
Auton Agent Multi-Agent Syst (2006) 13:391–428
DOI 10.1007/s10458-006-0009-8

Adaptive decision-making frameworks for dynamic
multi-agent organizational change

Cheryl Martin · K. Suzanne Barber

Published online: 9 June 2006
Springer Science+Business Media, LLC 2006

Abstract This article presents a capability called Adaptive Decision-Making Frame-
works (ADMF) and shows that it can result in significantly improved system perfor-
mance across run-time situation changes in a multi-agent system. Specifically, ADMF
can result in improved and more robust performance compared to the use of a single
static decision-making framework (DMF). The ADMF capability allows agents to
dynamically adapt the DMF in which they participate to fit their run-time situation as
it changes. A DMF identifies a set of agents and specifies the distribution of decision-
making control and the authority to assign subtasks among these agents as they deter-
mine how a goal or set of goals should be achieved. The ADMF capability is a form
of organizational adaptation and differs from previous approaches to organizational
adaptation and dynamic coordination in that it is the first to allow dynamic and explicit
manipulation of these DMF characteristics at run-time as variables controlling agent
behavior. The approach proposed for selecting DMFs at run-time parameterizes all
domain-specific knowledge as characteristics of the agents’ situation, so the approach
is application-independent. The presented evaluation empirically shows that, for at
least one multi-agent system, there is no one best DMF for multiple agents across
run-time situational changes. Next, it motivates the further exploration of ADMF by
showing that adapting DMFs to run-time variations in situation can result in improved
overall system performance compared to static or random DMFs.

Keywords Agent autonomy · Adjustable autonomy · Dynamic self-organization ·
Organizational adaptation · Multiagent systems

C. Martin (B)
Applied Research Laboratories,
The University of Texas at Austin,
Austin, TX 78713, USA
e-mail: cmartin@arlut.utexas.edu

K. S. Barber
Department of Electrical and Computer Engineering,
Laboratory for Intelligent Processes and Systems,
The University of Texas at Austin, Austin, TX 78713, USA
e-mail: barber@mail.utexas.edu

392 Auton Agent Multi-Agent Syst (2006) 13:391–428

1. Introduction

Many application domains for multi-agent systems are characterized by complex and
dynamic environments. In such domains, an agent’s situation, which is defined by char-
acteristics of its own state, its goal(s), and its environment (including other agents), can
change significantly and often as the system operates. This research focuses on giving
agents the capability to adapt to changing situations by changing the decision-making
frameworks (DMFs) in which they participate through a capability called Adaptive
Decision-Making Frameworks (ADMF).

The implementation and use of ADMF is motivated by experiments showing per-
formance improvements compared to the use of static or random DMFs in multi-agent
systems. A DMF identifies a set of agents and specifies the set of interactions exercised
by these agents as they determine how a goal or set of goals should be achieved. The
interactions specified by a DMF are (1) decision-making control relationships and
(2) authority-over relationships. A specification of decision-making control dictates
which agents make decisions about how to achieve a goal. Making decisions for a goal
refers to creating, selecting, and allocating sub-goals in order to achieve that goal.
A specification of authority-over dictates to which agents the decision-makers can
allocate subgoals (i.e. which agents the decision-makers have authority over). The
analytical representation for DMFs is given in Section 3.1.

Agents capable of ADMF have the ability to make run-time changes to the DMFs
in which they participate, and thus to change their individual decision-making inter-
action styles at run-time with respect to each goal they are considering. The ADMF
capability is analytically defined in Section 3.5. Agents that are not capable of ADMF
must use static DMFs throughout system operation. These static DMFs must be estab-
lished prior to system start-up and are often implicitly defined by the overall system’s
design. This article focuses on defining and motivating the ADMF capability for agents
operating in multi-agent systems. The experiments reported in Section 6 show that
implementing the ADMF capability in a multi-agent system can result in significantly
improved system performance across run-time situation changes. Specifically, ADMF
can support improved and more robust performance compared to the use of a single
static DMF.

1.1. Research motivation

As the demand for flexible, adaptive multi-agent behavior has increased, the chal-
lenges inherent in the design of multi-agent systems [10] have been amplified by the
attempt to automate the processes governing how agents should adapt. The payoff
for meeting these amplified challenges is the creation of more capable, more robust
multi-agent systems. Different types of run-time adaptation in multi-agent systems
have been identified by previous research, as described fully in Section 2. The research
presented in this article concerns adaptation at the organizational level in multi-agent
systems. In general, adapting the organization of a multi-agent system allows agents
to overcome problems or improve performance by changing the pattern of informa-
tion, control, and communication relationships among agents as well as the distri-
bution of tasks, resources, and capabilities. For example, using ADMF, agents may
be able to overcome agent failure (by restructuring collaborative decision-making to
exclude failed agents), communication failure (by allowing agents awaiting orders to

Auton Agent Multi-Agent Syst (2006) 13:391–428 393

eventually take initiative), and under-performance (by allowing agents to establish
new collaborations that may work better).

The idea that different organizations work better under different situations was first
formalized with respect to human organizations as the basis of contingency theory [32].
Contingency theory makes the following claims [47]: (1) there is no one best way to
organize, (2) all ways of organizing are not equally effective, and (3) the best way
to organize is contingent on environmental conditions. Although contingency theory
originally considered organizational design with respect to the organization’s envi-
ronment, the application of this concept has been extended to organizational change
with respect to task-environment characteristics [51]. That is, to remain effective over
changing situations, an organization may need to change as well.

1.2. Experimental hypotheses

The question addressed by this research asks, “Can agents using ADMF perform
significantly better than they could using static DMFs?” This question can be further
divided into two parts. First, can the DMFs used by agents in a multi-agent system
be represented and manipulated as a controlling variable for the performance of that
system? Second, if so, can this controlling variable be manipulated dynamically by
the agents in the system (themselves, using no external control) to improve the per-
formance of the system over time? The experimental hypotheses explored by this
research address these two questions explicitly, as follows:

Hypothesis 1: The global decision-making framework (glbDMF) under which agents
perform best differs as the situation that the agents encounter differs. Investigating this
hypothesis asks for verification of the foundational assumption that the DMF can be
a controlling variable in the performance of a multi-agent system in a given situation.

Hypothesis 2: Given that the glbDMF under which agents perform best differs as the sit-
uation that the agents encounter differs, agents operating under ADMF can perform sig-
nificantly better than agents operating under static decision-making frameworks, given
run-time situation changes. Experiments exploring this hypothesis address whether
the performance differences across DMFs in a given situation can be exploited to
improve run-time performance by allowing agents to dynamically modify DMFs as
situations change.

The remainder of this article first discusses related work to provide a context for
the implementation and evaluation of the ADMF capability. Sections 3 and 4 then
present, respectively, the analytical representations supporting ADMF and the over-
all characteristics required for implementing the ADMF capability in a multi-agent
system. Section 5 follows with a description of the setup used for experiments reported
in this article, and Section 6 provides the results from these experiments along with
interpretation of the results. Section 7 concludes the article with a summary of the
research.

2. Related work

The distribution of decision-making control in a multi-agent system is a character-
istic of that system’s organization. Therefore, ADMF can be classified as a type

394 Auton Agent Multi-Agent Syst (2006) 13:391–428

of organizational adaptation for multi-agent systems. Other forms of organizational
adaptation have been investigated by related work. The organization of a multi-
agent system is defined by an organizational structure plus the identity of the agents
who participate in that structure. An organizational structure defines the pattern of
information, control, and communication relationships among agents as well as the
distribution of tasks, resources, and capabilities [24, 51, 53]. Historically, the orga-
nization of multi-agent systems has been determined at design time by the system
designer. Research has turned to organizational adaptation to provide improved sys-
tem performance.

Organizational adaptation allows agents to change aspects of their organization at
run-time. In general, agents attempt to realize performance gains by adapting their
organization to their current situation. An agent’s situation is defined by the cur-
rent characteristics of its own state, its goals or tasks, and its environment (including
other agents). There are two primary classifications for organizational adaptation: (1)
organizational reconfiguration in which the structure of the organization remains the
same but the identity of the participants in this structure may vary over time and (2)
organizational restructuring in which the structure of the organization itself changes
over time. The following Sections, 2.1 and 2.2, discuss various implementations that
fall into each category. In addition to these types of organizational adaptation, the
implementation of “dynamic coordination” mechanisms is closely related to behavior
desired under ADMF. Section 2.3 explores dynamic coordination in detail.

2.1. Reconfiguration

Agent interaction within a problem-solving environment can be modeled as the fulfill-
ment of certain application-specific roles [24, 34, 50, 51]. A role specifies application-
specific tasks an agent takes on as well as other aspects of organizational structure (e.g.
communication and control relationships) associated with those tasks. Organizations
can be dynamically “reconfigured” by allowing agents to dynamically assume one or
more different pre-defined roles during system operation [51]. Under reconfiguration,
the organizational structure remains fixed [51], but the identity of agents participat-
ing in different pieces of that structure may vary as the system operates. Established
DMFs (often implicit) among agents playing specific organizational roles remain
static throughout system operation. Therefore, reconfiguration approaches differ from
ADMF, which allows DMFs to be redefined dynamically as the system operates.

One good example of a system implementing organizational reconfiguration comes
from research on flexible teamwork using the STEAM approach [55]. The teamwork
model in STEAM allows agents to monitor their progress toward achieving team-
oriented goals. Agents take on roles with associated application-specific responsibili-
ties (e.g. “scout” or “company commander” in a synthetic battlefield attack helicopter
domain). The STEAM model allows agents participating in a simulation to monitor
their teammates for the failure to perform tasks associated with their respective roles.
If a critical role failure is detected (e.g. the company’s scout helicopter crashes into a
hill before it can survey its assigned area [55]), the team can be reconfigured by substi-
tuting another agent into the failed role. The general teamwork model implemented
by STEAM additionally supports a rich set of dynamic coordination capabilities (see
Section 2.3).

Another example of organizational reconfiguration was employed by the RET-
SINA approach [18]. Under RETSINA, in information-agent applications, many

Auton Agent Multi-Agent Syst (2006) 13:391–428 395

different agent instances may fulfill the role of “information provider” for a given
problem. The RETSINA agent approach uses “middle agents” to help route informa-
tion requests to deal with the failure and recovery of agents or communication links.
If, for instance, an agent who was fulfilling a particular type of information provider
role fails, a middle agent facilitates the placement of another agent in this role. The
set of agents participating in a particular instance of problem solving may therefore
vary as the system operates. In this manner, a RETSINA agent organization was able
to adapt to unexpected events such as the appearance and disappearance of agents.

Although these reconfiguration approaches successfully address many problems
encountered by multi-agent systems, this approach is limited because it assumes that
the pre-defined organizational structure is appropriate and is only concerned with
maintaining it [51].

2.2. Restructuring

Beyond reconfiguration, organizational restructuring allows agents to actually change
their organization structure during system operation [51]. Recall that an organization’s
structure defines the pattern of information, control, and communication relationships
among agents as well as the distribution of tasks, resources, and capabilities.

Organizational restructuring can be implemented at a low level of abstraction by,
for example, combining and replicating agents in a network according to task load.
Ishida, Gasser, and Yokoo describe a system implementing organizational self-design
(OSD) based on strategic work-allocation and load-balancing [28]. The reorganiza-
tion primitives provided by OSD dynamically vary the system’s structure, while the
structure of agents themselves remains the same. The OSD uses two primitives to sup-
port organizational adaptation: decomposition and composition. As agents become
overloaded, they decompose themselves into two agents and share the work. If two
agents are idle too long, they compose themselves into one agent, which frees up both
computation and communication system resources. Restructuring of this sort affects
the system at a fundamental level, allowing it to function more efficiently overall.
Unfortunately, low-level reorganization primitives do not generalize well to other
applications. For example, composition and decomposition would not work well for
a team of agents designed to simulate a military attack team [55] or an American
football team [50].

In order to create reorganization primitives that generalize well, an explicit repre-
sentation of organizational knowledge should be employed. Agents must represent
and understand their social and organizational roles and structure as well as the
context in which these should be interpreted. Implementing organizational restruc-
turing at a high level of abstraction first requires developing high-level computa-
tional descriptions of the organizational structure. Once these descriptions have been
developed and incorporated into agent-based systems to guide agent behavior, the
descriptions can be manipulated dynamically to implement organizational restructur-
ing. Toward this objective, several researchers have taken steps to computationally
define components of organizational structure, including roles and high-level coor-
dination strategies [24, 51]. A formal representation of organizational knowledge
has not yet been standardized for agent-based systems. In contrast to using explicit
models of organizational structure, an agent’s behavior can be guided with respect to
its organizational context by incorporating organizational relationships and influence
into the agent’s model of motivation and utility evaluations [56].

396 Auton Agent Multi-Agent Syst (2006) 13:391–428

Another direction of multi-agent research focuses on modeling teamwork directly
[53, 54]. Teamwork models help agents monitor their collective performance in order
to initiate reorganization. However, these models do not directly address a system’s
organizational structure.

2.3. Dynamic coordination

Both organizational reconfiguration and organizational restructuring allow agents to
adapt their interactions to their current situation. Previous work on dynamic coordina-
tion also reflects the effort to adapt agent interactions to particular situations. Dynamic
coordination allows agents to dynamically change the way interleaving agent actions
are scheduled, change which agent is responsible for what goal, or change the mech-
anism through which agents achieve coordinated behavior (e.g., contract-net). The
effects of dynamic coordination can be very similar to the effects of organizational
adaptation, and these concepts are therefore difficult to distinguish from one another
based solely on observation of system behavior. In general, dynamic coordination
mechanisms allow interaction changes that are specific to the application or closely
linked to how a specific task will be accomplished. Conversely, reorganization mech-
anisms focus primarily on manipulation of application-independent concepts (e.g.
roles, connectivity, DMFs, etc.), which can, in turn, affect agent interaction and coor-
dination behavior. Reorganization mechanisms generally operate at a higher level of
abstraction than do dynamic coordination mechanisms.

Osawa presents an experiment showing that for at least one type of situational
change in the pursuit game that dynamic coordination can be beneficial. The coordi-
nation strategies considered by Osawa’s work are defined by previous experiments for
the predator-prey application [52] and dictate how predator agents work together to
capture the prey. These strategies include the specification of interactions and prob-
lem-solving algorithms specific to the pursuit problem. Osawa proposes a meta-level
coordination strategy that dictates for each predator agent which single pursuit coor-
dination strategy should be used for a given situation and point in the pursuit. This
meta-level coordination strategy is based on successive use of individual coordination
strategies in order of decreasing “freedom” for the agents. Freedom is defined as the
number of possible local plans for the agents. The meta-level coordination strategy
requires no communication overhead because all agents in the sample problem are
assumed to have commonly held knowledge and reasoning algorithms that guarantee
they will synchronously (in the same time step) choose the same coordination strat-
egy. This work provides evidence that multi-agent systems can realize performance
improvements by changing how they work together (coordination strategies) to adapt
to current situations.

Excelente-Toledo and Jennings present a dynamic coordination approach for a
grid world that goes beyond Osawa’s static specification of contingency coordination
mechanisms and allows agents to decide how they will coordinate at run-time, based
on the evaluation of a set of available coordination mechanisms (e.g. contract net)
[22]. Under this approach, when an agent discovers a goal that needs coordination
for achievement (in this case, more than one agent must reach a goal grid square),
it proposes the goal and possible coordination mechanisms to other agents. These
other agents bid on whether they are willing to coordinate on this new goal based
on a cost/benefit analysis taking into account the possible reward, the probability of
success, and the cost of participating in the suggested coordination mechanism(s). If

Auton Agent Multi-Agent Syst (2006) 13:391–428 397

an agent’s bid to coordinate on the new goal is accepted, the agent adopts the goal and
begins working within the proposed coordination mechanism. Using this approach,
agents agree on a coordination mechanism before adopting a goal that may require
coordination to achieve. If an agent does not believe that coordination is viable, it
may reject the goal. (This differs significantly from the ADMF approach where goal
adoption is assumed to be driven by factors that may be independent of selecting the
coordination mechanism eventually adopted to achieve the goal.)

Also within the category of dynamic coordination, the overall application-specific
role of an agent as well as its decision-making interactions with other agents may
remain constant, but some of its lower-level tasks or actions may change to fit the
situation. Representations such as production lattices [25] and partial global plans
[20, 21] support the implementation of dynamic coordination mechanisms. Another
example of dynamic coordination can be seen in the anti-air defense domain where
agents must coordinate to destroy incoming warheads [42]. Although the agents’ orga-
nizational structure is fixed, where each agent locally determines and implements its
own behavior, the coordination among the agents (i.e. which incoming warhead each
agent shoots down) is dynamic. Each agent uses payoff matrices to determine the
most useful action for it to take, given its model of the environment and other agents.
Overall, research using this example shows that allowing agents to determine their
own coordination behavior (including action and message selection) on-the-fly (rather
than relying on fixed protocols) performs well for dynamic, unpredictable domains
[41, 42]. In addition, Decker and Lesser have shown that dynamic coordination is
more effective than static coordination for distributed sensor networks [17]. Because
organizational adaptation affects coordination by changing agent interaction behav-
ior, it may hold similar promise for producing improved performance. However, for a
fully flexible system, both organizational adaptation and dynamic coordination may
prove useful. For example, both voting and negotiation can be selected as coordination
mechanisms given the same chosen distribution of decision-making control.

2.4. Adjustable autonomy

As the sophistication of agent-based systems has increased over the past decade,
the demand for agent-based systems capable of adjustable autonomy has increased
tremendously [5, 19, 40, 46]. Unfortunately, because no explicit definition of agent
autonomy has been agreed upon in the agent community, there is also little agreement
about what it means to adjust an agent’s autonomy. Therefore, various researchers
investigating adjustable autonomy are considering the issue from various different
viewpoints. Recently, several researchers investigating adjustable autonomy collabo-
rated to describe the various dimensions of adjustable autonomy being explored and
relate them to one another [7].

One realization of adjustable autonomy focuses on allowing a given agent to
dynamically change the high level goals pursued by some agent as well as the pri-
orities of these goals [43]. Other investigations of adjustable autonomy, including the
research reflected in this article, focus on adjusting an agent’s control in making deci-
sions (e.g. degree of decision-making control [3], level of supervision for decisions
made [40], or control over delegation and adoption of goals [23].

Under another common interpretation, the concept of adjustable autonomy focuses
on human-to-agent interaction in which a human can give an agent (or an agent can
assume) greater or fewer available options for carrying out a given goal. This view of

398 Auton Agent Multi-Agent Syst (2006) 13:391–428

adjustable autonomy for agent-based systems has arisen to support varying degrees
independence from human control for automated systems (e.g. robotic systems such
as a Mars rover [19], long-duration space-flight control systems for advanced life sup-
port [31], industrial control systems such as oil refinery monitoring and emergency
recovery [39], and intelligent personal assistants for activities such as scheduling meet-
ings [46]). For systems such as these, autonomous action on the part of software-based
systems is desirable under most circumstances, but system designers still want humans
to be able to intervene when necessary (e.g. for re-tasking, safety or preference over-
rides, and system repair or calibration). The motivation for adjustable autonomy in
these systems is clear: greater autonomy for agents frees humans from long-enduring,
tedious, dangerous, costly, or error-prone tasks, but human guidance or intervention
is still required under some circumstances to achieve desired results. In these systems,
capability differences between humans and software-agents as well as issues of safety
and trust motivate the implementation of adjustable autonomy.

This research reflected in this article defines agent autonomy with respect to
decision-making control [3], which can be relative to any other agent, including a
human. The distribution of decision-making control in the system dictates the level
of autonomy each agent possesses. An agent’s degree of autonomy, with respect
to some goal that it actively uses its capabilities to pursue, is the degree to which
the decision-making process used to determine how that goal should be pursued is
free from intervention by any other agent. For a complete argument supporting the
development of this definition of autonomy (see [4]). The ADMF supports adjust-
able autonomy under this definition by allowing agents to dynamically change their
current degree of decision-making control for a given goal. In the experimental sys-
tem considered by this article, all agents are capable of fully autonomous operation
(complete decision-making control) but may choose to give up some or all of their
decision-making control through ADMF in to achieve better performance in their
current situation.

2.5. Coalition formation

The research area of coalition formation in multi-agent systems considers the prob-
lem of which agents should work together [45, 49]. A “coalition” is defined by this
previous work as a group of agents working together [27], or more specifically, a
group of agents working together to either achieve a group task or allocate globally
assigned tasks to individual agents [12]. Coalition formation research has been very
active for e-commerce application domains (e.g. a group of buyers work together to
place a large order at a discount price). For coalition formation research, agents are
often self-interested and motivated to join a coalition to improve their local payoffs.
In general, agents have different capabilities, resources, or expertise that make form-
ing coalitions mutually beneficial. Much work has focused on searching for optimal
divisions of agents into coalitions such that the sum of the payoffs to all coalitions is
maximized [48]. Agents often negotiate to form coalition groups. Recent work has
addressed improving both the search for beneficial coalitions [12, 27] and the nego-
tiation process to form coalitions [33] with respect to scalability to large numbers of
agents (thousands).

In the future, coalition formation work can be leveraged to extend the ADMF
capability to better determine which agents should work together, in a decision-
making group, in addition to determining the best set of decision-making interaction

Auton Agent Multi-Agent Syst (2006) 13:391–428 399

constraints defining how those agents should work together. The ADMF research
presented in this article considers agents with homogeneous capabilities, resources,
and expertise. This allows the experiments to focus primarily on determining the deci-
sion-making interactions of a group of agents rather than determining which agents
should be in these groups. However, this second point will become increasingly impor-
tant for the future development of the ADMF capability.

2.6. ADMF in context

The ADMF can be classified as an implementation of organizational restructuring,
which is a type of organizational adaptation. Through ADMF, agents can model and
change the locus of decision-making control and authority to assign tasks within their
system at run-time. These changes are modifications to the organizational structure
of the agents’ system. ADMF does not model or attempt to change the complete
organizational structure of a multi-agent system. It does not define or modify the
distribution of information, tasks, resources, communication, or agent capabilities.
The ADMF focuses on modeling and adapting who is in control of making decisions
about how to achieve goals, how much control each decision-making agent has, and
to whom tasks can be readily allocated by the decision-making agents.

Which DMF is most appropriate for a given situation depends on how well the
agents perform in that situation under that DMF. Previous research has described
both advantages and disadvantages for statically defined centralized, distributed, and
local-control decision-making structures [9, 11, 15, 36, 38, 51]. Decentralized distri-
butions of decision-making control (exhibiting distributed or local control) tend to
result in faster problem solving if parallelism can be exploited and in decreased or
normalized communication because only high-level partial solutions are transmitted
to other agents, rather than raw data transmitted to a central site [38]. Decentralized
decision-making can be more responsive under uncertainty and changes in the exter-
nal environment, but centralized decision making tends to perform faster in some
situations due to the absence of the requirement to negotiate [36]. A decentralized
paradigm performs well when few resources are shared, but the centralized model
performs well when many resources are shared [9]. For simple tasks, centralized sys-
tems are faster and more accurate, but for complex tasks distributed systems are
faster and more accurate [15]. Related results in the field of distributed constraint
optimization have shown that the best choice between partial problem centralization
(OptAPO) and decentralization (Adopt) depends on communication latency [16].
ADMF attempts to leverage these well-known tradeoffs to improve performance
by dynamically changing distribution of decision-making control in a system as the
system characteristics change.

3. Analytical representations supporting ADMF

A computational representation is needed to realize the capability of ADMF. Such a
representation gives the agent something to set, a “knob to turn” so to speak, allow-
ing decision-making control to be assigned and adjusted. The concept of a DMF, and
therefore its computational representation, is founded on the following definition of
agent autonomy, developed in [4]:

400 Auton Agent Multi-Agent Syst (2006) 13:391–428

An agent’s degree of autonomy, with respect to some goal that it actively uses its
capabilities to pursue, is the degree to which the decision-making process, used
to determine how that goal should be pursued, is free from intervention by any
other agent.

The argument presented in [4] shows that the most appropriate type of intervention
to be considered is of the type goal/task determination. Of the other possible types
of intervention identified, environmental modification is shown to be non-autonomy
altering, and belief influence is shown to have an indirect affect on autonomy. Since
any given level of interface to an agent’s belief system still requires that agent to inter-
nally interpret and process belief-altering inputs, any given agent is already free, at
some basic (interpretive) level, from belief-influence intervention. On the other hand,
if an agent is able to accept new goals at run-time through a task assignment action,
then that agent is not free from interventions of the type goal/task determination.

3.1. DMF representation

The definition of agent autonomy given above ties autonomy to decision-making con-
trol and identifies the required elements of a DMF representation [4]. First, how,
and to what extent, other agents intervene must be modeled. The essential elements
describing this intervention include (1) which agents are in control of the decision-
making process for a particular goal and (2) how much control each of these agents
has within the process. However, representing implementation details of the deci-
sion-making process (e.g. a specific negotiation protocol) should be avoided because
the representation must generalize across decision-making algorithms (e.g. it should
allow voting as well as negotiation).

Second, the definition given above also indicates that an agent’s decision-making
control must be represented with respect to a goal, and that the agent must actively
use its capabilities to pursue this goal. Therefore, the DMF representation must iden-
tify the goal or set of goals to which the corresponding DMF applies (i.e. agents make
decisions about these goals within the DMF). Recall that making decisions for a goal
refers to creating, selecting, and allocating sub-goals in order to achieve that goal.
In addition, in order for an agent to actively use its capabilities to pursue a goal, it
must “intend” the goal [14] or in some way form a commitment to the goal [13, 30].
Therefore, each goal to which a DMF applies must be intended by some agent in the
system.

Third, any model related to decision-making control must also explicitly represent
a constraint that enforces the authority of the decision-making agents to assign subgo-
als required to carry out the intended goal. This task assignment is a form of “goal/task
determination” intervention. This authority-over constraint ensures that at least one
agent will commit to execute the decisions made by the decision-making agents.

The representation for DMFs developed in this research is referred to as the DMF
representation. It represents the entire framework in which each participating agent
exercises a specified degree of decision-making control over a specified set of goals.
The DMF representation consists of three components (D, G, C) identifying the set of
decision-makers (D), the set of goals to make decisions about (G), and the set of agents
who must carry out the decisions for a given DMF (C). Figure 1 provides a high-level
conceptual view of the relationships among the sets in the DMF representation.

Table 1 presents the specification for the DMF representation describing the
DMF’s decision-makers (D), goals in focus (G), and agents under the authority-over

Auton Agent Multi-Agent Syst (2006) 13:391–428 401

yielding subgoals
to be carried out by

makes decisions
to achieve

This set of agents
(D)

This set of agents
(C)

This set of goals
(G)

DMF structure

Agents in system Goals in system

Fig. 1 DMF structure and DMF representation variables

Table 1 Specification for
DMF representation

DMF representation (D, G, C)

D Decision-makers {a0[, a1, an−1]}, or {a1[, . . . , an−1]}
G Focus {ga0

i [, g
a1
j , . . . , g

an−1
k]} or {ga1

j [, . . . , g
an−1
k]}

C Authority-over {a0[, a1, . . . , an−1]} or {a1[, . . . , an−1]}
constraint

constraint (C). There are n agents in any given system. Agents must distinguish
between “self” and “others,” where “self” refers to the agent who is using the DMF
representation to determine how much decision-making control it should exert for
a given goal or to determine whether or not it is required to accept subgoal assign-
ments for a given goal. For the purposes of this discussion, the following variables are
defined:

Let a0 represent the self-agent, with the unique identifier 0,
let ai represent any other agent, with the identifier i �= 0, and
let ax and ay represent any agent, with the identifiers x and y.

In addition, let gax
i represent the ith goal intended by agent ax,.

The DMF representation is a tuple of three sets (D, G, C). The bracketed notation
in Table 1 indicates that the enclosed elements are optional for each instance. Two
versions of each specification are given, depending on whether the self-agent, a0, is
included in a given instance or not. Each set (D, G, C) in the DMF representation is
explained in detail in the following sections.

3.1.1. Decision-makers, D

The set D identifies which agents make decisions about how the goals specified by
G should be pursued. Making decisions for a goal refers to creating, selecting, and
allocating sub-goals in order to achieve that goal. For the purposes of the experiments
described in this paper, each agent in D plays an equal part in determining how to
pursue G (e.g., true consensus). The full representation, previously developed [2, 4],
supports varying strength among the decision makers to allow for supervisory and
supervised decision-making roles.

A DMF constrains, but does not completely specify, the coordination strategy used
for decision-making. This coordination strategy is selected after a DMF is established

402 Auton Agent Multi-Agent Syst (2006) 13:391–428

[1]. For example, a DMF instance that specifies three decision-makers with equal
decision-making power can be realized by a simple suggest-and-vote coordination
strategy or by a three-way negotiation coordination strategy. For a given multi-agent
system with given decision-making algorithms, a mapping must be drawn between
possible assignments to D and which of the available decision-making algorithms can
be used given the constraints specified by D [2]. Section 5.2 shows how this mapping
is constructed for experiments considered by this article, and there are no experi-
mental cases in which multiple coordination strategies are available given the DMF
selected. Combining the ADMF capability with dynamic selection of coordination
strategy (e.g., [22]) is an open area for future work. Future work may also explore
more expressive representations for DMFs including the ability to represent veto
power, information exchanging requirements among DMF members in the process
of decision-making, and specific supervision or check-off requirements.

3.1.2. Focus, G

The focus of a DMF, G, identifies the goal(s) about which agents are making deci-
sions. Any agent may make decisions for goals it intends to achieve as well as for goals
that other agents intend to achieve. Cohen and Levesque provide a formal model of
intention, specifying that once an agent chooses and commits to a goal, it intends that
goal and will attempt to achieve it [14]. Additionally, agents may combine their goals
in G for simultaneous solution. If the number of elements in G is greater than one
(|G| > 1), then the decisions made by the members of D must satisfy all goals in G
simultaneously.

The DMF representation imposes a constraint that no two agents may intend
the same instance of a goal, as shown by the following example. Agent_1 (a ro-
bot) and Agent_2 (with the ability to manipulate a maze) may both intend the
goal “Agent_1 travel through maze no 42.” Agent_1 may intend to achieve the goal
gAgent_1

1 = “Agent_1 travel through maze no 42,” and Agent_2 may intend to achieve

the goal gAgent_2
4 = “Agent_1 travel through maze no 42.” In this case, gAgent_1

1 is

equivalent to gAgent_2
4 , but gAgent_1

1 �= gAgent_2
4 . In other words, these intended goals

look the same but are not the same instance and can be maintained independently.
These two agents may or may not engage in collaborative decision-making. In fact,
Agent_1 may not even know about Agent_2 or its goal. If the two agents do engage in
collaborative decision-making to get the Agent_1 through the maze, they should both
represent a focus of the form G = {gAgent_1

1 , gAgent_2
4 }. If, for some reason, the two

agents become unable to work together (e.g. communication fails), their DMFs might
change, but their goals would remain unchanged. The intentions themselves remain
intact, and the two agents may each continue independently, in their own way, to try
to get Agent_1 through the maze.

This representational approach differs significantly from previous work on rep-
resenting joint intentions [14, 26] and joint commitments [13, 29], in which some
collective entity (e.g., a group of agents) jointly holds a distributed commitment to a
goal or set of goals. Under this previous work, an agreement to work together within
the collective is formed simultaneously with establishing the commitment to the joint
goal itself. An intention formed jointly using this previously developed representa-
tion cannot remain intact for independent pursuit once the agents become unable to
work together. Conversely, the representational approach presented by this research

Auton Agent Multi-Agent Syst (2006) 13:391–428 403

better supports the implementation of ADMF by clearly separating the represen-
tation of intention to achieve a goal from the representation of how that intention
may be “joint” and thus executed in some coordinated fashion within an established
organization, the latter of which is subject to change under ADMF.

3.1.3. Authority-over constraint, C

The set C simply lists the agents who are bound to carry out the decisions made by the
decision-makers identified in the set D. The decision-makers are said to have author-
ity over the agents in C because these agents in C have previously committed to the
DMF, thereby committing to accept task assignments from the decision-makers, which
are required to carry out the goal(s) identified by G. The authority-over constraint, C,
ensures that some agent(s) will carry out the decisions of the decision-making group.
If an agent listed in C fails to accept its required task assignment, it must pay a penalty
for breaking its commitment to the DMF (see Section 4.3).

3.1.4. Cardinality and conflicting DMFs

Figure 2 shows allowable cardinality relationships among variables within DMFs. For
any goal, only one DMF can be established at a given time. (Otherwise, one could not
determine how decisions should actually be made to pursue that goal). One estab-
lished DMF may apply to any number of goals (i ≥ 1). Any number of agents (k ≥ 1)
may participate in an established DMF. A given agent can participate in any number
of established DMFs (j ≥ 0) either as a member of D, a member of C, or a member
of both D and C for each of these DMFs. In general, an agent may participate in
multiple, simultaneous established DMFs up to and including one for every goal in
the system.

Because only one DMF can be established for a given goal at any given time, any
two DMFs are defined to conflict if they apply to the same goal, as shown in Fig. 3.
The DMFs that do not conflict may be established simultaneously. Only one of a set
of conflicting DMFs can be established at any given time. Further, no DMF in the set
of established DMFs should conflict with any other DMF in that set. Each individual
agent is responsible for making sure that it does not have more than one DMF active
for any given goal in its intentional model.

3.1.5. DMF terminology

A particular set of values applied to the (D, G, C) DMF representation is referred to
as an instance of a DMF instance. Each agent in either the set D or the set C for a given

Fig. 2 Cardinalities for
relationships of DMF concepts

Goal

Established
DMF

Participating
Agent

i ≥ 1

1 j ≥ 0

k ≥ 1

404 Auton Agent Multi-Agent Syst (2006) 13:391–428

Fig. 3 Depiction of concept of
conflicting DMFs

DMF1

GoalA

DMF2

applies toapplies to

conflicts with

DMF instance is said to participate in the associated DMF. A DMF is said to apply
to each of the goals specified by G for the associated DMF instance. A DMF that is
currently in effect in the multi-agent system is called an established DMF. Each agent
participating in an established DMF has a view of the DMF. That is, each participating
agent models the established DMF, using an independent DMF instance, as part of
its own internal belief set as pictured in Fig. 4. This figure shows that both Agent 1
and Agent 2 participate in a given DMF, and both of these agents represent this DMF
independently (shown in thought bubbles for each agent).

The representation leaves open the possibility that some participating agent may
have an incomplete model of a given established DMF (e.g., an agent in the set C may
not model other agents in the set C).

3.1.6. Decision-making styles

An agent’s individual decision-making interaction style describes how that agent par-
ticipates in a given DMF. Agents capable of adapting DMFs adopt a decision-making
interaction style for each goal they pursue according to the DMF applied to those
goals. Interpreting DMFs with respect to the decision-making interaction styles of
participating agents allows an agent to classify its decision-making interaction style
for a given DMF instance and match that prescribed style to the set of algorithms it
can use to act and interact within that framework.

Applying named labels to these decision-making styles allows agent designers to
discuss agent behavior within a DMF using qualitative labels, which are easier to dis-
cuss verbally and in text than are the associated assignments to DMF variables. Three

Fig. 4 Participating agents’
view of a given DMF

yielding subgoals
to be carried out by

makes decisions
to achieve

This set of agents
(D)

This set of agents
(C)

This set of goals
(G)

DD

GG

CC

DD

GG

CC

Agent 1

Agent 2

Agent 1’s model of DMF

Agent 2’s
model of
DMF

DMF

Auton Agent Multi-Agent Syst (2006) 13:391–428 405

discrete categories of decision-making interaction styles are classified and associated
with named labels for this purpose in this article:

• Command-driven—The agent does not make any decisions about how to pursue
its goal and must obey orders given by some other agent(s).

• True consensus—The agent shares decision-making control equally with all other
decision-making agents.

• Locally autonomous/master—The agent makes decisions alone and may or may
not give orders to other agents.

Table 2 provides the mapping from the DMF representation to these named labels.
An entire DMF can also be labeled informally according to the decision-mak-

ing interaction styles of participating agents (e.g. a “master/command-driven” DMF
would involve one agent with a “master” decision-making interaction style and at least
one agent with a “command-driven” decision-making style). These qualitative names
are used throughout the remainder of this article to convey these characteristics for
the corresponding DMF assignments.

3.2. Global DMFs

The DMF concept can be extended to define a glbDMF, as the set of all DMFs that
are established in a system at a given time. Figure 5 shows a pictorial example of a
glbDMF. A glbDMF must contain one or more DMFs that apply to each goal in the
system, and a glbDMF can contain no conflicting DMFs. If no DMF is established
for a given goal in the system at a given time, then the glbDMF corresponding to

Table 2 Classification of decision-making styles for qualitative names

An agent, a0, is considered DMF representation constraints

Locally autonomous if
(1) it is the only decision-making agent, (|D| = 1 and a0 ∈ D)
(2) the focus of its decision making is one of its

own intended goals, and
(|G| = 1 and ga0

i ∈ G)

(3) it is the only agent on the authority-over list (|C| = 1 and a0 ∈ C)

Master if
(1) it is the only decision-making agent and (|D| = 1 and a0 ∈ D)
(2) at least one other agent is on the authority-over

list
(∃ai : (ai ∈ C))

Command-driven if
(1) it is not making decisions and (a0 /∈ D)
(2) it is on the authority-over list (a0 ∈ C)

True consensus if
(1) it is making decisions along with at least one

other agent,
(|D| > 1 and a0 ∈ D)

(2) the decision-making power of each agent
making decisions is equal, and

(Always true for all members of D in the
default case where no representation of
variable decision-making power is
included in D)

(3) all agents who are making decisions (and only
these agents) are on the authority-over list.

(|D| = |C| and ∀ax: if ax ∈ D then ax ∈ C)

406 Auton Agent Multi-Agent Syst (2006) 13:391–428

all Goals in system

Global DMF (glbDMF)

D

C

G

DD

CC

GG
D

C

G

DD

CC

GG

Ø

Ø

G

ØØ

ØØ

GG

D

C

G

DD

CC

GG

Fig. 5 Example of global DMF (glbDMF)

that time must include a NULL DMF (no decision-makers (D), no authority-over
members (C)) for that goal (as shown in the lower-left corner of Fig. 5).

Let F represent the space of all possible glbDMFs in a system. f ∈ F is a glbDMF.
Let F̂(x) ⊆ F be the achievable glbDMFs in situation x. That is, F̂(x) is the subset
of all possible glbDMFs that can be established, if not already existing, in a given
situation x. For all glbDMFs considered in this article, F̂(x) depends only on variables
in x that relate to communication availability: all agents in D and C must be able
to communicate with one another in order to establish the DMF if it is not already
established.

Three types of glbDMFs can be named and labeled using the labels defined in the
previous section for any system containing n ≥ 2 agents with one goal each. These
frameworks correspond to maximum participation by all system agents in one of the
three salient decision-making interaction styles identified above in Section 3.1.6.

(1) All LA glbDMF: Each agent in the system is locally autonomous for its own
goal.

(2) All CN glbDMF: Every agent in the system participates in one consensus deci-
sion-making framework in which every agents’ goal is considered concurrently.

(3) All M/CD glbDMF: One agent in the system acts as a master and makes deci-
sions about its own goal as well as the goals of every other agent in the system.
All other agents in the system are command-driven to that master.

Additional glbDMFs can be defined for any number (n > 2) of system agents. An
agent designer may identify a subset of all valid glbDMFs as relevant for a given system
or set of goals. This subset composes the set of all possible glbDMFs for that system.

Table 3 specifies the details of each glbDMF in considered as the available set for
the purposes of experiments in this article. The formal specification for each agent’s
subjective view of the glbDMF is provided along with a simple icon summarizing
the relationships among the agents. The possible global decision-making frameworks
considered for the experimental three-agent system include (1) “All LA,” all the

Auton Agent Multi-Agent Syst (2006) 13:391–428 407

Table 3 Global DMFs for a 3-agent system with icons

agents act in a locally autonomous manner, (2) “All M/CD,” one master controls two
command-driven agents, (3) “All CN,” all the agents collaborate in true consensus,
(4) “2M/CD-1LA,” two agents are in a master/command-driven relationship, and one
agent acts in a locally autonomous manner, and (5) “2CN-1LA,” two agents are in
consensus and one agent acts in a locally autonomous manner.

These global frameworks are a subset of all valid glbDMFs for this system and are
chosen to provide coverage of “interesting” cases (i.e. maximum participation in each

408 Auton Agent Multi-Agent Syst (2006) 13:391–428

of LA, M/CD, and CN DMFs, respectively, as well as combinations of collaborative
and locally autonomous frameworks).

3.3. Situation definition and notation

As situations change, agents operating under ADMF attempt to change their DMFs
(resulting in a new glbDMF) to best fit the new situation. An agent designer may
identify a subset of all possible situation characteristics as relevant for a given system
or agent. The set of all possible values for all these relevant characteristics for every
agent in a system composes the set of possible system states for that system.

Let X define the state space for all possible system states. Section 5.3 gives a con-
crete example in terms of the situations explored by experiments for this article. A
state in this space, x ∈ X, is called a “situation.” The space X has m dimensions, where
each dimension is defined by a discrete set of possible values for a given state variable,
yielding X = {Xi}m

i=1, where each Xi is a discrete set.

3.4. System performance

Let p define a function that maps the spaces of Xand F to a positive real number, given
some set of initial conditions for the agents in the situation (indexed by i). The function
p(x, f , i) is a measure of the performance per unit time of all agents in achieving their
goal in situation x under glbDMF f given initial conditions indexed by i.

The function, p(x, f , i), is defined based on application domain characteristics and
can be determined empirically. Section 5.5 below, describes how p(x, f , i) is deter-
mined for the experimental problem domain considered by this article. The expected
performance p(x, f) for a given glbDMF f in a given situation x, can be estimated by
taking an average over several observations.

3.5. Changes over time as system operates

Systems capable of ADMF are concerned with changes in both situations and DMFs
at run time. This section presents the analytical model for these changes in the exper-
imental system. Let a scenario, S, be a sequence of consecutive situations, x, of the
form S = (x1, x2, x3, . . .). xk ∈ X is the situation that exists in a given scenario during
the kth time interval in that scenario.

For 1 ≤ k ≤ K, let τN
k represent the kth time interval, of fixed length N time units,

in a given scenario, where K is the total number of time intervals in that scenario. τN
k

is defined by the time interval τN
k = [

tN · (k−1), t(N · k)−1
]
. N is constrained for a given

system such that N ≥ N0, which is the minimum number of time units agents need
to perform interaction in τN

k . Let a scenario of length K, SK, be defined as a scenario
consisting of K time intervals,τN

k , where the value of N is given separately by the
context in which a particular SK is presented.

During any scenario, agents must use some glbDMF to make decisions about how
to achieve their goals in each situation they encounter. Let fk ∈ F be the glbDMF that
agents are using to determine decision-making interactions during time interval τN

k .
Let AK be a sequence, of length K, of these glbDMFs.

Changes in AK from fk to fk+1 are controlled by the DMF policy the agents are
using. Several types of DMF policies are compared for these experiments:

Auton Agent Multi-Agent Syst (2006) 13:391–428 409

• Static decision-making frameworks—the agents do not change their decision-
making frameworks during system operation. A “Static f ” policy is denoted by
ASTATIC f such that fk+1 = fk = f . For example, a “Static All LA” policy is denoted
by ASTATIC AllLA such that fk+1 = fk = AllLA.

• Adaptive decision-making frameworks—the agents use the ADMF capability to
modify their decision-making frameworks during system operation. The “ADMF”
policy is denoted by AADMF such that

fk+1 = f : best
f∈

{
F̂(xk+1)∪ fk

}
(
p(xk+1, fk+1)

)
.

This equation indicates that the achievable glbDMF that gives the best expected
performance, for the time interval when xk+1 exists, is chosen as fk+1.

• Random decision-making frameworks—the agents choose and implement DMFs
randomly during system operation. The “Random” policy is denoted by ARANDOM
such that fk+1 ∈ F, given random selection with uniform distribution in F. For
ARANDOM, each agent must choose and implement the same glbDMF at the same
time, without depending on communication. Note that the ARANDOM policy is
used strictly for experimental comparison. Random implementation of DMFs
could not occur in practice because agents could never agree to establish a ran-
domly selected DMF without experimental control. ARANDOM requires agents to
be seeded with the same initial random seed and use the same random number
generation algorithm to select glbDMFs. If each agent were allowed to choose
a glbDMF independently at random, a single, valid glbDMF could not be estab-
lished. Although the implementation of ARANDOM could not be used in practice,
exploring this policy provides evidence of whether it is simply changing glbDMFs
or changing glbDMFs in a reasoned manner under ADMF that can improve agent
performance.

Let P define a function that maps the spaces of SK and AK to a positive real number,
given the sequence of initial conditions IK. The function, P

(
SK, AK, IK

)
, is the penalty

per unit time that agents incur while operating across an entire scenario, SK, given
AK and IK. P

(
SK, AK, IK

)
can be formulated in terms of p(x, f , i), such that

P
(

SK, AK, IK
)

=
∑K

k=1 p(xk, fk, ik)

K
.

The expected performance of a given ADMF policy P
(
SK, AK

name
)

can be estimated
by applying the ADMF policy over several scenarios, SK, observing P

(
SK, AK

name, IK
)
,

and averaging the resulting performance observations.

3.6. Analytical representation of experimental hypotheses

Given the analytical definitions of the concepts presented in this section, we can now
more formally describe our hypotheses. For hypothesis 1, the experiments explore
whether the glbDMF (f ∈ F) under which agents perform best (determined by empiri-
cally estimating p(x, f)) differs as the situation (x) that the agents encounter differs. An
empirical estimate of p(x, f) is made for all combinations of f ∈ F and x ∈ X. Then,
for each x ∈ X, it is determined for which f ∈ F the performance measure p(x, f)
is best (maximum or minimum, depending on whether the performance measure is
a positive measure or a penalty measure). Let the function bestDMF(x) map x ∈ X

410 Auton Agent Multi-Agent Syst (2006) 13:391–428

to f ∈ F such that the performance measure p(x, f) is best. The hypothesis indicates
that bestDMF(x1) should not equal bestDMF(x2) for all x. Further, the performance
difference should be significant between p(x, bestDMF(x)) and p(x, f), where f �=
bestDMF(x).

For hypothesis 2, the experiments explore whether agents operating under ADMF
(AADMF) can perform significantly better (based on P

(
SK, AK

name
)
) than agents oper-

ating under static (ASTATIC f) or random (ARANDOM) DMFs given run-time situation
changes (SK). A set of multi-agent simulations compares the performance of agents
operating under ADMF in various scenarios to the performance of agents operating
under static and random DMFs for the same scenarios.

4. ADMF implementation

The capability of ADMF developed by this research allows agents to dynamically
change the way they participate in DMFs to best fit their current situation. The imple-
mentation of ADMF requires a computational representation of DMFs, a reasoning
process to select desirable DMFs during system operation, and a mechanism for
changing DMFs while the system is running. Section 3 has provided the required
computational representation. This section presents the desired characteristics of a
system meeting the remaining requirements and describes how these characteristics
are realized in the experimental system.

4.1. Selecting desirable DMFs

The ADMF requires agents to be able to determine, with reasonable success, what
DMF should be preferred in their current situation to achieve the best possible perfor-
mance. Agents could use various reasoning techniques to perform this determination,
ranging from simple rule-based selection to case-based reasoning to selection based
on a reinforcement-learning paradigm. In general, the agents should select the DMF
that provides the most improvement in expected performance over the DMF that
is already in place. However, a tradeoff usually exists between (1) the performance
improvement expected under a different DMF and (2) the costs associated with
abandoning the current DMF and establishing a new DMF. These costs may include
communication costs as well as any penalties associated with dissolving a current DMF
(see discussion of DMF commitments below in Section 4.3). Therefore, once a new
potential DMF for a particular situation is identified, agents should use some form
of cost-benefit analysis to determine whether a change should be made. Beyond this
cost-benefit reasoning, the agent must consider the feasibility of the potential DMF,
that is, whether the DMF can even be established in the current situation. Factors to
consider in this evaluation may include (1) whether communication is available with
any other agents involved in the potential DMF (so they can agree to participate)
and (2) an estimate of whether or not the other agents involved in the potential DMF
would be likely to agree to participate in that DMF. Even when the benefits of a DMF
change outweigh the costs, an agent may decide not to pursue the change if it is not
feasible.

For the experiments presented in this article, agents have access to a case-base of
previously recorded performance measurements corresponding to each possible situa-
tion encountered and each possible DMF they can establish. This exhaustive case-base

Auton Agent Multi-Agent Syst (2006) 13:391–428 411

identifies the DMF with the optimal performance in each situation. From this previ-
ously recorded data, agents can determine the expected value of system performance
in their current situation for each possible DMF. The benefit of a potential DMF
is calculated as the difference in expected performance between the potential and
currently established DMFs. Benefit is normalized by the maximum absolute value
of expected performance. The cost of changing to a new potential DMF is calculated
as the normalized weighted sum of DMF commitment penalties (see Section 4.3) as
well as the cost of resources (e.g. communication bandwidth for message passing)
used to make the transition. The weights in this sum can be used to adjust the relative
importance of one cost component over the others and to adjust the relative impor-
tance of the cost components versus the normalized benefit measure. The net benefit
is calculated by subtracting cost from benefit. For these experiments, the estimated
feasibility of establishing and potential DMF is 1 if communication with all involved
agents is available and 0 otherwise. The feasibility measure acts as a gating function
on the desirability of the potential DMF, where

desirability = feasibility(benefit − cost).

Using the mechanism for DMF change presented in the upcoming section, an agent
will attempt to make a change to the potential DMF with the greatest desirability
rating greater than 0. If no change to a potential DMF has a desirability rating greater
than 0, the agent will remain in the currently established DMF for that goal.

This method of estimating expected benefit, using such a large set of previously
recorded performance measurements, should be interpreted as part of the experimen-
tal design for exploring the motivation for ADMF as described in Section 6.2 rather
than as a suggested selection mechanism for use in deployed systems. Additional
experiments reported in [35] show that using a simple rule base to estimate benefit
can produce results similar to those reported here. Therefore, a large amount of prior
knowledge is not a requirement for the implementation of ADMF.

4.2. Mechanism for DMF change

The ADMF requires that agents be able to change the DMFs in which they par-
ticipate as the system operates. The defined mechanism to meet this requirement is
straightforward and uses the DMF representation defined in Section 3.1. Each agent
maintains an intentional model that describes its own intended goals as well as its
beliefs about the intended goals held by other agents. DMF instances can be applied
to the goals in this model. This process is called making a DMF assignment. Once
a DMF has been assigned to a given goal or set of goals in the agent’s intentional
model, the agent is then constrained to make decisions, with respect to that goal or
set of goals, using the now-established DMF. By making different DMF assignments
to goals as the system operates, agents can dynamically change the DMFs in which
they participate.

Because DMFs may involve more than one agent, steps must be taken to ensure
that multiple agents can model any and all DMF changes coherently. In order for
productive decision-making interaction to occur, each agent participating in a given
DMF must have a view of the DMF that is consistent with the views of all other partic-
ipating agents. By using DMF agreements agents can come to a mutual understanding
about collaborative DMFs. The DMF agreement process developed by this research

412 Auton Agent Multi-Agent Syst (2006) 13:391–428

allows agents to form a mutual understanding that a particular DMF instance has been
established. A brief description of the communication protocol is provided here:

Agents use instances of the DMF representation developed in Section 3.1 to com-
municate to other agents which DMF they desire to establish at any given time. If
more than one agent participates in a potential DMF, a complete specification of this
DMF is communicated to these agents using the DMF representation. A three-phase
protocol is used in which the first step involves proposing and counter-proposing
desired DMFs, the second step involves accepting or rejecting these proposals based
on desirability ratings, and the final step involves a confirmation of success or failure
to establish a DMF. A single agent is identified as the conversation manager, and this
agent handles the coordination among multiple agents for a given negotiation. Once a
particular DMF instance has been agreed upon through the DMF agreement protocol,
the associated DMF assignments are made in each participating agent’s intentional
model.

There is no requirement for the DMF agreement protocol to establish perfect com-
mon knowledge about DMF changes. The agents are able to propose/accept/confirm
and then go forth under the assumption that all parties understand the agreement.
If this assumption breaks down at some point (i.e. communication failure before the
receipt of a confirm message), then the agents can recover by using ADMF to establish
a new DMF or try again to establish the same DMF.

The communication protocol for forming DMF agreements is fully documented in
[6], including expected messages and protocol properties. This communication pro-
tocol is specifically designed to support conversations among two or more agents
participating in a given negotiation to establish a DMF. The requirement to support
more than two agents participating in a given negotiation arises whenever agents
desire to establish a DMF in which more than two agents participate, which happens
often in systems with three or more agents.

4.3. Managing commitments to DMFs

Allowing agents to establish DMFs through DMF agreements does not ensure that
these agents will actually participate in any DMF once it is established. Just as agents
must form a commitment to their goals to ensure pursuit of these goals, this research
proposes that agents should model and enforce commitments to their established
DMFs. Overall, the concept of agent commitment allows agents to form expectations
about the behavior of other agents. The DMF commitment motivates agents to actu-
ally participate as specified in their established DMFs. By committing to a DMF as
it becomes established, an agent agrees to participate, as specified, in the DMF or to
pay a penalty for reneging on the established DMF.

Agents must also pay a commitment penalty for dissolving an established DMF in
order to form a new one. Since only one DMF can be established for a goal at any
given time, to establish a new DMF, agents must concurrently dissolve any conflict-
ing DMFs. Only the agent(s) initiating the dissolution of an established DMF must
pay the penalty for reneging on its DMF commitment. Other agents participating in
that DMF are not penalized. For the current ADMF implementation, any agent can
completely dissolve an established DMF simply by informing the other involved
agents (through messages associated with the DMF agreement protocol) that it is
no longer participating. No further agreement or permission to dissolve a DMF is

Auton Agent Multi-Agent Syst (2006) 13:391–428 413

required. Each agent is bound only by its DMF commitment to participate in an
established DMF.

Commitment penalties can be implemented with or without requiring explicit pay-
ments. In the ADMF implementation used for this article’s experiments, the commit-
ment penalties are considered implicitly by including them in the cost of establishing
a new DMF. The penalty associated with reneging on a commitment increases with
the level of the commitment. Variable levels of commitment have been discussed
previously for use in multi-agent systems and extended contract net protocols [21,
44]. DMF commitment is modeled as an integer, c, in the range 0–4, inclusive. A
commitment value is associated with each DMF assignment (one DMF assignment
is made by each agent involved in any established DMF). The integer, c, represents
the cost for the agent of breaking the associated DMF commitment (reneging on the
established DMF agreement). For the purposes of the experiments presented in this
paper, c = 1 for every established DMF that involves only one agent, and c = 2 for
every established DMF that involves two or more agents.

In general, agents can be designed to favor strong or weak DMF commitments.
Stronger commitments (higher c) result in more stable DMFs over time because pen-
alties are larger (agents are less willing to make a DMF change). Modeling DMF
commitments and their associated costs allows agents to account for tradeoffs related
to the stability of the organizational structure versus changing DMFs.

5. Experimental setup and application domain

This section describes the setup for the experiments reported in this article and maps
the analytical representations provided in Section 3 to concrete examples in the exper-
imental domain.

5.1. Experimental domain and agent responsibilities

The experiments presented in this article are performed using the Sensible Agent Test-
bed [8] in the application domain of Naval Radar Interference Management (NRIM).
A naval radar is modeled as a radar on board a military ship. Radar interference is
any form of signal energy detected by a radar that comes from some source other
than a reflection of its own emitted wave, but which is indistinguishable from actual
return signals. Radar interference decreases the signal to noise ratio of a “victim”
radar, thereby making it more difficult for this radar to detect targets.

Each ship in this NRIM application carries one radar, and one agent is associated
with each radar. The goal for each agent in the NRIM application for these experi-
ments is to control the frequency of its radar such that radar interference in the system
is minimized.

Radar interference occurs primarily when two radars are operating in close geo-
graphical proximity at similar frequencies. Interference experienced by each radar is
calculated using a straight-line approximation of the typical distance-frequency rela-
tionship shown in Fig. 6. Radar interference increases along the diagonal arrow in
the figure. The environment simulator therefore models levels of interference along
a linear scale from 0 (at and beyond the threshold line in Fig. 6) to 100 (an arbitrary
value for maximum interference at the origin in Fig. 6).

414 Auton Agent Multi-Agent Syst (2006) 13:391–428

Fig. 6 Straight-line
approximation model for
interference

Frequency Difference (MHz)

Separation
Distance (km)

∆ frequency required

Interference
Increases
Along this Line

100

0

Threshold

∆ distance required

The total interference experienced by a victim radar is calculated as the sum of
interference experienced from every possible source. The maximum value for inter-
ference experienced from one source radar is 100.0. However, because there is no
upper limit on the number of sources of interference for a given victim, there is no
upper limit on the total amount of interference that can be experienced by a given
radar. The total amount of interference in the system, system interference, is defined
as the total amount of interference experienced by all radars in the system.

As an extension to this basic frequency/distance separation model for interfer-
ence, the environment simulator for this NRIM application also models directional
interference. Radar characteristics can differ from one radar to the next, and radar
interference is not necessarily reciprocated. The environment simulator uses a simpli-
fied model of non-reciprocal interference by representing interference reciprocation
as “regular” (uniform in all directions) and “north” (radars interfere only with other
radars that have a greater position value along the y-axis as defined for the simulator’s
model of the environment).

Systems consisting of three agents are used for the experiments reported here.
(Summaries of additional experiments investigating 4–8 agent systems [35] are also
discussed.) One radar per ship is modeled, and one agent controls each radar’s fre-
quency assignment. For these experiments, system radars are always arranged geo-
graphically with a regular distribution around a central point on a two-dimensional
“ocean” surface. Figure 7 shows this geographical configuration for three agents with
a central non-agent entity.

Each system ship is located at distance r from the center of the configuration. A
non-system ship (shown smaller than system ships in Fig. 7) is located at the center.
This ship represents a non-agent entity which controls a radar whose frequency is not

Fig. 7 Relative geographical
positions of radars for
experiments

Auton Agent Multi-Agent Syst (2006) 13:391–428 415

controlled by an agent in the system (approximates a fishing boat or other source of
non-system radar energy). The radar strength associated with the non-agent entity is
half the radar strength associated with agent-controlled radars.

In the system considered by the experiments presented here, issues of safety, trust,
and capability differences are eliminated by considering a system of homogeneous
software agents with no human participation, thus showing that the ADMF capability
can be motivated by performance improvements alone.

5.2. DMFs explored by experiments, F

For the experiments presented in this article, F contains five elements. These glbDMFs
apply to the three goals in the system, one intended by each agent of the three agents,
as shown in Table 4. The set, F = {AllLA, AllM/CD, AllCN, 2M/CD1LA, 2CN1LA}.
Refer to Table 3 for the DMF representations used to apply these glbDMFs.

The following paragraphs describe variations in the agents’ decision-making behav-
ior for this experiment given established DMFs resulting in particular decision-making
interaction styles. The concept of a processing phase is used in these descriptions to
make the point that the agent is constantly and repeatedly attempting to achieve
its goals to minimize interference. During a single processing phase, an agent may
attempt (once) to determine an acceptable way to achieve its goals. Each of an agent’s
processing phases is separated by three other periods in this order: (1) a period for
actions to be taken, (2) a period for the environment to be updated, and (3) a period
for sensor readings to be taken.

Locally Autonomous (LA): An agent who is using a locally autonomous decision-
making interaction style makes decisions alone about how to manage the frequency
of its own radar. If the agent is locally autonomous for its frequency-management
goal, it must select a frequency for its own radar. Because changing frequencies is a
more expensive action than remaining at the same frequency, an agent has a one in
four chance of choosing to remain at the same frequency setting for its own radar
during any given processing phase if it is locally autonomous, even if it is experiencing
interference. In general, these agents attempt to choose frequencies that minimize
system interference. However, to help prevent the system from getting stuck at a local
minimum in the global solution space, agents may choose a solution that increases
interference slightly in hopes of even better future solutions. Specifically, the agent has
a one in two chance of adopting locally autonomous solutions for its own radar if that
solution results in not more than 15% greater system interference than the current
solution. Only one agent-processing phase is required for a locally autonomous agent
to decide on a new frequency and implement the associated frequency change.

Master/Command-driven (M/CD): Only the master makes decisions in a master/
command-driven relationship. A command-driven agent simply waits for task

Table 4 Agent goals for a 3-agent system

Goal Goal name Intended by

g
a1
1 Minimize_interference_thru_frequency_management a1 Agent a1

ga2
1 Minimize_interference_thru_frequency_management a2 Agent a2

ga3
1 Minimize_interference_thru_frequency_management a3 Agent a3

416 Auton Agent Multi-Agent Syst (2006) 13:391–428

allocations from its master. During every processing phase, an agent acting out a
“master” decision-making interaction style (a “master agent”) attempts to find better
frequencies for every agent’s radar for which it is making decisions. If every agent’s
radar that a master agent is making decisions for has already zero interference, then
the master agent will not attempt to select new frequencies. Because there is more
central control in this glbDMF, a master agent will not attempt to avoid local min-
imum’s in the global solution space by adopting any solution that results in greater
or equal system interference compared with the current level of system interference.
Once the master decides to adopt a solution, it must (1) implement its own frequency
change, if any, and (2) send messages to all of its command-driven agents ordering
them to change their frequencies to adopt the new solution. Command-driven agents
must carry out these orders or pay the penalty for reneging on the DMF agreement
that established the master/command-driven relationship. The implementation of an
adopted solution takes two agent processing phases in a master/command-driven
relationship. During the first processing phase, the master agent can determine a
solution, change its own frequency, and send messages. During the second phase, the
command-driven agents will receive these messages from the master agent and the
command-driven agents will implement their own frequency changes.

True Consensus (CN): Each agent involved in consensus interaction plays an equal
part in determining frequency assignments for the agent’s radars associated with every
decision maker. For these experiments, each agent in consensus independently car-
ries out the same process for frequency selection and solution adoption as the master
does in a master/command-driven relationship (treating the other agents in consensus
as if they were command-driven). However, once a given agent acting in consensus
determines a desired solution, it sends a message to all other consensus agents propos-
ing its set of frequency assignments to the group. Along with this solution proposal,
each agent sends a message to every other agent in the consensus group describing
its view of the declarative model for its own agent (including position information,
which may be more accurate than other agents’ models). An agent receiving this
model information will update its own agent’s model of the sending agent. Once a
given agent has received proposed solutions and model updates from all agents in the
consensus group, it chooses, as its preferred solution of all those proposed, the set of
frequency assignments that results in the lowest system interference according to its
models. An agent may also decide to prefer the current system state (i.e. rejecting all
solutions). Each consensus agent sends a message containing a vote for its preferred
solution to all other agents in the consensus group. Each member of the consensus
group uniformly adopts the solution with the most votes, and each agent in the group
implements the frequency assignment in this solution associated with its own radar.
Voting ties are broken deterministically. At least three agent-processing phases are
required to realize a consensus solution. During the first processing phase, each agent
can determine its own solution proposal and send messages to other agents detailing
this proposal and its model of its own radar. During the second processing phase, each
agent can use the model updates to determine its preferred solution proposal and
send messages to other agents relaying its vote. During the third phase, each agent
can tally all the votes and implement the winning solution.

Each decision-making interaction style described here has strengths and weak-
nesses, which can be identified based on a qualitative evaluation of these descriptions.
Observations about different DMFs, such as those that follow, are similar to the obser-
vations that initially motivated the investigation of the ADMF capability, described

Auton Agent Multi-Agent Syst (2006) 13:391–428 417

in Section 2.6. Locally autonomous behavior results in the fastest possible solution
adoption (one processing phase), but has limited coordination with other agents.
Master/command-driven operation is almost as fast as locally autonomous behavior
(two processing phases) and enforces a more global solution approach, but it relies
heavily on communication and on the accuracy of the world model maintained by the
master agent. A true consensus framework is the slowest to adopt a solution (three
processing phases) and most reliant on communication, but it also allows more agents
to suggest solutions, allows agents to share information more readily as peers with
two-way communication during the decision-making process, and, as a result, allows
agents to possibly discover a better global solution.

The processes presented here and used by this research to reach solutions under
each type of decision-making style are not the only possible decision-making imple-
mentations for each decision-making interaction style. For example, consensus agents
could use a negotiation paradigm rather than a voting paradigm. The decision-mak-
ing implementations chosen for this research highlight the differences among types
of DMFs. The remainder of this article shows that when significant differences do
exist in the performance of available decision-making frameworks across situations,
the capability of ADMF can improve system performance. Determining the most
appropriate decision-making implementation within a given framework is left to the
individual system designer.

5.3. Situations defined for experiments, X

The defined state space for possible system states for these experiments contains
four dimensions, X = {

X1, X2, X3, X4}. These four dimensions address, respec-
tively, (1) communication availability in the system, (2) position-sensing capabil-
ities of the agents, (3) radar interference reciprocation profiles, and (4) distance
of the radars (r) from the center of their geographical configuration. Therefore,
X = {

comm, possen, recip, radius
}
.

X1 = comm refers to “communication” and contains two possible values, UP
and DOWN. Therefore,

∣∣X1
∣∣ = 2, and the situation variable x1 ∈ {

x1,0, x1,1} =
{UP, DOWN}. A value of x1 = UP indicates that every agent can communicate
with every other agent, and a value of x1 = DOWN indicates that no agent can
communicate with any other agent.

X2 = possen refers to “position sensing” and contains two possible values, YES
and NO. Therefore,

∣∣X2
∣∣ = 2, and the situation variable x2 ∈ {

x2,0, x2,1} = {YES, NO}.
A value of x2 = YES indicates that every agent can sense the positions of other radars
in the system with 100% certainty. A value of x2 = NO indicates that every agent
senses the positions of other radars in the system as “very far away” with 0% certainty.

X3 = recip refers to “interference reciprocation” and contains two possible val-
ues, REGULAR and NORTH. Therefore,

∣∣X3
∣∣ = 2, and the situation variable x3 ∈{

x3,0, x3,1} = {REGULAR, NORTH}. A value of x3 = REGULAR indicates that
radar interference is reciprocated symmetrically. A value of x3 = NORTH indicates
that radars interfere only with other radars that are located geographically to the
north or at the same north-south position.

X4 = radius refers to distance from center. X4 = radius contains nine possible
values which are chosen to give a range of problem difficulty (from most difficult at
r = 0.0 to least difficult at r = 58.0 where radars are so far apart that every frequency

418 Auton Agent Multi-Agent Syst (2006) 13:391–428

Table 5 Summary of possible
state space for experiment
situations for three agents

Name Xi Possible values for xi

comm X1 x1 ∈ {UP, DOWN}
possen X2 x2 ∈ {YES, NO}
recip X3 x3 ∈ {REGULAR, NORTH}
radius X4 x4 ∈ {0.0, 5.0, 9.0, 10.0, 27.0, 36.0, 44.0, 49.0, 58.0}

assignment is a zero-interference solution). Therefore,
∣
∣X4

∣
∣ = 9, and the situation

variable x4 ∈ {
x4,0, x4,1, x4,2, x4,3, x4,4, x4,5, x4,6, x4,7, x4,8}.

Given these specifications, the total state space for situations is X={
X1, X2, X3, X4}.

The cardinality of X, |X|, is therefore 2∗2∗2∗9 = 72. Table 5 summarizes the possible
state space.

5.4. Situation changes over time

As defined above, in Section 3.5, a scenario, SK, is composed of a sequence of K
situations, x, where each xk ∈ X. Each situation, xk, exists for a time interval, τN

k , of
fixed length N. For these experiments, transitions from xk to xk+1 in a given scenario
are controlled by fixed transition probabilities or fixed transition rules. The transition
probabilities and rules chosen for these experiments for each situation state vari-
able yield a uniform distribution over the situation state space. Table 6 shows the

Table 6 Transition probabilities and rules for situation components

Situation component Elements Transitions

X1 = comm x1 ∈ {UP, DOWN} Transition probability is
[

0.5 0.5
0.5 0.5

]

X2 =possen x2 ∈ {YES, NO} Transition probability is
[

0.5 0.5
0.5 0.5

]

X3 = recip x3 ∈ {REGULAR, NORTH} Transition probability is
[

0.5 0.5
0.5 0.5

]

X4 = radius x4 ∈ {x4,0, x4,1, x4,2, x4,3, x4,4, Transition rules defined by if
x4,5, x4,6, x4,7, x4,8} (in_out_flag == OUT)

if (x4 �= x4,8)

x4 = x4,current+1

else
x4 = x4,8

in_out_flag = IN
end

else
if (x4 �= x4,0)

x4 = x4,current−1

else
x4 = x4,0

in_out_flag = OUT
end

end

Auton Agent Multi-Agent Syst (2006) 13:391–428 419

chosen transition probabilities or rules for each situation state variable. Transition
probabilities related to X1, X2, and X3, respectively, indicate that the state variables
x1, x2, and x3 are binary random variables (e.g., for comm, x1 = UP or x1 = DOWN is
chosen by a coin toss for every situation change). The radius state variable x4 changes
such that ships move out from the center of their geographic configuration, x4,0, to
the outer limit of their radius, x4,8, then back to the center, and so forth. Over long
scenarios, this transition rule allows agents to spend an equal amount of time at each
radius.

These transition probabilities and rules are used to change the situations faced by
agents in the scenarios through experimental control. At the end of every time inter-
val, τN

k , in a given scenario SK, a new value is chosen for each situation variable using
these transition probabilities and rules. In addition to the changes of the situation
variables, the radar frequencies in the system are reassigned to random frequencies
at the beginning of every new situation. This prevents the system from settling into a
steady state and forces the agents to continue problem solving during each situation
encountered.

For these experiments, agents cannot predict when a situation change will occur.
Therefore, the situation change xk to xk+1 in SK must trigger the glbDMF change fk
to fk+1 in AK. In addition, because many DMF changes require the establishment of
DMF agreements among agents, the change fk to fk+1 may occur several time units
after the change xk to xk+1. For these experiments this lag-time is assumed to be
negligible because each situation lasts orders of magnitude longer than this lag time.

5.5. System performance

System performance in this domain is measured as Average System Interference
(ASI) the average amount of system interference per unit time per agent. The ASI
performance measure is of the general form p(x, f , i) described in Section 3.4. System
interference is the sum of interference experienced by all agent-controlled radars
in the system. The experimental results for each observation, asi(x, f , i), reflect the
amount of total system interference experienced by agents averaged over the entire
simulation execution time for a given situation (N = 150). The measure asi(x, f , i)
directly assesses how well the agents are achieving their goal to minimize interference
through frequency management. The function asi(x, f , i) should be minimized for best
performance. Therefore, the performance measurement function of the form p(x, f , i)
is a “penalty” function in this case, in the sense that higher values will correspond
to worse performance. The expected performance asi(x, f , i) for a given glbDMF, f,
in a given situation, x, can be estimated by taking an average over several observa-
tions asi(x, f) = ∑m

i=1 asi(x, f , i). The average system interference per unit time that
agents incur while operating across an entire scenario, of the form P

(
SK, AK, IK

)
, is

ASI
(
SK, AK, IK

)
.

6. Experimental results

An analysis of the results from multi-agent simulation in the NRIM domain support
the experimental hypotheses introduced in Section 1.2.

420 Auton Agent Multi-Agent Syst (2006) 13:391–428

6.1. Significant performance differences across DMFs

To explore whether the glbDMF under which agents perform best differs signifi-
cantly across situations, we recorded the performance of agents operating under
each possible glbDMF in each possible situation defined for the system. For each
situation/glbDMF case, the performance was observed for 200 simulations using
different initial conditions (different initial frequencies assigned to each radar and
different initial random seeds for the planner used to select random frequencies).
Given the situation space, X, and the glbDMF space, F, described in the previous
section, a total of |F| |X| = 5 × 72 = 360 cases were simulated.

Figure 8 presents a description of the relative performance of each glbDMF in each
situation. Although the absolute performance differences are also reported in [35], a
relative description is the preferred view because the absolute performance for any
single glbDMF across initial frequency assignments, i, can vary more than the absolute
performance across glbDMFs within a single initialization for the same experimen-
tal case. For example, if the initial frequency assignment is such that interference is
already minimized, then all glbDMFs can perform equally well and otherwise signifi-
cant performance characteristics can be masked. Therefore, the performance values
should be corrected for variation related to problem difficulty. We use h(x, f , i), the
normalized difference from the average performance for each initialization, to make
this correction as follows: let h(x, f , i) = p(x,f ,i)−q(x,i)

q(x,i) , where q(x, i) = 1
5

∑5
j=1 p(x, fj, i),

the mean performance for a given initialization, i, and a given situation, x, across all
possible glbDMFs.

The expected normalized relative performance in each situation/glbDMF case,
h(x, f), is calculated from 200 observations across different initial conditions, h(x, f) =
∑200

i=1
p(x,f ,i)−q(x,i)

q(x,i) . The graphs in Fig. 8 present these results for h(x, f), plotted for each
possible combination of situations (x ∈ X) and glbDMFs (f ∈ F). The relative penalty
values for ASI, where p(x, f , i) = asi(x, f , i), are shown for all situation/glbDMF cases
(|F| |X| = 360), and each point on the graphs represents one such situation/glbDMF
case, (x, f). Because asi(x, f) should be minimized for best performance, the lowest
values of h(x, f) also reflect best performance. Negative values of h(x, f) are reported
for glbDMFs that performed better than average. Due to visualization constraints, the
situation/glbDMF cases are plotted on eight separate graphs. Recall that the situation
state space x ∈ X has four sub-spaces {comm, possen, recip, radius}. Each individual
graph presents values corresponding to one possibility for comm, possen, and recip,
and all nine possible elements of radius.

The graphs in Fig. 8 show a great deal of performance variation across glbDMFs
for a given situation. The mapping for bestDMF(x) can be read directly from these
graphs, identifying the glbDMF corresponding to the minimum value of h(x, f) in each
situation (compared vertically across glbDMFs for each value of r in each graph). The
bestDMF(x) varies among All LA, All CN, All M/CD, and 2M/CD-1LA, depend-
ing on the situation. Therefore, these results support the experimental hypothesis by
showing that bestDMF(x1) does not equal bestDMF(x2) for all x.

Each point on the graphs in Fig. 8 reflects a mean value. The 95% confidence inter-
vals for each point (based on a standard error calculation [37]) are on the order of
the line width or the size of the marker symbol for each point. Therefore, the aver-
age difference is statistically significant in most cases, and the glbDMF that performs
best on average does differ significantly across situations. These results support the

Auton Agent Multi-Agent Syst (2006) 13:391–428 421

Fig. 8 Normalized relative ASI for each situation and glbDMF

422 Auton Agent Multi-Agent Syst (2006) 13:391–428

Table 7 Percentage of situations in which each global DMF is best

Number of agents Global decision-making framework
(Note: For three agent systems, the CN and M/CD framework is CN and LA)

All LA All M/CD All CN M/CD and CN and None/Tie
% % % LA% M/CD% %

Three agents 44 4 13 13 0 26
Four agents 44 1 18 7 0 29
Five agents 33 0 19 0 8 39
Six agents 29 4 21 0 11 35
Seven agents 47 4 21 1 4 22
Eight agents 31 6 21 3 4 36

experimental hypothesis, the global decision-making framework under which agents
perform best differs as the situation that the agents encounter differs.

Similar results were observed with systems ranging from 4 to 8 agents [35]. Table 7
shows the percentage of situations in which each glbDMF performs best as the number
of agents varies. The only significant trend is that as the number of agents in the system
increases, the All CN glbDMF tends to become more prevalent as the best glbDMF in
more situations. However, the magnitude of the increase is small, and the situational
differences seem to dominate (e.g., between All LA when communication is down
and All CN when communication is available).

The results verify the assumption that the DMF can be a controlling variable in the
performance of a multi-agent system in a given situation, even though these perfor-
mance results do not generalize directly to other systems with other situation types
and other decision-making implementations. For example, in another system, a poorly
performing negotiation mechanism may be used for consensus decision-making, such
that any DMF with more than one agent acting as a decision maker (in D) will always
perform poorly. The results presented here could not be used to predict that outcome
and should not be seen as a prescription for what kind of DMF performs best in any
particular type of situation for another system. However, the results do show that
given a set of characteristics and decision-making implementations for a particular
system, the DMF can be a controlling variable in the system’s performance.

6.2. ADMF performance across changing situations

These results provide motivation for implementing ADMF by highlighting the oppor-
tunity to improve performance in a given situation through changing DMFs. The
ADMF capability may allow agents to change from a glbDMF that does not perform
well in a given situation to a glbDMF that performs better. However, the question
remains whether this potential performance improvement will outweigh the over-
head and relative system instability associated with changing glbDMFs. These costs
are reflected in the ASI performance measure by elevated interference levels that
continue to exist as agents abandon solutions that are forming under one glbDMF to
start over forming solutions under another glbDMF.

The next step is to show whether these performance differences can be exploited
to improve overall run-time performance across dynamically changing situations. To
do so, another set of multi-agent simulations compares the performance of agents

Auton Agent Multi-Agent Syst (2006) 13:391–428 423

operating under ADMF in various scenarios to the performance of agents operating
under static and random decision-making frameworks (as defined in Section 3.5) for
the same scenarios.

Recall from Section 3.5 that ADMF is defined analytically as a policy for changing
the glbDMF, f, in effect from one time, k, to another, where fk+1 = f : best

f∈
{

F̂(xk+1)∪ fk

}

(
p(xk+1, fk+1)

)
. Using the previously recorded performance observations across all sit-

uations and glbDMFs as a case base, the glbDMF to select in a given situation under
ADMF can be defined as fk+1 = f : min

f∈
{

F̂(xk+1)∪fk

}
(
asi(xk+1, fk+1)

)
. This equation

indicates that the achievable glbDMF that gives the minimum expected ASI, for the
time interval when situation xk+1 exists, is chosen as fk+1.

Recall also from Section 3.5 that a scenario S of length K, SK, is defined as a scenario
consisting of K time intervals, τN

k , such that SK = (x1, x2, . . . , xK). Twenty scenarios
with k = 27 and N = 150 were randomly generated according to the transition rules
given in Section 5.4, and each DMF policy was simulated for each of these scenarios.
Figure 9 shows the results for these simulations, comparing DMF policies with respect
to the observed values of ASI, the average system interference across the scenario
per unit time. The ASI values are normalized by the largest observed value of ASI.

Since ASI should be minimized, the DMF policies with lower values of ASI per-
form better. The bars in Fig. 9a show that, on average, the ADMF policy out-performs
every static DMF policy as well as the random DMF policy. The “x” marks across
each bar in Fig. 9a represent the actual data values for normalized ASI for each of
the twenty scenarios tested. The distribution of these “x” marks directly reflect the
distribution of the data, and the scatter in the data values arises from varying difficulty
across scenarios. Figure 9b repeats the information in Fig. 9a and connects each data
point for individual scenarios tested, across DMF policies. Using this relative penalty
information for each individual scenario, one can see that the ADMF policy outper-
forms each of the other policies in every single scenario tested, as well as on average.
Therefore, the scatter in the data does not reduce the significance of the performance
improvement realized by ADMF.

Figure 10 presents a clearer view of the relative performance of the ADMF policy
compared to the performance of all other policies. For this chart, all reported values
from Fig. 9 are divided by the observed ASI for the ADMF policy in the same sce-
nario. Again, the “x” marks indicate the distribution of the data. Figure 10 shows that
ADMF clearly outperforms the other DMF policies. These results clearly support the
experimental hypothesis that agents operating under ADMF can perform significantly
better than agents operating under static decision-making frameworks given run-time
situation changes. Similar results were observed for system ranging from 4 to 8 agents
[35]. Increasing the number of agents in the system, up to eight agents, does not seem
to reduce the significance of the performance improvement gained by ADMF.

7. Conclusions

This article shows that adding the capability of ADMF to a multi-agent system can
result in significantly improved system performance across run-time situation changes.
Specifically, ADMF can result in improved and more robust performance over the
use of a single static DMF. The results reported in this article first show that the

424 Auton Agent Multi-Agent Syst (2006) 13:391–428

DMFs used by agents during system operation can be a controlling variable in the
performance of a multi-agent system. By definition, a DMF identifies a set of agents
and specifies the set of interactions exercised by these agents as they determine how
a goal or set of goals should be achieved. This article provides a computational rep-
resentation for DMFs, and shows that shows how they can be manipulated by the
ADMF capability. The experimental results show that one DMF does not perform
best for all situations. The reported results further show that this varying performance
of DMFs across situations can be exploited to improve overall run-time performance
if agents are enabled to switch from an existing DMF to one that performs better in the
current situation. The experiments show that dynamically adapting DMFs to chang-
ing situations through ADMF improves overall system performance across changing

Fig. 9 The ASI compared across various DMF policies for the same 3-agent scenarios

Auton Agent Multi-Agent Syst (2006) 13:391–428 425

Fig. 10 Average System Interface of DMF policies relative to ADMF for 3-agent scenarios

situations, outweighing the overhead and additional system instability associated with
making dynamic changes to DMFs.

The empirical results presented in this article therefore justify the implementation
of ADMF in multi-agent systems to improve system performance across changing
situations. This justification argument assumes that (1) agents encounter dynamic
changes in their situation during normal system operation, (2) these dynamic changes
do not occur faster than the agents in the system can respond to solve a problem, and
(3) the DMF resulting in the best system performance (by a useful margin) varies
across the possible situations that may be encountered by the agents. If these condi-
tions hold, then the implementation of ADMF is justified. These characteristics would
be required to transfer the conclusions from the presented experiments to another
domain. Otherwise, the additional overhead required to support ADMF may not
be warranted. However, if these conditions do hold, as they do for many complex,
dynamic problem domains in which agents face uncertainty and unreliable commu-
nication, ADMF can provide significant performance improvements as indicated by
the experimental results presented here.

Acknowledgements This research was supported in part by the Texas Higher Education Coordinat-
ing Board (no 003658452) and a National Science Foundation Graduate Research Fellowship.

References

1. Barber, K. S., Han, D. C., & Liu, T. H. (2000). Coordinating distributed decision making using
reusable interaction specifications. In C. Zhang & V.-W. Soo (Eds.), Design and applications of
intelligent agents: Third pacific rim international workshop on multi-agents, PRIMA 2000, Mel-
bourne, Australia, August 2000, Proceedings (pp. 1–15). New York: Springer.

2. Barber, K. S., Liu, T. H., & Han, D. C. (2001) Strategy selection-based meta-level reasoning for
multi-agent problem solving. In Ciancarini P., & Wooldridge M. (Ed.), Agent oriented software
engineering, Vol. 1957, (pp. 269–284). Springer Verlag.

426 Auton Agent Multi-Agent Syst (2006) 13:391–428

3. Barber, K. S., & Martin, C. E., (2001). Autonomy as decision-making control. In C. Castelfran-
chi, & Y. Lesperance (Ed.), Intelligent agents VII: Agent theories architectures and languages (pp.
343–345). Berlin: Springer.

4. Barber, K. S., & Martin, C. E. (2001). Dynamic adaptive autonomy in multi-agent systems: Repre-
sentation and justification. International Journal of Pattern Recognition and Artificial Intelligence,
15(3), 405–433.

5. Barber, K. S., & Martin, C. E. (2001) The Motivation for dynamic decision-making frameworks in
multi-agent systems. In Jiming Liu, N. Zhong, Y. Y. Tang, & P. S. Wang (Eds.), Agent engineering
(pp. 59–91). Singapore: World Scientific.

6. Barber, K. S., Martin, C. E., & McKay, R. M. (2001). A communication protocol supporting
dynamic autonomy agreements in multi-agent systems. In R. Kowalczyk, S. W. Loke, N. E. Reed,
& G. Williams, (Eds.), Advances in artificial intelligence: PRICAI 2000 workshop reader. Four
Workshops held at PRICAI 2000, Melbourne, Australia, August/September 2000. Revised Papers,
Vol. LNAI 2112 (pp. 303–320). Berlin: Springer.

7. Barber, K. S., Martin, C. E., Reed, N. E., & Kortenkamp, D. (2001). Dimensions of adjustable
autonomy. In R. Kowalczyk, S. W. Loke, N. E. Reed, & G. Williams (Eds.), Advances in artificial
intelligence: PRICAI 2000 Workshop Reader. Four Workshops held at PRICAI 2000, Melbourne,
Australia, August/September 2000, Vol. LNAI 211 (pp. 353–361). Revised Papers ed. Berlin:
Springer.

8. Barber, K. S., McKay, R. M., Goel, A., Han, D. C., Kim, J., Liu, T. H., & Martin, C. E. (2000). Sen-
sible agents: The distributed architecture and testbed. IEICE Transactions on Communications.
IECIA/IEEE Joint Special Issue on Autonomous Decentralized Systems, E83-B(5) 951–960.

9. Bharatia, V. A., & Cook, D. J. (1995). Design and analysis of centralized, distributed, and group
multi-agents coordination models, Department of Computer Science and Engineering, University
of Texas at Arlington, Arlington, TX, Technical Report.

10. Bond, A. H., & Gasser, L. (1998). An analysis of problems and research in DAI. In A. H. Bond, &
L. Gasser (Eds.), Readings in distributed artificial intelligence (pp. 3–35). San Mateo, CA: Morgan
Kaufmann Publishers Inc.

11. Briggs, W., & Cook, D., (1995). Flexible social laws. In Proceedings of the fourteenth international
joint conference on artificial intelligence (pp. 688–693). Montreal, Que, Canada.

12. Brooks, C. H., Durfee, E. H., & Armstrong, A. (2001). An introduction to congregating in
multiagent systems. In Proceedings of the fourth international conference on multiagent systems
(ICMAS-2000) (pp. 79–86). Boston, MA.

13. Castelfranchi, C. (1995) Commitments: From individual intentions to groups and organizations. In
Proceedings of the first international conference on multi-agent systems (pp. 41–48). San Francisco,
CA.

14. Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence,
42, 213–261.

15. Daft, R. L., & Marcic, D. (1998) Understanding management (2nd ed.). Fort Worth, TX: Dryden
Press.

16. Davin, J., & Modi, P. J. (2005) Impact of problem centralization in distributed constraint optimiza-
tion algorithms. In Proceedings of the fourth international joint conference on autonomous agents
and multi agent systems (pp. 1057–1066). The Netherlands: Utrecht.

17. Decker, K., & Lesser, V. (1993). A one-shot dynamic coordination algorithm for distributed sensor
networks. In Proceedings of the eleventh national conference on artificial intelligence (pp. 210–216).
Washington, DC.

18. Decker, K. S., & Sycara, K. P. (1997). Intelligent adaptive information agents. Journal of Intelligent
Information Systems, 9(3), 239–260.

19. Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., & Schreckenghost, D. (1998). Adjust-
able autonomy for human-centered autonomous systems on Mars, In Proceedings Mars society
conference, (pp. 397–419). Boulder, CO.

20. Durfee, E. H. (1996). Planning in distributed artificial intelligence. In G. M. P. O’Hare, & N. R.
Jennings (Eds), Foundations of distributed artificial intelligence (pp. 231–245). New York: John
Wiley & Sons Inc.

21. Durfee, E. H., & Lesser, V. R. (1987). Using partial global plans to coordinate distributed prob-
lem solvers. In Proceedings of the tenth international joint conference on artificial intelligence (pp.
875–883). Milan, Italy.

22. Excelente-Toledo, C. B., & Jennings, N. R. (2004). The dynamic selection of coordination mecha-
nisms. Autonomous Agents and Multi-Agent Systems, 9, 55–85.

Auton Agent Multi-Agent Syst (2006) 13:391–428 427

23. Falcone, R., & Castelfranchi, C. (2000). Levels of delegation and levels of adoption as the basis
for adjustable autonomy. In E. Lamma, & P. Mello (Eds.), AI*IA 99: Advances in artificial intelli-
gence. Selected papers from proceedings of the sixth congress of the Italian association for artificial
intelligence, Bologna, Italy, September 1999 (pp. 273–284). Berlin: Springer-Verlag.

24. Fox, M. S., Barbuceanu, M., Gruninger, M., & Lin, J. (1998). An organizational ontology for
enterprise modeling. In M. J. Prietula, K. M. Carley, & L. Gasser (Eds.), Simulating organization,
Menlo Park, CA: AAAI Press/The MIT Press.

25. Gasser, L., Rouquette, N. F., Hill, R. W., & Lieb, J. (1998). Representing and using organizational
knowledge in DAI systems. In L. Gasser, & M. N. Huhns (Eds.), Distributed artificial intelligence,
(Vol. 2, pp. 55–78). London: Pitman/Morgan Kaufman.

26. Haddadi, A. (1995). Towards a pragmatic theory of interactions. In Proceedings of the first inter-
national conference on multi-Agents systems (pp. 133–139). San Francisco, California.

27. Hirayama, K., & Toyoda J. (1995) Forming coalitions for breaking deadlocks. In Proceedings of
the first international conference on multi-agent systems (pp. 155–162). San Franciso, CA.

28. Ishida, T., Gasser, L., & Yokoo, M. (1992). Organization self-design of distributed production
systems. IEEE Transactions on Knowledge and Data Engineering, 4(2), 123–134.

29. Jennings, N. R. (1993). Commitments and conventions: the foundation of coordination in multi-
agent systems. The Knowledge Engineering Review, 8(3), 223–250.

30. Jennings, N. R. (1993) Coordination techniques for distributed artificial intelligence. In G. M. P.
O’Hare, and N. R. Jennings (Eds.), Foundations of distributed artificial intelligence (pp. 187–210).
New York: John Wiley & Sons Inc.

31. Kortenkamp, D., Keirn-Schreckenghost, D., & Bonasso, R. P. (2000). Adjustable control auton-
omy for manned space flight. In Proceedings of the IEEE aerospace conference (pp. 18–25). Big
Sky, MT.

32. Lawrence, P. R., & Lorsch, J. W. (1967). Organization and environment: Managing differentiation
and integration. Boston: Harvard Business School Press.

33. Lerman, K., & Shehory, O. (2000). Coalition formation for large-scale electronic markets. In Proc.
Fourth international conference on multi agent systems (ICMAS-2000) (pp. 167–174). Boston, MA.

34. Lin, Z. (1998). The choice between accuracy and errors: A contingency analysis of external
conditions and organizational decision making performance. In M. J. Prietula, K. Carley, M., &
L. Gasser, (Eds.), Simulating organization, Menlo Park, CA: AAAI Press/The MIT Press.

35. Martin, C. E. (2001). Adaptive decision-making frameworks for multi-agent systems. University
of Texas at Austin, Austin, TX PhD Dissertation.

36. Mertens, P., Falk, J., & Spieck, S. (1997). Comparisons of agent approaches with centralized
alternatives based on logistical scenarios. Information Systems, 19(8), 699–709.

37. Milton, J. S., & Arnold, J. C. (1990). Introduction to probability and statistics: Principles and
applications for engineering and the computing Sciences (2nd ed.), New York: McGraw-Hill.

38. Moulin, B., & Chaib-draa, B. (1996). An overview of distributed artificial intelligence. In G. M. P.
O’Hare, & N. R. Jennings (Eds.), Foundations of distributed artificial intelligence (pp. 3–55). New
York: John Wiley & Sons Inc.

39. Musliner, D. J., & Krebsbach, K. D. (1999). Adjustable autonomy in procedural control for refin-
eries. In Proceedings of the AAAI 1999 spring symposium series: agents with adjustable Autonomy
(pp. 81–87). Stanford University, Stanford, Califonia.

40. Myers, K. L., & Morley, D. N. (2001). Directing agent communities: An initial framework. In
Proceedings of the IJCAI-2001 workshop on autonomy, delegation, and control: Interacting with
autonomous agents (pp. 81–88). Seattle, WA.

41. Noh, S., & Gmytrasiewicz, P. (1999). Implementation and evaluation of rational communicative
behavior in coordinated defense. In Proceedings of the third international conference on autono-
mous agents (Agents-99) (pp. 123–130). Seattle, WA.

42. Noh, S., & Gmytrasiewicz, P. (1999). Towards flexible multi-agent decision-making under time
pressure. In Proceedings of the sixteenth international joint conference on artificial intelligence
(IJCAI-99) (pp. 492–498). Stockholm, Sweden.

43. Reed, N., & Scerri, P. (2000). Online control of agents using EASE: Implementing adjustable
autonomy using teams. In Proceedings of the first workshop on teams with adjustable autonomy
(pp. 1–8). Melbourne, Australia.

44. Sandholm, T., & Lesser, V. R. (1995). Issues in automated negotiation and electronic commerce:
Extending the contract net framework. In Proceedings of the first international conference on
multi-agents systems (pp. 328–335). San Francisco, CA.

45. Sandholm, T. W., & Lesser, V. R. (1997). Coalitions among computationally bounded agents,
Artificial Intelligence, 94(1), 99–137.

428 Auton Agent Multi-Agent Syst (2006) 13:391–428

46. Scerri, P., Pynadath, D. V., & Tambe, M. (2001). Adjustable autonomy in real-world multi-agent
environments. In Proceedings of the autonomous agents (pp. 300–307). Montreal, Canada.

47. Scott, W. R. (1992). Organizations: Rational, natural and open systems (3rd ed.). Englewood Cliffs,
NJ: Prentice-Hall.

48. Sen, S., & Dutta, P. S. (2000). Searching for optimal coalition structures. In Proceedings of the
fourth international conference on multiAgent systems (ICMAS-2000) (pp. 287–292). Boston, MA.

49. Shehory, O., & Kraus, S., (1998). Methods for task allocation via agent coalition formation. Arti-
ficial Intelligence, 101(1–2), 165–200.

50. Singh, M. P. (1990). Group ability and structure. In Y. Demazeau, & J.-P. Müller (Eds.), Decen-
tralized A.I. 2: Proceedings of the second european workshop on modelling autonomous agents in
a multi-agent world, Saint Quentin en Yvelines, France, August 13–16, 1990 (pp. 127–45). Amster-
dam: Elsevier Science.

51. So, Y.-P., & Durfee, E. H., (1998). Designing organizations for computational agents. In M. J.
Prietula, K. M. Carley, & L. Gasser (Eds.), Simulating organizations (pp. 47–66). Menlo Park, CA:
AAAI Press/The MIT Press.

52. Stephens, L. M., & Merx, M. (1989). Agent organization as an effector of DAI system performance.
In Proceedings of the ninth workshop on distributed artificial intelligence (pp. 263–292).

53. Sycara, K. P. (1997). Multiagent systems. AI Magazine, 19, 79–92.
54. Tambe, M. (1997). Agent architectures for flexible, practical teamwork. In Proceedings of the

fourteenth national conference on aritificial intelligence (p. 1092). Providence, Rhode Island.
55. Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research, 7, 83–

124.
56. Wagner, T., & Lesser, V. (2000). Relating quantified motivations for organizationally situated

agents, In N. R. Jennings, & Y. Lesperance (Eds.), Intelligent agents VI: Agent theories, architec-
tures, and languages (pp. 334–348). Berlin: Springer-Verlag.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

