
A Hybrid Learning Strategy for Discovery of Policies of
Action

Richardson Ribeiro, Fabrício Enembreck, Alessandro L. Koerich

Programa de Pós-Graduação em Informática Aplicada (PPGIA)
Pontifícia Universidade Católica do Paraná

Rua Imaculada Conceição, 1155, CEP 80215-901
Curitiba, Paraná – Brasil

{richard,alekoe,fabricio}@ppgia.pucpr.br

Abstract. This paper presents a novel hybrid learning method and performance
evaluation methodology for adaptive autonomous agents. Measuring the
performance of a learning agent is not a trivial task and generally requires long
simulations as well as knowledge about the domain. A generic evaluation
methodology has been developed to precisely evaluate the performance of
policy estimation techniques. This methodology has been integrated into a
hybrid learning algorithm which aim is to decrease the learning time and the
amount of errors of an adaptive agent. The hybrid learning method namely K-
learning, integrates the Q-learning and K Nearest-Neighbors algorithm.
Experiments show that the K-learning algorithm surpasses the Q-learning
algorithm in terms of convergence speed to a good policy.

1 Introduction

Reinforcement Learning (RL) is a computational paradigm of learning where an
algorithm attempts to maximize a measure of performance based on the reinforcements
(reward or punishment) that it receives when interacting with an unknown environment
[11]. In the literature one can find several approaches to RL and examples of different
applications using intelligent agents [8] [10] [11] [14] [18] [19].

In an attempt to optimize the learning task of an agent, many authors have integrated
different learning methods, creating the so-called hybrid learning methods, with the
aim that one can compensate the weaknesses of each other, leading to more robust
agents with higher tolerance to faults [4] [7] [15] [17]. However, the evaluation of the
action policies produced by these hybrid methods is a complex task due to the lack of
generic mechanisms that allow measuring the performance of a learning agent without
relaying on the knowledge of the problem domain (or independently of the problem
domain). Current evaluation mechanisms are not generic enough to evaluate action
policies in different environments.

In this paper we propose a novel hybrid learning method, unifying RL and instance-
based learning algorithms. The aim of such a hybrid method is to discover good action
policies in a short timeframe. Furthermore, we propose a novel generic methodology to
evaluate the quality of the policy discovered by RL-based adaptive autonomous agents.
This methodology allows the estimation of agents’ performance without relaying on

the knowledge of the domain and in short simulation periods. In the proposed
methodology, the measure of performance of an agent is proportional to the number of
correct decisions produced by its action policy in a given environment. A policy
represents a space of states with initial and target states where the transition between
states is determined by the actions. Therefore, a correct decision is reached when the
agent finds a way to reduce the cost between the initial and target states. When this
occurs for all candidate states, an optimal policy was discovered. The proposed
evaluation methodology allows observing the behavior of the learning algorithm as a
function of the number of iterations, configuration of environment and values of
parameters related to the algorithm. The development of a hybrid learning mechanism
was possible because of these above mentioned characteristics of the evaluation
methodology.

This article is organized as follows: Section 2 presents some hybrid learning
methods. Section 3 describes the evaluation mechanisms employed in different classes
of problems. The novel performance evaluation methodology as well as an overview of
the Q-learning, the K-NN, and the K-learning algorithms are presented in Section 4.
Experimental results are presented in Section 5. Finally, in the last section some
conclusions are drawn as well as perspectives for future research.

2 Hybrid Learning Methods

Different hybrid learning methods have been proposed in the literature with the aim of
integrating different learning methods. Henderson et al. [7] proposes a hybrid model
that combines RL with supervised learning. RL is used to optimize the average of
rewards between the communication of systems that use huge data sets and that also
have large state spaces. The supervised learning is used to constrain the learned policy
of one part of state’s space and modeling a policy with the data used in a given
moment. Downing [4] proposes a hybrid technique that combines RL with trees based
on genetic programming. This technique adds a new element to a set of functions of the
genetic programming and produces a system, whose actions are strengthened by
genetic programming so that the successive functioning of some trees shows the
improvement of task adjustment performance. Figueiredo et al. [6] propose a hybrid
neuro-fuzzy model based on RL. This model presents important characteristics as:
automatically learning the model structure; self-adjusting to the parameter performance
associated with the structure; and capacity to learn actions that must be taken when the
agent is in a state of the environment. RL is used in this hybrid model to determine
more properly actions to be executed for a given state. Rayan [15] proposes a system
that incorporates techniques of symbolic planning with RL with the aim of producing a
system capable of intensifying each method. The system uses a new behavior
representation, which is defined in terms of desired consequences, but letting the
implementation of policy to be learned by RL.

We use some concepts presented in such works to develop a hybrid method, namely
K-learning, that integrates two well-know learning techniques used in adaptive
autonomous agents: RL (Q-learning algorithm) and Instances-Based Learning (K-NN
algorithm). This hybrid method emphasizes the strengths of each learning algorithm:

the K-NN allows that states with similar characteristics have similar rewards,
anticipating rewards and decreasing the number of iterations to the Q-learning. On the
other hand, the Q-learning guarantees that an optimal policy be found along the
iterations.

3 Policy Evaluation Mechanisms

Measuring performance of a learning agent is not a trivial task. It can be measured
according to its proposed task and mainly according the desired objective. For such an
aim, some measures such as speed of convergence for the optimal or almost-optimal
behavior, total reinforcements obtained by the agent and percentage of optimality have
been used [8].

Ernst et al. [5] present a metric of quality of solution produced by an agent, as a
mechanism to evaluate the performance of RL algorithms. A stationary policy is used
to calculate the expected values which are further compared with regression algorithms
on a set of examples. These examples have initial states chosen from a set of vectors
generated by the Q-learning algorithm and the average expected value of the stationary
policy is computed. Ramon [12] used decision trees to find an approximated function
Q to guarantee the convergence to an optimal policy. He proposes a learning algorithm
that generates a new estimate Q' from a preceding estimate Q. The author uses three
types of measures to evaluate the performance of an algorithm: an amount Q'(s,a) up to
date that is wanted; an estimate),(

~

asq of Q' that is measured in exploration executed by

algorithm; a measure)(
~

cq where SXAc ⊆ is an average of function
~

q on an abstraction
c, where S is the set of states and A the set of action. The algorithm stores in memory
the values of the third metric of form to generate statistics. Lev et al. [9] use heuristic
value function that evaluates the performance of an agent by computing the states
foreseen for *

~

V and selects an operator who leads to the most promising state being
*

~

V the optimal value of the function.
Generally, the evaluation of policies is not flexible enough to deal with different kind

of problems. Moreover, they require too much knowledge on the domain to define
heuristics related to the problem solution. Due to this fact, there is a lack of generic
evaluation mechanisms that can be used in problems that involve RL.

4 A Novel Evaluation Methodology

The novel evaluation methodology analyzes the performance of RL algorithms
assuming that there is a reward function capable of reproducing an optimal action
policy. We consider that the performance of an agent is proportional to the number of
correct decisions produced by its action policy in a given environment. A policy
represents state space with initial and target states, where the transition between states
is determined by actions. Therefore, a correct decision is attained when the agent finds
the path between the initial and target state which has the lowest cost. Otherwise, an
error is found. When this occurs for all candidate states, it can be stated that an optimal

policy was discovered. In this way, the evaluation of a policy is carried out through a
problem solving algorithm capable of finding the optimal path between two states
where the heuristic function corresponds to the values returned by the reward function.
Moreover, the amount of states visited can also be taken into account.
We use the A Star algorithm (A*) to find the best solution which is complete and
optimal [14]. Since the A* produces the best policy for a given heuristic, the quality of
the policy discovered by different learning algorithms can be stated through the
comparison of the policy found by them against the policy produced by the A*. This
methodology shows the proximity between the current policy of the agent and the
optimal policy. A correct decision occurs when the agent is able to reach the target with
an optimal cost (shortest path). We use the number of states and the additional cost
associated with each state (value of reward function) to evaluate the total cost of a path.

To evaluate the performance of learning algorithms, we place the agent in an
unknown environment and adjust the parameters for each possible initial state. Further,
we set the learning parameters of the agent. Thus, it is possible to analyze the
performance of algorithms through the learning curves.

Fig. 1. Pseudo code of the performance evaluation algorithm

Fig. 2. Pseudo code of the algorithm of evaluation of a policy P

Fig. 1 and 2 present the pseudo code of the performance evaluation algorithm which
compares the performance of the Q-leaning algorithm [20] and an algorithm X

Algorithm EvaluateAlgoritm_X(PQ,PX)//PQ is action policy of the Q-
learning algorithm and PX is action policy of the X algorithm;
1 For a given environment PQ=0, PX=0;
2 For each iteration of the Q-learning repeat:
 Efficiency_Q_Learning ← evaluatePolicy(PQ)
 If stop_condition() = false then
 Return to 2
 Else
 Go to step 3
3 For each state s learned by the Q-learning repeat:
)(PQlicygeneratePoPX ←

4 Efficiency_X ← evaluatePolicy(PX);
5 Go to step 2 if continuing the learning of the Q-learning;
6 Return (PQ,PX);
7 End.

Algorithm EvaluatePolicy(P);
1 Initiating Correct=0, Wrong=0, CostP=0, CostA*=0;
2 For each s ∈ S:
 CostP = cost(s, s_goal, P);

CostA*= cost(s, s_goal, PA*);
 If CostP <= CostA*

 Correct ← Correct+1;
Else
 Wrong ← Wrong+1;

3 P ← (Correct / (Correct + Wrong)) * 100;
4 Return (P);
5 End.

considering any estimation policy. Fig.1 shows that in each iteration is applied an
evaluation function that computes the efficiency of the algorithms. Each iteration
represents the state transition by applying an action a using the current policy. In step
3 the X algorithm is used to generate a new policy derived from PQ. Finally, the
efficiency of PX is computed and the process continues until a stop condition is
reached. Fig. 2 presents the algorithm used for measuring the efficiency of a given
policy P. The cost function is used to find the best path between states s and s_goal
from a given policies

4.1 Using the K-NN Algorithm to Generate Policies

The K-NN algorithm [1] is used to generate the values in the learning table of an agent
based on the Q-learning algorithm. The K-NN algorithm receives as input a set of
instances produced by a policy which is generated during learning phase. The aim is to
generate a new set of values in an attempt to approximate the agent to an optimal
policy.

We define as arrangement the set of instances generated during a cycle of steps
carried out by the Q-learning algorithm. It is interesting to notice that for each state,
four instances are generated (one for each action) and they represent the values learned
by the agent. Therefore, the number of instances is the same for any policy. Thus, each
instance of the arrangement has attributes for representation of the state in form of the
expected reward for the actions north, south, west and east; an action and an attribute
representing the reward for the action.

These vectors generated by the Q-learning agent during learning will be compared
with a similarity function (cosine) and after that, the nearest instances will be found.
Eq. 2 describes how the K-NN can be used to generate estimates of the values for the
arrangement formed by the training instances.

K

PQ

asPKNN

K

i
i (.,.)

),(1
�

=← (2)

where PKNN(s,a) represents the values of the reward calculated for a given state s and
an action a, K represents the number of neighbors used and (.,.)iPQ represents the 1st-

nearest neighbor instance found in training set generated by the policy PQ.

4.2 The K-learning Method

The method described previously can generate intermediate policies; however, it is not
guaranteed that these policies present a good quality. In some cases, the values of
rewards for a given state change closer to a set of correct rewards. On the other hand,
states that have high rewards can become less important. This occurs because all the
states will have their values of reward modified, even those whose rewards are good.

The K-learning is a hybrid learning method resulting from the merge of the Q-
learning and K-NN algorithms which attempts to solve the above mentioned problem
by selecting always the policy that improves the performance of the agent. The learning

of the Q-learning algorithm is stored in a table of name PQ(s,a) and the learning of the
K-NN in a table PK(s,a). The best values of these tables obtained during the learning
phase are stored in a new table, which is called PKI(s,a) (this is the policy generated by
K-learning).

This method has been created from experimental observations where the efficiency
of the methods varies during the learning period. In many cases, the performance of the
K-NN has made the rewards discovered for the Q-learning less interesting, i.e., states
that produce correct decision started to produce errors1. To solve this problem, the K-
learning modifies only rewards of states that lead to learning errors. When one of the
methods is superior to the other, the agent switches the learning method. This makes
the agent able to find the action policy that maximizes its performance and decreases
the amount of necessary steps. Fig. 3 presents the pseudo code of the K-learning
method.

Fig. 3. Pseudo code of the K-learning method

Fig. 3 shows that the performance of the Q-learning and K-NN algorithms is
compared for all iteration. When the performance of one of them is higher, the policy is
stored into a new table (CurrentPolicy) which represents the current action policy. The
results of this hybrid learning method are presented in Section 5.

4.3 The Simulated Environment

To represent the environment of simulation (road mesh), the crossing had been
represented as states. The states of the virtual environment have characteristics of
situation traffic: free, low congestion, high congestion, blocked and unknown. Each
situation has different values that are used to compute the rewards received by the
agent. The agent moves taking one of the following actions: forward, backward, right
and left. After each move (transition), the agent will start to have a new state generated
by the environment and new actions could be taken. The agent will know if its action
was positive or negative through the reward granted by the environment. Eq. 3
describes the current state s updated by the next state added to one reward r.

 rasasQ +∂←)','(),((3)

1 The error definition has been discussed in Section 4.

Algorithm K_learning(PQ,PKI);
1 Initiating PQ=0, PKI=0;
2 For each iteration repeat:

While Stop_Conditions <> true do
 If)(PQlicyevaluatePo >)(PKllicyevaluatePo

 Then
 PQicyCurrentPol ←

 Else
 PKlicyCurrentPol ←

3 Return (PQ,PKI);
4 End.

The transition value ∂ is computed by the agent for a reinforcement scale signal.
The agent must choose actions that tend to increase the sum of the values of the
reinforcement signal r , as time goes by. The agent can learn how to make this through
systematic try-and-test while it interacts with the environment. Thus, the agent will
know if its action was positive or negative through the change of behavior of the
environment (traffic). If the agent finds itself in a congested traffic state and after this
its action goes into to the little congested state, it then receives a positive reward, but if
the action takes it to a very congested state a negative reward is received.

5 Experiments

Experiments were carried out with the Q-learning algorithm to evaluate its efficiency
considering factors such as: the number of iterations necessary for the agent to reach its
best efficiency; the quality of reward policy; variations in learning rate; discounting
factor and the values of reward for the congestion conditions. In this section we present
experiments that allow identifying the importance of each one these factors in the
learning process.

The experimental protocol to evaluate the efficiency of the algorithms includes
twenty repetitions of each type of experiment using ten different environments sizes.
This is required due to the variation in the algorithm efficiency in single environments.
This occurs because the values generated during the learning phase are stochastic. The
values of efficiency presented in this section represent average values. The best values
used as learning rate for the Q-learning algorithm are between 0.10 and 0.20 and the
best values for the discount factor are between 0.85 and 0.95.

Fig. 4 presents a comparative among: efficiency, number of states and amount of
steps. Fig. 4 shows that for environments smaller than 25 states, about 500 steps are
necessary to reach the best efficiency. For environments up to 81 states we observe that
it is necessary about 5,000 steps. Environments above 100 states need a more than
20,000 steps to reach the best efficiency. Fig. 4 and 5 show that in large environments
the agent needs a high number of cycles due to the need of visiting each state many
times to accomplish the learning.

Fig. 4. Learning curves for the Q-learning:
efficiency vs n. of states vs n. of cycles

Fig. 5. Leaning curves for the 1-NN:
efficiency vs n. of states vs n. of cycles

The instances generated by the Q-learning and used by K-NN are stored into a K-
Table. Further, the policy represented in the K-Table is evaluated using the algorithm
A* as discussed in section 4. The experiments with the K-NN algorithm have taken
place in environments with size up to 400 states and with up to 50,000 cycles. The
average efficiency of the K-NN algorithm was evaluated considering K=1 because this
was the value that has presented the best results.

It is possible to observe that the K-NN algorithm presents a better performance than
Q-learning for most of the environment sizes (Fig. 4 and 5). This fact motivates us to
propose the hybrid learning method, namely K-learning.

Fig. 6. Efficiency of the Q-learning, 1-NN and
K-learning algorithms for a 16-state
environment

Fig. 7. Efficiency of the Q-learning, 1-NN
and K-learning algorithms for a 25-state
environment

Fig. 8. Efficiency of the Q-learning, 1-NN and K-learning algorithms for a 64-state
environment

5.1 K-learning versus Q-learning and K-NN

To evaluate the performance of the K-leaning algorithm we have carried out
experiments in environments with size between 16 and 64 states. Fig. 6 to 8 show the
efficiency curves for the K-learning hybrid method, the Q-learning and the K-NN
algorithms. The curves demonstrate that, in general, the K-learning hybrid method
presents a better efficiency than Q-learning and K-NN algorithms in any learning
cycle. We can also observe that the number of steps necessary to find a good action

policy decreases significantly relative to the Q-learning and K-NN algorithms. In 16-
state environments there is an average reduction of 18% in the number of steps to
achieve the best efficiency. For 25-state environments the reduction is 20%. Finally,
for 64-state environments the K-learning method has achieved the best efficiency with
12% less steps. The values of the Tab. 1 present the superiority of the K-learning
method to the Q-learning and K-NN algorithms. It is possible to observe that the K-
learning method has a higher average performance relative to the other methods. It also
requires a lower number of iterations to find a good action policy. This shows that this
method is able to adapt itself to different environments. The good average performance
results from the policy generation technique gets the values learned by the agent closer
to the values of an optimal action policy.

Table 1. Average superiority of the K-learning method to the Q-learning and K-NN algorithms

Environment Size
(number of states)

Q-learning
(%)

K-NN
(%)

16 2 3
25 3 5
64 12 21

6 Conclusion and Discussion

This paper presented a novel hybrid learning method that is more efficient that
conventional learning algorithm such as the Q-learning, K-NN algorithms. The
experiments carried out on different environment sizes have show that even having a
higher computational cost, the K-NN algorithm achieves satisfactory results since it
generally finds superior or equivalent solutions to Q-learning with a low number of
iterations. The hybrid K-learning method has integrated the robustness of the Q-
learning with the efficiency of the K-NN algorithm to modify the learning values. This
hybrid learning method has succeeded to optimize the agent learning in terms of
efficiency and the number of iterations necessary to achieve a good performance.
In this paper we have also presented a novel evaluation methodology which is robust in
dealing with partially known and complex environments. Such an evaluation
methodology also allows the setup of suitable learning parameters for RL algorithms.
This is an important point because these factors have great relevance in the
performance of a learning agent.

Even though the results are encouraging, additional experiments are necessary to
answer some open questions, such as: (i) the comparison of different forms of updating
the current policy. The update of the current policy could be partial rather than global
(only with the best reward values); (ii) a heuristic function could be used to speedup
the RL [3]; (iii) A multi-agent system could be used for exploring distant regions of the
target state where rewards are low. Multi-agent reinforcement learning is a very active
subject of research [2] [16]; (iv) another question consists in evaluating the algorithms
in dynamic and noisy environments. Since the K-learning uses results from different
algorithms, it should be robust in situations where the reward values vary since is well

known that the K-NN is robust to deal with noise in training data; however, this
hypothesis will be verified in future research.

7 References

1. Aha, D.W., Kibler, D., Albert, M.K. Instance-based Learning Algorithms, Machine
Learning. 6(1), pp. 37-66, 1991.

2. Almeida, A., Ramalho, G. L., Santana, H. P., Tedesco, P., Menezes, T. R., Corruble, V.,
Chevaleyre, Y. (2004). Recent Advances on Multi-Agent Patrolling. In Advances in
Artificial Intelligence – SBIA 2004. LNAI 3171, pp. 474-483. Berlin: Springer

3. Bianchi, R. A. C., Ribeiro, C. H. C., Costa, A. H. R. Heuristically Accelerated Q-learning:
A New Approach to Speed Up Reinforcement Learning. XVII SBIA’04: pp: 245-254, 2004.

4. Downing, K. L. Reinforced Genetic Programming. Genetic Programming and Evolvable
Machines, 2(3):259-288, 2001.

5. Ernst, D., Geurts, P., Wehenke, L. Tree-Based Batch Mode Reinforcement learning. Journal
of Machine Learning Research, April 2005, Volume 6, pp 503-556

6. Figueiredo, K., Vellasco, M., Pacheco, M., Souza, M., Reinforcement Learning Hierarchical
Neuro-Fuzzy Politree Model for Control of Autonomous Agents," his, pp. 130-135, Fourth
Int. Conference on Hybrid Intelligent Systems (HIS'04), 2004.

7. Henderson, J., Lemon, O., Georgila, K.. Hybrid reinforcement/supervised learning for
dialogue policies from COMMUNICATOR data. In Proc. IJCAI workshop on Knowledge
and Reasoning in Practical Dialogue Systems, Edinburgh, 2005.

8. Kaelbling, L. P., Littman, M. L, Moore, A. W., Reinforcement Learning: A survey. Journal
of Artificial Intelligence Research. Vol. 4, pp. 237-285, 1996.

9. Levner, I., Bulitko,V., Madani, O. , Greiner, R.. Performance of Lookahead Control
Policies in the Face of Abstractions and Approximations. Technical Report.
Publisher: Springer-Verlag., Vol. 2371/2002. pp. 299-307.

10. Maes, P. Artificial Life Meets Entertainment: Lifelike Autonomous Agents,
Communications of ACM, Vol. 38, No. 11, pp. 108-114, 1995.

11. Mitchell, T. Machine Learning. Boston:McGraw-Hill, 1997.
12. Ramon, J. On the convergence of reinforcement learning using a decision tree learner.

Proceedings of ICML-2005 Workshop on Rich Representation for Reinforcement Learning,
Bonn, Germany, 2005.

13. Ribeiro, C. H. C. A Tutorial on Reinforcement Learning Techniques, Int. Joint Conference
on Neuronal Networks, Washington: INNS Press, 1999.

14. Russel, S., Norvig, P., Inteligência Artificial, 2 ed., Rio de Janeiro: Editora Elsevier, 2004.
15. Ryan, M. R. K. Hierarchical Reinforcement Learning: A Hybrid Approach. PhD Thesis,

University of New South Wales, School of Computer Science and Engineering, 2004.
16. Santana, H., Ramalho, G., Corruble, V., Ratitch, B. Multi-Agent Patrolling with

Reinforcement Learning In proc. 3rd International Joint Conference on Autonomous Agents
and Multi-Agents Systems (AAMAS’04). pp. 1122-1129. New York: ACM

17. Siedlecki, W., Sklansky, J., A note on Genetic Algorithms for Large-Scale Selection,
Pattern Recognition Letters, Vol. 10, pp. 335-347, 1989.

18. Sutton, R.S., Barto, A.G. Reinforcement Learning: An Introduction. Cambridge, MA. MIT
Press, 1998.

19. Tesauro, G. Temporal Difference Learning and TD-Gammon. Communications of the
ACM, Vol. 38, No. 3, pp. 58-68, 1995.

20. Watkins, C. J. C. H., Dayan, P. Q-learning, Machine Learning, 8 ed., pp. 279-292, 1992.

