and ditransitive verb. Prolog will first try the earlier vp rule.
The word gave will be assigned to the category dv and the phrase every student to
the category np. The parser will look next for a prepositional phrase beginning with
the preposition to. However, the next word is a, so Prolog backtracks. Assuming no
more choices in the analysis of “every student” as a noun phrase or in the assignment
of the ditransitive verb category to gave, Prolog will have to undo these intermediate
analyses and try the next alternative rule for verb phrase, the second rule above. This
rule will immediately go on to reassign the category dv to gave and reanalyze “every
student” as np, even though this analysis had already been done when attempting the
first rule.

The redundancy just described is not restricted to top-down parsing methods. The
same argument would show similar redundancies in using the left-corner algorithm
discussed earlier. In fact, the situation here is even worse because the left-corner algo-
rithm has less top-down guidance.

6.6.2 Tabular Parsingin the Abstract

In tabular parsers for context-free grammars, the redundancy just described is avoided
by storing phrases just recognized in a phrase table (also called a chart or well-formed-
substring table) indexed by the start and end positions of the phrases in the input string.

In general, at any point in its execution a parser will be looking for phrases of
some type N starting in a certain range of positions S and finishing in a certain range
of positions E in the input string. In the discussion that follows, we will represent
these constraints on what the parser is looking for by the expression N(S,E). The
connection of this notation with the mapping from nonterminals to predicates in a
DCG is no coincidence, as we shall see. For the moment, we will take a phrase type
as representing some set of acceptable nonterminals and a position range as denoting
some set of string positions.

Thus, when looking for some type of phrase N(S, E), the phrase table is consulted
for phrases p(i, j) satisfying N(S, E), that is, with p € N, i € S and j € E. There
is a crucial subtlety here. If the table does not already contain all possible phrases
satisfying N(S, E), the parser will not know whether to use some phrase from the table
or to try and recognize alternative phrases satisfying N(S, E) using the rules in the
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grammar. But the latter option is just as costly as looking for phrases afresh without
the phrase table. Thus the phrase table is usable only if all phrases of a given type are
stored in the table before any attempt is made to use the table to look for phrases of that
type. Consequently, there must be a way of recognizing whether the table is complete
for a certain type. We call this constraint on table entries the completeness condition.®
In tabular context-free parsers, completeness is achieved by looking only for certain
specific phrase types and building the table in a certain order that guarantees a phrase
type will be consulted only after it is completed.

For instance, the generalized Cocke-Kasami-Younger (CKY) bottom-up context-
free parser can be thought of in this way. In the CKY algorithm, smaller phrases are
always added to the table before larger phrases. The phrase types under consideration
by the algorithm are of the form V(i, j) where V stands for the set of all grammar
symbols (terminals and nonterminals) and i and j are specific string positions. Since
the table is complete for all substrings of the string between i and j, we merely need
to check each rule, say, A — By --- By in G, and look for n + 1 positions kg through kp,
such that i = kg and k, = j and each k; is greater than k;_;, and such that the By, are
in the table under V (km-1, km). If such a set of positions exists, then A can be added to
the table under V (i, j). By performing the search for rules and positions in all possible
ways, we can complete the table for V(i, j), in which case larger strings can then be
analyzed.

Thus the CKY parsing algorithm builds the table by looking for phrases of type
V(i, j) for larger and larger j —i.

6.6.3 Top-Down Tabular Parsing

In top-down parsing, on the other hand, the algorithm will in general be looking for
phrases of a given type t starting at a given position i but with unknown end position
(symbolically t(i, {jlj > i})). Thus the algorithm will have to produce and store in the
table all possible t phrases starting at i before moving on. If the analysis later fails
and the same phrase type is looked for at the same position, there will be no need to
use the grammar, all possible relevant phrases will already be in the table. In terms
of the previous example, all noun phrases starting with the word every will have been
stored when the first verb phrase rule looks for a noun phrase after the verb, so when
the second rule looks for a noun phrase at the same position the analyzed np will be
immediately found.

With the definite-clause encoding of grammars, a phrase table is just a store of
lemmas, that is, consequences of the grammar axioms that have been recorded for
future use. The existence of a houn phrase between positions 2 and 4 of an input string
can be represented by the lemma expressed as a unit clause

np(2, 4).

Actually, for ease of access by an interpreter, we will use the ternary predicate
known_phrase.

known_phrase(np, 2, 4).

3Not to be confused with the logical notion of completeness.
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Thus, in general a phrase table may be built by asserting appropriate facts as they
are proved. We can change the Prolog top-down parser to keep such a table by modi-
fying the DCG interpreter of Program 6.4. We will assume at first that grammars are
context-free, that is, that all nonterminals are atomic, and also that the initial string
position for the analysis is given. As the analysis proceeds from left to right, the initial
position of any phrase being sought will thus be known. These restrictions will be
lifted later.

The interpreter uses the predicate known_phrase (Type, PO, P) to store previ-
ously proved lemmas that a phrase of type Type exists between positions P® and P
and the predicate complete(Type, P®) to indicate that the known_phrase table is
complete for the phrase type Type starting at the string position P®. The predicate
nonterminal identifies the nonterminals in the specific grammar being interpreted.*

Much of the interpreter is identical to the meta-circular DCG interpreter it is mod-
eled on. In fact, the interpreter differs only on the first clause for parse. This clause
checks that its argument NT is a nonterminal and then calls find_phrase to find
phrases of type NT.

parse(NT, PO, P) :-
nonterminal (NT),
find_phrase(NT, PO, P).

The remaining clauses for the parse predicate are repeated here merely for com-
pleteness.

parse((Bodyl, Body2), PO, P) :-
parse(Bodyl, PO, P1),
parse(Body2, P1, P).

parse([], P, P).

parse([Word|Rest], PO, P) :-
connects(Word, P®, P1),
parse(Rest, P1, P).

parse({Goals}, P, P) :- call(Goals).

The predicate find_phrase first checks to see if the table is complete for phrases
of type NT starting at P®, and if so, uses it to pick up appropriate phrases that have
been previously computed and stored in the known_phrase table. The cut guarantees
that only the table is used and no recomputation of phrases is performed if the table is
complete.

find_phrase(NT, PO, P) :-
complete(NT, P®), !,
known_phrase(NT, PO, P).

Otherwise, if the table has not been completed for that phrase type, grammar rules are
used to find remaining phrases of type NT, and each such phrase is asserted as a known

4This could be avoided at the cost of making the code somewhat more convoluted.
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phrase. As we are trying to construct the table of all phrases of type NT starting at P®,
we do not restrict rule expansion to phrases terminating with P, but rather leave the
check for a phrase’s final position until after asserting that a phrase has been found.

find_phrase(NT, PO, P) :-
(NT ---> Body),
parse(Body, PO, P1),
assert (known_phrase(NT, P®, P1)),
P1 = P.

Finally, when no remaining alternative ways of finding a phrase of type NT starting at
PO exist, the table is marked as complete for that phrase type at that starting position,
and the branch of computation that required more alternatives is failed. 1f some other
branch of the computation later requires that same type of constituent starting at the
same position, only the first clause of find_phrase will be used.

find_phrase(NT, PO, _) :-
assert(complete(NT, P®)),
fail.

We have used here the nullary predicate fail, which is always false, that is, always
fails.

It is clear that find_phrase above has been designed for its side-effects rather
than its logical content. This is common practice in building interpreters: To achieve
the appropriate behavior in an interpreter for a declarative language, one has to deal
with procedural issues such as the sequencing of operations.

Checking Nonterminal Status

The definition of the nonterminal predicate can proceed in several ways. First of all,
extensional definition is possible by merely listing all the possible nonterminal terms,

e.g.,

nonterminal(s( )).
nonterminal (np(_)).
nonterminal (det()).

Alternatively, the definition can be made intensionally. We can define nonterminals
as those terms which occur on the left-hand side of some rule.

nonterminal (LHS) :-
\+ \+ (LHS ---> _Body).

The double negation is used as usual to prevent bindings from the particular rule that
licenses the terminal from affecting the term. This definition thus works in the same
way as the match_exists predicate of Program 6.6.

Henceforth, we will assume the former method.
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6.6.4 Subsumption

The interpreter in the previous section works correctly only for atomic nonterminals
and an instantiated initial string position for any phrase being sought. These restric-
tions were needed to ensure that the completeness constraint is obeyed. To see why
this is so, consider the following trivial grammar:

s ---> t.

t ---> x(a, X).
t ---—> x(Y, b).

x(W, W) ---> [W].

nonterminal(s).
nonterminal (t).
nonterminal (x(_, _)).

as used to parse (as an s) the input b encoded as
connects(b, 0, 1).

(From a practical point of view, when building tabular parsers it is more convenient to
have input strings represented by facts and string positions by constants. In this way,
the new facts asserted by the parser will not have to include the possibly long lists that
encode string positions in the list representation of input strings.)

At some point in executing the query parse(s, 0, 1), find_phrase will be
called to find phrases x(a, X) starting at 0. Clearly there are no such phrases, so a
single clause will be added to the database.

complete(x(a, X), 0).

Later in the execution, find_phrase will be called for phrases of type x (Y, b) start-
ing at 0. As this matches the complete fact in the database, find_phrase will go
on to call known_phrase(x(a, b), 0, P) which will immediately fail. Thus, the
overall analysis will fail, even though the given string is in the language accepted by
the grammar.

The problem here is that the interpreter is not careful enough in implementing
the notion of “being complete for a given phrase type”. With atomic nonterminals
and ground first argument, there is no problem because unification in the first clause of
find_phrase s just doing an identity check. But in the general case, unification is the
wrong operation to use. The presence of the fact complete(x(a, X), ®) indicates
that the parser has found all phrases x(a, t) starting at position 0 for some termt. The
phrases that can satisfy x (Y, b) at position 0 may include some that satisfy x(a, X),
namely any phrases that satisfy the unification x(a, b) of the two phrase types, but
will in general also contain others, such as the solution x(b, b), that do not satisfy
x(a, X).

The correct check for completeness of a phrase type is thus not unification, which
corresponds to intersection of the corresponding solution sets, but subsumption or in-
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stantiation (Section 3.5.1), which corresponds to containment of solution sets. More
specifically, we can consider the phrase table complete for a certain phrase type t only
if it contains all phrases satisfying t or any other type t’ that subsumes t. Thus we
should modify the first clause of find_phrases to be

find_phrase(NT, PO, P) :-
complete(GeneralNT, GeneralP®),
subsumes ((GeneralNT,GeneralP0®), (NT, P0®)), !,
known_phrase(NT, PO, P).

The subsumption test subsumes((GeneralNT, GeneralP@), (NT, P9))
checks whether the nonterminal-position pair (NT, P®) is a special case of an already
completed phrase type (GeneralNT, GeneralP@).

In general, the subsumption check subsumes (t,t") should test whether there is a
substitution o for variables in t such that [tJo- = t’. This is clearly a meta-level facility,
as it is sensitive to the particular state of instantiation of terms. Thus the implementa-
tion of subsumes in Prolog requires the use of other meta-level facilities. One of the
easiest methods of implementation is based on the observation that t subsumes t” if and
only if t is unifiable with t”, where t” is obtained from t’ by replacing each distinct
variable in t” with a distinct constant term not occurring in t. Equivalently, t subsumes
t’ if and only if the most general unifier of t and t’ does not bind any variable in t’.

Exercise 6.10 Prove the above assertions.

Suppose we have an extralogical predicate make_ground which instantiates all
the variables in its argument to distinct new constants. It would then seem that the
following is a reasonable implementation of subsumes:

subsumes (General, Specific) :-
make_ground(Specific),
General = Specific.

However, this program has the unwanted side-effect of binding the variables in
Specific to constants and also possibly instantiating General. This observation
leads to a revision of the implementation of the subsumption test making use of the
properties of double negation discussed in Section 6.4.1.5

subsumes (General, Specific) :-
\+ \+ ( make_ground(Specific),
General = Specific ).

Finally, it remains to see how the predicate make_ground is implemented. The
predicate numbervars(t, m, n), available in many Prolog systems, instantiates
each of the n — m distinct variables of term t to a distinct term of the form f (i) where
m < i < n. (The functor f is implementation-dependent chosen so as not normally to
occur in user programs.) We could thus implement make_ground as follows:

SHowever, this version of subsumes is only correct if the variables in General and Specific are
disjoint. Otherwise, the execution of make_ground will inapproriately bind variables in General.
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make_ground(Term) :-
numbervars(Term, 0, _).

Alternatively, we could implement the variable numbering scheme directly.

make_ground(Term) :-
make_ground(Term,®, _).

make_ground(Term, M, N) :- var(Term), !,
Term = "A-Var’(M), N is M + 1.
make_ground(Term, M, M) :- atomic(Term), !.

make_ground(’A-Var’ (L), M, M) :- I.
make_ground(Term, M, N) :-
Term =.. [_Functor|Args],
make_ground_list(Args, M, N).

make_ground_list([], M, M).

make_ground_list([Term|Terms], M, N) :-
make_ground(Term, M, K),
make_ground_list(Terms, K, N).

Here, we assume that no term of the form ’*A-Var’ (i) appears in the rest of the pro-
gram. (See Section 5.1.6 for descriptions of the various built-in predicates used in
make_ground.)

6.6.5 The Top-Down Tabular Parser in Action

We now show how the top-down tabular parser avoids the redundancies of backtrack-
ing in the example of Section 6.6.1. To avoid cluttering the example, we will use the
following simple grammar fragment:

vp ---> dv, np, pp(to).
vp ---> dv, np, np.

np ---> det, n.

pp(P) ---> p(P), np.

dv ---> [gave].

det ---> [every].

det ---> [a].

n ---> [student].

n ---> [book].

p(P) --—> [P], {p(P)}.
p(to).

The example verb phrase is

0 gave ; every ; student 3 a 4 book 5
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We will examine a trace of the execution of the goal
?- parse(vp, 0, 5).

which asks whether the given string is a verb phrase.

The main predicates of interest in understanding the parser’s execution are
find_phrase, complete and known_phrase. The first attempt to prove the goal
above involves the first vp rule. This leads to the following sequence of calls to
find_phrase and assertions,® where the assertions are indicated by messages of the
form “Asserted f” for some fact f:

?- parse(vp, 0, 5).
(6) 1 Call: find_phrase(vp,0,5)

(20) 4 Call: find_phrase(dv,0,P_1)
Asserted known_phrase(dv,0,1)

(20) 4 Exit: find_phrase(dv,0,1)

(49) 5 Call: find_phrase(unp,1,P_2)

(63) 8 Call: find_phrase(det,1,P_3)
Asserted known_phrase(det,1,2)

(63) Exit: find_phrase(det,1,2)

(87) 8 Call: find_phrase(n,2,P_4)
Asserted known_phrase(n,2,3)

(87) 8 Exit: find_phrase(n,2,3)
Asserted known_phrase(np,1,3)

(49) 5 Exit: find_phrase(ap,1,3)

(115) 5 Call: find_phrase(pp(to),3,P_5)

(129) 8 Call: find_phrase(p(to),3,P_6)
Asserted complete(p(to),3)

(129) 8 Fail: find_phrase(p(to),3,P_6)
Asserted complete(pp(to),3)

(115) 5 Fail: find_phrase(pp(to),3,_5)

[¢4]

At this point, the parser has recognized the verb and the noun phrase that follows it,
and has just failed to find a prepositional phrase as the second complement of the
verb. The recognized verb, determiner, noun and noun phrase have been asserted as
known_phrase lemmas. The failed search for a prepositional phrase at position 3
led to the assertion of complete facts for the prepositional phrase and its starting
preposition, meaning that no phrases of those types are available at position 3. Notice
that no complete facts have been asserted yet for the phrases recognized so far, since
the parser has not yet tried other alternatives for those phrases.

The execution continues by failing back into the already recognized phrases and
trying to find them in alternative ways. When these attempts fail, complete assertions
are made for the failed phrases.

Asserted complete(n,2)
(87) 8 Fail: find_phrase(n,2,P_4)

6The invocation numbers are not consecutive because we are omitting the trace messages for other calls.
Also, Redo ports (Section 2.4.1) are not shown.
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Asserted complete(det,1)

(63) 8 Fail: find_phrase(det,1,P_3)
Asserted complete(np,1)

(49) 5 Fail: find_phrase(np,1,P_2)
Asserted complete(dv,0)

(20) 4 Fail: find_phrase(dv,0,P_1)

Now the first vp rule has failed and we have complete information for all the
phrases the parser attempted to find during that rule’s execution. The execution now
moves to the second vp rule.

(184) 4 Call: find_phrase(dv,0,P_1)
(223) 5 Call: known_phrase(dv,0,P_1)
(223) 5 Exit: known_phrase(dv,0,1)
(184) 4 Exit: find_phrase(dv,0,1)

The table for phrases of type dv is complete at position 0, so the lemmas stored in
known_phrase can be used instead of the rules for dv. The situation is similar for the
first np complement of the vp, thereby saving a reparse of that noun phrase.

(234) 5 Call: find_phrase(np,1,P_2)
(267) 6 Call: known_phrase(np,1,P_2)
(267) 6 Exit: known_phrase(np,1,3)
(234) 5 Exit: find_phrase(ap,1,3)

The analysis then proceeds as normal until the original goal is proved.

(273) 5 Call: find_phrase(unp,3,P_3)
(323) 8 Call: find_phrase(det,3,P_4)
Assert known_phrase(det,3,4)
(323) 8 Exit: find_phrase(det,3,4)
(389) 8 Call: find_phrase(n,4,P_5)
Assert known_phrase(n,4,5)
(389) 8 Exit: find_phrase(n,4,5)
Assert known_phrase(np,3,5)
(273) 5 Exit: find_phrase(ap,3,5)
Assert known_phrase(vp,0,5)
(6) 1 Exit: find_phrase(vp,0,5)

6.6.6 General Tabular Parsing

The phrase table for top-down parsing that we have just discussed improves the per-
formance of top-down parsing by stopping redundant reanalyses, but it does not do
anything to alleviate a much more serious redundancy, the redundancy of top-down
computation that leads to nontermination in grammars with left-recursive rules.

As we have seen, a top-down parser may fail to terminate when given left-recursive
rules because it works by guessing (or predicting) that a phrase of some type X occurs
and then trying all ways of building an X. If one of those ways involves looking for



6.6. Tabular Parsing 167

This digital edition of Prolog and Natural-Language Analysis is distributed
at no charge for noncommercial use by Microtome Publishing.

an X to start with, the procedure gets into a prediction loop and never terminates. One
way of dealing with this problem is to avoid it totally by using a bottom-up algorithm,
as described in Section 6.5. Unfortunately, this is achieved by losing the accurate top-
down predictions available in a top-down parser. Techniques such as the use of linking
information discussed in Section 6.5.1 can alleviate this problem, but in the worst case
even a left-corner parser with linking information will generate many unextensible
partial analyses that a top-down parser would never attempt.

At first sight, it might appear as if the left-recursion problem for top-down parsers
has a solution analogous to that for the redundancy problem which we have just dis-
cussed. What would be needed is to record the fact that the parser has predicted a
phrase of type X starting at some position i so that the parser can recognize when it is
about to get into a prediction loop. However, it is not immediately clear what should
occur when a prediction loop is recognized. Clearly, for the prediction to be fulfilled
there should be some phrase of type X at i, so we cannot just give up looking for an X
at i. Furthermore, we cannot decide in advance how many X phrases start at i, as can
be seen by considering the rules

X—=Xa
X—=b

applied to strings ba" for different values of n. Finally, a prediction loop may occur
with rules with apparently non-left-recursive rules such as

X—=YXb
Y—>e€

because a prefix of the body of a rule may cover the empty string, as with Y in the
rules above. Thus, in general loop detection is needed when forming predictions on
the basis of any symbol in a rule body.

The above problems can be solved by splitting the operation of the parser into
two alternating phases, prediction and resolution, dealing respectively with top-down
predictions and bottom-up rule applications.”

To explain the process in more detail, we will not work in terms of DCG rules
but rather in terms of the corresponding definite clauses. From a deductive point of
view, prediction selects instances of rules that may apply to resolve against a particular
literal (nonterminal). For instance, suppose we are parsing an expression according to
the DCG encoded in Program 2.4 and repeated here for reference.

s(P®, P) :- np(PO®, P1), vp(P1l, P).

np(PO®, P) :- det(PO®, P1), n(Pl, P2), optrel(P2, P).
np(PO®, P) :- pn(PO, P).

vp(P®, P) :- tv(PO, P1), np(P1l, P).

vp(P®, P) :- iv(PO, P).

optrel(P, P).

optrel(P®, P) :- connects(that, PO, P1), vp(P1l, P).

pn(P®, P) :- connects(terry, PO, P).
pn(P®, P) :- connects(shrdlu, PO, P).

"Earley used the term completion for what we call resolution.
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iv(P®, P) :- connects(halts, PO, P).
det(PO®, P) :- connects(a, PO, P).

n(PO®, P) :- connects(program, PO, P).
tv(P®, P) :- connects(writes, PO, P).

Starting with a query of the form
- s(0, 2)

the Prolog proof procedure will predict that the first rule in the grammar is applicable.
Unifying the goal literal with the prediction, we have the new clause

s(0, 2) :- np(0, P1), vp(P1, 2).

This clause is an instance of the first rule and a consequence of the grammar together
with the initial goal. Selecting the first literal in this new rule, we might then predict
the second or third rule, in the latter case yielding

np(®, P) :- pn(0, P). ,
from which can be predicted
pn(®, P) :- connects(bertrand, 0, P).

This clause can be resolved by matching a literal in its right-hand-side against a unit
clause in the program, say,

connects(bertrand, 0, 1).
The resolvent is formed by removing the matched literal.
pn(0, 1).
Now this clause can be used to resolve against another clause forming the resolvent
np(0, 1). ,
which resolves against the original prediction.
s(0,2) :- vp(1,2).

Now the process can start over, this time predicting the rules for verb phrases. Even-
tually, if a verb phrase is found between positions 1 and 2, the clause

vp(1,2).
will be generated, which can resolve the previous clause to
s(0, 2).

The existence of this clause formed by alternately predicting and resolving demon-
strates that the initial goal has been proved.
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Thus the normal Prolog proof procedure can be seen as operating by prediction
and resolution, and the results of prediction and resolution (the derived clauses) are
lemmas, logical consequences of the program. The insight of methods of parsing and
deduction based on Earley’s algorithm is that this general flow of control can be made
into a tabular parsing method by storing each lemma in a table, and only forming a
new predicted or resolved clause if the table does not already contain it (or one which
is more general).

We now describe the extended algorithm more precisely.

The predictor operates on clauses with nonempty antecedents, what we have in
the past called rules, but will call active clauses by analogy with the use of the term
active edge in the parsing literature. A literal is selected from the antecedent of the
active clause and a matching program clause is found. The clause instance formed
by unifying the selected literal and the matching clause is then added as a lemma. In
general, this new clause will be active.

The resolver operates on clauses with empty antecedents, what we have in the past
called unit clauses or facts, but will call passive clauses within the discussion of Earley
deduction. An active clause is chosen whose selected (leftmost) literal matches the
passive clause® and the resolvent of the two, which may be either active or passive, is
added as a lemma. Newly derived clauses have one less literal in their bodies than the
active clause from which they were formed so that repeated resolution will eventually
create new derived passive clauses.

In each case, addition of the lemma occurs only if no subsuming clause exists in
the table.

The predictor and the resolver interact as follows. The proof process is set off by
calling the predictor on the goal to be proved—in the case at hand, the grammar start
symbol with appropriate string arguments for DCGs. Each time an active clause is
added to the table, the predictor is called on the selected literal of the active clause to
create new rule instances. Each time a passive clause is added to the table, the resolver
is called to resolve the passive clause against appropriate active clauses.

We can see now how the loop check on predictions is implemented. Top-down
prediction from a literal X creates rule instances that may be used to conclude an X.
The predictor is recursively applied on the selected literals of the newly added rule
instances. If this prediction process leads to another attempt to predict from X because
of left recursion, the potential derived rule instances for X will have already been added
to the lemma table for the earlier instance of X, and the prediction will stop.

The family of proof procedures based on the method just described has been given
the collective name of Earley deduction because of its close connection to Earley’s
parsing algorithm for CFGs. However, the more specific constraints of CF parsing al-
low a simplification that we cannot take advantage of here, and that we glossed over in
the above description. In Earley’s algorithm, derived clause creation proceeds strictly
from left to right. Therefore, any passive clause needed to resolve against some active

8This leftmost-literal selection rule is the same one that Prolog uses. Other selection rules are possible,
leading to different parsing algorithms. For example, one could have a notion of head for rules and always
start by resolving head literals. It is a common mistake to assume that it is necessary to try resolutions with
all body literals, rather than just with the one given by the selection function. However, resolution only
against the selected literal is sufficient, because if a resolution step with some other body literal is required
in a proof, any selection function will sooner or later (maybe infinitely many steps later) come to select that
literal. This is because resolution removes a literal from the body, so that the selection function has fewer
and fewer literals from which to select.
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clause is guaranteed to be constructed after the active clause is created. Thus, to per-
form all the pertinent resolutions, the algorithm need only look for active clauses at
the time when a passive clause is created. A general Earley deduction proof procedure
cannot guarantee this, so in general it is necessary to run the resolver not only when
passive clauses are added, but also when active clauses are added as well.

We will now present a definite clause interpreter that operates according to the
Earley deduction method. Turning the method into a specific procedure requires spec-
ifying a literal selection function (we will assume the Prolog one) and a particular
interleaving of prediction and resolution steps. There is also room for ingenuity in
choosing a representation for the table of derived clauses that will speed up the search
for resolving derived clauses. The implementation below does not use such methods,
however, since it is intended to illustrate the basic algorithm as cleanly as possible.

In this implementation, user-supplied clauses (i.e., the program to be interpreted)
and derived clauses (the results of prediction and resolution) are represented as
P <= [Py, ..., Ppal and P <*= [Py, ..., Pn] respectively, where <= and <*=
are appropriately declared infix operators.

The table of lemmas will be implemented by asserting <*= clauses into the Prolog
database. However, we will need a temporary storage for clauses that the predictor
and resolver produce. This will store clauses that have been added to the table but
have not yet been processed to see what further clauses they engender (by prediction
or resolution). For this purpose, we add an agenda of derived clauses that remain to be
processed, which we will encode as a Prolog list. The main predicate of the program
takes the initial goal, uses the predictor to find all the predicted clauses thereby forming
the initial agenda, and processes each derived clause. If the passive clause encoding
the goal can be proved by this process, the goal itself has been proved.

prove(Goal) :-
predict(Goal, Agenda),
process(Agenda),
Goal <*= [].

The agenda of derived clauses is processed one by one by the predicate
process_one. If the list is empty, all consequences of the axioms relevant to proving
the initial goal have been already derived. Otherwise, the first clause in the agenda is
considered, leading to some set SubAgenda of new derived clauses to consider, which
is combined with the rest of the main agenda and given to process. Here we are ac-
tually adding the new derived clauses to the front of the main agenda; that is, we have
a stack rather than a queue discipline and consequently a kind of depth-first search. If
the new clauses were appended to the back of the agenda instead (as in a queue), the
search would be breadth-first.

process([]).

process([Head <*= Body | OldAgenda]) :-
process_one(Head, Body, SubAgenda),
conc(SubAgenda, OldAgenda, Agenda),
process(Agenda) .

Each new derived clause is processed according to its form. If the derived clause
body is empty, we have a passive clause that should be given to the resolver.
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process_one(Head, [], Agenda) :-
resolve_passive(Head, Agenda).

If the derived clause is active, the predictor has to be called with the clause’s se-
lected literal, the first body literal in this implementation. Furthermore, as we ob-
served earlier it may be that some passive clauses were added before active clauses
they should resolve with, so there is a supplementary call to resolve to deal with
those belated resolutions. The clause sets resulting from prediction and resolution are
combined to give the set of clauses newly derived from the clause being considered.

process_one(Head, [First|Body], Agenda) :-
predict(First, Front),
resolve_active(Head <*= [First|Body], Back),
conc(Front, Back, Agenda).

The predictor, the passive clause resolver, and the active clause resolver are all very
similar. They use the meta-predicate all_solutions(x, g, D) tofind the list1ofall
instantiations of x such that g holds. This is defined to be just like the metapredicate
bagof (Section 5.1.4), except that it returns the empty list when g has no solutions and
does not backtrack for alternative instantiations of free variables. As can be seen in the
clause below, in all calls of all_solutions all variables are either bound in x or in
an existential quantifier, so there will be no free variables to instantiate in alternative
ways in any case.

A prediction is simply the instantiation of a derived clause by the goal. A prediction
is actually made and stored only if the call to store succeeds.

predict(Goal, Agenda) :-

all_solutions(Clause,
Goal "prediction(Goal, Clause),

Agenda) .

prediction(Goal, Goal <*= Body) :-
Goal <= Body,
store(Goal <*= Body).

The resolver for passive clauses takes a derived passive clause Fact and finds
active derived clauses whose selected literal unifies with Fact, returning the results of
the corresponding resolutions.

resolve_passive(Fact, Agenda) :-
all_solutions(Clause,
Fact "p_resolution(Fact, Clause),
Agenda) .

p_resolution(Fact, Goal <*= Body) :-
Goal <*= [Fact|Body],
store(Goal <*= Body).
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The resolver for active clauses works the opposite way to the one for passive
clauses: it takes an active clause Clause and finds passive clauses whose head uni-
fies with the selected literal of Clause.

resolve_active(Clause, Agenda) :-
all_solutions(NewClause,
Clause”a_resolution(Clause,
NewClause),
Agenda) .

a_resolution(Head <*= [First|Body], Head <*= Body) :-
First <*= [],
store(Head <*= Body).

Newly derived clauses are stored only if they are not subsumed by an existing
derived clause.

store(Clause) :-
\+subsumed (Clause),
assert(Clause).

subsumed (Clause) :-
GenHead <*= GenBody,
subsumes (GenHead <*= GenBody, Clause).

Finally, the implementation of all_solutions is simply:

all_solutions(Var, Goal, Solutions) :-
bagof(Var, Goal, Solutions) -> true ; Solutions = [].

As we saw in Section 3.8.2, the Prolog proof procedure loops on left-recursive
rules such as those for the English possessive construction.

NP — DetN
DET — NP ’s

However, our new proof procedure will cope with rules like the above. The clauses
below encode an extension of Program 3.11 to cover the possessive construction in the
format required by the Earley deduction interpreter.

s(s(NP,VP), PO, P) <=

[np(NP, PO, P1), vp(VP, P1, P)].
np(np(Det,N,Rel), PO, P) <=

[det(Det, PO, P1),

n(N, P1, P2),

optrel(Rel, P2, P)].
np(np(PN), PO, P) <= [pn(PN, PO, P)].
det(gen(NP), PO, P) <=

[np(NP, PO, P1), connects(’’’s’, P1, P)].
det(Det, PO, P) <= [art(Det, PO, P)].
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vp(vp(TV,NP), PO, P) <=
[tv(TV, P®, P1), np(NP, P1, P)].
vp(vp(IV), PO, P) <= [iv(IV, PO, P)].
optrel(rel(epsilon), P, P) <= [].
optrel (rel(that,VP), PO, P) <=
[connects(that, PO, P1), vp(VP, P1, P)].

pn(pn(terry), PO, P) <= [connects(terry, PO, P)].
pn(pn(shrdlu), P®, P) <= [connects(shrdlu, PO, P)].
iv(iv(halts), P®, P) <= [connects(halts, PO, P)].
art(art(a), P®, P) <= [connects(a, PO, P)].
n(n(program), PO, P) <= [connects(program, PO, P)].
tv(tv(writes), PO, P) <= [connects(writes, PO, P)].

To show the operation of the algorithm, we use the input sentence
Terry’s program halts.
encoded as

connects(terry, p®, pl) <= [].
connects(’’’s’, pl, p2) <= [].
connects(program, p2, p3) <= [].
connects(halts, p3, p4) <= [].

The listing below shows the derived clauses generated by the algorithm in order of
derivation. To unclutter the listing, we have replaced by ellipses the derived clauses
used in recognizing preterminal symbols (art, pn, n, iv and tv).

(1) s(s(B,C),p0,p4) <*= [np(B,p0,D),vp(C,D,p4)].
(2) np(ap(B,C,D),p0,E) <*=

[det (B,p0,F),n(C,F,G),optrel(D,G,E)].
(3) np(ap(B),p0,C) <*= [pn(B,p0,C)].
(4) det(gen(B),p0,C) <*=

[np (B,p0,D),connects(’s,D,C)].
(5) det(B,p0,C) <*= [art(B,p0,C)].

(10) pn(pn(terry),pO,pl) <*= [].

(11) np(up(pn(terry)),p0,pl) <*= [].

(12) s(s(np(pn(terry)),B),p0,p4) <*= [vp(B,pl,p4)].

(13) det(gen(np(pn(terry))),p0,B) <*=
[connects(’s,p1,B)].

(14) vp(vp(B,C),pl1,p4) <*= [tv(B,pl,D),np(C,D,p4)].

(15) vp(vp(B),pl,p4) <*= [iv(B,pl,p4)].

(19) det(gen(np(pn(terry))),p0,p2) <*= [].
(20) np(np(gen(np(pn(terry))),B,C),p0,D) <*=
[n(B,p2,E),optrel(C,E,D)].

(23) n(n(program),p2,p3) <*= [].
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(24) np(np(gen(np(pn(terry))),
n(program),
B),
p0,C) <*= [optrel(B,p3,C)].
(25) optrel(rel(epsilon),p3,p3) <*= [].
(26) optrel(rel(that,B),p3,C) <*x=
[connects (that,p3,D),vp(B,D,C)].
(27) np(np(gen(np(pn(terry))),
n(program),
rel(epsilon)),
p0,p3) <*= [].
(28) s(s(np(gen(np(pn(terry))),
n(program),
rel(epsilon)),
B),
p0,p4) <*= [vp(B,p3,p4)].

(29) det(gen(np(gen(np(pn(terry))),
n(program),
rel(epsilon))),

p0,B) <*= [connects(’s,p3,B)].
(30) vp(vp(B,C),p3,p4) <*= [tv(B,p3,D),np(C,D,p4)].
(31) vp(vp(B),p3,p4) <*= [iv(B,p3,p4)].

(35) iv(iv(halts),p3,p4) <+= [].
(36) vp(vp(iv(halts)),p3,p4) <*= [].
(37) s(s(np(gen(np(pn(terry))),
n(program),
rel(epsilon)),
vp(iv(halts))),
pO,p4) <x= [].

Derived clause (4) is the instantiation of the left-recursive determiner rule that the Pro-
log proof procedure cannot handle. It is easy to see that the predictions from the first
literal in that clause are instances of derived clauses (2) and (3), so the subsumption
check will avoid the loop.

6.6.7 Earley Deduction and Earley’s CF Parsing Algorithm

We have already informally indicated the connection between Earley deduction and
Earley’s context-free parsing algorithm. For readers who are familiar with Earley’s
algorithm, it may be useful to describe the relationship more specifically. We will
make the connection a bit more precise here by considering the application of Earley
deduction to the definite-clause representation of a context-free grammar. In Earley’s
parsing algorithm, the state of the parser at input position j is represented by a collec-
tion of dotted items | = [X — « - B,i], where X — vy is some grammar rule, y = af,
and i is an input position with i < j. It is very easy to interpret these items in terms of
our definite-clause representation. If 8 is empty, the item | above is called a completed
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item and represents the unit derived clause X(i, j). If y = Y1---Ypand 8 = Yi- - Ym,
item | represents the derived clause

6.6.8 Limitationsof Tabular Parsers

We have just seen how loops and redundant analyses are avoided by using a tabu-
lar parser rather than a depth-first backtracking one. However, these advantages are
bought at the cost of having to store dotted items to represent intermediate states of the
analysis explicitly. For context-free grammars, tabular parsers have an overwhelming
advantage because dotted items can be efficiently encoded as triples of a rule number,
position of the dot within the rule, and item start position. In contrast, storing a lemma
(derived clauses) requires storing the bindings for the variables in the clause or clauses
from which the lemma was derived. The Prolog proof procedure avoids these costs
by considering only one alternative analysis at a time, but the whole point of tabular
parsing and tabular proof procedures is to be able to use lemmas from one alternative
proof path in other proof paths. In our example interpreters above, we use the implicit
copying provided by assert to store lemmas with their corresponding bindings. More
sophisticated schemes are available that may reduce the overhead, but in the worst case
tabular parsing for DCGs is asymptotically as bad as top-down backtrack parsing, and
substantially worse if one considers constant factors. On the whole, the decision be-
tween tabular algorithms and Prolog for DCG parsing can only be done empirically
with particular classes of grammar in mind.

Similar observations apply to the question of termination. Even though Earley
deduction terminates for a larger class of programs than Prolog, it is easy to construct
programs for which Earley deduction loops, such as the following DCG:

P(succ(x)) — P(x) a
P(0) —b

Our Earley deduction procedure applied to the definite-clause representation of this
grammar will loop in the predictor for any start symbol matching P(succ"(0)) for in-
finitely many values of n. This is because the subsumption test on derived clauses
stops loops in which the clause or a more general one already exists in the table, but
this grammar predicts ever more specific instances of the first rule.

Exercise 6.11 Check that Earley deduction loops on this grammar.

6.7 Problem Section: DCG Interpreters and Compil-
ers

Problem 6.12 Extend the DCG interpreter of Section 6.3.1 to handle the intersection
operator as defined in Problem 2.13.

Problem 6.13 Write a compiler for the extended language of the previous problem.
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Problem 6.14 The DCG compiler given by the combination of compile,
partially_execute, and parse (the DCG interpreter) compiles a grammar by us-
ing the partial executor to interpret the DCG interpreter. This process could be made
more efficient by partially executing the partial executor with respect to the parse
predicate, akin to compiling the DCG interpreter. Perform this compilation to yield a
more efficient DCG compiler. What is lost in this process?

FG-DCG Analyses

Topicalization is a construction in English in which a filler constituent is prefixed to
a sentence with a gap of the appropriate type. For the purposes of this problem, we
will assume that the filler is always an NP. The following sentences exemplify the
topicalization construction:

This book, Bertrand gave to Gottlob.
The professor that wrote this book, Alfred met.

The English left dislocation construction is a similar construction, except that instead
of the empty string in the position associated with the filler, there is a pronoun (called
a resumptive pronoun) filling that position, e.g.,

This book, Bertrand gave it to Gottlob.
The professor that wrote this book, Alfred met her.

Problem 6.15 Add FG-DCG rules to Program 6.5 to handle the English topicalization
and left dislocation construction. Be careful to avoid the ungrammatical

*Bill read the book that Alfred wrote it.

Extending Earley Deduction with Restriction

In Section 6.6.8, we mentioned that even with the advantages of tabular parsing in be-
ing able to parse left-recursive and other grammars not parsable by other means, there
are still problematic grammars for the methods outlined. The subsumption test for
stopping prediction loops requires that eventually a new entry will be no more specific
than an existing one. But the sample grammar given in that section predicts rules with
ever larger terms. One method for solving this problem is to limit the amount of struc-
ture that can be passed in the prediction process, using a technique called restriction.
When a literal G is to be predicted, we look for rules that might be useful in resolving
against G. But instead of performing this test by unifying G itself with the head of the
rule, we first restrict G to G’ by eliminating all but a finite amount of structure from
G. The restricted version G’ is then matched against possible rules. Since the amount
of information in G’ can be bounded, the nontermination problem disappears for the
problematic cases discussed in Section 6.6.8.

There are many possible ways of restricting a term to only a finite amount of struc-
ture. We might replace all subterms below a given depth (say 2) by variables. Then the
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term £(g(h(a), s(b)), c) would be restricted to £(g(X, Y), c). Another alter-
native is to define restriction templates that eliminate certain information. For instance,
the unit clause

restrict(£(g(A,B),c), f(gX,Y),0)).

can be used to state the relationship between the sample term (and terms like it) and
the restricted form.

Problem 6.16 Modify the Earley deduction program to perform restriction before pre-
dicting using either of the methods of restricting terms. Test it on the problematic
grammar of Section 6.6.8 to demonstrate that the algorithm now terminates.

6.8 Bibliographic Notes

Interpreters for Prolog-like languages in Prolog have been used since the early days
of Prolog as a means to explore different execution regimes for definite clauses and
for trying out extensions to the language (Gallaire and Lasserre, 1982; Porto, 1982;
L. M. Pereira, 1982; Mukai, 1985). One of the advantages of this approach is that
it is not necessary to construct an interpreter for all the features of the new language
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implementation.

The technique we suggest for a Prolog-in-Prolog with cut (Section 6.2.2) seems to
have been first used in a version of the interpreter in the DEC-10 Prolog system due to
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is given by O’Keefe (1985).

Consecutively bounded depth-first search (Section 6.2.1) has been described and
analysed by Stickel and Tyson (1985) and, under the name “depth-first iterative deep-
ening” by Korf (1985).

Compilation by partial execution (Section 6.4) has been discussed in a logic pro-
gramming context by Kahn (1982) and by Takeuchi and Furukawa (1985). However,
much of what is done in this area by logic programming researchers is still unpub-
lished, so our particular approach to the problem is to a great extent independently
derived.

Left-corner parsers for context-free languages were discussed in a form close to
the one used here (Section 6.5) by Rosenkrantz and Lewis (1970), although the basic
idea seems to be earlier. The subject is also extensively covered in the exercise sections
of Aho and Ullman’s textbook (1972). Rosenkrantz and Lewis introduce an algorithm
that transforms a context-free grammar to an equivalent one in which nonterminals are
pairs of nonterminals of the original grammar. Left-corner derivations for the initial
grammar correspond to top-down derivations for the new grammar. The BUP parser
for definite-clause grammars (Matsumoto, et al., 1983) uses a similar technique, ex-
cept that the nonterminal pairs are instantiated at run time rather than at grammar
compilation time. The 1ink relation (Section 6.5.1) gives a finite approximation of
the in general infinite set of DCG nonterminals that would be the result of applying
the Rosenkrantz and Lewis process to a DCG. Pratt (1985) developed a tabular parser
based on similar notions.
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Tabular parsers for context-free languages are the result of the application of
“divide-and-conquer”, dynamic-programming methods to the context-free parsing
problem to avoid the exponential costs of backtracking (Aho and Ullman, 1972). The
Cocke-Kasami-Younger (CKY) algorithm is the first of these, but it does not use any
top-down predictions so it will generate many useless subphrases. Earley’s algorithm
(1970; Aho and Ullman, 1972) uses left-context to its full extent so that any recog-
nized subphrase is guaranteed to fit into an analysis of a sentence having as a prefix all
the input symbols seen so far. The algorithm of Graham, Harrison, and Ruzzo (1980;
Harrison, 1978) combines a generalization of the CKY algorithm with preconstructed
top-down prediction tables to achieve the best practical performance known so far for
a general context-free parsing algorithm.

The Earley deduction proof procedure is due to D. H. D. Warren (1975), but the first
published discussion of the procedure and its application in natural-language parsing
is given by Pereira and Warren (1983). The trade-offs between termination and detail
of top-down prediction are discussed by Shieber (1985c) for a class of formalisms with
similar properties to definite-clause grammars. A further difficulty with the extended
Earley’s algorithm is the cost of maintaining rule instantiations, which does not oc-
cur in the original algorithm because grammar symbols are atomic. Boyer and Moore
invented an instantiation-sharing method for clausal theorem provers (1972). The spe-
cial constraints of parsing allow some further optimizations for their method (Pereira,
1985).

The idea of parsing from the heads of phrases outwards has often attracted atten-
tion, even though its computational merits are still to be proven. Instances of this idea
are McCord’s slot grammars (1980) and head-driven phrase-structure grammar (Sag
and Pollard, 1986), and the use of a head-selection rule for DCGs (Pereira and Warren,
1983).

Topicalization and left dislocation are discussed by Ross (1967).
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This digital edition of Pereira and Shieber’s Prolog and Natural-
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lishing under a license described in the front matter and at the web
site. A hardbound edition (ISBN 0-9719997-0-4), printed on acid-
free paper with library binding and including all appendices and two
indices (and without these inline interruptions), is available from
www . mtome . comand other booksellers.

This appendix includes commented listings of the talk program developed in
Chapter 5 and the DCG compiler of Chapter 6. Besides combining all of the bits
of code that were distributed throughout that and other chapters, this listing provides
an example of one commenting style for Prolog.

A.1 A Note on Programming Style

We have adopted the following stylistic conventions in the programs in this appendix
and elsewhere in the book. Although these particular conventions are not sacrosanct,
adherence to some set of uniform conventions in Prolog programming (and, indeed,
for programming in any language) is desirable.

We attempted to use variable names that are long enough to provide some
mnemonic power. Predicate names were chosen to be as “declarative” in tone as possi-
ble (without sacrificing appropriateness). Thus, we used the name conc (for “concate-
nation”) rather than the more common, procedural term append. Of course, certain
predicates which rely on side-effects are more appropriately named with procedural
terms such as read_word or print_reply.

Conventionally, the words in multi-word variable names are demarcated by capital-
ization of the first letter, e.g., VariableName. Multiple words in functor symbols, on
the other hand, are separated with underbar, e.g., multiple_word. These conventions
are relatively widespread in Prolog culture.

As mentioned in Section 3.4, we use the Prolog notational convention of giving
a name beginning with an underbar to variables whose role is not to pass a value but
merely to be a place holder. Anonymous variables (notated with a single underbar) are
used for place-holder variables for those rare occasions in which naming the variable
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would detract from program readability. Such occasions occurred only in two areas:
in specifying the tables for lexical entries and in listing generic forms for auxiliary
literals.

Despite statements to the contrary, no programming language is self-documenting.
Since the sample programs presented in the text have been surrounded by a discus-
sion of their operation, no comments were interspersed. However, the commenting of
programs is an important part of programming.

The commenting style used here includes an introductory description of each pred-
icate defined, including a description of its arguments. The normal mode of execution
of the predicate is conveyed by the direction of arrows (==> or <==) for each argument.
In addition, the individual clauses are commented when appropriate.

It is usually preferable to place comments pertaining to a particular literal on
the same line as the literal as is done, for instance, in the commented version of
main_loop below. Unfortunately, page width limitations necessitated interleaving
these comments in many cases.

In general, cuts, asserts, and similar metalogical operations are suspect in Prolog
code. In the programs that follow, cuts are used only to encode conditionals. The
conditional construct, though typically preferred, was not used in several cases because
it was deemed less readable than the version using the cut. Asserts in these programs
are not used as part of the program’s control strategy, but rather, as the output of meta-
programs.

A.2 The TALK Program

/******************************************************

TALK Program

dededededede

/:’:
Operators
*/
- op(500,xfy,&).
- op(510,xfy,=>).
- op(100, fx, ).
/:’:
Dialogue Manager
7':/

%%% main_loop

main_loop :-
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write(’>> '), % prompt the user
read_sent (Words), % read a sentence
talk(Words, Reply), % process it with TALK
print_reply(Reply), % generate a printed reply
main_loop. % pocess more sentences

%%% talk(Sentence, Reply)

%%%

%%%

%%% Sentence ==> sentence to form a reply to

%%% Reply <== appropriate reply to the sentence

talk(Sentence, Reply) :-
% parse the sentence
parse(Sentence, LF, Type),
% convert the FOL logical form into a Horn
% clause, if possible
clausify(LF, Clause, FreeVars), !,
% concoct a reply, based on the clause and
% whether sentence was a query or assertion
reply(Type, FreeVars, Clause, Reply).

% No parse was found, sentence is too difficult.
talk(_Sentence, error(’too difficult’)).

%%% reply(Type, FreeVars, Clause, Reply)

%%%

%%%

%%% Type ==> the constant "query" or "assertion"
%%% depending on whether clause should
%%% be interpreted as a query or

%%% assertion

%%% FreeVars ==> the free variables (to be

%%% interpreted existentially) in the
%%% clause

%%% Clause ==> the clause being replied to

%%% Reply <== the reply
%%%

%%% If the clause is interpreted as an assertion,
%%% the predicate has a side effect of asserting
%%% the clause to the database.

% Replying to a query.
reply(query, FreeVars,
(answer (Answer) : -Condition), Reply) :-
% find all the answers that satisfy the query,
% replying with that set if it exists, or "no"
% or "none" if it doesn’t.
(setof(Answer, FreeVars“Condition, Answers)
-> Reply = answer (Answers)
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; (Answer = []
-> Reply = answer([none])
; Reply = answer([no]))), !.

% Replying to an assertion.
reply(assertion, _FreeVars,
Assertion, asserted(Assertion)) :-
% assert the assertion and tell user what we asserted
assert(Assertion), !.

% Replying to some other type of sentence.

reply(_Type, _FreeVars, _Clause, error(’unknown type’)).

%%% print_reply(Reply)
%%%

%%%

%%6% Reply ==> reply generated by reply predicate
%%% that is to be printed to the

%%% standard output.

print_reply(error(ErrorType)) :-
write(’Error: "’), write(ErrorType), write(’."’), nl.

print_reply(asserted(Assertion)) :-
write(’Asserted "’), write(Assertion), write(’."’), nl.

print_reply(answer(Answers)) :-
print_answers(Answers).

%%% print_answer (Answers)
%%%
%%%

%%% Answers ==> nonempty list of answers to be printed
%%% to the standard output separated
%%% by commas.

print_answers([Answer]) :- !,
write(Answer), write(’.’), nl.

print_answers([Answer |Rest]) :-

write(Answer), write(’, '),
print_answers(Rest).

%%% parse(Sentence, LF, Type)

%%%

%%%

%%% Sentence ==> sentence to parse

%%% LF <== logical form (in FOL) of sentence
%%% Type <== type of sentence

%%% (query or assertion)
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% Parsing an assertion: a finite sentence without gaps.
parse(Sentence, LF, assertion) :-
s(LF, nogap, Sentence, []).

% Parsing a query: a question.
parse(Sentence, LF, query) :-
q(LF, Sentence, []).

/5’:

Clausifier

*/

%%% clausify(FOL, Clause, FreeVars)
%%%
%%%
%%% FOL ==> FOL expression to be converted
%%% to clause form
%%% Clause <== clause form of FOL expression
%%% FreeVars <== free variables in clause

% Universals: variable is left implicitly scoped.
clausify(all(X,F®),F, [X|V]) :- clausify(FO,F,V).

% Implications: consequent must be a literal,
% antecedent is clausified specially.
clausify(A0=>CO, (C:-A),V) :-
clausify_literal(CO,Q),
clausify_antecedent (A®,A,V).

% Literals: left unchanged (except literal

% marker is removed) .
clausify(C0,C,[]) :- clausify_literal(C0,0).
% Note that conjunctions and existentials are

% disallowed, since they can’t form Horn clauses.

%%% clausify_antecedent(FOL, Clause, FreeVars)

%%%

%%%

%%% FOL ==> FOL expression to be converted
%%% to clause form

%%% Clause <== clause form of FOL expression
%%% FreeVars ==> list of free variables in clause

% Literals: left unchanged (except literal
% marker is removed).
clausify_antecedent(LO®,L,[]) :- clausify_literal(LO,L).
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% Conjunctions: each conjunct is clausified separately.
clausify_antecedent (EQ&FO®, (E,F),V) :-
clausify_antecedent (E®,E,V0),
clausify_antecedent (F®,F,V1),
conc(VO,V1,V).

% Existentials: variable is left implicitly scoped.
clausify_antecedent(exists(X,F0),F, [X|V]) :-
clausify_antecedent (FO,F,V).

%%% clausify_literal(Literal, Clause)
%%%
%%%

%%6% Literal ==> FOL literal to be converted
%%% to clause form
%%% Clause <== clause form of FOL expression

% Literal is left unchanged (except literal
% marker is removed).
clausify_literal(‘L,L).

/3’:
Grammar

Nonterminal names:

q Question

sinv INVerted Sentence

s noninverted Sentence

np Noun Phrase

vp Verb Phrase

iv Intransitive Verb

tv Transitive Verb

aux AUXiliary verb

rov subject-Object Raising Verb

optrel OPTional RELative clause
relpron RELative PRONoun
whpron  WH PRONoun

det DETerminer
n Noun
pn Proper Noun

Typical order of and values for arguments:
1. verb form:
(main verbs) finite, nonfinite, etc.
(auxiliaries and raising verbs) Forml-Form2
where Forml is form of embedded VP

Form2 is form of verb itself)

2. FOL logical form
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3. gap information:

nogap or gap(Nonterm, Var)
where Nonterm is nonterminal for gap
Var is the LF variable that
the filler will bind

%%6% Questions

q(S => ‘answer(X)) -->
whpron, vp(finite, X"S, nogap).
q(S => ‘answer(X)) -->
whpron, sinv(S, gap(np, X)).
q(S => ‘answer(yes)) -->
sinv(S, nogap) .
q(S => ‘answer(yes)) -->
[is],
np((X"SO)"S, nogap),
np((X"true) "“exists(X,S0&true), nogap).

%%% Declarative Sentences

s(S, GapInfo) -->
np(VP"S, nogap),
vp(finite, VP, GapInfo).

%%% Inverted Sentences

sinv(S, GapInfo) -->
aux(finite/Form, VP1°VP2),
np(VP2"S, nogap),
vp(Form, VP1, GapInfo).

%%% Noun Phrases

np(NP, nogap) -->

det(N2°NP), n(N1), optrel (N1°N2).
np(NP, nogap) --> pn(NP).
np((X"S)7°S, gap(np, X)) --> [].

%%6% Verb Phrases

vp(Form, X°S, GapInfo) -->
tv(Form, X"VP),
np(VP"S, GapInfo).

vp(Form, VP, nogap) -->
iv(Form, VP).

vp(Forml, VP2, GapInfo) -->
aux(Forml/Form2, VP1°VP2),
vp(Form2, VP1, GapInfo).

*/
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vp(Forml, VP2, GapInfo) -->
rov(Forml/Form2, NP"VP1°VP2),
np(NP, GapInfo),
vp(Form2, VP1, nogap).
vp(Form2, VP2, GapInfo) -->
rov(Forml/Form2, NP"VP1°VP2),
np(NP, nogap),
vp(Forml, VP1, GapInfo).
vp(finite, X°S, GapInfo) -->
[is],
np((X"P) "exists(X,S&P), GapInfo).

%%% Relative Clauses

optrel ((X"S1) " (X" (S1&S2))) -->
relpron, vp(finite,X"S2, nogap).
optrel ((X"S1) " (X" (S1&S2))) -->
relpron, s(S2, gap(np, X)).
optrel (N"N) --> [].

Dictionary

det(LF) --> [D], {det(D, LF)}.
n(LF) --> [N], {n(N, LF)}.
pn((E"S)"S) --> [PN], {pn(PN, E)}.

aux(Form, LF) --> [Aux], {aux(Aux, Form, LF)}.
relpron --> [RP], {relpron(RP)}.
whpron --> [WH], {whpron(WH)}.

% Verb entry arguments:
% 1. nonfinite form of the verb

% 2. third person singular present tense form of the verb
% 3. past tense form of the verb

% 4. past participle form of the verb

% 5. pres participle form of the verb

% 6. logical form of the verb

iv(nonfinite, LF) --> [Iv], {iv(IVv, _, _, _, _, LF)}.
iv(finite, LF) --> [1IVv], {iv(., IV, _, _, _, LF)}.
iv(finite, LF) --> [IV], {iv(., _, IV, _, _, LF)}.
iv(past_participle, LF) --> [IV], {iv(_., _, _, IV, _, LF)}.

iv(pres_participle, LF) --> [IV], {iv(., _, _, _, IV, LF)}.
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tv(nonfinite, LF) --> [TV], {tv(TVv, _, _, _, _, LF)}.
tv(finite, LF) --> [TV], {tv(_, TV, _, _, _, LF)}.
tv(finite, LF) --> [TV], {tv(_., _, TV, _, _, LF)}.
tv(past_participle, LF) --> [TV], {tv(_., _, _, TV, _, LF)}.
tv(pres_participle, LF) --> [TV], {tv(., _, _, _, TV, LF)}.
rov(nonfinite /Requires, LF)

--> [ROV], {rov(ROV, _, _, _, _, LF, Requires)}.
rov(finite /Requires, LF)

--> [ROV], {rov(_, ROV, _, _, _, LF, Requires)}.
rov(finite /Requires, LF)

--> [ROV], {rov(_, _, ROV, _, _, LF, Requires)}.
rov(past_participle/Requires, LF)

--> [ROV], {rov(_, _, _, ROV, _, LF, Requires)}.
rov(pres_participle/Requires, LF)

--> [ROV], {rov(_, _, _, _, ROV, LF, Requires)}.
/='= _____________________________________________________

relpron( that ).
relpron( who ).
relpron( whom ).

whpron( who ).
whpron( whom ).
whpron( what ).

det( every, (X"S1)"(X"S2)" all(X,S1=>S2) ).
det( a, (X"S1)"(X"S2) "exists(X,S1&S2) ).
det( some, (X"S1)"(X"S2) exists(X,S1&S2) ).

‘author (X) ).
‘book (X) ).
n( professor, ‘professor(X) ).
n( program, ‘program(X) ).
n( programmer, X~ ‘programmer(X) ).

n( author,

X
n( book, X
X
X

n( student, X" ‘student (X) ).

pn( begriffsschrift, begriffsschrift ).
pn( bertrand, bertrand ).
pn( bill, bill ).

pn( gottlob, gottlob ).
pn( lunar, lunar ).

pn( principia, principia ).
pn( shrdlu, shrdlu ).

pn( terry, terry ).

iv( halt, halts, halted,

halted, halting, X® ‘halt(X) ).
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tv( write, writes, wrote,

written, writing, XYY" ‘writes(X,Y) ).
tv( meet, meets, met,

met, meeting, X°Y" ‘meets(X,Y) ).
tv( concern, concerns, concerned,

concerned, concerning, X°Y" ‘concerns(X,Y) ).
tv( run, runs, ran,

run, running, XYY" ‘runs(X,Y) ).
rov( want, wants, wanted,

wanted, wanting,

% semantics is partial execution of

% NP ~ VP "~ Y " NP( X"want(Y,X,VP(X)) )

(X" ‘want(Y,X,Comp))”S) = (X"Comp) ~ Y ~ S,
% form of VP required:

infinitival).
aux( to, infinitival/nonfinite, VP~ VP ).
aux( does, finite/nonfinite, VP~ VP ).
aux( did, finite/nonfinite, VP~ VP ).

/%

Auxiliary Predicates

%%% conc(Listl, List2, List)

%%%

%%%

%%% Listl ==> a list

%%% List2 ==> a list

%%% List <== the concatenation of the two lists

conc([], List, List).

conc([Element |Rest], List, [Element|LongRest]) :-
conc(Rest, List, LongRest).

%%% read_sent (Words)

%%%

%%%

%%% Words ==> set of words read from the
%%% standard input

%%%

%%% Words are delimited by spaces and the
%%% line is ended by a newline. Case is not
%%% folded; punctuation is not stripped.

read_sent (Words) :-
get®(Char), % prime the lookahead
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read_sent (Char, Words). % get the words

% Newlines end the input.
read_sent(C, []) :- newline(C), !.

% Spaces are ignored.

read_sent(C, Words) :- space(Q), !,
get®(Char),
read_sent (Char, Words).

% Everything else starts a word.
read_sent (Char, [Word|Words]) :-
read_word(Char, Chars, Next), % get the word

name (Word, Chars), % pack the characters
% into an atom
read_sent(Next, Words). % get some more words

%%% read_word(Chars)
%%%
%%%

%%% Chars ==> list of characters read from standard
%%% input and delimited by spaces or
%%6% newlines

% Space and newline end a word.
read_word(C, [], O :- space(Q), !.
read_word(C, [], O :- newline(C), !.

% All other chars are added to the list.
read_word(Char, [Char|Chars], Last) :-
getO(Next),
read_word(Next, Chars, Last).

%%% space (Char)
Ty —
%%%

%%% Char === the ASCII code for the space
%%% character
space(32).

%%% newline(Char)

%K%k =============

%%%

%%% Char === the ASCII code for the newline
%%6% character

newline(10).
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A.3 The DCG Compiler

/3’::‘:}'::'n’::':7':7'::‘:7'::‘:7'::‘:5’::‘:}'::‘:7’::’:7’::’:7’: Fededededededededededed

DCG Compiler

T

Operator Declarations

- op(1200,xfx,--->).

%%% These declarations are required by certain Prolog
%%% systems for predicates that are to be asserted
%%% at run-time. Predicates are specified by terms
%%% of the form name/arity.

:- dynamic (--->)/2, parse/3, connect/3.

/3’:

Compiler Driver

%%% compile
%%% p—————

%%%

%%% Generates compiled clauses by partial

%%% execution of the DCG metainterpreter below,
%%% and adds them to the Prolog database.
compile :-

program_clause(Clause),
partially_execute(Clause, CompiledClause),
add_rule(CompiledClause),

fail.
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%%% add_rule(Clause)

%%%

%%%

%%% Clause ==> clause to be added to database
%%% after rewriting into a normal
%%% form that changes calls to parse
%%% into calls on particular

%%% nonterminals

add_rule((Head :- Body)) :-
rewrite(Head, NewHead),
rewrite(Body, NewBody),
write(’Asserting "’),
write((NewHead :- NewBody)),
write(’."’), nl,
assert((NewHead :- NewBody)).

%%% rewrite(Term, NewTerm)

%%%

%%%

%%% Term ==> a term encoding a literal or
%%6% sequence of literals

%%6% NewTerm <== the term rewritten so literals
%%% of the form

%%% parse(s(...),...)

%%6% are rewritten into the form
%%% SCovayend)

rewrite((A,B), (C,D)) :- !,

rewrite(A, C), rewrite(B, D).
rewrite(parse(Term, P1, P2), NewLiteral) :- !,

Term =.. [Function|Args],

conc(Args, [P1, P2], AllArgs),

NewLiteral =.. [Function|AllArgs].
rewrite(Term, Term) .
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/:’:

Partial Execution of Prolog Programs

*/

%%% partially_execute(Term, NewTerm)
%%%
%%%
%%% Term ==> term encoding Prolog clause,
%%% literal list or literal to be
%%% partially executed with respect to the
%%% program clauses and auxiliary clauses
%%% given by program_clause and clause
%%% predicates respectively.
%%%
%%6% NewTerm <== the partially executed term.

% Partially executing a clause involves
% expanding the body.
partially_execute((Head:-Body),
(Head:-ExpandedBody)) :- !,
partially_execute(Body, ExpandedBody).

% Partially expanding a literal list involves
% conjoining the respective expansions.
partially_execute((Literal, Rest), Expansion) :- !,
% expand the first literal
partially_execute(Literal, ExpandedLiteral),
% and the rest of them
partially_execute(Rest, ExpandedRest),
% and conjoin the results
conjoin(ExpandedLiteral, ExpandedRest, Expansion).

% Partially executing an auxiliary literal involves
% replacing it with the body of a matching clause (if
% there are any). Nonauxiliary literals, or those
% not matching any clauses, are left unchanged.
partially_execute(Literal, Expansion) :-

( aux_literal(Literal),

setof(Body, Literal”aclause((Literal :- Body)),
[_Clause|_Others]) )
-> ( aclause((Literal :- Body)),
partially_execute(Body, Expansion) )
;  Expansion = Literal.
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/='= _____________________________________________________
Utilities

_____________________________________________________ 7':/

%%% conc(Listl, List2, List)

%%%

%%%

%%6% Listl ==> a list

%%6% List2 ==> a list

%%% List <== the concatenation of the two lists

conc([], List, List).
conc([Element |Rest], List, [Element|LongRest]) :-

conc(Rest, List, LongRest).

%%% conjoin(Conjunctl, Conjunct2, Conjunction)
%%%

%%6%

%%% Conjunctl ==> two terms to be conjoined
%%% Conjunct2 ==>

%%% Conjunction <== result of the conjunction

% Conjoining a conjunction works just like
% concatenation (conc).
conjoin((A,B), C, ABC) :- !,

conjoin(B, C, BQO),

conjoin(A, BC, ABQ).

% Conjoining true and anything leaves the other
% conjunct unchanged.

conjoin(true, A, A) :- .

conjoin(A, true, A) :- !.

% Otherwise, use the normal comma conjunction
% operator.
conjoin(A, C, (A,Q)).
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%%% aclause(Clause)

%%%

%%%

%%% Clause <== the head and body of a clause
%%% encoded with the unary ‘clause’;
%%6% unit clauses can be encoded directly
%%% with clause and the Body returned will
%%% be ‘true’. Furthermore, the top-to-
%%% bottom clause ordering is preserved.

aclause((Head :- Body)) :-
clause(Clause),
(Clause = (Head :- Body)
-> true
;  (Clause = Head, Body = true)).

/3’:
Program to Partially Execute
7':/

/3’: _____________________________________________________

Control Information for Partial Executor
_____________________________________________________ */
aux_literal( (_ ---> _) ).
aux_literal( parse(_, _, _) ).
/:’.— _____________________________________________________

DCG Metainterpreter to be Partially Executed

Encoded form of program in Section 6.3.1

_____________________________________________________ */

program_clause(( parse(NT, P_®, P) :-
(NT ---> Body),
parse(Body, P_0, P) D).

program_clause(( connect(Word, [Word|Rest], Rest) :-
true D).
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clause(( parse((Bodyl, Body2), P_0®, P) :-
parse(Bodyl, P_0, P_1),
parse(Body2, P_1, P) )).
clause(( parse([], P, P) ).
clause(( parse([Word|Rest], P_0, P) :-
connect (Word, P_0, P_1),
parse(Rest, P_1, P) )).
clause(( parse({Goals}, P, P) :- call(Goals))).
/3’:
Operators
*/
/3’: _________________________________________________
Sample Data for Program to Partially Execute:

The parse-tree building DCG of Program 3.11
_____________________________________________________ 7‘/
clause(( s(s(NP,VP)) ---> np(NP), vp(VP) ).
clause(( np(np(Det,N,Rel)) --->

det(Det),

n(N),

optrel (Rel) D).
clause(( np(p(PN)) ---> pn(PN) )).
clause(( vp(vp(TV,NP)) ---> tv(TV), np(NP) )).
clause(( vp(vp(IV)) ---> iv(IV) ).
clause(( optrel(rel(epsilon)) ---> [] )).
clause(( optrel(rel(that,VP)) ---> [that], vp(VP) )).
clause(( pn(pn(terry)) ---> [terry] ).
clause(( pn(pn(shrdlu)) ---> [shrdlu] ).
clause(( iv(iv(halts)) ---> [halts] ).
clause(( det(det(a)) ---> [a] D).
clause(( n(n(program)) ---> [program] ).
clause(( tv(tv(writes)) ---> [writes] ).
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