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ABSTRACT 
The use of context can considerably facilitate reasoning by 
restricting the beliefs reasoned upon to those relevant and providing 
extra information specific to the context.  Despite the use and 
formalization of context being extensively studied both in AI and 
ML, context has not been much  utilized in agents.  This may be 
because many agents are only applied in a single context, and so 
these aspects are implicit in their design, or it may be that the need 
to explicitly encode information about various contexts is onerous.  
An algorithm to learn the appropriate context along with knowledge 
relevant to that context gets around these difficulties and opens the 
way for the exploitation of context in agent design.  The algorithm is 
described and the agents compared with agents that learn and apply 
knowledge in a generic way within an artificial stock market.  The 
potential for context as a principled manner of closely integrating 
crisp reasoning and fuzzy learning is discussed. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents. I.2.6 
[Learning]: Induction. I.6.8 [Model Development]: Modeling 
methodologies. I.5.3 [Clustering]: Algorithms. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Context, integration, learning, deduction, genetic programming, 
evolutionary computation, cognitive analogy, biological analogy. 

1. INTRODUCTION 
In 1971 in his ACM Turing Award lecture, John McCarthy 
suggested that the explicit representation and manipulation of 
context might be a solution to the effective lack of generality in 
many AI systems (these ideas were later developed and written up 
in [21]).  Since then context and context-like ideas have been 
investigated in both the AI and ML communities, culminating in 
several workshops [1-5] and a series of international conferences 

entirely devoted to the subject [8, 11]. However despite this 
attention, context-related techniques and ideas have not been 
explicitly applied to the design of autonomous agents to any 
significant extent.   
Part of the reason for this may be the difficulty in entering (or 
otherwise specifying) the information relevant to each context. The 
main part of this paper aims to show a solution to this problem by 
exhibiting a practical way in which agents can learn context-
sensitive information about their environment.  Another part of the 
reason may be that really exploiting context involves a close 
integration of learning and inference. Thus it straddles the AI and 
ML communities which are notoriously disjoint and mutually 
suspicious.  In the last section I suggest that context can provide a 
well-motivated and coherent mechanism for the close integration of 
learning and deductive processes. 

2. ABOUT CONTEXT 
There are a great many different conceptions and uses of “context”.  
In this section I briefly preview some of these in cognitive science, 
AI and ML, before proceeding to my analysis of the roots of context 
in Section 3.  The word “context” is used both for the type of 
circumstance that allows for knowledge to be applied (sometimes 
called the ‘external’ context) as well as the cognitive structures that 
correspond to these (the ‘cognitive’ context).  Since the design of 
agents focuses on the cognitive mechanisms of agents I will mean 
cognitive contexts, unless I say otherwise (see Edmonds for a 
discussion of the connection). 

2.1 Context in Cognition 
The use of context is a pervasive heuristic in human cognition.  It 
appears that we use context in almost every area of our thinking and 
action, including: language understanding; memory; concepts and 
categorization; affect and social cognition and (probably) problem 
solving and reasoning [20].  In the past some researchers perceived 
the context-dependency of human thought purely as a disadvantage 
or side-effect, but now it is becoming increasingly clear that it is an 
essential tool for enabling effective learning, reasoning and 
communication in a  complex world. 
Although human cognition is not a necessary starting point for 
motivating the design of agents it is a fruitful one, especially when 
looking for solutions that will scale up to cope with problems of real 
world complexity.   

2.2 Context In AI 
McCarthy's idea was to reify the context to a set of terms, i, and the 
introduces an operator, ist, which basically asserts that a statement, 
p, holds in a context labelled by i. Thus: 

),(: piistc  
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read "p is true in context i" which is itself asserted in an outer 
context c. ist is similar to a modal operator but the context labels are 
terms of the language.  Reasoning within a single context operates in 
a familiar way., thus we have 

)),(),(),(( qiistqpiistpiisti →→∧∀ . 
In addition one needs to add a series of ‘lifting’ axioms, which 
specify the relation between truth in the different contexts.  For 
example if i ≥ j means that “i, is more general than context, j”, then 
we can lift a fact to one of its supercontexts using: 

),(),,(),()( jpistpjiabipistjiji →¬∧∧≥∀∀  
where ab is an abnormality predicate for lifting to supercontexts. 
This framework is written up in [22].  There are a whole series of 
formal systems which are closely related to the above structure, 
including, notably, Gabbay's fibered semantics [15] and the local 
semantics of the Mechanized Reasoning Group at Trento [17]. A 
useful survey of such formalisms is [9]. 
Trying to apply generic reasoning methods to context-dependent 
propositions and models, will be either inefficient or 
inadequate [18]. The generic approach forces a choice of the 
appropriate level of detail to be included, so that it is likely that 
either much information that is irrelevant to the appropriate context 
will be included (making the deduction less efficient) or much 
useful information that is specific to the relevant context may be 
omitted (and hence some deductions will not be possible).  The role 
context can play in solving the under/over determination of 
knowledge will be discussed in the last section. 

2.3 Context In ML 
The use of context in machine learning can be broadly categorized 
by goal, namely: to maintain learning when there is a 
hidden/unexpected change in context; to apply learning gained in 
one context to different context; and to utilise already known 
information about contexts to improve learning.  There are only a 
few papers which touch on the problem of learning the appropriate 
contexts themselves.  Widmer [30] applies a meta-learning process 
to a basic incremental learning neural net; the meta-algorithm 
adjusts the window over which the basic learning process works.  
Here it is an assumption that contexts are contiguous in time and so 
a time-window is a sufficient representation of context. Harries et 
al. [19] employ a batch learner as a meta-algorithm to identify stable 
contexts and their concepts; this makes the assumption that the 
contexts are contiguous in the “environmental variables” and can 
only be done off-line.  Aha describes an incremental instance based-
learning which uses a clustering algorithm to determine the weight 
of features and hence implicitly adjusts to context [6]. 
Other techniques require the explicit identification of what the 
contextual factors will be and then augment the existing machine 
learning strategy with a meta-level algorithm utilising this 
information (e.g. [27]).  Others look to augment strategies using 
implicit information about the context to adjust  features of the 
learning such as the weightings [6], or normalisation  [26].  
Turney discusses the problem in [28]. He  surveys the various 
heuristics tried to mitigate the effects of context on machine learning 
techniques in [29]. He maintains a bibliography on context-sensitive 
learning at URL: 

http://extractor.iit.nrc.ca/bibliographies/context-sensitive.html 

2.4 Context in Natural Language 
It has been recognized for a while that the external (and linguistic) 
context plays a role in the understanding of natural language.  
However it is only recently that the importance of context in 
communication has been appreciated.  The external context is not 
merely a resource for understanding utterances that is accessed when 
all other mechanisms fail; a way of sorting out otherwise ambiguous 
sentences.  Rather it is one of the primary mechanisms.  As 
Gardenfors [16] said: 

Action is primary, pragmatics consists of the rules for 
linguistic actions, semantics is conventionalised pragmatics 
and syntax adds markers to help disambiguation (when context 
does not suffice). 

In terms of developmental stages (and surely it is right to think of 
our agents as in the earliest stages of development) it is context that 
provides the meaning of specific parts of language.  Thus natural 
language is rooted in context, allowing two individuals to guess at 
the contexts of others and hence share contexts.  Such an ability to 
mutually identify the relevant context of communication lessens the 
need for formal and fixed ontologies. 

3. THE ROOTS OF CONTEXT 
In this section I recapitulate the analysis in [12] to motivate the 
learning algorithm to be presented.  This argues that, causation is 
essentially a context-dependent abstraction. That in order to be able 
to effectively learn and reason about the world using fairly definite 
(i.e. ‘crisp’) models an agent has to separate out the foreground 
causes from the background ones (which can be abstracted to a 
context).  This is illustrated in Figure 1. 
The ‘background’ causes are those that are either so consistent that 
they can safely be ignored, or else are a messy mixture of factors 
capable of being recognized with a high probability afterwards but 
not explicitly incorporated into a reasonably simple “crisp” model.  
This will depend somewhat upon is usual in any particular 
circumstances.  So, for example, if a man breaks a leg while walking 
down a step, the relevant foreground ‘cause’ would be his medical 
condition if he had brittle bone syndrome but due to his being 
distracted if a stripper ran by. 
The model is thus learnt in one set of circumstances that are 
implicitly encoded by some recognition machinery (e.g. neural net). 
Later when the circumstances are recognized as being similar, the 
model is judged relevant to be included in any explicit reasoning or 
formal deduction.  Thus knowledge is transferred from the time of 
learning to the time of application. 
For such a transference to be possible a number of conditions need 
to be met, namely: 

• that some of the possible factors influencing an outcome are 
separable in a practical way; 

• that a useful distinction can be made between those factors that 
can be categorized as foreground features and the others; 

• that the background factors are capable of being recognized 
later; 

• that the world is regular enough for such models to be 
learnable; 
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• that the world is regular enough for such learnt models to be 
useful when applied in contexts that can be recognized later. 

It should be clear that such a transfer of knowledge is not necessarily 
possible, because it relies on the presence of commonalities in the 
domain that is being interacted with.  Broadly these commonalities 
must be fairly constant during the learning and application events 
(otherwise they might not be background), and be recognisable from 
one to the other.  Different commonalities result in different sorts of 
context.  For example: two agents might be inhabiting a common 
location in space and time and hence can use that as the context for 
communicative acts; or one may remember what it is like during a 
stock market crash previously and hence have some ready made 
models of how to act during another one. 
While this transference of learnt models to applicable situations is 
the basic process, analysts of this process might abstract some 
aspects of the background features as a ‘context’.  
Note that the agent might not be able to explicitly identify and label 
the contexts that it is using, even if this is clear to an exterior 
observer.  All that is necessary is for the agent to recognise the 
circumstances where models can be applied, or at least find the 
‘closest’ candidate models in terms of their domain of application.  
On the other hand the agent might be able to introspect sufficiently 
to analyse and abstract its own contexts.  It would seem that we, as 
humans, are so good at automatically flipping between different 
cognitive contexts that we do not notice this most of the time, but 
simply deal with reasoning within the chosen context.  There are 
exceptions of course; for instance when trying to generalise to a 
theory or when trying to find out what went wrong. 
Given the above conditions are possible context is: 

an abstraction of those background elements of the 
circumstances in which a model is learnt that allows the 
recognition of new circumstances where the model can be 
usefully applied. 

Due to the fact that context is characterised as an abstraction of an 
aspect of a heuristic for the learning and application of knowledge, 
the properties of such contexts can not be meaningfully analysed if 
one only considers either the learning or the application of such 
knowledge. If one did this one would not only be missing out on 
over half of the story but also undercutting the reasons for its very 

existence. If the problems of learning are ignored then there is no 
reason not to encode such models without context – the non-causal 
factors can be treated as either given or the same as the other 
features of the model, de-contextualising them. If the problems of 
inference are ignored then there is no reason to separate the 
recognition of an appropriate context from that of recognising the 
correct prediction in that context.  Thus if one is to exploit the 
power of context, both learning and inference need to be included. 

4. LEARNING CONTEXT WITH CONTENT 
In order for context-dependent reasoning to occur, the context-
dependent information (or beliefs) need to be captured.  If the 
relevant contexts are already known by the designer (and there is 
some effective way of recognizing when they apply), then either the 
relevant information can be entered or a context-enhanced learning 
algorithm can be employed to learn the information with respect to 
each context.  The former case can be onerous because one not only 
has to enter the relevant facts as well as specifying each fact’s 
domain of application, but one also has to define all the ‘lifting-
rules’ to allow the integration of the context-dependent information.  
In the later case the context-dependency of the learning means that 
one needs correspondingly more information within each context for 
the learning to be complete. 
Thus in order for the desired efficiency in terms of context-
constrained reasoning to occur (without a laborious entry of 
information) for each appropriate context, this information (that is 
both the contexts and the content in the contexts) should be learned 
by the agent, at least to some extent.  

4.1 The Context Learning Algorithm 
The basic idea is to simultaneously learn the models and the 
circumstances in which they work best.  If there is sufficient 
regularity in the environment to allow it this will allow some 
clusters of similar circumstances to be identified and the 
corresponding models to be induced.  However the clustering and 
induction parts of the algorithm can not work independently; i.e. 
clusters of like circumstances being identified and then models 
induced for these clusters.  The reason for this is the contexts are 
identified by those circumstances where particular models work 
best.  These may correspond to a neat (i.e. humanly identifiable) 

 
Figure 1. Reusing an earlier learnt model 
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cluster but this is not inevitable – they may be (to the human eye) 
inextricably intertwined or overlapping. 
There is a population of candidate beliefs, each of which is 
composed of two parts: a crisp model in a formal language (the 
content) and some information that specifies the model's domain of 
application (the domain).  In the examples given here the designer 
specifies what inputs will be used for context recognition and which 
can be referred to in the model content (some may be in both).  
Repeatedly a particular circumstance is chosen (for example, these 
are the ones that simply occur to the agent), and those beliefs who 
are recognized as most probably relevant (or ‘closer’) are selected.  
Out of these the ones that work best are preferentially selected and 
crossed into future generations of the population.  Beliefs that are 
never anywhere near occurring circumstances are, over time, 
forgotten. 
The basic learning algorithm is as follows: 
Randomly generate candidate models and place them 
randomly about the domain, D 
for each generation 
   repeat 
      randomly pick a point in D, P 
      pick n models, C, biased towards those near P 
      evaluate all in C over a neighbourhood of P 
      pick random number x from [0,1) 
      if x < propagation probability 
         then propagate the fittest in C to new generation 
         else cross two fittest in C, put result into new  
                 generation  
   until new population is complete 
next generation 
A biological analogy makes this clear.  Imagine that each belief is a 
plant.  These plants exist in a space defined by the factors that allow 
context recognition.  They compete locally – those that are better 
replicate themselves into a neighbourhood (by propagation and 
sexual reproduction).  Thus, slowly, the successful plants adapt and 
spread to fill all of the space in which they are relatively successful.  
Different plants will occupy different areas in the space.  The 
contexts correspond to the ecological niches. 
This is an example of the some more general heuristics for learning 
context.   
Formation: A cluster of models with similar or closely related 
domains suggests these domains can be meaningfully abstracted to a 
context. 
Abstraction: If two (or more) contexts share a lot of models with the 
same domain, they may be abstracted (with those shared models) to 
another context.  In other words, by dropping a few models from 
each allows the creation of a super-context with a wider domain of 
application. 
Specialisation: If making the domain of a context much more 
specific allows the inclusion of many more models (and hence 
useful inferences) create a sub-context. 
Content Correction: If one (or only a few) models in the same 
context are in error whilst the others are still correct, then these 
models should either be removed from this context or their contents 
altered so that they give correct outputs (dependent on the extent of 
modifications needed to “correct” them) 

Content Addition: If a model has the same domain as an existing 
context, then add it to that context. 
Context Restriction: If all (or most) the models in a context seem to 
be simultaneously in error, then the context needs to be restricted to 
exclude the conditions under which the errors occurred. 
Context Expansion: If all (or most) of the models in a context seem 
to work under some new conditions, then expands the context to 
include these conditions. 
Context Removal: If a context has only a few models left (due to 
principle 2) or its domain is null (i.e. it is not applicable) forget that 
context. 
These, the above algorithm and its properties is discussed in much 
greater detail in [13]. 

4.2 Example: Agents In An Artificial Stock 
Market 
In order to demonstrate this approach to learning, I needed an 
environment that was sufficiently complex yet having emergent 
contexts (i.e. ones difficult to predict in advance).  I have chosen a 
stock market model, composed of many trading agents and one 
market maker (roughly following the form and structure of [24]).  
The traders can choose to buy or sell one of a number of shares (if 
this is possible for them) from or to the market maker.  The only 
fundamental in the market is a dividend rate for each of the shares 
which slowly change in a random walk.  There are only a limited 
amount of each stock available to the market as a whole.  The 
market maker sets prices as a result of the demand - if there is net 
demand for a stock it raises the price and if there is a net negative 
demand it lowers the price.  There is a small transaction cost to the 
traders for every trader, so rapid random trading is unlikely to 
benefit it. 
The goal of the traders is to maximise the total value of their assets 
(cash plus shares at current value).  Thus the traders are in 
competition with each other – one trader tends to gain at another's 
expense.  However this is not a zero-sum game due to the dividends 
paid on stocks and the possibility of making money at the market 
maker's expense.   
Each time period the traders simultaneously buy or sell each of the 
stocks, assuming they have enough cash to fund the net price, the 
stocks to sell, and the market maker has the stocks to sell.  Traders 
do not have to trade in any stock. Thus the decision that each of the 
traders has to make is how much to attempt to buy or sell of each 
stock each time period. 
Traders can observe the following:  

• the current and past prices of all stocks;  

• the past actions of all traders;  

• the current and past dividend rates.   
In addition the traders are provided with primitives for:  

• the current and past market index (average of all prices);  

• recent trend of the index;  

• recent total volume of trading;  

• recent market volatility;  

• the maximum historical price of any stock.   
The operators available to the agents to build models with are: 
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• basic arithmetic (+, −, ×, ÷);  

• the ability to refer back in time (last and lag operators).   
They also have some constants, namely:  

• the names of the other traders,  

• the names of the stocks  

• and a selection of random constants.   
Basically the traders try to learn to predict what each of the stocks 
will be in the next time period and then buy or sell if they predict it 
will rise or fall sufficiently for this to be worthwhile. 
This sort of set-up produces a rich series of dynamics as the traders 
participate in sequences of modelling ‘arms-races’ and imitation 
‘games’.  Any successful prediction schema will not last forever as 
the other traders will soon spot your trading pattern and exploit it to 
your disadvantage.  However, as with real stock markets, there are 
definitely patterns and market ‘moods’ (if there are enough traders 
and stocks), for example bull markets and speculative bubbles.  
There will be periods of relative quiet as traders sit on stock and so 
effectively prevent trading and periods of high volatility as 
subgroups of traders engage in bouts of activity trying to exploit 
each other.  The dynamics are related to those of the “minority 
game” [10], and similar [7] but are more varied and complex.  Thus, 
although this is an artificial setting, it goes way beyond a “toy” 
problem in scope and complexity. 
There are two types of traders: which I will call generic and context 
traders.  Both types maintain a population of 20 models, each of 
which is composed of a separate expression to predict the future 
price of each stock.  All models are initially randomly generated to a 
depth of 5 using the inputs, primitives, operators and constants 
already listed.  Both agents use an evolutionary learning algorithm 
which evaluates fitness by the profit the agent would have made 
over the past 3 time periods had it used these models to predict 
prices. 
The generic traders use a genetic programming learning algorithm to 
evolve their predictive models and the context traders have an 
adapted version of this algorithm to allow the simultaneous learning 
of context for its models.  The types are otherwise identical.   

The learning algorithm for the generic trading agent is as follows: 
Randomly generate initial population of candidate models 
for each generation 
   for each model 
      evaluate what the total wealth of the agent would be if 
       it had used this model in trading over the past few  
       time periods,  this is the model’s fitness 
   next model 
   repeat 
      randomly pick two models with a probability proportional  
         to their current fitnesses 
      pick random number x from [0,1) 
      if x < propagation probability 
         then propagate them to new generation 
         else cross them and put results into new generation  
   until new population is complete 
next generation 
The context trader’s algorithm differs a little from the basic version 
outlined in the last section.  This is because from an agent’s point of 
view the only relevant circumstances (in terms of the space of 
possible ones) are those that actually occur.  Therefore instead of 
randomly picking a sequence of circumstances until the new 
population is generated, we use only the present circumstance 
repeatedly and we propagate the rest into the next population with a 
bias against those that are furthest from any circumstance that has 
occurred.  Also in this model we have associated with each model 
content a set of positions, so that its domain of application is 
indicated by a small cloud of points. 
It is not obvious that the context trader is a better learner than the 
generic trader.  The context algorithm restricts which models can be 
crossed to produce new variants to those that are in the same 
neighbourhood of an occurring circumstance, whilst the generic 
algorithm allows a more global search for solutions.  Thus one 
might expect that the context traders do better only if there is a 
context-dependency in the environment to exploit. . 
The model was run 9 times with 7 of each type of agent (thus 15 
including the market maker) and 23 times with 3 type of each agent.  
In each case they were trading 5 different stocks over 500 time 
periods. The model was implemented in SDML [23]. 
Figure 2 is a plot of the total assests of each trader over time for a 
typical run. For the first 80 periods one of the generic traders was 
doing substantially better than the others, but after this the context 
traders clearly did better, on the whole (see Figure 2).  To make 
clear the significance of the difference between context and generic 
traders I have plotted the difference between the average value of 
context traders’ assets minus the average value of the generic 
trader’s assets, scaled by the current standard deviation of the spread 
of total asset values for each of the 9 runs of the set-up with 7 of 
each kind of trader (Figure 3). 
Figure 3 shows that after 160 time periods the context traders did 
better (on average) in most, but not all, of the runs.  The average 
scaled difference is shown as a bold line in figure 3.  You can see 
that althouth there are some marked changes of fortune in particular 
runs (a feature of such markets) the context-dependent learning does 
impart a general advantage.   
However for the runs with only 3-traders of each kind the advantage 
is much slimmer and takes much longer to establish (Figure 4).  The 
market dynamics with only a few traders is much more chaotic and 

 
 
 
 
 
 
 
 
 

Figure 2. Growth in Agents’ Assets over time (context traders 
in black, generic in white) 
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“sharper” than that with more traders.  The reason the context 
traders do less well here is that it is more difficult to identify and 
learn menaingful contexts and it is, in general, more profitable to 
concentrate on short-term strategies. 
To show that the context traders are, in fact, identifying meaningful 
contexts (at least sometimes), I have taken a snapshot of the 
positions indicating the domain of the 6 of the models in one agent 
for one stock at one time (the best performing agent halfway through 
the run).  These clusters are shown in Figure 5.  The contents of 
these six model are shown in  Table 1. 

Table 1: The action models (for stock 3) in Figure 3. 

model-256 priceLastWeek [stock-4] 
model-274 priceLastWeek [stock-5] 
model-271 doneByLast [normTrader-5] [stock-4] 
model-273 IDidLastTime [stock-2] 
model-276 IDidLastTime [stock-5] 

model-399 

minus  
   [divide  
      [priceLastWeek [stock-2]]  
      [priceLastWeek [stock-5]]]  
   [times  
      [priceLastWeek [stock-4]]  
      [priceNow [stock-5]]] 

 
For this agent at this time there seem to be three contexts: one for 
lower volatility and higher volume, one for lower volatility and 
lower volume and one for higher volatility and middle volume.  It is 
notable that, even within each of these there are a mixture of two 
models that are appropriate.  Thus, even given the circumstances, 
the model selected for will be determined by recent predictive 
performance: for example, in the case of stock 3 in the above 
snapshot its price may be modelled best by either the price of stock 
4 or stock 5 last time period. 
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Figure 3. Difference of average asset values of context and generic traders, scaled by current asset spread for 9 runs with 7 traders of 
each kind (vertical axis in standard deviations of assets, bold line is average of the 9 runs) 
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Figure 4. Equivalent of Fig. 3 but for 3 tarders of each kind 
(average scaled difference of average assets over 23 runs). 

1236



5. DISCUSSION: PROSPECTS FOR THE 
INTEGRATION OF LEARNING AND 
DEDUCTION 
 above show the way context can separate the necessary ‘fuzziness’ 
of relevance decisions from the ‘crisp’ content models upon which 
deductive and planning algorithms could be usefully employed.  The 
crispness of the content, N, is made possible by the restriction of its 
applicability to a recognisable context.  If the domain was capturable 
in a crisp way, to a symbolic representation, X, the knowledge could 
be decontextualised: X→N, but the point is that the domain is often 
not suitable to any compact symbolic representation but is a messy 
mixture of heuristic indicators.  In fact there is a good argument to 
say that it is only feasible to reason about the complex natural world 
within fuzzily defined but restricted contexts.  If the content, N, was 
of a similar nature to X then there would be no need for it because it 
could be subsumed into the recognition process.  Thus the utility of 
context-dependency derives from its two aspects, it loses much of its 
point if reduced to either just the symbolic or non-symbolic aspects.  
Thus it straddles the ML and AI communities. 
To illustrate the power of context-dependency, I will outline how it 
could be employed to solve some classic problems in AI, namely the 
under- and over-determination of knowledge.  If an agent has a set 
of beliefs, B and is trying to decide whether to take a specific action, 
dependent on whether a predicate α is true or not, there are two 
problematic cases for it:  

(1) when neither α nor ¬α can be proved (under-determination);  

(2) when a contradiction is obtained, i.e. both β and ¬β can be 
proved (destructive over-determination). 

In (1) there is not enough knowledge to specify whether α nor ¬α is 
true.  If the agent has a store of context dependent knowledge, it can 
then search for a more specific context, which may provide it with 
the extra information it requires.   
In case (2), something is wrong with the agent’s set of beliefs.  
There are two possibilities: firstly that the agents has chosen the 
wrong context and secondly that there is something wrong with the 
beliefs associated with that context. Distinguishing between these 
possibilities is done by checking other consequences of beliefs 
within that context; if other predictions relevant to that context are 
also false then it is likely that the context has been wrongly 
recognised, in which case it is sensible to search for another 
(probably more general) context that might be appropriate; if the 
other predictions in the context are correct then it is likely that some 

of the specific beliefs used to infer b and ¬b need updating or 
rejecting from this context. 
Many non-monotonic logics can be seen as attempts to solve the 
above problems in a generic way, i.e. without reference to any 
contingent properties obtained from the particular contexts they are 
applied in. So, for example, some use ‘entrenchment’ to determine 
which extra information can be employed (e.g. oldest information is 
more reliable [14]), and others allow a variety of default information 
to be used (e.g. using extra negative knowledge as long as it is 
consistent [25]).  These may work well on occasion and tolerably 
well in others, but the only truly reliable way to update knowledge 
in a context is by utilising the specific properties of that context.  
Combining the learning and deductive exploitation of context-
dependent information should enable the effective and correct 
integration of learning and deduction.   
Thus the introduction of context into the agent architecture would 
allow us to progress beyond the ‘loose’ loop of: 
repeat 
    learn and/or up update beliefs 
    deduce intentions, plans and actions 
until finished 
to a more integrated loop: 
repeat 
    repeat 
        recognise/learn/choose context 
        induce/update beliefs in that context 
        deduce predictions/conclusions in that context 
    until predictions are consistent 
            and actions/plans can be determined 
    plan & act 
until finished 
Only the recognition of a context and the final stage (plan & act) do 
not occur within the confines of  a context.  The recognition 
machinery can be parallel to the rest so that it is ready to suggest a 
context when called upon to do so. 

6. Conclusion 
Context has a huge potential for improving the performance of 
agents in multifaceted and unpredictable domains.  It combines 
symbolic and non-symbolic forms of knowledge.  It can make 
reasoning more efficient by structuring the space of knowledge by 
relevance.  It allows the close and coherent integration of learning 
and deduction. It provides a partial solution to the problems of the 
under- and over-determination of knowledge and it holds out the 
potential for more flexible communication via the possibility of 
mutually identifying the relevant communicative context.   
It is essentially a trade-off: more information is stored including the 
relevance information implicit in the contexts, so that more 
effectiveness can be obtained. It can be seen as a sort of pre-
compilation of knowledge. It hugely increases the amount of 
information that needs to be stored. However, in the case of agents 
who are learning about the environment in situ this is merely a case 
of encoding and remembering the contextual information that is 
already available to them. What was missing was an effective way of 
capturing this contextual information.  Algorithms similar to that 
presented here might provide this missing piece. 
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