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Reyhan Aydoğan · Pınar Yolum

© The Author(s) 2010

Abstract We consider automated negotiation as a process carried out by software agents
to reach a consensus. To automate negotiation, we expect agents to understand their user’s
preferences, generate offers that will satisfy their user, and decide whether counter offers are
satisfactory. For this purpose, a crucial aspect is the treatment of preferences. An agent not
only needs to understand its own user’s preferences, but also its opponent’s preferences so
that agreements can be reached. Accordingly, this paper proposes a learning algorithm that
can be used by a producer during negotiation to understand consumer’s needs and to offer
services that respect consumer’s preferences. Our proposed algorithm is based on inductive
learning but also incorporates the idea of revision. Thus, as the negotiation proceeds, a pro-
ducer can revise its idea of the consumer’s preferences. The learning is enhanced with the
use of ontologies so that similar service requests can be identified and treated similarly. Fur-
ther, the algorithm is targeted to learning both conjunctive as well as disjunctive preferences.
Hence, even if the consumer’s preferences are specified in complex ways, our algorithm can
learn and guide the producer to create well-targeted offers. Further, our algorithm can detect
whether some preferences cannot be satisfied early and thus consensus cannot be reached.
Our experimental results show that the producer using our learning algorithm negotiates
faster and more successfully with customers compared to several other algorithms.

Keywords Negotiation · Preference Learning · Ontology Reasoning ·
Disjunctive Preferences

1 Introduction

In a typical e-commerce application, the producers advertise and provide services. The con-
sumers request and possibly consume these services. The range of services is broad. A service
may be selling a book, reserving a hotel room, and so on. The preferences or interests of the
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participants may vary based on the service. As it happens in real life, some conflicts may
occur. For example, the producer may prefer to charge a high price for a service whereas
the consumer may prefer a lower price. When there is a conflict in the preferences of the
participants, negotiation—the process of resolving conflicts and finding mutual acceptable
agreements—takes place [16,26]. During this process, the participants try to reach a consen-
sus by offering alternatives.

Traditional e-commerce applications are targeted for human users. However, as the num-
ber and extent of transactions increase, there is a tremendous demand for developing flexible,
intelligent e-commerce applications that can help users fulfill their tasks. Agents have proven
to be a successful paradigm for autonomous and intelligent software that can represent users
and act on behalf of them. This paper studies agent-based service negotiation where service
producers and consumers are represented by agents.

The simplest negotiation takes place between two agents on a single issue, such as price.
Two agents interact to settle on a value for that single issue. The more complex negotia-
tions take place over multiple issues [1,26]. In a multi-issue negotiation the importance of
the issues may vary for the participants. One agent may consider a particular issue more
important whereas the other agent may take another issue into account. However, in a multi-
issue negotiation, it is possible to have trade-offs between issues, making consensus more
plausible. For instance, the delivery time may be the main concern for a particular consumer
whereas the price of the service may be more important for the producer. If the consumer
pays more for fast delivery, both agents are at an advantage as far as their preferences are
concerned. Meanwhile, when there is more than one issue to be considered, the search space
for the acceptable agreements increases, which complicates the entire negotiation process.

When agents are given a large search space, an important challenge is to find ways to
generate requests or counter offers. This is determined by the agent’s negotiation strategy.
A good negotiation strategy should not only consider the agent’s own utility but the utility of
the opponent as well. Otherwise, no matter how good the generated offer is for the agent, it
will not be accepted by the other agent. To find an agreement, which is mutually beneficial
for both participants, the agents need to have sufficient knowledge about the negotiation
domain and to take the other agent’s preferences into account [14]. However, preferences of
participants are almost always private and hence cannot be accessed by others. If the agent
shares its preferences with the other agent, this information can be exploited by the opponent
agent [14]. For example, if the producer knows that the buyer can pay up to 100 USD for
the service, it may not offer a price lower than 100 USD, although it can possibly afford to
provide the service for 80 USD. As a result, this negotiation will end up with a lower gain for
the buyer. Thus, the agent may not prefer to reveal its preferences completely. Alternatively,
the preferences of the agents may be complicated. Because of the communication cost, these
preferences may not be shared [19]. The best that can happen is that participants may learn
each others’ preferences through interactions over time.

As agents learn each others’ preferences, they can provide better-targeted offers and thus
enable faster negotiation. Learning and understanding the preferences of the opponent agent
reduce the search space for the alternatives, which leads to more efficient negotiation. This
may come up with an earlier consensus, which also reduces the communication cost. Hence,
learning opponent agent’s preferences and reasoning on these learned preferences constitute
an irreplaceable part of negotiation.

This paper studies service negotiation that takes place between a consumer and a pro-
ducer agent to reach a consensus on a service description. The service description consists
of various attributes of a service. The consumer and the producer interact by turn taking:
The consumer starts the negotiation by requesting a service. If the producer cannot fulfill
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this need, it proposes a counter offer and so on. We call these requests and offers that are
exchanged bids. The preferences of the consumer are represented in the form of conjunctives
and disjunctives. During this process, the consumer generates its requests according to its
private preferences while the producer agent generates its counter offers from its available
services that are ranked according to their profitability for the producer. The producer agent
prefers an offer whose gain is higher for itself. However, it does not only consider its own
preferences but also considers the consumer’s need. Thus, the producer generates an offer,
that is both likely to be preferred by the consumer and profitable for the producer. To do this,
we develop an algorithm that is used by the producer to learn the consumer’s preferences
from bid exchanges during the negotiation. The algorithm has the following properties:

– Inductive: We expect the producer to build a model of the consumer’s preferences by
looking at the bids and predict whether a potential offer will be accepted by the consumer.
If the model predicts rejection, there is no need to offer that to the consumer.

– Incremental: The learning algorithm uses the bids exchanged as training instances. Since
these bids become available during the negotiation, the appropriate learning algorithm
should be incremental.

– Supports Disjunctive Preferences: When preferences are represented as constraints on
the values of issues, two basic variations are possible: conjunctive constraints or dis-
junctive constraints. An example to the conjunctive constraints is the following: The
customer prefers red and dry wine. Constraints on both color and body of the wine need
to be satisfied to please this customer. However in many realistic scenarios, participants’
preferences are disjunctive. For instance, the customer prefers red or dry wine, meaning
that satisfying either of the constraint is enough to please the customer. Preference rep-
resentation allowing both conjunctions and disjunctions of the preference constraints are
much more powerful and realistic then the representation supporting only conjunctions.
Accordingly, our algorithm should learn both conjunctive and disjunctive preferences.

– Ontology-Based: In addition to learning consumer’s preferences using exchanged bids,
the producer can reason on the domain knowledge using an ontology. With an ontology,
we can capture information about the relations between issues and use these relations
when generating offers. Following the previous example, if a red and dry wine cannot be
supplied to a customer, it would be better to find a similar wine (e.g., semi-dry, red wine)
than a randomly-picked wine.

– Retractable: The algorithm should be able to retract its findings as more bids are
exchanged. This is integral to the incremental nature of negotiation. As more bids become
available, previous models of the consumer may no longer be accurate. Hence, the algo-
rithm should adapt to this.

Two inductive learning approaches that can be adopted for this purpose are: Candidate
Elimination Algorithm (CEA) [23], which is based on building and maintaining version
spaces and ID3 [24], which is based on building and classifying decision trees. CEA, by
design, is incremental, whereas ID3 needs to be modified to make it incremental. Hence,
we take CEA as our starting point. ID3 supports learning disjunctives, but CEA does not.
In either case, the domain knowledge cannot be utilized by the algorithm. To improve the
negotiation process, we need a learning algorithm that both supports disjunctives and uses
the domain knowledge in a way that the agent is able to reason on the attribute values. We
combine these ideas in an extension of CEA, called Revisable Candidate Elimination Algo-
rithm (RCEA) [4], which is based on CEA. RCEA is incremental and inductive as CEA,
but it also supports learning disjunctive concepts, can utilize an ontology, and can retract its
hypothesis about what it has learned as more interactions take place.

123



Auton Agent Multi-Agent Syst

Several approaches have been developed in the literature to enable an agent to gener-
ate bids. In many negotiation frameworks, preferences are represented as utility functions
[11,14]. Given a service, a utility function can calculate how beneficial that service is for the
user. One trend is to use opponent’s last request to generate a new offer. The intuition is that
among several alternatives, the service that is most similar to the opponent’s last request, is
most likely to be accepted by the opponent [11]. Another trend is to analyze the opponent’s
all previous requests, to model them as a utility function and to learn this function. Methods
that have been applied to learn these utility functions include Bayesian learning [14,32] and
Genetic algorithms [9]. We also propose to use all bid information to learn the opponent’s
preferences, however we do not represent the preference model as a utility function, but as
constraints on possible services. The main motivation for this is that users can represent
their preferences more easily with qualitative preferences, such as constraints. To use utility
functions, users need to put in a lot of effort to come up with a utility function in the first
place. When service issues are interdependent, coming up with a utility function becomes
even more difficult. However, with qualitative representations, the preferences can be stated
as constraints that need to be satisfied or as ordering of available services. For this reason, it
is intuitive to learn the qualitative representation of the opponent rather than casting this as a
utility function. To the best of our knowledge, RCEA is the first CEA-based algorithm that
benefits from above properties and is used for learning opponent preferences for negotiation.

The producer uses RCEA to learn the customer’s preferences and to generate offers that
respect them. In other words, instead of blindly searching for agreements in the search space,
the producer will do an informed search. The aim of using RCEA is three fold. First, if
consensus is possible, we want the agents to find the mutually agreeable service. That is, we
want to enable successful negotiations. Second, we want the agents to reach this consensus
in as few steps as possible. If a producer offers a possible service after too many interactions,
the customer would walk away. Hence, the number of interactions to reach a consensus is
important. Third, if consensus is not possible, we want to detect this and terminate the nego-
tiation as early as possible. If the producer does not realize that it would not be able to satisfy
the customer’s needs in a reasonable time, it would waste the customer’s time.

Compared to the existing disjunctive learning approaches, such as DCEA (Disjunctive
CEA) [3], naive Bayes’ classifiers [2] and ID3, RCEA not only learns the opponent’s pref-
erences well but also facilitates faster negotiation of services. If no consensus can be found,
RCEA signals this much earlier than DCEA, Bayes’ classifier, and ID3.

The rest of this paper is organized as follows. Section 2 provides the necessary technical
background on various learning algorithms and negotiation in general. Section 3 explains our
negotiation architecture. Our learning algorithm is explained in Sect. 4. Section 5 provides
our experimental setup and comparison results with existing algorithms. Section 6 discusses
our work with references to the literature.

2 Technical background

In this section we give a brief introduction to several learning algorithms and classifiers such
as CEA, DEA, ID3 and naive Bayes’ classifier and describe our use of ontologies.

2.1 Preliminaries

In our setting, each service description is represented as a vector of attribute values. For
simplicity, let us assume that a service is described with three issues: region, color and sugar
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level. For example, (French, Red, Dry) represents a red and dry French wine. Both consumer
and producer agents express their bids with this representation.

The consumer’s preferences are represented as a set of acceptable service descriptions.
The only major difference is that in describing preferences, attributes may have a value of
“?” ,which means that any value is acceptable for that attribute. Our representation allows
preferences to be specified as conjunctive and disjunctive constraints on attribute values.
Here a conjunctive constraint means that each individual constraint is connected with the
“and” operator (∧) and if and only if all of the individual constraints are satisfied, we say that
the whole constraint is satisfied. Otherwise, it is not satisfied. In our setting, each individual
acceptable service description is formed as a conjunctive constraint. To illustrate this, con-
sider (?, Red, Dry). We can interpret this service description as (Region = ? ∧ Color = Red ∧
Sugar = Dry). Similarly, a disjunctive constraint means that each individual constraint is con-
nected with the “or” operator (∨) and if at least one of them is satisfied, the whole constraint
is satisfied. If none of the individual constraints are satisfied, we say that it is not satisfied.
For example, {(?, Red, Dry), (French, ?, ?) } means that any red and dry wine or any French
wine is acceptable for the consumer.

When the consumer and producer interact, they observe each other’s bids. From these bids,
producer tries to learn the consumer’s preferences as stated above. Since we are interested in
applying supervised learning methods, we need some training data to train our algorithm and
then test on some data. The bids exchanged between the consumer and producer constitute
the training set of the producer’s learning algorithm. When a consumer makes a request, the
producer interprets this request as a positive training instance, since if it were not consis-
tent with the consumer’s preferences, the consumer would not have requested it in the first
place. When the producer makes an offer that is not accepted by the consumer, the producer
interprets that service description as a negative training instance, since if it were acceptable,
then the consumer would have taken that offer. After each request and offer, the algorithm is
trained. This training enables the producer to have a set of hypotheses of what the consumer’s
preferences may be at any time point. When it is time for the producer to make an offer to the
consumer, it first creates a service description and then checks to see if this service description
is covered by its hypotheses. That is, the producer would not want to make an offer that is
inconsistent with the consumer’s preferences.

When the producer agent tries to learn the consumer’s preferences, it takes consumer’s
each service request as a positive sample and producer’s each service offer rejected by the
consumer is accepted as a negative example. The learned service descriptions (target concept)
consist of hypotheses that are represented as a set of attribute values. For example, a possible
hypothesis can be (?, ?, Dry) that covers the services whose sugar level is dry. In detail, the
wine service (Italian, Rose, Dry) is covered by this hypothesis. The learned hypotheses are
used to decide whether the available service is possibly be rejected by the consumer or it may
be an acceptable service with respect to consumer’s preferences. During the negotiation, the
producer agent filters out its available services, which seems to be rejected by the consumer.
Among the remaining services, it offers the most convenient service for both agents.

2.2 Candidate elimination algorithm (CEA)

CEA is an inductive learning algorithm that is based on version spaces in which a target
concept is learned from the observed examples [23]. In a version space [22], there are two
significant hypothesis sets: the most general (G) and the most specific (S). G includes the
general hypotheses whose boundary is as large as possible whereas the hypotheses in S are
as specific as possible so that they minimally cover the positive samples.
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At the beginning, G contains the most general hypothesis, (?, ?, ?) and S contains the
description of the first positive sample. When a negative training sample comes, the hypothe-
ses in G are specialized not to cover this sample any more. Example 1 explains this process in
detail. If any hypothesis in S covers this negative sample, that hypothesis is removed from S.
In such a case, if S contains only one hypothesis, the learning algorithm becomes inconsistent
and fails.

Example 1 At the beginning, G includes the most general hypothesis covering all possible
services (?, ?, ?). Let assume that the consumer asks for (Chianti, Rose, OffDry) as a first
request. Since S should cover the positive examples minimally, we directly add the first
request to S. When the producer offers (Chianti, Rose, Sweet), the consumer rejects this
service because it is not an acceptable service with respect to consumer’s preferences. Note
that the rejected service offers are taken as negative examples. Since the current G covers
this hypothesis, it should be specialized in a minimal way not to cover that sample. To do it,
we use the hypothesis in S. We compare the values of the attributes in the negative example
with those in the specific hypothesis. When the values are different, we use these values to
specialize the current general hypothesis. In this example, only the value of the sugar level
is different for them. Thus, G becomes {(?, ?, OffDry)}.

When a positive example arrives, the hypotheses in S are generalized to cover this sample.
For instance, if S contains (French, Red, Sweet) and the current positive example (consumer’s
request) is equal to (French, Rose, OffDry), S becomes {(French, ?, ?)} in order to cover
the current positive example. And, the hypotheses in G, which do not cover this positive
sample are removed from G. This rule does not allow CEA to learn disjunctive preferences
because all general hypotheses cannot be enforced to cover each positive sample when there
are disjunctive preferences. Table 1 illustrates how CEA fails in the case of this generalization
process.

Consequently, the hypotheses in G become more specific where those in S become more
general over time. Eventually, G and S intersect when the target concept is learned. Since the
hypothesis sets (G and S) are revised according to current training sample, the order of the
training examples affects the learning process. In other words, the same training instances in
different order may give different results.

2.3 Disjunctive candidate elimination algorithm (DCEA)

CEA does not support learning disjunctives. DCEA [3] improves CEA to handle disjunctives
by extending the hypothesis language to include disjunctive hypothesis in addition to the
conjunctives. Each attribute of the hypothesis has two parts: inclusive list, which holds the
list of valid values for that attribute and exclusive list, which is the list of values which cannot
be used for that attribute.

Table 1 When candidate elimination algorithm fails

Type Sample The most general set The most specific set

+ (French, Red, Dry) { (?, ?, ?) } { (French, Red, Dry) }

− (French, Rose, Sweet) { (?, Red, ?),(?, ?, Dry) } {(French, Red, Dry) }

+ (Italian, White, OffDry) { } { (?, ?, ?) }
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Assume that the most specific set has a single hypothesis as {(California, Red, Sweet)}
and a positive example (California, Rose, Sweet) comes. The original CEA will generalize
this as (California, ?, Sweet), meaning the color can take any value. However, in fact, we
only know that the color can be Red or Rose. In the DCEA, we generalize the hypothesis
as {(California, [Red, Rose], Sweet)}. Only when all the values exist in the list, they will
be replaced by ?. In other words, the algorithm generalizes specific hypotheses more slowly
than before.

When a positive example comes, DCEA does not eliminate the general hypotheses in G
not covering the sample anymore in order to support learning disjunctive concepts. Here,
the intuition is that a general hypothesis does not have to cover all positive examples. This
positive sample is added as a separate hypothesis into S unless there exists any hypothesis in
S that can be merged with this sample. Otherwise, the algorithm combines this sample with
that specific hypothesis.

When a negative sample comes, for each hypothesis in G that covers this negative sample,
new hypotheses are generated by excluding each attribute value of the negative sample from
the original hypothesis. For instance, assume that the negative example is (Chianti, Rose,
Sweet) and there exists a general hypothesis in G such as {(?, ReddishColor, ? )}. Note that
ReddishColor is a parent concept of Rose and Red. DCEA is able to use the hierarchical
information about attribute values in generalization process. After the negative example, this
hypothesis will be eliminated and three new hypotheses will be added. These hypotheses
are { (?-Chianti, ReddishColor, ?), (?, ReddishColor-Rose, ?), (?, ReddishColor, ?-Sweet)}.
Consequently, all possible general hypotheses are generated. As seen from this example, this
process is highly complex and expensive.

2.4 ID3 decision tree algorithm

ID3 is an inductive learning algorithm used in constructing decision trees in a top-down
fashion from the observed examples represented in a vector with attribute-value pairs [24].
Unlike CEA, this algorithm supports learning a disjunctive concept.

A decision tree has two types of nodes: leaf node in which the class labels of the instances
are kept and non-leaf nodes in which the test attributes are held. The test attribute in a non-leaf
node is one of the attributes making up the concept description. Selection of test attributes
is a crucial task in construction phase of the tree since it affects the size of tree. Smaller
decision trees are preferable since it makes decision quicker. These test attributes are used to
divide the examples into subsets by considering the (im)purity of examples in each group.
ID3 uses information gain [27], which is a popular criterion for impurity test.

In detail, information gain is the difference of information before the split with that after
the split and its value increases with the average purity of subsets. Therefore, we choose the
test attribute whose information gain is higher than that of others. In estimation of informa-
tion gain, an (im)purity measure called entropy [29] represents the homogeneity of examples
in subsets after the split process.

After selection of a test attribute, tree splits in accordance with all possible values of that
attribute. For instance, if the test attribute is color in our wine example, the node will be
branched into three parts for the values: red, rose, and white. This operation will be performed
for all new nodes recursively. The splitting will be finished when each subset is homogeneous;
i.e., have the same class label or have no attribute left for testing.

The problem with this algorithm is that it is not an incremental algorithm, which means
all the training examples should exist before learning. To overcome this problem, the system
can keep the training instances at each time. After each new coming instances, the decision
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Table 2 Example training data obtained during negotiation

Request or offer Region Color Sugar

First request (+): Chianti Rose OffDry

First counter offer (−): Chianti Rose Sweet

Second request (+): California White Sweet

Second counter offer (−): US Rose OffDry

Third request (+) Italian Red Dry

Fig. 1 Sample decision tree

tree can be rebuilt. Without doubt, there is a drawback of reconstruction such as additional
process load. Nevertheless, this process load is not significant for our purposes since ID3
algorithm runs fast.

Table 2 shows an example negotiation scenario between agents. After the consumer’s
third request, the producer agent constructs the decision tree depicted in Fig. 1. The producer
starts searching from the root to the leaf nodes in order to classify its available services. For
example, according to the constructed tree in Fig. 1, (US, Red, Sweet) is classified as nega-
tive where (California, Red, OffDry) is classified as positive. In some cases, the values of a
service may not be represented via branches. For instance, consider (French, Rose, Dry). For
the region, we do not have any branch for French. In such a case, ID3 algorithm classifies the
service as unknown. Note that during the negotiation the producer only filters the available
services, which are classified as negative because they would be possibly rejected by the
consumer.

2.5 Bayes’ classifier

In order to make decision under uncertainty, a classification based on probabilities can be
applied [2]. In this classification, we estimate the probabilities of the classes with Bayes’ rule
(Eq. 1). In this equation, P(C) denotes the prior probability of an issue belonging to class
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C where p(x |C) is the likelihood of observing x when the given issue belongs to C . Note
that p(x) is the evidence that is the probability of observing x where P(C |x) is the posterior
probability—the probability of the given issue, x belonging to C .

P(C |x) = P(C)p(x |C)

p(x)
(1)

In our negotiation domain, we have two classes: positive (+) and negative (−). As is
customary, we assume that all issues are independent while we use Bayes’ classifier [14].
Since an offer consists of several issues (x1, x2, . . . xn), the probability of an offer belonging
to a particular class (+ or −) is equal to

∏
i∈n P(C |xi ). Instead of multiplying the posterior

probabilities, we can take the logarithm of both sides. As a result, the posterior probability
of an offer belonging to the given class is equal to

∑n
i=1 log P(C |xi ).

To estimate the individual posterior probabilities, the producer keeps all consumer’s
requests (positives) and its offers rejected by the consumer (negatives) during the negoti-
ation. It is easy to estimate the prior probabilities because it is equal to the ratio of the
number of examples belonging to that class to the number of the entire examples. For exam-
ple, if we have three positive examples and two negative examples, P(C = +) is equal to 3/5
and P(C = −) is equal to 2/5. Since all negotiation issues are discrete, the likelihood is the
ratio of how many times x belonging to C is observed to the number of examples belonging
to C . To illustrate this, consider the training examples in Table 2. According to this table,
P(x1|C = +) where x1 has the value of “Chianti” is equal to 1/3 because we have three
positive examples and only one of them has the value “Chianti”. Finally, p(x) is equal to
P(C = +)p(x |C = +)+ P(C = −)p(x |C = −).

According to this classifier, the producer estimates posterior probabilities for both neg-
ative and positive classes. If the posterior of the negative class is higher than that of the
positive class, this service is classified as negative. Note that the producer may have some
services whose values have not been seen yet. For example, none of the examples contains
French as a region. In this case, posterior probabilities for both class are ignored for that issue.
As a result, if our service is (French, Rose, OffDry), we only consider the posteriors for color
(Rose) and sugar level (OffDry).

2.6 Ontology

An ontology represents knowledge of a given domain [13,21]. Shortly, an ontology
contains the specification of concepts and their meanings. We describe the concepts, specify
their properties and establish some relationships among them by considering a domain of
knowledge or interest. It can be thought as representation of knowledge with its semantics.
For instance, consider wine domain [31]. The ontology contains the description of a wine
concept including its properties such as color, body, winery and so on. In addition to these
properties, the ontology includes some relationships such as “Has-a” and “Is-a”. For example,
Chardonnay is a Wine and Wine has color where color may be one of red, rose or white.

Relationships such as “Has-a” and “Is-a” contribute to reasoning of agents. We can repre-
sent a taxonomy or hierarchical information by using the relations, “Is-a” and “subclass”. By
using these relationships, agents can discover new knowledge from the existing knowledge.
For instance, using the wine ontology the following reasoning can be made: Bordeaux is
defined as a Wine, Medoc is defined as a Bordeaux and Pauillac is defined as a Medoc. When
an agent wants to buy wine, another agent can offer any instance of Bordeaux, Medoc and
Pauillac since it can reason that if Medoc is a Bordeaux and Bordeaux is a Wine then Medoc
is a Wine and then if Pauillac is a Medoc and Medoc is a Wine then Pauillac is a wine.
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Fig. 2 Sample taxonomy for similarity estimation

2.7 Similarity estimation

During negotiation, an agent will need to compute similarities between service descriptions.
To do this, it will need to compare similarities between values of an attribute. We establish
this through a similarity metric. Any similarity metric would be sufficient for our architec-
ture. However, our previous comparison of similarity metrics has shown that RP Semantic
Similarity Metric works well with ontologies [3] and thus is used in this work. Based on
the relative distance between two concepts in a taxonomy, RP metric measures how similar
two concepts are. To do this, it exploits the following intuitions. Note that we use Fig. 2 to
illustrate these intuitions.

– Parent versus grandparent: Parent of a node is more similar to the node than grandparents
of that node. Generalization of a concept results in going further away from that concept.
The more general concepts are, the less similar they are. For example, AnyWineColor is
parent of ReddishColor and ReddishColor is parent of Red. Then, we expect the sim-
ilarity between ReddishColor and Red to be higher than that of the similarity between
AnyWineColor and Red.

– Parent versus sibling: A node would have higher similarity to its parent than to its sibling.
For instance, Red and Rose are children of ReddishColor. In this case, we expect the
similarity between Red and ReddishColor to be higher than that of Red and Rose.

– Sibling versus grandparent: A node is more similar to its sibling rather than to its grand-
parent. To illustrate, AnyWineColor is grandparent of Red, and Red and Rose are siblings.
Therefore, we anticipate that Red and Rose are more similar than AnyWineColor and
Red.

The relative distance between nodes c1 and c2 is estimated in the following way. Starting
from c1, the tree is traversed to reach c2. At each hop, the similarity decreases since the
concepts are getting farther away from each other. However, based on our intuitions, not all
hops decrease the similarity equally.

Let m represent the factor for hopping from a child to a parent and n represent the factor
for hopping from a sibling to another sibling. Since hopping from a node to its grandparent
counts as two parent hops, the discount factor of moving from a node to its grandparent is
m2. According to the above intuitions, our constants should be in the form m > n > m2

where the value of m and n should be between zero and one.
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Table 3 Sample similarity estimation over sample taxonomy

Similari t y(ReddishColor, Rose) = 1 ∗ (2/3) = 0.6666667

Similari t y(Red, Rose) = 1 ∗ (4/7) = 0.5714286

Similari t y(AnyWineColor, Rose) = 1 ∗ (2/3)2 = 0.44444445

Similari t y(W hite, Rose) = 1 ∗ (2/3) ∗ (4/7) = 0.3809524

Some similarity estimations related to the taxonomy in Fig. 2 are given in Table 3. In this
example, m is taken as 2/3 and n is taken as 4/7.

For all semantic similarity metrics in our architecture, the taxonomy for attributes is held
in the shared ontology. In order to evaluate the similarity of the attribute vector, we firstly
estimate the similarity for each attribute one by one and take the average sum of these similar-
ities. Since we expect each attribute to make an equal contribution for estimating similarity,
average sum is used to calculate the similarity of vectors. If instated, minimum or maximum
value of the vector values are used, the impact of some issues may be lost and only one issue
may come into prominence.

3 Negotiation architecture

We are interested in service negotiation, in which the consumer initiates the negotiation with
a particular request consistent with her preferences and the producer tries to meet consumer’s
needs by making alternative offers. Here, neither the producer nor the consumer know each
other’s preferences. However, both can try to learn each other’s preferences so that they can
negotiate more effectively. That is, if the producer has too many services that it can offer,
proposing each service one by one will be time consuming for both parties. It would be much
useful if the producer can understand the customer’s needs and propose offers that respect
both its and the customer’s preferences. This is also beneficial if the producer cannot fulfill
the customer’s request. Rather than proposing all possible offers and failing after the last
one, if the producer learns customer’s needs, it can decide that the customer’s needs cannot
be satisfied early on.

Our main components are consumer and producer agents, which communicate with each
other to perform negotiation over the service itself (content-oriented negotiation). Figure 3
depicts our architecture. The consumer agent represents the customer and hence has access to
the preferences of the customer. The consumer agent generates requests in accordance with
these preferences and negotiates with the producer based on these preferences. Similarly, the
producer agent has access to the producer’s inventory and knows which services are available
or not. Producer’s service inventory holds the information such as the content of available
services, the amount of services and their utility value for the producer. This utility value is
used in determining which service will be offered to the consumer if there exist more than
one possibly acceptable services for the consumer. The service having higher utility is always
preferred by the producer.

A shared ontology provides the necessary vocabulary and hence enables a common lan-
guage for the agents. If the agents do not have a shared ontology, their negotiation requests
and offers will not make sense to each other or will be partially understood by the other agent.
Since our focus is on the negotiation and learning of preferences, we assume that a shared
ontology exists. This ontology describes the content of the service. Further, since an ontology
can represent concepts, their properties and their relationships semantically, the agents can
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Fig. 3 Proposed negotiation architecture

reason the details of the service that is being negotiated. Since a service can be anything
such as selling a car, reserving a hotel room, and so on, the architecture is independent of
the ontology used. However, to make our discussion concrete, we use the well-known wine
ontology [31] with some modification to illustrate our ideas and to test our system. The wine
ontology describes different types of wine and includes attributes such as color, body, winery
of the wine and so on. With this ontology, the service that is being negotiated between the
consumer and the producer is that of selling wine.

The consumer agent initiates the negotiation with a service request, which is represented
as a vector of attribute values. The consumer agent uses its preferences to generate this ser-
vice request. In detail, it chooses a constraint from its disjunctive constraints randomly. It
assigns the values, which are specified in this constraint and for other issues it chooses values
randomly from their domain. For instance, consider that the consumer has the following
preference: {(?, Red, Dry) and (?, White, Sweet)}. First, the consumer chooses one of the
constraints randomly. If the consumer selects the first constraint, it will initialize the partic-
ular values specified in the constraint as Red and Dry. For the region issue, it will pick up
one of the domain values randomly. A possible service request can be (Chianti, Red, Dry).

If the producer has the requested wine, it provides this services and the negotiation fin-
ishes. Otherwise, the producer offers an alternative service from its inventory. In this phase,
the producer tries to learn consumer’s preferences from the bids exchanged during the nego-
tiation. The producer considers both its available services and their utilities for the producer
and consumer’s learned preferences when deciding the alternative service. It does not offer a
service, which is classified as a rejectable service by the learning algorithm. Among services
classified as acceptable, producer chooses the service having the highest utility value for
the producers. When the consumer receives a counter offer from the producer, it evaluates
this offer in according to its preferences. If the offer satisfies consumer’s preferences, then
the negotiation will end up with a success. Otherwise, the customer generates a new request
according to its preferences or stick to the previous request. This process will continue until
some service is accepted by the consumer agent or all possible offers are put forward to
the consumer by the producer. Of course, according to the agent’s deadline, an agent may
withdraw from the negotiation at any time.

One of the crucial challenges of the content-oriented negotiation is the automatic gen-
eration of counter offers by the service producer. When the producer constructs its offer, it
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should consider three important things: the current request, consumer’s preferences and the
producer’s available services. Both the consumer’s current request and the producer’s own
available services are accessible by the producer. However, the consumer’s preferences in
most cases will not be available. Hence, the producer will have to understand the needs of
the consumer from their interactions and generate a counter offer that is likely to be accepted
by the consumer.

To generate the best offer, the producer agent uses its service repository and one of the
inductive learning algorithm such as CEA, DCEA, RCEA, ID3 and Bayesian classifier. The
service offering mechanism is the same for both the original CEA, DCEA and RCEA, but
their methods for updating G and S are different.

The producer uses the hypotheses in G to filter out its stock. That is, if a service in a
stock is not covered by G, then it is assumed that it will not be accepted by the consumer
since it does not fit the modeled preferences. The producer assigns a utility value to each
of its services and prefers to offer a service that is both an acceptable service as far as the
consumer’s preferences are concerned and a desired service whose utility is more than others
for the producer. Among the services that are likely to be offered, an average similarity value
is estimated with respect to the hypotheses in S. At the end, the most similar service is offered
to the consumer.

If the producer learns the consumer’s preferences with ID3, a similar mechanism is applied
with two differences. First, since ID3 does not maintain G, the list of unaccepted services
that are classified as negative by the decision tree are removed from the candidate service list.
Second, the similarities of possible services are not measured with respect to S, but instead
to all previously made requests. Note that ID3 is not an incremental algorithm, which means
it requires all the training samples at the beginning of the training. To overcome this prob-
lem, the system keeps consumer’s requests throughout the negotiation interaction as positive
samples and all counter offers rejected by the consumer as negative examples. After each
coming request, the decision tree is rebuilt.

Similarly, the producer using Bayesian eliminates the services that are classified as nega-
tive. After selecting the services having the highest utility for the producer, the most similar
service to the positive sample set is offered by the producer.

4 Proposed learning algorithm (RCEA)

To learn the consumer’s needs, we have developed Revisable Candidate Elimination Algo-
rithm (RCEA), which is an incremental algorithm a la CEA in which the training samples
become available only during the execution. A training sample x corresponds to a service
request or a service offer and is a vector of attribute values such as x = {x[1], x[2], . . . , x[m]}
where m is the number of attributes and x[i] is the value of i th attribute. Possible domain
values for each attribute are known and attributes can only be assigned values from their
respective domain.

The consumer’s requests are accepted as positive examples whereas the producer’s counter
offers that are rejected by the consumer are taken as negative examples. The concept to be
learned should cover the positive samples but not cover the negatives. Using the learning
algorithm, the producer decides which of its services would be more desirable for the con-
sumer.

The main improvement to the original algorithm is that RCEA can retract its hypothesis
about what it has learned as more interactions take place. Further, it uses an underlying ontol-
ogy of service attributes for revising hypothesis as necessary. Since CEA does not support
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learning disjunctives or making use of ontologies, we make the following changes to the
algorithm.

First, according to CEA, all of the hypotheses in the most general set should cover the
entire positive sample set. This rule prevents learning disjunctives since disjunctives are
the union of more than one hypotheses and it cannot be covered by a single hypothesis with
the condition of excluding negative samples. Therefore, in our learning algorithm we change
this rule with that a positive sample should be covered by at least one of the hypotheses in
the most general set. Furthermore, in some cases, a revision may be required when there
is no more hypothesis in the most general set that is consistent with the incoming positive
sample. In such a case, we need to add a new hypotheses covering this new positive sample
while excluding all the negative samples. Hence, we require to keep the history of negative
samples.

Second, when a positive sample comes, generalization of the specific set is performed in
a controlled way with a threshold value, �. As far as disjunctive concepts are concerned,
there should be more than one specific hypotheses in the most specific set. Deciding which
hypothesis will be generalized is a complicated task. To do this, we estimate similarity of the
current positive sample with respect to each hypothesis in the most specific set. The process
of choosing the hypothesis that will be generalized uses this similarity information. Here,
any similarity metric can be applied. During our study, we use the RP similarity (Sect. 2.7),
which uses semantic information such as subsumption relations. At the end, the algorithm
only generalizes the selected hypothesis.

Third, different from CEA, the generalization of a hypothesis is now controlled by another
threshold value, �. This threshold value determines whether a generalization will be per-
formed for each attribute. Generalization of hypothesis is different for each attribute in the
hypothesis, in fact it depends on the property of the attributes. If there is an ontological infor-
mation such that a hierarchy exists on the values of the attribute, the generalization depends
on the ratio of the covered branches in the hierarchical tree. Otherwise, we apply a heuristic
that favors generalization to Thing (?). Our heuristic is that we have a higher probability when
more different values for the attribute exist. We estimate the dissimilarity by using semantic
similarity that can be also fuzzy similarity. If the dissimilarity is higher than a predefined
threshold value, we generalize it to ?. For instance, if the accepted values for the sweetness
for the user are Dry and Sweet, it has more probability to generalize Thing (?) concept rather
than Dry and OffDry.

4.1 Components of RCEA

Revised Candidate Elimination Algorithm (RCEA) manipulates four important sets.
Most specific set (S) contains the most specific hypotheses that cover the positive examples
minimally. Formally, S = {H S

1 , H S
2 , . . . , H S

n } where n is the number of specific hypotheses
in S and each specific hypothesis is in the form of H S

j = {H S
j [1], H S

j [2], . . . , H S
j [m]}where

m is the number of attributes and H S
j [y] is a vector of acceptable values for the yth attribute.

Most general set (G) contains the most general hypotheses consistent with the positive
samples. Formally, G = {H G

1 , H G
2 , . . . , H G

k } where each hypothesis is of the form H G
j =

{H G
j [1], H G

j [2], . . . , H G
j [m]} where m is the number of attributes and H G

j [y] is a value for

the yth attribute.
Negative Sample Set (N) contains the negative examples.
Positive Sample Set (P) includes the positive examples.
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These sets are important in generating offers to the customers. If a service is not in G, it
means that the service cannot be acceptable for the consumer, since G holds the most general
hypotheses about the customer’s service preferences. However, many services may fall in
G, then the question is which one to offer. Among possibly acceptable services, finding the
most satisfactory services for the consumer is crucial. By finding the most similar services to
the most specific set (S) involving minimally acceptable services, the producer can find the
most satisfactory services. Note that, here, we are not interested in the convergence of these
sets. They are used independently: G for filtering unacceptable services and S for generating
an alternative offer.

4.2 Properties of attributes

Attributes represent the components constructing the service in negotiation but it can be a
part of any concept in other domains. Each attribute is defined in an ontology in which the
domain information for these attributes and some relations associated with these attributes
such as a hierarchy are kept. Reasoning on these relations would be useful in generalization
and specialization of the hypotheses.

For a hypothesis to cover the sample, all attribute values in the hypothesis should be con-
sistent with those of the sample. Consistency can be decided by subsumption relation. For
each attribute x and y, doesCover(x, y) means that the concept of x is an ancestor of y or
x = y in the case that the attribute has a hierarchy. Otherwise, doesCover(x, y) means that
the x =? or x = y. Note that ? is a special value for an attribute that means any value is
acceptable and it is at the top of the hierarchy.

In some cases, the generalization of a specific hypothesis is required and performed for
each attribute of the hypothesis. The generalization of attributes depends on the ontolog-
ical information. Some attributes have a hierarchical classification whereas some do not.
According to whether the attribute has hierarchical information or not, a specific attribute is
generalized.

– If an attribute has a hierarchical structure such as WineRegion as shown in Fig. 4, the
algorithm generalizes the attribute value to the nearest common parent of the values for
that attribute under a special condition depending on a threshold value. Here, the pro-
portion of the number of values that the hypothesis involves to the number of values
that the nearest common parent concept covers is estimated. For example, if we have
AnjouRegion and BordeuxRegion values, this proportion for generalizing this feature to
FrenchRegion is equal to 3/15. After estimating the proportion, it is compared with the
predefined threshold value, �. If the proportion is greater than this threshold, the attribute
will generalize to the nearest common parent. The reason for the nearest common parent
is that minimal generalization of the hypothesis is desired.

– If the attribute does not have any hierarchical structure, we estimate the average similarity
of the values that we have. At this point, our heuristic tells that if the attribute has more
dissimilar values, we have more probability to generalize this attribute to Thing, ? which
means every value is accepted for that attribute. For instance, for Body attribute we have
three values: Light, Medium and Full. Table 4 shows the semantic similarities for these
values. Note that these values should be assigned by a domain expert. However, in this
study we assign these values in a way that there are three levels (light, medium, full)
so we divide one by three (1/3 = 0.3). We give this ratio to the most different values
(light and full) and for other values we add this to 0.3 so that the similarity medium and
light becomes 0.6. Of course, we can use also fuzzy similarities [11] instead of semantic
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Fig. 4 Wine region hierarchy

Table 4 Semantic similarities for body

Body 1 Body 2 Similarity

Light Full 0.3

Medium Light 0.6

Full Medium 0.6

similarities that we assign. According to our heuristic, if we have light and full, we are
more likely to generalize to ? than the case when we have light and medium.

4.3 Learning algorithm

Algorithm 1: Revisable Candidate Elimination Algorithm (RCEA)[x]

if x is positive then1:
P ← P + {x}2:

H S
v ← updateSpecificSetForPositiveSample(x)3:

updateGeneralSetForPositiveSample(x ,H S
v )4:

else5:
N ← N + {x}6:
updateGeneralSetForNegativeSample(x)7:
removeLessGeneralFromGeneralSet()8:
updateSpecificSetForNegativeSample(x)9:

end10:

Each training sample is given as an input to the system. For each sample, both the most
general and most specific sets are modified. Modifications depend on the type (positive or
negative) of the sample. Algorithm 1 shows the general flow of the training process. If the
sample is positive, it is added to the positive set, P (Line 2); otherwise it is added to the
negative set, N (Line 6). Correspondingly, the most specific set (S) and the most general set
(G) are updated. Note that in our algorithms, the following notation is used.
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– x : current training sample
– H S

i : i th hypothesis in the most specific set, S
– H G

i :i th hypothesis in the most specific set, G
– Ni : i th negative sample in the negative set, N
– Pi : i th positive sample in the positive set, P
– Simz(x, y): similarity of x to the hypothesis y using the similarity metric z
– max�(Simz(x, H S

j )): returns the similarity values and the indices of the hypotheses in
S, which are similar to the current sample by the similarity greater than � in descending
order

– x[i]: the value of i th attribute of the current sample
– Attri : i th attribute
– ?: a special value for an attribute that means any value is acceptable
– H?: the most general hypothesis consisting of “?” for each attribute

updateSpecificSetForPositiveSample: According to Algorithm 1, if the sample is positive,
the algorithm updates the specific set to cover the current positive example (Line 3). The
specific set should include at least one hypothesis that covers this positive sample. That is,
one hypothesis in S needs to be chosen and generalized to cover this sample. The hypothesis
that is chosen is the most similar hypothesis to the current sample. This is done to ensure
that S is generalized as minimally as possible. The details of this process are explained in
Algorithm 2.

Algorithm 2: updateSpecificSetForPositiveSample[x]

f ound ← F AL SE1:
while ! f ound do2:

(max Sim, j)← maxθ (Simz(x, H S
j ))3:

if j �= null then4:

H S
new ← generali zeSpeci f icH ypothesis( j, x)5:

if doesCover Negatives(H S
new) ≡ F AL SE then6:

H S
j ← H S

new7:

f ound ← T RU E8:

else9:

H S
n+1 ← {x}10:

end11:

end12:

That is, for each specific hypothesis, a similarity is estimated and the hypotheses whose
similarity with the current sample is greater than � are sorted according to their similarity
value in a descending order (Line 3). Starting with the first hypothesis in this list, we general-
ize the specific hypothesis to cover the new example (Line 5). Afterward, the algorithm tests
whether the extended specific hypothesis covers any negative example in the negative sample
set (Line 6). If this hypothesis covers a negative example, the algorithm interprets that this
extension is invalid so it passes to the next specific hypothesis in the ordered list to generalize
in order to cover the new positive sample. This process continues until the extended specific
hypothesis does not cover any negative examples or the list is exhausted. If a hypothesis with
a valid extension is found, the original hypothesis is replaced with its extended version (Line
7). On the other hand, if the list is exhausted or there is no hypothesis whose similarity is
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greater than �, the new positive example is added as a separate hypothesis into most specific
set (Line 10).

– Complexity Analysis (Algorithm 2): Let m denote the number of hypotheses in S and k
denote the number of attributes. The computational complexity of estimating similarity of
the positive example to each specific hypothesis is O(k) and sorting them in descending
order is O(mlog m), yielding O( kmlogm). Note that it is enough to do this computation
once and to use this ordered list with estimated similarity values in the while loop (Line 3).
If it is possible to generalize a particular specific hypothesis to cover the given sample,
we do so and check whether the hypothesis covers any negative examples. The complex-
ity of the generalization process is O(kh) where h denotes the height of the hierarchy
tree for a given issue (see Complexity Analysis for (Algorithm 3) for more detail). The
computational complexity of checking all negative examples is O(kn) where n is the
number of negative examples. Overall this gives O(k(h + n)). We may end up repeating
this procedure m times; i.e., until we find a specific hypothesis that does not cover the
negative examples or until S is exhausted. The time complexity then is O( km(h + n)).
Overall computational complexity would then be O( km(log m + h + n)).

generalizeSpecificHypothesis: Generali ze(H S
j , x) results in H S

i such that H S
i ⊃ H S

j and

H S
i ⊃ x . Algorithm 3 indicates how the j th specific hypothesis is generalized when the

positive sample x is received. For each attribute, we check if the kth attribute of the specific
hypothesis covers the kth attribute of the current sample x (Line 2). If the value of the current
positive sample is not covered, the kth attribute value is generalized.

Algorithm 3: generalizeSpecificHypothesis[j,x]

for k ← 0 to Attr.si ze do1:

if !doesCover(H S
j [k], x[k]) then2:

if has Hierarchy(Attrk ) then3:

H S
j [k] ← H S

j [k] + x[k]4:

com Parent ← f indCommon Parent ()5:

proportion← |H S
j [k]|/|com Parent |6:

if � ≺ proportion then7:

H S
j [k] ← com Parent8:

else9:

if � < (1− Simz(x[k], H S
j [k])) then10:

H S
j [k] ←?11:

else12:

H S
j [k] ← H S

j [k] + x[k]13:

end14:

end15:

end16:

This generalization for an attribute having a hierarchy is performed as explained in Sect. 4.2
(Lines 3–8). If there is no hierarchy for this attribute, the dissimilarity (1−Simz(x[k], H S

j [k]))
is estimated between attribute values of hypothesis and current sample (Line 10). If this dis-
similarity is greater than the threshold, the attribute will be generalized to ? (Line 11). Note
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Table 5 Interaction between consumer and producer

Request or offer Region Color Sugar

First request (R1): Chianti Rose OffDry

Current Version Space: S0 = {R1} G0 = {(?, ?, ?)}
First counter offer: Chianti Rose Sweet

Current Version Space: S1 = {R1} G1={(?, ?, OffDry)}

Second request (R2): California White Sweet

Current Version Space: S2 = {R1, R2} G2={(?, ?, OffDry), (NorthAmerica, ?,?) , (?, White, ?) }

Second counter offer: US Rose OffDry

Current Version Space: S3 = {R1, R2} G3={(?, White, ?), (NorthAmerica, ?, Sweet),

(California, ?, ?), (Europe, ?, OffDry) }

Third request (R3) Italian Red Dry

Current Version Space: S4= {(Italian, Reddish, [OffDry,Dry]), R2}

G4= G3

that the dissimilarity shows the diversity of values that the attribute can have. This means that
this attribute can be generalized to ?, which involves all values for that attribute. Otherwise,
the value of x is added to the hypothesis (Line 13). Example 2 illustrates this process. Note
that during the following examples the interaction specified in Table 5 will be used.

Example 2 Because of the limited space, to demonstrate our examples we use only three
attributes instead of seven: Region, Color and Sugar. However, in our experimental results
in Sect. 5, the all seven attributes are used. The former two attributes have a hierarchy and
the last attribute can take three possible values: Dry, OffDry and Sweet. The color attribute
can be Red, Rose, White and Reddish, which is the parent of Rose and Red. There are 41
possible values for the region attribute and its hierarchy is more complicated.

According to Table 5, the consumer agent asks for (Chianti, Rose, OffDry) as a first
request. Since there is no hypothesis in S, the first request is added as a hypothesis into S. In
the second turn, the consumer requests (California, White, Sweet). The similarity between
this request and the hypothesis in S is estimated as 0.28 according to RP similarity metric.
Assume that the threshold value is equal to 0.5 during the learning process. Because the
similarity is less than the threshold value (θ ), the second request is added into system as
a separate hypothesis. Next time, the consumer requests (Italian, Red, Dry). The similarity
for the first hypothesis in S is 0.68. Therefore, the algorithm first tries to generalize the first
hypothesis and the extended hypothesis becomes {(Italian), (Reddish), (OffDry, Dry)}. The
system checks whether any negative sample (producer’s counter offer rejected by consumer)
is covered by this generalized hypothesis. If it does not cover any negative sample, the gener-
alization of specific set is completed. Otherwise, the algorithm undoes the generalization of
the first hypothesis. Note that the nearest common parent for Red and Rose is Reddish and
Italian subsumes Chianti. The dissimilarity of OffDry and Dry is 0.2. Since it is less than
threshold �, for this attribute, generalization is not performed.

– Complexity Analysis (Algorithm 3): If the issue values are structured in a hierarchy, we
need to find the nearest common ancestor of two values to generalize. Let k denote the
number of attributes and h the height of the hierarchy for a given issue. The computa-
tional complexity of finding the common ancestor of two nodes is equal to O(h) at worst
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case. If there is no hierarchy for that issue, we need to estimate the dissimilarity of the
issues whose complexity is O(1). Since we perform the generalization for each issue, the
complexity would be O(kh) at worst case.

updateGeneralSetForPositiveSample: Since our learning algorithm allows disjunctives,
there may be a variety of general hypotheses consistent with different positive samples.
Unlike CEA, our algorithm does not eliminate any general hypotheses not covering the cur-
rent positive sample. Instead, positive sample should be covered by at least one hypothesis
in the general set. If none of the hypotheses cover the new positive sample, new general
hypotheses covering this positive sample but not covering any negative samples are added
into the most general set (Line 4 in Algorithm 1). This revision process is a new operation
for Version Space and does not exist in CEA. Using this operation, our algorithm supports
learning disjunctive concepts. Algorithm 4 shows the general picture for updating general
set when a positive sample comes.

Algorithm 4: updateGeneralSetForPositiveSample[x,H S
v ]

if need Revision(x) ≡ T RU E then1:

reviseGeneralSet(H S
v )2:

removeLessGeneralFromGeneralSet()3:

reviseGeneralSet: As specified in Algorithm 4, the algorithm first checks whether there is a
need for revision. If so, new general hypotheses that cover the positive sample but not cover
the previous negative samples are generated from the most general hypothesis by the help of
the most similar specific hypothesis to current sample.

Algorithm 5 involves how the revision process is performed. This procedure takes the spe-
cific hypothesis (H S

v ) covering the current positive sample. First, the most general hypothesis
consisting of ? is added into possible hypothesis set (Line 1). For each negative sample in
the negative sample set (N ), all possible hypotheses in possible hypothesis set is checked
for covering one of the negative samples (Line 5). For each possible hypothesis covering
the values of the negative sample, the values of the specific hypothesis, H S

v , are used for
specializing the possible hypotheses (Line 10). If there is a hierarchy for that attribute of the
specific hypothesis, the most general parent concept in the hierarchy not covering the nega-
tive example is found (Line 12). Then, by setting this value to the current possible hypothesis
a new hypothesis is created and added as a separate hypothesis into the possible hypothesis
set (Lines 13–14). If there is no hierarchy for this attribute, the value of specific
hypothesis is used directly (Lines 16–18). Example 3 explains this process in detail.

Example 3 In the second turn in Table 5, the consumer makes a request as (California, White,
Sweet). Since the current most general set G, (?, ?, OffDry) is consistent with only the wines
whose sugar level is OffDry, the current request is not accepted by the current G. Therefore,
revision is needed. According to our revision algorithm, first the most general hypothesis,
(?, ?, ?) is generated as a possible hypothesis. In a loop, the set of possible hypotheses is
checked to see whether the hypotheses in this set covers any negative sample. If a hypothesis
covers a negative sample, the algorithm compares each attribute of the negative sample with
the specific hypothesis involving the current positive sample. In detail, our negative sam-
ple set only includes (Chianti, Rose, Sweet). The specific hypothesis involving the current
positive sample is (California, White, Sweet). The first two attributes are different. The possi-
ble hypotheses set includes only one hypothesis, (?, ?, ?). Two new possible hypotheses may
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Algorithm 5: reviseGeneralSet[H S
v ]

H ypoSet[0] ← H?1:
for i ← 0 to |N | do2:

for j ← 0 to |H ypoSet | do3:
Ht ← H ypoSet[ j]4:
if doesCover(Ht , Ni ) then5:

H ypoSet ← H ypoSet − {H ypoSet[ j]}6:
for k ← 0 to Attr.si ze do7:

if doesCover(Ht [k], Ni [k]) then8:

for r ← 0 to |H S
v [k]| do9:

if !doesCover(H S
v [k][r ], Ni [k]) then10:

if has Hierarchy(Attrk ) then11:
g← Parent NotCover(Ni [k])12:
Ht [k] ← g13:
H ypoSet ← H ypoSet + {Ht }14:

else15:
Htnew ← Ht16:

Htnew[k] ← H S
v [r ]17:

H ypoSet ← H ypoSet + {Htnew}18:

end19:

end20:

end21:

end22:

end23:

be generated as (California, ?, ?) and (?, White,?). Since the hypotheses in G should be as
general as possible, we make another revision. By using hierarchical information kept in the
ontology, we can find the most general parent of this value not involving the negative value
Chianti. Since NorthAmerica is the most general concept subsuming California, the new
possible hypothesis becomes (NorthAmerica, ?, ?) and (?, White, ?). If newly constructed
possible hypotheses cover any negative samples, they are modified not to cover negatives
any more. As a result, these two newly generated hypotheses (NorthAmerica, ?, ?) and
(?, White, ?) are directly added into the most general set since they do not cover any negative
samples.

– Complexity Analysis (Algorithm 5): The complexity of checking whether a hypothesis
covers a negative example is equal to the number of attributes, O(k). In a loop, each can-
didate general hypothesis in H ypoSet is checked to see whether it covers any negative
example in N . If it does, we generate possible specialization of that hypothesis in a way
that it does not cover any negative example but covers the given specific hypothesis. To
do this, for each candidate hypothesis in H ypoSet , we compare the values of specific
hypothesis with that of the current negative example for each attribute (Line 10). At worst
case, the cost of specializing a single general hypothesis and generating new hypotheses
not covering a negative example is O(pk) where p denotes the maximum number of
possible values for an attribute in the system. Note that H ypoSet includes only the most
general hypothesis consisting of ? at the beginning and it grows up with respect to the
content of the negatives and the given specific hypotheses. At worst case, we specialize
a candidate hypothesis and generate (pk) different hypotheses. The computational com-
plexity of specializing the hypothesis in H ypoSet would be O(p2k2) if we assume that
we have pk hypotheses in H ypoSet . Note that the size of H ypoSet is dynamic and may
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vary for each run. Since we traverse all of the negative examples in N to check whether
any candidate general hypotheses covers any of them, the overall complexity would be
O(p2k2n), which means that the revision process will grow polynomially with the num-
ber of attributes, the number of values that a specific hypothesis contains for each issue,
and the number of negative samples.

updateGeneralSetForNegativeSample: The aim of this method is to specialize the hypoth-
eses in G, which cover the negative example, in a minimal fashion. Minimal specialization
is crucial since it is desired that the hypotheses remain as general as possible. Therefore,
Algorithm 6 checks all the hypotheses in the most general set to see if they cover the negative
sample (Line 2). Each hypothesis covering the negative sample is backed up as an abandoned
hypothesis (Line 3) since the information kept in those hypothesis should not be lost before
removing them. Then, these hypotheses are removed from the most general set (Line 4).
By only taking the hypotheses in the most specific set that are covered by the abandoned
hypotheses (Line 6) into account, a minimal specification of the abandoned hypotheses that
do not cover the negative sample are generated. To accomplish this, the algorithm compares
the value of each attribute of specific hypothesis with that of the negative sample (Line 11
& Line 16). If the values are different and there is no hierarchy for the attribute, the value of
attribute of the specific hypothesis is replaced in the abandoned hypothesis (Lines 17–18). If
the values are different and there is a hierarchy for that attribute, the most general common
parent of the value of the specific hypothesis, which does not cover the negative sample,
is found (Line 12) and this value is replaced in the abandoned hypothesis (Lines 13–14).
Example 4 shows how this process is performed.

Example 4 As specified in Table 5, at first G is equal to the most general hypothesis, (?, ?, ?).
After first negative example (Chianti, Rose, Sweet), there is a need for specialization of
hypotheses in G to make them not cover the negative samples. To accomplish this, for each
hypothesis in G covering negatives, we use the hypotheses in S. Some hypotheses in G
may not cover some particular hypothesis in S. Therefore, when updating the hypothesis in
G, we should only consider the related hypotheses in S. In this example, S includes only
(Chianti, Rose, OffDry) and this is covered by (?, ?, ?). Now, the algorithm compares the
values of the attributes in specific hypothesis with those of the negative sample one by one
and it selects the attributes whose values are different. For example, the sweetness degree in
specific hypothesis is OffDry whereas that for negative sample is Sweet. From this informa-
tion, the algorithm modifies general hypothesis as (?, ?, OffDry). Since sugar level does not
have hierarchy, we modify the general hypothesis directly. In the case of hierarchy, we find
the most general concept that does not cover the value of the negative sample.

– Complexity Analysis (Algorithm 6): We traverse each general hypothesis and check if it
covers the given negative example, yielding a time complexity of O(tk) where t is the
number of general hypotheses in G and k is the number of attributes that a hypothe-
sis involves. Next, for each hypothesis covering the given example (maximum is t), we
compare the values of the specific hypothesis to those of the negative example for each
attribute. If the values are different, we specialize the current general hypothesis. Let p
denote the number of possible values for an attribute. The complexity of the comparison
and specialization process is O(pk). We repeat this process for each specific hypothesis,
yielding O(pkm) (where m is the number of specific hypotheses in S), yielding an overall
complexity of O(pkmt). Since the complexity of the first part is insignificant (O(tk)),
we conclude that the overall complexity of updating general set is O(pkmt) at worst
case.
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Algorithm 6: updateGeneralSetForNegativeSample[x]

for i ← 0 to |G| do1:

if doesCover(H G
i , x) then2:

abandoned ← H G
i3:

G ← G − {H G
i }4:

for j ← 0 to |S| do5:

if doesCover(abandoned, H S
j ) then6:

for k ← 0 to Attr.si ze do7:

for t ← 0 to |H S
j [k]| do8:

temp← abandoned9:
if has Hierarchy(Attrk ) then10:

if !doesCover(H S
j [k][t], x[k]) then11:

gnew← Parent NotCover(x[k])12:
temp[k] ← gnew13:
G ← G + {temp}14:

else15:

if !doesCover(H S
j [k][t], x[k]) then16:

temp[k] ← H S
j [k][t]17:

G ← G + {temp}18:

end19:

end20:

end21:

end22:

end23:

removeLessGeneralFromGeneralSet: If there are some hypotheses in G less general than
the other hypotheses in G, these are removed from the system. Because, the aim is to keep the
most general hypotheses in G. LessGeneral(Hi , Hj ) means that for each k, Hj [k] ⊇ Hi [k]
and Hi �= Hj . To achieve this, the hierarchical information can be used. In the hierarchy, a
child concept is less general than its ancestors. If there is no hierarchy for that attribute, any
value is less general than ?.
updateSpecificSetForNegativeSample: If there are hypotheses in the most specific set that
cover a negative sample, they are removed. Since each positive sample should be covered
by at least one of the hypotheses in S, each positive sample in P is checked whether it is
covered by S. If none of the specific hypotheses in S covers a positive sample, this positive
sample is added as a separate hypothesis to S. Consequently, each positive sample in P will
be covered by the most specific set.

5 Evaluation

To evaluate our algorithm, we construct an environment in which one producer tries to nego-
tiate with a consumer on the service of wine selling as explained before. Our test environment
is written in Java and Jena [15] is used as ontology reasoner.

We could not compare our algorithm directly with the existing approaches in negotiation
in which preferences are represented as utility functions because of diversity in settings.
First, our system requires a service ontology holding semantic similarities and hierarchical
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information about the issue domain whereas other approaches do not use a service ontology.
Second, some studies need additional knowledge about the domain. For instance, fuzzy simi-
larities are needed for [11] where we use semantic similarities in our work. Third, in contrast
to other approaches ([14,19]), in our setting the producer agent has a service repository and
it can only generate a counter offer from its available services in its repository. However,
other approaches usually do not consider a limited service repository as we did.

We compare the performance of our learning algorithm with other four alternatives,
namely Candidate Elimination Algorithm (CEA), Disjunctive Candidate Elimination Algo-
rithm (DCEA), ID3 and Bayesian Classifier. The comparisons are made such that the same
consumer agent negotiates with five producers that have the same service inventory but
employ a different learning algorithm to learn the consumer’s preferences. After each request
and counter offer, these producers train their own learning element accordingly.

If the producer uses one of the Version Space based learning algorithms such as CEA,
DCEA and RCEA, it uses G to filter out its service stock. Note that if the service is not
covered by G, this means that service will possibly be rejected by the consumer. After filter-
ing available services, the producer chooses the service whose utility is the highest for the
producer. Among these services, an average similarity value is estimated with respect to the
hypotheses in S because S represents the consumer’s predicted preferences. At the end, the
most similar service whose utility for the producer is the highest, is offered to the consumer.
Consequently, the producer offers a service that is beneficial for both the consumer and the
producer agent.

Similarly, the producer using ID3 and Bayesian eliminates services that are classified as
negative. After selecting the services having the highest utility for the producer, the producer
offers the service that is most similar to the positive sample set. In our settings, RP semantic
similarity metric (Sect. 2.7) is used as a similarity metric.

As far as the performance of the negotiation is concerned, the number of interactions
between the consumer and the producer is the main factor. Obviously, completing the negoti-
ation in as few interactions as possible is desirable for both parties. The number of interactions
depends on the producer type, producer’s stock, the preference of the customer and the order
and content of consumer’s request. In our experiments, in order to analyze the effects of
these factors and the performance of the producer agent’s learning algorithm, simulation of
negotiation is executed for different combinations of these parameters.

The producer’s available services and the consumer’s order of requests affect the negotia-
tion time. To compare different producers fairly, 100 different producer stocks are generated
randomly. Each stock contains 50 different wine services. The utility of these services varies
between one and five and are equally distributed in the stock. Further, for each scenario the
negotiation process is repeated 10 times varying the request orders. To construct the con-
sumer profiles (preferences), we asked 20 people (students and faculty from the Department
of Computer Engineering at Bogazici University) to create consumer profiles. First two pref-
erence profiles only consist of conjunctives but other 18 preferences are in the form of both
conjunctives and disjunctives. Table 6 shows five representative preference profiles. The pref-
erences of the consumers are taken from the user by using a simple interface. The output of
this interface is a preference file including the preference information and it is used only by
the consumer agent. That is, the producer agents cannot access this file.

The satisfiability of the consumer’s preferences over the stocks also varies. For example,
the second preference is not satisfiable in 55 of the 100 stocks. In the remaining 45 stocks, the
number of desired services is one. For the seventh preference, all stocks have some services
consistent with user preferences. On average, 16.62 of the 50 services in a stock are desirable
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Table 6 Selected customer preferences selected customer preferences

Id Preference—[Sugar, Flavor, Body, Color, Region, Winery, Grape]—

1 [OffDry, ?, ?, White, ?, Cheap, ?]

2 [?, Moderate, ?, ?, US, ?, WhiteGrape]

4 [?, Moderate, ?, White, US, ?, ?] or [?, Delicate, ?, Red, Italian, ?, ?]

6 [Dry, Moderate, Medium, ?, (Italian, Portugal), ?, ?] or [Dry, ?, Light, Rose, ?, ?, ?]

7 [Sweet, ?, Light, ?, ?, ?, ?] or [Dry, Strong, ?, ?, ?, ?, ?] or [OffDry, ?, ?, ?, ?, Expensive, RedGrape]

for the customer. Compared to the second preference, it is highly possible to find a desired
service.

We first test the performance of the producers using Version Space learning algorithms
(RCEA, CEA and DCEA). Then, we compare our proposed algorithm (RCEA) with adapta-
tions of other well-known classifiers, mainly ID3 and Bayesian.

5.1 Case 1: Comparing RCEA, CEA and DCEA

We experiment with three separate producers: Producer with Candidate Elimination Algo-
rithm (CEA), Producer with Disjunctive (DCEA) and Producer with Revisable Candidate
Elimination Algorithm (RCEA). We have ten runs for 100 different stocks, resulting in 1,000
negotiations for each preference profile. In each of the ten runs, the consumer starts the
negotiation with a random request that is compatible with her preferences. We repeat these
experiments for 20 different consumer profiles. We evaluate the behavior of the producers
using different success and performance criteria.

5.1.1 Success of producers: RCEA, CEA and DCEA

We first study the number of negotiations that are finalized successfully. Table 7 shows the
number of successful negotiations for each preference (out of 1,000 trials). The last column
shows the number of trials in which success was possible; i.e., there was a possible service
that could satisfy the consumer. The figures show that DCEA always carries out a successful
negotiation if there is a satisfying service. The reason for these perfect results is that DCEA
cannot filter the services except for the counter offers rejected by the consumer. Therefore, it
never gives up offering services unless there are no remaining service in its stock or its offer
is accepted by the consumer. On the other hand, RCEA’s success is close but may miss up to
8.2% of the time. CEA, on the other hand, has varying performance and may miss up to 85%
of the possible services. This is mainly due to the fact that CEA cannot handle disjunctives
properly.

We also apply the Friedman statistical test [12], which is often used for comparison of
multiple classifiers in order to see whether the success of producers is statistically signifi-
cantly different from each other. In Friedman test, the algorithms are ranked for each data
set separately from the best performing algorithm to the worst performing algorithm [10].
According to the average ranks of the algorithms, this test compares the multiple classifiers.
In our experiments, each negotiation is considered as a different data set because different
training sets are obtained in each negotiation. We take alpha as 0.01 where alpha is the sig-
nificance level of the statistical test. According to this statistical test, there is no statistically
significant difference between the number of successful negotiations of RCEA and that of
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Table 7 Case-1: Number of negotiations that end with consensus

# of success Poss. Successful

Preference RCEA CEA DCEA Negotiations

1 970 970 970 970

2 450 450 450 450

3 998 476 1,000 1,000

4 786 119 790 790

5 1,000 694 1,000 1,000

6 894 349 920 920

7 1,000 675 1,000 1,000

8 1,000 562 1,000 1,000

9 968 201 970 970

10 960 193 990 990

11 1,000 324 1,000 1,000

12 1,000 331 1,000 1,000

13 1,000 335 1,000 1,000

14 1,000 579 1,000 1,000

15 999 336 1,000 1,000

16 1,000 615 1,000 1,000

17 529 140 530 530

18 1,000 616 1,000 1,000

19 989 255 990 990

20 817 306 890 890

Avg.: 918.0 426.3 925.0 925.0

DCEA under 99 per cent confidence level. However, there is a statistically significant dif-
ference between those and that of the CEA. Thus, it can be said that RCEA is successful as
DCEA on average.

Recall that, for each of the 100 stocks, we test the performance with ten different consumer
request orders. It is also important for a producer to negotiate consistently in all ten orders.
That is, a producer that negotiates well with a certain ordering of requests but not too well
when the ordering changes is really not useful, since nothing can be guaranteed about its
negotiation. This is what we investigate next. We let a producer win a point if it completes all
ten trials successfully. This is estimated for all stocks and summed up at the end. Therefore,
it indicates the consistency of producer’s overall success. Since the consistency performance
of the algorithms can be at most the maximum consistency performance, we find the ratio
of each producer to the maximum and take the average of these ratios to see the average
consistency performance of each producer. According to Table 8, DCEA and RCEA have
the most consistent performance whereas the performance of CEA is much below. For the
first two preference profiles, the consistency performance of CEA is the same with those of
DCEA and RCEA because these preferences include only conjunctives.

When we apply the Friedman test to these results, it can be said that there is no significant
difference between the consistency performance of RCEA and DCEA but there is a statis-
tically significant difference between those and the consistency performance of CEA under
99 per cent confidence level.
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Table 8 Case-1: Consistency performance of the producers

Preference RCEA CEA DCEA Max*

1 97 97 97 97

2 45 45 45 45

3 98 4 100 100

4 75 0 79 79

5 100 8 100 100

6 74 6 92 92

7 100 6 100 100

8 100 7 100 100

9 95 0 97 97

10 74 1 99 99

11 100 0 100 100

12 100 0 100 100

13 100 1 100 100

14 100 3 100 100

15 99 2 100 100

16 100 6 100 100

17 52 0 53 53

18 100 4 100 100

19 98 1 99 99

20 59 8 89 89

Avg.: 95.42 12.93 100.00 100.00

* The maximum consistency performance value

5.1.2 Performance of producers: RCEA, CEA and DCEA

The results presented in Sect. 5.1.1 show that CEA fails in significant number of negotiations
whereas both DCEA and RCEA are successful in most of the negotiations. The result is
exemplified if we also consider the consistency. Between DCEA and RCEA, we see that
DCEA is slightly more successful in providing a service that will satisfy the consumer. Now,
we study the performance of these algorithms.

For performance estimation, the metric is the average number of interactions for success-
ful termination in the case that all producers have a success at the same run. We select a subset
of the negotiations in which all three producers have been successful and study the average
number of interactions needed for termination. Table 9 shows that when CEA is successful
in negotiation, then the number of interactions it requires is quite low. (Note that CEA is
unsuccessful in many interactions as seen in Table 7). This shows that CEA either completes
a negotiation quickly or fails (mostly when the preference is in the form of disjunctives).
When RCEA and DCEA are compared, we see that DCEA needs more interactions to end
a negotiation successfully. The reason stems from the fact that DCEA does not filter the
candidate services in accordance with the consumer’s preferences as well as RCEA does.
Hence, it requires more time to complete the negotiation.

Note that in 8,525 out of 20,000 negotiation runs all of the producers (RCEA, CEA and
DCEA) are successful. We apply Friedman test to the results of the 8,525 runs. Under 99 per
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Table 9 Case-1: Avg. # of interactions when all are successful

Preference RCEA CEA DCEA

1 5.14 3.13 11.62

2 7.42 3.98 19.63

3 2.50 1.76 2.61

4 7.36 2.40 9.21

5 1.93 1.56 2.07

6 4.25 2.35 5.56

7 1.63 1.40 1.64

8 1.76 1.41 1.66

9 4.64 2.12 5.26

10 4.22 1.98 5.66

11 2.33 1.57 2.38

12 2.84 1.74 2.95

13 2.16 1.50 2.16

14 2.26 1.64 2.37

15 2.98 1.70 3.63

16 1.49 1.36 1.50

17 5.86 2.09 9.14

18 1.79 1.49 1.76

19 3.17 1.85 3.73

20 5.42 2.56 9.23

Avg.: 3.18 1.97 4.94
StDev.: 4.02 1.34 8.20

cent confidence level, the results of RCEA, CEA and DCEA are statistically significantly
different to each other and according to the number of interactions when all are successful,
the ordering can be represented as C E A ≺ RC E A ≺ DC E A. This means that RCEA
negotiates faster than DCEA and when all producers have a success, CEA negotiates faster
than RCEA and DCEA. Note that when the preferences are in the form of both conjunctives
and disjunctives, CEA fails.

Next, we study the number of interactions needed to decide that a negotiation will not
terminate successfully because the producer stock does not have a useful service for the
consumer. This is important since ideally the negotiation algorithm should detect that the
preference cannot be satisfied as early as possible, so as to not tire the consumer out. Table 10
shows the average number of interactions needed to decide that the consumer’s preferences
cannot be satisfied by the existing services in the stock. For some preference profiles, all of
the stocks have some satisfactory service so we are interested in cases for other preferences.
As seen in Table 10, DCEA has 50 interactions for each case, which is the worst case. This
is due to the nature of DCEA. Since it only filters out the rejected offers of consumers, all
remaining services are still plausible. On the other hand, RCEA generalizes the rejected
offers and eliminates others that are similar to those that were rejected. Hence, RCEA ends
the negotiation in a reasonable time, without showing the user all possible services in its
stock. This is an important advantage of RCEA over DCEA. Meanwhile, CEA completes
the negotiations even earlier than RCEA. However, this situation does not show that CEA
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Table 10 Case-1: Avg # of interactions when stocks do not have the desired service

Preference RCEA CEA DCEA

1 12.70 5.40 50.00

2 12.89 5.40 50.00

4 33.27 3.15 50.00

6 33.09 4.33 50.00

9 36.60 3.27 50.00

10 29.30 2.90 50.00

17 27.24 3.46 50.00

19 40.40 3.90 50.00

20 22.83 3.85 50.00

Avg.: 27.59 3.96 50.00

performs better because the number of successful runs for CEA is much less than that for
RCEA.

These results show that CEA is not convenient in our negotiation domain, since it does
not support disjunctives. DCEA is one of the alternative learning algorithms that can be used
in learning preferences but the number of interactions that are necessary to complete the
negotiation when none of the producer’s available services is high when compared to RCEA.
We conclude that among the three Version space algorithms, RCEA performs better than
both CEA and DCEA, when different success and performance criteria are considered.

5.2 Case 2: Comparing RCEA, ID3 and Bayesian

In this section, we compare RCEA with other well-known classifiers such as the famous
decision tree algorithm ID3, and a Bayes’ classifier. We experiment with three separate pro-
ducers, Producer with Revisable Candidate Elimination Algorithm (RCEA), Producer with
ID3 (ID3) and Producer with Bayes’ classifier (Bayesian). We use 20 consumer profiles for
evaluation and we have ten runs for 100 different stocks, resulting in 1,000 negotiations.

5.2.1 Success of producers: RCEA, ID3 and Bayesian

We first study the number of negotiations that are finalized successfully. Table 11 shows the
number of successful negotiations for each preference (out of 1,000 trials). The last column
shows the number of trials in which success was possible; i.e., there was a possible service
that could satisfy the consumer. The figures show that RCEA may miss up to 8.2% of the
time where ID3 may miss up to 5.3%. But, on average the number of successful negotiations
for RCEA and ID3 are similar (918 versus 916.8). Bayesian may miss up to 25.4% and on
average the number of negotiations that it completes successfully is less than that of RCEA
and ID3.

5.2.2 Performance of producers: RCEA, ID3 and Bayesian

The results presented in Sect. 5.2.1 show that success of the algorithms are close to each
other. We see that RCEA is slightly more successful in providing a service that will satisfy
the consumer. Now, we study the performance of these algorithms. Table 12 compares the
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Table 11 Case-2: Number of negotiations that end with consensus

# of success Poss. Successful

Preference RCEA ID3 Bayesian Negotiations

1 970 969 963 970

2 450 437 401 450

3 998 1,000 998 1,000

4 786 790 739 790

5 1,000 1,000 1,000 1,000

6 894 871 813 920

7 1,000 1,000 1,000 1,000

8 1,000 1,000 999 1,000

9 968 958 899 970

10 960 983 946 990

11 1,000 1,000 986 1,000

12 1,000 999 989 1,000

13 1,000 994 981 1,000

14 1,000 1,000 999 1,000

15 999 988 977 1,000

16 1,000 1,000 1,000 1,000

17 529 526 395 530

18 1,000 1,000 999 1,000

19 989 972 965 990

20 817 849 782 890

Avg.: 918.00 916.80 891.55 925.00

three algorithms in terms of the number of interactions needed to complete a negotiation
successfully. Accordingly, RCEA needs fewer interactions to end a negotiation successfully
when its performance is compared to others.

Note that in 17,665 out of 20,000 negotiation runs all of the producers (RCEA, ID3 and
Bayesian) are successful at the same run. We apply Friedman test to the results of the 17,665
runs. Under 99 per cent confidence level, the results of RCEA, ID3, and Bayesian are statis-
tically significantly different to each other and according to the number of interactions when
all are successful, the ordering can be represented as RC E A ≺ Bayesian ≺ I D3, which
means that RCEA negotiates faster than Bayesian, which negotiates faster than ID3 when all
producers complete the negotiation successfully.

Moreover, we investigate how many times each producer negotiates as fast as the fastest
producer out of 17,665 negotiations. The first part of Fig. 5 shows this information for each
producer graphically. It is seen that RCEA completes negotiations early in most of the cases
(12,030), which supports the above results. The number of times that ID3 reaches a consensus
early is higher than the number of times that Bayesian reaches a consensus (9, 686 > 7, 562),
but still less than that of RCEA. We also calculate the proportion of the number of minimum
interactions to the number of interactions that producer needs for each negotiation. This pro-
portion shows the relative speed (i.e., in terms of number of interactions) of an algorithm
compared to the best algorithm for a given negotiation instance. Higher proportion means that
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Table 12 Case-2: Average # of interactions when all are successful

Preference RCEA ID3 Bayesian

1 5.10 9.08 8.12

2 6.97 15.21 10.68

3 4.68 4.87 5.27

4 14.21 14.52 12.99

5 2.79 2.88 3.26

6 8.64 9.98 8.79

7 2.48 2.53 2.66

8 3.27 3.27 3.39

9 11.61 13.04 11.51

10 11.24 11.92 11.66

11 6.88 7.50 7.07

12 7.00 7.47 7.21

13 6.87 7.23 6.83

14 3.56 3.68 4.06

15 7.64 9.32 8.46

16 2.38 2.48 2.49

17 11.69 13.73 11.47

18 2.88 3.06 3.46

19 8.26 9.73 8.30

20 9.07 11.68 10.65

Avg.: 6.48 7.50 6.97

StdDev.: 6.66 7.78 6.53

the number of interactions that the producer needs is closer to the fastest producer. The second
part of Fig. 5 draws the proportions for 17,665 negotiations. It is seen that the proportion for
RCEA is best, while ID3 is higher than Bayesian (nearly 0.77 > 0.72). Note an interesting
relation between ID3 and Bayesian. From Table 12, we know that on average the number
of interactions required to complete a negotiation successfully is less in Bayesian than that
in ID3. However, in Fig. 5, we see that the relative speed of ID3 is higher than Bayesian.
We observe that this stems from the fact that sometimes Bayesian completes a negotiation
much earlier than ID3—the difference between the number of interactions between ID3 and
Bayesian is significantly higher for this case.

Next, we study the number of interactions needed to decide that a negotiation will not
terminate successfully because the producer stock does not have a useful service for the
consumer. Table 13 shows the average number of interactions needed to decide to end a
negotiation in the case of the stock does not have any desired service for the consumer.
(Thus, the table only shows cases when a stock does not contain services that will satisfy
the consumer’s preferences.) Both RCEA and Bayesian end the negotiation in a reasonable
time, without showing the user all possible services in their stocks. Compared to RCEA and
Bayesian, ID3 needs more interaction to complete the negotiation. As a result, RCEA can
facilitate faster negotiation of service descriptions. If no consensus can be found, RCEA and
Bayesian signal this much earlier than ID3.
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Fig. 5 Performance of RCEA, ID3 and Bayesian

Table 13 Case-2: Average # of interactions when stocks do not have the desired service

Pref RCEA ID3 Bayesian

1 12.70 26.43 24.70

2 12.89 35.43 21.81

4 33.27 30.45 26.83

6 33.09 34.68 26.21

9 36.60 42.67 27.97

10 29.30 30.20 31.10

17 27.24 36.73 26.27

19 40.40 44.10 29.00

20 22.83 29.03 22.60

Avg.: 27.60 34.41 26.28

6 Discussion

In this section, we give a brief description of our negotiation framework and explain impor-
tant aspects of our learning approach (Sect. 6.1). Further, we compare our work with the
related works (Sect. 6.2) and conclude with future directions (Sect. 6.3).

6.1 Summary

We present a multi-issue negotiation model in which the producer tries to learn the con-
sumer’s preferences and generate offers accordingly. Understanding consumer’s needs is a
significant matter in negotiation since generating well-targeted offers for an agent depends
on its knowledge about the negotiation partner. Since the preferences of the participants are
almost private, the best action is to learn these preferences by using the requests exchanged
during the negotiation.
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As far as preference elicitation phase is concerned, it would be more intuitive for the human
user to give her preferences in a qualitative way rather than quantifying the preferences with
utility functions. One alternative representation for the preference is a set of constraints in the
form of conjunctives and disjunctives. During this study, the consumer’s preferences consist
of such kind of constraints. The producer agent tries to learn these unknown preferences from
the bids during the negotiation. Since training data such as positive and negative examples
come throughout the interaction, an incremental learning algorithm in which the training
instances come over time is required.

Therefore, we develop a learning algorithm called RCEA supporting learning disjunctives
in an incremental way. As humans use their common knowledge about the domain when they
predict someone’s private information, this learning algorithm also is able to use domain
knowledge. In other words, our learning algorithm is enhanced with ontology reasoning.
The producer agent performs learning after each interaction with the consumer. While the
consumer generates its request according to its preferences, the producer considers both its
own utility and the learned consumer’s preferences during the negotiation. Consequently, the
counter offer would be beneficial for both participants.

Our results show that the participants reach early agreement when our proposed learning
algorithm is used. Moreover, if consensus is not possible, the producer can realize this earlier
than other approaches. Since CEA does not support learning disjunctives, it fails in most
of the cases, especially when the consumer’s preferences involves disjunctives. When the
producer does not have any acceptable services for the consumer, the producer using DCEA
does not realize this so it leads to many unnecessary interactions between agents, which pro-
longs the negotiation time. Although the number of successful negotiations of ID3 is closer
to that of our algorithm, the number of interactions it needs to reach a consensus is worse than
ours. On the other hand, Bayesian negotiates relatively faster than ID3, but it does not lead
to as many successful negotiations as ID3 or RCEA. To sum up, RCEA outperforms other
algorithms in terms of the number of successful negotiations, the number of interactions that
is required to come up an agreement or to decide the negotiation will be unsuccessful.

6.2 Discussion of related work

We review related work from the literature. A variety of learning and modeling techniques
are used in the literature. We first review leading research that represent preferences by util-
ity functions [18]. A sequential negotiation model in which a Bayesian learning is used to
update the beliefs about the participants is presented by Zeng and Syraca [32]. Their pro-
posed negotiation model is a generic framework allowing multiple participants and multiple
issues. The Bayesian rule is used to update the agent’s belief about the opponent agent such
as the opponent’s reservation values. When we focus on the learning part of this study and
their experiments, it can be said that they mostly consider the negotiation in which there is
only a single issue, particularly the price. The agent tries to learn the opponent’s reservation
value for the price by using its observations. After each new coming information about the
opponent or environment, the agent’s belief is updated. Note that to be able to apply the
Bayesian update rule, a priori knowledge is required. The quality of the priori knowledge
will possibly affect the performance of the learning. According to our approach, learning can
be performed without any knowledge about the opponents since in a open environment the
agents may meet each other for the first time. Thus, our approach does not require a priori
knowledge. In contrast to single issue negotiation, we mainly consider multi issues to be
negotiated.
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Hindriks and Tykhonov also represent preferences using utility functions and they apply
Bayesian learning to learn the opponent’s preferences from bid exchanges [14]. In order
to apply Bayesian learning, they make some assumptions about preference structure and
opponent’s negotiation strategy. The preferences are represented as a weighted sum of util-
ity functions (linearly additive functions). Three types of evaluation functions are defined:
downhill, uphill and triangular. Their hypothesis space consists of these predefined function
types. A probability distribution is associated with these functions. If the prior knowledge
does not exist, a uniform distribution is used for the prior probabilities. The opponent’s offers
are used as an evidence and the opponent’s strategy is assumed to be a concession-based strat-
egy. Thus, the conditional probability of the hypotheses with the given evidence is updated
by using the Bayes’ rule. These probabilities are used to decide the agent’s counter offer. If
we consider the negotiation between the buyer and the seller, the assumptions about pref-
erence structure may not be applicable, because, the preferences of the buyer can include
interdependencies. For instance, the buyer may prefer dry wine if the color of the wine is
red whereas she may prefer sweet wine when the color is white. In contrast to that study,
our negotiation approach allows the agent to have such preferences. Hindriks and Tykhonov
model the user’s preferences as a utility function. However, we keep preferences as a set of
concepts. Therefore, we do not deal with finding a numerical model.

Buffett and Spencer propose a multi-object negotiation in which a Bayesian classification
method is applied for learning the opponent’s preference relation [8]. There are predefined
classes for preference relations and the aim is to find the class to which the opponent’s pref-
erence relation belongs. The aim is to narrow down the search space. It is assumed that the
opponent applies a concession-based strategy. In this negotiation model, the agents negotiate
over the subsets of a set of objects. Here, one participant prefers more objects whereas other
prefers less. It is known that if the agent prefers more, a superset of an offer is preferred by
this agent. In that study, the authors are not concerned with determining the initial prefer-
ence classes or deciding on the prior probabilities. The evidence is estimated by using the
bid exchanges. Their experiment results mainly give information about the performance of
the classifier. However, there are no experimental results about the negotiation such as joint
utility, number of rounds and so on. We do not deal with multi-object negotiation. Instead, we
study a multi-issue negotiation in which a concept learning method is applied to learn the con-
sumer’s preferences. Also, our experiment results are related to the negotiation performance
and success.

Another line of related research is in generating counter offers. Evolutionary learn-
ing approaches, especially Genetic Algorithms are used in negotiation to generate counter
offers [9,19]. The candidate offers are represented by the chromosomes and their fitness
function captures both agent’s own utility and opponent’s last offer. The agent decides the
next offer according to the result of its genetic algorithm. A parameter controls the agent’s
attitude (the amount of selfishness and benevolence). Moreover, the effect of time pressure
is reflected by another parameter. Lau et al. prefer learning opponent’s preferences indirectly
rather than finding an exact model for the preferences in their study [19]. Similar to the work
of Faratin, Sierra and Jennings [11], they take the opponent’s last offer into account. Their
fitness function considers the agent’s own utility and the opponent’s last offer. The aim is to
find a solution whose distance is minimal to them. Contrary to their study, we do not only
consider the opponent’s last offer but also its all previous offers. By using all bids exchanged
during the negotiation, our aim is to generate offers, which are possibly acceptable as far as
the opponent’s behavior is concerned. To do this, we apply an inductive learning enhanced
with ontology reasoning about the negotiation domain.
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Boutilier, Regan and Viappiani use concept learning to learn the user’s feature definition
in preference elicitation [7] whereas in our study concept learning is used to understand the
opponent agent’s preferences and more importantly to generate counter offers. While our aim
is to learn other agent’s preference descriptions, they mainly concentrate on reducing rele-
vant concept uncertainty. They do not try to find the accurate concept definitions. They use
membership queries to obtain negative and positive examples. Whereas we handle learning
both disjunctive and conjunctive concepts, they use only conjunctive concepts.

In our approach, we assume that the consumer’s preferences are private and the producer
can only discover them over interactions. Hence, the producer has to apply a learning algo-
rithm to learn the preferences over interaction. However, in some approaches in the literature,
it is assumed that the consumer reveals part of its preferences. Hence, the amount of learning
that needs to be done is less. We review two such approaches next.

Jonker, Robu and Treur propose a negotiation architecture in which two agents negotiate
over multiple attributes under incomplete preference information [17]. As the privacy of
the participants is concerned, the agents are free to either reveal their preferences for some
attributes or to keep some private. A target utility of the current bid is estimated by deter-
mining the concession step. This target utility is distributed over the attributes. To distribute
this target utility over the attributes, agent’s own preference weights and opponent’s prefer-
ence weights are taken into account. However, the agent has only limited information about
its opponent. The opponent may reveal some of its preference parameters. For opponent’s
unknown weights, they apply a heuristic to guess these unknown weights by using the history
of the bids that the opponent offers. According to the target value of the each attribute, agent
chooses a convenient value for each attribute separately. At the end, an approximation is done
to the target utility. As far as modeling of the opponent’s preferences are concerned, they only
focus on predicting the negotiation partner’s preference weights (that indicate the importance
degree of the attributes). Apart from the weights, opponent’s preferences on the values of the
attributes are also important. Thus, in our study, we focus on finding an approximate prefer-
ence model (a set of constraints in our application), which is used for avoiding unacceptable
offers for the opponent and selecting offers, which are more likely to be acceptable for the
consumers. Whereas Jonker, Robu and Treur are mainly concerned about the efficiency of
the outcome for both agents, we concentrate on how fast the producer can make offers that
will satisfy the consumer.

Luo et al. propose a prioritized fuzzy constraint based negotiation model in which the
buyer agent specifies its offers by using constraints [20]. According to the proposed model,
the agent reveals its partial preference information (some parts of its constraints) in a minimal
fashion. That is, the buyer agent sends its constraints to the seller. The seller agent checks the
constraints and if it cannot satisfy this constraints, it requests the buyer to relax them. In our
model, the consumer does not reveal its partial preferences. Further, the seller tries to predict
what the buyer would like if her initial request cannot be satisfied. Hence, the challenge in
our study is to find out a model for consumer’s private preferences.

The following three approaches deal with aspects that are complementary to our work. In
order to shorten the negotiation time for better agreements, Ramchurn et al. propose a nego-
tiation algorithm using rewards [28]. They show that their negotiation tactic based on the
generation of rewards improves the utility of the deals. The authors formalize their repeated
negotiation games by defining a set of issues and a set of values for them. For each agent,
there is a private utility function over each issue. The utility over a contract is the weighted
sum of the individual utility of all issues. The utility is discounted with a rate depending on
the time between each transmitted offer and delay between two games. In our work, we do
not consider rewards. We concentrate on constructing an approximation to the consumer’s
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preferences. By eliminating the offers possibly to be rejected by the consumer, we increase
the chance of generating a mutually acceptable offer.

Rahwan et al. propose an argumentation-based negotiation approach that is based on the
exchange of meta-information about negotiation [25]. As a result, an agent may influence
other agents’ states. Thus, it provides more sophisticated interactions involving promise,
threat, justification of a proposal and so on. With the help of arguments, the probability of the
acceptance of other agent’s offer is expected to increase. For example, the agent can generate
an argument explaining what its aim is. The other agent may offer an alternative proposal
helping the agent reach its goal. Our negotiation model does not involve arguments but it
would be interesting to extend our model by adding arguments.

Somefun and Poutré propose a learning method to learn customer’s preferences by using
anonymous data on passed negotiations [30]. In their system, there is one agent negotiat-
ing with several customers about a collection of services that are associated with a price.
They consider the inter-dependencies between the services. We do not keep the information
obtained in the past negotiations and we deal with a single service rather than a collection of
services. It would be interesting to negotiate over a set of services and using past information
to improve the negotiation process.

6.3 Future work

Our main direction for future research is the addition of preference prioritization to our nego-
tiation framework. That is, for the user, one constraint may be more important than another
one. For example, the user may express her preferences in a way that she firstly prefers a
red and dry wine and she secondly prefers a white and sweet wine. It would be useful if
our algorithm could realize that the first constraint is more preferred and would generate
offers accordingly. Furhter, with disjunctive preferences, simple conditional preferences can
be shown. To capture more complex cases, other representations, such as CP-net [6] may
be used. We started applying RCEA to learn preferences that are represented with other
preference models, such as CP-nets [5].
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