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Abstract. This paper presents a novel hybrid learning method and performance 
evaluation methodology for adaptive autonomous agents. Measuring the 
performance of a learning agent is not a trivial task and generally requires long 
simulations as well as knowledge about the domain. A generic evaluation 
methodology has been developed to precisely evaluate the performance of 
policy estimation techniques. This methodology has been integrated into a 
hybrid learning algorithm which aim is to decrease the learning time and the 
amount of errors of an adaptive agent. The hybrid learning method namely K-
learning, integrates the Q-learning and K Nearest-Neighbors algorithm. 
Experiments show that the K-learning algorithm surpasses the Q-learning 
algorithm in terms of convergence speed to a good policy. 

1   Introduction 

Reinforcement Learning (RL) is a computational paradigm of learning where an 
algorithm attempts to maximize a measure of performance based on the reinforcements 
(reward or punishment) that it receives when interacting with an unknown environment 
[11]. In the literature one can find several approaches to RL and examples of different 
applications using intelligent agents [8] [10] [11] [14] [18] [19]. 

In an attempt to optimize the learning task of an agent, many authors have integrated 
different learning methods, creating the so-called hybrid learning methods, with the 
aim that one can compensate the weaknesses of each other, leading to more robust 
agents with higher tolerance to faults [4] [7] [15] [17]. However, the evaluation of the 
action policies produced by these hybrid methods is a complex task due to the lack of 
generic mechanisms that allow measuring the performance of a learning agent without 
relaying on the knowledge of the problem domain (or independently of the problem 
domain). Current evaluation mechanisms are not generic enough to evaluate action 
policies in different environments. 

In this paper we propose a novel hybrid learning method, unifying RL and instance-
based learning algorithms. The aim of such a hybrid method is to discover good action 
policies in a short timeframe. Furthermore, we propose a novel generic methodology to 
evaluate the quality of the policy discovered by RL-based adaptive autonomous agents. 
This methodology allows the estimation of agents’ performance without relaying on 



the knowledge of the domain and in short simulation periods. In the proposed 
methodology, the measure of performance of an agent is proportional to the number of 
correct decisions produced by its action policy in a given environment. A policy 
represents a space of states with initial and target states where the transition between 
states is determined by the actions. Therefore, a correct decision is reached when the 
agent finds a way to reduce the cost between the initial and target states. When this 
occurs for all candidate states, an optimal policy was discovered. The proposed 
evaluation methodology allows observing the behavior of the learning algorithm as a 
function of the number of iterations, configuration of environment and values of 
parameters related to the algorithm. The development of a hybrid learning mechanism 
was possible because of these above mentioned characteristics of the evaluation 
methodology. 

This article is organized as follows: Section 2 presents some hybrid learning 
methods. Section 3 describes the evaluation mechanisms employed in different classes 
of problems. The novel performance evaluation methodology as well as an overview of 
the Q-learning, the K-NN, and the K-learning algorithms are presented in Section 4. 
Experimental results are presented in Section 5. Finally, in the last section some 
conclusions are drawn as well as perspectives for future research. 

2   Hybrid Learning Methods 

Different hybrid learning methods have been proposed in the literature with the aim of 
integrating different learning methods. Henderson et al. [7] proposes a hybrid model 
that combines RL with supervised learning. RL is used to optimize the average of 
rewards between the communication of systems that use huge data sets and that also 
have large state spaces. The supervised learning is used to constrain the learned policy 
of one part of state’s space and modeling a policy with the data used in a given 
moment. Downing [4] proposes a hybrid technique that combines RL with trees based 
on genetic programming. This technique adds a new element to a set of functions of the 
genetic programming and produces a system, whose actions are strengthened by 
genetic programming so that the successive functioning of some trees shows the 
improvement of task adjustment performance. Figueiredo et al. [6] propose a hybrid 
neuro-fuzzy model based on RL. This model presents important characteristics as: 
automatically learning the model structure; self-adjusting to the parameter performance 
associated with the structure; and capacity to learn actions that must be taken when the 
agent is in a state of the environment. RL is used in this hybrid model to determine 
more properly actions to be executed for a given state. Rayan [15] proposes a system 
that incorporates techniques of symbolic planning with RL with the aim of producing a 
system capable of intensifying each method. The system uses a new behavior 
representation, which is defined in terms of desired consequences, but letting the 
implementation of policy to be learned by RL. 

We use some concepts presented in such works to develop a hybrid method, namely 
K-learning, that integrates two well-know learning techniques used in adaptive 
autonomous agents: RL (Q-learning algorithm) and Instances-Based Learning (K-NN 
algorithm). This hybrid method emphasizes the strengths of each learning algorithm: 



the K-NN allows that states with similar characteristics have similar rewards, 
anticipating rewards and decreasing the number of iterations to the Q-learning. On the 
other hand, the Q-learning guarantees that an optimal policy be found along the 
iterations. 

3   Policy Evaluation Mechanisms 

Measuring performance of a learning agent is not a trivial task. It can be measured 
according to its proposed task and mainly according the desired objective. For such an 
aim, some measures such as speed of convergence for the optimal or almost-optimal 
behavior, total reinforcements obtained by the agent and percentage of optimality have 
been used [8]. 

Ernst et al. [5] present a metric of quality of solution produced by an agent, as a 
mechanism to evaluate the performance of RL algorithms. A stationary policy is used 
to calculate the expected values which are further compared with regression algorithms 
on a set of examples. These examples have initial states chosen from a set of vectors 
generated by the Q-learning algorithm and the average expected value of the stationary 
policy is computed. Ramon [12] used decision trees to find an approximated function 
Q to guarantee the convergence to an optimal policy. He proposes a learning algorithm 
that generates a new estimate Q' from a preceding estimate Q. The author uses three 
types of measures to evaluate the performance of an algorithm: an amount Q'(s,a) up to 
date that is wanted; an estimate ),(
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Generally, the evaluation of policies is not flexible enough to deal with different kind 

of problems. Moreover, they require too much knowledge on the domain to define 
heuristics related to the problem solution. Due to this fact, there is a lack of generic 
evaluation mechanisms that can be used in problems that involve RL. 

4   A Novel Evaluation Methodology 

The novel evaluation methodology analyzes the performance of RL algorithms 
assuming that there is a reward function capable of reproducing an optimal action 
policy. We consider that the performance of an agent is proportional to the number of 
correct decisions produced by its action policy in a given environment. A policy 
represents state space with initial and target states, where the transition between states 
is determined by actions. Therefore, a correct decision is attained when the agent finds 
the path between the initial and target state which has the lowest cost. Otherwise, an 
error is found. When this occurs for all candidate states, it can be stated that an optimal 



policy was discovered. In this way, the evaluation of a policy is carried out through a 
problem solving algorithm capable of finding the optimal path between two states 
where the heuristic function corresponds to the values returned by the reward function. 
Moreover, the amount of states visited can also be taken into account. 
We use the A Star algorithm (A*) to find the best solution which is complete and 
optimal [14]. Since the A* produces the best policy for a given heuristic, the quality of 
the policy discovered by different learning algorithms can be stated through the 
comparison of the policy found by them against the policy produced by the A*. This 
methodology shows the proximity between the current policy of the agent and the 
optimal policy. A correct decision occurs when the agent is able to reach the target with 
an optimal cost (shortest path). We use the number of states and the additional cost 
associated with each state (value of reward function) to evaluate the total cost of a path. 

To evaluate the performance of learning algorithms, we place the agent in an 
unknown environment and adjust the parameters for each possible initial state. Further, 
we set the learning parameters of the agent. Thus, it is possible to analyze the 
performance of algorithms through the learning curves. 

 

 
Fig. 1. Pseudo code of the performance evaluation algorithm 

 
Fig. 2. Pseudo code of the algorithm of evaluation of a policy P 

Fig. 1 and 2 present the pseudo code of the performance evaluation algorithm which 
compares the performance of the Q-leaning algorithm [20] and an algorithm X 

Algorithm EvaluateAlgoritm_X(PQ,PX)//PQ is action policy of the Q-
learning algorithm and PX is action policy of the X algorithm; 
1 For a given environment PQ=0, PX=0; 
2 For each iteration of the Q-learning repeat: 
      Efficiency_Q_Learning ← evaluatePolicy(PQ)  
         If stop_condition() = false then  
             Return to 2 
         Else 
             Go to step 3 
3 For each state s learned by the Q-learning repeat: 
             )(PQlicygeneratePoPX ←          

4 Efficiency_X ← evaluatePolicy(PX); 
5 Go to step 2 if continuing the learning of the Q-learning; 
6 Return (PQ,PX); 
7 End. 

Algorithm EvaluatePolicy(P); 
1 Initiating Correct=0, Wrong=0, CostP=0, CostA*=0; 
2 For each s ∈ S: 
 CostP = cost(s, s_goal, P); 

CostA*= cost(s, s_goal, PA*); 
     If CostP <= CostA* 

         Correct ← Correct+1; 
Else 
    Wrong ← Wrong+1; 

3 P ← (Correct / (Correct + Wrong)) * 100; 
4 Return (P); 
5 End. 



considering any estimation policy. Fig.1 shows that in each iteration is applied an 
evaluation function that computes the efficiency of the algorithms. Each iteration 
represents the state transition by applying an action a using the current policy. In step 
3 the X algorithm is used to generate a new policy derived from PQ. Finally, the 
efficiency of PX is computed and the process continues until a stop condition is 
reached. Fig. 2 presents the algorithm used for measuring the efficiency of a given 
policy P. The cost function is used to find the best path between states s and s_goal 
from a given policies  

4.1   Using the K-NN Algorithm to Generate Policies 

The K-NN algorithm [1] is used to generate the values in the learning table of an agent 
based on the Q-learning algorithm. The K-NN algorithm receives as input a set of 
instances produced by a policy which is generated during learning phase. The aim is to 
generate a new set of values in an attempt to approximate the agent to an optimal 
policy. 

We define as arrangement the set of instances generated during a cycle of steps 
carried out by the Q-learning algorithm. It is interesting to notice that for each state, 
four instances are generated (one for each action) and they represent the values learned 
by the agent. Therefore, the number of instances is the same for any policy. Thus, each 
instance of the arrangement has attributes for representation of the state in form of the 
expected reward for the actions north, south, west and east; an action and an attribute 
representing the reward for the action. 

These vectors generated by the Q-learning agent during learning will be compared 
with a similarity function (cosine) and after that, the nearest instances will be found. 
Eq. 2 describes how the K-NN can be used to generate estimates of the values for the 
arrangement formed by the training instances. 
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where PKNN(s,a) represents the values of the reward calculated for a given state s and 
an action a, K represents the number of neighbors used and (.,.)iPQ  represents the 1st-

nearest neighbor instance found in training set generated by the policy PQ. 

4.2   The K-learning Method 

The method described previously can generate intermediate policies; however, it is not 
guaranteed that these policies present a good quality. In some cases, the values of 
rewards for a given state change closer to a set of correct rewards. On the other hand, 
states that have high rewards can become less important. This occurs because all the 
states will have their values of reward modified, even those whose rewards are good. 

The K-learning is a hybrid learning method resulting from the merge of the Q-
learning and K-NN algorithms which attempts to solve the above mentioned problem 
by selecting always the policy that improves the performance of the agent. The learning 



of the Q-learning algorithm is stored in a table of name PQ(s,a) and the learning of the 
K-NN in a table PK(s,a). The best values of these tables obtained during the learning 
phase are stored in a new table, which is called PKI(s,a) (this is the policy generated by 
K-learning). 

This method has been created from experimental observations where the efficiency 
of the methods varies during the learning period. In many cases, the performance of the 
K-NN has made the rewards discovered for the Q-learning less interesting, i.e., states 
that produce correct decision started to produce errors1. To solve this problem, the K-
learning modifies only rewards of states that lead to learning errors. When one of the 
methods is superior to the other, the agent switches the learning method. This makes 
the agent able to find the action policy that maximizes its performance and decreases 
the amount of necessary steps. Fig. 3 presents the pseudo code of the K-learning 
method. 
 

 
Fig. 3. Pseudo code of the K-learning method 

Fig. 3 shows that the performance of the Q-learning and K-NN algorithms is 
compared for all iteration. When the performance of one of them is higher, the policy is 
stored into a new table (CurrentPolicy) which represents the current action policy. The 
results of this hybrid learning method are presented in Section 5. 

4.3   The Simulated Environment 

To represent the environment of simulation (road mesh), the crossing had been 
represented as states. The states of the virtual environment have characteristics of 
situation traffic: free, low congestion, high congestion, blocked and unknown. Each 
situation has different values that are used to compute the rewards received by the 
agent. The agent moves taking one of the following actions: forward, backward, right 
and left. After each move (transition), the agent will start to have a new state generated 
by the environment and new actions could be taken. The agent will know if its action 
was positive or negative through the reward granted by the environment. Eq. 3 
describes the current state s updated by the next state added to one reward r. 
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1 The error definition has been discussed in Section 4. 

Algorithm K_learning(PQ,PKI); 
1 Initiating PQ=0, PKI=0; 
2 For each iteration repeat: 

While Stop_Conditions <> true do 
 If )(PQlicyevaluatePo  > )(PKllicyevaluatePo  

      Then 
          PQicyCurrentPol ←  

      Else  
         PKlicyCurrentPol ←  

3 Return (PQ,PKI); 
4 End. 



The transition value ∂  is computed by the agent for a reinforcement scale signal. 
The agent must choose actions that tend to increase the sum of the values of the 
reinforcement signal r , as time goes by. The agent can learn how to make this through 
systematic try-and-test while it interacts with the environment. Thus, the agent will 
know if its action was positive or negative through the change of behavior of the 
environment (traffic). If the agent finds itself in a congested traffic state and after this 
its action goes into to the little congested state, it then receives a positive reward, but if 
the action takes it to a very congested state a negative reward is received. 

5   Experiments 

Experiments were carried out with the Q-learning algorithm to evaluate its efficiency 
considering factors such as: the number of iterations necessary for the agent to reach its 
best efficiency; the quality of reward policy; variations in learning rate; discounting 
factor and the values of reward for the congestion conditions. In this section we present 
experiments that allow identifying the importance of each one these factors in the 
learning process. 

The experimental protocol to evaluate the efficiency of the algorithms includes 
twenty repetitions of each type of experiment using ten different environments sizes. 
This is required due to the variation in the algorithm efficiency in single environments. 
This occurs because the values generated during the learning phase are stochastic. The 
values of efficiency presented in this section represent average values. The best values 
used as learning rate for the Q-learning algorithm are between 0.10 and 0.20 and the 
best values for the discount factor are between 0.85 and 0.95. 

Fig. 4 presents a comparative among: efficiency, number of states and amount of 
steps. Fig. 4 shows that for environments smaller than 25 states, about 500 steps are 
necessary to reach the best efficiency. For environments up to 81 states we observe that 
it is necessary about 5,000 steps. Environments above 100 states need a more than 
20,000 steps to reach the best efficiency. Fig. 4 and 5 show that in large environments 
the agent needs a high number of cycles due to the need of visiting each state many 
times to accomplish the learning. 

 

  
Fig. 4. Learning curves for the Q-learning: 
efficiency vs n. of states vs n. of cycles 

Fig. 5. Leaning curves for the 1-NN:  
efficiency vs n. of states vs n. of cycles 



The instances generated by the Q-learning and used by K-NN are stored into a K-
Table. Further, the policy represented in the K-Table is evaluated using the algorithm 
A* as discussed in section 4. The experiments with the K-NN algorithm have taken 
place in environments with size up to 400 states and with up to 50,000 cycles. The 
average efficiency of the K-NN algorithm was evaluated considering K=1 because this 
was the value that has presented the best results. 

It is possible to observe that the K-NN algorithm presents a better performance than 
Q-learning for most of the environment sizes (Fig. 4 and 5). This fact motivates us to 
propose the hybrid learning method, namely K-learning. 
 

  
Fig. 6. Efficiency of the Q-learning, 1-NN and 
K-learning algorithms for a 16-state 
environment 

Fig. 7. Efficiency of the Q-learning, 1-NN 
and K-learning algorithms for a 25-state 
environment 

 

Fig. 8. Efficiency of the Q-learning, 1-NN and K-learning algorithms for a 64-state 
environment 

5.1   K-learning versus Q-learning and K-NN 

To evaluate the performance of the K-leaning algorithm we have carried out 
experiments in environments with size between 16 and 64 states. Fig. 6 to 8 show the 
efficiency curves for the K-learning hybrid method, the Q-learning and the K-NN 
algorithms. The curves demonstrate that, in general, the K-learning hybrid method 
presents a better efficiency than Q-learning and K-NN algorithms in any learning 
cycle. We can also observe that the number of steps necessary to find a good action 



policy decreases significantly relative to the Q-learning and K-NN algorithms. In 16-
state environments there is an average reduction of 18% in the number of steps to 
achieve the best efficiency. For 25-state environments the reduction is 20%. Finally, 
for 64-state environments the K-learning method has achieved the best efficiency with 
12% less steps. The values of the Tab. 1 present the superiority of the K-learning 
method to the Q-learning and K-NN algorithms. It is possible to observe that the K- 
learning method has a higher average performance relative to the other methods. It also 
requires a lower number of iterations to find a good action policy. This shows that this 
method is able to adapt itself to different environments. The good average performance 
results from the policy generation technique gets the values learned by the agent closer 
to the values of an optimal action policy. 

Table 1. Average superiority of the K-learning method to the Q-learning and K-NN algorithms 

Environment Size 
(number of states) 

Q-learning 
(%) 

K-NN 
(%) 

16 2 3 
25 3 5 
64 12 21 

6   Conclusion and Discussion 

This paper presented a novel hybrid learning method that is more efficient that 
conventional learning algorithm such as the Q-learning, K-NN algorithms. The 
experiments carried out on different environment sizes have show that even having a 
higher computational cost, the K-NN algorithm achieves satisfactory results since it 
generally finds superior or equivalent solutions to Q-learning with a low number of 
iterations. The hybrid K-learning method has integrated the robustness of the Q-
learning with the efficiency of the K-NN algorithm to modify the learning values. This 
hybrid learning method has succeeded to optimize the agent learning in terms of 
efficiency and the number of iterations necessary to achieve a good performance. 
In this paper we have also presented a novel evaluation methodology which is robust in 
dealing with partially known and complex environments. Such an evaluation 
methodology also allows the setup of suitable learning parameters for RL algorithms. 
This is an important point because these factors have great relevance in the 
performance of a learning agent. 

Even though the results are encouraging, additional experiments are necessary to 
answer some open questions, such as: (i) the comparison of different forms of updating 
the current policy. The update of the current policy could be partial rather than global 
(only with the best reward values); (ii) a heuristic function could be used to speedup 
the RL [3]; (iii) A multi-agent system could be used for exploring distant regions of the 
target state where rewards are low. Multi-agent reinforcement learning is a very active 
subject of research [2] [16]; (iv) another question consists in evaluating the algorithms 
in dynamic and noisy environments. Since the K-learning uses results from different 
algorithms, it should be robust in situations where the reward values vary since is well 



known that the K-NN is robust to deal with noise in training data; however, this 
hypothesis will be verified in future research. 
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