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Abstract— This paper investigates an approach to designing
and building adaptive agents. The main contribution is the use of
a symbolic machine learning system for approximating the policy
and Q functions that are at the heart of the agent. Under the
assumption that sufficient knowledge of the application domain
is available, it is shown how this knowledge can be provided
to the agent in the form of symbolic hypothesis languages for
the policy and Q functions, and the advantages of such an
approach. A series of experiments concerning the performance of
an agent employing this architecture in the blocks world domain
is presented and some general conclusions drawn.

I. I NTRODUCTION

In recent years, there has been a substantial increase in
interest in designing, building, and deploying agents in a
variety of application domains. In particular, a number of
possible approaches to the architecture of agents have been
explored in great detail. (For an excellent overview, see [10].)
Nevertheless, it is clear that many issues are still unsettled and
that considerable work remains to be done. One general issue
that is still open is how the reasoning and learning components
of an agent might be seamlessly integrated. At the moment,
reasoning issues and learning issues tend to be discussed in
separate research communities, and their integration has only
rarely been addressed.

This general issue of the integration of reasoning and learn-
ing capabilities provides the overall motivation for our work
on agent architectures. However, in this paper, we concentrate
specifically on learning issues. In particular, this paper is
concerned with the issue of designing agent architectures that
are adaptive, that is, agents using such architectures have the
ability to perform well even if the environment in which they
are operating changes.

Our general approach is based on the well established
concepts of Markov decision processes [9] and reinforcement
learning [2], [12]. More specifically, we take up the approach
of relational reinforcement learning by Džeroskiet al in [4]
and [5]. The key idea of this approach is to use a symbolic
(that is, logical) machine learning system to approximate the
policy andQ functions instead of the more usual approach
of using a (non-symbolic) learning system such as a neural
network [2]. Using asymboliclearning system turns out to be
a very fruitful idea. To begin with, it provides a convenient
way of incorporating domain knowledge into the agent in the
form of hypothesis languages for the policy andQ functions.
Not surprisingly, this knowledge can be used to greatly reduce
the size of the search problems associated with reinforcement

learning. Furthermore, it provides policy andQ functions that
are in symbolic form; therefore, they are comprehensible and
explicitly manipulable. So, for example, the agent is able to
explain to a user why it behaved in a certain way.

Our view is that having a symbolic form of the policy
function of an agent is key to the seamless integration of rea-
soning and learning capabilities, and our future work beyond
this paper will explore this idea. But note carefully that an
important assumption is being made here which is that the
designer of the agent does have appropriate knowledge of
the application domain. We believe that in many agent ap-
plications, this knowledge is indeed available to be exploited.
Furthermore, the more knowledge that is available the better.
In general, in the context of agents, we regard learning as a
‘last resort’ technology. The intuition is that when building
agents as much domain knowledge as possible should be built
in and learning techniques should only be used when this
knowledge is incomplete. Important situations when learning
becomes essential are where an agent is deployed in a dynamic
environment and where a ‘generic’ agent needs to adapt to the
behaviour pattern of a particular user.

An outline of this paper is as follows. The next section
provides an overview of our approach to adaptive agent
architectures. Section III introduces ALKEMY , the symbolic
learning system used in the agent architecture. Section IV
describes the blocks world domain in which the experiments
were carried out. Section V presents the experiments and
results. Finally, Section VI gives some conclusions.

II. A N ADAPTIVE AGENT ARCHITECTURE

The agent architecture is based on Markov decision pro-
cesses [9]. We assume discrete time, so there is a setT of
time steps of the form{0, 1, 2, . . .}.

Definition 1. A Markov decision processconsists of the
following:

1) a finite setSt of states, for eacht ∈ T .
2) a finite setAt of actions, for eacht ∈ T .
3) for each statest ∈ St and each actionat ∈ At, a

transition probability distributionpt(· | st, at), for each
t ∈ T .

4) a reward functionrt : St ×At → R, for eacht ∈ T .

Note that the states, actions, transition probability distri-
bution, and the reward function are all indexed by the time
t. At time t, the agent perceives the current state to be



st ∈ St. It then chooses from amongst the legal actions an
action at ∈ At and performs it. The next percept from the
environment gives the rewardrt(st, at) to the agent and the
next state isst+1 ∈ St+1 with probability pt(st+1 | st, at).
It is assumed that the agent does not know the transition
probability distributionpt(· | s, a) nor the reward function
rt.

A solution to a Markov decision process is apolicy sequence
of the formπ = [π0, π1, π2, . . .], where eachπt is a function
called apolicy from St to At. Given the current statest ∈ St
at timet, the action prescribed by the policy sequence isat =
πt(st). To find a good policy sequence, we need a way to
evaluate their quality. We define thediscounted total reward
V π(s) by following a policy sequenceπ from an arbitrary
initial states as

V π(s) ≡ E

[ ∞∑
t=0

γtrt(st, at) | π, s0 = s

]
,

whereγ is the discount factor for which0 ≤ γ < 1. Given
an initial states, an optimal policy sequenceπ∗s can then be
defined as

π∗s ≡ arg maxπ V
π(s).

Thus the agent attempts to find a policy sequence that max-
imises its discounted total reward given some initial state.

We next present a preliminary version of an adaptive agent
architecture based on these ideas. The underlying adaptation
algorithm is a form ofQ-learning [13] with function approx-
imation [2]. The approach taken is motivated by the work on
relational reinforcement learning in [4] and [5]. We represent
states, actions, and value functions symbolically. For function
approximation, we use an incremental version of a higher-
order decision-tree learner called ALKEMY , more details of
which are given in Section III.

An important innovation introduced in [5], which we adopt
in our architecture, isP -learning. The basic idea is that one can
associate with aQ function a boolean-valued policy function
P defined as follows:

if a = arg maxa′ Q(s, a′) thenP (s, a) = > elseP (s, a) = ⊥.

The main observation is that theQ function explicitly encodes
the path length to a goal from a given state, and this is complex
and specific to particular worlds. By computingP fromQ, one
obtains a more compact representation of the policy, and this
has obvious implications for the stability and predictive power
of the policy. Furthermore, by carefully crafting the hypothesis
languages forP andQ, it is possible to achieve generalisation
across problem instances. In other words, given a class of tasks
of a similar nature, one can pick an instance from the class,
train the agent on that instance to obtain aP function viaQ-
learning, and then (re)useP as a generic policy to solve other
problems in the class. This phenomenon will be elaborated
further in Section V.

Figure 1 shows an overview of the proposed agent architec-
ture. Following the tradition of BDI architectures, the agent

LIBRARY
POLICY

SMART INTERNET
ENVIRONMENT

action

percept
CONTROLLER          ALKEMY

Fig. 1. The agent architecture

is equipped with a policy library. There are one or more
policies for each kind of task that the agent can perform.
Each policy is encoded using an ALKEMY decision tree,
coupled with an hypothesis search space and constraints on
how the tree can be modified. The agent interacts with the
world in the usual manner, by perceiving the environment and
performing actions. From those interactions, training examples
are generated which ALKEMY uses to update the policies in
the library to improve its performance. The revision of policies
is guided by the learning ofQ functions, which provide vital
information about the quality of policies otherwise unavailable
to the agent.

Figure 2 gives the agent algorithm. Given a taskT , the agent
selects from the library a policy that matches the problem
and uses it to initialiseP andQ. It then goes into a loop,
performing actions by a trade-off between exploitation ofP
and exploration of the state space, collecting rewards and
observing the effects of its actions. Training examples are
generated to update theP andQ functions in each iteration.
Note that action selection and the two update functions are
parameters in the algorithm. Depending on the situation, one
may prefer to do more or less exploration. Further, one may
choose different ways and frequencies of updating theP and
Q functions. In Section V, we explore different instantiations
of these functions for different scenarios.

The proposed scheme is attractive for two reasons. First,
it provides a convenient mechanism to encode background
knowledge about the problem domain, perhaps the most im-
portant factor in the engineering of agents that actually do
useful things. Second, from a design point of view, the scheme
is aesthetically pleasing because the architecture encompasses
as special cases PRS-like systems [6] with plan libraries (plans
are just policy functions that never change) and standardQ-
learning with function approximation for which the set of
states, set of actions, transition probability distributions, and
reward functions stay the same for allt ∈ T .

We note that BDI-like reasoning can be incorporated to
compute the most important task to be executed at any point
in time. It is also likely that more advanced reinforcement
learning methods can be employed in the architecture in
place of Q-learning. These extensions are currently under
investigation.



Algorithm Agent(T )
input : T , a task;

t := current time;

st := current state;

Pt := policyLibrary [T ].P ;

Qt := policyLibrary [T ].Q;

while T not done

at := selectAction(st, Pt);
performat;

observer = rt(st, at) andst+1;

x := ((st, at), r + γmaxa∈At+1 Qt(st+1, a));
Qt+1 := updateQ(Qt, {x});
X := ∅;
forall a ∈ At do

if a = arg maxa′∈At Qt+1(st, a′)
then x := ((st, a),>);
elsex := ((st, a),⊥);
X := X ∪ {x};

Pt+1 := updateP (Pt, X);

t := t+ 1;

policyLibrary [T ].P := Pt;

policyLibrary [T ].Q := Qt;

Fig. 2. The agent algorithm

III. A S YMBOLIC LEARNING SYSTEM

Decision-tree learning systems are based on the following
intuitively appealing idea. To build a classifier from a set
of examples, find a criterion that partitions the examples
into two sets which are purer in the distribution of classes
that they contain than the original set; apply this process
recursively on the child nodes until the leaf nodes of the tree
are sufficiently pure; and then use the resulting decision tree as
the induced classifier. Learning regression functions is based
on a similar intuition. Decision-tree learning is one of few
learning methods that provides comprehensible hypotheses and
this explains the concentration on that approach here.

The learning system employed here, called ALKEMY , is
a classification and regression system. Information about
ALKEMY , and the system itself, is available at [1]. The
theoretical foundations of ALKEMY are presented in [7]. Here
we only provide sufficient detail in order to understand the
crucial role that ALKEMY plays in the agent architecture. The
main topic is therefore that of hypothesis languages and how
predicate rewrite systems are used to specify these. Predicates
in hypothesis languages are constructed incrementally by
composing more basic functions, so the development begins
with the definition of composition.

Composition is handled by the (reverse) composition func-

tion

◦ : (a→ b)→ (b→ c)→ (a→ c)

defined by

((f ◦ g) x) = (g (f x)).

Predicates are built up by composing transformations, which
are defined as follows.

Definition 2. A transformation f is a function having a
signature of the form

f : (%1 → Ω)→ · · · → (%k → Ω)→ µ→ σ,

where any parameters in%1, . . . , %k and σ appear inµ, and
k ≥ 0. (HereΩ is the type of the booleans.) The typeµ is
distinguished and is called thesourceof the transformation,
while the typeσ is called thetargetof the transformation. The
numberk is called therank of the transformation.

Example 1. The transformation

∧n : (a→ Ω)→ · · · → (a→ Ω)→ a→ Ω

defined by

∧n p1 . . . pn x = (p1 x) ∧ · · · ∧ (pn x),

wheren ≥ 2, provides a ‘conjunction’ withn conjuncts.

Example 2. Each projection

proji : a1 × · · · × an → ai

defined by

proji (t1, . . . , tn) = ti,

for i = 1, . . . , n, is a transformation of rank 0.

Example 3. There are two fundamental transformationstop :
a → Ω and bottom : a → Ω defined bytop x = > and
bottom x = ⊥, for eachx. Each of top and bottom is a
constant predicate, withtop being the weakest predicate on
the typea andbottom being the strongest.

Example 4. Let µ be a type and suppose thatA : µ, B : µ,
andC : µ are constants. Then, corresponding toA, one can
define a transformation

(= A) : µ→ Ω

by

((= A) x) = x = A,

with analogous definitions for(= B) and (= C). Similarly,
one can define the transformation

(6= A) : µ→ Ω

by

((6= A) x) = x 6= A.



Example 5. Consider a type such asInt (the type of the
integers) which has various order relations defined on it. Then,
for any integerN , one can define the transformation

(< N) : Int → Ω

by

((< N) m) = m < N.

In a similar way, one can define the transformations(> N),
(≥ N), and(≤ N).

Transformations are used to define a particular class of pred-
icates, called standard predicates, that are used in hypothesis
languages.

Definition 3. A standard predicateis a term of the form

(f1 p1,1 . . . p1,k1) ◦ · · · ◦ (fn pn,1 . . . pn,kn),

where fi is a transformation of rankki (i = 1, . . . , n),
the target of fn is Ω, pi,ji is a standard predi-
cate (i = 1, . . . , n, ji = 1, . . . , ki), ki ≥ 0
(i = 1, . . . , n) andn ≥ 1.

Example 6. If p, q, andr are standard predicates (having ap-
propriate type) and¬ : Ω → Ω is negation, then(∧3 p q r) ◦¬
is a standard predicate.

Now we can very informally define a predicate rewrite
system. Apredicate rewriteis an expression of the form

p� q,

wherep andq are standard predicates. The predicatep is called
the headandq is thebodyof the rewrite. Apredicate rewrite
systemis a finite set of predicate rewrites. One should think
of a predicate rewrite system as a kind of grammar for gen-
erating a particular hypothesis language. Roughly speaking,
this works as follows. Starting from the weakest predicate
top, all predicate rewrites that havetop (of the appropriate
type) in the head are selected to make up child predicates
that consist of the bodies of these predicate rewrites. Then,
for each child predicate and each redex in that predicate, all
child predicates are generated by replacing each redex by the
body of the predicate rewrite whose head is identical to the
redex. This generation of predicates continues to produce the
hypothesis language. In [7], methods of efficiently generating
the predicates for an hypothesis language are explored.

In the experiments, we use an on-line version of ALKEMY .
The algorithms and their analyses are given in [8]. The basic
idea is that we maintain a fixed window of a certain size. As
each new example is encountered, it is inserted into the current
tree using a function calledaddExample. If the window is
full, the oldest example is removed from the tree using a
function calledremoveExample. The two functions have the
following property. They employ some sufficient optimality-
testing conditions to check whether parts of the tree have
become potentially sub-optimal according to the tree-building
measures as a result of the update, and mark as dirty all those

branches that need to be re-examined. There is a function
retrain that the agent can call to rebuild all the dirty branches
of a tree. The functionretrain has the property that the
tree computed is exactly identical to the tree that would be
produced by the batch algorithm using the examples in the
current window. For that reason, we say the on-line algorithm
is losslesswith respect to the batch algorithm.

IV. B LOCKS WORLD DOMAIN

The experiments were carried out in the blocks world
domain, which serves as a simple, yet sufficiently rich, domain
in which to carry out experiments and draw lessons regarding
general architectural issues.

Here are some declarations suitable for this domain.

B0, B1, B2, B3, B4, B5, B6, B7, B8, B9,Floor : Object
Stack = List Object
World = {Stack}
OnState = Object ×Object
Intention = {OnState}
Action = Object × Stack
State = World × Intention
Individual = State ×Action.

The number of blocks in the world varies from time to
time, but we never use more than ten blocks. A blocks world
is modelled as a set of stacks of blocks and corresponds to
the agent’s beliefs, in the BDI sense of belief. The agent’s
intentions are modelled as a set of on-states, where anon-
state is a pair of objects, the first of which is intended to be
immediately on top of the second. An action specifies that
some block that is clear should be put on top of some stack.
The empty stack is allowed and is another representation of
the floor, so that moving a block to the empty stack is actually
moving the block to the floor. A state is a pair consisting of a
blocks world and a set of intentions. These intentions should
be interpreted in the BDI sense: the agent intends to achieve
these intentions. In the experiments, the intentions are provided
externally by percepts that the agent immediately accepts as
intentions. Finally, an individual is a pair consisting of a state
and an action. Several functions below whose domain is the
set of individuals are the subject of learning.

A block in the world component of an individual ismis-
placedif its position in the world is inconsistent with the on-
states specified in the intention component of the individual.
An action is constructive if after the move of the block
specified by the action, neither the block nor any block
underneath it is misplaced and the move achieves an on-state
in the intention. Once a block has been moved constructively,
it need not move again in the course of achieving the intention.
An individual isdeadlockedif no constructive move is possible
with respect to the world and intention components of that
individual.

EachQt function has signature

Qt : Individual → R.



The hypothesis language for eachQt function has a single
domain-specific transformation that has signature

estimatedPathLength : Individual → Int

and is defined as follows. Suppose, in the individual, the action
is to move blockA on top of some stack that has blockB
at the top. Then the value ofestimatedPathLength for that
individual is given by

2× number of misplaced blocks in the world

+


−1 if A is intended to be onB

+1 if A is intended to be onC(6= B) or

C(6= A) is intended to be onB

0 otherwise

+

{
−1 if A is misplaced

0 otherwise

+

{
+1 if B is misplaced

0 otherwise.

The functionestimatedPathLength is intended to provide
an estimate of the shortest path to a goal (that is, a state
satisfying the intention) from the state that results by applying
the action to the current state. Such an estimate is needed to
approximate eachQt function. Note that using a transforma-
tion such asestimatedPathLength implies that the agent has
some limited knowledge of the effects of its actions. Here is
the predicate rewrite system for theQt hypothesis language.

top � estimatedPathLength ◦ top
top � (= 0)
top � (= 1)

...

top � (= 21)
top � (= 22).

EachQt function for a world in which there areN blocks,
represented as an ALKEMY regression tree, typically has the
following general structure.

Qt x =
if estimatedPathLength ◦ (= 0) x
then q0

else if estimatedPathLength ◦ (= 1) x
then q1

...

else if estimatedPathLength ◦ (= 2N + 1) x
then q2N+1

else qotherwise ,

whereq0, q1, and so on, are the various regression values.

Now we turn attention to the policy function. Instead of
directly learning a policy function

πt : State → Action,

a policy relation having signature

policyt : Individual → Ω

is learned. To determine the policy functionπt from policyt ,
we proceed as follows. Lets be a state. For each action
a, determine the value ofpolicyt (s, a). If there is at least
one a for which policyt (s, a) = >, choose ana arbitrarily
amongst all sucha. Otherwise, choosea arbitrarily amongst
all a. Depending on the nature ofpolicyt , the functionπt may
thus be non-deterministic.

The hypothesis language for the policy relation requires a
number of domain-specific transformations.

The transformation

extractAction : Individual → Object×Stack×Individual

takes an individual as input and returns the triple consisting
of the block in the action, the stack in the action, and the
individual.

The transformation

projA : Object×Stack×Individual → Object×Individual

takes as input a triple consisting of a block, a stack, and an
individual, and returns the pair consisting of the block and the
individual.

The transformation

projB : Object×Stack×Individual → Stack×Individual

takes as input a triple consisting of a block, a stack, and an
individual, and returns the pair consisting of the stack and the
individual.

The transformation

noMisplacedNotOnFloorBlock : Individual → Ω

takes as input an individual and returns true, if there is no block
in the world component of the individual that is misplaced and
not on the floor; and returns false, otherwise.

The transformation

isDeadlocked : Individual → Ω

takes as input an individual and returns true, if there is no
constructive move possible in the world component of the
individual; and returns false, otherwise.

The transformation

isMisplaced : Object × Individual → Ω

takes as input a pair consisting of a block and an individual and
returns true, if the block is misplaced in the world component
of the individual; and returns false, otherwise.

The transformation

isFloor : Stack × Individual → Ω



takes as input a pair consisting of a stack and an individual and
returns true, if the stack is empty; and returns false, otherwise.

The transformation

isConstructive : Object × Stack × Individual → Ω

takes as input a triple consisting of a block, a stack, and an
individual, and returns true if moving the block to the stack
in the world component of the individual is constructive; and
returns false, otherwise.

The transformation

achievesSingletonIntention : Object×Stack×Individual → Ω

takes as input a triple consisting of a blockA, a stackB, and
an individual, and returns true if the top of stackB is block
C and the intention component of the individual is{(A,C)};
and returns false, otherwise.

The transformation

notContainIntentionBlock : Stack × Individual → Ω

takes as input a pair consisting of a stack and an individual, and
returns true if the stack does not contain any block appearing
in the intention component of the individual; and returns false,
otherwise.

The transformation

aboveIntentionBlock : Object × Individual → Ω

takes as input a pair consisting of a block and an individual,
and returns true if the block is above some block in the inten-
tion component of the individual; and returns false, otherwise.

Here is a predicate rewrite system for policy hypothesis
languages. In the next section, particular subsets of this rewrite
system will be used in various experiments.

top � ∧2 top top
top � ∧3 top top top
top � extractAction ◦ projA ◦ top
top � extractAction ◦ projB ◦ top
top � extractAction ◦ top
top � noMisplacedNotOnFloorBlock
top � isDeadlocked
top � isMisplaced
top � isFloor
top � isConstructive
top � achievesSingletonIntention
top � notContainIntentionBlock
top � aboveIntentionBlock .

We consider two policies,US and GN1 , that were stud-
ied in [11], and two more restricted ones,simple and
one intention.

The simple policy either makes a constructive move or else
moves a block to the floor. Here is thesimple policy as an

ALKEMY decision tree.

policysimple x =
if extractAction ◦ isConstructive x
then >
else if extractAction ◦ projB ◦ isFloor x

then >
else ⊥.

The US (Unstack-Stack) policy puts all misplaced blocks
on the floor first and then builds the goal state by constructive
moves. Here is theUS policy as an ALKEMY decision tree.

policyUS x =
if ∧2 (noMisplacedNotOnFloorBlock)

(extractAction ◦ isConstructive) x
then >
else if ∧2 (extractAction ◦ projA ◦ isMisplaced)

(extractAction ◦ projB ◦ isFloor) x
then >
else ⊥.

The GN1 policy is as follows: if there is a constructive
move, then do it; else arbitrarily choose a misplaced block and
move it to the floor. Here is theGN1 policy as an ALKEMY

decision tree.

policyGN1 x =
if extractAction ◦ isConstructive x
then >
else if ∧3 (extractAction ◦ projA ◦ isMisplaced)

(extractAction ◦ projB ◦ isFloor)
(isDeadlocked) x

then >
else ⊥.

Finally, we explain theone intention policy. Suppose the
intention is to put blockC onto blockD, and the action is to
move blockA onto stackB. Then theone intention policy
is as follows: if the move achievesC on D, then do it; else
if A is aboveC or D andB doesn’t containC or D, then do
the move. Here is theone intention policy as an ALKEMY

decision tree.

policyone intention x =
if extractAction ◦ achievesSingletonIntention x

then >
else if ∧3 (extractAction ◦ projA ◦ aboveIntentionBlock)

(extractAction ◦ projB ◦notContainIntentionBlock)
(isDeadlocked) x

then >
else ⊥.



V. EXPERIMENTS AND RESULTS

This section discusses various experiments carried out in
the blocks world domain, and the results obtained.

A. Experimental parameters

The general agent algorithm in Figure 2 has as parameters
an action selection functionselectAction, and two update
functions updateQ and updateP . These parameters are in-
stantiated in the following experiments. Here is a general
description of each function.

The selectAction function stochastically selects a legal
actiona based on the current statest using the current policy
relationpolicyt as described in Section IV. However, the agent
can benefit from ignoring its current policy from time to time
and exploring new regions of the state space. Anexploration
factor is employed to permit occasional random actions,
irrespective of what the current policy says. An exploration
factor of zero corresponds to 100% exploitation of the current
policy.

The updateQ function in these experiments collects train-
ing input after each action is performed but only requests
ALKEMY to retrain to produce a newQ regression tree at the
end of each episode or after 100 moves since the last retrain,
whichever occurs first.

The updateP function in these experiments provides a
mechanism for delaying the collection ofP training data in
the early training phase when theQ regression tree is unlikely
to provide a good prediction. Atraining data delayparameter
controls this delay in the collection ofP training data.

The updateP function also permits the delaying of retrain-
ing of the P decision tree by two mechanisms: an initial
delay and an accuracy measure. The first is a straightforward
retraining delay parameter used to delay retraining of the
P decision tree until sufficient data is available; the second
requires further explanation.

The updateP function gathers accuracy statistics about the
incoming training data forP . It does this by first querying
ALKEMY for its predictedP value for each(st, a) pair using
the existingP decision tree. If the predictedP values tend
to agree with the existingP training data, then theupdateP
function delays requesting ALKEMY to retrain until an error
threshold is breached. In most of the experiments that follow,
this error thresholdparameter is set at 15%.

Finally, like the updateQ function, theupdateP function
only ever requests ALKEMY to retrain the currentP decision
tree at the end of an episode or after 100 moves since the last
retrain, whichever occurs first, provided that retraining has not
been delayed for the reasons just mentioned.

The ALKEMY on-line learning window sizes used in all
experiments were 200 training examples for theQ tree and
1000 training examples for theP tree (because there are about
five times as manyP training examples for eachQ training
example).

The predicate rewrite system used to approximate theQ
function in the following experiments is as in Section IV. The

predicate rewrite system for theP hypothesis language used
in experiments 1, 2, and 4 is as follows.

top � ∧3 top top top
top � extractAction ◦ projA ◦ top
top � extractAction ◦ projB ◦ top
top � extractAction ◦ top
top � isDeadlocked
top � isMisplaced
top � isFloor
top � isConstructive.

In experiment 3, a further three predicate rewrites are
required to express theone intention policy.

top � achievesSingletonIntention
top � notContainIntentionBlock
top � aboveIntentionBlock .

B. Graphs showing experimental results

Graphs showing the results obtained from the four exper-
iments discussed here are shown at the end of the paper in
Figures 3–6.

For each experiment two graphs are plotted, the first depict-
ing cumulative moves versus episodes, the second depicting
extra moves versus episodes.Extra moves are moves addi-
tional to what the policyUS predicts for a given episode.US
is chosen as a benchmark because it is near optimal for a small
number of blocks [11] and it is simple to compute. Note that
a consequence of this is that sometimes the number of extra
moves plotted in the second type of graph is a small negative
number, when the agent solves an episode in fewer moves that
US .

C. Experiments 1 and 2 — initialisation

These two experiments consider the initialisation problem
for an adaptive agent: how does an agent get started at all? In
the blocks world domain the number of possible states rises
rapidly when more blocks are considered. Random exploration
of such large state spaces to find a goal state is impractical.
Some sort of guidance of the agent towards its goal is required
while it acquires knowledge of its environment. The symbolic
learning system allows the agent’s designer to specify an initial
policy to guide the agent’s initial learning.

Experiment 1 is conducted in a blocks world containing 5
blocks. At each episode the agent is supplied with a new task
of achieving a set of 5 on-states. It moves from task to task
receiving a reward only for actions which achieve an episode’s
task.

In the first instance, the agent is supplied with no initial pol-
icy and theselectAction function specifies a zero exploration
factor. The effect of this is that the agent initially randomly
explores the 5-block state space, fully exploiting its (initially
empty) current policy that becomes refined through retraining
over time.



In the second instance, the agent is supplied with the initial
simple-minded policypolicysimple . TheselectAction function
again specifies a zero exploration factor. TheupdateP function
delays the collection of training data until after episode 20, and
delays the retraining of the initial policy decision tree until
after episode 40. The retraining error tolerance is set at 15%.

In both cases the agent eventually converges to a good
policy policyGN1 . This occurs after 52 episodes without
guidance and after 71 episodes with guidance, but with fewer
overall moves.

Experiment 2 is conducted in a blocks world containing 8
blocks where the task is to achieve a set of 8 on-states. The
number of different states in an 8 blocks world is 394,353
compared to 501 for a 5 blocks world (see [11]) and there is a
single goal state. Unguided random exploration does not reach
the goal state within a practical time, so guided exploration
is mandatory. This experiment shows the agent converging to
policyGN1 after 57 episodes, starting frompolicysimple .

The selectAction function for this experiment specifies an
exploration factor of 50% until after episode 20 when it drops
to zero. TheupdateP function delays the collection of training
data until after episode 10, and delays the retraining of the
initial policy decision tree until after episode 20. The retraining
error tolerance is set at 15%.

D. Experiment 3 — adapting to changing tasks

This experiment exhibits the adaptivity of the agent to
changing tasks. From time to time an adaptive agent’s task
might change, either dramatically or incrementally. In the
case of a dramatic change in task, the problem of adaptivity
reduces to the problem of initialisation (again). In the case of
incremental change however, it is desirable that the agent be
able to modify its existing behaviour in order to adapt without
starting over again.

Experiment 3 is conducted in a 5 blocks world where
the initial tasks consist of singleton sets of on-states. That
is, the agent is only required to achieve a single on-state.
No initial guidance policy is supplied, so the agent initially
explores randomly, exploiting its knowledge as it is acquired.
The experiment shows that the agent converges to a good
policy for achieving singleton on-statespolicyone intention

after episode 61. At episode 75, the agent’s tasks change and it
is subsequently required to achieve sets of 5 on-states at each
episode. The order in which it achieves these on-states now
becomes important. Rewards are only received for achieving
all 5 on-states at the same time. 106 moves are taken to achieve
the task in episode 75, during which the agent adopts the more
generalpolicyGN1 which applies to the new type of tasks and
also, with hindsight, to the previous simpler tasks.

The selectAction function for this experiment specifies
an exploration factor of zero. TheupdateP function sets a
retraining error tolerance of 5%.

E. Experiment 4 — adapting to a changing environment

This experiment shows the symbolic learning agent adapting
to a changing environment. Like the previous case of incre-
mental changes to the agent’s tasks, it is also desirable that an

agent be able to adapt to changes in its environment without
resorting to re-initialisation.

Experiment 4 is conducted in a blocks world initially
containing 5 blocks. At some episode, a new block is added
to the environment and, at a subsequent episode, yet another
block is added. The task of the agent is also incremented in
the richer environments from sets of 5 on-states to sets of 6
on-states, and finally to 7 on-states in a 7 blocks world.

The agent is initialised withpolicysimple and converges to
the better policypolicyGN1 after episode 21. At episode 30,
a 6th block is added and the task incremented to 6 on-states.
The agent continues to achieve its harder tasks by applying
the policy it learned in the simpler world. At episode 37, an
inconsistency between the incoming training examples and the
current policy is detected to be higher than the error tolerance
and a retraining of the current working policy is triggered. This
results in a series of suboptimal, but not disastrous, policies
until episode 46 at which point they reconverge topolicyGN1 .

At episode 60, a 7th block is added and the task complexity
incremented to 7 on-states.policyGN1 is maintained until
episode 128 when the incoming training data again exceeds
the retraining error tolerance triggering a further retraining of
the working policy. This results in a suboptimal policy, which
is refined over the course of the next few episodes, converging
to policyGN1 after episode 136.

The selectAction function for this experiment specifies an
exploration factor of 50% until after episode 20 when it drops
to zero. TheupdateP function delays the collection of training
data until after episode 10, and delays the retraining of the
initial policy decision tree until after episode 20. The retraining
error tolerance is set at 15%.

VI. CONCLUSIONS

We now draw together some general remarks that can be
made on the basis of the experiments.

The hypothesis language for theQ function is quite different
to the hypothesis language for the policy. The reason is that
the Q function encodes the path length to a goal, while the
policy distinguishes good and bad actions – they are different
functions that therefore require different hypothesis languages.

The policy is primary; theQ function is only used as a
‘crutch’ to learn a good policy. Furthermore, theQ function
does not have to be perfect in order to get a good policy. This
is partly because the policy is general, that is, is independent
of the size of the state, so small errors inQ can be absorbed
by the policy.

Domain knowledge is encoded in the hypothesis languages
for the policy andQ functions; specifically it appears in the
corresponding predicate rewrite systems. Furthermore, this is a
very convenient way of encoding this knowledge, as illustrated
by the definitions of the policy andQ functions that are
learned; these definitions are compact and comprehensible.
The designer or user of the agent can assess the agent’s current
policy at any time by inspecting the symbolic representation
of the policy.



The designer should aim to provide as much domain knowl-
edge as possible to the agent (in the form of the hypothesis
languages and the overall knowledge representation chosen)
and rely on learning only when really needed.

Discovering a good policy requires not only a good hypoth-
esis language but also good training data. In other words, much
attention has to be paid to issues such as adequate exploration
of the state space and the size of training windows for the
incremental learning algorithm. Too small a window can lose
valuable data, while too large a window can restrict the agent’s
ability to react to a changing environment.

For large search spaces, a good initial policy is highly
advantageous in that it can help the agent find rewards more
easily (or, even, at all). The symbolic approach helps here as
it makes it possible for the designer to easily code up initial
policies for this purpose.

Finally, we remark that methods other thanQ learning
could be used to learn policies. For example, a model of the
environment could be learned and then planning techniques
used [3].
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Fig. 3. Experiment 1
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