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Abstract—This paper investigates an approach to designing learning. Furthermore, it provides policy agiifunctions that
and building adaptive agents. The main contribution is the use of are in symbolic form; therefore, they are comprehensible and

a symbolic machine learning system for approximating the policy i ; ;

and @ functions that are at the heart of the agent. Under the eXp:IC.ItI); manlpulabrlle. .tsg' r:or eé(a.'mple’ tthg agent is able to
assumption that sufficient knowledge of the application domain explain _0 a ‘_Jsef why 1 . ehaved in alcer ain way. )

is available, it is shown how this knowledge can be provided Our view is that having a symbolic form of the policy

to the agent in the form of symbolic hypothesis languages for function of an agent is key to the seamless integration of rea-
the policy and @ functions, and the advantages of such an soning and learning capabilities, and our future work beyond
approach. A series of experiments concerning the performance of s haner will explore this idea. But note carefully that an
an agent employing this architecture in the blocks world domain . . . . S
is presented and some general conclusions drawn. |mpprtant assumption is being made here_whlch is that the
designer of the agent does have appropriate knowledge of
|. INTRODUCTION the application domain. We believe that in many agent ap-
In recent years, there has been a substantial increaseplinations, this knowledge is indeed available to be exploited.
interest in designing, building, and deploying agents in Furthermore, the more knowledge that is available the better.
variety of application domains. In particular, a number dh general, in the context of agents, we regard learning as a
possible approaches to the architecture of agents have béast resort’ technology. The intuition is that when building
explored in great detail. (For an excellent overview, see [10Rppents as much domain knowledge as possible should be built
Nevertheless, it is clear that many issues are still unsettled andand learning techniques should only be used when this
that considerable work remains to be done. One general isknewledge is incomplete. Important situations when learning
that is still open is how the reasoning and learning componetwgcomes essential are where an agent is deployed in a dynamic
of an agent might be seamlessly integrated. At the momeatyironment and where a ‘generic’ agent needs to adapt to the
reasoning issues and learning issues tend to be discussebeinaviour pattern of a particular user.
separate research communities, and their integration has onlAn outline of this paper is as follows. The next section
rarely been addressed. provides an overview of our approach to adaptive agent
This general issue of the integration of reasoning and lea@architectures. Section Il introducesLREMY, the symbolic
ing capabilities provides the overall motivation for our workearning system used in the agent architecture. Section IV
on agent architectures. However, in this paper, we concentre@scribes the blocks world domain in which the experiments
specifically on learning issues. In particular, this paper igere carried out. Section V presents the experiments and
concerned with the issue of designing agent architectures thegults. Finally, Section VI gives some conclusions.
are adaptive, that is, agents using such architectures have the Il AN ADAPTIVE AGENT ARCHITECTURE
ability to perform well even if the environment in which they '
are operating changes. The agent architecture is based on Markov decision pro-
Our general approach is based on the well establishegsses [9]. We assume discrete time, so there is &' seft
concepts of Markov decision processes [9] and reinforcemdife steps of the forr{0,1,2,...}.
learning [2], [12]. More specifically, we take up the approacRefinition 1. A Markov decision processonsists of the
of (;elgtm?ﬁl rEnfq(rjcemefntthllearnmg byhzrotsklet alin [4]b lfollowing:
?t?]at[is] . Iogi:al?yrr:agr?inoe Ie;Srn?rFl)g r;);ls?terLs tc? ;psp?roa;(isr;gt]e ct)r:((:al) a f!n!te sets; of stat.es, for each € T.
’ 2) a finite setA; of actions, for eaclt € T'.

pollcy and @ functions |.nstead Qf the more usual approach |3) for each states; € S, and each actiory, € A,, a
of using a (non-symbolic) learning system such as a neura o Lo T

. . . transition probability distribution, (- | s¢, a;), for each
network [2]. Using asymboliclearning system turns out to be teT
a very fruitful idea. To begin with, it provides a convenient : . )
way of incorporating domain knowledge into the agent in the 4) areward function : S, x A; — R, for eacht € T.
form of hypothesis languages for the policy a@dfunctions. Note that the states, actions, transition probability distri-
Not surprisingly, this knowledge can be used to greatly redubation, and the reward function are all indexed by the time
the size of the search problems associated with reinforcementAt time ¢, the agent perceives the current state to be



s¢ € S;. It then chooses from amongst the legal actions an
actiona, € A, and performs it. The next percept from the
environment gives the rewand (s, a;) to the agent and the
next state iss;11 € Siy1 with probability p;(siy1 | st at).

It is assumed that the agent does not know the transitio
probability distributionp;(- | s,a) nor the reward function
Tt.

A solution to a Markov decision process ipalicy sequence action
of the formn = [mg, 71, 72, .. ], where eachr, is a functon Gt
called apolicy from S; to A;. Given the current state € S,
at timet, the action prescribed by the policy sequence;is- Fig. 1. The agent architecture
m(s¢). To find a good policy sequence, we need a way to
evaluate their quality. We define thiiscounted total reward

V7 (s) by following a policy sequence from an arbitrary i equipped with a policy library. There are one or more
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initial states as policies for each kind of task that the agent can perform.
) Each policy is encoded using anLREMY decision tree,
VT(s) =B > y'ri(sear) | w50 =], coupled with an hypothesis search space and constraints on
t=0 how the tree can be modified. The agent interacts with the

where~ is the discount factor for whicld < v < 1. Given world in the usual manner, by perceiving the environment and
an initial states, an optimal policy sequence: can then be performing actions. From those interactions, training examples

defined as are generated which IXEMY uses to update the policies in
. - the library to improve its performance. The revision of policies
T = argmax, V" (s). is guided by the learning af) functions, which provide vital

Thus the agent attempts to find a policy sequence that mé&fprmation about the quality of policies otherwise unavailable
imises its discounted total reward given some initial state. to the agent.

We next present a preliminary version of an adaptive agentFigure 2 gives the agent algorithm. Given a tdskhe agent
architecture based on these ideas. The underlying adaptafigtects from the library a policy that matches the problem
algorithm is a form ofQ-learning [13] with function approx- and uses it to initialise” and Q). It then goes into a loop,
imation [2]. The approach taken is motivated by the work operforming actions by a trade-off between exploitationfof
relational reinforcement learning in [4] and [5]. We represeigind exploration of the state space, collecting rewards and
states, actions, and value functions symbolically. For functiéiserving the effects of its actions. Training examples are

approximation, we use an incremental version of a highegenerated to update the and @ functions in each iteration.
order decision-tree learner called.RemY, more details of Note that action selection and the two update functions are

which are given in Section IIl. parameters in the algorithm. Depending on the situation, one
An important innovation introduced in [5], which we adoptmay prefer to do more or less exploration. Further, one may
in our architecture, i-learning. The basic idea is that one caghoose different ways and frequencies of updating/thend
associate with &) function a boolean-valued po||Cy function®@ functions. In Section V, we explore different instantiations
P defined as follows: of these functions for different scenarios.
The proposed scheme is attractive for two reasons. First,
it provides a convenient mechanism to encode background

The main observation is that tiig function explicitly encodes knowledge about the problem domain, perhaps the most im-
the path length to a goal from a given state, and this is compleQrtant factor in the engineering of agents that actually do
and specific to particular worlds. By computiftfrom @, one  useful things. Second, from a design point of view, the scheme
obtains a more compact representation of the policy, and tfisaesthetically pleasing because the architecture encompasses
has obvious implications for the stability and predictive powets special cases PRS-like systems [6] with plan libraries (plans
of the policy. Furthermore, by carefully crafting the hypothes@f€ just policy functions that never change) and standard
languages fo? andQ, it is possible to achieve generalisatiod€arning with function approximation for which the set of
across problem instances. In other words, given a class of tagl@es, set of actions, transition probability distributions, and
of a similar nature, one can pick an instance from the claggward functions stay the same for &l 7'.
train the agent on that instance to obtai d&unction via Q- We note that BDI-like reasoning can be incorporated to
learning, and then (re)use as a generic policy to solve othercompute the most important task to be executed at any point
problems in the class. This phenomenon will be elaboratadtime. It is also likely that more advanced reinforcement
further in Section V. learning methods can be employed in the architecture in
Figure 1 shows an overview of the proposed agent architgtace of Q)-learning. These extensions are currently under
ture. Following the tradition of BDI architectures, the agerihvestigation.

if @ = argmax, Q(s,a’)thenP(s,a) =T elseP(s,a) = L.



Algorithm Agent(7) tion

input: 7, a task; ci(a—b) = (b—c)— (a—c)

t := current time; defined by

sy 1= current state;

((fog)x) = (g (f ).
P, := policyLibrary[T).P; (7 =)
Q, = policyLibrary|T].Q: Predicates are built up by composing transformations, which

are defined as follows.

while 7" not done
ay = selectAction(sy, Py); Definition 2. A transformation f is a function having a

signature of the form

performay;

observer = r(s;,a;) and s, 1; frloo—=0)—= = (ok—02)—p—o,

z = ((8t,a¢), ¥ +ymaxeea,,, Qt(st+1,a)); where any parameters i, ..., or and o appear inu, and

Q11 := updateQ(Q¢, {z}); k > 0. (Here §2 is the type of the booleans.) The typeis

X =0 distinguished and is called theourceof the transformation,

while the typeo is called thetarget of the transformation. The

forall a € A, do numberk is called therank of the transformation.

if o =argmaxyeca, Qet1(st,a)

then & := ((ss,a), T); Example 1. The transformation

elsex := ((s¢,a), L); Aila—=02)—> > (a—=02)—a— N
X=X Uz} defined by
P11 := updateP(Py, X);
ti=t+1; A p1..ppnx=(p1a)A--A(pn x),
policyLibrary|T|.P := Py; wheren > 2, provides a ‘conjunction’ withn conjuncts.
policyLibrary[T].Q := Qu; Example 2. Each projection
Fig. 2. The agent algorithm Proj; 1 ap X -+ X Gp — a5
defined by

IIl. A SYMBOLIC LEARNING SYSTEM .
proj; (tla s atn) - ti»

Decision-tree learning systems are based on the followi . .

o S . p. 1=1,...,n, is a transformation of rank 0.

intuitively appealing idea. To build a classifier from a set

of examples, find a criterion that partitions the exampldsxample 3. There are two fundamental transformationg :
into two sets which are purer in the distribution of classes — (2 and bottom : a — {2 defined bytop x = T and
that they contain than the original set; apply this proceg$sttom z = L, for eachz. Each oftop and bottom is a
recursively on the child nodes until the leaf nodes of the treenstant predicate, withop being the weakest predicate on
are sufficiently pure; and then use the resulting decision treeths typea and bottom being the strongest.

the induced classifier. Learning regression functions is based
S ning reg Lo SI‘:example 4. Let u be a type and suppose that: u, B : pu,
on a similar intuition. Decision-tree learning is one of few

learning methods that provides comprehensible hypotheses %ﬁﬁnc; :alﬂtr:;ifg(r)rrr]z;grt]s Then, correspondingpone can

this explains the concentration on that approach here.
The learning system employed here, calledk&mY, is (=A):p— 0N
a classification and regression system. Information about
ALKEMY, and the system itself, is available at [1]. ThedY
theoretical foundations of .KEMY are presented in [7]. Here (= A)z) =z = A,
we only provide sufficient detail in order to understand the
crucial role that AKEMY plays in the agent architecture. Thewith analogous definitions fof= B) and (= C). Similarly,
main topic is therefore that of hypothesis languages and howe can define the transformation
predicate rewrite systems are used to specify these. Predicates
in hypothesis languages are constructed incrementally by (FA):p—0
composing more basic functions, so the development beg'@s
with the definition of composition.
Composition is handled by the (reverse) composition func- (#A)z) =z # A



Example 5. Consider a type such aBt (the type of the branches that need to be re-examined. There is a function
integers) which has various order relations defined on it. Themfrain that the agent can call to rebuild all the dirty branches
for any integerN, one can define the transformation of a tree. The functionretrain has the property that the
tree computed is exactly identical to the tree that would be
(<N):Int — 2 produced by the batch algorithm using the examples in the
by current window. For that reason, we say the on-line algorithm

is losslesswith respect to the batch algorithm.
< N)m)=m < N.
(( )m) IV. BLOCKS WORLD DOMAIN

In a similar way, one can define the transformatignsN),  The experiments were carried out in the blocks world
(> N), and(< N). domain, which serves as a simple, yet sufficiently rich, domain
Transformations are used to define a particular class of prdgWhich to carry out experiments and draw lessons regarding

icates, called standard predicates, that are used in hypothg§Reral architectural issues. _ . _
languages. Here are some declarations suitable for this domain.

Definition 3. A standard predicatés a term of the form By, By, Ba, B3, Ba, Bs, Bs, By, Bs, By, Floor : Object
Stack = List Object

(f1 pb11-- -p1,k:1) oo (fn Pn,a-- 'pn,kn)a World — {Stack}

where f; is a transformation of ranke, (i = 1,...,n), OnState = Object x Object
the target of f, is (2, p;; is a standard predi- L
cate ¢ = 1,...on, ji = L...k) ki > 0 Intention = { OnState}

(i=1,...,n)andn > 1. Action = Object x Stack

Example 6. If p, ¢, andr are standard predicates (having ap- State = World x Intention

propriate type) aneh : 2 — 2 is negation, theriAs p ¢ 7)o = Individual = State x Action.
is a standard predicate. The number of blocks in the world varies from time to
system. Apredicate rewriteis an expression of the form is modelled as a set of stacks of blocks and corresponds to
the agent’s beliefs, in the BDI sense of belief. The agent's
p—q, intentions are modelled as a set of on-states, whereman

stateis a pair of objects, the first of which is intended to be

. . ) . immediately on top of the second. An action specifies that
the headandgq is the body of the rewrite. Apredicate rewrite ome block that is clear should be put on top of some stack.

systemis a finite set of predicate rewrites. One should thin . . .
. . . he empty stack is allowed and is another representation of
of a predicate rewrite system as a kind of grammar for gep- . .
. . . -the floor, so that moving a block to the empty stack is actually
erating a particular hypothesis language. Roughly speakmgq

wherep andq are standard predicates. The predigaiecalled

. . . oving the block to the floor. A state is a pair consisting of a
this works as follows. Starting from the weakest predica . . ) .
) . . ocks world and a set of intentions. These intentions should
top, all predicate rewrites that havep (of the appropriate ; . ) . .
. . .__be interpreted in the BDI sense: the agent intends to achieve
type) in the head are selected to make up child predicalgs - : . . . .
. ) . . ese intentions. In the experiments, the intentions are provided
that consist of the bodies of these predicate rewrites. Then : :
. . ) . externally by percepts that the agent immediately accepts as
for each child predicate and each redex in that predicate, &ll ~ .. g L . : -
. . . intentions. Finally, an individual is a pair consisting of a state
child predicates are generated by replacing each redex by the . . I
. . L ; and an action. Several functions below whose domain is the
body of the predicate rewrite whose head is identical to the Lo . :
: . . . et of individuals are the subject of learning.
redex. This generation of predicates continues to produce . O -
. - . block in the world component of an individual ®is-
hypothesis language. In [7], methods of efficiently generatin i o i . :
. ; acedif its position in the world is inconsistent with the on-
the predicates for an hypothesis language are explored. . : . o
. g : states specified in the intention component of the individual.
In the experiments, we use an on-line version akAmY .

The algorithms and their analyses are given in [8]. The bas'%tr:1 action is constructiveif after the move of the block
g Y g : ecified by the action, neither the block nor any block

idea is that we maintain a fixed window of a certain size. As L .
. L : underneath it is misplaced and the move achieves an on-state
each new example is encountered, it is inserted into the current, ~ . : .
; . . . In the intention. Once a block has been moved constructively,

tree using a function calledddFEzample. If the window is

. - it need not move again in the course of achieving the intention.
full, the oldest example is removed from the tree using R - ivi . . ; .

) . n individual isdeadlockedf no constructive move is possible
function calledremoveFExzample. The two functions have the = . ) .

X L .~ ..~ with respect to the world and intention components of that
following property. They employ some sufficient opumahty—individual
testing conditions to check whether parts of the tree haveEachQ. function has sianature
become potentially sub-optimal according to the tree-building ¢ 9

measures as a result of the update, and mark as dirty all those Q; : Individual — R.



The hypothesis language for ea¢h function has a single Now we turn attention to the policy function. Instead of

domain-specific transformation that has signature directly learning a policy function
estimatedPathLength : Individual — Int m : State — Action,

and is defined as follows. Suppose, in the individual, the acti@nPC!ICy refation having signature

is to move blockA on top of some stack that has blo¢k policy, : Individual — 2

at the top. Then the value afstimatedPathLength for that

individual is given by is learned. To determine the policy functian from policy,,

we proceed as follows. Let be a state. For each action
2 x number of misplaced blocks in the world a, determine the value ofolicy: (s,a). If there is at least
_1 if Ais intended to be o one a for which policy; (s,a) = T, choose aru arbitrarily

+1 if Ais intended to be o(+ B) or amongst all suchu. Otherwise, choose arbitrarily amongst

+ s all a. Depending on the nature pblicy,, the functionr, may
C(# A) is intended to be o3 thus be non-deterministic.
0  otherwise The hypothesis language for the policy relation requires a
_1 if Ais misplaced number of domain-specific transformations.
+ . The transformation
0  otherwise

extractAction : Individual — Object x Stack x Individual

0  otherwise. takes an individual as input and returns the triple consisting

of the block in the action, the stack in the action, and the
The functionestimatedPathLength is intended to provide individual.

an estimate of the shortest path to a goal (that is, a stateThe transformation

satisfying the intention) from the state that results by applyin

the agtiogn to the curre)nt state. Such an estimate i;’ nggdyedg%O]A + Object x Stack x Individual — Object x Individual

approximate eacky); function. Note that using a transforma+takes as input a triple consisting of a block, a stack, and an

tion such asestimatedPathLength implies that the agent hasindividual, and returns the pair consisting of the block and the
some limited knowledge of the effects of its actions. Here jgdividual.

the predicate rewrite system for tlig hypothesis language. The transformation

{+1 if B is misplaced

top — estimatedPathLength o top projB : Object x Stack x Individual — Stack x Individual
top — (= 0) takes as input a triple consisting of a block, a stack, and an
top — (= 1) individual, and returns the pair consisting of the stack and the
individual.
' The transformation
top — (= 21) . i
noMisplacedNotOnFloorBlock : Individual — {2
top — (= 22).

_ _ _ takes as input an individual and returns true, if there is no block
Each@; function for a world in which there ar8/ blocks, in the world component of the individual that is misplaced and
represented as anLAKEMY regression tree, typically has thenot on the floor; and returns false, otherwise.

following general structure. The transformation
Qi = isDeadlocked : Individual — {2
if estimatedPathLength (= 0) takes as input an individual and returns true, if there is no
then qq constructive move possible in the world component of the
else if estimatedPathLength o (= 1) x individual; and returns false, otherwise.
The transformation
then qq
isMisplaced : Object x Individual — (2
else if estimatedPathLength (= 2N + 1) z takes as inpuj[ a pair con;isting ofa blqck and an individual and
" returns true, if the block is misplaced in the world component
€N Q2N +1 of the individual; and returns false, otherwise.
else qotherwises The transformation

whereqq, g1, and so on, are the various regression values. isFloor : Stack x Individual — (2



takes as input a pair consisting of a stack and an individual aAdkemMY decision tree.
returns true, if the stack is empty; and returns false, otherwise. ,
The transformation policysimple & =
if extractAction o isConstructive x
isConstructive : Object x Stack x Individual — {2 then T

takes as input a triple consisting of a block, a stack, and an else if extractAction o projB o isFloor x
individual, and returns true if moving the block to the stack then T
in the world component of the individual is constructive; and else L
returns false, otherwise. '
The transformation The US (Unstack-Stack) policy puts all misplaced blocks

, , , , . on the floor first and then builds the goal state by constructive
achievesSingletonIntention : Object X Stack x Individual — {2 moves. Here is the/S policy as an AKEMY decision tree.

takgsdggtjinpijt a ;riple consistingf or: a bIoAkfa itagc(:_kBt,)lanE policyys © =

an individual, and returns true If the top of stagkis bloc . .

C and the intention component of the individuaKig4, C)}; if Aa (noMisplacedNotOnFloorBlock)

and returns false, otherwise. (extractAction o isConstructive) x
The transformation then T

notContainIntentionBlock : Stack x Individual — {2 else if Nz (eatractAction - projA » isMisplaced)

(extractAction o projB o isFloor) x
takes as input a pair consisting of a stack and an individual, and then T
returns true if the stack does not contain any block appearing

in the intention component of the individual; and returns false, else L.
otherwise. _ The GN1 policy is as follows: if there is a constructive
The transformation move, then do it; else arbitrarily choose a misplaced block and

move it to the floor. Here is thé/N1 policy as an AKEMY
decision tree.

takes as input a pair consisting of a block and an individual,
and returns true if the block is above some block in the inten- , , ) ,
tion component of the individual; and returns false, otherwise. if extractAction - isConstructive x

Here is a predicate rewrite system for policy hypothesis then T

languages. In the next section, particular subsets of this rewrite  ¢jse if A4 (extractAction o projA - isMisplaced)
system will be used in various experiments.

abovelntentionBlock : Object x Individual — 2

policyan; © =

(extractAction o projB o isFloor)

top — Ao top top (isDeadlocked) x

top — N3 top top top then T

top — extractAction o projA o top else 1.

top »— extractAction o projB o top Finally, we explain theone_intention policy. Suppose the
top — extractAction o top intention is to put block” onto block D, and the action is to
top — noMisplacedNotOnFloorBlock move block A onto stackB. Then theone_intention policy

is as follows: if the move achieveS on D, then do it; else
o if A is aboveC or D and B doesn’t contairC' or D, then do
top — isMisplaced the move. Here is thene_intention policy as an AKEMY
top — 1sFloor decision tree.

top — 1sDeadlocked

top — isConstructive i _
POlCYone_intention T =

top ~— achievesSingletonIntention if extractAction o achievesSingletonIntention x

top — notContainIntentionBlock
. then T
top »— abovelntentionBlock. else if N3 (extractAction o projA o abovelntentionBlock)
We consider two policies[JS and GN1, that were stud- (extractAction - projB o notContainIntentionBlock)
ied in [11], and two more restricted onesjmple and (isDeadlocked) x
one_intention.
. . . . then T
The simple policy either makes a constructive move or else Lo L
else 1.

moves a block to the floor. Here is theémple policy as an



V. EXPERIMENTS AND RESULTS predicate rewrite system for thB hypothesis language used

. . . . . . in experiments 1, 2, and 4 is as follows.
This section discusses various experiments carried out'in

the blocks world domain, and the results obtained. top — A3 top top top

A. Experimental parameters top > estractAction - projA - top

. N top — extractAction o projB o to
The general agent algorithm in Figure 2 has as parameters b pres b

an action selection functioselectAction, and two update
functions updateQ and updateP. These parameters are in-  top — isDeadlocked
stantiated in the following experiments. Here is a general top — isMisplaced
description of each function.

The selectAction function stochastically selects a legal
actiona based on the current statg using the current policy

relationpolicy, as described in Section IV. However, the agent |n experiment 3, a further three predicate rewrites are

can benefit from ignoring its current policy from time to timgequired to express thene_intention policy.
and exploring new regions of the state space.eXploration

factor is employed to permit occasional random actions, top — achievesSingletonIntention
irrespective of what the current policy says. An exploration  top »— notContainlntentionBlock
factor of zero corresponds to 100% exploitation of the current
policy.
The update@ function in these experiments collects trainB. Graphs showing experimental results
ing input after each action is performed but only requests Graphs showing the results obtained from the four exper-
ALKEMY to retrain to produce a ne) regression tree at thejments discussed here are shown at the end of the paper in
end of each episode or after 100 moves since the last retrgigyyres 3-6.
whichever occurs first. For each experiment two graphs are plotted, the first depict-
The updateP function in these experiments provides &g cumulative moves versus episodes, the second depicting
mechanism for delaying the collection &f training data in extra moves versus episod@(tra moves are moves addi-
the early training phase when thieregression tree is unlikely tional to what the policyUS predicts for a given episodé’s
to provide a good prediction. &aining data delayparameter s chosen as a benchmark because it is near optimal for a small
controls this delay in the collection d? training data. number of blocks [11] and it is simple to compute. Note that
The updateP function also permits the delaying of retraina consequence of this is that sometimes the number of extra
ing of the P decision tree by two mechanisms: an initiaoves plotted in the second type of graph is a small negative

delay and an accuracy measure. The first is a straightforwayigmber, when the agent solves an episode in fewer moves that
retraining delay parameter used to delay retraining of thgsg.

P decision tree until sufficient data is available; the second
requires further explanation. C. Experiments 1 and 2 — initialisation
The updateP function gathers accuracy statistics about the These two experiments consider the initialisation problem
incoming training data forP. It does this by first querying for an adaptive agent: how does an agent get started at all? In
ALKEMY for its predictedP value for each(s;,a) pair using the blocks world domain the number of possible states rises
the existing P decision tree. If the predicte@ values tend rapidly when more blocks are considered. Random exploration
to agree with the existing® training data, then thepdateP of such large state spaces to find a goal state is impractical.
function delays requesting LXEMY to retrain until an error Some sort of guidance of the agent towards its goal is required
threshold is breached. In most of the experiments that followhile it acquires knowledge of its environment. The symbolic
this error thresholdparameter is set at 15%. learning system allows the agent’s designer to specify an initial
Finally, like the update@ function, theupdateP function policy to guide the agent’s initial learning.
only ever requests BKEMY to retrain the currenP decision Experiment 1 is conducted in a blocks world containing 5
tree at the end of an episode or after 100 moves since the laigicks. At each episode the agent is supplied with a new task
retrain, whichever occurs first, provided that retraining has net achieving a set of 5 on-states. It moves from task to task
been delayed for the reasons just mentioned. receiving a reward only for actions which achieve an episode’s
The ALKEMY on-line learning window sizes used in alltask.
experiments were 200 training examples for Yetiree and  In the first instance, the agent is supplied with no initial pol-
1000 training examples for the tree (because there are abouity and theselectAction function specifies a zero exploration
five times as manyP training examples for eac® training factor. The effect of this is that the agent initially randomly
example). explores the 5-block state space, fully exploiting its (initially
The predicate rewrite system used to approximate (ghe empty) current policy that becomes refined through retraining
function in the following experiments is as in Section IV. Thever time.

top — extractAction o top

top — isFloor

top — isConstructive.

top — abovelntentionBlock.



In the second instance, the agent is supplied with the initiaent be able to adapt to changes in its environment without
simple-minded policypolicysimpic. The selectAction function resorting to re-initialisation.
again specifies a zero exploration factor. ifpdate P function Experiment 4 is conducted in a blocks world initially
delays the collection of training data until after episode 20, amdntaining 5 blocks. At some episode, a new block is added
delays the retraining of the initial policy decision tree untilo the environment and, at a subsequent episode, yet another
after episode 40. The retraining error tolerance is set at 158tock is added. The task of the agent is also incremented in

In both cases the agent eventually converges to a goe richer environments from sets of 5 on-states to sets of 6
policy policygn;. This occurs after 52 episodes withoubn-states, and finally to 7 on-states in a 7 blocks world.
guidance and after 71 episodes with guidance, but with fewerthe agent is initialised withpolicysimpie @nd converges to
overall moves. the better policypolicycy; after episode 21. At episode 30,

Experiment 2 is conducted in a blocks world containing § 6th block is added and the task incremented to 6 on-states.
blocks where the task is to achieve a set of 8 on-states. Tfige agent continues to achieve its harder tasks by applying
number of different states in an 8 blocks world is 394,35%e policy it learned in the simpler world. At episode 37, an
compared to 501 for a 5 blocks world (see [11]) and there isgconsistency between the incoming training examples and the
single goal state. Unguided random exploration does not reaglrent policy is detected to be higher than the error tolerance
the goal state within a practical time, so guided exploratigdhd a retraining of the current working policy is triggered. This
is mandatory. This experiment shows the agent convergingri&ults in a series of suboptimal, but not disastrous, policies
policycn; after 57 episodes, starting froplicysimpie- until episode 46 at which point they reconvergeptdicyc ;.

The selectAction function for this experiment specifies an - at episode 60, a 7th block is added and the task complexity
exploration factor of 50% until after episode 20 when it dropgcremented to 7 on-stategolicycy; is maintained until
to zero. Theupdate}_’ function delays the collection qf _training episode 128 when the incoming training data again exceeds
data until after episode 10, and delays the retraining of th&e retraining error tolerance triggering a further retraining of
initial policy dec!sion tree until after episode 20. The retrainingye working policy. This results in a suboptimal policy, which
error tolerance is set at 15%. is refined over the course of the next few episodes, converging
D. Experiment 3 — adapting to changing tasks to policyan; after episode 136.

This experiment exhibits the adaptivity of the agent to The selectAction function for this experiment specifies an
changing tasks. From time to time an adaptive agent's ta@kPloration factor of 50% until after episode 20 when it drops
might change, either dramatically or incrementally. In tht® Z€ro. TheupdateP function delays the collection of training
case of a dramatic change in task, the problem of adaptivfit@ until after episode 10, and delays the retraining of the
reduces to the problem of initialisation (again). In the case piitial policy dec!smn tree until after episode 20. The retraining
incremental change however, it is desirable that the agent §J&°F tolerance is set at 15%.
able to modify its existing behaviour in order to adapt without
starting over again. VI. CONCLUSIONS

E>.<p'elr|ment 3 is cpnductgd in a 5 blocks world where We now draw together some general remarks that can be
_the initial task_s consist of_smgleton s_ets of o_n-states. Tr}%de on the basis of the experiments.
is, the agent is only required to achieve a single on-state
No initial guidance policy is supplied, so the agent initiall
explores randomly, exploiting its knowledge as it is acquireﬂ‘;
The experiment shows that the agent converges to a g
policy for achieving singleton on-stategolicyone._intention

‘The hypothesis language for thefunction is quite different

the hypothesis language for the policy. The reason is that
Q@ function encodes the path length to a goal, while the

ono icy distinguishes good and bad actions — they are different

after episode 61. At episode 75, the agent's tasks change ar}‘anctlons that therefore require different hypothesis languages.

is subsequently required to achieve sets of 5 on-states at eac he policy is primary; theQ) function is only used as a

episode. The order in which it achieves these on-states n8Cvrvah to learn a good poh_cy. Furthermore, tiig funcyon .
.does not have to be perfect in order to get a good policy. This

becomes important. Rewards are only received for achievwg; L SO
. Is’partly because the policy is general, that is, is independent
all 5 on-states at the same time. 106 moves are taken to achle%/%h :
! 1 . . of the size of the state, so small errors(hcan be absorbed
the task in episode 75, during which the agent adopts the m €ihe polic
generalpolicygy; which applies to the new type of tasks an yD p- ky. ledge i ded in the hvoothesis |
also, with hindsight, to the previous simpler tasks. omain knowledge IS encoded In the nypothesis languages
for the policy and@ functions; specifically it appears in the
corresponding predicate rewrite systems. Furthermore, this is a

The selectAction function for this experiment specifies
an exploration factor of zero. ThepdateP function sets a _ . i .

very convenient way of encoding this knowledge, as illustrated
by the definitions of the policy and) functions that are

retraining error tolerance of 5%.

E. Experiment 4 — adapting to a changing environment |earned; these definitions are compact and comprehensible.
This experiment shows the symbolic learning agent adaptifihe designer or user of the agent can assess the agent’s current

to a changing environment. Like the previous case of incrpelicy at any time by inspecting the symbolic representation

mental changes to the agent’s tasks, it is also desirable thaiéithe policy.



The designer should aim to provide as much domain knowl-
edge as possible to the agent (in the form of the hypothesis
languages and the overall knowledge representation chosen)
and rely on learning only when really needed.

Discovering a good policy requires not only a good hypoth-
esis language but also good training data. In other words, much
attention has to be paid to issues such as adequate exploration
of the state space and the size of training windows for the
incremental learning algorithm. Too small a window can lose
valuable data, while too large a window can restrict the agent’s
ability to react to a changing environment.

For large search spaces, a good initial policy is highly
advantageous in that it can help the agent find rewards more
easily (or, even, at all). The symbolic approach helps here as
it makes it possible for the designer to easily code up initial
policies for this purpose.

Finally, we remark that methods other th@&hn learning
could be used to learn policies. For example, a model of the
environment could be learned and then planning techniques
used [3].
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