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1 Introduction

Within the ATAL community, the belief-desire-intention (BDI) model has come to be
possibly the best known and best studied model of practical reasoning agents. There are
several reasons for its success, but perhaps the most compelling are that the BDI model
combines a respectable philosophical model of human practical reasoning, (originally
developed by Michael Bratman [1]), a number of implementations (in the IRMA archi-
tecture [2] and the various PRS-like systems currently available [7]), several successful
applications (including the now-famous fault diagnosis system for the space shuttle, as
well as factory process control systems and business process management [8]), and fi-
nally, an elegant abstract logical semantics, which have been taken up and elaborated
upon widely within the agent research community [14, 16].

However, it could be argued that the BDI model is now becoming somewhat dated:
the principles of the architecture were established in the mid-1980s, and have remained
essentially unchanged since then. With the explosion of interest in intelligent agents
and multi-agent systems that has occurred since then, a great many other architec-
tures have been developed, which, it could be argued, address some issues that the
BDI model fundamentally fails to. Furthermore, the focus of agent research (and Al in
general) has shifted significantly since the BDI model was originally developed. New
advances in understanding (such as Russell and Subramanian’s model of “bounded-
optimal agents” [15]) have led to radical changes in how the agents community (and
more generally, the artificial intelligence community) views its enterprise.

The purpose of this panel is therefore to establish how the BDI model stands in re-
lation to other contemporary models of agency, and in particular where it can or should



go next.

2 Questionsfor the Panelists

The panelists (Georgeff, Pell, Pollack, and Tambe) were asked to respond to the follow-
ing questions:

1. BDI and other models of practical reasoning agents.
Several other models of practical reasoning agents have been successfully devel-
oped within the agent research and development community and Al in general.
Examples include (of course!) the Soar model of human cognition, and models in
which agents are viewed as utility-maximizers in the economic sense. The latter
model has been particularly successful in understanding multi-agent interactions.
So, how does BDI stand in relation to these alternate models? Can these models be
reconciled, and if so how?

2. Limitations of the BDI model.
One criticism of the BDI model has been that it is not well-suited to certain types
of behaviour. In particular, the basic BDI model appears to be inappropriate for
building systems that must learn and adapt their behaviour — and such systems are
becoming increasingly important. Moreover, the basic BDI model gives no archi-
tectural consideration to explicitly multi-agent aspects of behaviour. More recent
architectures, (such as InteRRaP [13] and TouringMachines [5]) do explicitly pro-
vide for such behaviours at the architectural level. So, is it necessary for an agent
model in general (and the BDI model in particular) to provide for such types of
behaviour (in particular, learning and social ability)? If so, how can the BDI model
be extended to incorporate them? What other types of behaviour are missing at an
architectural level from the BDI model?

3. Next steps.
What issues should feature at the top of the BDI research agenda? How can the
relationship between the theory and practice of the BDI model be better understood
and elaborated? Programming paradigms such as logic programming have well-
defined and well-understood computational models that underpin them (e.g., SLD
resolution); BDI currently does not. So what sort of computational model might
serve in this role? What are the key requirements to take the BDI model from the
research lab to the desktop of the mainstream software engineer?

3 Response by Geor geff

The point | wanted to make in this panel was that the notions of complexity and change
will have a major impact on the way we build computational systems, and that software
agents — in particular, BDI agents — provide the essential components necessary to
cope with the real world. We need to bring agents into mainstream computer science,
and the only way we can do that is to clearly show how certain agent architectures can
cope with problems that are intractable using conventional approaches.
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Fig. 1. Business Drivers

Most applications of computer systems are algorithmic, working with perfect infor-
mation. But in a highly competitive world, businesses need systems that are much more
complex than this — systems that are embedded in a changing world, with access to
only partial information, and where uncertainty prevails. Moreover, the frequency with
which the behaviour of these systems needs to be changed (as new information comes
to light, or new competitive pressures emerge), is increasing dramatically, requiring
computer architectures and languages that substantially reduce the complexity and time
for specification and modification. In terms of Figure 1, business needs are driving to
the top right hand corner, and it is my contention that only software agents can really
deliver solutions in that quadrant.

As we all know, but seem not to have fully understood (at least in the way physi-
cists have) the world is complex and dynamic, a place where chaos is the norm, not the
exception. We also know that computational systems have practical limitations, which
limit the information they can access and the computations they can perform. Conven-
tional software systems are designed for static worlds with perfect knowledge — we
are instead interested in environments that are dynamic and uncertain (or chaotic), and
where the computational system only has a local view of the world (i.e., has limited ac-
cess to information) and is resource bounded (i.e., has finite computational resources).
These constraints have certain fundamental implications for the design of the under-
lying computational architecture. In what follows, | will attempt to show that Beliefs,
Desires, and Intentions, and Plans are an essential part of the state of such systems.

Let us first consider so-called Beliefs. In Al terms, Beliefs represent knowledge of
the world. However, in computational terms, Beliefs are just some way of representing
the state of the world, be it as the value of a variable, a relational database, or symbolic
expressions in predicate calculus. Beliefs are essential because the world is dynamic
(past events need therefore to be remembered), and the system only has a local view of



the world (events outside its sphere of perception need to be remembered). Moreover,
as the system is resource bounded, it is desirable to cache important information rather
than recompute it from base perceptual data. As Beliefs represent (possibly) imperfect
information about the world, the underlying semantics of the Belief component should
conform to belief logics, even though the computational representation need not be
symbolic or logical at all.

Desires (or, more commonly though somewhat loosely, Goals) form another essen-
tial component of system state. Again, in computational terms, a Goal may simply be
the value of a variable, a record structure, or a symbolic expression in some logic. The
important point is that a Goal represents some desired end state. Conventional computer
software is "task oriented” rather than ”goal oriented”; that is, each task (or subroutine)
is executed without any memory of why it is being executed. This means that the sys-
tem cannot automatically recover from failures (unless this is explicitly coded by the
programmer) and cannot discover and make use of opportunities as they unexpectedly
present themselves.

For example, the reason we can recover from a missed train or unexpected flat tyre
is that we know where we are (through our Beliefs) and we remember to where we
want to get (through our Goals). The underlying semantics for Goals, irrespective of
how they are represented computationally, should reflect some logic of desire.

Now that we know the system state must include components for Beliefs and Goals,
is that enough? More specifically, if we have decided upon a course of action (let’s
call it a plan), and the world changes in some (perhaps small) way, what should we
do — carry on regardless, or replan? Interestingly, classical decision theory says we
should always replan, whereas conventional software, being task-oriented, carries on
regardless. Which is the right approach?

Figure 2 demonstrates the results of an experiment with a simulated robot trying to
move around a grid collecting points [11]. As the world (grid) is dynamic, the points
change value and come and go as the robot moves and plans — thus a plan is never
goad for long. The y axis of the graph shows robot efficiency in collecting points, the x
axis the speed of change (i.e., the rate at which the points in the grid are changing). The
“cautious” graph represents the case in which the system replans at every change (i.e.,
as prescribed by classical decision theory), and the “bold” graph in which the system
commits to its plans and only replans at “crucial” times. (The case of conventional
software, which commits to its plans forever, is not shown, but yields higher efficiency
than classical decision theory when the world changes slowly, but rapidly becomes
worse when the world changes quickly). In short, neither classical decision theory nor
conventional task-oriented approaches are appropriate — the system needs to commit
to the plans and subgoals it adopts but must also be capable of reconsidering these at
appropriate (crucial) moments. These committed plans or procedures are called, in the
Al literature, Intentions, and represent the third necessary component of system state.
Computationally, Intentions may simply be a set of executing threads in a process that
can be appropriately interrupted upon receiving feedback from the possibly changing
world.

Finally, for the same reasons the system needs to store its current Intentions (that
is, because it is resource bound), it should also cache generic, parameterized Plans for
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Fig. 2. Rational Commitment

use in future situations (rather than try to recreate every new plan from first principles).
These plans, semantically, can be viewed as a special kind of Belief, but because of their
computational importance, are sensibly separated out as another component of system
state.

In summary, the basic components of a system designed for a dynamic, uncertain
world should include some representation of Beliefs, Desires, Intentions and Plans, or
what has come to be called a BDI agent. | have said here nothing about the way in which
these components are controlled and managed, which is of course crucial to the way in
which BDI agents cope with uncertainty and change in a way that is not possible with
conventional systems. There is much in the literature about this, and many different and
interesting approaches.

Finally, because of the logical or physical distribution of information and process-
ing, it is important that agent systems be distributed, giving rise to so-called multi-agent
systems. Apart from the usual benefits provided by distributed systems, multi-agent sys-
tems also have the substantial benefit of containing the spread of uncertainty, with each



agent locally dealing with the problems created by an uncertain and changing world.

4 Response by Pollack

I want to begin by clarifying the distinction between three things:

— Models of practical reasoning that employ the folk-psychology concepts of belief,
desire, and intention, perhaps among others. Let’s call these Belief-Desire-Intention
(BDI) models.

— Particular BDI models that center on claims originally propounded by Bratman [1]
about the role of intentions in focusing practical reasoning. Specifically, Bratman
argued that rational agents will tend to focus their practical reasoning on the in-
tentions they have already adopted, and will tend to bypass full consideration of
options that conflict with those intentions. Let’s call this Bratman’s Claim, and let’s
call computational models that embody this claim IRMA models (for the “Intelli-
gent Resource-Bounded Machine Architecture” described in [2]).

— The Procedural Reasoning System (PRS) [7, 6], a programming environment for
developing complex applications that execute in dynamic environments and can
best be specified using BDI concepts.

One can reject Bratman’s Claim, but still subscribe to the view that BDI models
are useful; the converse, of course, is not true.! And while it is possible to build a PRS
application that respects Bratman’s Claim — indeed, as mentioned in the Introduction,
several successful applications have done just this — it is also possible to build PRS
applications that embody alternative BDI models. It is up to the designer of a PRS
application to specify how beliefs, desires, and intentions affect and are influenced by
the application’s reasoning processes; there is no requirement that these specifications
conform to Bratman’s Claim.

The questions set out in the Introduction might in principle be asked of each of the
three classes of entity under consideration: BDI models, IRMA models, or PRS-based
applications. However, | think it makes the most sense here to interpret them as being
addressed at IRMA models, in part because these are the most specific of the three
classes (it would be difficult to address all BDI models within a few pages), and in part
because IRMA models have received significant attention within the Al community,
both in their realization in several successful applications, and in a number of detailed
formal models.

Bratman’s Claim addresses at a particular, albeit central, question in practical rea-
soning: how can an agent avoid getting lost in the morass of options for action available
to it?? The formation of intentions and the commitments thereby entailed are seen as a

1 However, one could reject all BDI models, including IRMA ones, arguing that they have no
explanatory value. The debate over this question has raged in the philosophical literature; see,
e.g., Carrier and Machamer [3, Chap. 1-3].

2 Bratman actually came at things the other way round. He wondered why humans formed in-
tentions and plans, and concluded that doing so provides them with a way of focusing their
practical reasoning.



mechanism — possibly one amongst many — for constraining the set of options about
which an agent must reason. Practical reasoning tasks such as means-end reasoning
and the weighing of alternatives remain important for IRMA agents. But IRMA agents’
intentions help focus these reasoning tasks.

In response to the first question posed, then, it seems clear that both Soar and the
utility maximization models include important ideas that can potentially be integrated in
an IRMA agent. As just noted, IRMA agents still need to perform means-end reasoning
(in a focused way), and Soar, with its chunking strategies, can make the means-end
reasoning process more efficient. Again, IRMA agents still need to weigh alternatives
(in a focused way), and to do this they may use the techniques studied in the literature
on economic agents. It has been generally accepted for many years that agents cannot
possibly perform optimizations over the space of all possible courses of action [17].
Bratman’s Claim is aimed precisely at helping reduce that space to make the required
reasoning feasible.

The second question concerns the development of techniques to enable IRMA agents
to learn and to interact socially. Certainly, if Bratman’s Claim is a viable one, then it
must be possible to design IRMA agents who can learn and can interact with one an-
other. However, all that is required is that Bratman’s Claim be compatible with (some)
theories of learning and social interaction: Bratman’s Claim itself does not have to tell
us anything about these capabilities.® To date, | see no evidence that there is anything
in either Bratman’s Claim or its interpretation in IRMA models that would make an
IRMA agent inherently poorly suited to learning or social interaction.

The third question asks about an appropriate research agenda for those interested
in IRMA models. What seems most crucial to me is the development of computation-
ally sound accounts of the various practical reasoning tasks that must be performed by
IRMA agents. There has been a great deal of attention paid to questions of commitment
and intention revision, and this is not surprising, given that these questions are central
to Bratman’s Claim. But there are other reasoning tasks that all IRMA agents must
perform as well. For example, they must deliberate about alternatives that are either
compatible with their existing plans or have “triggered an override” [2]); recently, John
Horty and | have been developing mechanisms for weighing alternatives in the context
of existing plans [10]. Another example is hinted at in my earlier comments: all IRMA
agents need to be able to perform means-end reasoning. But unlike standard means-
end reasoning in Al (plan generation), an IRMA agent must do this reasoning taking
account its existing plans. Work on plan merging, notably that of Yang [18], may be rel-
evant here. One final example: IRMA agents must be capable of committing to partial
plans. If they were required always to form complete plans, they would over-commit,
and filter out too many subsequent options as incompatible. But this then entails that
IRMA agents must have a way of deciding when to add detail to their existing plans—
when to commit to particular expansions of their partial plans. To my knowledge, this
question has not been investigated yet.

In addressing questions like these, we need to focus, at least for now, on the de-
velopment of computationally sound mechanisms: algorithms and heuristics that we

3 However, it might contribute to them; see, e.g., Ephrati et al. [4] for some preliminary work on
using the intention-commitment strategy in multi-agent settings to increase cooperation.



can employ in building IRMA agents (perhaps using PRS!) Formal underpinnings can,
and if at all possible, should accompany these mechanisms, but unless they underpin
specific algorithms and heuristics they seem unlikely to have much impact.

5 Response by Tambe

I was invited on this panel as a representative of the Soar group with particular interests
in multi-agent systems. Thus, in this short response, | will mainly focus on the rela-
tionship between Soar and BDI models. For the sake of simplicity, one key assumption
in my response is considering PRS, dMARS, and IRMA to be the paradigmatic BDI
architectures. Of course, it also should be understood that despite my twelve years of
research using Soar, | alone cannot possibly capture all of the diverse set of views of
Soar researchers.

I will begin here by first pointing out the commonality in Soar and BDI models.
Indeed, the Soar model seems fully compatible with the BDI architectures mentioned
above. To see this, let us consider a very abstract definition of the Soar model. Soar is
based on operators, which are similar to reactive plans, and states (which include its
highest-level goals and beliefs about its environment). Operators are qualified by pre-
conditions which help select operators for execution based on an agent’s current state.
Selecting high-level operators for execution leads to subgoals and thus a hierarchical
expansion of operators ensues. Selected operators are reconsidered if their termination
conditions match the state. While this abstract description ignores significant aspects
of the Soar architecture, such as (i) its meta-level reasoning layer, and (ii) its highly
optimized rule-based implementation layer, it will sufficient for the sake of defining an
abstract mapping between BDI architectures and Soar as follows:

intentions are selected operators in Soar;

beliefsare included in the current state in Soar;

desires are goals (including those generated from subgoaled operators); and
commitment strategies are strategies for defining operator termination conditions.
For instance, operators may be terminated only if they are achieved, unachievable
or irrelevant.

rpwdhpE

Bratman’s insights about the use of commitments in plans are applicable in Soar as well.
For instance, in Soar, a selected operator (commitment) constrains the new operators
(options) that the agent is willing to consider. In particular, the operator constrains the
problem-space that is selected in its subgoal. This problem-space in turn constrains
the choice of new operators that are considered in the subgoal (unless a new situation
causes the higher-level operator itself to be reconsidered). Interestingly, such insights
have parallels in Soar. For instance, Newell has discussed at length the role of problem
spaces in Soar.

Both Soar and BDI architectures have by now been applied to several large-scale
applications. Thus, they share concerns of efficiency, real-time, and scalability to large-
scale applications. Interestingly, even the application domains have also overlapped.
For instance, PRS and dMARS have been applied in air-combat simulation, which is
also one of the large-scale applications for Soar.



Despite such commonality, there are some key differences in Soar and BDI models.
Interestingly, in these differences, the two models appear to complement each other’s
strengths. For instance, Soar research has typically appealed to cognitive psychology
and practical applications for rationalizing design decisions. In contrast, BDI archi-
tectures have appealed to logic and philosophy. Furthermore, Soar has often taken an
empirical approach to architecture design, where systems are first constructed and some
of the underlying principles are understood via such constructed systems. Thus, Soar
includes modules such as chunking, a form of explanation-based learning, and a truth
maintenance system for maintaining state consistency, which as yet appear to be ab-
sent from BDI systems. In contrast, the approach in BDI systems appears to be to first
clearly understand the logical or philosophical underpinnings and then build systems.

Based on the above discussion, it would appear that there is tremendous scope for
interaction in the Soar and BDI communities, with significant opportunities for cross-
fertilization of ideas. BDI theories could potentially inform and enrich the Soar model,
while BDI theorists and system builders may gain some new insights from Soar’s exper-
iments with chunking and truth maintenance systems. Yet, there is an unfortunate lack
of awareness exhibited in both communities about each others’ research. The danger
here is that both could end up reinventing each others’ work in different disguises.

In my own work, | have attempted to bridge this gap, roughly based on the mapping
defined above. For instance, Cohen and Levesque’s research on joint intentions [12],
and Grosz and Kraus’s work on SHAREDPLANS [9] has significantly influenced the
STEAM system for teamwork, which | have developed in Soar. However, this is just one
such attempt. This panel discussion was an excellent step to attempt to bridge this gap
in general.
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