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Abstract

The study of computational agents capable of rational behaviour has received a great
deal of attention in recent years. Theoretical formalizations of such agents and their
implementations have proceeded in parallel with little or no connection between them.
This paper explores a particular type of rational agent, a Belief-Desire-Intention (BDI)
agent. The primary aim of this paper is to integrate (a) the theoretical foundations of BDI
agents from both a quantitative decision-theoretic perspective and a symbolic reasoning
perspective; (b) the implementations of BDI agents from an ideal theoretical perspective
and a more practical perspective; and (c) the building of large-scale applications based
on BDI agents. In particular, an air-traffic management application will be described
from both a theoretical and an implementation perspective.



1 Introduction

The design of systems that are required to perform high-level management and control
tasks in complex dynamic environments is becoming of increasing commercial importance.
Such systems include the management and control of air traffic systems, telecommunications
networks, business processes, space vehicles, and medical services. Experience in applying
conventional software techniques to develop such systems has shown that they are very
difficult and very expensive to build, verify, and maintain. Agent-oriented systems, based on
a radically different view of computational entities, offer prospects for a qualitative change
in this position.

A number of different approaches have emerged as candidates for the study of agent-
oriented systems [Bratman et al., 1988; Doyle, 1992; Rao and Georgeff, 1991c; Rosenschein
and Kaelbling, 1986; Shoham, 1993]. One such architecture views the system as a ratio-
nal agent having certain mental attitudes of Belief, Desire and Intention (BDI), represent-
ing, respectively, the information, motivational, and deliberative states of the agent. These
mental attitudes determine the system’s behaviour and are critical for achieving adequate
or optimal performance when deliberation is subject to resource bounds [Bratman, 1987;
Kinny and Georgeff, 1991].

While much work has gone into the formalization [Cohen and Levesque, 1990; Jennings,
1992; Kinny et al., 1994; Rao and Georgeff, 1991c; Singh and Asher, 1990] and implemen-
tation [Burmeister and Sundermeyer, 1992; Georgeff and Lansky, 1986; Muller et al., 1994;
Shoham, 1993] of BDI agents, two main criticisms have been levelled against these endeav-
ours. First, the having of these three attitudes is attacked from both directions: classical
decision theorists and planning researchers question the necessity of having all three attitudes
and researchers from sociology and Distributed Artificial Intelligence question the adequacy
of these three alone. Second, the utility of studying multi-modal BDI logics which do not
have complete axiomatizations and are not efficiently computable is questioned by many
system builders as having little relevance in practice.

This paper addresses these two criticisms from the perspectives of the authors’ previous
work in BDI logics [Rao and Georgeff, 1991a; Rao and Georgeff, 1991c; Rao and Georgeff,
1993)], systems [Georgeff and Lansky, 1986], and real-world applications [Ingrand et al., 1992;
Rao et al., 1992]. We argue the necessity (though not the adequacy) of these three attitudes in
domains where real-time performance is required from both a quantitative decision-theoretic
perspective and a symbolic reasoning perspective. To address the second criticism, we show
how one can build practical systems by making certain simplifying assumptions and sacrific-
ing some of the expressive power of the theoretical framework. We first describe a practical
BDI interpreter and show how it relates to our theoretical framework. We then describe an
implemented agent-oriented air-traffic management system, called OASIS, currently being
tested at Sydney airport.

The primary purpose of this paper is to provide a unifying framework for a particular
type of agent, BDI agent, by bringing together various elements of our previous work in
theory, systems, and applications.

2 The System and its Environment

We first informally establish the necessity of beliefs, desires, and intentions for a system to
act appropriately in a class of application domains characterized by various practical limi-
tations and requirements. As typical of such a domain, consider the design of an air traffic
management system that is to be responsible for calculating the expected time of arrival



(ETA) for arriving aircraft, sequencing them according to certain optimality criteria, reas-
signing the E'TA for the aircraft according to the optimal sequence, issuing control directives
to the pilots to achieve the assigned ETAs, and monitoring conformance.

This and a wide class of other real-time application domains exhibit a number of impor-
tant characteristics:

1. At any instant of time, there are potentially many different ways in which the environ-
ment can evolve (formally, the environment is nondeterministic); e.g., the wind field
can change over time in unpredictable ways, as can other parameters such as operating
conditions, runway conditions, presence of other aircraft, and so on.

2. At any instant of time, there are potentially many different actions or procedures the
system can execute (formally, the system itself is nondeterministic); e.g., the system
can take a number of different actions, such as requesting an aircraft change speed,
stretch a flight path, shorten a flight path, hold, and so on.

3. At any instant of time, there are potentially many different objectives that the system
is asked to accomplish; e.g., the system can be asked to land aircraft QF001 at time
19:00, land QF003 at 19:01, and maximize runway throughput, not all of which may
be simultaneously achievable.

4. The actions or procedures that (best) achieve the various objectives are dependent on
the state of the environment (context) and are independent of the internal state of the
system; e.g., the actions by which the aircraft achieve their prescribed landing times
depend on wind field, operating conditions, other aircraft, and so on, but not on the
state of the computational system.

5. The environment can only be sensed locally (i.e., one sensing action is not sufficient for
fully determining the state of the entire environment); e.g., the system receives only
spot wind data from some aircraft at some times at some locations and thus cannot
determine in one sensing operation the current wind field.

6. The rate at which computations and actions can be carried out is within reasonable
bounds to the rate at which the environment evolves; e.g., changes in wind field,
operational conditions, runway conditions, presence of other aircraft, and so on, can
occur during the calculation of an efficient landing sequence and during the period that
the aircraft is flying to meet its assigned landing time.

One way of modelling the behaviour of such a system, given Characteristics (1) and (2),
is as a branching tree structure [Emerson, 1990], where each branch in the tree represents
an alternative execution path. Each node in the structure represents a certain state of the
world, and each transition a primitive action made by the system, a primitive event occurring
in the environment, or both.

If we differentiate the actions taken by the system and the events taking place in the
environment, the two different types of nondeterminism manifest themselves in two different
node types. We call these choice (decision) nodes and chance nodes, representing the options
available to the system itself and the uncertainty of the environment, respectively.

In this formal model, we can identify the objectives of the system with particular paths
through the tree structure, each labelled with the objective it realizes and, if necessary, the
benefit or payoff obtained by traversing this path.

As the system has to act, it needs to select appropriate actions or procedures to execute
from the various options available to it. The design of such a selection function should enable



the system to achieve effectively its primary objectives, given the computational resources
available to the system and the characteristics of the environment in which the system is
situated.

Under the above-mentioned domain characteristics, there are at least two types of input
data required by such a selection function. First, given Characteristic (4), it is essential that
the system have information on the state of the environment. But as this cannot necessarily
be determined in one sensing action (Characteristics 1 and 5), it is necessary that there
be some component of system state that represents this information and which is updated
appropriately after each sensing action. We call such a component the system’s beliefs. This
component may be implemented as a variable, a database, a set of logical expressions, or
some other data structure. Thus, beliefs can be viewed as the informative component of
system state.!

Second, it is necessary that the system also have information about the objectives to be
accomplished or, more generally, what priorities or payoffs are associated with the various
current objectives (Characteristics 3 and 4). It is possible to think of these objectives, or
their priorities, as being generated instantaneously or functionally, and thus not requiring any
state representation (unlike the system beliefs, which cannot be represented functionally).
We call this component the system’s desires, which can be thought of as representing the
motivational state of the system.?

Given this picture, the most developed approach relevant to the design of the selection
function is decision theory. However, the decision-theoretic approach does not take into
account Characteristic (6); namely, that the environment may change in possibly significant
and unanticipated ways either (1) during execution of the selection function itself or (2)
during the execution of the course of action determined by the selection function.

The possibility of the first situation arising can be reduced by using a faster (and thus
perhaps less optimal) selection function, as there is then less risk of a significant event
occurring during computation.

Interestingly, to the second possibility, classical decision theory and classical computer
science provide quite different answers: decision theory demands that one re-apply the se-
lection function in the changed environment; standard computer programs, once initiated,
expect to execute to completion without any reassessment of their utility.

Given Characteristic (6), neither approach is satisfactory. Re-application of the selec-
tion function increases substantially the risk that significant changes will occur during this
calculation and also consumes time that may be better spent in action towards achieving
the given objectives. On the other hand, execution of any course of action to completion
increases the risk that a significant change will occur during this execution, the system thus
failing to achieve the intended objective or realizing the expected utility.

We seem caught on the horns of a dilemma: reconsidering the choice of action at each
step is potentially too expensive and the chosen action possibly invalid, whereas uncondi-
tional commitment to the chosen course of action can result in the system failing to achieve
its objectives. However, assuming that potentially significant changes can be determined
instantaneously,® it is possible to limit the frequency of reconsideration and thus achieve an
appropriate balance between too much reconsideration and not enough [Kinny and Georgeff,

'We distinguish beliefs from the notion of knowledge, as defined for example in the literature on distributed
computing, as the system beliefs are only required to provide information on the likely state of the environ-
ment; e.g., certain assumptions may be implicit in the implementation but sometimes violated in practice,
such as assumptions about accuracy of sensors, or rate of change of certain environmental conditions.

2We distinguish desires from goals as they are defined, for example, in the Al literature in that they may
be many at any instant of time and may be mutually incompatible.

%That is, at the level of granularity defined by the primitive actions and events of the domain.



1991]. For this to work, it is necessary to include a component of system state to represent
the currently chosen course of action; that is, the output of the most recent call to the selec-
tion function. We call this additional state component the system’s intentions. In essence,
the intentions of the system capture the deliberative component of the system.

3 Decision Trees to Possible Worlds

While in the previous section we talked abstractly about the belief, desire, and intention
components of the system state, in this section we develop a theory for describing those
components in a propositional form. We begin with classical decision theory and show how
we can view such a theory within a framework that is closer to traditional epistemic models
of belief and agency. In later sections, we will show how this model can then be used to
specify and implement systems with the characteristics described above.

Informally, a decision tree consists of decision nodes, chance nodes, and terminal nodes,
and includes a probability function that maps chance nodes to real-valued probabilities
(including conditional probabilities) and a payoff function that maps terminal nodes to real
numbers. A deliberation function, such as mazimin or mazximizing expected utility is then
defined for choosing one or more best sequences of actions to perform at a given node.

We transform such a decision tree, and appropriate deliberation functions, to an equiv-
alent model that represents beliefs, desires, and intentions as separate accessibility relations
over sets of possible-worlds. This transformation provides an alternative basis for cases
in which we have insufficient information on probabilities and payoffs and, perhaps more
importantly, for handling the dynamic aspects of the problem domain.

We begin by considering a full decision tree, in which every possible path is represented
(including those with zero payoffs). Given such a decision tree, we start from the root node
and traverse each arc. For each unique state labeled on an arc emanating from a chance
node, we create a new decision tree that is identical to the original tree except that (a)
the chance node is removed and (b) the arc incident on the chance node is connected to
the successor of the chance node. This process is carried out recursively until there are no
chance nodes left. This yields a set of decision trees, each consisting of only decision nodes
and terminal nodes, and each corresponding to a different possible state of the environment.
That is, from a traditional possible-worlds perspective, each of these decision trees represents
a different possible world with different probability of occurrence. Finally, the payoff function
is assigned to paths in a straightforward way. The algorithm for this transformation can be
found elsewhere [Rao and Georgeff, 1991b].

The resulting possible-worlds model contains two types of information, represented by
the probabilities across worlds and the payoffs assigned to paths. We now split these out
into two accessibility relations, the probabilities being represented in the belief-accessibility
relation and the payoffs in the desire-accessibility relation. At this point in the story, the sets
of tree structures defined by these relations are identical, although without loss of generality
we could delete from the desire-accessible worlds all paths with zero payoffs.

Given a decision tree and the above transformation, an agent can now make use of
the chosen deliberation function to decide the best course(s) of action. We can formally
represent these selected path(s) in the decision tree using a third accessibility relation on
possible worlds, corresponding to the intentions of the agent. In essence, for each desire-
accessible world, there exists a corresponding intention-accessible world which contains only
the best course(s) of action as determined by the appropriate deliberation function.

Thus, our possible worlds model consists of a set of possible worlds where each possible
world is a tree structure. A particular index within a possible world is called a situation.



With each situation we associate a set of belief-accessible worlds, desire-accessible worlds, and
intention-accessible worlds; intuitively, those worlds that the agent believes to be possible,
desires to bring about; and intends to bring about, respectively.

4 BDI Logics

The above transformation provides the basis for developing a logical theory for deliberation
by agents that is compatible with quantitative decision theory in those cases where we have
good estimates for probabilities and payoffs. However, it does not address the case in which
we do not have such estimates, nor does it address the dynamic aspects of deliberation,
particularly those concerning commitment to previous decisions.

We begin by abstracting the model given above to reduce probabilities and payoffs to
dichotomous (0-1) values. That is, we consider propositions to be either believed or not be-
lieved, desired or not desired, and intended or not intended, rather than ascribing continuous
measures to them. Within such a framework, we first look at the static properties we would
want of BDI systems and next their dynamic properties.

The axiomatization for beliefs that we adopt is the standard weak-S5 (or KD45) modal
system[Hughes and Cresswell, 1984]. We adopt the D and K axioms for desires and intentions;
i.e., desires and intentions have to be closed under implication and have to be consistent. We
also have the inference rule of necessitation[Hughes and Cresswell, 1984] for beliefs, desires,
and intentions.

A number of researchers have proposed their preferred axiomatizations capturing the
relationships between beliefs, desires, and intentions. However, in other work [Rao and
Georgeff, 1991c] we depart from this approach and give a comprehensive family of BDI
logics similar in tradition to that of modal logic systems (i.e., KD45 system, S4 system,
etc.). The reason for this departure is that we do not believe that there need be a unique
and correct axiomatization that covers all interesting BDI agents—one may want to model
different types of agents for different purposes.

Static Constraints: The static relationships among the belief-, desire-, and intention-
accessible worlds can be examined along two different dimensions, one with respect to the sets
of possible worlds and the other with respect to the structure of the possible worlds. Given
two relations Ry and Rs, four possible relationships are possible between them: one being a
subset of the other and vice versa, and their intersections being null or non-null. Similarly,
as each possible world is a time tree, there are four possible structural relationships that can
hold between any pair of worlds: one could be a sub-world of the other or vice versa, or the
worlds could be identical or incomparable.

Now we can combine the set and structural relationships of the belief, desire, and intention
worlds to obtain twelve different BDI systems. Some of these relationships and axiomatiza-
tions can be derived from the others. Three of the above relationships and axiomatizations
have been considered before under the terms realism [Cohen and Levesque, 1990] (if an agent
believes a proposition, it will desire it), strong realism [Rao and Georgeff, 1991c] (if an agent
desires to achieve a proposition, it will believe the proposition to be an option) and weak
realism [Rao and Georgeff, 1991a] (if an agent desires to achieve a proposition, it will not
believe the negation of the proposition to be inevitable).

The choice of BDI system depends also on which other properties are desired of the
agent. For example, a number of researchers have proposed requirements concerning the
asymmetry between beliefs and other attitudes [Bratman, 1987; Rao and Georgeff, 1991a]
and consequential closure principles [Cohen and Levesque, 1990]. The first requires that
rational agents maintain consistency between their beliefs, desires, and intentions, but not



completeness. The second requires that the beliefs, desires, and intentions of an agent must
not be closed under the implications of the other attitudes. All the above properties are
satisfied by a BDI system in which the pair-wise intersections of the belief-, desire-, and
intention-accessible worlds is non-null. Other BDI systems in which intention-accessible
worlds are sub-worlds of desire-accessible worlds, which are sub-worlds of belief-accessible
worlds satisfies some, but not all of these properties.

Dynamic Constraints: As discussed earlier, an important aspect of a BDI architec-
ture is the notion of commitment to previous decisions. A commitment embodies the balance
between the reactivity and goal-directedness of an agent-oriented system. In a continuously
changing environment, commitment lends a certain sense of stability to the reasoning pro-
cess of an agent. This results in savings in computational effort and hence better overall
performance [Bratman, 1987; Kinny and Georgeff, 1991; Rao and Georgeff, 1991c].

A commitment usually has two parts to it: one is the condition that the agent is com-
mitted to maintain, called the commitment condition, and the second is the condition under
which the agent gives up the commitment, called the termination condition. As the agent
has no direct control over its beliefs and desires, there is no way that it can adopt or ef-
fectively realize a commitment strategy over these attitudes. However, an agent can choose
what to do with its intentions. Thus, we restrict the commitment condition to intentions.
An agent can commit to an intention based on the object of the intention being fulfilled in
one future path or all future paths leading to different commitment conditions and hence
different dynamic behaviours.

Different termination conditions result in further variations in behaviour[Rao and Georgeff,
1991c; Rao and Georgeff, 1993; Georgeff and Rao, August 1995]. For example, we can de-
fine a blindly-committed agent which denies any changes to its beliefs or desires that would
conflict with its commitments; a single-minded agent which entertains changes to beliefs and
will drop its commitments accordingly; and an open-minded agent which allows changes in
both its beliefs and desires that will force its commitments to be dropped.

The various forms of termination and commitment can be expressed as axioms of our
logic and semantic constraints can be placed on the dynamic evolution of the accessiblity
relations. As before, rather than claiming that one particular commitment strategy is the
right strategy, we allow the user to tailor them according to the application.

The purpose of the above formalization is to build formally verifiable and practical sys-
tems. If for a given application domain, we know how the environment changes and the
behaviours expected of the system, we can use such a formalization to specify, design, and
verify agents that, when placed in such an environment, will exhibit all and only the desired
behaviours. Elsewhere [Rao and Georgeff, 1993] we have described how to verify certain
behaviours of agents based on their static constraints and their commitment strategies using
a model-checking approach. In the next section, we turn to the task of building a practical
system based on the above theory.

5 Abstract Architecture

While it is not necessary that a system that is specified in terms of beliefs, desires and
intentions be designed with identifiable data structures corresponding to each of these com-
ponents, the architecture we propose below is based on such a correspondence. The rationale
for such a design is that the identification of beliefs, desires, and intentions is useful when
the system must communicate with humans or other software agents and can be expected
to simplify the building, maintenance, and verification of application systems.

On the other hand, the architecture cannot be simply based on a traditional theorem-



proving system, even if extended to handle the temporal, epistemic, and non-deterministic
elements of the logic described above. The reason for this is that the time taken to reason in
this way, and thus the time taken to act, is potentially unbounded, thereby destroying the
reactivity that is essential to an agent’s survival. Thus, although we could use a theorem
prover to reason “off-line” about the behaviour of an agent-based system, we cannot directly
use such a theorem prover to implement the system itself.

The abstract architecture we propose comprises three dynamic data structures represent-
ing the agent’s beliefs, desires, and intentions, together with an input queue of events. We
allow update and query operations on the three data structures. The update operations on
beliefs, desires, and intentions are subject to respective compatibility requirements. These
functions are critical in enforcing the formalized constraints upon the agent’s mental atti-
tudes as described before. The events the system can recognize include both external events
and internal events. We assume that the events are atomic and are recognized after they
have occurred. Similarly, the outputs of the agent—actions—are also assumed to be atomic.
The main interpreter loop is given below. We assume that the event queue, belief, desire,
and intention structures are global.

BDI-interpreter

initialize-state();

repeat
options := option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();
drop-successful-attitudes()
drop-impossible-attitudes(

end repeat

)

At the beginning of every cycle, the option generator reads the event queue and returns
a list of options. Next, the deliberator selects a subset of options to be adopted and adds
these to the intention structure. If there is an intention to perform an atomic action at this
point in time, the agent then executes it. Any external events that have occurred during
the interpreter cycle are then added to the event queue. Internal events are added as they
occur. Next, the agent modifies the intention and desire structures by dropping all successful
desires and satisfied intentions, as well as impossible desires and unrealisable intentions.

This abstract architecture is an idealization that faithfully captures the theory, including
the various components of practical reasoning [Bratman, 1987]; namely, option generation,
deliberation, execution, and intention handling. However, it is not a practical system for
rational reasoning. The architecture is based on a (logically) closed set of beliefs, desires,
and intentions and the provability procedures required are not computable. Moreover, we
have given no indication of how the option generator and deliberation procedures can be
made sufficiently fast to satisfy the real-time demands placed upon the system.

We therefore make a number of important choices of representation which, while con-
straining expressive power, provide a more practical system for rational reasoning. The sys-
tem presented is a simplified version of the Procedural Reasoning System (PRS) [Georgeff
and Lansky, 1986; Ingrand et al., 1992], one of the first implemented agent-oriented systems
based on the BDI architecture, and a successor system, dMARS (distributed MultiAgent
Reasoning System).



First, we explicitly represent only beliefs about the current state of the world and consider
only ground sets of literals with no disjunctions or implications. Intuitively, these represent
beliefs that are currently held, but which can be expected to change over time.

Second, we represent the information about the means of achieving certain future world
states and the options available to the agent as plans, which can be viewed as a special
form of beliefs [Rao and Georgeff, 1992]. Intuitively, plans are abstract specifications of
both the means for achieving certain desires and the options available to the agent. Each
plan has a body describing the primitive actions or subgoals that have to be achieved for plan
execution to be successful. The conditions under which a plan can be chosen as an option are
specified by an invocation condition and a precondition; the invocation condition specifies the
“triggering” event that is necessary for invocation of the plan, and the precondition specifies
the situation that must hold for the plan to be executable.

Third, each intention that the system forms by adopting certain plans of action is repre-
sented implicitly using a conventional run-time stack of hierarchically related plans (similar
to how a Prolog interpreter handle clauses).* Multiple intention stacks can coexist, either
running in parallel, suspended until some condition occurs, or ordered for execution in some
way.

The main interpreter loop for this system is identical to the one discussed previously.
However, as the system is embedded in a dynamic environment, the procedures appearing
in the interpreter must be fast enough to satisfy the real-time demands placed upon the
system. One way of tailoring and thus improving the process of option generation is to insert
an additional procedure, post-intention-status, at the end of the interpreter loop. The
purpose of this procedure is to delay posting events on the event queue regarding any changes
to the intention structure until the end of the interpreter loop. By posting appropriate events
to the event queue the procedure can determine, among other things, which changes to the
intention structure will be noticed by the option generator. In this way, one can model
various notions of commitment and results in different behaviors of the agent. Details of this
and other efficiency techniques are described elsewhere[Rao and Georgeff, 1992].

6 Applications

In this section, we consider an air-traffic management system, OASIS, and relate it to the
theoretical formalism and the abstract architecture of the previous sections. The system ar-
chitecture for OASIS is made up of one aircraft agent for each arriving aircraft and a num-
ber of global agents, including a sequencer, wind modeller, coordinator, and trajectory
checker. At any particular time, the system will comprise up to seventy or eighty agents
running concurrently, sequencing and giving control directives to flow controllers on a real-
time basis. The aircraft agents are responsible for flying the aircraft and the global agents
are responsible for the overall sequencing and coordination of the aircraft agents. A detailed
description of the system can be found elsewhere [Ljungberg and Lucas, 1992]. The system
is currently undergoing parallel evaluation trials at Sydney airport, receiving live data from
the radar.

Modelling: An aircraft agent is responsible for flying along a certain flight path given
by the coordinates of a sequence of waypoints. An example of the chance or uncertainty in
the domain is the wind field. If this were the only environmental variable, for each value of
the wind velocity at a particular waypoint we would have a corresponding belief-accessible
world. The choices available to an aircraft agent include flying along various trajectories

*This is an efficient way of capturing all the paths of intention-accessible worlds. In other words, the
interpreter does a lazy generation of all possible sequences of actions that it can intend from the plan library.



between its minimum speed and maximum speed and at an altitude between its minimum
and maximum altitude. This can be represented by multiple branches in each of the belief-
accessible worlds mentioned above. As the final waypoint is the destination airport, the
paths desired by the aircraft agent are those paths where the calculated ETA of the end
node is equal to the desired ETA. The desire-accessible worlds can be obtained from the
belief-accessible worlds by pruning those paths that do not satisfy the above condition. The
intention-accessible worlds can be obtained from the desire-accessible paths by retaining only
those that are the “best” with respect to fuel consumption, aircraft performance, and so on.

Decision Theory and Commitment: The primary objective of the sequencer agent
agent is to land all aircraft safely and in an optimal sequence. Given the performance
characteristics of aircraft, desired separation between aircraft, wind field, runway assignment,
and a cost function, the sequencing agent uses a number of different deliberation strategies to
compute the “best” arrival sequence for aircraft and their respective ETA’s. On determining
a particular schedule, the scheduling agent then single-mindedly commits to the intention;
in other words, the scheduling agent will stay committed until (a) it believes that all aircraft
have landed in the given sequence; or (b) it does not believe that there is a possibility that
the next aircraft will meet its assigned ETA. Note that this is not the classical decision-
theoretic viewpoint—any change in wind field, for example, should, in that view, cause a
recalculation of the entire sequence, even if all aircraft could still meet their assigned ETAs.

Abstract Interpreter: In the implemented version of OASIS, each agent in the system
deals only with current beliefs and desires and the options available to the agent to achieve
its desires are written as plans. For example, although there may be many different ways
of achieving the desired ETA (e.g., flying low at full speed), the plans of the aircraft agents
only include as options those trajectories that are maximally fuel efficient.

In addition to the above application, PRS and dMARS have been used in a number
of other large-scale applications, including a system for space shuttle diagnosis [Ingrand
et al., 1992], telecommunications network management [Ingrand et al., 1992], air-combat
modelling [Rao et al., 1992], and business process management. This experience leads us
to the firm conviction that the agent-oriented approach is particularly useful for building
complex distributed systems involving resource-bounded decision-making.

Essential Features: The essential characteristics which have contributed to the success
of our approach can be summarized as follows:

e The ability to construct plans that can react to specific situations, can be invoked based
on their purpose, and are sensitive to the context of their invocation facilitates modular
and incremental development. It allows users to concentrate on writing plans for a
subset of essential situations and construct plans for more specific situations as they
debug the system. As plans are invoked either in response to particular situations or
based on their purpose, the incremental addition of plans does not require modification
to other existing plans.

e The balance between reactive and goal-directed behaviour is achieved by committing to
plans and periodically reconsidering such committed plans. The management of such
real-time and concurrent activities is done by the system, while still giving the user
control in terms of specifying to the system how the balance is to be achieved. As a
result, end-users need not be involved in complex low-level programming (a difficult
and error-prone activity, even for systems programmers), leading to a reliable system.

e The high-level representational and programming language has meant that end-users
can encode their knowledge directly in terms of basic mental attitudes without needing
to master the programming constructs of a low-level language. This has led to greater



flexibility and shorter development cycles. For example, when FORTRAN rules that
modelled pilot reasoning were replaced with plans, the turn-around time for changes
to tactics in an air-combat simulation system [Rao et al., 1992] improved from two
months to less than a day.

7 Comparison and Conclusion

The BDI architecture draws its inspiration from the philosophical theories of Bratman [Brat-
man, 1987], who argues that intentions play a significant and distinct role in practical rea-
soning and cannot be reduced to beliefs and desires. Cohen and Levesque [Cohen and
Levesque, 1990] provided one of the first logical formalizations of intentions and the notion
of commitment. Later formalizations include the representationalist theory by Konolige and
Pollack [Konolige and Pollack, 1993] and the work by Singh [Singh and Asher, 1990].

While the earlier formalisms present a particular set of semantic constraints or axioms as
being the formalization of a BDI agent, we adopt the view that one should be able to choose
an appropriate BDI system for an application based on the rational behaviours required for
that application. As a result, following the modal logic tradition, we have discussed how one
can categorize different combinations of interactions between beliefs, desires, and intentions.

A number of agent-oriented systems have been built in the past few years [Burmeister and
Sundermeyer, 1992; Georgeff and Lansky, 1986; Muller et al., 1994; Shoham, 1993]. However,
while many of these appear interesting and have different strengths and weaknesses, none
have yet been applied to as wide a class of complex applications as the ones discussed in this
paper.

Currently, there is very little work on bridging the gap between theory, systems, and
applications. The work by Bratman et. al. [Bratman et al., 1988] describes the different
modules of a BDI architecture and discusses the philosophical foundations for each of these
modules. However, compared to our abstract interpreter, this model is at a higher level
of abstraction and is not useful as a practical system. More recent work by Fisher [Fisher,
1994] on Concurrent Metatem specifies agent behaviours as temporal logic specifications that
are directly executed by the system. However, for applications in which the environment
changes at rates comparable with the calculation cycle of the system, such theorem provers
are unsuited as system implementations.

The primary contribution of this paper is in integrating the various aspects of BDI agent
research—theoretical foundations from both a quantitative decision-theoretic perspective
and a symbolic rational agency perspective, system implementation from an ideal theoretical
persepective to a more practical perspective, and the applications that rely on the theoretical
foundations and are implemented using a practical BDI architecture.
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