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Abstract. We present congregating both as a metaphor for describing and modeling multiagent systems (MAS)

and as a means for reducing coordination costs in large-scale MAS. When agents must search for other agents to

interact with, congregations provide a way for agents to bias this search towards groups of agents that have tended

to produce successful interactions in the past. This causes each agent’s search problem to scale with the size of a

congregation rather than the size of the population as a whole. In this paper, we present a formal model of a

congregation and then apply Vidal and Durfee’s CLRI framework [24] to the congregating problem. We apply

congregating to the affinity group domain, and show that if agents are unable to describe congregations to each

other, the problem of forming optimal congregations grows exponentially with the number of agents. The

introduction of labelers provides a means of coordinating agent decisions, thereby reducing the problem’s

complexity. We then show how a structured label space can be exploited to simplify the labeler’s decision

problem and make the congregating problem linear in the number of labels. We then present experimental

evidence demonstrating how congregating can be used to reduce agents’ search costs, thereby allowing the system

to scale up. We conclude with a comparison to other methods for coordinating multiagent behavior, particularly

teams and coalitions.
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1. Introduction

In a multiagent system (MAS), self-interested agents must often decide which other agents

they want to interact with. The nature of these interactions may vary; perhaps they wish to

buy and sell goods, exchange information about their environment, group together in order

to exploit scaling effects, or simply benefit from the presence of other agents. These

interactions are what makes a society more than just a collection of agents that happen to be

in the same location; each agent’s reward is dependent upon the agents that it interacts with.

In a dynamic, long-lived system, agents will make this decision as to whom to interact

with over and over. Also, as the number of agents in a system increases, the number of

potential interactions that a particular agent must consider grows exponentially, since an

agent must potentially consider all groups of agents that it might interact with. If

multiagent systems are to scale to large numbers of agents, and if these systems are to

be dynamic and allow separately designed agents to enter and leave at will, something is

needed to save an agent from having to make this expensive computation every single time

it needs to interact with other agents. This solution should allow an agent to devote some

initial and periodic energy to searching for suitable partners, with the promise of reduced

search costs in future iterations. It should also provide a sort of institutional memory, so

that like-minded agents can benefit from previous searches performed by other agents.
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One way in which human societies have dealt with this problem is through the

establishment of congregations. Briefly, a congregation consists of a meeting place and

the agents that gather there. Human congregations include clubs, churches, marketplaces,

university departments, and Usenet newsgroups. In all of these cases, members of these

congregations have devoted some upfront cost to organizing and describing themselves so

that they (and similarly-minded agents) can reap the long-term benefits of finding

preferable agents to interact with without a large search cost, and can also be able to

attract new agents with whom they would be likely to want to interact. A congregation

allows an agent to localize its search for other agents; rather than considering the entire

population as being equally likely to contain agents worth interacting with, an agent can

bias its search towards members of its congregation. Since it has had successful interactions

with agents from a particular congregation in the past, it can begin by searching only within

that congregation. This means that each agent’s search problem grows with the size of the

congregation, rather than the size of the population, thereby providing a means for open

MAS to scale to large numbers of agents. The number of ‘‘types’’ of agents is likely to grow

with the number of agents, but at a much smaller rate. In this way, as the population grows,

the size of each congregation remains essentially constant, allowing societies of agents to

scale to large numbers.

A common problem in MAS is what Davis and Smith refer to as the ‘connection

problem’ [4]. The connection problem is the problem that an agent in an open MAS has

when it needs to find another agent to cooperate with, assist it, or interact with. As the

number of agents in the system grows, the number of messages that must be sent grows

exponentially. One proposed solution to this problem was ‘‘focused addressing’’ [15], in

which an agent sends a request to a particular subset of agents that it believes are likely to

be able to assist it. Congregating can be viewed as a process by which the knowledge for

this focused addressing is instantiated. Once a congregation is in place, an agent can then

send coordinating messages within the congregation. As long as congregation size remains

relatively constant, the population as a whole can grow without impacting scalability.

Our previous work [1, 2] has provided an introduction to congregations. If congregating

is to be a successful technique for scaling MAS, we must understand how easy or difficult

it is to form these congregations. We answer this question by defining the concept of a

congregation in greater detail and presenting analyses and experiments that describe the

problem of how agents self-organize to find the correct congregation. This problem, which

we shall refer to as the congregating problem, can be thought of as a distributed search

problem. A number of independent problem solvers are simultaneously searching through

a space of potential congregations, each with the goal of finding a congregation that allows

it to efficiently find the most appropriate agents with which to interact.

The second, and equally important, aspect of the congregating problem is the non-

equilibrium behavior of the search. In other words, how difficult is it for an agent to find a

suitable congregation? How long does it take, and how much effort or utility must be ex-

pended in this search? If an agent must incur a large cost to find or attract a suitable con-

gregation, it may turn out that the effort of congregating outweighs any potential benefits.

For example, if the population of agents changes rapidly, an agent may spend all of its efforts

maintaining a congregation and never have an opportunity to enjoy the benefit of the reduced

search costs. If we are to analyze the benefit of congregations as a means of helping agents

find suitable partners to interact with, we must consider nonequilibrium costs and payoffs.
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In this paper, we study congregating in the context of the affinity group domain. This is

a domain in which agents of different types are trying to collocate in a large space of

possible locations. Agents prefer to be with other agents of a similar type, but each agent

makes the decision as to where it should locate independently. This domain has parallels to

real-life problems in housing and segregation. We have also studied congregating in more

competitive domains, in particular information economies, in which producers and

consumers are simultaneously trying to locate niche markets where they can buy or sell

preferred goods. While that work is not reported on in this paper, we would like to point

out that the idea of congregations can be applied to both competitive and cooperative

multiagent systems.

We will reserve a comparison of congregating to other existing work on multiagent

coordination until Section 8, when congregating has been described more precisely. For the

moment, hopefully it will suffice to consider congregating as a way for agents in a large

population to self-organize into smaller groups without having any knowledge of either the

other agents in the population or how they should describe themselves. Once these

congregations are in place, agents can then coordinate using whatever mechanism is

appropriate.

We begin with a specific definition of a congregation, including characteristics ne-

cessary for congregating to be applied to an agent domain. We then introduce a formal

model of congregations and show how Vidal and Durfee’s CLRI model [24] for analyzing

multiagent learning can be used to predict the difficulty of a congregating problem.

Section 5 describes the affinity group domain in more detail and formalizes agent pre-

ferences in this domain.

Section 6 presents an analysis of the difficulty of the multiagent learning problem, along

with experiments showing that the rate of convergence increases exponentially with the

number of agents. This problem can be alleviated if congregators can coordinate their

decisions; we propose the use of labels as a solution. We show how labelers using a flat label

space can make the congregating problem dependent upon the number of labels, rather than

the number of agents. This allows the congregating problem to scale with the number of

labelers. However, labelers must still potentially search a large space of labels. A hierarchical

structure of labels can be exploited so as to allow it to be searched more efficiently, thereby

reducing labelers’ search costs and allowing the congregating problem to scale to large

numbers of agents. In Section 7, we return to the issue of congregating as a means of helping

agents coordinate their decisions and demonstrate that the introduction of multiple con-

gregations can improve agent payoff. Finally, in Section 8 we compare congregating to other

methods for multiagent coordination, particularly coalition and team formation.

2. What is a congregation?

In this section, we introduce a concrete definition of what we mean by a congregation,

including features of multi-agent problem domains that must be present for a group of

agents to properly be considered as a congregation. We then provide some examples

of congregating, discuss the idea of congregating as a distributed search through a space

of agent interactions, and illustrate how this can shed some light on the difficulties of

congregating in particular domains.
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2.1. A definition of congregations and congregating

We begin by providing a definition of congregations and the congregating problem. A

congregation is a location and a set of agents that are all gathered in that location. Each

agent must interact with others in the course of satisfying its needs. The degree to which

these needs are satisfied will depend upon the particular agents it interacts with. The

purpose of the congregation is to allow a member to find preferable partners to interact

with more easily. The membership of a congregation can be dynamic; agents may join and

leave throughout the congregation’s lifetime.

Since an agent’s satisfaction with a congregation is dependent upon the presence of

other agents, and each of those agents’ satisfaction is dependent upon the presence of

other agents, inducing a particular set of congregations to form can be quite difficult,

even if all agents within a congregation would be happy with it once it had formed. In

talking about the congregating problem, typically we will be interested in a MAS that is

divided into one or more congregations and considering the satisfaction of each member

of those congregations. We can then compare MAS with different configurations of

congregations, either by using preference aggregation methods or with game theoretic

concepts such as Pareto optimality, to assess the relative global desirability of a particular

configuration of congregations.

2.2. Characteristics of congregations

The definition of a congregation provided above is correct, but rather terse and abstract. In

this section we provide five characteristics needed for a group of agents to be considered a

congregation.

– Individual rationality. Each agent is assumed to have its own utility function. An agent

will act solely to maximize its long-term utility, where ‘‘long-term’’ indicates that an

agent will take a discounted estimate of future rewards into consideration when deciding

with whom to congregate.

Note that we do not require (nor do we expect to use) any notion of ‘‘group rationality.’’

Groups of agents that receive a single lump payment as a result of the group’s

performance do not fit into our definition of congregations; these are more accurately

described by existing work on coalition [19] or team [22] formation.

– Agents may voluntarily join or leave congregations. An essential facet of the

congregating problem is that agents are free to join or leave, or refuse to join or leave

a congregation at any time they wish. It is this decision problem (which congregation

or series of congregations should an agent join?) that is at the heart of this work.

– Another principal idea behind congregations is that an agent’s satisfaction with a

congregation is dependent upon the other members of the congregation. Since

agents congregate in order to satisfy needs which they cannot satisfy alone or to

avoid interference in satisfying their needs, it seems reasonable to assume that their

satisfaction will depend upon how well these needs are met. If agents are hetero-

geneous in their abilities to satisfy the needs of a given agent, then that agent will

prefer to congregate with those agents which better satisfy its needs over those who

do not.
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– Agents will have repeated interaction and long-term existence. As noted above, the

whole point of developing a congregation is to allow an agent to devote fewer resources

to future decisions regarding whom it should interact with. If an agent is making a one-

shot decision, there is no value to exploring and learning information to use in future

encounters.

– We also assume that agents must expend energy or pay a cost to search for suitable

partners to interact with and to advertise their presence to other agents. This cost can

vary depending upon (for example) the distance between agents, the number of agents

messages are sent to, or the complexity of the message. Advertising messages may also

take time to propagate through the population. If an agent is able to costlessly and

instantaneously search through the space of all other agents to find suitable partners,

then there is no need for it to spend any effort on forming congregations, since the

primary function of a congregation is to reduce the aggregated search and advertising

cost.

2.3. Examples of congregations

Congregations are a pervasive feature of human existence. Recently, they have also begun

to arise among computational agents within the Internet and the World Wide Web, albeit in

a much more ad hoc way. In this section we provide some examples of congregations,

some with human and some with artificial agents.

One sort of congregation of human agents is a farmer’s market. Buyers and sellers of

produce come together at a regular time and place. The actual participants may change

from week to week, but individuals that want to sell produce know that they will have a

high likelihood of finding customers. Likewise, individuals interested in buying produce

know that they are likely to find a good deal. Every participant is self-interested, but each

requires the presence of some subset of the other participants in order to satisfy its needs.

By devoting some initial investment to creating a suitable marketplace and announcing its

presence to others (possibly in a distributed, word-of-mouth fashion), participants attract a

congregation of like-minded individuals. Even though the population at large may grow,

the congregation provides its members with a scalable way to continue to find more

preferred individuals to trade with.

Within the Internet, a common type of congregation is a chat group, IRC channel, or

Usenet newsgroup, where individuals with particular interests join together to share

information about topics of common concern. Within this domain, two features of con-

gregations become obvious: the relationship between a congregation’s description and its

composition, and the relationship between the congregation’s composition and the utility

received by participants. For example, a broadly titled newsgroup, such as ‘‘comp.ai’’,

might receive a wide variety of participants, posting on a variety of topics. This can be

beneficial in that participants are likely to find someone else with similar interests, but

also detrimental, since a large group can make it difficult to sort out interesting posts.

As the group membership grows, the entrance of new members with tangentially related

interests may decrease the newsgroup’s utility for current members. Conversely, a group

with a too-specific label might not be able to attract enough members to sustain a

productive dialogue. Describing a congregation at a level of detail that attracts only the

‘‘right’’ members can be a difficult problem.
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A third example is that of constructing the appropriate set of auctions for information

services. In the University of Michigan Digital Library Project (UMDL) [6], agents join

auctions to contract for the purchase and sale of information, such as scholarly articles or

web queries. One decision that has to be made is the determination of the number of auctions

to be constructed and the placement of sellers in appropriate auctions. If auctions have too

few participants, or sellers whose products are too similar, it might be hard for buyers to

satisfy their needs. However, if auctions are too large, then a buyer must evaluate a large

number of services that are unrelated to its needs in order to find sellers offering the services

it desires. Also, computational cost can become an issue in large auctions, since computing

allocations is a computationally difficult problem in combinatorial auctions. The UMDL

uses a centralized agent, the AuctionManager Agent [14], to control the creation of auctions.

However, in larger systems, a decentralized approach might be more appropriate. This

process of selecting the right set of auctions or markets for information goods is precisely the

congregating process. Each buyer would like to be in a group with agents that are selling the

good it needs at an acceptable price. Similarly, each seller would like to be in a group with

buyers willing to pay at least its reserve price for its good. (These needs might be mutually

exclusive.) Agents would also like to have some sort of stable structure, so that they do not

have to search through the space of all auctions every time they wish to buy or sell. Once

again, once an agent is in the ‘‘right’’ auction, the population as a whole can grow without

placing an undue computational burden on the agent’s decision-making ability, since it can

focus its attention on the goods sold in its congregation.

2.4. Congregating as distributed search

As was discussed previously, it can be helpful to consider congregating as a form of

distributed search. The state space of the search is the set of all possible congregations of

agents. As each agent moves from one congregation to another, the search moves from

state to state. Of course, no single agent has absolute control over the state transition. This

can make a search process difficult to conduct, since particular actions by several agents

may be needed in order to move to particular portions of the state space.

Congregating can potentially provide a means of coordinating this transition without

central control. If agents tend to return to congregations where they have previously had

successful interactions, the configuration of congregations will tend to change more

gradually, rather than in wild bursts. The greater an agent’s reliance on past history as a

predictor of future success, the less likely the configuration of congregations is to exhibit

wild swings in congregation membership. However, too great a reliance on past history

can prevent agents from conducting a satisfactory amount of exploration. In systems where

agents move, a dependence on past history can also lead to errors in evaluating the utility

of current actions. This is discussed further in Section 4.

Viewing congregating as distributed search also presents us with a useful set of questions

with which to evaluate a particular congregating process. For example, we can ask how

long it takes the process to reach an ‘‘optimal’’ set of congregations, where optimal may be

defined by an external source. We can also ask how efficient a particular state space

trajectory to reach a set of congregations was. In other words, do the agents attempting to

congregate incur large penalties while congregating as a result of a particular process? If

there are several states that a process will converge to, we can compare them either as
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equilibrium states, asking what their value is to the participating agents, or as the goal states

in a search process, asking how beneficial this search trajectory is to each agent in the

process. In this paper, we will focus on how long a given search takes to complete and the

aggregate profit accrued during the congregating process.

3. A formal model of congregations

In this section we provide a formal model of congregating and the congregating process.

This will later be connected to the CLRI model to analyze the difficulty of the

congregating problem as characteristics of the problem change.

A congregation c can be described as a tuple < �;Ag; t >, where � is the locus, or

location where the congregation has formed, Ag is the set of agents in this congregation,

and t is the time. A multiagent system can contain many congregations; we will refer to the

set Ct of all congregations in a MAS at time t as the configuration of congregations.

A congregation has a locational component known as a locus. The set of available loci

is denoted � ¼ {�1, �2, . . . , �i}. A locus need not be a physical location; it could also be a

newsgroup, a multicast frequency, or a mailing list. The point is that agents congregating

at this locus can all communicate with each other.

We consider two sets of agents of different types. The first type of agent is a

congregator; these are the actual agents who are moving between congregations. The

set of congregators is denoted by CA. The second type of agent is a labeler. these agents

serve the function of market makers or descriptors; they select labels for the purpose of

advertising a congregation to perspective congregators. The set of labelers is denoted LA.

In some domains, labelers may not be present, so LA ¼ t. We assume that an agent can be

a labeler or a congregator, but not both.

Labelers can choose labels from the set � ¼ {�0, �1, �2, . . . , �j}. Labels are placed on

a congregation as a means of describing it to potential congregators, thereby providing a

potential means of coordination. �0 has a special meaning as the ‘‘null label’’, which is a

label that carries no information. Congregations which are unlabeled are considered to be

described with the null label. While semantic disambiguation of terms by different agents

is a difficult problem in AI, it is not the focus of our research. Consequently, we assume

that all agents share the same semantic meaning for each label.

3.1. Congregators

A congregator wishes to maximize its long-term utility. The underlying assumption here is

that a congregator will have many chances to join congregations and therefore wishes to

maximize its total satisfaction over all these encounters. As discussed previously, a

congregator can benefit in the long term by devoting some initial resources to finding a

good congregation. Thereafter, its decision as to whom to interact with is simplified, since

suitable partners are occupying the same congregation. For this work, we assume that a

congregator can only join one congregation at a time.

We focus explicitly on agents that operate within a utility-theoretic framework. There-

fore, each congregator i has a payoff function Pi which maps from a congregation c to a

real number: Pi : C ! R. Since a congregation’s payoff to an agent is dependent upon the

CONGREGATION FORMATION IN MULTIAGENT SYSTEMS 151



other agents that are a part of the congregation, a congregator will not be able to fully

evaluate a congregation’s utility before deciding whether to join it. While selecting a

congregation to join, a congregator will rely on an estimate of its payoff, (denoted P̂i )

which maps from loci (and the labels placed on them) to the reals: P̂ : � ! R.
Let �j be the set of labels which are offered to congregators (by labelers) in iteration j.

Congregations without a label are assumed to be described by �0, the null label. A

congregator i’s decision function �i chooses a locus (using �j) which maximizes P̂i.

We assume that there are discrete iterations in which labels are offered and congregators

move. However, we do not assume that all congregators or labelers act at the same rate. For

example, some labelers may only select a label every 5 iterations, or some congregators may

only move every 10 iterations. While this does not provide truly continuous dynamics, it is

general enough to capture a wide range of discrete asynchrony in the speed of decision

making.

3.2. Labelers

A labeler’s problem is potentially more complicated. As with the congregators, a labeler

wishes to maximize its long term utility. It has one decision to make: which label to offer.

There are two confounding factors which make this problem difficult: a labeler does not

necessarily know the congregators’ preferences over congregations(or labels), and so must

learn them; and the labeler’s payoff for selecting a particular label may also be contingent

on the labels offered by other labelers.

Formally, a labeler la has a payoff function Pla which is a function of the agents which

join its congregation. Pla : �1 � �2 � . . . � �n ! R. Since labelers serve as market

makers, their payoff function will be correlated with those of the congregators in their

congregation. For example, one payoff function would be for an agent to take 10% of the

payoff of each congregator in a congregation, providing it with incentive to maximize a

congregation’s overall payoff. However, a labeler is not able to directly control which

congregators join its congregation; it is only able to select labels. Therefore, it is trying to

learn a decision function Dla : � ! R which predicts the payoff received from offering a

particular label. In fact, D also depends upon the labels offered by other labelers, meaning

that the labeler is learning a moving target function [24]. As other labelers change their

offerings, the optimal offering (and therefore the payoff structure) will change.

In this paper, we shall assume that labelers are 0-level learners in the recursive modeling

sense [7]. A 0-level agent is one that does not construct a model of other agents and then

find a best response to their predicted actions. Instead, the other agents are simply treated

as a part of the environment, and accounted for as a sort of noisy signal.

4. Applying CLRI to congregating

In order to understand what parameters of the congregating problem can make agents’

learning problems easier or harder, we need a model that describes different aspects of the

problem, how they relate to each other, and how varying an aspect changes the difficulty

of the congregating problem. In this work, we have used CLRI as a model for describing

congregating.
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CLRI is a framework for analyzing multiagent learning that was developed by Vidal and

Durfee [23, 24].1 CLRI describes how simultaneously learning agents can affect the

difficulty of each other’s learning problem. Since the congregating problem is one in

which each agent is learning which other agents it does and does not want to interact with,

this framework is quite suitable.2

A full description of CLRI can be found in [25]. We provide a summary here, followed

by our extensions to allow it to be applied to the congregating problem.

CLRI is designed to model worlds in which multiple agents are simultaneously learning

a decision function, and where each agent’s decision function can depend upon the actions

of other agents. This leads to a phenomenon known as the moving target function problem,

where, as one agent changes its behavior due to learning, other agents’ decision functions

change.

CLRI assumes a world with a finite set of discrete states w 2 W and a finite number of

actions ai 2 Ai for each agent i, where |Ai| � 2. Each agent i is learning a decision function

�tiðwÞ W ! A that predicts the right action to take at time t in world state w. The optimal

decision function, which predicts the correct action for each world state, is known as the

target function, and is denoted as �t
iðwÞ. Agent i’s learning problem is to minimize the

difference in prediction between � and �. In the congregating problem, At
i contains actions

which map to the joining of congregations, given the configuration of congregations at

time t. For each possible congregation ctj; At
i contains an action a which indicates that the

congregator will join congregation ctj. If an agent is a labeler, then At
i is the set of possible

labels that can be offered at time t. Therefore, the � described in this section is an ins-

tantiation of the � discussed in section 3.1.

One point to note here is that the CLRI framework is based upon traditional PAC-

learning assumptions [13]. In particular, it assumes that, for a given world state, there is

one correct action and all the others are equally incorrect. Also, the Markov property must

hold; the state that a set of agents are in at time t þ 1 must depend only upon the state at

time t and their decision functions. As with PAC-learning, these assumptions can provide

an approximation to the way in which richer, more complex systems behave. We recognize

that these assumptions place limitations on the fidelity with which agent systems can be

modeled with CLRI; in order to maintain connections to existing work on computational

learning theory, we will maintain these assumptions throughout this paper. Future work

will extend CLRI to focus on more complex domains.

In a multiagent world, the difficulty in learning is that an agent’s� function is dependent

upon the actions selected by other agents. As they learn, an agent’s � can change. The

CLRI framework consists of five parameters that are used to quantify this change.

The first two parameters of CLRI are change rate (c) and learning rate (l ). Change rate is

the probability that an agent will adjust an incorrect mapping of �ðwÞ from time t to time

t þ 1, and learning rate is the probability that the agent will change the mapping of �tþ1ðwÞ
to be equal to �tðwÞ. (That is, the agent will know what it should have done at time t in

world state w.) Obviously, l must be less than or equal to c. In fact, l is equal to c times the

probability that an adjustment will be the correct one for world state w. In the congregation

framework, change rate is the probability that an agent will choose a different congrega-

tion than it had previously when faced with the same choices, and learning rate is the

probability that an agent will be able to say after the fact where it should have gone (and

thus make the right choice the next time it is faced with this set of choices).
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The third CLRI parameter is retention rate (r), which is the probability that an agent

retains a correct mapping ð�tðwÞ ¼ �tðwÞÞ. In terms of congregating, this is the probability

that an agent that chose the correct congregation will make this same choice again when

faced with the same set of alternatives, even if it has changed its mapping of � for other

configurations of congregations.

The fourth CLRI parameter is volatility ð�Þ, which is the probability that the function �
that the agent is trying to learn changes. In other words, the probability that �tþ1ðwÞ 6¼
�tðwÞ. Note that nothing is said about how much � changes or what the correct action at

time t þ 1 is, only that the correct action does change. In congregating terms, this is the

probability that a locus � which was chosen at time t from a given set of loci is no longer

the correct choice at time t þ 1 when given the same set of loci to choose from,

presumably because other congregators have changed location.

Since volatility can be difficult to determine through observation, CLRI provides a way

to derive it using a fifth parameter: impact (Iij). Impact is the effect that agent i’s learning

has on agent j’s target function. In particular, it is the probability that agent j’s � changes

between t and t þ 1 as a result of agent i’s d changing. In terms of congregating, this is the

probability that when congregator ci decides to choose locus �Vrather than �, congregator
cj’s best choice of congregations changes.

In order to apply CLRI to congregating in any specific way, we need a domain in which

these probabilities can be determined. In this paper, we examine congregating using CLRI

within the context of the affinity group domain.

5. The affinity group domain

We chose the affinity group domain as an initial domain for studying the congregating

problem. An affinity group is a set of agents that all share some characteristic, such as hair

color or an interest in agent research. In the simplest case, agents of a particular affinity

group want to join congregations that contain other members of their group and avoid

congregations containing members of other affinity groups. With more complex types, an

agent will prefer to collocate with agents whose type is more similar to its own over agents

whose type is less similar. This is a problem that is often studied in sociology and

economics, where agents decide where to locate based on some characteristics, such as the

race, age, or income of other agents in the different locations. Thomas Schelling was an

early pioneer of this sort of model. His research [17] shows how common economic and

sociological phenomena, from urban flight and housing prices to insurance coverage, can

be modeled with a population of agents of different types who each make self-interested

decisions as to where they should locate or which group to join based on the other agents

they expect to find there.

The affinity group domain is very simple, but it is one that has several properties that

make it useful for studying congregating. The first is the simplicity of agent preferences.

Agents evaluate a congregation based only on the characteristic(s) of the other members

(as opposed to something about the locus itself ), which makes it easy to generate utility

functions for each agent. Second, affinity-type problems typically have a set of Pareto-

style solutions in which no agent wants to change congregations, given that all of the other

agents are remaining still. For example, any state in which every agent from a particular
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affinity group is in the same congregation and each affinity group is in a separate

congregation is equally preferred. This means that we, as evaluators of the system, can

identify these states ahead of time and recognize when the MAS is in one of these states.

More importantly, it provides the system with a fixed point; once such an optimal state is

reached, all agents will remain where they are. This means that we can detect convergence

by noticing when no agents wish to switch congregations. It also means that we will not

have scenarios where agent A wishes to congregate with agent B, but agent B does not

wish to congregate with agent A. In that instance, the two agents would chase each other

indefinitely. In other words, preferences are symmetric.

6. The difficulty of congregating

In this section, we use CLRI to determine how the different parameters of the congregating

problem can make it easier or harder for agents to locate the correct congregation. We

begin with the case in which congregators search for the correct congregation without the

help of labelers, and then introduce labelers as a coordination mechanism.

6.1. Congregating without labels

As a first pass at understanding the congregating problem, we examine the case in which

there are no labelers. This means that, for all congregations, the associated label is �0, the
null label. Congregators therefore can only guess randomly as to which congregation is

best for them.

The simplest possible case is when there is only one affinity group and a number of loci.

If there is only one affinity group, then all congregators simply want to congregate in the

same location. The problem, of course, is that they don’t know ahead of time which locus

to choose. This is a very simple problem, but it lets us establish some notation and lead

into scenarios with multiple affinity groups.

Assume that there are / agents and m loci. Each agent a receives the following payoff:

Payoff ðaÞ ¼ 1 if CðaÞj j ¼ �
0 otherwise

�

where |C(a)| indicates the size of the congregation agent a is in. Congregators will search

randomly until they find themselves in a congregation with every other agent.

The first question we can ask is how long it will take for a set of / congregators to find

each other. The probability that all agents will choose the same locus on any given time

step is: 	 ¼ 1
m

� ���1
. Therefore, the agents will succeed in finding each other with

probability 	 on the first iteration, 	(1 � 	) on the second, and so on. The probability

that all congregators have found each other within t iterations is:

	
Xt�1

i¼1

ðiþ 1Þði� 	Þi ¼ 1� ð1� 	Þt: ½1
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We can then solve for t to ask how long it takes for a set of congregators to find each other

with probability p.

t � m��1 lnð1� pÞj j: ½2

Since the population does not change, once all the agents have converged to the same

congregation, they will remain there, since they are all receiving a positive payoff. Also, if

all agents have not converged to the same congregation, all of them will be unsatisfied,

since they will be receiving a payoff of 0. Therefore, there are m stable states in the global

search process (one for each locus). The salient point in this example is that the difficulty

of congregating increases exponentially as more loci are introduced, since the number of

stable states grows linearly and the number of world states grows exponentially.

We can use the above formulae to determine the corresponding CLRI parameters. We

begin with c, the change rate, which is the probability that an agent will change an incorrect

mapping. This will happen any time a congregator is not grouped with every other agent of

its affinity group, so c ¼ 1 � 	. Similarly, l, the learning rate, is the probability that an

incorrect mapping will be changed to a correct one. This is simply c times the probability of

picking the right locus, which is 1
m

� �
. r, the retention rate, is 1. When congregators find the

right location, they quit moving and so there is no chance of ‘‘forgetting.’’ Finally, we have

volatility ð�Þ , which is the probability that the target function will change. This is the

probability that the congregators are not all in the same locationmultiplied by the probability

that the ‘‘right’’ locus changes on the next iteration: � ¼ ð1� 	Þ m�1
m
.

The above parameters indicate that as more loci are added, the problem becomes

exponentially more complicated. As we saw before, convergence is exponential in the

number of agents. Applying CLRI helps us to sort out why this is the case. In particular, �
contains the terms (1 � 	) and m�1

m
. Since 	 becomes exponentially small as the number of

agents increases, volatility approaches m�1
m

in the limit. If m is at all large, this will be close

to 1, meaning that every agent’s actions have a very strong effect on the target functions of

other agents. This is what we would intuitively expect, since the problem depends on all

agents making the same decision.

Applying CLRI, even to this simple problem, helps us to understand more about why it

is that this system takes exponentially long to converge, not just in terms of a series of

stochastic events, which is what Equations [1] and [2] are, but in terms of agents that are

trying to learn the correct action. In agent terms, the learning problem is difficult because

volatility is very high for each pair of agents, meaning that each agent’s decision function

is highly dependent upon every other agent. This is a different sort of analysis than one

which treats agents as passive objects, and will help us to find ways that agents can learn

more quickly in Section 6.2. Note also that these analyses are worst-case; the solution

space is very sparse, and congregations containing only part of an affinity group yield no

payoff. While this is nice for performing analyses, it is perhaps overly pessimistic. In

Section 7, we will expand upon this and examine how congregating can be used to

improve overall performance.

6.1.1. Multiple affinity groups. Of course, a system with one affinity group is of

limited interest. Consider the case where there are g affinity groups of congregators

and each group is of size s, for a total of gs congregators. Again, there are a total of m loci.
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This means that there are mgs different world states. Once again, each congregator wants

to join a congregation that maximizes its payoff. Let us modify the payoff function

slightly.

Payoff ðaÞ ¼ �c2CðaÞ
Similarityðc; aÞ

CðaÞj j � � ½3

where C(a) is the congregation an agent is in (and |C(a)| is the number of agents in this

congregation). Similiarity(c, a) : A � A ! [0, 1] is a function which takes two

congregators as input and returns a number between 0 and 1 indicating the

congregators’ fractional similarity. In addition, each agent has a threshold � which is

subtracted from this sum. This threshold can be interpreted either as a computational or

production cost, if agents must pay for their resources, or as a form of satisficing. By

tuning � , we are able to control the fraction of congregations an agent is satisfied with. If �
is near 0, almost any congregation yields positive payoff, whereas if � is 1, only a

congregation consisting entirely of an agent’s own affinity group will yield nonnegative

payoff. To remain consistent with the PAC-learning assumption that there be only one

correct action in a given world state, we will let Similarity equal 1 if agents are in the same

affinity group and 0 otherwise. In addition, to make non-optimal actions undesirable, we

set � equal to s
sþ1

. This assures that agents will only receive a positive payoff and therefore

stay still only in the case where they are in a congregation consisting solely of their own

affinity group. These assumptions will be weakened in Section 7.

We are now able to determine the CLRI parameters. This problem is quite complicated,

since there is such a large number of combinations of congregators. The first parameter is

c, the change rate. A congregator will change an incorrect mapping any time it is not in the

correct congregation, which, if all agents move randomly, will happen with probability

c ¼ 1� m�1
m

� �ðg�1Þs
� �

. This is the probability that a congregator is not in a congregation

consisting solely of members of its affinity group.

The second parameter is the learning rate (l ). This is simply the change rate c times the

probability of randomly moving to the best available congregation, which is 1
m�1

� �
, or 1

m

� �
if an agent may return to the congregation it was just in.

The third parameter is the retention rate (r). A congregator will retain a correct mapping

if it is in the correct congregation and no congregators of another type arrive. In other

words, r ¼ m�1
m

� �ðg�1Þs
.

The fourth parameter is impact (i), which is the effect that agent b’s decision has on

agent a’s target function. Agent b can affect agent a in two ways: if it is different and

moves into agent a’s congregation, or if it is the same and it moves out. The first case will

happen with probability 1
m
. In the second case, a like agent will move out if there is a

different agent in the congregation, which happens with probability 1� m�1
m

ððg�1ÞsÞ
.

Determining closed-form solutions for the time to convergence and the probability of

convergence is more difficult in this scenario, since it is possible for a subset of

congregators to settle early on and wait for others to find them. In other words, the

probability of convergence is dependent on the entire past history. However, if we examine

the change rate and impact of agents from different affinity groups, we can see that the

problem’s complexity lies in the fact that both terms contain exponents dependent upon

the number of agents: ððg � 1ÞsÞ . Once again, the difficulty of each agent’s learning
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problem comes from the fact that its decision function can be affected by so many other

agents. As the number of agents increases, the volatility of each agent’s decision function

increases. Similarly, we can see that each agent’s change rate is very high as the population

grows. This shows us that the difficulty of the problem stems from the fact that each agent

is rapidly changing its decision function, and each of these changes affects the decision

functions of other agents in the system. This suggests ways to reduce this complexity:

reduce the agents’ change rate, or reduce the impact that each agent’s decision has on the

other agents around it.

Since it is difficult to analytically determine the time needed for a system with multiple

affinity groups to converge, we performed some simple experiments to develop an

estimate. Each agent had a � of 1. Using 3 loci, and 3 affinity groups of three congregators

each, we begin by correctly fixing 8 congregators and having 1 move. We then fix 7 and

allow 2 to move, and so on. Agents move randomly between congregations until they

settle on a locus where there are only members of their own affinity group (i.e. their payoff

was 1). They then stay there unless ‘‘pushed out’’ by the arrival of a congregator from a

different affinity group. Results (averaged over 50 trials) are shown in Figure 1.

As predicted in the analysis, the time needed for the agents to stabilize increases

exponentially as the number of congregators allowed to move increases. Since the solution

space is so sparse, it quickly becomes very difficult for congregators to find each other. As

we discussed previously, the two ways to reduce the problem complexity are to reduce the

Figure 1. Iterations to stabilize as a function of the number of congregators moving. Note that the y axis is log

scale.

BROOKS AND DURFEE158



change rate or to reduce the impact that agents have on each other. One way in which agents

can reduce their impact on each other is to coordinate their decisions; for example, all agents

of one affinity group in a congregation can decide to move to the same location. This

suggestion implies that they can communicate and negotiate; in the following section wewill

show how this coordination can be achieved without communication between congregators.

6.2. Introducing a flat label space

As we noted earlier, if agents are able to label the loci they are at and attract like members

in that way, the congregating problem can potentially become much easier.

In this situation, the congregator’s decision function becomes trivial; simply move to the

congregation with the label that most closely corresponds to its affinity group. If multiple

labels match equally well, choose one at random. If no such label exists, move randomly.

In this case, it is the labeler’s problem that is the interesting one. Each labeler must choose

a label which will attract an affinity group. The value of its decision will be influenced by

the choices of the other labelers. Therefore, each labeler wishes to attract a distinct affinity

group. We begin with a flat label space. That is, each label potentially refers to at most one

affinity group. In section 6.3, we extend these results to consider the case of hierarchical

labels.

Let us assume that each labeler is neutral as to which affinity group it wants to attract. It

derives utility from having a successful congregation; that is, one in which all congregators

in its group are of the same type. (Perhaps it collects a portion of their payoffs.) As in the

previous section, we will assume that labelers have no memory regarding the payoffs from

labels other than the current one. A labeler simply makes the decision as to whether to

keep or discard the current label. We retain the notation used in the previous section, so g

indicates the number of groups or types. Additionally, � indicates the number of labels and

m the number of labelers. (We will assume that there are at least as many labels as groups.

If this is not the case, it may be more useful to treat the system as one without labels.)

Within this framework, c (the change rate) is 1. If a labeler has an incorrect label, it will

always change it. l, the learning rate, is the probability that the labeler will select an unused

label, which is g
�

��1
�

� �ðm�1Þ
. As the number of labels gets very large, the first half of this

term goes to zero and the second half to one. In this case, nearly all the labels do not

correspond an affinity group. If we differentiate l, we find (after much reduction) that dl
d� is

maximized when m ¼ �, and there is one label for each labeler.

r is also 1, by definition; if a labeler has a correct label, it will keep it. Volatility ð�Þ is
the probability that the target function will change, which is the reciprocal of the learning

rate, since the only way the target function will not change is if all other agents hold still.

Therefore, maximizing the learning rate will minimize volatility.

Once again, determining the time needed to converge is non-trivial, since one labeler’s

decision may aid another. In fact, what typically happens is that one labeler will attract an

affinity group, who will then hold still and make the problem easier for other labelers.

Therefore, to determine the time needed to converge with probability p, one must

determine this probability for each possible history and then aggregate these probabilities

appropriately.

By applying CLRI to the problem, we are able to see that labeling will be most effective

when the number of labels is close to the number of labelers. Also, as was pointed out in

CONGREGATION FORMATION IN MULTIAGENT SYSTEMS 159



above, this assumes that there is at least one distinct label for each group. This all implies

that the difficulty of the problem increases with the number of labels (or affinity groups),

rather than the number of congregators, which is a substantial improvement.

Once again, we used experiments to develop an estimate of convergence time. In this

experiment, we began introducing labelers for each locus. A labeler could choose which

affinity group it wanted to attract; its decision was independent of the other labelers.

Congregators would automatically go to a group with the corresponding label (or choose

randomly between offerings if more than one labeler offered the same label) or move

randomly if the label for their group was not offered. Each congregator received a payoff

according to Equation [3]. The labeler’s decision was analogous to the congregators’ in the

previous experiment: if the label chosen was successful (that is, it attracted a complete

affinity group with no extra agents) it would continue to use that label. Otherwise, it would

select a new label at random.

We began with a baseline experiment with no labelers. This is the same as allowing all

congregators to move in the first experiment. We then added one labeler, then two, and

then three. Results are shown in Figure 2.

There are a few things to notice here. The first is that the problem becomes trivial with

three labelers. They settle on a solution almost immediately. Even with only two labelers,

the problem becomes very easy; the congregators which don’t have a label to attract them

are able to settle on a common locus relatively quickly.

The slightly more subtle point is that adding one labeler produces the same effect as

holding two congregators steady, and adding two labelers produces the same effect as

Figure 2. Iterations to stabilize as a function of the number of labelers. Y axis is log scale.
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holding five congregators steady. The label produces a shared decision amongst all

members of the corresponding affinity group; they will all move to the same congrega-

tion, and so in terms of convergence and impact they can be considered as one agent.

This is a big savings; as was noted previously, a major difficulty with the congregating

problem is the impact that one agent’s decision has on another. If all agents in an affinity

group make the same decision, then they will produce the same amount of impact on an

agent of another affinity group as a single agent in a system without labelers. As more

affinity groups are introduced, the potential benefits from introducing labelers will be

even greater, since a system with labelers will increase impact linearly (with each group

added) rather than exponentially (with each group added times the number of agents in

each group) in systems without labelers. As we saw in the CLRI analysis, volatility is

now a function of the number of groups or labels, rather than the number of agents. By

coordinating their decisions, members of a particular affinity group are able to simplify

the problem both for themselves and for other agents (which reduces other agents’ impact

on their decision functions). In this case, labeling is used as a mechanism to provide this

coordination.

As was discussed previously, the benefit of labeling is maximized when the set of labels

is the same size as the number of affinity groups. If the set of labels is much larger, then

using labels to attract a congregation becomes more difficult, since labelers will often

choose labels that do not correspond to any affinity group. One way around this is the

introduction of hierarchical labels, where some are more general than others.

6.3. Adding a hierarchy of labels

One common form of hierarchical labeling, which makes sense within the affinity group

domain, is the introduction of abstract labels that can potentially attract more than one

affinity group. This is in contrast to a base label, which corresponds to at most one affinity

group. When there are many more labels than affinity groups, using abstract labels can

make sense; they allow labelers to have a better chance at attracting congregators. In this

paper, we restrict ourselves to abstract labels that are the logical OR of simpler labels. The

corresponding abstract and base labels form a tree, as seen in Figure 3.

A labeler that can select an abstract label has a tradeoff to make: a more abstract label is

more likely to attract congregators, but if too many affinity groups are attracted, their

members will not be happy with the congregation and will leave. Also, we assume that a

Figure 3. All possible abstract and base labels of a four-label system. Heavy lines indicate the labels that cover the

base label C.
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congregator will choose a more specific label over a more general one, since the more

specific label will be more likely to contain a higher percentage of congregators in its

affinity group, making too-general labels unuseful. The larger the number of labels is

relative to the number of affinity groups, the higher in the hierarchy a labeler should select

labels. We will now outline this more formally in CLRI terms. We begin with some

terminology that will aid in applying CLRI. We refer to the level of a label in a hierarchy

as the label’s height in the hierarchy. In Figure 3, the label A is at level 1 and the label

A _ B is at level 2. More general labels have a higher level.

As was mentioned above, one danger of selecting an abstract label is the selection of a

similar, but more specific label by another labeler. The labeler that offers the more specific

label is covering the other labeler. For example, assume there is one affinity group, labeled

A. If labeler 1 chooses the label A _ B _ C _ D and labeler 2 chooses the label A _ B,

labeler 2 covers labeler 1, since all the congregators in group Awill choose labeler 2, as its

label meets their requirements more specifically.

We will also refer to a label matching an affinity group. A label matches an affinity

group if congregators in that group would pick this label, given that no other label covers

it. For example, if we had labels {A, B, C, D}, A _ C _ D and A _ B both match group A.

The primary calculation that needs to be made in order to calculate the various CLRI

parameters is the probability of a labeler choosing a successful label. A label is successful

if it matches at least one affinity group, and it is not covered by any other label. We begin

by determining the total number of possible labels. Let g be the number of affinity groups,

m be the number of labelers, and l be the number of base labels, where g < l. The total

number of labels L is:
Pl

i¼1
l
i

� �
¼ 2l � 1. If a labeler chooses a label at level lV, it will have

a probability of
�
1� ð1� g

l
Þ2

l�1
�
of matching at least one affinity group. As the label

becomes more abstract, the chances of matching an affinity group increase. However, the

chances of being covered by another labeler also increase. For example, in Figure 3, if

labeler 1 chooses label A _ B _ C _ D and the affinity group is truly of type C, any

labeler who chooses a label in the sub-tree from C to A _ B _ C _ D (indicated with the

dark lines) would cover labeler 1.

Given that a labeler has a successful label at level lV, the probability that another

labeler will cover it is the probability that there is no open path from the label to a

leaf representing a group. The probability that a competing labeler is in a labeler’s

subtree is � ¼ 2lV�1
2l�1

; and the probability that competitor blocks the path to all groups is�
1�

�
1� lV

2lV�1

��
. The probability that none of the m competitors block a labeler’s path

is then
�
1� lV

2lV�1

�m
. The total probability of selecting a label at level lVwith m compet-

itors and having at least one match can be derived to be:

Xm
i¼0

ðCð2l0 � 1; iÞ�ið1� �Þ2
l0�1�iÞ

�
1� l0

2l
0� 1

�i

: ½4

Once we know this probability, the CLRI parameters are straight-forward to determine.

As above, change rate and retention rate are 1. Learning rate is simply the probability of

success, which was determined above. Impact is the probability that a particular labeler

will cover a successful label, and volatility is the probability that any other labeler will

cover a successful label.
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Using CLRI to analyze this problem helps us to identify both what is easy and what is

difficult about this problem. We see that learning rate is influenced by both the number of

other labelers and the size of the hierarchy. For a single labeler, it is easier to cover more

groups by choosing a higher-level abstract label, but when multiple labelers are learning

and choosing labels at different levels, it becomes easy for one labeler to cover another.

Once labelers have all settled on the same level of abstraction, volatility decreases and

learning rate increases.

Once again, convergence time was determined experimentally. The addition of

hierarchical labels also adds an additional decision for the labeler: whether to offer more

or less abstract labels. Labelers receive a positive fraction of the total payoff of the

congregators in their congregation. We chose a very simple strategy for the labelers. A

labeler that receives no payoff will attempt to abstract, assuming that it has not matched

with anyone. A labeler that receives a less than maximal payoff will choose a less abstract

label, assuming that its generality has attracted too many affinity groups. Finally, a labeler

that receives the best possible payoff will stay put.

In this experiment, we again considered a scenario in which there were three labelers,

three affinity groups of three congregators each, and three base labels. We then held the

number of labelers and congregators fixed and introduced extra base labels, up to a

maximum of 20. The median number of iterations needed for the labelers to each attract an

affinity group (over 100 trials) is shown in Figure 4.

We used the median here rather than the mean since the experiments had a large

standard deviation. Notice that the number of iterations needed for the system to stabilize

Figure 4. Iterations to stabilize as a function of the number of base labels.

CONGREGATION FORMATION IN MULTIAGENT SYSTEMS 163



increases linearly as more labels are added. Examining the individual runs indicates that, in

a typical run, each labeler tended to use about 1
3
of the available labels. Once each labeler

added enough base labels to have this many in their abstract label (each started with one),

they were then reduced to a problem very similar to the flat label space presented in

section 6.2 where g labelers were choosing from among g labels.

In general, it appears that allowing labelers to offer hierarchical labels and, in particular,

to exploit the structure of such a hierarchy when searching for appropriate labels, makes

finding optimal sets of congregations much easier.

7. Using congregations to improve net payoff

The previous section’s analytical results are useful for two reasons: they allow us to

understand what is difficult about the congregating problem by decomposing it into the

decision functions of individual agents, and they suggest ways in which the difficulty of

the problem can be ameliorated. However, they also have the effect of obscuring the

usefulness of congregating as a way of reducing search cost and thereby improving net

payoff to the congregators. This is an artifact of our assumption that � is 1, meaning that

agents are only happy with a small set of congregations. In this section, we relax this

assumption and show how congregations can be used to improve agents’ overall

satisfaction.

Recall the payoff function described in Equation [3]. It says that an agent receives a

fractional payoff equal to the average similarity between it and the other agents in its

congregation, less � . An alternative but equivalent explanation for this function is that, on

each iteration, each agent selects another agent from its congregation at random to play a

coordination game with. The payoff for this game to each agent is the similarity between the

agents, measured on [0, 1]. In expectation, this is the same payoff function, yet it provides a

clearer illustration of how congregating can be useful: by increasing the expected payoff

from this game.

In order to quantify the relationship between congregating and system performance,

we performed experiments with 50 congregators divided equally into 10 affinity groups

fg1; . . . ; g10g. The similarity between group i and j is 1� j�ij j
10

� �
. No labelers were used,

and the number of loci were varied. Unlike in the previous section, � was also varied

between 0 and 1. This provides an illustration of the way in which the solution space

attenuates as agent thresholds increase. (All agents have the same � .) As in section 6.1,

congregators moved if their net payoff was negative. Results are averaged over 10 runs of

100 iterations each.

Figure 5 shows the results of these experiments. The x axis indicates the number of

loci, and the y axis is the pre-threshold payoff per congregator, averaged over the entire

run. (That is, � has not been subtracted from this total.) Several results stand out from this

experiment. First, we see that the benefit of congregating differs as the threshold is

varied. When � ¼ 0.1, agents are happy with almost any interaction, and so there is no

need for them to separate into different congregations. As � increases to 0.25, 0.5 and

0.75, we see a clear benefit to congregating. For each curve, there is a number of loci

(near 10) in which average payoff is maximized. When � ¼ 1, congregating is not able to
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help much; at this point, the solution space is so sparse, and the threshold so high, that

the chances of a congregation forming that is stable enough to hold together and attract

more members is very low. Congregating is most effective when agents of a particular

affinity group are able to form a ‘‘critical mass’’ at a locus and then attract others from

their group. Second, we can see that, for all thresholds, there is a point at which the

number of loci is too large, thereby decreasing average payoff. With a large number of

loci, it again becomes difficult to form that critical mass needed for a congregation to

form and persist. Another point, which may be more difficult to glean from this summary,

is that multiple loci allow the agents to settle into a stable configuration. To see this,

consider � ¼ 0.75. Recall that the y-axis in Figure 5 indicates payoff before the threshold

is subtracted. Since this is averaged over 100 iterations (including initial learning) when

there are 20 loci, this indicates that the system is able to reach states in which agents are

receiving positive profit. Figure 6 illustrates this more clearly, showing a moving average

for � ¼ 0.75 as the number of loci is varied. This figure shows that congregating

allows agents to improve their payoff, even beyond a relatively high threshold. Of

course, there are some agents in the system below the threshold, and so they will change

congregations, thereby changing the average profit and producing the cyclic behavior we

observe.

This experiment demonstrates that, if the system designer knows something about the

congregating population (in this case the number of affinity groups) he can engineer a

system with an appropriate number of loci and allow the congregators to self-organize into

Figure 5. Average profit 50 congregators from 10 affinity groups, averaged over 100 iterations for different

numbers of loci as � is varied between 0 and 1. X axis is log scale.
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a configuration that stabilizes to yield higher average payoff than would be achieved if the

agents were all selecting other agents within the population as a whole. It also

demonstrates that congregating is most effective when agents have some preference over

whom they interact with (as opposed to when � ¼ 0.1), but the dynamics of congregation

formation allow for a critical mass of agents to collect together and attract similar agents,

as in � ¼ 0.25, � ¼ 0.5, and � ¼ 0.75.

8. Related work

In this section, we compare congregating to other methods for coordinating self-interested

agents, particularly coalition formation and team formation. It is worth noting that these

methods can be combined; congregations are a way for large groups of agents to self-

organize into smaller groups. Once these congregations have formed, coalition or team

formation methods can be used to allocate tasks or determine relationships within the

congregation. In this way, these algorithms can scale to larger numbers of agents.

One of the first methods for coordinating multiple agents was Davis and Smith’s

Contract Net [4], which provided a protocol by which an agent could locate other agents

who would perform tasks for it (the connection problem). As discussed earlier, one problem

with Contract Net is the number of messages sent as the number of agents increases.

Focused addressing, as implemented using congregations, is a way of solving this problem.

Figure 6. A moving average of average profit over time as the number of loci are varied. � ¼ 0.75. Each point is

an average of the profit for the 10 closest time points, which smoothes the curve. Experiments involved 50

congregators from 10 affinity groups, averaged over 100 iterations.
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Matchmaker services (sometimes referred to as directory services or yellow pages) have

also been suggested as a way for agents to solve the connection problem [5]. In these

systems, a set of directory agents handle the connection problem by having agents register

their capabilities. When agents need to have a task performed, the matchmaker then

suggests an appropriate agent. Matchmaking systems, as well as systems such as

RETSINA [21] which use middle agents to coordinate the connection problem, assume

that each agent can describe its capabilities and knows the sorts of agents it wants to

interact with. In a more general system, the best way to describe oneself might depend

upon the other agents that are in the system. Congregating provides a way of sorting

agents into groups so that they can more easily determine how to describe themselves.

Congregating is also related to multiagent learning problems; multiple agents are

learning at the same time, and the global state of the system is an important factor in

determining the utility of each individual agent. The notion of coordination as multiagent

learning has also been discussed by Sen, et al [18]. In their paper, cooperative agents

learned to coordinate actions to achieve a joint goal. Hu and Wellman [9] present a game-

theoretic model in which self-interested agents are able to coordinate and each learn a

Nash equilibrium strategy. A primary difference between those works and this paper is that

the congregating problem focuses on a decision as to whom to interact with, rather than

what action to choose.

The construction of teams of agents that collaborate to pursue some shared or common

goal is a well-studied field of research within MAS. Singh, Rao, and Georgeff [20] define

a team as a group of agents who are constrained to have a common goal. One notable

example of research on teams and team-oriented programming is that of Tambe [22]. His

STEAM framework implements a joint-intentions model of problem solving [3], and

demonstrates how groups of agents can be dynamically constructed to work together at

problem solving. Similar approaches to multiagent coordination can be found in the work

of Jennings [10], who also uses joint intentions, and Grosz and Kraus [8], who use an

abstraction known as SharedPlans.

All of these approaches differ from congregating in that they explicitly require agents to

share some sort of joint goal to be achieved. As a result, agents’ reward or utility is

dependent upon the performance of the group as a whole. In contrast, congregating makes

no such assumption. All agents are presumed to be completely self-interested. Each

agent’s utility function is completely local, and an agent will cooperate with other agents

only as long as such cooperation increases its utility. Note that this does not prevent the

formation of teams so long as team formation benefits all members of the team; the point is

that agents cannot be assumed a priori to be cooperative and only interested in team goals.

A more self-interested approach to multiagent interaction and coordination is the

coalition. Coalitions have been discussed both within the context of economics [12] and

multi-agent systems [11, 16, 19, 27]. While some details vary among researchers, the

standard definition of a coalition is a group of agents that have all agreed to work together

to achieve a larger goal. Each agent is self-interested, and by participating in the coalition

it will receive a higher utility than if it did not participate in the coalition.

This concept is closer to congregating than team formation, since it gets at the notion

that agents are self-interested and want to join a larger group to improve their rewards.

However, coalition formation typically requires that the identities of the agents are

known. Even if the actual problem of forming coalitions is distributed, there is common

CONGREGATION FORMATION IN MULTIAGENT SYSTEMS 167



knowledge about who is involved. In congregating, an agent may not know the identities

of other congregation members when it decides whether to join or not. In fact, the

particular membership of a congregation may change over time. Consider the farmer’s

market example: when a buyer of produce decides to go to the market, it does not know

what other agents will be there, although it may have some predictions. The agents who

are there may change from week to week, although it is likely that there will always be

agents that fill particular roles, such as seller of tomatoes or buyer of flowers.

As we have suggested earlier, in many domains congregating could potentially be

combined with coalition or team formation. Congregating would be used to subdivide a

large, dynamic agent population into congregations. Coalition or team formation could then

be applied within each congregation to allocate specific tasks. This would allow MASs to

scale to larger numbers of agents than are practical for a single coalition formation algorithm.

9. Conclusions

This paper has presented congregating both as a metaphor for understanding how groups

of agents can discover each other and as a formal model for describing the difficulty of

particular multiagent coordinating problems. We have used the affinity group domain to

apply CLRI to the congregating process. In doing so, we have shown that when agents

have no means of describing themselves to each other, the problem complexity grows

exponentially in the number of agents. By adding specialized agents known as labelers, the

problem complexity reduces to linear in the number of labelers. If the number of labels is

small, this is sufficient. However if the number of labels is large relative to the number of

affinity groups, extra structure is needed to avoid exponential search. By allowing labelers

to offer abstract labels arranged in a hierarchical structure, the congregating problem

remains linear in the number of labels, which offers hope for the scalability of large

multiagent systems.

We have also shown how congregating can be used to improve agents’ net payoff in

systems in which they must select another agent to coordinate with. By providing the agents

with a set of loci at which they can congregate, they are able to self-select, thereby

improving their average payoff. The congregating mechanism is essentially a self-

organizing one; initially, agents that are happy in a congregation will stay there, providing

a fixed location that other ‘like-minded’ agents can find. The only centralization that is

required is that the agents all agree on the existence of a set of loci at the beginning of the

system’s lifetime. Once this initial commitment is made, agents need not consider the global

state; they can simply concern themselves with the other agents in their congregation.

There are quite a few potential future directions for this research. One weakness of the

current analytic approach, and CLRI more generally, is its reliance on PAC-learning

assumptions, which do not allow for non-Markov system dynamics or domains with real-

valued utility functions. Extending CLRI to model these sorts of domains is one current

thread of our research.

This work has assumed that there is complete connectivity between loci, allowing

agents to move from any locus to any other. The question of how these results would

change if there was a topology over loci remains open. Additionally, this work does not

explicitly treat nonstationarity in the consumer population. An important question to ask
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would be whether a system with multiple congregations is more or less stable as agents

enter and leave.

Finally, we earlier stressed the notion of a congregation as an entity unto itself. This

leads one to consider notions of group selection, whereby it becomes rational for agents

within a congregation to behave altruistically, so as to increase the fitness of the rest of the

congregation and improve their chances when competing with agents outside of the

congregation. In environments in which agents typically interact within a congregation,

but occasionally encounter agents from the population at large, this can be a very effective

strategy (see [26] for ecological examples). This would also lead us to examine the

relationship between individual and group-level learning: as individual agents develop

more sophisticated strategies, how does the composition of the congregation change?
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Notes

1. The name CLRI refers to four of the parameters (change, learning, retention, impact) typically used to

characterize a multiagent problem.

2. As a note to readers who are concerned about a conflict between our characterization of congregation as

multiagent learning and our earlier characterization of congregating as disturbed search, understand that we are

of the opinion that learning is a search through a space of possible hypotheses [13].
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