
In Intelligent Agents IV: Proceedings of the Fourth International Workshop on Agent Theories, Architectures and
Languages, Singh, Rao and Wooldridge (eds.), Lecture Notes in AI, 1365, 155-176, Springer-Verlag, 1998.

A Formal Specification of dMARS

Mark d’Inverno� David Kinnyy Michael Luckz Michael Wooldridge]

� Cavendish School of Computer Science, Westminster University, London W1M 8JS, UK
dinverm@westminster.ac.uk

y Australian Artificial Intelligence Institute, Melbourne, Australia
dnk@aaii.oz.au

z Department of Computer Science, University of Warwick, CV4 7AL, UK
mikeluck@dcs.warwick.ac.uk

] Dept. of Electronic Engineering, Queen Mary & Westfield College, London E1 4NS, UK
M.J.Wooldridge@qmw.ac.uk

Abstract. The Procedural Reasoning System (PRS) is the best established agent
architecture currently available. It has been deployed in many major industrial
applications, ranging from fault diagnosis on the space shuttle to air traffic man-
agement and business process control. The theory of PRS-like systems has also
been widely studied: within the intelligent agents research community, the belief-
desire-intention (BDI) model of practical reasoning that underpins PRS is ar-
guably the dominant force in the theoretical foundations of rational agency. De-
spite the interest in PRS and BDI agents, no complete attempt has yet been made
to precisely specify the behaviour of real PRS systems. This has led to the devel-
opment of a range of systems that claim to conform to the PRS model, but which
differ from it in many important respects. Our aim in this paper is to rectify this
omission. We provide an abstract formal model of an idealised dMARS system
(the most recent implementation of the PRS architecture), which precisely defines
the key data structures present within the architecture and the operations that ma-
nipulate these structures. We focus in particular on dMARS plans, since these are
the key tool for programming dMARS agents. The specification we present will
enable other implementations of PRS to be easily developed, and will serve as a
benchmark against which future architectural enhancements can be evaluated.

1 Introduction

Since the mid 1980s, many control architectures for practical reasoning agents have
been proposed [19]. Most of these have been deployed only in limited artificial envi-
ronments; very few have been applied to realistic problems, and even fewer have led to
the development of useful field-tested applications. The most notable exception is the
Procedural Reasoning System (PRS). Originally described in 1987 [7], this architecture
has progressed from an experimentalLISP version to a fully fledgedC++ implemen-
tation known as the distributed Multi-Agent Reasoning System (dMARS), which has
been applied in perhaps the most significant multi-agent applications to date [8]. The
PRS architecture has its conceptual roots in the belief-desire-intention (BDI) model of
practical reasoning developed by Michael Bratman and colleagues [1], and in tandem

with the evolution of the PRS architecture into an industrial-strength production archi-
tecture, the theoretical foundations of the BDI model have also been closely investigated
(see, e.g., [12] for a survey).

Despite the success of the PRS architecture, in terms of both its demonstrable appli-
cability to real-world problems and its theoretical foundations, there has to date been no
systematic attempt to unambiguously define its operation. There have, however, been
several attempts in this direction. For example, in [14], Rao and Georgeff give an ab-
stract specification of the architecture, and informally discuss the extent to which an
embodiment of it could be said to satisfy various possible axioms of BDI theory [12].
However, that specification is (quite deliberately) at a high level, and does not lend itself
to direct implementation. Another related attempt is embodied by the AgentSpeak(L)
language developed by Rao [11]. AgentSpeak(L) is a programming language based on
an abstraction of the PRS architecture; irrelevant implementation detail is removed, and
PRS is stripped to its bare essentials. Building on this work, d’Inverno and Luck have
constructed a formal specification (in Z [17]) of AgentSpeak(L) [3]. This specification
reformalises Rao’s original description so that it is couched in terms of state and opera-
tions on state that can be easily refined into an implemented system. In addition, being
based on a simplified version of dMARS, the specification provides a starting point for
actual specifications of these more sophisticated systems.

In this paper, we continue and extend that work, by giving an abstract formal spec-
ification of dMARS: the system upon which AgentSpeak(L) is based. In so doing, we
provide an operational semantics for dMARS, and thus provide a benchmark against
which future BDI systems and PRS-like implementations can be compared. The spec-
ification is abstract in that important aspects of the dMARS system are included, but
unnecessary implementation-specific details are omitted. This approach is very simi-
lar to that of [18], in which a formal specification of the MYWORLD architecture was
developed usingVDM, a formal specification language closely related to Z.

The remainder of this paper is structured as follows. First, in Section 2 we present
an overview of the dMARS system. In Section 3, we describe the basic types and prim-
itive components of the system, and in Section 4 we proceed to specify more complex
components including plans. The next section specifies the dMARS agent and its state,
followed by a description of its cycle of operation. At the end of the paper we sum-
marise the contribution made by this specification, its relation to previous work, and
prospects for the future.

Notation The specification below is presented using the Z language [17]. Z is a model-
oriented formal specification language based on set theory and first-order logic. The key
components of a Z specification are definitions of thestate space of a system and the
possibleoperations that transform it from one state to another. Because of space con-
straints, some auxiliary function definitions are omitted, and only a very brief account
of binding is given. A more complete account of a related system can be found in [3],
which provides both an introduction to Z and more explanation of several of the aspects
not covered here. The full dMARS specification is available on request from the first
author.

Beliefs

Goals

Plan
Library

Interpreter

Intentions

Sensor Input Action Output

Fig. 1. A BDI Agent Architecture: PRS

2 An Overview of dMARS

The Procedural Reasoning System (PRS) developed by Georgeff and Lansky [7] is
perhaps the best-known agent architecture. Both PRS and its successordMARS are
examples of a currently popular paradigm known as thebelief-desire-intention (BDI)
approach [1]. As Figure 1 shows, a BDI architecture typically contains four key data
structures: beliefs, goals, intentions and a plan library.

An agent’sbeliefs correspond to information the agent has about the world, which
may be incomplete or incorrect. Beliefs may be as simple as variables (in the sense of,
e.g.,PASCAL programs) but implemented BDI agents typically represent beliefs sym-
bolically (e.g., asPROLOG-like facts [7]). An agent’sdesires (or goals, in the system)
intuitively correspond to the tasks allocated to it. (Implemented BDI agents require that
desires be logically consistent, althoughhuman desires often fail in this respect.) The
intuition with BDI systems is that an agent will not, in general, be able to achieveall
its desires, even if these desiresare consistent. Agents must therefore fix upon some
subset of available desires and commit resources to achieving them. These chosen de-
sires areintentions, and an agent will typically continue to try to achieve an intention
until either it believes the intention is satisfied, or it believes the intention is no longer
achievable [2]. The BDI model is operationalised in dMARS agents byplans. Each
agent has aplan library, which is a set of plans, orrecipes, specifying courses of ac-
tion that may be undertaken by an agent in order to achieve its intentions. An agent’s
plan library represents itsprocedural knowledge, or know-how: knowledge about how
to bring about states of affairs.

Each plan contains several components. Thetrigger or invocation condition for a
plan specifies the circumstances under which the plan should be considered, usually
specified in terms of events. For example, the plan “make tea” may be triggered by the
event “thirsty”. In addition, a plan has acontext, or pre-condition, specifying the cir-
cumstances under which the execution of the plan may commence. For example, the
plan “make tea” might have the context “have tea-bags”. A plan may also have amain-
tenance condition, which characterises the circumstances that must remain true while
the plan is executing. Finally, a plan has abody, defining a potentially quite complex
course of action, which may consist of both goals (or subgoals) and primitive actions.
Our “tea” plan might have the bodyget boiling water; add tea-bag to cup; add water to
cup. Here,get boiling water is a subgoal, (something that must be achieved when plan
execution reaches this point in the plan), whereasadd tea-bag to cup andadd water
to cup are primitive actions, i.e., actions that can be performed directly by the agent.
Primitive actions can be thought of as procedure calls.

dMARS agents monitor both the world and their own internal state, and any events
that are perceived are placed on anevent queue. Theinterpreter in Figure 1 is responsi-
ble for managing the overall operation of the agent. It continually executes the following
cycle:

– observe the world and the agent’s internal state, and update the event queue to
reflect the events that have been observed;

– generate new possible desires (tasks), by finding plans whose trigger event matches
an event in the event queue;

– select from this set of matching plans one for execution (anintended means);
– push the intended means onto an existing or new intention stack, according to

whether or not the event is a subgoal; and
– select an intention stack, take the topmost plan (intended means), and execute the

next step of this current plan: if the step is an action, perform it; otherwise, if it is a
subgoal, post this subgoal on the event queue.

In this way, when a plan starts executing, its subgoals will be posted on the event queue
which, in turn, will cause plans that achieve this subgoal to become active, and so
on. This is the basic execution model of dMARS agents. Note that agents do no first-
principles planning at all, as all plans must be generated by the agent programmer at
design time. The planning done by agents consists entirely of context-sensitive subgoal
expansion, which is deferred until a point in time at which the subgoal is selected for
execution.

Other efforts to give a formal semantics to BDI architectures include a range ofBDI
logics that have been developed by Rao and Georgeff [12]. These logics are extensions
to the branching time logic CTL* [5], which also contain normal modal connectives
for representing beliefs, desires, and intentions. Most work on BDI logics has focussed
on possible relationships between the three ‘mental states’ [13] and, more recently, on
developing proof methods for restricted forms of the logics [15]. In future work we will
investigate the relationship between this work and the operational semantics described
in this paper.

3 Beliefs, Goals, and Actions

We begin our specification by defining the allowablebeliefs of an agent. Beliefs in
dMARS are rather likePROLOGfacts: they are essentially ground literals of classical
first-order logic (i.e., positive or negative atomic formulae containing no variables). In
order to define atomic formulae, we need a stock of variables, function and predicate
symbols. We are not concerned with the contents of these sets, and hence we parachute
them into our specification.

[Var ;FunSym;PredSym]

A term is either a variable or a function symbol applied to a (possibly empty) sequence
of terms.

Term ::= varhhVarii j functorhhFunSym � seqTermii

An atom is a predicate symbol applied to a (possibly empty) sequence of terms.

Atom

head : PredSym
terms : seqTerm

A belief formula is then either an atom or the negation of an atom.

BeliefFormula ::= poshhAtomii j nothhAtomii

The set ofbeliefs is the set of all ground belief formulae (i.e. those containing no
variables).

Belief == fb : BeliefFormula j belvars b = ? � bg

An auxiliary functionbelvars is assumed which, given a belief formula, returns the set
of variables it contains.

dMARS allows an agent’sgoals to be specified in terms of a simple temporal modal
language with two unary connectives in addition to the connectives of classical logic.
The operators are “!” and “?”, for “achieve” and “query” respectively, so that a formula
!� in dMARS is read “achieve�”. Thus an agent with goal!� has a goal of performing
some (possibly empty) sequence of actions, such that after these actions are performed,
� will be true. Similarly, a formula “?�” means “query�”. Thus an agent with goal?�
has a goal of performing some (possibly empty) sequence of actions, such that after it
performs these actions, it will know whether or not� is true. In order to define these
additional connectives, we must first definesituation formulae: these are expressions
whose truth can be evaluated with respect to a set of beliefs, and are thus not temporal.

SituationFormula ::= belformhhBeliefFormulaii
j andhhSituationFormula � SituationFormulaii
j orhhSituationFormula � SituationFormulaii
j true

j false

A temporal formula, known as agoal is then a belief formula prefixed with an achieve
operator or a situation formula prefixed with a query operator. Thus an agent can have
a goal either of achieving a state of affairs or of determining whether the state of affairs
holds.

Goal ::= achievehhBeliefFormulaii j queryhhSituationFormulaii

The types of action that agents can perform may be classified as eitherexternal (in
which case the domain of the action is the environment outside the agent) orinternal
(in which case the domain of the action is the agent itself). External actions are speci-
fied as if they are procedure calls or method invocations (and in reality, from the agent
programmer’s perspective, they usually are). An external action thus comprises an ex-
ternal action symbol (cf. the procedure name) taken from the set[ActionSym], and a
sequence of terms (cf. the parameters of the procedure).

ExtAction

name : ActionSym
terms : seqTerm

Internal actions may be one of two types: add or remove a belief from the data base
(cf. thePROLOGassert andretract clauses). Note that it is not possible to add or
remove an atom that contains variables.

IntAction ::= addhhBeliefFormulaii j removehhBeliefFormulaii

4 Plans

Plans areadopted by agents, in the way we describe below. Once adopted, plans con-
strain an agent’s behaviour and act asintentions. Plans consists of six components: an
invocation condition (or triggering event); an optionalcontext (a situation formula) that
defines the pre-conditions of the plan, i.e., what must be believed by the agent for a
plan to be executable; theplan body, which is a tree representing a kind of flow-graph
of actions to perform; amaintenance condition that must be true for the plan to continue
executing; a set ofinternal actions that are performed if the plan succeeds; and finally, a
set ofinternal actions that are performed if the plan fails. The tree representing the body
has states as nodes, and arcs (branches) representing either a goal, an internal action or
an external action as defined below. Executing a plan successfully involves traversing
the tree from the root to any leaf node.

First, we define trigger events. A trigger event is one that causes a plan to be adopted.
Four types of events are allowable as triggers: the acquisition of a new belief; the re-
moval of a belief; the receipt of a message; or the acquisition of a new goal. This last
type of trigger event allows goal-driven as well as event-driven processing.

TriggerEvent ::= addbeleventhhBelief ii
j rembeleventhhBelief ii
j toldeventhhAtomii
j goaleventhhGoalii

As we noted above, plan bodies are trees in which arcs are labelled with either goals
or actions and states are place holders. Since states are not important in themselves, we
define them using the given set[State]. An arc (branch) within a plan body may be
labelled with either an internal or external action, or a subgoal.

Branch ::= extactionhhExtActionii
j intactionhhIntActionii
j subgoalhhGoalii

Next, we define plan bodies. A dMARS plan body is either anend tip containing
a state, or afork containing a state and a non-empty set of branches each leading to
another tree.

Body ::= EndhhStateii j ForkhhP
1
(State � Branch � Body)ii

We can bring these components together into the definition of a plan. The formal defi-
nition of theoptional type and related components, which are non-standard Z, can be
found in Appendix A.

Plan

inv : TriggerEvent
context : optional [SituationFormula]
body : Body
maint : SituationFormula
succ : seqIntAction
fail : seqIntAction

Plans with no body are calledprimitive plans.

PrimitivePlan == fp : Plan j p:body 2 (ranEnd) � pg

4.1 Instantiating Plans

The basic execution mechanism for dMARS agents, described in Section 2, involves
an agent matching the trigger and context of each plan against the chosen event in the
event queue and the current set of beliefs, respectively, and then generating a set of can-
didate, matching plans, selecting one, and making aplan instance for it. A plan instance
contains a copy of the original plan and, in addition: theenvironment of the plan (i.e.,
any bindings that have been generated in the course of executing the plan); the current
state reached in the plan (initially the root of the plan body); the set of branches it can
attempt to traverse from this state; the branch itis attempting to traverse; an identifier
to uniquely identify the plan instance to the agent owner from the set[PlanInstanceId]
of all such identifiers; and finally, thestatus of the plan (either “active”, indicating that
the plan is part of an intention, or “inactive”, indicating that the plan has temporarily
been suspended).

When a branch cannot be traversed (e.g., because an action or subgoal fails), then
the branch itself fails and is removed from the set of possible branches. If the branch

that the agent is attempting to traverse is defined, the agent has chosen which branch to
attempt next, but if it is undefined, no such choice has been made.

In what follows, theSubstitution type represents the set of allsubstitutions (i.e.,
bindings from variables to terms) A function prefixed byAS applies a substitution to
a dMARS expression. Ifs andt are substitutions thens z t denotes thecomposition
of s andt . Finally, a function prefixed bymgu is a function which returns the most
general unifier of two expressions. A brief description and some relevant definitions
can be found in Appendix B.

A plan instance is thus formally defined as follows.

Status ::= active j suspended

PlanInstance

origplan : Plan
env : Substitution
state : State
nextbranches : PBranch
branch : optional [Branch]
status : Status
id : PlanInstanceId

state 2 PlanStates origplan

state 2 domEnd) nextbranches = ?

nextbranches � PlanNextBranches origplan state

branch � nextbranches

In this schema, we use the auxiliary functions,PlanNextBranches , to identify the
set of possible next branches from a given state in a plan andPlanStates , to give all the
states of a plan. The specification that follows also uses the functions,PlanNextState

andPlanStartState, which give the next state in a plan when applied to the current
state and the branch traversed, and determine the start state of a plan respectively.

When a plan is first selected, the current state is the first state in the plan. A plan is
said to havesucceeded when it reaches its end state, and it is said to havefailed if it is
not in the end state and there are no available branches (i.e., it has failed if it has tried
each branch and none have been successful).

InitialInstance == fp : PlanInstance j
p:state = PlanStartState p:origplan ^ p:status = activeg

SucceedInstance == fp : PlanInstance j p:state 2 (domEnd)g
FailedInstance == fp : PlanInstance j

p:state 62 (domEnd) ^ p:nextbranches = fgg

4.2 Intentions

An intention in dMARS is just a sequence of plan instances. In response to an external
event, an intention is created containing the generated plan instance. If this plan, in turn,

creates an internal event to which the agent responds with another plan, the new plan is
concatenated to the intention. In this way, the plan at the top of the intention stack is the
plan that will be executed first in any intention.

Intention == seqPlanInstance

An event consists of the triggering event and, optionally, a plan instance identifier
that identifies the event-generating plan, an environment, and a set of plan instances that
may already have failed (and may not be retried).

Event

trig : TriggerEvent
id : optional [PlanInstanceId]
env : optional [Substitution]
failures : optional [PPlanInstance]

An external event is one that is not associated with an existing plan instance when
it first enters the buffer though it will become so when a plan instance is generated for
it. By contrast, a subgoal event is an internal event that occurs when the branch of an
executing intention is an achieve goal that cannot be achieved immediately. In this case,
the variables of the event will all be defined with the constraint that the domain of the
environment contains only variables that are contained in the event trigger.

ExternalEvent

Event

trig 62 rangoalevent
unde�ned env

unde�ned failures

SubgoalEvent

Event

trig 2 rangoalevent
de�ned env

de�ned failures

dom(the env) � goalatomvars (goalevent�trig)

5 An Operational Semantics for dMARS Agents

The operation of dMARS agents is driven by the interaction of intentions and events.
Events, (which may be the addition or deletion of beliefs, or the generation of new
goals or subgoals), provide triggers to execute appropriate plans in the agent’s plan
library. As events are posted on the agent’s event queue, so plans are selected from the
agent’s plan library that are relevant and applicable to the event. Determining whether a

plan is relevant and applicable to an event reduces to attempting to unify the invocation
condition and context with the event. From the set of applicable plans found by such
unification, the agent chooses one plan, and from it generates a plan instance that is then
added to the current intentions of the agent. This plan is thus anintended means.

Plans in dMARS are sequences of actions and goals with choice points so that, at
any point, there may be more than one path to traverse in order to complete the plan.
Intentions, which are those plans currently executing, determine which actions the agent
takes, and may also give rise to the generation of new subgoals, both of which occur in
the course of the agent’s efforts to carry out the plan.

The following formal model specifies how relevant and applicable plans are deter-
mined initially, how one is chosen, and then how it is used. Essentially, an event gener-
ates either a new intention, or adds to an existing one. An agent then selects an intention
to execute and, depending on the current component of the plan, different courses of be-
haviour are required. Actions may be executed directly and may lead to the posting of
new events if the database is modified as a result, while goals either lead to the further
instantiation of plans, or to the posting of new events (subgoals to be achieved) and the
suspension of the currently executing plan.

This section provides a detailed specification of the dMARS agent operation, cov-
ering the agent and agent state, the generation of relevant and applicable plans, the way
in which events are processed, the execution of intentions, and finally the achievement
and failure of plans.

5.1 The dMARS Agent State

As in other BDI architectures, a dMARS agent consists of a plan library, an intention-
selection function, an event-selection function and a plan-selection function. It also has
a substitution-selection function for choosing between possible alternative bindings,
and a function for selecting which branch in a plan should be attempted next.

dMARSAgent

planlibrary : PPlan
intentionselect : P

1
Intention ! Intention

planselect : P
1
Plan ! Plan

eventselect : seq
1
Event ! Event

substitutionselect : P
1
Substitution ! Substitution

selectbranch : PlanInstance 7! Branch

In specifying the state of the agent, we indicate which aspects may change over
time. These components are the agents’ beliefs (which are ground belief formulae),
intentions, and events yet to be processed (represented as a sequence).

dMARSAgentState

dMARSAgent

beliefs : PBelief
intentions : P Intention
events : seqEvent

An operation only affects the state of the dMARS agent rather than the agent itself.

�dMARSAgentState

dMARSAgentState

dMARSAgentState 0

�dMARSAgentState

Initially, the agent is provided with an event queue and sets of beliefs and intentions
that “pump prime” its subsequent intention generation and action.

InitdMarsAgentState

�dMARSAgentState

initBel? : PBelief
initInt? : P Intention
initEv? : seqEvent

beliefs 0 = initBel?
intentions 0 = initInt?
events 0 = initEv?

Agents can perceive external events which are placed at the end of the event buffer.

NewExternalEvent

�dMARSAgentState

newevent? : Event

events 0 = events a hnewevent?i

5.2 Relevant and Applicable Plans

A plan is relevant with respect to an event if there exists amost general unifier (mgu)
to bind the triggering events of the plan and the event so that they are equal. This is
specified in the functiongenrelplans , which takes an evente and a set of plansps ,
and returns a set of plan/substitution pairs, such that if(p; �) is returned, thenp is a
relevant plan inps for the evente, and� is the most general unifier forp. The signature
of the functions defining most general unifiers are given in Appendix B. If the event is
a subgoal event and therefore contains a substitution environment, it must be applied to
the triggering event before the relevant plans are generated.

genrelplans : Event ! PPlan ! P(Plan � Substitution)

8 e : Event ; lib : PPlan �
unde�ned e:env) genrelplans e lib =
fp : lib; � : Substitution j mguevents (e:trig ; p:inv) = � � (p; �)g ^
de�ned e:env) genrelplans e lib =
fp : lib; � : Substitution j
mguevents (ASTrigEvent (the e:env) e:trig ; p:inv) = � � (p; �)g

A relevant plan is applicable if its context is a logical consequence of the beliefs of
the agent. Thus, we can define a predicate,dMarsLogCons , to hold between a situation
formula and a belief base if the situation formula is a logical consequence of the belief
base.

dMarsLogCons : P(SituationFormula � PBeliefFormula)

Using this logical consequence relation, we define anapplicable plan relation to
hold between a relevant plan, a substitution and a current set of beliefs. This is spec-
ified in the function,genapplplans , which takes a set of plans (and the substitutions
which make them relevant), and the current beliefs, and returns theapplicable plans
and updated substitutions.

genapplplans : P(Plan � Substitution) !
(PBeliefFormula) !

P(Plan � Substitution)

8 relsubs : P(Plan � Substitution);
bels : PBeliefFormula �

genapplplans relsubs bels =
frel : Plan; �; : Substitution j
(rel ; �) 2 relsubs ^
dMarsLogCons(ASSitForm (� z) (the rel :context); bels) �

(rel ; � z)g

5.3 Processing Events

With the dMARS agent and its state specified, we can define the dMARS operation cy-
cle. There are two possible modes of operation, depending on whether the event buffer
is empty or not. If the event buffer is not empty, an event is selected from it (typically
the first element) and relevant plans and, in turn, applicable plans are determined. An
applicable plan is selected and used to generate a plan instance.

With an external event, a new intention containing just the plan instance as a sin-
gleton sequence is created. With an internal event, the plan instance is pushed onto
the intention stack that generated that (subgoal) event. In addition, we specify that a
failed plan instance cannot be re-selected for an internal event. The auxiliary function
CreatePlanInstance takes a plan and a substitution, and creates a plan instance in its
initial state. If the event is external then it must be updated to include the id of the new
planinstance.

NewPlanInstance

�dMARSAgentState

events 6= hi
Let event == eventselect events �
Let applplans == genapplplans (genrelplans event planlibrary) beliefs �
Let selectedplan == planselect (domapplplans) �
Let appluni�er == applplans selectedplan �
Let instance == CreatePlanInstance selectedplan appluni�er �
event 2 ExternalEvent)
instance 62 (the event :failures) ^
intentions 0 = intentions [fhinstanceig ^
events 0 = (events �B feventg)[
f(events�event ;MakeEvent(event :trig ; finstance:idg;?;?))g ^

event 2 SubgoalEvent)
(Let trigint == (� i : intentions j (head i):id = (the event :id)) �

intentions 0 = intentions n ftrigintg [fhinstanceia trigintg)

5.4 Executing Intentions

The remainder of this section addresses the agent operation when the event buffer is
empty. We refer to this as theintention execution operation. The variables included in
the schema below enable the specification of intention execution to be written more
elegantly, but do not define the state, and are reset on every operation cycle. When the
event buffer becomes empty, all these variables are set to be undefined.

AgentIntExecutionOperationState

dMARSAgentState

selectedintention : optional [Intention]
executingplan : optional [PlanInstance]
executingbranch : optional [Branch]

The first step is to select an intention,selectedintention0, identify the executing
plan,executingplan 0, at the top of this intention stack such that the plan is active, and
select the branch of the plan to execute,executingbranch 0.

SelectIntention

�AgentIntExecutionOperationState

events = hi
the selectedintention 0 = intentionselect intentions

the executingplan 0 = head(the selectedintention 0)
(the executingplan 0):status = active

(the executingbranch 0) = selectbranch (the executingplan 0)

Before considering the different cases arising from the different types of selected
branch, we must introduce two schemas to specify a move to the next state if the branch

is successful, and to delete a branch if it fails. The auxiliary function,AchieveBranch,
takes a plan instance and moves it on to the next state determined by thebranch variable
of the executing plan.

BranchSucceed

�AgentIntExecutionOperationState

the executingplan 0 = AchieveBranch (the executingplan)

BranchFail

�AgentIntExecutionOperationState

(the executingplan 0):nextbranches =
(the executingplan):nextbranches n executingbranch

There are then four cases, depending on whether the branch is an external action, an
internal action, a query goal, or an achieve goal.

External Actions: If the branch is an external action, then it is executed immediately.
Its success or failure is modelled by the functionexecuteaction, which takes a plan
instance with a selected branch that is an external action, and returns the binding that
succeeded. If it is not in the domain, the function models the action failing.

executeaction : PlanInstance 7! Substitution

With a successful branch, the binding of the action iscomposed with the substitution
environment.

BranchExtActionSucceed

�AgentIntExecutionOperationState

the executingbranch 2 ranextaction
the executingplan 2 domexecuteaction

(the executingplan 0):env =
(the executingplan):env z executeaction (the executingplan)

The branch is then traversed to reach the next state, specified by theBranchSucceed

schema above. The operation of achieving an external action and so moving onto the
next state as defined by the tree is therefore defined as the composition of two operations
as follows.

BranchExtActionSuceed o

9 BranchSuceed

An unsuccessful branch fails and there is no state change.

BranchExtActionFail

�AgentIntExecutionOperationState

the executingbranch 2 ranextaction
the executingplan 62 (domexecuteaction)

After this occurs the branch must be removed.

BranchExtActionFail o
9 BranchFail

Internal Actions: If the branch is an internal action (denoted by the local variable
action), the database is modified according to that action. If this action results in a
change to the database, an event is added to the set of events.

performintaction : (PBelief) ! IntAction ! (PBelief)

8 b : Belief ; i : IntAction; bs : PBelief �
i = add b) performintaction bs i = bs [fbg ^
i = remove b) performintaction bs i = bs n fbg

BranchIntAction

�AgentIntExecutionOperationState

(the executingbranch) 2 (ranintaction)
Let action == (intaction�(the executingbranch)) �
beliefs 0 = performintaction beliefs action ^
action 2 (ranadd) ^ beliefs 0 6= beliefs)

events 0 = eventsa

hMakeEvent(addbelevent (add�action);?;?;?)i ^
action 2 (ranremove) ^ beliefs 0 6= beliefs)

events 0 = eventsa

hMakeEvent(rembelevent (remove�action);?;?;?)i

The auxiliary function,MakeEvent , in the schema above, simply constructs an
event from its constituent components. This operation is then composed with the oper-
ation,BranchSucceed , as before.

“Query” Goals: In the case of a query goal,qgoal , if the environment applied to the
goal can be unified with the set of beliefs, the most general unifiers are generated and
one is chosen (sub). This binding is composed with the substitution environment and
the next state is reached. Theuni�query relation holds between a goal and a set of
beliefs if the goal can be unified with the beliefs.

BranchQueryGoalSucc

�AgentIntExecutionOperationState

the executingbranch 2 ransubgoal
subgoal�(the executingbranch) 2 ranquery
Let qgoal == (subgoal�(the executingbranch));

env == (the executingplan):env �
9 s : Substitution � uni�query (s ; (ASGoal env qgoal ; beliefs)) ^
(Let sub == mguquery (ASGoal env qgoal ; beliefs) �
(the executingplan 0):env = env z sub)

Where no such unification is possible, the branch fails.

BranchQueryGoalFail

�AgentIntExecutionOperationState

the executingbranch 2 ransubgoal
subgoal�(the executingbranch) 2 ranquery
Let qgoal == (subgoal�(the executingbranch));

env == (the executingplan):env �
: (9 s : Substitution � uni�query (s ; (ASGoal env qgoal ; beliefs)))

“Achieve” Goals: Finally, with an achieve goal,achievegoal , that can be unified with
the beliefs, the rest of the executing plan is unified as in the previous case, and the
branch succeeds. If the goal cannot be unified, the goal achieve event is posted, the
executing plan is suspended by setting the status parameter, and the set of tried instances
becomes defined as the set containing the empty set. In addition, the identifier of the
new internal event is set to the current executing plan.

BranchAchieveGoal

�AgentIntExecutionOperationState

(the executingbranch) 2 ransubgoal
subgoal�(the executingbranch) 2 ranachieve
(the executingplan 0):status = suspended

Let achievegoal == subgoal�(the executingbranch);
env == (the executingplan):env �

events 0 = events a hMakeEvent ((goalevent achievegoal);
f(the executingplan):idg; fenvg; f?g)i

Once an achieve goal is posted, the execution cycle can restart, otherwise further
operations are performed as follows.

5.5 Achieving and Failing Plans

A successful branch leads to a new state that is either not an end state, in which case ex-
ecution of another branch ensues, or is an end state, in which case the plansucceeds. In

the latter possibility, the substitution environment,(the executingplan):env , is applied
to the success conditions,(the executingplan):origplan:succ, to give a sequence of
ground internal actions,groundsuccacts . Then, the database is updated by performing
these ground actions one at a time on the current set of beliefs to give the new set of
beliefs,beliefs 0. The auxiliary definitionfold is given in Appendix A.

AchievePlan

�AgentIntExecutionOperationState

the executingplan 2 SucceedInstance

Let succacts == (the executingplan):origplan:succ;
env == (the executingplan):env �

Let groundsuccacts == map (ASIntAction env) succacts �
beliefs 0 = fold performintaction beliefs groundsuccacts

Two further cases arise if a plan succeeds. If there are more plans in the intention, the
current substitution environment,(the executingplan):env , is updated to include the
appropriate bindings from both the achieved plan,executingplan, and the environment
of the next plan in the stack,secondplan:env . The successful plan instance is then
removed from the top of the selected intention so that the new executing plan, which is
re-activated, is the second in the original stack.TEVars , returns the set of variables of
a trigger event. Also the internal event which generated the completed plan is removed.

AchievePlanOnly

AchievePlan

#(the selectedintention) > 1
Let secondplan == (the selectedintention) 2 �
Let newenv ==
((TEVars (the executingplan):origplan:inv) C secondplan:env) z

((the executingplan):env � secondplan:env) �
the selectedintention 0 = tail (the selectedintention) ^
(the executingplan 0):env = newenv ^
(the executingplan 0):status = active

ranevents 0 = ranevents n f(� e : SubgoalEvent j e 2 ranevents ^
the e:id = (the executingplan):id)g

If there are no more plans, the intention has succeeded and can be removed as can
the external event which generated it.

AchievePlanAndIntention

AchievePlan

#(the selectedintention) = 1
intentions 0 = intentions n selectedintention
ranevents 0 = ranevents n f(� e : ExternalEvent j e 2 ranevents ^

the e:id = (the executingplan):id)g

Finally, if a branch fails but more branches remain, these may then be attempted.
If there are no further alternatives, however, the planfails. When this is the only plan
on the stack, the intention fails completely (which is not specified here), otherwise
the substitution environment is applied to the plan’s fail conditions,failacts , and the
ground fail internal actions,groundfailacts 0, are performed. Since it is not the only
plan on the stack, it must have been triggered by an existinggoal event in the event
queue,origevent , which is then found and updated to record the failed plan instance so
that it is not retried. The status of the second plan remains suspended.

FailPlan

�AgentIntExecutionOperationState

the executingplan 2 FailedInstance

Let origevent == (� e : Event j the e:id = (the executingplan):id);
env == (the executingplan):env �

Let failacts == (the executingplan):origplan:fail �
Let groundfailacts == map (ASIntAction env) failacts �
beliefs 0 = fold performintaction beliefs failacts ^
ranevents 0 = (ranevents n forigeventg) [

fMakeEvent(origevent :trig ; origevent :id ; origevent :env ;
(origevent :failures [fexecutingplang))g

the selectedintention 0 = tail(the selectedintention)

6 Concluding Remarks

The BDI model that underpins dMARS is similar to other computational models used
in agent programming environments. In particular, it is closely related to the Concurrent
METATEM programming language, as described in [10]. In Concurrent METATEM, an
agent is programmed by giving it anexecutable specification of its behaviour, where
such a specification is expressed as a set of temporal logic formulae of the formpast)
future. Execution of these rules proceeds by matching the past time antecedents of
temporal logic rules against future time consequents; any rules that fire then become
commitments, which the agent must subsequently attempt to satisfy. Perhaps the main
conceptual difference between Concurrent METATEM and the dMARS model is that
in dMARS, control structures are explicitly coded in plans; in Concurrent METATEM,
a run-time execution algorithm is responsible for determining control, in that it must
attempt to find an execution that simultaneously satisfies its commitments. In [10], the
relationship between Concurrent METATEM and dMARS is used to encode a dMARS-
like interpreter as a set of Concurrent METATEM rules. The same paper also provides
an encoding of an abstract BDI interpreter using theDESIRE system (essentially an
executable specification framework for knowledge-based systems).

In addition, a new abstract programming language [9] with a well-defined formal se-
mantics in terms of a transition system has been based on the BDI model. This language
uses features of both logic programming and imperative programming, and captures
some of the features of other BDI-based languages such as AGENT-0 and AgentS-
peak(L). The key distinction between this language and the operation of a dMARS

agent is that it contains no notion of events and, indeed, the authors suggest that events
are not necessary for agent languages that attempt to capture theintuitions of the BDI
model. However, in comprison with the dMARS formalisation contained in our paper,
which provides a strong, computational model of the operation of a dMARS agent (and
from which we claim systems can be implemented), it is not clear how such a strong
relation between the semantics and a possible implementation might be made in this
other work.

As the technology of intelligent agents matures further, we can expect to see a pro-
gression from the “scruffiness” of early investigative work to the “neatness” of rigour
and formality. In this paper, we have contributed to the growing body of “neat” intel-
ligent agent research, by presenting a complete formal specification of the best-known
and most important agent architecture developed to date.

The specification we have presented in this paper is significant for a number of rea-
sons. First, we need to understand clearly how an architecture works in order that we
can evaluate it against others. Implementations are too low-level to allow such evalu-
ations to take place. Formal specifications, using standard software engineering tools
like the widely used Z language, are an ideal medium through which to communicate
the operation of an architecture (e.g. [4]).

Second, there are understood methods for moving from an abstract specification in Z
to an implementation, through a systematic process of refinement and reification. Such
a process is not possible from a natural language description. Reimplementation and
evaluation of the PRS architecture in different languages and environments is therefore
a realistic possibility.

Finally, by understanding the model-theoretic foundations of PRS, (through rigor-
ously defining the data structures and operations on those structures that constitute the
architecture), we make it possible to develop a proof theory for the architecture. Such
a proof theory has been developed for the MYWORLD architecture [18], and also for
Rao’s AgentSpeak(L) [11], which is itself a restricted version of PRS. Once such an
axiomatisation is available, there will exist a straight line from the implementation of
PRS to its theory, making it possible to compare the actual behaviour of the archi-
tecture against the philosophical idealisations of it that have been developed by BDI
theorists [13]. In future work, we hope to investigate such axiomatisations.

Acknowledgements: Many thanks to Michael Georgeff and Anand Rao who provided
many illuminations and insights in discussions with the first author during development
of the specification contained in this paper. Thanks to the University of Westminster and
the Australian Artificial Intelligence Institute, for supporting and hosting the first author
during the development of this work. The specification contained in this document has
been checked for type correctness using the fuzz package [16]. Thanks also to Sorabain
de Lioncourt who identified an error in the original specification.

References

1. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical rea-
soning.Computational Intelligence, 4:349–355, 1988.

2. P. R. Cohen and H. J. Levesque. Intention is choice with commitment.Artificial Intelligence,
42:213–261, 1990.

3. M. d’Inverno and M. Luck. A formal specification of AgentSpeak(L).Journal of Logic and
Computation, Forthcoming.

4. M. d’Inverno, M. Priestley, and M. Luck. A formal framework for hypertext systems.IEE
Proceedings - Software Engineering Journal, 144(3):175–184, June, 1997.

5. E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’ revisited: on branching time
versus linear time temporal logic.Journal of the ACM, 33(1):151–178, 1986.

6. M. R. Genesereth and N. Nilsson.Logical Foundations of Artificial Intelligence. Morgan
Kaufmann Publishers: San Mateo, CA, 1987.

7. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. InProceedings of the
Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–682, Seattle, WA,
1987.

8. M. P. Georgeff and A. S. Rao. A profile of the Australian AI Institute.IEEE Expert,
11(6):89–92, December 1996.

9. K. Hindricks, F. de Boer, W. van der Hoek, and J. Meyer, J. Formal semantics for an abstract
agent programming language. In this volume.

10. M. Mulder, J. Treur, and M. Fisher. Agent modelling in concurrentMETATEM andDESIRE.
In this volume.

11. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. W. Perram, editors,Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents in a Multi-Agent World, (LNAI
Volume 1038), pages 42–55. Springer-Verlag: Heidelberg, Germany, 1996.

12. A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. InProceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), pages 312–319, San
Francisco, CA, June 1995.

13. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
R. Fikes and E. Sandewall, editors,Proceedings of Knowledge Representation and Reason-
ing (KR&R-91), pages 473–484. Morgan Kaufmann Publishers: San Mateo, CA, April 1991.

14. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors,Proceedings of Knowledge Representation and Reason-
ing (KR&R-92), pages 439–449, 1992.

15. A. S. Rao and M. P. Georgeff. Formal models and decision procedures for multi-agent sys-
tems. Technical Note 61, Australian AI Institute, Level 6, 171 La Trobe Street, Melbourne,
Australia, June 1995.

16. J. M. Spivey.The f UZZ Manual. Computing Science Consultancy, 2 Willow Close, Gars-
ington, Oxford OX9 9AN, UK, 2nd edition, 1992.

17. M. Spivey.The Z Notation (second edition). Prentice Hall International: Hemel Hempstead,
England, 1992.

18. M. Wooldridge. This is MYWORLD: The logic of an agent-oriented testbed for DAI. In
M. Wooldridge and N. R. Jennings, editors,Intelligent Agents: Theories, Architectures, and
Languages (LNAI Volume 890), pages 160–178. Springer-Verlag: Heidelberg, Germany, Jan-
uary 1995.

19. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.The Knowledge
Engineering Review, 10(2):115–152, 1995.

A Auxiliary Z Definitions

The function,fold , takes a function, an initial value and a sequence and applies each
element in the sequence to the initial value in turn. The function,map, takes another
function and applies it to every element in a list. Similarly,mapset , applies a function
to every element in a set.

[X ;Y]
fold : (X ! Y ! X) ! X ! (seqY) ! X

map : (X ! Y) ! (seqX) ! (seqY)
mapset : (X ! Y) ! (PX) ! (PY)

8 f : (X ! Y ! X); x : X ; y : Y ; ys : seqY �
fold f x hi = x ^

fold f x (hyia ys) = fold f (f x y) ys

8 f : X ! Y ; x : X ; xs : seqX �
map f hi = hi ^
map f hx i = hf x i ^

map f (xs a ys) = map f xs amap f ys

8 f : X ! Y ; xs : PX �
mapset f xs = fx : xs � f xg

It is useful to be able to assert that an element is optional. The following definitions
provide for a new type,optional [T], for any existing type,T , along with the predicates,
de�ned andunde�ned , which test whether an element ofoptional [T] is defined or not.
The function,the, extracts the element from a defined member ofoptional [T].

optional [X] == fxs : PX j # xs � 1g

[X]
de�ned ; unde�ned : P(optional [X])
the : optional [X] 7! X

8 xs : optional [X] � de�ned xs , # xs = 1 ^
unde�ned xs , # xs = 0

8 xs : optional [X] j de�ned xs �
the xs = (� x : X j x 2 xs)

B Binding

The standard definition of a substitution is a mapping from variables to terms such that
no variable contained in any of the terms is in the domain of the mapping [6]. This
is represented as a partial function between variables and terms since, in general, only
some variables will be mapped to a term.

Substitution ==
ff : Var 7! Term j (domf) \ (

S
(mapset termvars (ranf))) = ?g

The functionApplySubTerm applies either the identity mapping to a variable if the
variable is not in the domain of the substitution, or applies the substitution if it is in the
domain.

ASVar : Substitution ! Var ! Term

8 : Substitution; v : Var �
ASVar v = (fx : Var � (x ; var x)g �) v

We can then define what it means for a substitution to be applied to a term, internal
action, a situation formula, a plan, a goal, a belief formula and a trigger event, as given
by ASTerm, ASIntAction, ASSitForm, ASPlan, ASGoal , ASBeliefFormula and
ASTrigEvent , respectively.

Consider two substitutions� and� such that no variable bound in� appears any-
where in� . The composition of� with �, written � z �, is obtained by applying�
to the terms in� and combining these with the bindings from� . For example if� =
fx=A; y=B ; z=Cg and� = fu=A; v=F (x ; y ; z)g then, since none of the variables
bound in� (u; v) appear in� , it is meaningful to compose� with �. In this case
� z � = fu=A; v=F (A;B ;C); x=A; y=B ; z=Cg.

[X ;Y]
z : Substitution � Substitution ! Substitution

8 �; � : Substitution j
(dom�) \ ((dom�) [

S
(mapset termvars (ran�))) = ? �

� z � = (� [fx : Var ; t : Term j (x ; t) 2 � � (x ;ASTerm � t)g)

A substitution is aunifier for two expressions if the substitution, applied to both
of them, makes them equal. A substitution ismore general than another substitution
if there exists a third substitution which, when composed with the first, gives the sec-
ond. The most general unifier of two expressions is a substitution which unifies the
expressions such that there is no other unifier that is more general. Here we define the
signatures for the most general unifier of two trigger events, a goal with a set of beliefs,
and a trigger event with a goal.

mguevents : (TriggerEvent � TriggerEvent) 7! Substitution

mguquery : (Goal � PBelief) 7! Substitution

mgugoal : (TriggerEvent �Goal) 7! Substitution

