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ABSTRACT

In this paper we focus on the problem of designing a collec-
tive of autonomous agents that individually learn sequences
of actions such that the resultant sequence of joint actions
achieves a predetermined global objective. Directly applying
Reinforcement Learning (RL) concepts to multi-agent sys-
tems often proves problematic, as agents may work at cross-
purposes, or have difficulty in evaluating their contribution
to achievement of the global objective, or both. Accordingly,
the crucial design step in designing multi-agent systems fo-
cuses on how to set the rewards for the RL algorithm of
each agent so that as the agents attempt to maximize those
rewards, the system reaches a globally “desirable” solution.
In this work we consider a version of this problem involving
multiple autonomous agents in a grid world. We use con-
cepts from collective intelligence [15, 23] to design rewards
for the agents that are “aligned” with the global reward,
and are “learnable” in that agents can readily see how their
behavior affects their reward. We show that reinforcement
learning agents using those rewards outperform both “nat-
ural” extensions of single agent algorithms and global rein-
forcement learning solutions based on “team games”.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
systems. 1.2.6 Learning

General Terms

Design, Economics, Experimentation, Theory

Keywords

Reinforcement learning, MAS, Q-learning

1. INTRODUCTION

Many challenging problems involve coordinating a large
number of autonomous agents to collectively address a well-
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defined, global, time-dependent task. Examples of such
problems include controlling constellations of satellites, con-
structing distributed algorithms, routing over a data net-
work, and controlling a collection of planetary exploration
vehicles (e.g., rovers on Mars, or submersibles under Eu-
ropa’s ice caps). In each case, a single agent controlling
everything would need too large of state space. For such
problems there are two fundamental issues that need to be
addressed:

e ensuring that the agents learn a sequence of actions
that optimize each agent’s “payoff utility function”
(i.e., achieve a private goal); and

e ensuring that, as far as the provided “world utility
function” is concerned, the agents do not work at cross-
purposes (i.e., making sure that the private goals of the
agents and the global goal are “aligned”).

For single agent systems, the first of these issues has been
dealt with extensively, and there are many learning systems,
(e.g., Q-learners [17]) that have successfully been applied to
real world problems [2]. The second problem has received
less attention, and generally the solution consists of either
each agent receiving the world utility as their payoff utility
(e.g., “team” games [4]), or of imposing external mechanisms
(e.g., contracts, auctions) that encourage the agents to work
together [8, 11].

Addressing these two issues simultaneously is one of the
main problems in designing multi-agent systems [9, 12]. If
the agents are not designed to work well with each other,
they may not learn their task properly, may interfere with
each other’s ability to contribute to the world utility, or
simply perform useless repetitive work. Hand tailoring the
agents’ payoff functions may offer an alternative, but such
systems: (i) have to be laboriously modeled; (ii) provide
“brittle” global performance; (iii) are not “adaptive” to chang-
ing environments; and (iv) generally do not scale well.

To sidestep these problems, yet address the design require-
ments listed above (i.e., “alignedness” and “learnability”)
one can use the “COllective INtelligence” (COIN) frame-
work [15, 21]. A COIN is a large multi-agent system where
there is a well-defined “world utility” function which rates
the possible dynamic histories of the collection and where
there is little to no centralized control. We are particularly
interested in the case where each agent is “selfish” and runs
a Reinforcement Learning (RL) algorithm [14].

Given this framework, COIN theory addresses a new de-
sign problem: Assuming the individual agents are able to



maximize their own utility functions (e.g., through reinforce-
ment learning), what set of payoff utilities for the individual
agents will, when pursued by those agents, result in high
world utility? In other words, how can we leverage an as-
sumption that our learners are individually fairly good at
what they do, to induce good collective behavior?

There are two quantifiable properties (discussed in detail
in Section 2) that help answer this question. First, the utility
functions for the individual agents need to be “aligned” with
the world utility, in that an action taken by an agent that
improves its payoff utility also improves the world utility.
Second, the utility functions need to be “learnable” in that
an agent has to be able to discern the effect of its actions on
its utility and select actions that optimize that utility. As
we will highlight below, COIN theory provides utilities for
individual agents that maximize the second property while
satisfying the first one.

A canonical example of a naturally occurring system that
can be viewed as a COIN is a human economy. One can
take the agents to be the individuals trying to maximize
their payoff utilities (e.g., maximize bank account, advance
career). One might then take the time average of the gross
domestic product as the world utility (“world utility” is not a
construction internal to a human economy, but rather some-
thing defined from the outside). To achieve high world util-
ity it is necessary to avoid having the agents work at cross-
purposes lest frustrational phenomena like the tragedy of
the commons occur, in which individual avarice works to
lower world utility [7]. One way to avoid such phenomena is
by modifying the agents’ utility functions via punitive leg-
islation, in essence making sure the agents’ utility functions
are aligned with the world utility. Securities and Exchange
Commission (SEC) regulations designed to prevent insider
trading can be viewed as a real world example of an attempt
to make such a modification to the agents’ utilities. For ex-
ample, a trade that once may have added to your wealth
while hurting the economy, may now lead to your prosecu-
tion. You are therefore unlikely to make such a trade. Your
utility and the world utility have become more aligned.

In designing a COIN we have more freedom than the SEC
though, in that there is no base-line “organic” payoff util-
ity function over which we must superimpose legislation-like
incentives. Rather, the entire “psychology” of the individ-
ual agents is at our disposal when designing a COIN. This
freedom is a major strength of the COIN approach, in that
it obviates the need for honesty-elicitation mechanisms, like
auctions, which form a central component of conventional
€conomics.

The COIN design problem is related to work in many
fields beyond multiagent systems and computational eco-
nomics, including mechanism design, reinforcement learn-
ing for adaptive control, computational ecologies, and game
theory. However none of these fields directly addresses the
inverse problem of how to design the agents’ utilities to reach
a desirable world utility value in its full generality. This is
even true for the field of mechanism design, which while ad-
dressing an inverse problem similar to that of COIN design,
does so only for certain restricted domains, and does not ad-
dress the “learnability” issue. (Mechanism design is mostly
appropriate when there are pre-specified goals underlying
agents’ utilities over which “incentives” need to be provided,
and when Pareto-optimality (rather than optimization of a
world utility) is often the goal [21].)
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The COIN framework has been successfully applied to
multiple domains including packet routing over a data net-
work [20] and the congestion game known as Arthur’s El
Farol Bar problem [23]. In particular, in the routing domain,
the COIN approach achieved performance improvements of
a factor of three over the conventional Shortest Path Al-
gorithm (SPA) routing algorithms currently running on the
internet [19], and avoided the Braess’ routing paradox which
plagues the SPA-based systems [15].

In the work described above, agents were concerned with
optimizing “rewards” (i.e., utility value of a single time
step). In this paper we extend these results to a problem
where agents need to optimize a time-extended utility func-
tion through selecting sequences of actions. We show that
in this significantly more complex domain, agents that use
COIN theory-based utilities provided solutions that are sig-
nificantly superior to agents that either use team games or
“natural” utilities. In Section 2, we provide some back-
ground on COIN-theoretic concepts and highlight relevant
theoretical developments. In Section 3, we describe the
problem domain and develop the COIN solution to this
problem. In Section 4, we present and discuss the simulation
results. Finally in Section 5, we provide a simple example
that demonstrates how and why COIN-theory based algo-
rithms significantly outperformed more “natural” or “tradi-
tional” approaches.

2. BACKGROUND: COLLECTIVE INTEL-
LIGENCE

In this section, we summarize the portion of COIN the-
ory needed to describe the learning of sequences of actions
in a distributed system [21]. Let Z be an arbitrary vector
space whose elements ¢ give the joint move of all agents in
the system (i.e., ¢ specifies the full “worldline” consisting of
the actions/states of all the agents). The provided world
utility G((), is a function of the full worldline, and we wish
to search for the ¢ that maximizes G(().

In addition to G, for each agent 7, there is a payoff util-
ity functions {g,}. The agents will act to improve their
individual payoff functions, even though, we, as system de-
signers are only concerned with the value of the world utility
G. To specify all agents other than 7, we will use the nota-
tion 7.

2.1 Intelligence

We need to have a way to “standardize” utility functions
so that the numeric value they assign to a ¢ only reflects the
ranking of ( relative to certain other elements of Z. We call
such a standardization of some arbitrary utility U for agent
7 the “intelligence for n at ¢ with respect to U”. Here we
use intelligences that are equivalent to percentiles:

(1)

where the Heaviside function © is defined to equal 1 when
its argument is greater than or equal to 0, and to equal
0 otherwise, and where the subscript on the (normalized)
measure du indicates it is restricted to ¢’ sharing the same
non-n components as ¢.! Note that intelligence value are

ew(Cim) = / duc., (COIU(C) — U],

!The measure must reflect the type of system at hand, e.g.,
whether Z is countable or not, and if not, what coordinate
system is being used. Other than that, any convenient choice



always between 0 and 1. Intuitively, intelligence values in-
dicate what percentage of n’s actions would have resulted in
lower utility. Accordingly, €4, (¢ : 7) = 1 means that agent 7
is fully rational at ¢, in that its move maximizes its payoff,
given the moves of other agents. Figure 1 shows an exam-
ple where 60% of n’s actions would have resulted in worse
utility, giving 1 an intelligence of 0.6 at that point (().

€y(€m) =06

Figure 1: Intelligence of agent n at state { for utility
U: ( is the actual joint move at hand. The x-axis
shows agent 7’s alternative possible moves (all states
¢’ having (’s values for the moves of all agents other
than 7n.). The bold lines show the alternative moves
that n could have made that would have given 7 a
worse value of the utility U. The fraction of those
bold lines to the full set of n’s possible moves (which
is 0.6 in this example) is the intelligence of agent 7
at ¢ for utility U, denoted by ey (¢ : 7).

Our uncertainty concerning the behavior of the system is
reflected in a probability distribution over Z. Our ability
to control the system consists of setting the value of some
characteristic of the collection of agents, e.g., setting the
payoff functions of the agents. Indicating that value by s,
our analysis revolves around the following central equation
for P(G | s), which follows from Bayes’ theorem:

P(G|s)= /d&;P(G | €G,s)/d€gP(€‘G | €5,5)P(Eg ] s), (2)

where €5 = (eg,, (€ : M), €g,, (¢ : m2),--+) is the vector of the
intelligences of the agents with respect to their associated
payoff functions, and €z = (ec(C : m),ec( : m2), -+ ) is the
vector of the intelligences of the agents with respect to G.

Note that, from a game-theoretic perspective, a point ¢
where all players are rational, (eg, (¢ : ) = 1 for all agents 7,
is a game theory Nash equilibrium [21]. On the other hand,
a ¢ at which all components of €z = 1 is a local maximum
of G (or more precisely, a critical point of the G(() surface).

If we can choose s so that the third conditional probability
in the integrand, P(€, | s), is peaked around vectors €, all
of whose components are close to 1 (that is agents are able
to “learn” their tasks), then we have likely induced large
payoff utility intelligences. If we can also have the second
term, P(€z | €,s), be peaked about €z equal to € (that
is the payoff and world utilities are aligned), then ez will
also be large. Finally, if the first term in the integrand,
P(G | €g, s), is peaked about high G when €g is large, then
our choice of s will likely result in high G, as desired.

of measure may be used and the theorems will still hold.
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2.2 Factoredness and L earnability

The requirement that payoff functions have high “signal-
to-noise” (an issue not considered in conventional work in
mechanism design) arises in the third term. It is in the
second term that the requirement that the payoff functions
be “aligned with G” arises. In this work we concentrate on
these two terms, and show how to simultaneously set them
to have the desired form.

Details of the stochastic environment in which the collec-
tion of agents operate, together with details of the learning
algorithms of the agents, are reflected in the distribution
P(¢) which underlies the distributions appearing in Equa-
tion 2. Note though that independent of these considera-
tions, our desired form for the second term in Equation 2 is
assured if we have chosen payoff utilities such that €; equals
€c exactly for all (. We call such a system factored. In
game theory language, the Nash equilibria of a factored sys-
tem are local maxima of G. In addition to this desirable
equilibrium behavior, factored systems also automatically
provide appropriate off-equilibrium incentives to the agents
(an issue rarely considered in the game theory / mechanism
design literature).

As a trivial example, any “team game” in which all the
payoff functions equal G is factored [4]. However team games
often have very poor forms for term 3 in Equation 2, forms
which get progressively worse as the size of the system grows.
This is because for large systems where G sensitively de-
pends on all components of the system, each agent may ex-
perience difficulty discerning the effects of its actions on G.
As a consequence, each 7 may have difficulty achieving high
gn in a team game. We can quantify this signal/noise ef-
fect by comparing the ramifications on g¢,(¢) arising from
changes to (, with the ramifications arising from changes to
¢w (i.e., changes to all nodes other than n). We call this
quantification the differential learnability of payoff utility
gn, in the vicinity of ¢ [22]:

G
Ve 9n (Ol

The denominator in Equation 3 reflects how sensitive g;,(¢)
is to changes in ¢, or changes to agents other than 7. In
contrast, the numerator reflects how sensitive g,(¢) is to
changing ;. So at a given state ¢, the higher the learnabil-
ity, the more g, (¢) depends on the move of agent 7, i.e., the
better the associated signal-to-noise ratio for 7. Intuitively
then, higher learnability means it is easier for n to achieve
a large value of its intelligence.

2.3 Difference Utilities

Consider difference utilities, which are of the form:

U(¢) = G(O) = T(f(C)) (4)

where I'(f) is independent of ¢,. Such difference utilities
are factored [21]. In addition, under usually benign approx-
imations, the differential learnability can be maximized over
the set of difference utilities by choosing f = G and setting
I" to the expected value operator [21]. We call the resultant
difference utility the Aristocrat Utility (AU):

AU(C) = G(Q) — E(G [ Cny 8) -

Ay (€) ®3)

()

If possible, we would like each agent n to use the associ-
ated AU as its payoff function to ensure good form for both



C (Chzvﬁ’)
m 100 100
2 00 1 — 00 0
n 100 Clamp 72 100
3 to “null”
4 010 01 0

Figure 2: This example shows the impact of the
clamping operation on the joint state of a four-agent
system where each agent has three possible actions,
and each such action is represented by a three-
dimensional unary vector. The first matrix repre-
sents the joint state of the system ¢ where agent 1
has selected action 1, agent 2 has selected action 3,
agent 3 has selected action 1 and agent 4 has selected
action 2. The second matrix displays the effect of
clamping agent 2’s action to the “null” vector (i.e.,
replacing ¢,, with 0).

terms 2 and 3 in Equation 2. This is not always feasible
however. The problem is that to evaluate the expectation
value defining its AU each agent needs to evaluate the cur-
rent probabilities of each of its potential moves. However if
the agent then changes its payoff function to be the associ-
ated AU it will in general substantially change its ensuing
behavior. (The agent now wants to choose moves that max-
imize a different function from the one it was maximizing
before.) In other words, it will change the probabilities of
its moves, which means that its new payoff function is in
fact not the AU for its actual (new) probabilities.

There are ways around this self-consistency problem, but
in practice it is often easier to bypass the entire issue, by
giving each 7 a payoff function that does not depend on the
probabilities of 1’s own moves. One such payoff function is
the Wonderful Life Utility (WLU). The WLU for agent 5
is parameterized by a pre-fixed clamping parameter CL,
chosen from among 7’s legal or illegal moves:

WLU, = G(¢) — G(¢n, CLy) (6)

WLU is factored no matter what the choice of clamping pa-
rameter. Furthermore, while not matching the high learn-
ability of AU, WLU usually has far better learnability than
does a team game.

Figure 2 provides an example of clamping. As in that ex-
ample, in many circumstances there is a particular choice
of clamping parameter for agent n that is a “null” move
for that agent, equivalent to removing that agent from the
system, hence the name of this payoff function. For such
a clamping parameter WLU is closely related to the eco-
nomics technique of “endogenizing a player’s (agent’s) ex-
ternalities” [10]. Indeed, WLU has conceptual similarities to
Vickrey tolls [16] in economics, and Groves’ mechanism [6] in
mechanism design. However, because WLU can be applied
to arbitrary, time-extended utility functions, and need not
be restricted to the “null” clamping operator interpretable
in terms of “externality payments”, it can be viewed a gen-
eralization of these concepts.

It can be proven that in many circumstances, especially in
large problems, A\, wrv(¢) > Ay,c(¢), i.e., WLU has higher
differential learnability than does the team game choice of
payoff utilities [21]. This is mainly due to the second term
of WLU which removes a lot of the effect of other agents
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(i.e., noise) from n’s utility. The result is that convergence
to optimal G with WLU is much quicker (up to orders of
magnitude so [21]) than with a team game. Furthermore, it
is possible to use a WLU with a clamping parameter that
is as close as possible to the expected action (and not the
“null” action), which is roughly akin to a mean-field ap-
proximation to AU [21]. Such a WLU often provides higher
learnability than does clamping to the null move [21].

Intuitively, one can look at AU and WLU from the per-
spective of a human company, with G the “bottom line”
of the company, the agents 7 identified with the employ-
ees of that company, and the associated g, given by the
employees’ performance-based compensation packages. For
example, for a “factored company”, each employee’s com-
pensation package contains incentives designed such that
the better the bottom line of the corporation, the greater
the employee’s compensation. As an example, the CEO of
a company wishing to have the payoff utilities of the em-
ployees be factored with G may give stock options to the
employees. The net effect of this action is to ensure that
what is good for the employee is also good for the com-
pany. In addition, if the compensation packages have “high
learnability”, the employees will have a relatively easy time
discerning the relationship between their behavior and their
compensation. In such a case the employees will both have
the incentive to help the company and be able to determine
how best to do so. Note that in practice, providing stock
options is usually more effective in small companies than in
large ones. This makes perfect sense in terms of the COIN
formalism, since such options generally have higher learn-
ability in small companies than they do in large companies,
in which each employee has a hard time seeing how his/her
moves affect the company’s stock price.

3. MULTI-AGENT GRIDWORLD PROBLEM

3.1 Problem Description

A common reinforcement learning problem is the Grid
World Problem [14], where an agent navigates about a two-
dimensional n X n grid. At each time step, the agent can
move up, down, right or left one grid square, and receives a
reward after each move. The observable state space for the
agent is its grid coordinate and the reward it receives de-
pends on the grid square to which it moves. In the episodic
version, which is the focus of this paper, the agent moves
for a fixed number of time steps, and then is returned to its
starting location. This problem typically requires the use of
a reinforcement learner that can optimize a sum of rewards
in contrast to one that optimizes an immediate reward, since
the agent may have to cross squares of low reward value to
enter the squares of high value. Q-learners or the Sarsa
algorithm [14] are often used for this problem. In this pa-
per we apply COIN theory to a multi-agent version of the
Grid World Problem. In this problem there are multiple
agents navigating the grid simultaneously interacting with
each others’ rewards. This reward interaction is modeled
through the use of tokens that are distributed throughout
the grid squares of the grid world (Figure 3). Each token
has a value between zero and one, and each grid square can
have at most one token. When an agent moves into a grid
square it receives a reward for the value of the token and
then removes the token so that a reward will no longer be
received when an agent enters the grid square. However, all



Figure 3: Agents collecting tokens of varying value.

the tokens are reset at the end of an episode. The global ob-
jective of the Multi-agent Grid World Problem is to collect
the highest aggregated value of tokens in a fixed number of
time steps.

The Multi-agent Grid World Problem is an idealized ver-
sion of many real world problems, including the control of
multiple planetary exploration vehicles (e.g., rovers on the
surface of Mars, collecting rocks in an attempt to maximize
total scientific return, submersible under Europa examining
potential life signs). Furthermore, the agent interaction pro-
vides a critical study of coordination and interference, as the
agents have the potential to work at cross-purposes. This
problem can also exhibit the tragedy of the commons [7],
where each agent attempting to maximize its own utility
can drive the world utility to severely sub-optimal values.
As such, the design of the payoff functions is crucial in this
problem, and we address this issue below.

3.2 COIN Solution

To pose the Multi-agent Grid World Problem in the form
of the COIN framework we need to define:

e L, The matrix representing the location of an agent.
If agent 7 at time ¢ is in location (z,y), then Ly ¢ 2,y =
1; otherwise Ly ¢,y = 0. Furthermore, {L,,;} denotes
the set all the agents’ location matrices.

e L7 ;. The location matrix agent  would have had at
time ¢, had it taken action a at time step ¢ — 1.

e L,: The location matrix of agent n across all time

(Ln = Et Ln,t)-

o L, «:: The location matrix of agent n across times less
than ¢ (L7h<t = zt’<t Ln,t/).

e [: The location matrix of all agents across all time

(L= ET, Ly = Et ET, Ln.t).

e L.i: The location matrix of all agents across times
less than ¢ (Lee =35, Li =30 20, Lper)-

e L+: The location matrix of all agents other than n
across all time (L~ = L — Ly).
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® L+ <4 The location matrix of all agents other than n
across times less than ¢ (L+,«<; = L<t — Ly, <¢).

e O: The initial value and location of all tokens.

The space Z is composed of © and the set of all possible
location matrices, {L,+}, given the length of an episode. A
worldline ¢ is a point in this space, i.e., the combination
of the token configurations O, along with a particular set
{Ln,+}. We now define the function V (L, ©) which returns
the value of a token received from a location matrix. For-
mally:

V(L,©) = O, ymin(1, La,).

z,y

(7)

The global utility G(¢) is the sum off all the tokens col-
lected during an episode:

G(¢) =V(L,0). (8)

Based on the definitions and world utility given above,
let us now derive the COIN-based utility functions for this
domain. In this formulation, the AU (given in Equation 5)
become:

AUL(C) = G() — 3. paV(Iy + L}, 0)
ac Ay,

(9)

where A, is the set of possible action sequences agent 1 can
take. The second term in the equation is the expected value
of the global utility over all the possible actions of agent 7.

Now, let us formulate the WL utilities for this domain.
First, setting the clamping parameter C'L,, to the null vec-
tor, we obtain WL utility where the agent is removed from
the worldline:

WLU, () = G(¢) = V (L, ©). (10)

This utility returns an agent’s contribution to the world util-
ity. Note, this utility differs from one where the values of
the tokens present in the locations vi§ited by the agent are
summed (i.e., a selfish utility). W LU® gives the value of the
tokens in locations not visited by other agents, i.e., the val-
ues of token that would not have been picked up had agent
7 not been in the system.

Because these utilities are based on the performance on
a full episode, they are problematic to work with directly.
We therefore introduce single time step “rewards” that will
help in learning the set of actions (e.g., through Q-learners
or Sarsa learners) that will lead to good values for the utility.
Note, that the utilities will be undiscounted sums of these
rewards. To that end, first let us decompose an arbitrary
utility U in the following manner:

U(L) = U(L<tt1) = U(L<). (11)

A single time step reward R; is simply:
Ri(L) =U(L<t41) — U(L<t) (12)

Now we can generate the three single time step reward



versions of the three utilities?:

GRt(C) = V(L<t+17@)*V(L<t7@) (13)
AR,(O) = GRi(¢)— Y pa(V(Inm<ii1+
acA,
Lf;,<t+1, ©) — V(Ly,<t + Lf],<t7 0))14)
WLR) Q) = GRi(C)—
(V(Ly,<t41,0) = V(Lw,<t,0))  (15)

Unfortunately the formulation for AR has the drawback
that the set of all possible action sequences is very large,
and grows exponentially with ¢. This issue is resolved in
this paper by taking an approximation that uses only the
action in the last time step instead of the entire sequence of
actions.

4. RESULTS

To evaluate the effectiveness of the COIN approach in the
Multi-agent Grid World, we conducted experiments where
the agents used four different utility functions. The first of
these was the Selfish Utility (SU), where each agent receives
the weighted total of the tokens that it alone collected. It is
the natural extension of the single agent problem, and rep-
resents the optimal utility in the single rover domain. The
second utility was the Team Game (TG) utility where each
agent received the full world utility. The third utility was
the WLU, which represents the contribution an agent made
to the token collection, by looking at the difference in the to-
tal token collection with and without that agent. The fourth
and final utility was AU, where the agent’s contribution is
computed as the difference between the action it took and
its expected action.

Each agent was controlled by a Q-learner. A learner’s in-
put space consisted of the location of the agent in the grid
world, and the action space was the four directions that the
agent could move. The Q-tables were initially set to zero,
and the discounting parameter was set to 0.95. Actions were
chosen stochastically based on Q-values, where the pr(obal)oil-
. . . kQ(s,a;
ity that an agent took action a; given state s = W
In our experiments k was set to 50.

Figure 4 shows the results for 10 agents on a 100 unit-
square grid where an episode consists of 10 time steps (in-
cluding error bars of + one o). The results showed that SU
produced poor results, results that were indeed worse than
random actions. This is caused by all agents aiming to ac-
quire the most valuable tokens, in effect competing rather
than cooperating. The agents using TG fared better, but
their learning was slow. This system was plagued by the
signal-to-noise problem associated with each agent receiv-
ing the full world reward for each individual action they
took. Notice both the selfish agents and those trained with
TG had a drop in their performance in the early going, as
they learned the “wrong” actions. Team game agents over-
came this early setback whereas selfish agents never did. In
contrast, agents using WLU and AU performed almost opti-
mally, because the reinforcement signal they received more
clearly showed how their actions affected the world reward.

2In the actual implementation there are some tie breaking
rules if more than one agent goes into the same square at
the same time.
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Figure 4: Effect of Payoff Utility on System Perfor-
mance (10 agents on a 10x10 grid).
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Figure 5: Effect of Payoff Utility on System Perfor-
mance (100 rovers on a 32x32 grid).

Figure 5 shows results for 100 agents on a 1024 unit-square
grid where an episode consists of 32 time steps. Qualita-
tively, the results are similar to the 10 agent case. However,
note that the team game agents have a harder time learning,
because in this case the reinforcement signal is even further
diluted. We explore this scaling issue in more detail in Fig-
ure 6. With very few agents, the selfish learners did not
compete with each other as much and were able to obtain
acceptable results. Their performance however, deteriorated
rapidly, when the number of agents in the system increased.
Similarly, agents using the team game reward were not ham-
pered as much by the noise associated with other agents
when the number of agents was low. As the system scaled
up however, only the WLR-trained agents were able to oper-
ate collectively. This underscores the need for a utility that
has good signal-to-noise properties so that the agents have
an opportunity to learn the actions that will optimize their
utilities.

5. NASHEQUILIBRIAANDWORLDUTIL-
ITY OPTIMA

In this simple example, we demonstrate how the Nash
equilibrium of the system where each agent uses the WLU
coincides with the world utility optimum, and how agents
optimizing their Wonderful Life Utility will optimize the
world utility (Figure 7). Suppose that two agents are on
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Figure 6: Scaling Properties of Different Payoff
Functions.

a six square world, can move left and right and can take
actions for two time steps. There are two tokens, one of
values 5 and the other of value 10 that the agents can pick
up by entering the appropriate square. A plausible, yet non-
optimal set of actions consists of agent 1 moving right twice
and agent 2 moving left first and then taking an arbitrary
action. Note that this is a Nash equilibrium for the system
where the agents use the selfish reward described in Sec-
tion 3. In this scenario agent 2 will pick up a token worth
10 on its first time step and no tokens on the second time
step. Agent 1 will not pick up any tokens. This results in a
world reward of 10 for the first time step and 0 for the sec-
ond, resulting in a world utility of 10, which is not optimal.

Now, let us look at agent 2’s WL payoff for this set of
moves: For the first time step, the WL reward turns out to
be the same the the selfish reward: agent 2 receives 10 for
picking up the token. The WLR for agent 2 in the second
time step is more interesting. The first parameter of the
V function, L+, now does not include agent 2, causing this
function do disregard any tokens agent 2 previously picked
up. This causes the V function to report that the token of
value 10 is still available in the second time step. Since agent
1 moves into the square with this token in the second time
step, it receives credit for picking up the token, meaning
the world reward without agent 2 is 10 for this time step.
Because the world reward with agent 2 was 0 (token picked
up previous time step), the WL reward for agent 2 for the
second time step is W LRy, =2 = 0 — 10 = —10. Intuitively
the WLR can be thought of as an agent’s contribution to
the world reward at this time step. Since at ¢ = 1 agent 2
picked up a token that could have been picked up at ¢t = 2,
it had a deleterious effect on the second time step.

Now the time-extended WLU for agent 2 can be computed
by summing the WLRs. This results in a WLU of 0, even
though agent 2 picks up a token weighted 10 (10 for t=1 and
-10 for t=2). The interpretation for this “counter-intuitive”
utility value is clear: because that token would have been
picked up by agent 1 at another time step, the net effect of
agent 2’s actions on the world utility was nil, resulting in a
WLU value of 0. Because moving to the right twice provides
a WLU value of 5 for agent 2, an agent optimizing its WL
payoff utility will take this second action. Similarly agent 1
moving right twice will receive a WLU of 10. As this simple
example shows, each agent maximizing its WLU leads the
system to the world utility maximum where both tokens are
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Figure 7: WLU Nash Equilibria and World Utility
Optima

picked up.

Let us analyze the game-theoretic “equilibrium” solution
for WLU and SU in these two solutions: The SU is in a
Nash equilibrium for the first set of moves, in that neither
agent can improve its SU by unilaterally changing its ac-
tions. Therefore, the system is “stuck” in this suboptimal
solution. Furthermore, even if the agents stumble upon the
second solution by accident, they will not remain there, as
this solution is unstable with payoff utilities given by SU:
Agent 2 can change its move (in future episodes) and im-
prove its payoff utility from 5 to 10. That this move reduces
agent 1’s utility from 10 to 0, and the world utility from 15
to 10 has no influence on agent 2’s actions. Note, however,
that agents with WLU as their payoff utilities are in an equi-
librium state in the second set of actions. They will therefore
seek this solution as it offers higher payoff utilities for each
agent. The use of WLU has the net effect of “aligning” the
Nash equilibrium of the agents with the world utility opti-
mum, ensuring that when the agents optimize their payoff
utilities, the world utility is also at a local — and in this case
also the global — optimum.

6. DISCUSSION

In this work we focus on the problem of designing a collec-
tive of autonomous agents that individually learn sequences
of actions such that the resultant sequence of joint actions
achieves a predetermined global objective. In particular we
discuss the problem of controlling multiple agents in a grid
world, a problem related to many real world problems in-
cluding exploration vehicles trying to maximize aggregate
scientific data collection (e.g., rovers on the surface of Mars).
In this domain, we addressed the critical issue of what util-
ity functions those agents should strive to maximize. We



extended previous results on collective intelligence to agents
attempting to maximize sequences of actions, and used Q-
learning with rewards set by COIN theory. Our results
demonstrate that RL rovers using COIN-derived goals out-
perform both “natural” extensions of single agent algorithms
and global reinforcement learning solutions based on “team
games”.

Our investigations revealed an interesting situation where
the theoretically “best” strategy was not necessarily the best
approach in practice. Although AU is theoretically superior
to WLU (higher learnability), two issues prevent us from
fully exploiting its power: First, the “expected” action is
impossible to compute in a time extended setting, since even
a simple case where an agent has four actions and ten time
steps leads to 4'° possible actions. Even Monte Carlo sam-
pling of such a space will yield highly inaccurate estimates
of the potential actions and their rewards. Second, estimat-
ing the correct probability distributions over the possible
actions causes the utility values to change, creating a self-
consistency problem. To sidestep both issues, in this article
we chose to focus on the last time step (e.g., current step for
the agent) and approximated the AU with the agent taking
each of the four actions possible in that time step with equal
likelihood. The resulting utility function provided good so-
lutions, but the performance of such a “handicapped” AU
did not exceed those of the conceptually simpler WLU.

Future work in this area includes investigating efficient AU
computation for sequences of actions, and investigating the
“mean field” approximation to AU by clamping the actions
of an agent to the average action discussed in Figure 2. This
approach avoids both difficulties associated with the proper
AU, and has been shown to lead to good world utility values
in single step reward maximization problems [21].
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