
A Tutorial on Reinforcement Learning
Techniques

Carlos Henrique Costa Ribeiro

Division of Computer Science
Department of Theory of Computation
Technological Institute of Aeronautics

São Jos´e dos Campos, Brazil

1

Abstract

Reinforcement Learning (RL) is learning through direct experimentation. It does not
assume the existence of a teacher that provides examples upon which learning of a
task takes place. Instead, in RL experience is the only teacher. With historical roots
on the study of conditioned reflexes, RL soon attracted the interest of Engineers and
Computer Scientists because of its theoretical relevance and potential applications in
fields as diverse as Operational Research and Robotics.

Computationally, RL is intended to operate in a learning environment composed by
two subjects: the learner and a dynamic process. At successive time steps, the learner
makes an observation of the process state, selects an action and applies it back to the
process. The goal of the learner is to find out an action policy that controls the be-
havior of this dynamic process, guided by signals (reinforcements) that indicate how
well it is performing the required task. These signals are usually associated to some
dramatic condition — e.g., accomplishment of a subtask (reward) or complete failure
(punishment), and the learner’s goal is to optimize its behavior based on some perfor-
mance measure (a function of the received reinforcements). The crucial point is that
in order to do that, the learner must evaluate the conditions (associations between ob-
served states and chosen actions) that lead to rewards or punishments. In other words,
it must learn how to assign credit to past actions and states by correctly estimating costs
associated to these events.

Starting from basic concepts, this tutorial presents the many flavors of RL algo-
rithms, develops the corresponding mathematical tools, assess their practical limita-
tions and discusses alternatives that have been proposed for applying RL to realistic
tasks, such as those involving large state spaces or partial observability. It relies on
examples and diagrams to illustrate the main points, and provides many references
to the specialized literature and to Internet sites where relevant demos and additional
information can be obtained.

2

Contents

1 Introduction 5
1.1 Reinforcement Learning Agents . 5
1.2 Generalization and Approximation in RL 7
1.3 Perceptual Limitations: The Achilles Heel of RL 7
1.4 Summary of Chapters . 8

2 Reinforcement Learning: The Basics 9
2.1 What Kind of Learning Agent? . 9
2.2 A General Model . 11
2.3 An Example: The Cartpole Problem 12
2.4 Markov Decision Processes . 13

2.4.1 The Markovian Condition 13
2.4.2 Solving MDP Problems: Dynamic Programming 14

2.5 From DP to RL: Monte Carlo Simulation 16
2.6 Reinforcement Learning . 16

2.6.1 The Temporal Differences Method 16
2.6.2 Q-Learning . 18
2.6.3 Why is Q-Learning so Popular? 19
2.6.4 Alternatives to Q-Learning 20
2.6.5 Other RL techniques: A Brief History 21

3 Experience Generalization 24
3.1 The Exploration/Exploitation Tradeoff 24
3.2 Accelerating Exploration 24
3.3 Experience Generalization . 25

3.3.1 Experience Generalization in Lookup Tables 25
3.3.2 Experience Generalization from Function Approximation . . . 27

3.4 Iterative Clustering (Splitting). 32

4 Partially Observable Processes 34
4.1 Partial Observability and DP .. 34
4.2 Partial Observability and RL .. 35

4.2.1 Attention-Based Methods 35
4.2.2 Memory-based Methods 36
4.2.3 Combining Attention and Memory 37

A Internet Sites on RL-related subjects 39

3

List of Figures

1.1 Interaction between agent and dynamic process in Reinforcement Learn-
ing. The agent observes the states of the system through its sensors and
chooses actions based on cost estimates which encode its cumulated
experience. The only available performance signals are the reinforce-
ments (rewards and punishments) provided by the process.. 6

2.1 A general model of the learning agent. 11
2.2 The cartpole system. 12
2.3 Look-up table implementation in Q-learning. Each table separately

stores all the action values for each action. 20

3.1 Structural and temporal credit assignment. The dark circles are states
visited in a temporal sequencet; t + 1; t+ 2; t+ 3; t+ 4. The curved
arrows represent propagation of temporal updates, and the dashed ar-
rows represent propagation of the structural credit assignment among
similar states that are not visited in sequence. 26

3.2 Feature-based compact representation model. 27
3.3 A two-states Markov chain for which a least-squares approximation

method for cost calculation may diverge. 28
3.4 An Adaptive Heuristic Critic (AHC) agent. The Policy Module gener-

ates improved actions for a given policy using the costs estimated by
the Evaluation Module.. 30

3.5 The CMAC approach. Each tiling (in this case,T1, T2 andT3) has a
single tile associated with the state of the process. The hash function
H then maps the tiles to different positions in U. 32

4.1 Memory-based methods. Case (a): use of feedback mechanism. Case
(b): use of explicit memory. 37

4

Chapter 1

Introduction

This tutorial is about learning as it is usually understood by a layman: a method for
knowledge acquisition through a voluntary autonomous procedure, via direct interac-
tion with a dynamic system. Learning as anactive process.

In studying learning as such, one of our goals will be to formalize the concept so
that it can be used efficiently as an Engineering tool. We must define precisely what we
mean by a learner and by an active learning process. It turns out that this area of study
is now relatively well developed, although there are many open issues that we will try
to address.

1.1 Reinforcement Learning Agents

The learning environment we will consider is a system composed by two subjects:
the learningagent(or simply thelearner) and a dynamicprocess. At successive time
steps, the agent makes anobservationof the process state, selects an action and applies
it back to the process, modifying the state. The goal of the agent is to find out adequate
actions for controlling this process. In order to do that in anautonomousway, it uses a
technique known asReinforcement Learning.

Reinforcement Learning (RL for short) is learning through direct experimentation.
It does not assume the existence of a teacher that provides ‘training examples’. Instead,
in RL experience is the only teacher. The learner acts on the process to receive signals
(reinforcements) from it, indications about how well it is performing the required task.
These signals are usually associated to some dramatic condition —e.g., accomplish-
ment of a subtask (reward) or complete failure (punishment), and the learner’s goal is
to optimize its behavior based on some performance measure (usually minimization of
a cost function1). The crucial point is that in order to do that, in the RL framework
the learning agent mustlearn the conditions (associations between observed states and
chosen actions) that lead to rewards or punishments. In other words, it must learn how
to assign creditto past actions and states by correctly estimating costs associated to
these events. This is in contrast with supervised learning (Haykin, 1999), where the
credits are implicitly given beforehand as part of the training procedure.RL agents are
thus characterized by their autonomy.

1Unless otherwise stated, minimization of a cost function is used throughout this text. Naturally, maxi-
mization of a reward function could be similarly used.

5

Processaction

punishments

rewards

state

Agent

Action

Selection

Cost Estimation

Experience Accumulation
Sensing

Figure 1.1: Interaction between agent and dynamic process in Reinforcement Learning.
The agent observes the states of the system through its sensors and chooses actions
based on cost estimates which encode its cumulated experience. The only available
performance signals are the reinforcements (rewards and punishments) provided by
the process.

Figure 1.1 shows how the RL agent interacts with the process. Section 2.2 presents
a slightly more realistic model for this interaction.

Historically, the earliest use of a RL method was in Samuel’s Checkers player pro-
gram (Samuel, 1959). After that, a long period of sporadic but insightful research
(mainly based on attempts at creating computational models for conditioned reflex
phenomena (Sutton and Barto, 1990)) was interrupted by a few theoretical (Sutton,
1988) and practical (Lin, 1992; Tesauro, 1992; Barto et al., 1983) developments of au-
tonomous learning models. Research in RL as a Computing technique then skyrocketed
when its important relationship with Optimal Control got initiated (Barto et al., 1990)
and further developed by Singh and others (Singh, 1994; Jaakkola et al., 1994). In-
deed, terms from the Optimal Control jargon such as ‘optimization’ and ‘performance
measure’ are also part of the basic RL vocabulary.

Nearly all RL methods currently in use are based on the Temporal Differences (TD)
technique (Sutton, 1988). The fundamental idea behind it isprediction learning: when
the agent receives a reinforcement, it must somehow propagate it backwards in time
so that states leading to that condition and formerly visited may be associated with
a prediction of future consequences. This is based on an important assumption on
the process’ dynamics, called theMarkov condition: the present observation must be
perfectly a conditional probability on the immediate past observation and input action.
In practical terms, this means that the agent’s sensors must be good enough to produce
correct and unambiguous observations of the process states.

6

1.2 Generalization and Approximation in RL

Getting learning information through direct experimentation is a practice that is usually
not under complete control by the agent: it can choose actions but cannot determine in
advance the consequences of these actions for every state because it usually does not
have a sufficiently precise model of the process upon which to base judgments. Instead,
it must estimate the expected costs through direct state visitation; it must choose an ac-
tion, observe the result and propagate it backwards in time, following the TD procedure
mentioned above.

Correct determination of action consequences depends on a reasonable number of
updates carried out for each state visited. Actually, convergence of stochastic adap-
tive algorithms in general2 is conditional on an infinite number of visits to every pos-
sible process state. The impossibility of fulfilling this condition creates the explo-
ration/exploitation tradeoff: the agent must try alternative action policies which allows
a better exploration (and consequently a better model) of the state space, but at the same
time it must consider that good performance is attained only if the best action policy is
exploited. In the Control literature, this conflict between the parameter estimation ob-
jective (determining a correct model of the process) and the control objective (exercis-
ing the best possible action policy) is referred to as thedual control problem(Bertsekas,
1995a).

Direct state visitation as the only means of acquiring knowledge causes the prob-
lem above. The agent should be able togeneralizethe costly experience it gains from
visiting a state. In fact, in the last few years experience generalization has been ac-
knowledged as an extremely important issue to be tackled if RL methods are to be
considered useful engineering tools (Tesauro, 1992).

This problem of generalization is closely related to function approximation: the
capacity of representing an input/output relationship by using far fewer parameters
than classification features. Approximations are worth studying because of its practical
relevance (very few real problems allow for a solution based on explicit state and action
listings), and also because they have generalization as anemergent property.

1.3 Perceptual Limitations: The Achilles Heel of RL

We mentioned that the Markov condition is a necessary assumption for application
of the Temporal Differences technique. Unfortunately, learning agents are frequently
subject to perceptual limitations that keep them from completely discriminating pro-
cess states. In RL this cause theperceptual aliasingproblem: different states may have
the same representation for the agent, and as a consequence the same expected costs
will be assigned to them, even when this should not be the case. In practice, there are
two possible approaches for this problem (Lin and Mitchell, 1992): either using past
observations as an additional source of information about the present state, or consid-
eringattentionalagents that can actively select observations. The perceptual aliasing
problem, however, is a largely open issue, both from the theoretical and practical points
of view.

2RL algorithms are particular forms of stochastic adaptation.

7

1.4 Summary of Chapters

Chapter 2 presents the basic RL model and reviews the literature on learning meth-
ods. It explains how an autonomous learning agent operates and why TD techniques
are suitable, using as a starting point the theory of Markov Decision Processes and Dy-
namic Programming. The basic RL techniques are discussed assuming ideal conditions
of observability and dimensionality.

Chapters 3 and 4 put RL in a realistic Engineering perspective. In chapter 3, the
problem of function approximation and generalization is studied in the context of RL.
Chapter 4 is about the perceptual aliasing problem, a condition found in many practical
applications of autonomous learning.

8

Chapter 2

Reinforcement Learning: The
Basics

We now define a general model for Reinforcement Learning, based on the concept
of autonomy. Learning techniques for it will be analyzed, with an emphasis on the
Temporal Differences approach and its relationship with Optimal Control. Later on, we
will briefly discuss some variations of basic algorithms and other methods of historical
significance.

2.1 What Kind of Learning Agent?

The termself-improving reactive agentwas used by (Lin, 1991) to define the kind of
learning agent that is of interest for us. A generic definition for autonomous agents, on
the other hand, is given in (Russell and Norvig, 1995):

An agent is autonomous to the extent that its behavior is determined
by its own experience.

An agent is meant to be the entity that communicates with and tries to control an
external process by taking appropriate actions. These actions are collectively called
action policy1. A reactiveagent tries to control the process by using an action policy
mappeddirectly from its observations(instantly available information about the states
of the process) and internal conditions. Any output from this mapping is meant to
be derived from a simplecondition-actionrule. Once the agent selects an action and
applies it, the process changes its state (as a function of the action taken, past state
and some random disturbance) and presents it as a new observation to the agent. The
agent then takes another immediate action based on this new observation and possibly
on some internal condition2.

1‘Behavior’ is sometimes referred in the literature as a kind of high level control strategy (Matari´c, 1990),
that is, a subset of an action policy.

2The concept of reactiveness has been subject to some confusion. Our agents are reactive in a dynamic
response sense: they map actionsdirectly from observation and internal conditions, without explicit delib-
eration. An alternative definition says that a system is reactive if it minimizes the use of internal state (Gat
et al., 1994). We are mainly concerned with autonomous learning for realistic dynamic processes, thus the
emphasis on a dynamics-related property

9

What then characterizes autonomy? The key is to know what is meant byown ex-
perience. Experience itself is a concept closely related to the idea of learning or adap-
tation: it improves along time, and if behavior is a direct function of experience it must
also improve. The use of experience as such is characteristic of learning techniques in
general, and is exemplified by the standardsupervisorymethods for feedforward neural
networks, where learning is guided by an external teacher that presents the experiments
(training pairs).

Learning through the use ofown experience— i.e., self-improvement — is a
stronger concept. It implies that the agent itself must generate its experience, without
the help of a teacher. In this case, the only source of learning is the actual interaction
between agent and process, which must nevertheless give some indications about over-
all performance. These indications (calledreinforcements) are much less informative
than the training examples used in supervisory methods3.

Still, the definition given above is too stringent as it characterizes behavior as a
function solely of experience. It is convenient to includebuilt-in knowledge as an ad-
ditional determinant of behavior. In fact, basica priori decisions such as choice of
learning algorithm, architecture and representational features should be considered as
prior knowledge, because they are normally made available to the RL agent before it
starts the learning process. But less obvious built-in knowledge may also be impor-
tant: it has been argued (Brooks and Mataric, 1993) and demonstrated (del R. Mill´an,
1996; Kuipers, 1987) that realistic agents combining learning and rather elaborated
built-in knowledge (represented for instance by a knowledge of action policy strate-
gies for escaping from ‘dangerous’ situations) are usually much more successful than
those purely based ontabula rasalearning. Notice that this also makes sense if one
is interested in biological modeling, as evolution provides living beings with built-in
behavioral determinants.

A more precise definition of a learning agent in the sense we consider here would
then be4:

An agent that develops through own experience and with the help of
some built-in knowledge an action policy directly mapped from its obser-
vations and internal conditions.

The study of Reinforcement Learning agents used to have a strong biological mo-
tivation (Sutton and Barto, 1990), but in the last few years the enthusiasm switched
towards the Engineering applications of the idea. The great majority of these Engi-
neering applications, however, are directed towards problem solving in simulated sit-
uations, where a model is available and the cost of experimenting is simply translated
in terms of processor time. In these cases, RL algorithms have been mainly used as
alternatives to more traditional optimality techniques. Undoubtedly, many interesting
issues emerged from this model-based RL framework (a comprehensive review of re-
lated results can be found in (Bertsekas and Tsitsiklis, 1996)). Nevertheless, for many
realistic applications (e.g, robot learning), a suitable model may not be available and
action policies must be learned with a minimal number of trials, due to the additional
costs involved (Brooks and Mataric, 1993). These are the cases where experience is

3The reinforcements are normally associated to visitation to some particular states, and could then be
considered as part of the agent’s state observation. Pedagogically, however, it is convenient to make the
distinction.

4Henceforth, the termslearning agent, autonomous agentandReinforcement Learning agentwill be used
interchangeably to describe this kind of agent.

10

action a t
Process

Action

Selection

Cost Estimation

Experience Accumulation
Sensing

Agent

Built-in Knowledge

process state xt

reinforcement rt

Figure 2.1: A general model of the learning agent.

expensive, and correspond to the fundamental problem faced by the learning agent de-
fined above.

2.2 A General Model

We can now define a general model for our learning agent. Referring to figure 2.1, the
accumulation of experience that guides the behavior (action policy) is represented by
a cost estimatorwhose parameters are learned as new experiences are presented to the
agent. The agent is also equipped withsensorsthat defines howobservationsabout the
external process are made. These observations may be — if necessary — combined
with past observations or input to a state estimator, defining aninformation vectoror
internal statewhich represents the agent’s belief about the real state of the process.
The cost estimator then maps these internal states and presented reinforcements to
associated costs, which are basically expectations about how good or bad these states
are, given the experience obtained so far. Finally, these costs guide the action policy.
The built-in knowledge may affect the behavior of the agent either directly, altering the
action policy or indirectly, influencing the cost estimator or sensors.

The experience accumulation and action taking process is represented by the fol-
lowing sequence. At a certain instant of time, the agent:

1. Makes an observation and perceives any reinforcement signal provided by the
process.

2. Takes an action based on the former experience associated with the current ob-
servation and reinforcement.

3. Makes a new observation and updates its cumulated experience.

11

θ

f

x

Figure 2.2: The cartpole system.

2.3 An Example: The Cartpole Problem

The so-calledcartpole problemhas been frequently used for demonstrations on the
capabilities and limitations of self-improving agents (Barto et al., 1983; Michie and
Chambers, 1968; Widrow and Smith, 1963). The problem consists in finding an ap-
propriate action policy that balances a pole on the top of a cart for as long as possible,
whilst at the same time keeping the cart between limiting track positions (figure 2.2).
The actions are represented by a force applied horizontally to the cart, usually assum-
ing one out of two possible values�f or+f (bang-bangcontrol). The cartpole system
itself is described by a set of four state variables(x; _x; �; _�), that represent respectively
the position of the cart with respect to the center of the track, the linear velocity, the
angle of the pole with respect to the vertical axis and the angular velocity. ‘To balance’
means to keep the cart between the limits of the track and to prevent the pole from
falling down. Although designing a standard controller for the cartpole system from its
state equations is a simple textbook task (see for instance (Ogata, 1994)), the problem
is more complicated when there is no model available. In the RL context, the only rein-
forcement signal usually considered is a negative-valued cost for state transitions that
lead to a failure condition (cart hitting the track limits or pole falling down). Learning
through direct experimentation in this case means that the agent must try to control the
system a number of times but always receiving a reinforcement only when it fails to do
so, until a satisfactory action policy is found.

In this case, the experience accumulation and action taking process described above
is as follows. At timet, the agent observes the process state(xt; _xt; �t; _�t) (or a partial
observation of it). It then takes an action, observes the resulting state and receives the
reinforcement signal, which is always zero unless a failure condition occurs. Finally,
it updates the values stored in the cost estimator by recording the immediate outcome
(failure or success) of this new experience.

The cartpole problem has historical importance for Reinforcement Learning: it
was one of the first successful applications of an algorithm based on model-free action
policy estimation, as described in 1983 by Andrew Barto and Richard Sutton in their
pioneering paper (Barto et al., 1983). The source code for the original algorithm (which
is based on the AHC method described later on in this chapter) can still be found at the
URL site

12

� ftp://ftp.cs.umass.edu/pub/anw/pub/sutton/pole.c

It is well worth downloading and running it: starting from no knowledge whatso-
ever of the system dynamics, the algorithm manages to find an adequate action policy
in very short time.

2.4 Markov Decision Processes

The study of RL agents is greatly facilitated if a convenient mathematical formalism
is adopted. This formalism — known as Markov Decision Processes (MDPs) — is
well established, but assumes a simplifying condition on the agent which is, however,
largely compensated by the gained ease of analysis.

2.4.1 The Markovian Condition

The basic assumption on the study of Markov Decision Processes is theMarkov condi-
tion: any observationomade by the agent must be a function only of its last observation
and action (plus some random disturbance):

ot+1 = f(ot; at; wt) (2.1)

whereot is the observation at timet, at is the action taken andwt is the disturbance.
Naturally, if the agent can faithfully observe the states of the process — which by def-
inition summarize all the relevant information about the process dynamics at a certain
instant of time — then its observations are Markovian. On the other hand, if the obser-
vations made by the agent are not sufficient to summarizeall the information about the
process, a non-Markovian condition takes place:

ot+1 = f(ot;ot�1;ot�2; : : : ; at; at�1; at�2; : : : ; wt) (2.2)

In principle, it is possible to transform a non-Markovian problem into a Markovian
one, through the use ofinformation vectorsthat summarize all theavailableinforma-
tion about the process (Striebel, 1965). In general, however, the computational require-
ments for this are overwhelming, and the imperfect state information case permits only
suboptimal solutions (Bertsekas, 1995b).

In this chapter we analyze only the case in whichot provides complete information
aboutxt5. This is equivalent to perfect observability of states, which guarantees the
Markov condition and thus a chance to get the optimal solution of the so-called Markov
Decision Process problem defined below.

The disturbancewt introduces a stochastic element on the process behavior. It is
usually more adequate to express the dynamic of the process through a collection of
conditional transition probabilitiesP (xt+1jxt; at).

Of particular interest is the discounted infinite horizon formulation of the Markov
Decision Process problem. Given

� A finite set of possible actionsa 2 A,

� A finite set of process statesx 2 X ,

� A stationary discrete-time stochastic process, modeled by transition probabilities
P (xt+1jxt; at) and

5This means that we can indifferently usext or ot.

13

� A finite set of bounded reinforcements (payoffs)r(x; a) 2 R;

The agent must try to find out a stationary policy of actionsa�t = ��(xt) which mini-
mizes theexpected cost function:

V �(x0) = lim
M!1

E[

MX
t=0

tr(xt; �(xt))] (2.3)

for every statex0. The superscript� indicates the dependency on the followed action
policy, via the transition probabilitiesP (xt+1jxt; at = �(xt)). Thediscount factor
0 �
 < 1 forces recent reinforcements to be more important than remote ones. It can
be shown that theoptimal cost function

V �(x0) = lim
M!1

E[

MX
t=0

tr(xt; �
�(xt))] (2.4)

is unique, although there can be more than a single optimal policy�� (Puterman, 1994).

2.4.2 Solving MDP Problems: Dynamic Programming

Dynamic Programming (or DP for short) is a standard method that provides an optimal
stationary policy�� for the stochastic problem above. It actually encompasses a large
collection of techniques, all of them based on a simple optimality principle and on
some basic theorems.

Two useful operators that provide a shorthand notation for DP theorems are:

The Successive Approximation OperatorT� . For any cost functionV : X 7! R

and action policy� : X 7! A,

(T�V)(x) = r(x; �(x)) +

X
y2X

P (yjx; �(x))V (y) (2.5)

The Value Iteration Operator T . For any cost functionV : X 7! R,

(TV)(x) = min
a

[r(x; a) +

X
y2X

P (yjx; a)V (y)] (2.6)

Basic Dynamic Programming Theorems

Below are presented the fundamental DP theorems for discounted infinite horizon prob-
lems. Proofs can be found in many textbooks, such as (Bellman, 1957; Bertsekas,
1995b; Puterman, 1994).

Theorem 1 For any arbitrary bounded initial functionV (x) and statex, the optimal
cost function satisfies

V �(x) = lim
N!1

(TNV)(x) (2.7)

Theorem 2 For every stationary action policy� and statex, the cost function satisfies

V�(x) = lim
N!1

(TN
� V)(x) (2.8)

14

Theorem 3 (Bellman’s Optimality Equation) The optimal cost functionV � is the
fixed point of the operatorT, or in other words,V � is the unique bounded function
that satisfies

V � = TV � (2.9)

Theorem 4 For every stationary action policy�, the associated cost functionV� is the
fixed point of the operatorT�, or in other words,V� is the unique bounded function
that satisfies

V� = T�V� (2.10)

Basic Dynamic Programming Techniques

There are two main classes of well-established methods for finding out optimal policies
on MDPs. Both are based on the theorems above.

The Value Iteration method. This method consists simply on a recursive application
of the operatorT to an arbitrary initial approximationV of the optimal cost
function. AsV � is the fixed point ofT (Theorem 3), the method finds an optimal
policy through

��(x) = arg[lim
N!1

(TNV)(x)]

= argmin
a

[r(x; a) +

X
y2X

P (yjx; a)V �(y)] (2.11)

The Policy Iteration method. Given an initial policy�0, two successive steps are per-
formed in loop until�� (or a good approximation) is found.

In the first step, the current policy�k is evaluated (i.e., has its associated cost
calculated) either exactly, through the solution of the linear system of equations

V�k = T�kV�k (2.12)

or approximately, through a finite numberM of applications of the Successive
Approximation operator:

V�k � TM
�k
V0 (2.13)

This is thePolicy Evaluationstep.

In the second step, an improved stationary policy�k+1 is obtained through

�k+1(x) = arg[(TV�k)(x)]

= argmin
a

[r(x; a) +

X
y2X

P (yjx; a)V�k (y)] (2.14)

This policy�k+1 is called thegreedypolicy with respect toV�k .

15

2.5 From DP to RL: Monte Carlo Simulation

Dynamic Programming requires an explicit, complete model of the process to be con-
trolled, represented by the availability of the transition probabilities. Autonomous
learning, on the other hand, is completely based on interactive experience and does
not require a model whatsoever. Before we get there, though, it is interesting to con-
sider an intermediate case, which is a bridge linking DP and RL: the availability of a
‘weak’ model, which allows us to simulate generated sample transitions, without the
need for a complete analytic description based on transition probabilities.

Let us start with the following problem: For a given fixed action policy�, how is
it possible to calculateby simulation— i.e., without the help of standard DP — the
cost functionV�? The simplest solution is to run many simulated trajectories from
each state and average the cumulative reinforcements obtained, doing aMonte Carlo
simulation.

For a given statex0, let us denotev�(x0;m) the simulated discounted cumulative
cost obtained afterx0 is visited themth time:

v�(x0;m) = r(x0) +
r(x1) +
2r(x2) + : : : (2.15)

wherex1;x2; : : : are the successively visited states for that particular run, andr(xk) �
r(xk ; �(xk)), a simpler notation considering that the action policy is fixed. Assuming
that the simulations correctly average the desired quantities, we have:

V�(x0) = E[v�(x0;m)] = lim
M!1

1

M

MX
m=1

v�(x;m) (2.16)

This average can be iteratively calculated by a Robbins-Monro procedure (Robbins and
Monro, 1951):

V�(x0) V�(x0) + �m[v�(x0;m)� V�(x0)] (2.17)

where�m = 1=m.

2.6 Reinforcement Learning

As mentioned in the last section, solving MDP problems through Dynamic Program-
ming requires a model of the process to be controlled, as both the Successive Ap-
proximation and Value Iteration operators explicitly use the transition probabilities.
Monte Carlo methods, on the other hand, use a weak simulation model that does not
require calculation of transition probabilities, but does require complete runs before
updates can be performed. Let us now analyse the basic RL algorithm, which allows
for model-freeandonline updating as the learning process develops.

2.6.1 The Temporal Differences Method

Almost every RL technique currently in use is based on the Temporal Differences (TD)
method, first presented by (Sutton, 1988). In contrast with previous attempts to imple-
ment the reinforcement idea, TD provides a very consistent mathematical framework.

16

Cost Evaluation by Temporal Differences

For on-line purposes, equation 2.17 suffers from a drawback:V�(x0) can only be
updated afterv�(x0;m) is calculated from a complete simulation run. The TD method
provides an elegant solution to this problem by forcing updates immediately after visits
to new states.

In order to derive Temporal Differences, let us first expand equation 2.17:

V�(x0) V�(x0) + �m[r(x0) +
r(x1) +
2r(x2) + : : :� V�(x0)] (2.18)

Adding and subtracting terms, we get

V�(x0) V�(x0) + �m[(r(x0) +
V�(x1)� V�(x0)) +

(r(x1) +
V�(x2)� V�(x1)) +

2(r(x2) +
V�(x3)� V�(x2)) +

� � �]

or

V�(x0) V�(x0) + �m[d0 +
d1 +
2d2 + : : :] (2.19)

where the termsdk = r(xk+1)+
V�(xk+1)�V�(xk) are calledtemporal differences.
They represent an estimate of the difference at timek between theexpectedcostV�(xk)
and thepredictedcostr(xk+1) +
V�(xk+1). Equation 2.19 is theTD(1) method for
calculation of expected costs. A more general formulation is to discount the influence
of temporal differences independently of
 by using a factor� 2 [0; 1], originating the
TD(�) method:

V�(x0) V�(x0) + �m[d0 +
�d1 +
2�2d2 + : : :] (2.20)

At this stage, one must be careful not to confuse the different roles of
 — which
is a discount on future reinforcements, and� — which is a discount on future temporal
differences. The first is usually part of the problem specification, and the second is a
choice on the algorithm used to solve the problem.

TD(�) as defined above is not directly implementable, because it is non-causal:
future differencesd1; d2; : : : are used for updatingV�(x0). We can fix this up by using
the so-calledeligibility traces, memory variables associated to each state, defined as:

et(x) =

�
�
et�1(x) if x 6= xt
�
et�1(x) + 1 if x = xt

We can then produce acausalimplementation ofTD(�) that is equivalent to its
non-causal counterpart (equation 2.20). All the eligibility traces are reset to zero at
startup, and then at any timet > 0, the learning agent:

1. Visits statext and selects actionat (according to policy�).

2. Receives from the process the reinforcementr(xt; at) and observes the next state
xt+1.

3. Assignset(xt) = et(xt) + 1

4. Updates the costsVt(x) for all x according to:

Vt+1(x) = Vt(x) + �t[r(xt; at) +
V̂t(xt+1)� Vt(xt)]et(x) (2.21)

17

5. For allx doet(x) =
�et(x) + 1

6. Repeats steps above until a stopping criterion is met;

Regardless of causality,TD(�) has been proved to converge to the correct dis-
counted cost (both causal and non-causal realizations) provided some conditions are
met (Jaakkola et al., 1994), the most important of those being that all the states must
be experienced an infinite number of times. The usefulness of0 � � < 1 has been
verified in practice (e.g., (Tesauro, 1992))and demonstrated analytically in some very
simple cases (Singh and Dayan, 1996), but no consistent general results are available.
Very often,TD(0),

V�(xk) V�(xk) + �m[r(xk) +
V�(xk+1)� V�(xk)] (2.22)

is adopted as a starting point for both theoretical studies and practical implementation.
TD(�) is a robust mechanism for the evaluation of a given policy, and can be used

in combination with the Successive Approximation operator for an implementation of
an iterative Policy Iteration method. However, there is no model-free TD equivalent
for a policy improvement as provided by the Successive Approximation operator:

�k+1(x) = argmin
a

[r(x; a) +
P (yjx; a)V �k(y)] (2.23)

This motivates us to consider Value Iteration (instead of Policy Iteration) as a basic DP
technique over which it would be possible to develop acompletelymodel-free action
policy learning algorithm. The next section shows that there is such an algorithm.

2.6.2 Q-Learning

Temporal Differences as discussed above is a method for calculating the expected costs
for a given policy�. Although it can be used for the learning of action policies through
the use of model-based iterative versions of the Policy Iteration algorithm, we would
like to have a computational method for adirectmodel-free learning of optimal actions.

Q-learning, an ingenious technique proposed by (Watkins, 1989), is an iterative
method for action policy learning in autonomous agents. It is based on the action (or
Q) value measurementQ(xt; at), defined as

Q(xt; at) = E[r(xt; at) +
V �(xt+1)]

= r(xt; at) +

X

xt+12X

P (xt+1jxt; at)V
�(xt+1)] (2.24)

which represents the expected discounted cost for taking actionat when visiting state
xt and following an optimal policy thereafter. From this definition and as a conse-
quence of the Bellman’s optimality principle, we have

V �(xt) = TV �(xt)

= min
a

[r(xt; a) +

X

xt+12X

P (xt+1jxt; a)V
�(xt+1)]

= min
a

Q(xt; a) (2.25)

and thus

Q(xt; at) = r(xt; at) +

X

xt+12X

P (xt+1jxt; at)min
a

Q(xt+1; a) (2.26)

18

or

Q(xt; at) = (TqQ)(xt; at) (2.27)

whereTq is theAction Value operator

(TqQ)(x; a) = r(x; a) +

X
y2X

P (yjx; a)min
u

Q(y; u) (2.28)

Notice that this resembles the Value Iteration operatorT previously defined, but
there is a fundamental difference: here, themin operator isinsidethe expectation term.
Additionally, notice from equation 2.27 that the action value functionQ is the fixed
point of the operatorTq, in the same sense that the cost functionV� is the fixed point
of the operatorT�, for a given action policy�. And theQ values have a remarkable
property: they are policy-independent, yet the optimal action for a given statex can be
obtained through��(x) = argmina[Q(x; a)].

These characteristics (min operator inside the expectation term and policy indepen-
dence) allow an iterative process for calculating an optimal action policy (via action
values) which is the essence of theQ-learning algorithm, defined as follows. At time
t, the agent:

1. Visits statext and selects an actionat.

2. Receives from the process the reinforcementr(xt; at) and observes the next state
xt+1.

3. Updates the action valueQt(xt; at) according to:

Qt+1(xt; at) = Qt(xt; at)+

�t[r(xt; at) +
V̂t(xt+1)�Qt(xt; at)] (2.29)

4. Repeats steps above until stopping criterion is met;

whereV̂t(xt+1) = mina[Qt(xt+1; a)] is the current estimate of the optimal expected
costV �(xt+1). The greedy actionargmina[Qt(xt+1; a)] is the best the agent thinks it
can do when in statext+1, but for the initial stages of the training process it is a good
idea to use randomized actions that encourage exploration of the state space. The first
three items on the sequence above define theexperience tuplehxt; at;xt+1; r(xt; at)i
undergone by the agent at a given instant of timet+ 1.

Observe that Q-learning assumes a tabular representation in which action values
for each state are stored in separate tables, one for each action, as in Figure 2.3.

2.6.3 Why is Q-Learning so Popular?

Q-learning is certainly the most popular RL method. There are some reasons for
this. First, it was the pioneering (and up to the moment, the only) thoroughly stud-
ied RL method for control purposes, with a strong proof of convergence established
in (Jaakkola et al., 1994)6 Second, it is the extensionpar excellenceof the autonomous
learning concept to Optimal Control, in the sense that it is the simplest technique that
directly calculates the optimal action policy without an intermediate cost evaluation

6Actually, a very ingenious proof of convergence was published shortly after Watkins’ thesis publica-
tion (Watkins and Dayan, 1992), making it the first RL control method to have a solid ground.

19

...

. . .

...

. . .

.

Cost Estimator

. . .
Action Values Action Values Q(x , a)2

Q(x , a)2

2Q(x , a)2

Q(x , a)1

Q(x , a)1

Q(x , a)1

1Q(x , a)1 1 Q(x , a)2 2

N N

Figure 2.3: Look-up table implementation in Q-learning. Each table separately stores
all the action values for each action.

step and without the use of a model7. The third reason for Q-learning’s popularity
was some early evidence that it performed better than other RL methods (Lin, 1992),
(see below for a description of some of these methods). With the recent proliferation
of alternative RL algorithms, this evidence is not as clear today as it was in the late
Eighties. In fact, many other techniques have a record of successful performance, to be
considered with some reserve due to a widespread lack of robust statistical analysis of
results.

2.6.4 Alternatives to Q-Learning

An interesting variation for Q-learning is the SARSA algorithm (Sutton, 1996), which
aims at using Q-learning as part of a Policy Iteration mechanism. Its iteration loop is
based on the action value update

Qt+1(xt; at) = Qt(xt; at)+

�t[r(xt; at) +
Qt(xt+1; at+1)�Qt(xt; at)] (2.30)

Naturally, ifat+1 is chosen to beargmina[Qt(xt+1; a)] this algorithm is equivalent
to standard Q-learning. SARSA however admitsat+1 to be chosen randomly with a
predefined probability. Like Q-learning, this method has been proved to converge to
the optimal action values, provided that the actions assimptotically approach a greedy
policy (Szepesv´ari, 1997). Because it eliminates the use of themin operator over the
actions, this method is faster than Q-learning for situations where the action set has
high cardinality. Moreover, it allows us to consider a SARSA(�) algorithm, similar to
causalTD(�). All the eligibility traces are reset to zero at startup, and then at any time
t > 0, the learning agent:

1. Visits statext and selects actionat (according to policy�).

7Of foremost importance in the popularization of the link between Q-learning and DP was Satinder
Singh’s PhD thesis (Singh, 1994)

20

2. Receives from the process the reinforcementr(xt; at) and observes the next state
xt+1.

3. Assignset(xt; at) = et(xt; at) + 1

4. Updates the action valuesQt(x; a) for all x; a according to:

Qt+1(x; a) = Qt(x; a)+

�t[r(xt; at) +
Qt(xt+1; at+1)�Qt(xt; at)]et(x; a) (2.31)

5. For allx; a doet(x; a) =
�et(x; a) + 1

6. Repeats steps above until a stopping criterion is met;

Other attempts at combining Q-learning andTD(�) are the Q(�) (Watkins, 1989)
and Peng and William’s algorithms (Peng and Williams, 1996).

Many successful applications of RL are simulation-based (or model-based), in the
sense that state sequences can be simulated before an actual experience takes place.
There is therefore a model from which those simulations originate, although it does
not imply an explicit use of transition probabilities (the model can be slowly built up
as experimentation progresses). Such methods have a potential capability of greatly
reducing the huge computational requirements of DP, whilst at the same time making
better use of experience than standard TD methods.

The Dyna-Q algorithm, proposed by (Sutton, 1990), is characterized by the iter-
ative learning of a direct model for the transition probabilities and rewards, simulta-
neously with the application of a DP method to compute the action values and action
policy. Given an experience tuplehxt; at;xt+1; r(xt; at)i, Dyna-Q updates a model
~P (xt+1jxt; at) for the transition probabilities and only then updates a policy for the
agent using one step of value iteration to approximate the solution of equation 2.26:

Q(xt; at) r(xt; at) +

X
xt+1

~P (xt+1jxt; at)minaQ(xt+1; a) (2.32)

Finally,k additional similar updates are made on randomly chosen states. A new action
is then chosen as in standard Q-learning.

Notice that Dyna-Q is anon-linelearning method, because the agent does not wait
until the transition probabilities are correctly estimated. It uses information more effi-
ciently than standard Q-learning because it makes more than a single update per stage,
at the expense of additional storage for the estimated transition probabilities. There are
some variants for Dyna-Q that make a more efficient choice of thek states chosen for
update (Moore and Atkeson, 1993).

2.6.5 Other RL techniques: A Brief History

RL techniques have been proposed since at least the late fifties, long before the Tem-
poral Differences theory had been developed. The diversity of approaches testifies to
the importance and complexity of the basic autonomous learning concept. This section
briefly presents some methods that are not direct applications of the TD method. Some
of them, however, are true precursors of Temporal Differences for being also motivated
by the idea of successive predictions.

The BOXES algorithm (Michie and Chambers, 1968) was one of the earliest at-
tempts to solve control problems in a model-free context. Its basic motivation is the

21

fact that it may be advantageous to decompose a large task into a collection of small
subtasks, each of them represented by a partition (box) in the state space of the original
problem.

The idea of using a collection of boxes as a discretized version of the original
problem is reminiscent of Q-learning, but BOXES isnota TD method. It bases learning
on life termsL(x; a), functions of the elapsed time between use and failure of a given
action-box pair(x; a) 8:

L(x; a) =

nX
i=0

(Tfinal � Ti(x; a)) (2.33)

whereTfinal is the complete duration of the trial and theTi(x; a) are the times at
which the pair(x; a) have been visited. Onlyafter the trial is over,life-timetermsLT
— which ultimately are responsible for the action choice — are changed according to
the update rule:

LT (x; a)
LT (x; a) + L(x; a) (2.34)

where0 �
 < 1 is a discount factor. Notice thatLT is a discounted accumulation of
pastL terms.

BOXES was proposed almost thirty years ago, but already at that time its devel-
opers had interesting insights about autonomous learning. As a matter of fact, the
algorithm has a mechanism for action selection that encourages exploration, correctly
stressed by the authors as an important issue. The technique, however, always suffered
from a lack of formal development, ironically due to its own novelty: The update rules
are empirical, and more recent developments (Sammut, 1994) (McGarity et al., 1995)
have not tackled the possibly complex role of the algorithm parameters.

A performance comparison between BOXES and AHC in the cartpole problem was
highly favorable to the Temporal Differences method (Barto et al., 1983).

Another interesting development not often mentioned in literature is the Adap-
tive Optimal Controller by Witten (Witten, 1977). Studying the problem of design-
ing a learnable controller able to minimize a discounted reward of the form(1 �

)
Pr

t=0

tr(xt), Witten managed to prove some convergence theorems for learning

rules similar to the ones used in TD methods. The theorems, however, are all about
convergence of the mean for the discounted costs,i.e., they establish the convergence
to zero of the error between themeanvalue of cost estimates and the real expected
costs. Moreover, Witten did not fully analyze the problems caused by policy changes,
and considered only small perturbations of the cost updating process. The conclusions
were pessimistic: if the cost estimates did not converge rapidly, the action policy could
deteriorate. As showed much later, this is not the case for Q-learning. Nevertheless,
Witten’s development was insightful and was possibly the first attempt to formally link
RL with the theory of Markov Decision Processes. Its limited success only accentuates
the real breakthrough that was provided by the development of TD methods.

The Bucket Brigade algorithm (Holland and Reitman, 1978), originally proposed
for solving the credit assignment problem in classifier systems, is another example of
a technique to solve the credit assignment problem. Classifier systems are parallel
rule-based systems that learn to perform tasks through rule discovery based on genetic
algorithms (Dorigo and Colombetti, 1994). Rules are represented by classifiers, each of
which is composed by aconditionpart and anactionpart. Input messages (‘states’ of

8It might be possible in principle to use measures of performance other than elapsed control time.

22

the external process) are compared to all conditions of all classifiers, and the messages
specified by the action part of all the matching conditions are then put in a message
list that represent the ‘agent’s’ current output. The many rules are generated randomly,
but are then filtered out and mutated through genetic operations that select ‘the most
fit’, i.e., the ones that produce the best output messages. Assessing the fitness of the
classifiers is the RL task involved.

The Bucket Brigade algorithm operates as follows: When a matching classifierC
places its message on the message list, it pays for the privilege by having itsstrength
St(C) reduced by abidBt(C) proportional toSt(C):

St+1(C) = St(C)�Bt(C) (2.35)

Then, the classifiersC 0 that sent the message matched byC have their strength in-
creased by the shared amountaBt(C) of the bid:

St+1(C
0) = St(C

0) + aBt(C) (2.36)

The strength represents the fitness or expected reward associated with a given classi-
fier. The algorithm operates by propagating the bids backwards in time, and as these
bids are themselves proportional to the strengths, there is a temporal credit assignment
process in the sense that sequences of messages associated with high final payoffs (re-
inforcements), eventually added to the rules that led to them, will tend to be defined by
the corresponding classifiers.

A comparison between a version of the Bucket Brigade algorithm and Q-learning
in a single example task gave inconclusive results (Matari´c, 1991).

There are other developments in RL theory and practice that deserve mention.
Probably the first RL technique to appear in the literature was the checkers playing
machine developed by (Samuel, 1959), which punishes or rewards moves according to
the difference between successive position evaluations, heuristically computed. A kind
of non-discounted RL method is theSelective Bootstrap Adaptationnetwork (Widrow
et al., 1973), that uses modified ADALINE elements (Widrow and Hoff, 1960) whose
weights are changed according to a RL process divided in two phases. In the first, the
control task is performed without any weight modification. In the second, the control
task is retried with the weights updated to reward or punish the corresponding outputs,
depending on the overall performance computed in the first phase. The method is then
similar to BOXES in the sense that updates are made only after the end of the con-
trol trial. Finally, (Saerens and Soquet, 1989) suggested a model-free neural controller
based on qualitative information about the rate of variation of the process output with
respect to the agent’s actions. The authors reported good results in the cartpole task,
but stressed that handcrafted rules were necessary to keep the cart within the track
boundaries.

23

Chapter 3

Experience Generalization

We now introduce RL agents to one of the problems of the real world: the large number
of states and action possibilities encountered in many applications. This dimensionality
problem forces the agent to be more audacious in its experience updating process,
by producing modifications not just for a single state-related experience per iteration,
but also to other states, through a process called generalization. Moreover, it is well
possible that the state space can be so large that representing all the possible states (let
alone producing explicit modifications on its related costs) is infeasible. This brings us
to the problem of function approximation, which implies compact representations of
states for which generalization is anemergentproperty. Finally, there is the problem
of how to pinpoint state features upon which a similarity metric for the generalization
process is defined. This motivates the use of online, experience dependent clustering
or splitting of states, discussed at the end of this chapter.

3.1 The Exploration/Exploitation Tradeoff

One of the necessary conditions upon which RL algorithms can find an optimal action
policy is the complete exploration of the state space, normally infeasible in practical
situations. When control and learning are both at stake, the learning agent must try
to find a balance between theexplorationof alternatives to a given policy and the
exploitationof this policy as a mechanism for assessing its associated costs. In other
words, it must consider that trying unknown alternatives can be risky, but that keeping
the same policyad infinitumwill never lead to improvement.

This tradeoff between caution and probing, between control objective and param-
eter estimation objective is a well-known issue in Optimal Control theory and is com-
monly referred to as thedual control problem(Bertsekas, 1995b). RL methods usually
include a stochastic action selector that allows some additional exploration of the state
space, but this is not enough for reasonably large state spaces (i.e., spaces with a large
number of discretized states), unless a very long training time is assumed.

3.2 Accelerating Exploration

The exploration/exploitation tradeoff would not be a problem of practical importance
if exploration of the state space could quickly provide reasonable estimates for costs or

24

action values. Unfortunately, this is not the general case, as usually multiple visitations
to every single state are necessary before a good action policy can be obtained. We can
then say that the spatial and temporal locality of RL methods is inefficient: it makes
bad use of the experience by slightly updating only the cost or action value associated
with the corresponding visited state.

Two approaches are possible for improving the performance of RL methods with
respect to the exploration problem: a) generalizing the experience obtained from single
updates using predefined features or b) iteratively clustering or splitting states and thus
concentrating resources on ‘interesting’ parts of the state space.

3.3 Experience Generalization

Experience generalization can occur in two contexts. The first is when a look-up table
representation of the state space is possible, but even so a desired level of performance
is difficult to attain. These are the cases when the agent is subject to a time constraint
for the learning process which does not give it a chance to frequently experiment every
single state transition, or when there is aexperience costthat limits experimentation
(this is often the case for real robots). In these situations, an embedded mechanism that
generalizes the consequences of real experiences to those that have not been sufficiently
experimented can be useful.

The second context is when compact function approximation schemes are neces-
sary due to an extremely large number of states that makes a look-up table implemen-
tation of the state space impossible. Typically, these approximations are implemented
by function approximators that associate states or state features with costs or action
values. In this case, experience generalization is anemergentproperty of the approxi-
mation scheme.

The generalization issue in RL can be seen as astructuralcredit assignment prob-
lem. It impliesspatialpropagation of costs across similar states, whilst temporal credit
assignment — as performed by standard RL algorithms — impliestemporalpropaga-
tion of costs. Figure 3.1 illustrates these concepts. Generalization is a complex problem
because there is no ‘Spatial Difference’ learning algorithm: the feature that defines how
structurally similar states are with respect to cost (or action value) expectations is pre-
cisely the optimal cost (action value) function, obviously not available in advance. For
standard Temporal Differences acting exclusively on the time dimension, similarity be-
tween sequentially visited states is defined by the discount factor — which is given in
advance as a parameter of the problem — and by the frequency of experiences, which
is assessed online.

3.3.1 Experience Generalization in Lookup Tables

In this case, states can be represented in a lookup table and there is model-free learning
of action policies. Cost (or action value) generalization can be controlled along time, a
characteristic that is convenient because measures of state similarity frequently cannot
be chosen adequately and a convenient sampling of states cannot be defined in ad-
vance. Notice that the possibility of representing the state space in tabular form makes
experience generalization apurposefulproperty, and not an emergent characteristic.

In one of the first studies on RL applied to real robotic navigation (Mahadevan and
Connell, 1992), the authors observed the structural credit assignment problem and pro-
posed a generalisation solution to it based on the fact that ‘similar’ sensed states must

25

time

t

t+1

t+2

t+3

t+4

Figure 3.1: Structural and temporal credit assignment. The dark circles are states vis-
ited in a temporal sequencet; t + 1; t + 2; t + 3; t + 4. The curved arrows represent
propagation of temporal updates, and the dashed arrows represent propagation of the
structural credit assignment among similar states that are not visited in sequence.

26

state x
Approximation g

feature vector

parameter vector W

Feature Extraction F
cost

Figure 3.2: Feature-based compact representation model.

have ‘similar’ costs. They defined a weighted Hamming distance for the calculation
of this similarity based on a previously assessed relative importance of sensors. The
reported experiments showed that the use of this hand coded approach led to results
similar to the ones obtained when statistically based clustering (described near the end
of this chapter) was used. However, as the main concern was experimental evaluation
of RL methods in modular tasks, no formal or deeper studies on the generalization
issue were made.

An extension of this concept is the use ofsoftlyaggregated states in Q-learning, as
proposed in (Singh et al., 1995). In this case, sets defined by groups of similar states
are not disjoint, but defined by probability distributions. Error bounds for the result-
ing approximations can be obtained for this algorithm, and a recent result (Szepesv´ari
and Littman, 1996) shows that any form of compact representation based on tables
in a space partitioned by sets of similar states actually converges, provided that the
sampling of state-action pairs comes from a fixed distribution or, more generally, if
they are ergodically sampled1. However, the asymptotic values depend both on the
similarity metricand on this sampling, and may not be close to the optimal ones. A
way out of this problem is to consider a temporally ‘vanishing’ similarity (or a slow
state deaggregation) so that standard RL (over the real states) acts on later stages of
training (Ribeiro, 1998; Ribeiro and Szepesv´ari, 1996).

3.3.2 Experience Generalization from Function Approximation

The problem of how to generate useful generalization when compact representations
are necessary is an extremely complex one for RL algorithms. A suitable model for
the general function approximation problem is thefeature-based compact representa-
tion (Tsitsiklis and Roy, 1996), illustrated in figure 3.2. It divides function approxi-
mation into two stages. The first one is the feature extraction phase, where each state
x 2 X is mapped to a hand crafted feature vectorF (x) = (f1(x); : : : ; fk(x)) that
encodes the relevant properties ofx. A feature is basically a discrete measure of simi-
larity, and this first stage does exactly what a generalization scheme for look-up table
representations does. If the new space defined by the feature vectors is still too large
to allow a tabular representation, a second phase that employs a compact parametric
function approximator is necessary. This approximator can be a linear or nonlinear
architecture that generates an approximation~V (x;W) = g(F (x);W) for the costs or
action values.

1I.e., if state-action pairs(x; a) are sampled assimptotically according to fixed distributionsp1(x; a)
(P (xt = x; at = a) converges top1(x; a)).

27

x1 x2

Figure 3.3: A two-states Markov chain for which a least-squares approximation method
for cost calculation may diverge.

Function approximators such as artificial neural networks have been used in RL for
a long time, specially for cost evaluation. Initial developments such as an expert-level
Backgammon playing TD-based neural network (Tesauro, 1992; Tesauro, 1995) were
very encouraging (see discussion at the end of this section), but disastrous results in
simple domains were also reported (Boyan and Moore, 1995). The trouble is that gener-
alisation in DP (and, by extension, in RL) is not a simple approximation problem where
given a set of ‘training’ instancesf(x1; V �(x1)); (x2; V �(x2)); : : : ; (xk; V �(xk))g a
convenient interpolator must be found, simply because the optimal costsV � are not
available in advance. Consider what would be a straightforward attempt of using a
standard ‘least-squares’ fit method for the parameter vectorW of a cost approximator
V̂ (x;W):

Wt+1 = argmin
W

X
x

(V̂ (x;W)�TV̂ (x;Wt)
2 (3.1)

as an approximation scheme to what could be a least-squares method if the optimal
costsV � were available:

Wt+1 = argmin
W

X
x

(V̂ (x;W)� V �(x))2 (3.2)

This seems to make sense because each iteration in this case approximates the standard
Value Iteration method described in chapter 2. Nonetheless, the following counterex-
ample — originally described in (Bertsekas, 1995a) — shows that even if the states are
perfectly discriminated by this approximation scheme, divergence can take place.

Consider the simple two-states Markov chain illustrated in figure 3.3. There is no
control policy and every state reward is0, so the optimal costV � associated to each
statex1 andx2 is also0. Consider a linear function approximator of the form

V̂ (x;w) = wf(x); x 2 fx1; x2g (3.3)

where the featuref is such thatf(x1) = 1 andf(x2) = 2.
Notice that ifw = 0 the correct optimal cost is obtained, so a perfect representation

is possible. Applying one step of the ‘least-squares’ fit method 3.1 leads to

wt+1 = argmin
w

X
x

(V̂ (x;w) � TV̂ (x;wt)
2

= argmin
w

((w �
2wt)
2 + (2w �
2wt)

2)
(3.4)

Hence,

wt+1 =
6

5

wt (3.5)

28

and divergence takes place if
 > 5=6.
Complications such as this seems to motivate the use of look-up table representa-

tions whenever possible, specially because no strong theoretical results for nonlinear
compact representations are available. If the number of state features is small enough,
a particular class of approximators can be defined by assigning a single value to each
point in feature space, in such a way that the parameter vectorW has one compo-
nent for each possible feature vector. This corresponds to a split of the original state
space into disjoint setsS1; S2; : : : ; Sm of aggregate states, each set ideally represent-
ing states that should have the same optimal costs. In this case,g acts as a hashing
function, and we thus have an alternative view of the algorithms considered in the pre-
vious section. Formally,~V (x;W) = wj ;8x 2 Sj , and a natural update rule for the
cost parameters is

wj
t+1 = wj

t + �jt (TV̂ (x;W)� wj
t) (3.6)

where�jt = 0 if xt =2 Sj .
Independently of how the states are sampled, it is possible to define theoretical

worst case bounds for the resulting approximations which depend on the quality of the
chosen features (Tsitsiklis and Roy, 1996). Similar bounds can be obtained for some
classes of linear function approximators and for the Q-learning algorithm (Bertsekas
and Tsitsiklis, 1996). As we mentioned before, however, an additional dependency on
the state-action sampling is present in this last case.

Yet, we must stress that, even considering all the possible drawbacks of function
approximation applied to RL, a very careful feature selection and the availability of
a simulation model can lead to impressively successful results. Among those suc-
cesses stands TD-Gammon, the aforementioned TD-based feedforward neural network
that autonomously learn how to play Backgammon at expert level (Tesauro, 1995).
TD-Gammon produces a mapping from board state to corresponding expected reward,
for a given action policy. It thus corresponds to an on-line version of the Policy Evalu-
ation mapping. Learning of action policies is then carried out in the following way: for
each board statext, all the possible actions are tried off-line and the one that gives the
largest expected reward for the new statext+1 is chosen. The difference between the
expected reward forxt+1 and the one forxt is then used to change (through gradient
descent) the weights of the network for the inputxt. Pseudocode that can be used for
implementing a version of this algorithm (and for any other implementation combining
TD and the standard error backpropagation method in a neural network) can be found
at:

� ftp://ftp.cs.umass.edu/pub/anw/pub/sutton/td-backprop-pseudo-code

Actually, there are many TD variants that use a simulation model to compare and
approximate future states with respect to cost evaluation, and the best practical results
on RL have actually been obtained with this approach. For instance, a TD approximat-
ing architecture for channel allocation in cellular telephony systems that outperforms
many commonly used heuristic methods has been recently reported (Singh and Bert-
sekas, 1997). A Java demo for it can be found at:

� http://www.cs.colorado.edu/ baveja/Demo.html

Another architecture was reported to solve a complex elevator scheduling prob-
lem (Crites, 1996). Even though the idea of using off-line experience to simulate model

29

Agent

Sensing

xt

Action
Selection

Evaluation

Module

Policy

Module

reinforcement rt plant state

cost
action

Figure 3.4: An Adaptive Heuristic Critic (AHC) agent. The Policy Module generates
improved actions for a given policy using the costs estimated by the Evaluation Module.

behavior violates the basic autonomous learning principles, its applicability to engi-
neering situations where this model is available is indisputable and is demonstrated
by these and other examples. A comprehensive review on the subject can be found
in (Bertsekas and Tsitsiklis, 1996).

The Adaptive Heuristic Critic

Let us now consider with special attention the first TD-based technique proposed for
model-free action learning and function approximation: the Adaptive Heuristic Critic
(AHC) method. Its first results on the task of learning to control the cartpole sys-
tem (Barto et al., 1983) draw large interest to the TD approach. Unlike Q-learning,
AHC is an actual attempt at a model-free Policy Iteration mechanism: it is better un-
derstood as an attempt to combine the policy evaluation step with an on-line action
selection strategy. Despite having largely unknown properties with respect to conver-
gence conditions, AHC works well in many situations.

An AHC architecture is illustrated in Figure 3.4. It has two main components:
an Evaluation Modulewhich computes an approximation of the cost functionV (:)
for every input state, and aPolicy Modulewhich iteratively tries to estimate an opti-
mal action policy��(:). An stochastic action selector is used to generate exploratory
random actions at the beginning of the training process. During learning, both the
evaluation and policy modules are adjusted. The evaluation module operates as in the
simulation-based methods we mentioned in the last section: for any given state, its

30

parameters are updated by comparing the current outputV (xt) with the expected cost
r(xt; at)+
V (xt+1). The action that led toxt+1, however, is not determined through
off-line comparison between the cost functions obtained from the application of dif-
ferent actions. Instead, the action is also computed on-line as the output of the policy
module. The parameters of the policy module, on its turn, are updated according to
a gradient method which encourages or discourages the current action, depending if
the updatedV 0(xt) is smaller or larger than the formerV (xt). The underlying idea is
that if the updated cost is smaller, than the corresponding action should be encouraged
because it decreases the expected cost for the visited state. Notice that the policy net-
work must not be updated with respect to other actions, since from a single experience
nothing is known about their merits.

Separately setting up the right learning parameters in the AHC method can be very
difficult, as the evaluation and policy modules perform tasks that are actually conflict-
ing. The evaluation module needs as muchexploitationof a given action policy as
possible, in order to correctly assess it. On the other hand, the policy module needs as
muchexplorationof the state space as possible, in order to find out the actions that lead
to the ‘best’ parts of the state space. However, the assessment of these actions depend
on good cost evaluations, that must be actually provided by the evaluation module.

The CMAC

An attempt at solving the generalization problem that involves a tabular representa-
tion, but without the need of a memory position for every state-action pair was pro-
posed in the same report where Q-learning was firstly put forward (Watkins, 1989),
and consists of the use of a sparse coarse coded approximator, or CMAC (Albus,
1971) (Thomas Miller, III et al., 1990). A CMAC is represented by a) a set of overlap-
ping tilings, each of them corresponding to a collection of disjoint tiles that partition
the state space, b) an arrayU = u[1]; : : : ;u[n] of scalar or vector values adjusted
incrementally, and c) a hash functionH which maps each tile to an element ofU. The
tilings are arranged in such a way that each point in the state space corresponds to a
collection of tiles, each from a different tiling.

In the context of Q-learning, the elements of the arrayU actually share the action
values for the state-action pair(x; a), encoded by the associated tiles. If, say,5 tiles
t1; : : : ; t5 are selected,H associates them with the corresponding array elementsk1 =
H(t1); : : : ; k5 = H(t5), and the action value is calculated as:

Q(x; a) = (u[k1] + : : :+ u[k5])=5 (3.7)

During learning, all the array elements associated with the visited state are updated
accordingly:

u[k1] �[r(x; a) +
V̂ (y) �Q(x; a)] (3.8)

Figure 3.5 illustrates the mappings involved in the CMAC approach. The advantages
of this method are its computational speed and simplicity, coupled with a local gen-
eralization capability (a limited set of tiles is ‘active’ for a given input, provided the
number of elements in the arrayU is large enough). It has been argued (Sutton, 1996)
that this locality leads to more successful results than global approximators (e.g., neu-
ral networks), but it is clear that even local generalization can cause problems if it is
not properly controlled.

31

U

T1

T2

T3

T1T2T3

Q(. , a)

H

Figure 3.5: The CMAC approach. Each tiling (in this case,T1, T2 andT3) has a single
tile associated with the state of the process. The hash functionH then maps the tiles to
different positions in U.

3.4 Iterative Clustering (Splitting)

When convenient features for state aggregation are not available at all, there is the pos-
sibility of trying to find similarities among states through a clustering or expanding
method based on a statistical analysis carried out in parallel with the training process.
Actually, clustering was originally suggested as an alternative to handcrafted encoding
in (Mahadevan and Connell, 1992), which proposed a method founded on empirically
tested rules based on similarity among state features or action values (as computed by
the learning algorithm). A tradeoff between these two criteria was also obtained em-
pirically. A dual development is the G algorithm (Chapman and Kaelbling, 1991), that
incrementally builds up a tree-structured action value table. It begins by supposing that
all the input features are relevant (generalisation over the whole state space), collaps-
ing the entire look-up table into a single action value. By collecting statistics about the
importance of individual features, the table is gradually split into different subspaces
corresponding to the presence or absence of each analyzed feature.

Methods based on statistical analysis can have problems. Apart from possibly mis-
taken assumptions for the data sampling distribution in the statistical tests, an infor-
mation gathering process can be in trouble if the action values change quicker than
irrelevant input features. These can then appear as important because of the compara-
tively large variation of the corresponding action values for small feature changes, as
recorded by the statistical collection. The problem was originally noticed in (Chapman
and Kaelbling, 1991), which then suggested dividing the learning process into action
value and feature relevance phases. Estimated Q values are held constant whilst rele-
vance statistics are collected, with a phase switching mechanism based on additional
statistical analysis.

32

While some success has been obtained by statistical approaches, only studies in
very specific domains have been described. In any case, no relative advantages over
hand crafted encoding have been reported (Mahadevan and Connell, 1992), and the sta-
tistical gathering process usually makes the learning process extremely slow (Chapman
and Kaelbling, 1991).

33

Chapter 4

Partially Observable Processes

Apart from the need for generalization, there is a second issue that is extremely im-
portant if RL is to be applied in practical problems: partial state observability. Any
researcher or engineer is aware that perfect state observation is a concession usually
found only in basic Control Theory textbooks. Realistic applications involve systems
that are observed through noisy, unreliable and uninformative sensors, which give only
rough indications about the true state of the dynamic process to be controlled. Partial
observability implies non-Markov observations, destroying one of the theoretical basis
for the ‘good behavior’ of RL algorithms.

4.1 Partial Observability and DP

It is illustrative to consider briefly how the concept of partial observability is dealt with
in the field of Optimal Control and how DP techniques can be directly adapted to the
case.

An observationot made by the agent at timet is typically some function of the
state of the processxt, last actionat�1 and random disturbancevt:

ot = h(xt; at�1; vt) (4.1)

As the observations are less informative than the states, the only straightforward way
of summarizing all the available information about the process is to consider the whole
history of past observations. This is done by considering aninformation vectorIt
defined as

It = (o0;o1; : : : ;ot; a0; a1; : : : ; at�1) (4.2)

and by restating the control algorithms accordingly. In fact, the information vectors
define a dynamic process

It+1 = (It; at;ot+1) (4.3)

where the ‘state’ is the information vector itself and the new observationot+1 is the
‘disturbance’. Furthermore, this new process is Markov, since

P (It+1jIt; It�1; : : : ; at) = P (It+1jIt; at) (4.4)

34

Combined with some standard restrictions on the disturbances, this formulation
allows for the development of DP techniques very similar to the ones presented in
chapter 2. However, this has more theoretical than practical relevance: even for very
simple problems, the dimension of the information vector space can be overwhelming,
and only in a very particular case (linear state equations and quadratic costs) is an
analytical solution possible (Bertsekas, 1995b). The practical inconvenience of this
general formulation has motivated a series of different suboptimal approaches to the
problem of controlling partially observable processes.

4.2 Partial Observability and RL

The huge literature and the extensive research on control of partially observable pro-
cesses testify to the complexity of the problem. It is not surprising that things get even
more complicated once the restrictive conditions of Reinforcement Learning are added.

The fundamental complication is a consequence of the credit assignment practice
itself. Even if a given observationot perfectly defines a state, a subsequent observa-
tion ot+n may be ambiguous and then propagate (throughr(xt) +
V̂ (ot+1)) wrong
updates. The estimated cost forot may then become wrong, and then propagate again
to all the previous states. This ‘contamination’ process can affect many observations,
producing theperceptual aliasing problem(Whitehead and Ballard, 1990).

4.2.1 Attention-Based Methods

One of the greatest conceptual breakthroughs made by the recent developments on
self-improving agents and autonomous learning is the emphasis on the physical inter-
action agent-process and on the learning agent (and not the engineer) as the designer
of action policies. This difference of perspective is clear as terms such as ‘partially
observable process’ — which emphasizes a process condition instead of an agent con-
straint — get routinely used. Additionally, this change of orientation towards the con-
troller accentuates possible properties not yet fully considered in traditional Control
theories. One of these properties is the agent’s capability to control its observations
through an active (or attentional) vision mechanism.

The problem of active vision has been usually formulated as a search for perceptual
policies for recognition of given objects (Kappen et al., 1995; Blake and Yuille, 1992).
This is a complex problem in itself, and as pointed out in a classical paper by Brooks,
studies on this issue in the context of autonomous learning were almost completely
ignored until a few years ago (Brooks, 1991).

Adapting the classical formulation to the case of active vision agents, an attentional
mechanism defines an observation as a function of the state of the processxt, last
control actionat�1 and random disturbancevt, plus anattentional settingbt 2 B:

ot = g(xt; at�1; bt; vt) (4.5)

The attentional setting corresponds to a perceptual action which defines how the agent
chooses its observations. The concept of ‘active’ vision implies a free choice (by the
agent) of perceptual actions. Thus,

bt = f(internal condition of the agent at timet) (4.6)

Notice thatbt has a different nature thanat as it does not disturb the actual state of the
process.

35

Attempts to combine learning of perceptual and control actions have often been
characterized by some very specific restrictions (Whitehead and Lin, 1995)1:

� At each time step, control is divided into two phases: a perceptual stage and an
action stage. The perceptual stage aims to generate internal representations that
are Markov, whilst the action stage aims to generate optimal control actions.

� Learning for the action stage can be done with common RL methods. Learning
for the perceptual stage is based on the monitoring of ambiguous (non-Markov)
internal states.

� It is assumed that the external state can always be identified from immediate
sensory inputs. In this sense, such problems are not about strictly partially ob-
servable processes, because there is always at least one attentional setting that
can discriminate the correct state.

Two representative active vision methods are the G algorithm (Chapman and Kaelbling,
1991), described in the last chapter and that can be also seen as a method for voluntary
feature selection, and the Lion algorithm (Whitehead and Ballard, 1990), which iden-
tifies ambiguous observations in a deterministic process through simple consistency
tests on the action values.

4.2.2 Memory-based Methods

Memory-basedmethods attempt to create a Markov representation through the use of
past observations, very much like the information vector approach for Optimal Control.
Unlike the attention-based techniques mentioned above, these methods do not assume
that the external state can be identified among the immediate inputs. Instead, it con-
siders the case when the use of past information is necessary in order to construct a
Markovian representation of the process dynamics.

As for DP applied to partially observable processes, the fundamental problem here
is the size of the information vector. In general, a suboptimal approach will be required
in which the agent is equipped with either a) a feedback mechanism which allows past
history to be encoded as an additional contextual information derived from past inputs
or internal states; or b) an explicit limited memory of past observations (Figure 4.1).

Feedback architectures for the learning agent can be based on recurrent neural net-
works such as Elman networks (Elman, 1990), where a set of contextual features orig-
inated from previous hidden layer outputs is used as additional input.

A particular problem with feedback architectures is the dependency of the contex-
tual information on both the states and the cost estimates. It may be difficult for the
agent to identify if two given observations correspond to different states or just have
different costs due to the noisy nature of reinforcement learning. A partial solution
to this problem is the use of two separate structures: a recurrent one corresponding
to a predictive model of the process and a feedforward one that generates the costs or
action values using as inputs the current action and input, plus the contextual infor-
mation provided by the predictive model. This separates the tasks of state estimation
and cost estimation, but changes on the representation of contextual features may cause
instability on cost learning (Whitehead and Lin, 1995).

1In section 4.2.3, we consider attentional methods that, combined with the use of a memory, can relax
these restrictions.

36

ot , -1taot , -1ta
Cost

Estimator

ot , -1ta

Context

(a) (b)

Memory

. . .

ot , -1taCost
Estimator

ta

t r

ta

t r

Figure 4.1: Memory-based methods. Case (a): use of feedback mechanism. Case (b):
use of explicit memory.

An alternative approach is the use of an explicit memory that stores a limited set of
past observations, in an attempt to create an ‘approximate information vector’. This ap-
proach is particularly useful in tasks where there is strong temporal correlation among
past observations, or when relevant information about the present state concentrates on
a few past observations. The agent then acts on extended states — represented by these
information vectors — in the same way that it would act if the states were available.
However, an important drawback when information vectors are used is the size of the
new extended state space. Experience generalisation strategies can be particularly im-
portant in this situation, as it is very unlikely that an agent can not only sufficiently
visit every single state, but also have physical space to store all the possible history of
observations.

A workaround for this problem is the use of a technique based on storage of only
the instances that have actually been experimented by the agent. Each experience is
defined as a tuplehat; ot; rti, composed by the chosen actionat and consequents ob-
servationot and rewardrt. McCallum (McCallum, 1996b) proposed calculating action
values for each visited instance by averaging expected future rewards associated with
theK nearest experiences of the instance sequence, in an analogy with theK-nearest
neighbor method for pattern recognition in geometric spaces. This method is very sim-
ple to implement, and gives good results in some simple partially observable problems.

4.2.3 Combining Attention and Memory

Combination of attention-based and memory-based methods in the hope that different
techniques may complement each other is a feasible approach to the learning problem
in partially observable processes.

The Utile Distinction approach (McCallum, 1996a) and the Perceptual Distinctions
(PD) method (Chrisman, 1992) are representatives of this category. Unlike standard
attention-based methods, these techniques do not assume that states can be disam-
biguated by any immediate observation. Unlike standard memory-based methods they
do use active perception.

Both Utile Distinctions and PD borrow concepts from Hidden Markov Models
(HMM) theory (Rabiner, 1989) in order to update belief states� (vectors storing inter-
nal state occupation probabilities) using cumulated experience. The number of internal
states is a measure of how complex the process model is, and this number also defines

37

the size of the belief vector�t. Action value updates are carried out simply by comput-
ing one step of the Q-learning equation for every model statex using the current belief
vector:

Qt+1(x; at) = Qt(x; at) + �t�
x
t [r(x; at) +
V̂t(�t+1)�Qt(x; at)] (4.7)

where�xt is thex component of the belief vector and̂Vt(�t+1) = mina[Qt(�t+1; a)].
The model is periodically tested using statistical significance tests, and if judged in-
sufficient, new distinctions (i.e., internal states) are added by splitting existing states.
For PD, these tests evaluate the statewise predictive capability of the model. For Utile
Distinctions, the tests evaluate the agent’s ability to predictreward. However, it is not
necessary that the feature selection mechanism perfectly discriminate states at the end
(as in G learning), because the predictive model uses a memory of the past to facilitate
the task in both cases.

Utile Distinctions was originally proposed as a method to make only memory dis-
tinctions (McCallum, 1992), but was later extended to deal with perceptual selection as
a true attention-based method (McCallum, 1996a). In this form, it is possibly the most
general implementation of a perceptually selective agent to date, as it both selects per-
cepts and memory distinctions. It has been successfully tested in complex navigation
tasks, but it also has a memory limitation (in spite of its distinction capability), high
computational demands, and no guarantees whatsoever that the statistical state splitting
test is suitable for any learning task (McCallum, 1996a).

38

Appendix A

Internet Sites on RL-related
subjects

Some of these sites were mentioned along the text.

www-anw.cs.umass.edu/ rich/book/the-book.htmlSite forReinforcement Learning:
An Introduction, book by Andrew Barto and Richard Sutton.

world.std.com/ athenasc/ndpbook.htmlSite for bookNeurodynamic Programming,
by Dimitri Bertsekas and John Tsitsiklis.

web.cps.msu.edu/rlr/ RL repository at Michigan State University. Pointers to many
publications, addresses of people doing research in RL, calls for papers,etc.

www.cs.cmu.edu/afs/cs.cmu.edu/project/reinforcement/web/index.htmlThe ‘Ma-
chine Learning and Friends’ page at Carnegie-Mellon University. Abstracts of
recent talks given at the CMU group in Machine Learning (a good source of
information on current research trends), links to other sites and Conference an-
nouncements.

www.gmd.de/ml-archive/ Machine Learning archive at GMD, Germany. A com-
prehensive Machine Learning site, may contain information relevant to RL re-
searchers.

envy.cs.umass.edu/ rich/Richard Sutton’s homepage. Includes some software and
demo programs for RL algorithms.

www.cs.colorado.edu/ baveja/Demo.htmlA Java demo for solving the channel allo-
cation problem using RL, by Satinder Singh.

www.cs.cmu.edu/afs/cs/project/theo-11/www/mccallum/Source for Andrew McCal-
lum’s Reinforcement Learning Toolkit. Includes code for the U-Tree algorithm.

mlis.www.wkap.nl/mach/ Site of the Machine Learning Journal, an excellent source
of information on outstanding research in RL.

39

Bibliography

Albus, J. S. (1971). A theory of cerebellar functions.Mathematical Biosciences,
10:25–61.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike elements that can
solve difficult learning control problems.IEEE Transactions on Systems, Man
and Cybernetics, 13:834–846.

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1990). Learning and sequential
decision making. InLearning and Computational Neuroscience: Foundations of
Adaptive Networks. MIT Press.

Bellman, R. (1957). Applied Dynamic Programming. Princeton University Press,
Princeton, New Jersey.

Bertsekas, D. P. (1995a). A counterexample to temporal differences learning.Neural
Computation, 7:270–279.

Bertsekas, D. P. (1995b).Dynamic Programming and Optimal Control, volume 1.
Athena Scientific, Belmont, Massachusetts.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996).Neuro-Dynamic Programming. Athena
Scientific, Belmont, Massachusetts.

Blake, A. and Yuille, A., editors (1992).Active Vision. MIT Press, Cambridge, Mas-
sachusetts.

Boyan, J. A. and Moore, A. W. (1995). Generalization in reinforcement learning:
Safely approximating the value function. In Tesauro, G., Touretzky, D. S., and
Leen, T. K., editors,Advances in Neural Information Processing Systems 7. MIT
Press.

Brooks, R. A. (1991). Elephants don’t play chess. In Maes, P., editor,Designing
Autonomous Agents, pages 3–15. MIT Press.

Brooks, R. A. and Mataric, M. J. (1993). Real robots, real learning problems. In
Connell, J. H. and Mahadevan, S., editors,Robot Learning, chapter 8, pages 193–
213. Kluwer Academic Publishers.

Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforce-
ment learning: An algorithm and performance comparisons. InProcs. of the In-
ternational Joint Conf. on Artificial Intelligence (IJCAI’91), pages 726–731.

40

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. InProcs. of the 10th National Conf. on Artificial Intelli-
gence, pages 183–188.

Crites, R. H. (1996).Large-scale Dynamic Optimization Using Teams of Reinforcement
Learning Agents. PhD thesis, University of Massachusetts Amherst.

del R. Millán, J. (1996). Rapid, safe and incremental learning of navigation strate-
gies. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics,
26(3):408–420.

Dorigo, M. and Colombetti, M. (1994). Robot shaping: Developing autonomous agents
through learning.Artificial Intelligence, 71:321–370.

Elman, J. L. (1990). Finding structure in time.Cognitive Science, 14:179–211.

Gat, E., Desai, R., Ivlev, R., Locj, J., and Miller, D. P. (1994). Behavior control for
robotic exploration of planetary surfaces.IEEE Transactions on Robotics and
Automation, 10(4):490–503.

Haykin, S. (1999).Neural Networks: A Comprehensive Foundation. Prentice-Hall, 2
edition.

Holland, J. H. and Reitman, J. S. (1978). Cognitive systems based on adaptive algo-
rithms. In Waterman, D. A. and Hayes-Roth, F., editors,Pattern-Directed Infer-
ence Systems, pages 313–329. Academic Press.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). On the convergence of stochastic it-
erative dynamic programming algorithms.Neural Computation, 6(6):1185–1201.

Kappen, H. J., Nijman, M. J., and van Morsel, T. (1995). Learning active vision. In
Fogelman-Souli´e, F. and Gallinari, P., editors,Procs. of the International Conf. on
Artificial Neural Networks (ICANN’95). EC2 et Cie.

Kuipers, B. J. (1987). A qualitative approach to robot exploration and map learning. In
AAAI Workshop on Spatial Reasoning and Multi-Sensor Fusion.

Lin, L.-J. (1991). Self-improving reactive agents: Case studies of reinforcement learn-
ing frameworks. InProcs. of the First International Conf. on Simulation of Adap-
tive Behavior: from Animals to Animats, pages 297–305.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching.Machine Learning, 8:293–321.

Lin, L.-J. and Mitchell, T. M. (1992). Memory approaches to reinforcement learning in
non-markovian domains. CMU-CS-92 138, Carnegie Mellon University, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-based
robots using reinforcement learning.Artificial Intelligence, 55:311–365.

Matarić, M. J. (1990). A distributed model for mobile robot environment learning and
navigation. Master’s thesis, Massachusetts Institute of Technology.

Matarić, M. J. (1991). A comparative analysis of reinforcement learning methods.
Technical report, Massachusetts Institute of Technology.

41

McCallum, A. K. (1996a).Reinforcement Learning with Selective Perception and Hid-
den State. PhD thesis, University of Rochester.

McCallum, R. A. (1992). First results with utile distinction memory for reinforcement
learning. Technical Report 446, The University of Rochester, Computer Science
Department, The University of Rochester, Rochester, NY 14627.

McCallum, R. A. (1996b). Hidden state and reinforcement learning with instance-
based state identification.IEEE Transactions on Systems, Man and Cybernetics -
Part B: Cybernetics, 26(3):464–473.

McGarity, M., Sammut, C., and Clements, D. (1995). Controlling a steel mill with
BOXES. In Furukawa, K., Michie, D., and Muggleton, S., editors,Machine Intel-
ligence 14, pages 299–321. Oxford University Press.

Thomas Miller, III, W., Glanz, F. H., and Gordon Kraft, III, L. (1990). CMAC: An
associative neural network alternative to backpropagation.Proceedings of the
IEEE, 78(10):1561–1567.

Michie, D. and Chambers, R. A. (1968). BOXES: An experiment in adaptive con-
trol. In Dale, E. and Michie, D., editors,Machine Intelligence 2, pages 137–152.
Olivier and Boyd, Edimburgh.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learn-
ing with less data and less time.Machine Learning, 13:103–130.

Ogata, K. (1994).Designing Linear Control Systems with MATLAB. Prentice-Hall.

Peng, J. and Williams, R. J. (1996). Incremental multi-step q-learning.Machine Learn-
ing, 22:283–290.

Puterman, M. L. (1994).Markovian Decision Problems. John Wiley.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications
in speech recognition.Proceedings of the IEEE, 77(2).

Ribeiro, C. H. C. (1998). Embedding a priori knowledge in reinforcement learning.
Journal of Intelligent and Robotic Systems, 21(1):51–71.

Ribeiro, C. H. C. and Szepesv´ari, C. (1996). Q-Learning combined with spreading:
Convergence and results. InProcs. of the ISRF-IEE International Conf. on Intel-
ligent and Cognitive Systems (Neural Networks Symposium), pages 32–36.

Robbins, H. and Monro, S. (1951). A stochastic approximation method.Annals of
Mathematical Statistics, 22:400–407.

Russell, S. J. and Norvig, P. (1995).Artificial Intelligence: a modern approach.
Prentice-Hall.

Saerens, M. and Soquet, A. (1989). A neural controller. InProcs. of the 1st IEE
International Conf. on Artificial Neural Networks, pages 211–215, London. The
Institution of Electrical Engineers.

Sammut, C. A. (1994). Recent progress with BOXES. In Furukawa, K., Muggleton, S.,
and Michie, D., editors,Machine Intelligence 13. The Clarendon Press, Oxford.

42

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development, 3:210–229.

Singh, S. P. (1994).Learning to Solve Markovian Decision Processes. PhD thesis,
University of Massachusetts.

Singh, S. P. and Bertsekas, D. (1997). Reinforcement learning for dynamic channel
allocation in cellular telephone systems. In Mozer, M. C., Jordan, M. I., and
Petsche, T., editors,Advances in Neural Information Processing Systems 9. MIT
Press.

Singh, S. P. and Dayan, P. (1996). Analytical mean squared error curves for temporal
difference learning.Machine Learning. In press.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995). Reinforcement learning with soft
state aggregation. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors,Ad-
vances in Neural Information Processing Systems 7, pages 361–368. MIT Press.

Striebel, C. T. (1965). Sufficient statistics in the optimal control of stochastic systems.
Journal of Math. Analysis and Applications, 12:576–592.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.Ma-
chine Learning, 3:9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning and reacting based
on approximating dynamic programming. InProcs. of the 7th International Conf.
on Machine Learning, pages 216–224.

Sutton, R. S. (1996). Generalization in reinforcement learning: Succesful examples us-
ing sparse coarse coding. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.,
editors,Advances in Neural Information Processing Systems 8, pages 1038–1044.
MIT Press.

Sutton, R. S. and Barto, A. G. (1990). Time-derivative models of pavlovian reinforce-
ment. InLearning and Computational Neuroscience: Foundations of Adaptive
Networks. MIT Press.

Szepesv´ari, C. (1997). Static and Dynamic Aspects of Optimal Sequential Decision
Making. PhD thesis, J´ozsef Attila University, Szeged, Hungary.

Szepesv´ari, C. and Littman, M. L. (1996). Generalized markov decision processes:
Dynamic-programmingand reinforcement-learningalgorithms. CS-96-11, Brown
University, Department of Computer Science, Brown University, Providence,
Rhode Island 02912.

Tesauro, G. (1992). Practical issues in temporal difference learning.Machine Learning,
8:257–277.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon.Communications
of the ACM, 38(3):58–67.

Tsitsiklis, J. N. and Roy, B. V. (1996). Feature-based methods for large scale dynamic
programming.Machine Learning, 22:59–94.

43

Watkins, C. J. C. H. (1989).Learning from Delayed Rewards. PhD thesis, University
of Cambridge.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.Machine Learning, 8(3/4):279–
292.

Whitehead, S. D. and Ballard, D. H. (1990). Active perception and reinforcement
learning.Neural Computation, 2:409–419.

Whitehead, S. D. and Lin, L.-J. (1995). Reinforcement learning of non-markov deci-
sion processes.Artificial Intelligence, 73:271–306.

Widrow, B., Gupta, N. K., and Maitra, S. (1973). Punish/reward: Learning with a
critic in adaptive threshold systems.IEEE Transactions on Systems, Man and
Cybernetics, SMC-3(5):455–465.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. InIRE WESCON
Convention Record, volume 4, pages 96–104, New York.

Widrow, B. and Smith, F. W. (1963). Pattern recognizing control systems. In1963
Computer Info. Sci. (COINS) Symposium, pages 288–317, Washington, DC.

Witten, I. H. (1977). An adaptive optimal controller for discrete-time markov environ-
ments.Information and Control, 38:286–295.

44

