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ABSTRACT

The use of context can considerably facilitate reasoning by
restricting the beliefs reasoned upon to those relevant and providing
extra information specific to the context. Despite the use and
formalization of context being extensively studied both in Al and
ML, context has not been much utilized in agents. This may be
because many agents are only applied in a single context, and so
these aspects are implicit in their design, or it may be that the need
to explicitly encode information about various contexts is onerous.
An algorithm to learn the appropriate context along with knowledge
relevant to that context gets around these difficulties and opens the
way for the exploitation of context in agent design. The algorithm is
described and the agents compared with agents that learn and apply
knowledge in a generic way within an artificial stock market. The
potential for context as a principled manner of closely integrating
crisp reasoning and fuzzy learning is discussed.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence|: Intelligent agents. 1.2.6
[Learning]: Induction. 1.6.8 [Model Development]: Modeling
methodologies. 1.5.3 [Clustering]: Algorithms.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Context, integration, learning, deduction, genetic programming,
evolutionary computation, cognitive analogy, biological analogy.

1. INTRODUCTION

In 1971 in his ACM Turing Award lecture, John McCarthy
suggested that the explicit representation and manipulation of
context might be a solution to the effective lack of generality in
many Al systems (these ideas were later developed and written up
in [21]). Since then context and context-like ideas have been
investigated in both the Al and ML communities, culminating in
several workshops [1-5] and a series of international conferences
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entirely devoted to the subject[8, 11]. However despite this
attention, context-related techniques and ideas have not been
explicitly applied to the design of autonomous agents to any
significant extent.

Part of the reason for this may be the difficulty in entering (or
otherwise specifying) the information relevant to each context. The
main part of this paper aims to show a solution to this problem by
exhibiting a practical way in which agents can learn context-
sensitive information about their environment. Another part of the
reason may be that really exploiting context involves a close
integration of learning and inference. Thus it straddles the Al and
ML communities which are notoriously disjoint and mutually
suspicious. In the last section I suggest that context can provide a
well-motivated and coherent mechanism for the close integration of
learning and deductive processes.

2. ABOUT CONTEXT

There are a great many different conceptions and uses of “context”.
In this section I briefly preview some of these in cognitive science,
Al and ML, before proceeding to my analysis of the roots of context
in Section 3. The word “context” is used both for the type of
circumstance that allows for knowledge to be applied (sometimes
called the ‘external’ context) as well as the cognitive structures that
correspond to these (the ‘cognitive’ context). Since the design of
agents focuses on the cognitive mechanisms of agents I will mean
cognitive contexts, unless I say otherwise (see Edmonds for a
discussion of the connection).

2.1 Context in Cognition

The use of context is a pervasive heuristic in human cognition. It
appears that we use context in almost every area of our thinking and
action, including: language understanding; memory; concepts and
categorization; affect and social cognition and (probably) problem
solving and reasoning [20]. In the past some researchers perceived
the context-dependency of human thought purely as a disadvantage
or side-effect, but now it is becoming increasingly clear that it is an
essential tool for enabling effective learning, reasoning and
communication in a complex world.

Although human cognition is not a necessary starting point for
motivating the design of agents it is a fruitful one, especially when
looking for solutions that will scale up to cope with problems of real
world complexity.

2.2 Context In Al

McCarthy's idea was to reify the context to a set of terms, 7, and the
introduces an operator, is¢, which basically asserts that a statement,
P, holds in a context labelled by 7. Thus:

c:ist(i, p)



read "p is true in context " which is itself asserted in an outer
context c. ist is similar to a modal operator but the context labels are
terms of the language. Reasoning within a single context operates in
a familiar way., thus we have

Vi(ist(i, p) nist(i, p — q) > ist(i,q)).
In addition one needs to add a series of ‘lifting’ axioms, which
specify the relation between truth in the different contexts. For
example if i > j means that “/, is more general than context, ;”, then
we can lift a fact to one of its supercontexts using:

ViVj(i = j) nist(p,i) A—ab(i, j, p) = ist(p, J)
where ab is an abnormality predicate for lifting to supercontexts.

This framework is written up in [22]. There are a whole series of
formal systems which are closely related to the above structure,
including, notably, Gabbay's fibered semantics [15] and the local
semantics of the Mechanized Reasoning Group at Trento [17]. A
useful survey of such formalisms is [9].

Trying to apply generic reasoning methods to context-dependent
propositions and models, will be either inefficient or
inadequate [18]. The generic approach forces a choice of the
appropriate level of detail to be included, so that it is likely that
either much information that is irrelevant to the appropriate context
will be included (making the deduction less efficient) or much
useful information that is specific to the relevant context may be
omitted (and hence some deductions will not be possible). The role
context can play in solving the under/over determination of
knowledge will be discussed in the last section.

2.3 Context In ML

The use of context in machine learning can be broadly categorized
by goal, namely: to maintain learning when there is a
hidden/unexpected change in context; to apply learning gained in
one context to different context; and to utilise already known
information about contexts to improve learning. There are only a
few papers which touch on the problem of learning the appropriate
contexts themselves. Widmer [30] applies a meta-learning process
to a basic incremental learning neural net; the meta-algorithm
adjusts the window over which the basic learning process works.
Here it is an assumption that contexts are contiguous in time and so
a time-window is a sufficient representation of context. Harries et
al. [19] employ a batch learner as a meta-algorithm to identify stable
contexts and their concepts; this makes the assumption that the
contexts are contiguous in the “environmental variables” and can
only be done off-line. Aha describes an incremental instance based-
learning which uses a clustering algorithm to determine the weight
of features and hence implicitly adjusts to context [6].

Other techniques require the explicit identification of what the
contextual factors will be and then augment the existing machine
learning strategy with a meta-level algorithm utilising this
information (e.g. [27]). Others look to augment strategies using
implicit information about the context to adjust features of the
learning such as the weightings [6], or normalisation [26].

Turney discusses the problem in [28]. He surveys the various
heuristics tried to mitigate the effects of context on machine learning
techniques in [29]. He maintains a bibliography on context-sensitive
learning at URL:

http://extractor.iit.nrc.ca/bibliographies/context-sensitive.html

2.4 Context in Natural Language

It has been recognized for a while that the external (and linguistic)
context plays a role in the understanding of natural language.
However it is only recently that the importance of context in
communication has been appreciated. The external context is not
merely a resource for understanding utterances that is accessed when
all other mechanisms fail; a way of sorting out otherwise ambiguous
sentences. Rather it is one of the primary mechanisms. As
Gardenfors [16] said:

Action is primary, pragmatics consists of the rules for
linguistic actions, semantics is conventionalised pragmatics
and syntax adds markers to help disambiguation (when context
does not suffice).

In terms of developmental stages (and surely it is right to think of
our agents as in the earliest stages of development) it is context that
provides the meaning of specific parts of language. Thus natural
language is rooted in context, allowing two individuals to guess at
the contexts of others and hence share contexts. Such an ability to
mutually identify the relevant context of communication lessens the
need for formal and fixed ontologies.

3. THE ROOTS OF CONTEXT

In this section I recapitulate the analysis in [12] to motivate the
learning algorithm to be presented. This argues that, causation is
essentially a context-dependent abstraction. That in order to be able
to effectively learn and reason about the world using fairly definite
(i.e. ‘crisp’) models an agent has to separate out the foreground
causes from the background ones (which can be abstracted to a
context). This is illustrated in Figure 1.

The ‘background’ causes are those that are either so consistent that
they can safely be ignored, or else are a messy mixture of factors
capable of being recognized with a high probability afterwards but
not explicitly incorporated into a reasonably simple “crisp” model.
This will depend somewhat upon is usual in any particular
circumstances. So, for example, if a man breaks a leg while walking
down a step, the relevant foreground ‘cause’ would be his medical
condition if he had brittle bone syndrome but due to his being
distracted if a stripper ran by.

The model is thus learnt in one set of circumstances that are
implicitly encoded by some recognition machinery (e.g. neural net).
Later when the circumstances are recognized as being similar, the
model is judged relevant to be included in any explicit reasoning or
formal deduction. Thus knowledge is transferred from the time of
learning to the time of application.

For such a transference to be possible a number of conditions need
to be met, namely:

e that some of the possible factors influencing an outcome are
separable in a practical way;

e that a useful distinction can be made between those factors that
can be categorized as foreground features and the others;

e that the background factors are capable of being recognized
later;

e that the world is regular enough for such models to be
learnable;
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e that the world is regular enough for such learnt models to be

useful when applied in contexts that can be recognized later.

It should be clear that such a transfer of knowledge is not necessarily
possible, because it relies on the presence of commonalities in the
domain that is being interacted with. Broadly these commonalities
must be fairly constant during the learning and application events
(otherwise they might not be background), and be recognisable from
one to the other. Different commonalities result in different sorts of
context. For example: two agents might be inhabiting a common
location in space and time and hence can use that as the context for
communicative acts; or one may remember what it is like during a
stock market crash previously and hence have some ready made
models of how to act during another one.

While this transference of learnt models to applicable situations is
the basic process, analysts of this process might abstract some
aspects of the background features as a ‘context’.

Note that the agent might not be able to explicitly identify and label
the contexts that it is using, even if this is clear to an exterior
observer. All that is necessary is for the agent to recognise the
circumstances where models can be applied, or at least find the
‘closest’ candidate models in terms of their domain of application.
On the other hand the agent might be able to introspect sufficiently
to analyse and abstract its own contexts. It would seem that we, as
humans, are so good at automatically flipping between different
cognitive contexts that we do not notice this most of the time, but
simply deal with reasoning within the chosen context. There are
exceptions of course; for instance when trying to generalise to a
theory or when trying to find out what went wrong.

Given the above conditions are possible context is:

an abstraction of those background elements of the
circumstances in which a model is learnt that allows the
recognition of new circumstances where the model can be
usefully applied.

Due to the fact that context is characterised as an abstraction of an
aspect of a heuristic for the learning and application of knowledge,
the properties of such contexts can not be meaningfully analysed if
one only considers either the learning or the application of such
knowledge. If one did this one would not only be missing out on
over half of the story but also undercutting the reasons for its very

foreground

factor n+1
factor nt+2

¥ ete.

factor 1. 4@
factor

1faotor 11/

APPLICATION (later)

features
inferences
predictions

an earlier learnt model

1233

existence. If the problems of learning are ignored then there is no
reason not to encode such models without context — the non-causal
factors can be treated as either given or the same as the other
features of the model, de-contextualising them. If the problems of
inference are ignored then there is no reason to separate the
recognition of an appropriate context from that of recognising the
correct prediction in that context. Thus if one is to exploit the
power of context, both learning and inference need to be included.

4. LEARNING CONTEXT WITH CONTENT

In order for context-dependent reasoning to occur, the context-
dependent information (or beliefs) need to be captured. If the
relevant contexts are already known by the designer (and there is
some effective way of recognizing when they apply), then either the
relevant information can be entered or a context-enhanced learning
algorithm can be employed to learn the information with respect to
each context. The former case can be onerous because one not only
has to enter the relevant facts as well as specifying each fact’s
domain of application, but one also has to define all the ‘lifting-
rules’ to allow the integration of the context-dependent information.
In the later case the context-dependency of the learning means that
one needs correspondingly more information within each context for
the learning to be complete.

Thus in order for the desired efficiency in terms of context-
constrained reasoning to occur (without a laborious entry of
information) for each appropriate context, this information (that is
both the contexts and the content in the contexts) should be learned
by the agent, at least to some extent.

4.1 The Context Learning Algorithm

The basic idea is to simultaneously learn the models and the
circumstances in which they work best. If there is sufficient
regularity in the environment to allow it this will allow some
clusters of similar circumstances to be identified and the
corresponding models to be induced. However the clustering and
induction parts of the algorithm can not work independently; i.e.
clusters of like circumstances being identified and then models
induced for these clusters. The reason for this is the contexts are
identified by those circumstances where particular models work
best. These may correspond to a neat (i.e. humanly identifiable)



cluster but this is not inevitable — they may be (to the human eye)
inextricably intertwined or overlapping.

There is a population of candidate beliefs, each of which is
composed of two parts: a crisp model in a formal language (the
content) and some information that specifies the model's domain of
application (the domain). In the examples given here the designer
specifies what inputs will be used for context recognition and which
can be referred to in the model content (some may be in both).
Repeatedly a particular circumstance is chosen (for example, these
are the ones that simply occur to the agent), and those beliefs who
are recognized as most probably relevant (or ‘closer’) are selected.
Out of these the ones that work best are preferentially selected and
crossed into future generations of the population. Beliefs that are
never anywhere near occurring circumstances are, over time,
forgotten.

The basic learning algorithm is as follows:

Randomly generate candidate models and place them
randomly about the domain, D
for each generation
repeat
randomly pick a pointin D, P
pick n models, C, biased towards those near P
evaluate all in C over a neighbourhood of P
pick random number x from [0,1)
if x < propagation probability
then propagate the fittest in C to new generation
else cross two fittest in C, put result into new
generation
until new population is complete
next generation

A biological analogy makes this clear. Imagine that each belief is a
plant. These plants exist in a space defined by the factors that allow
context recognition. They compete locally — those that are better
replicate themselves into a neighbourhood (by propagation and
sexual reproduction). Thus, slowly, the successful plants adapt and
spread to fill all of the space in which they are relatively successful.
Different plants will occupy different areas in the space. The
contexts correspond to the ecological niches.

This is an example of the some more general heuristics for learning
context.

Formation: A cluster of models with similar or closely related
domains suggests these domains can be meaningfully abstracted to a
context.

Abstraction: If two (or more) contexts share a lot of models with the
same domain, they may be abstracted (with those shared models) to
another context. In other words, by dropping a few models from
each allows the creation of a super-context with a wider domain of
application.

Specialisation: If making the domain of a context much more
specific allows the inclusion of many more models (and hence
useful inferences) create a sub-context.

Content Correction: If one (or only a few) models in the same
context are in error whilst the others are still correct, then these
models should either be removed from this context or their contents
altered so that they give correct outputs (dependent on the extent of
modifications needed to “correct” them)
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Content Addition: If a model has the same domain as an existing
context, then add it to that context.

Context Restriction: If all (or most) the models in a context seem to
be simultaneously in error, then the context needs to be restricted to
exclude the conditions under which the errors occurred.

Context Expansion: If all (or most) of the models in a context seem
to work under some new conditions, then expands the context to
include these conditions.

Context Removal: If a context has only a few models left (due to
principle 2) or its domain is null (i.e. it is not applicable) forget that
context.

These, the above algorithm and its properties is discussed in much
greater detail in [13].

4.2 Example: Agents In An Artificial Stock
Market

In order to demonstrate this approach to learning, I needed an
environment that was sufficiently complex yet having emergent
contexts (i.e. ones difficult to predict in advance). I have chosen a
stock market model, composed of many trading agents and one
market maker (roughly following the form and structure of [24]).
The traders can choose to buy or sell one of a number of shares (if
this is possible for them) from or to the market maker. The only
fundamental in the market is a dividend rate for each of the shares
which slowly change in a random walk. There are only a limited
amount of each stock available to the market as a whole. The
market maker sets prices as a result of the demand - if there is net
demand for a stock it raises the price and if there is a net negative
demand it lowers the price. There is a small transaction cost to the
traders for every trader, so rapid random trading is unlikely to
benefit it.

The goal of the traders is to maximise the total value of their assets
(cash plus shares at current value). Thus the traders are in
competition with each other — one trader tends to gain at another's
expense. However this is not a zero-sum game due to the dividends
paid on stocks and the possibility of making money at the market
maker's expense.

Each time period the traders simultaneously buy or sell each of the
stocks, assuming they have enough cash to fund the net price, the
stocks to sell, and the market maker has the stocks to sell. Traders
do not have to trade in any stock. Thus the decision that each of the
traders has to make is how much to attempt to buy or sell of each

stock each time period.

Traders can observe the following:
e the current and past prices of all stocks;
e the past actions of all traders;
e the current and past dividend rates.

In addition the traders are provided with primitives for:
e the current and past market index (average of all prices);
e recent trend of the index;
e  recent total volume of trading;
e recent market volatility;
e the maximum historical price of any stock.

The operators available to the agents to build models with are:



e Dbasic arithmetic (+, —, X, +);

e the ability to refer back in time (last and lag operators).

They also have some constants, namely:

e the names of the other traders,

e the names of the stocks

e and a selection of random constants.

Basically the traders try to learn to predict what each of the stocks
will be in the next time period and then buy or sell if they predict it
will rise or fall sufficiently for this to be worthwhile.

This sort of set-up produces a rich series of dynamics as the traders
participate in sequences of modelling ‘arms-races’ and imitation
‘games’. Any successful prediction schema will not last forever as
the other traders will soon spot your trading pattern and exploit it to
your disadvantage. However, as with real stock markets, there are
definitely patterns and market ‘moods’ (if there are enough traders
and stocks), for example bull markets and speculative bubbles.
There will be periods of relative quiet as traders sit on stock and so
effectively prevent trading and periods of high volatility as
subgroups of traders engage in bouts of activity trying to exploit
each other. The dynamics are related to those of the “minority
game” [10], and similar [7] but are more varied and complex. Thus,
although this is an artificial setting, it goes way beyond a “toy”
problem in scope and complexity.

There are two types of traders: which I will call generic and context
traders. Both types maintain a population of 20 models, each of
which is composed of a separate expression to predict the future
price of each stock. All models are initially randomly generated to a
depth of 5 using the inputs, primitives, operators and constants
already listed. Both agents use an evolutionary learning algorithm
which evaluates fitness by the profit the agent would have made
over the past 3 time periods had it used these models to predict
prices.

The generic traders use a genetic programming learning algorithm to
evolve their predictive models and the context traders have an
adapted version of this algorithm to allow the simultaneous learning
of context for its models. The types are otherwise identical.

Total Value of Assets

100

400 500

Time

Figure 2. Growth in Agents’ Assets over time (context traders
in black, generic in white)
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The learning algorithm for the generic trading agent is as follows:

Randomly generate initial population of candidate models
for each generation
for each model
evaluate what the total wealth of the agent would be if
it had used this model in trading over the past few
time periods, this is the model’s fitness
next model
repeat
randomly pick two models with a probability proportional
to their current fitnesses
pick random number x from [0,1)
if x < propagation probability
then propagate them to new generation
else cross them and put results into new generation
until new population is complete
next generation

The context trader’s algorithm differs a little from the basic version
outlined in the last section. This is because from an agent’s point of
view the only relevant circumstances (in terms of the space of
possible ones) are those that actually occur. Therefore instead of
randomly picking a sequence of circumstances until the new
population is generated, we use only the present circumstance
repeatedly and we propagate the rest into the next population with a
bias against those that are furthest from any circumstance that has
occurred. Also in this model we have associated with each model
content a set of positions, so that its domain of application is
indicated by a small cloud of points.

It is not obvious that the context trader is a better learner than the
generic trader. The context algorithm restricts which models can be
crossed to produce new variants to those that are in the same
neighbourhood of an occurring circumstance, whilst the generic
algorithm allows a more global search for solutions. Thus one
might expect that the context traders do better only if there is a
context-dependency in the environment to exploit. .

The model was run 9 times with 7 of each type of agent (thus 15
including the market maker) and 23 times with 3 type of each agent.
In each case they were trading 5 different stocks over 500 time
periods. The model was implemented in SDML [23].

Figure 2 is a plot of the total assests of each trader over time for a
typical run. For the first 80 periods one of the generic traders was
doing substantially better than the others, but after this the context
traders clearly did better, on the whole (see Figure 2). To make
clear the significance of the difference between context and generic
traders | have plotted the difference between the average value of
context traders’ assets minus the average value of the generic
trader’s assets, scaled by the current standard deviation of the spread
of total asset values for each of the 9 runs of the set-up with 7 of
each kind of trader (Figure 3).

Figure 3 shows that after 160 time periods the context traders did
better (on average) in most, but not all, of the runs. The average
scaled difference is shown as a bold line in figure 3. You can see
that althouth there are some marked changes of fortune in particular
runs (a feature of such markets) the context-dependent learning does
impart a general advantage.

However for the runs with only 3-traders of each kind the advantage
is much slimmer and takes much longer to establish (Figure 4). The
market dynamics with only a few traders is much more chaotic and
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Figure 3. Difference of average asset values of context and generic traders, scaled by current asset spread for 9 runs with 7 traders of
each kind (vertical axis in standard deviations of assets, bold line is average of the 9 runs)

“sharper” than that with more traders. The reason the context
traders do less well here is that it is more difficult to identify and
learn menaingful contexts and it is, in general, more profitable to
concentrate on short-term strategies.

To show that the context traders are, in fact, identifying meaningful
contexts (at least sometimes), I have taken a snapshot of the
positions indicating the domain of the 6 of the models in one agent
for one stock at one time (the best performing agent halfway through
the run). These clusters are shown in Figure 5. The contents of
these six model are shown in Table 1.

Figure 4. Equivalent of Fig. 3 but for 3 tarders of each kind
(average scaled difference of average assets over 23 runs).
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Table 1: The action models (for stock 3) in Figure 3.

model-256 |priceLastWeek [stock-4]
model-274 |priceLastWeek [stock-5]
model-271 |doneByLast [normTrader-5] [stock-4]

model-273
model-276

IDidLastTime [stock-2]
IDidLastTime [stock-5]
minus
[divide
[priceLastWeek [stock-2]]
[priceLastWeek [stock-5]]]

[times
[priceLastWeek [stock-4]]
[priceNow [stock-5]]]

model-399

For this agent at this time there seem to be three contexts: one for
lower volatility and higher volume, one for lower volatility and
lower volume and one for higher volatility and middle volume. It is
notable that, even within each of these there are a mixture of two
models that are appropriate. Thus, even given the circumstances,
the model selected for will be determined by recent predictive
performance: for example, in the case of stock 3 in the above
snapshot its price may be modelled best by either the price of stock
4 or stock 5 last time period.
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Figure 5. Snapshot of clusters of positions of 6 action models
for a context trader indicating three distinct contexts.

5. DISCUSSION: PROSPECTS FOR THE
INTEGRATION OF LEARNING AND
DEDUCTION

above show the way context can separate the necessary ‘fuzziness’
of relevance decisions from the ‘crisp’ content models upon which
deductive and planning algorithms could be usefully employed. The
crispness of the content, , is made possible by the restriction of its
applicability to a recognisable context. If the domain was capturable
in a crisp way, to a symbolic representation, X, the knowledge could
be decontextualised: X—N, but the point is that the domain is often
not suitable to any compact symbolic representation but is a messy
mixture of heuristic indicators. In fact there is a good argument to
say that it is only feasible to reason about the complex natural world
within fuzzily defined but restricted contexts. If the content, N, was
of a similar nature to X then there would be no need for it because it
could be subsumed into the recognition process. Thus the utility of
context-dependency derives from its two aspects, it loses much of its
point if reduced to either just the symbolic or non-symbolic aspects.
Thus it straddles the ML and Al communities.

To illustrate the power of context-dependency, I will outline how it
could be employed to solve some classic problems in Al, namely the
under- and over-determination of knowledge. If an agent has a set
of beliefs, B and is trying to decide whether to take a specific action,
dependent on whether a predicate o is true or not, there are two
problematic cases for it:

(1) when neither o nor —o can be proved (under-determination);

(2) when a contradiction is obtained, i.e. both f and —3 can be
proved (destructive over-determination).

In (1) there is not enough knowledge to specify whether o nor —o. is
true. If the agent has a store of context dependent knowledge, it can
then search for a more specific context, which may provide it with
the extra information it requires.

In case (2), something is wrong with the agent’s set of beliefs.
There are two possibilities: firstly that the agents has chosen the
wrong context and secondly that there is something wrong with the
beliefs associated with that context. Distinguishing between these
possibilities is done by checking other consequences of beliefs
within that context; if other predictions relevant to that context are
also false then it is likely that the context has been wrongly
recognised, in which case it is sensible to search for another
(probably more general) context that might be appropriate; if the
other predictions in the context are correct then it is likely that some
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of the specific beliefs used to infer b and —b need updating or
rejecting from this context.

Many non-monotonic logics can be seen as attempts to solve the
above problems in a generic way, i.e. without reference to any
contingent properties obtained from the particular contexts they are
applied in. So, for example, some use ‘entrenchment’ to determine
which extra information can be employed (e.g. oldest information is
more reliable [14]), and others allow a variety of default information
to be used (e.g. using extra negative knowledge as long as it is
consistent [25]). These may work well on occasion and tolerably
well in others, but the only truly reliable way to update knowledge
in a context is by utilising the specific properties of that context.
Combining the learning and deductive exploitation of context-
dependent information should enable the effective and correct
integration of learning and deduction.

Thus the introduction of context into the agent architecture would
allow us to progress beyond the ‘loose’ loop of:

repeat
learn and/or up update beliefs
deduce intentions, plans and actions
until finished

to a more integrated loop:

repeat
repeat
recognise/learn/choose context
induce/update beliefs in that context
deduce predictions/conclusions in that context
until predictions are consistent
and actions/plans can be determined
plan & act
until finished

Only the recognition of a context and the final stage (plan & act) do
not occur within the confines of a context. The recognition
machinery can be parallel to the rest so that it is ready to suggest a
context when called upon to do so.

6. Conclusion

Context has a huge potential for improving the performance of
agents in multifaceted and unpredictable domains. It combines
symbolic and non-symbolic forms of knowledge. It can make
reasoning more efficient by structuring the space of knowledge by
relevance. It allows the close and coherent integration of learning
and deduction. It provides a partial solution to the problems of the
under- and over-determination of knowledge and it holds out the
potential for more flexible communication via the possibility of
mutually identifying the relevant communicative context.

It is essentially a trade-off: more information is stored including the
relevance information implicit in the contexts, so that more
effectiveness can be obtained. It can be seen as a sort of pre-
compilation of knowledge. It hugely increases the amount of
information that needs to be stored. However, in the case of agents
who are learning about the environment in sifu this is merely a case
of encoding and remembering the contextual information that is
already available to them. What was missing was an effective way of
capturing this contextual information. Algorithms similar to that
presented here might provide this missing piece.
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