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Abstract

Coalition formation is a desirable behavior in a multi-
agent system, when a group of agents can perform a task
more efficiently than any single agent can. Computational
and communications complexity of traditional approaches
to coalition formation, e.g., through negotiation, make them
impractical for large systems. We propose an alternative,
physics-motivated mechanism for coalition formation that
treats agents as randomly moving, locally interacting enti-
ties. A new coalition may form when two agents encounter
one another, and it may grow when a single agent encoun-
ters it. Such agent-level behavior leads to a macroscopic
model that describes how the number and distribution of
coalitions change with time. We increase the generality and
complexity of the model by letting the agents leave coali-
tions with some probability. The model is expressed mathe-
matically as a series of differential equations. These equa-
tions have steady state solutions that describe the equilib-
rium distributionof coalitions. Within a context of a specific
multi-agentapplication, we analyze and discuss the connec-
tion between the global system utility and the parameters of
the model.

1. Introduction

In the last few years, the electronic marketplace has wit-
nessed an exponential growth in worth and size, and pro-
jections are for this trend to intensify in coming years. Yet,
the tools available to market players are very limited, thus
imposing restrictions on their ability to exploit market op-
portunities. Implemented electronic markets do not offer
means for buyers and sellers to group together and exploit
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the benefits of such grouping. A buyer in today’s electronic
market can buy through two broad types of mechanisms:
(1) fixed prices are given by a seller at the seller’s site, and
the buyer has to make a “take it or leave it” decision; (2)
the buyer submits his/her price to an auction server and, ac-
cording to the rules of the auction, the server determines the
winner. No explicit negotiation or grouping are supported,
and no tools or protocols for these are provided. In addi-
tion, all of the burden of buyer’s interaction with the sellers’
servers and auctions is on the buyer.

Research on agent coordination and cooperation (e.g.,
[14, 1]) shows that, at the conceptual level, such activities
may increase the agents’ benefits, even when the agents are
self-interested, as common in the marketplace. Researchers
have shown, via theoretical analysis and simulations, that
forming coalitions can serve as a feasible means for such
cooperation [13, 14, 9]. However, the coalition formation
mechanisms proposed to date apply to deliberative agents.
While they might be suitable for dozens of agent, they will
not scale up to thousands of agents, that are expected to par-
ticipate in the electronic marketplace, due to their compu-
tational and communications complexity. We are interested
in a new paradigm of MAS design that can accomodate a
large number of agents and still provide a good enough per-
formance (in terms of agent benefits and consumption of
computational resources). We draw inspiration from natu-
ral systems in which complex global structures and behav-
iors result from local interactions among many simple el-
ements [17]. The model presented in this paper provides
means for coalition formation among simple buyer agents
in an electronic marketplace. The low computational over-
head of the model makes it appropriate for even very large
systems. In particular, we address the wholesale market,
where sellers benefit from selling large quantities of goods
in bulk, because it reduces their manufacturing, advertising
and distribution costs. They usually choose to pass some of
the savings to the buyers. If the buyers do not individually
need large quantities of the goods, it is still beneficial for
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them to form buyers’ coalitions, allowing them entry into
the wholesale market and reducing the price per unit. To
the best of our knowledge, there is no implementation of a
wholesale virtual market to date where agents collaborate
and perform many-to-many multi-attribute negotiations on
behalf of buyers and sellers.1

2. The goal

The main contributions of this paper are a low complex-
ity coalition formation mechanism that is applicable to large
scale MAS and an analytical study of this mechanism. Our
research has several goals:

� Propose a feasible mechanism in which interactions
between agents with simple local strategies lead to de-
sirable group behavior, and in particular to beneficial
coalition formation.

� Show that, unlike other current models of coalition for-
mation, our approach incurs minimal communications
and computation costs. This low complexity approach
provides a unique solution to the case of coalition for-
mation among rational self-interested agents in large-
scale MAS, with which we deal.

� Decompose the proposed coalition formation mecha-
nism into its component agent strategies. We show
that even the simplest set of agent actions leads to non-
trivial group behavior. We also show how to relate the
details of the mechanism to the agent’s goals and ac-
tions.

� Create a mathematical description of the proposed
model. We construct a macroscopic (coalition-level)
model and discuss how model parameters are related
to the details of microscopic (agent-level) interactions.

� Study the model quantitatively for different parameter
values. We relate these results to predictions about
group formation behavior, e. g., the number and size
of coalitions in a large scale MAS.

3. The approach

Some previous attempts to mathematically study a large-
scale MAS used a physics-based [15] approach. Several
advantages were shown to stem from such an approach.

1Note that some e-stores provide a service which has some similari-
ties. For instance, Mobshop (http://www.mobshop.com) provides increas-
ing savings according to a sale volume, and one can join a sale to receive
this discount. Not surprisingly, they provide the service only for products
they sell. For small bulk orders for products, they offer a slight discount
from the manufacturer suggested price, which is usually high compared
to discount sales (with no aggregation) on the web. Participation in real
wholesale markets as our mechanism should allow may provide much bet-
ter deals by letting buyers bypass middlemen such as Mobshop.

First, a MAS based on local interactions can promise very
low, sometimes even constant, communication complexity.
The physics-based models also provide simple agent de-
cision making mechanisms. This simplicity results in re-
duced computational complexity. The simplicity of interac-
tions makes the global properties of the system amenable to
mathematical analysis. In other models, this is usually done
experimentally or via simulations, and not analytically.

To date, a physics-based approach has been used to study
coordination and task allocation in a cooperative MAS. In
our work we present a new MAS model in which cooper-
ative behavior, such as coalition formation, arises out of
the interactions among many simple self-interested agents.
We study quantitatively the bulk properties of a large scale
MAS, and draw connection between agent properties and
global system behavior.

We refer to a system of multiple mobile purchasing
agents, each of which is given a task to obtain goods, with
the goal of minimizing the price paid for the goods. We
assume that agents have, or can acquire, contact informa-
tion of vendors which supply the requested goods and the
retail (base) price for the product. Such information can
be provided via middle agents [4] and other agent location
mechanisms [16]. We also assume that, given no additional
information, agents have no a priori preference among the
vendors, and each agent makes a random selection from its
list of vendors and moves to the vendor site. If it encounters
other agents or a coalition of agents, it can join the coalition
or, in the case of single agents, form a new coalition with
them. We assume that the agents are self-interested and will
choose to join coalition when such a choice is available and
beneficial. However, since further exploration of the coali-
tion formation space may result in joining a more beneficial
coalition, our model, unlike previous ones, allows agents to
leave coalitions. The agents join coalitions by placing an
order to purchase a product, and they leave coalitions by
withdrawing an order for the product. The orders remain
open for some period of time to allow new orders to come
in. At the end of the specified time, the orders are filled, and
the price each agent pays for the product is based on the size
of the final purchasing coalition.

The coalition formation mechanism outlined above re-
quires minimal communication between agents, and be-
cause their decision depends solely on local conditions, it
also requires no global knowledge. Agents learn indirectly
about the presence and size of the coalition at a particular
vendor site by querying the vendor for the current price of
the product.2 The price is lower if a buying coalition exists

2Vendors may lie about these prices, however since agents can ask other
agents as well, such lying may result in bad reputation and harms the ven-
dor’s business. Although manipulative behavior of all sides is possible,
there are mechanisms that can vastly reduce the expected utility from, and
the probability of, such behavior (e.g., in [9]).
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at that vendor site.3 In general, there is an inverse relation-
ship between the size of the coalition and the price of the
product. In the simplest case, this relationship is linear –
the larger the coalition, the lower the price. We will specify
the coalition price in a later section, when we use it to com-
pute savings by all agents. Such indirect communication
is analogous to stigmergetic communication in insect soci-
eties that has been shown to lead to interesting collective
behaviors [3].

4. The model

We decompose the coalition formation mechanism to its
basic components. This approach is general—it is applica-
ble to other systems in which aggregation occurs. The com-
ponents are then used to build a mathematical model of the
MAS. As models are in general, our model is an idealized
representation of a process. To be useful, our model ex-
plicitly takes into account the salient details of the coalition
formation process it describes. Thus, it is an indispensable
tool for understanding the process. Similar to others, our
model can become a better approximation of reality by in-
cluding more details. These additions can correct the quan-
titative results of the simpler model, but not invalidate them.
Therefore, we focus on the simplest model of the mecha-
nism that leads to coalition formation in a MAS. This initial
model may be refined and adapted to different MAS envi-
ronments. We leave the extensions of the model for future
work.

The following axioms capture the most important fea-
tures of the proposed coalition formation process:

� Agents are homogeneous in a sense that each agent has
the same goal (to purchase a specific product at the
lowest price) and follows the same strategy for coali-
tion formation.

� Agents are free to choose among vendors; coalitions
are not.

� Agents encounter other agents and coalitions ran-
domly.

� Each agent’s strategy is determined entirely by local
conditions, such as the size of the coalition present at
a particular vendor site.

� It is beneficial for agents to join a coalition, because as
a member of a coalition, it will pay less for the product.

� Some constraints may limit the maximum size of the
coalition. E.g., Manufacturing and distribution con-
straints limit the bulk order to a maximum size; there-
fore, vendors will not accept bulk orders greater than
this maximum.

3Conceptually, a buyers’ coalition can be located at sites other than the
vendor’s site, e.g., at some mediator’s or coordinator’s site.

� Agents are self-interested; therefore, given several al-
ternatives, they will prefer and select the more benefi-
cial ones.

� The agents are spatially uniformly distributed, apart
from non-uniformities inherent in the coalitions. Even
if this is not true initially, over time agents will tend
to become uniformly distributed, because they have no
preference among vendors.

� An agent may leave an existing coalition with some
probability. This is a reasonable strategy, because in
many cases, there may exist a better coalition for it to
join.

This model excludes explicit negotiation from the coali-
tion formation process. In this paper we show that, for the
problem domain we study, the model as described above
still leads the agents to form robust coalitions.

4.1. The microscopic vs macroscopic descriptions

Using the above axioms we may construct a microscopic
theory of the coalition formation process, that treats the in-
dividual agent as a fundamental unit in the model. This
model would describe how agents make decisions to join
coalitions. Simulating a system composed of many such
agents, modeled as cellular automata for instance, would
give us an understanding of the global behavior of the sys-
tem.

Alternatively, we may construct a macroscopic model
that treats coalitions as the fundamental units. A macro-
scopic description offers several advantages, the most im-
portant of which is that such a model directly describes the
global properties of the system we are interested in study-
ing, namely the number and size of coalitions, and how
these quantities change with time. This approach is more
computationally efficient, because it uses many fewer vari-
ables than the microscopic model. The macroscopic the-
ories tend to be more universal, and therefore, more pow-
erful. The same mathematical description can be applied
to other systems governed by the same abstract principles,
which are outlined in the axioms above. At the heart of
this argument is the concept of a separation of scales, which
holds that the details of the microscopic interactions (e.g,
among agents) are only relevant to computing the values
of the parameters of the macroscopic model (e.g., how fast
coalitions grow). This idea has been used by physicists
to construct a single model that describes the behavior of
seemingly disparate systems, e.g., pattern formation in con-
vecting fluids and chemical reaction-diffusion systems [17].
Of course, the two descriptive levels are related, and it may
be possible in some cases to exactly derive the parameters
of the macroscopic model from the microscopic theory.

In this paper, we construct a macroscopic model that cap-
tures the dynamics of the coalition formation process. This

3



is a phenomenological model, since we do not derive it from
the microscopic theory. The model is expressed mathemat-
ically as a set of first order differential equations that de-
scribe how the number of coalitions of each size evolves in
time. As we argued above, this description is not intrinsic
to the e-commerce application we chose to study—it can
describe a number of systems where aggregation occurs. In
our application, however, there is a simple connection be-
tween the microscopic behavior of the agents and the pa-
rameters of the model. For other applications this relation-
ship may be more complex, and it might be necessary to
derive the parameters.

In the following sections we present the mathematical
model and study the behavior of solutions for different pa-
rameter values. We show that solutions reach a steady state
in which the distribution of coalitions no longer changes.
We define a utility gain function, the measure of savings
achieved by all agents in the system, and calculate its value
for each steady state solution. We find that the steady state
distribution and utility gain depend strongly on the rate at
which agents leave coalitions. We discuss the implications
of the behavior of these solutions on an agent’s design.

5. The macroscopic model

Let r1(t) denote the number of unaffiliated agents (mo-
nomers) in the system at time t, r2(t) the number of coali-
tions of size two (dimers), etc.; rn(t) the number of coali-
tions of size n at time t, up to a maximum coalition size
m. We assume that there is no net change in the number
of agents, and therefore expect a realistic dynamic process
to conserve the total number of agents in the system (i.e.,P

m

n=1 nrn = N , where N is the total number of agents in
the system).

5.1. Global utility gain

The global utility gain measures the efficiency of the
system—the price discount all agents receive by being
members of coalitions. The value of this metric is expected
to be high when there are many large coalitions, and con-
versely, it is low, meaning the system is less efficient, when
there is a large number of unaffiliated agents. Note that
global benefit is achieved even while each agent is selfishly
maximizing its individual gain [8]. The retail price that an
unaffiliated agent pays to the vendor for the product is p,
and the coalition price that each member pays is pn < p,
which depends on the size of the coalition. In the simplest
model we let pn = p��p(n� 1), where �p is some price
decrement. The total discount for all agents is:

G = Np�

mX
n=1

pnnrn

Expanding and using conservation of the number of agents
to eliminate terms, yields the following expression for the
utility gain per agent:

G=N = �p

 
mX
n=1

n
2
rn

N
� 1

!
: (1)

5.2. Dynamic equations

Initially (at t = 0) the system consists of N agents and
no coalitions. We assume that there is no spatial dependence
in the agent distribution, apart from coalition-based aggre-
gation. A series of coupled rate equations [2] describe how
the number of coalitions of different size changes in time.
The solutions of these rate equations yield the coalition dis-
tribution at any given time. The equations are written as
follows:

dr1

dt
= �2D1r1

2(t) � r1(t)
m�1X
n=2

Dnrn(t) +

2B2r2(t) +
mX
n=3

Bnrn(t) ;

drn

dt
= r1(t) (Dn�1rn�1(t) �Dnrn(t))�

Bnrn(t) + Bn+1rn+1(t) ;

drm

dt
= Dm�1r1(t)rm�1(t) �Bmrm(t)

Here rn(t) is the number of coalitions of size n at time t,
and drn

dt
is the rate of change of this number. Parameter Dn,

the attachment rate, controls the rate at which unaffiliated
agents join coalitions of size n. This parameter includes
contributions from two factors: the rate at which agents en-
counter n-mers (/ r1rn, where the proportionality factor
determines how many vendor sites an agent visits in a given
period of time), and the probability of joining the coalition
of size n. Bn, the detachment rate, gives the rate at which
agents leave coalitions of size n. The solutions are subject
to the initial conditions: r 1(t = 0) = N and rn(t = 0) = 0
for all n > 1.

The rate equations can be interpreted in the following
way: when two unaffiliated agents find themselves on the
same site at the same time, they form a coalition of size two,
decreasing the number of unaffiliated agents in the system
by two (hence the factor 2 in the first equation) and increas-
ing the number of size-two coalitions by one. The number
of single agents also decreases when an agent joins a coali-
tion of size n. However, the number of single agents can
also increase when an agent leaves a coalition of any size.
Likewise, the number of n-mers increases when an unaf-
filiated agent encounters a group of size n � 1, or an agent
leaves a coalition of size n+1, but it decreases when n-mers
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themselves absorb unaffiliated agents or have the agents de-
tach from them. The last equation states that agents cannot
join coalitions of maximum size, m.

We restrict our attention to the uniform attachment–
uniform detachment case: Dn = D, Bn = B for all n.
To simplify the analysis, we rewrite the equations in dimen-
sionless form by making the following variable transforma-
tions: ~rn = rn=N , ~t = DNt, and ~B = B=DN . ~rn is
the density of coalitions of size n. The rate equations in
dimensionless form are:

d~r1
d~t

= �2~r21(t) � ~r1(t)
m�1X
n=2

~rn(t) +

2 ~B~r2(t) +
mX
n=3

~B~rn(t) ; (2)

d~rn
d~t

= ~r1(t) (~rn�1(t) � ~rn(t))�

~B~rn(t) + ~B~rn+1(t) ; (3)
d~rm

d~t
= ~r1(t)~rm�1(t) � ~B~rm(t): (4)

Note that the attachment rate no longer explicitly appears in
the equations. There is now a single variable parameter in
the equations, the dimensionless detachment rate ~B, which
measures the relative strength of detachment vs the rate at
which agents join coalitions. We investigate the behavior of
solutions of the equations as this parameter is varied.

Numerical integration of these equations4 shows that so-
lutions reach a steady state, after which the coalition densi-
ties no longer change, but the time it takes for them to do so
depends sensitively on ~B. The steady state coalition densi-
ties and the global utility gain (calculated from Eq. 1) also
depend on this parameter.

Figure 1 shows the time evolution of the solutions for
three different values of the dimensionless detachment rate:
~B = 0 (no-detachment case), ~B = 10�5 and ~B = 10�2.
Maximum coalition size is six in all cases. For the no-
detachment case, the density of unaffiliated agents quickly
drops to zero while the system reaches its final configuration
where coalitions of size two and three predominate. In con-
trast, it takes much longer for solutions to reach their final
values for ~B = 10�5 than either for ~B = 0 or ~B = 10�2.
The density of unaffiliated agents, ~r1, reaches a small but
finite value for ~B = 10�2, indicating that, unlike the no-
detachment scenario, there are some agents left at late times
who are not part of any coalition. Notice that this density
is larger for ~B = 10�2 than for ~B = 10�5. In general, we
expect the number of free, or unaffiliated, agents to increase
as the detachment rate is increased. We note that for ~B 6= 0,
the steady state is an equilibrium state: even though agents

4Numerical integration was carried out using Mathematica 4.0.

are continuously joining and leaving coalitions, the over-
all distribution of coalitions does not change. For ~B = 0,
the system gets trapped in an intermediate non-equilibrium
state before it is able to form larger coalitions.

The equations were integrated numerically for m = 6
and different values of ~B. Figure 2 shows how the steady
state coalition densities change as ~B is increased. The data
are plotted on a logarithmic scale to facilitate the display of
variations that occur over many orders of magnitude. The
left-most set of points are the results for the no-detachment
case, ~B = 0, where the steady state consists mostly of coali-
tions of size two and three, a quickly decreasing number
of larger coalitions, and no unaffiliated agents. When ~B is
small and finite, the number of unaffiliated agents is small
and largest coalitions dominate. ~r1 grows linearly with ~B
(on a log-log scale) over several decades, until ~B � 10. At
that point coalitions start to “evaporate” quickly, and as a
result, the number of coalitions of larger size drops precipi-
tously.

The global utility gain (per agent), calculated accord-
ing to Eq. 1, is shown as a solid line in Figure 2, with
the scale displayed on the right-hand side. The utility gain
is largest for small finite ~B. Its value for ~B = 10�6 is
G=N = 4:87�p — a substantial increase over the no-
detachment case value of G=N = 2:00�p. The utility gain
roughly follows the number of coalitions of maximum size:
it decreases slowly as the detachment rate grows to ~B � 10,
thereafter it drops quickly to zero. For large detachment
rates, there is virtually no utility gain, as the system is com-
posed mainly of unaffiliated agents. The large increase in
the utility gain for small ~B comes at a price, namely the
time required to reach the steady state. While it takes ~t � 10
for solutions to reach the final state for ~B = 10, it takes
~t � 109 for the solutions to equilibrate for ~B = 10�6. Note
that there is a discontinuity at ~B = 0: the steady state solu-
tions are qualitatively different for ~B ! 0 than at ~B = 0,
because in the latter case, the system gets trapped in a non-
equilibrium state before it gets a chance to reach a true equi-
librium.

We can obtain analytic expressions for the steady state
densities in terms of ~r1 by setting the left-hand side of
Eqs. 2–4 to zero. We find that at late times the densities
obey a simple relationship:

~rn = ~B�(n�1)~rn1 : (5)

By studying the behavior of solutions for different values of
m, we empirically obtain a scaling law for the steady state
monomer density,

~r1 / ~B
m�2

m�1 : (6)

This result is valid in the parameter range that we are inter-
ested in, namely where the utility gain is large and slowly
varying. Equations Eq. 5 and Eq. 6, together, allow us to
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Figure 1. Time evolution of coalition densities
for m = 6 and three detachment rates: ~B = 0,
~B = 10�5, and ~B = 10�2.
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Figure 2. Steady state distribution of coalition
densities and the global utility gain vs. the
dimensionless detachment rate. Solid line is
the global utility gain per agent.

predict how the steady state density of coalitions of any size
changes as the detachment rate, ~B, and the maximum coali-
tion size, m, are changed. In particular, as m becomes large,
the exponent of ~B approaches 1. In this case ~rn / ~B, that
is the number of coalitions of every size grows linearly with
~B.

5.3. Lessons learned

We conclude that when the agents are not allowed to
leave coalitions, there is some utility gain in the steady state,
reflecting the presence of small coalitions. However, intro-
ducing even a very small detachment rate to the basic coali-
tion formation process allows the system to reach an equi-
librium steady state. The increase in the global utility gain
is more than twice that for the no-detachment case. The
price for higher utility gain is that the time required to reach
the steady state solution grows very large as ~B becomes
small. The system is composed mainly of coalitions of the
largest size. As the relative strength of the detachment rate
increases, the utility decreases, because coalitions become
smaller, and the number of unaffiliated agents grows un-
til there is virtually no utility gain. However, utility gain
remains large and decreases slowly over many orders of
magnitude of ~B. The agents designer has much leeway in
choosing parameter values that result in a substantial global
benefit, while not requiring to wait for too long a time for
this benefit to be achieved. The agent designer can also pre-
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dict the final distribution of coalitions, even for very large
systems.

6. Related work

Cooperation among multiple agents was discussed pre-
viously in several publications. For example, Ephrati et al.
[5] suggest a coordination mechanism for agents in the tile-
world, where minimal communication is required, though,
the suggested mechanism does not provide means for form-
ing groups or coalitions. Moreover, that mechanism was
implemented and tested only with very small number of
agents, and its scaling up is yet to be checked. Even if it
scales up, no guarantees or tools for prediction and analysis
of large-scale behavior are provided. The lack of such tools
is also apparent in work by Sen et al. [11]. However, in dif-
ference from Ephrati, Sen provides means for the formation
of groups of agents. Nevertheless, the groups his mecha-
nism supports are usually pairs of agents. Yet, an impor-
tant difference between Sen’s work and ours is that, while
we address the more complex case of self-interested agents,
Sen addresses the case of cooperative agents. Note that
in another work Sen addresses the case of self-interested
agents [12], however there no coalition formation is dis-
cussed. Another work, by Shehory et al. [15] suggests
a low communication complexity coordination mechanism
for large scale MAS. It also suggests a model similar to a
physical model, and that the tools provided by physics can
be used to analyze and predict large-scale behavior. Yet,
that work does not support the formation of groups, and
refers to cooperative agents rather than self-interested ones
as we do in this research.

Cooperation among self-interested agents was addressed
using other approaches. For example, Axelrod et al. [1]
show how cooperative behavior can arise among selfish au-
tonomous agents. They use game dynamics to simulate in-
teractions between two agents, in which each agent has to
make a decision, each with a different payoff to the agent.
The agent’s decision depends on choices made by other
agents. Some strategies lead to stable cooperation due to
mutual payoff increase. Yet, coalition formation is not ad-
dressed, and results are arrived at via simulations and not
analytically, in contrast to our work. Others [10, 6] have
applied game dynamics formalism to distributed control,
where many agents adjust their strategies (a decision to
compete or to cooperate) to increase their share of a finite
resource. Though, the focus of that work was on adapta-
tion in a distributed system, i.e., how a group of agents can
learn to cooperate to achieve a common goal without cen-
tral control. Some of the presented game dynamics systems
(see, for example, Huberman and Hogg’s work on computa-
tional ecologies [7, 6]) are amenable to mathematical anal-
ysis, though results about the stability of the system were

usually achieved via simulation. In studying the global dy-
namics of a system of locally interacting agents, that re-
search is similar to ours. The aim of mathematical anal-
ysis is to demonstrate the existence of evolutionary stable
strategies that drive the system to the steady optimal solu-
tion. However, there are differences between that work and
ours. There, the cooperation mechanisms are usually only
abstractly specified, as an increase in the payoff matrix. Yet,
an agent’s behavior is more complex—it can change in re-
sponse to the actions of other agents—and as a result, the
global stability is often sacrificed to adaptability [7]. We
do not address adaptability and strategic diversity; however,
though we have not carried out a detailed stability analysis,
our work suggests that the steady state solutions are stable.

7. Future direction

There are many issues in our work that remain unex-
plored. Our model can be extended to provide a wider
range of solutions by incorporating a varying likelihood of
agents leaving coalitions (e.g., agents may be less likely to
leave large coalitions since the probabilityof finding a better
coalition to join may be small). We can increase the flexi-
bility of coalition-vendor relations (e.g., allow a coalition to
approach multiple vendors). It should be of interest to ex-
amine stability of the steady state solutions to perturbations
(e.g., agent failure): is stability maintained? This question
is similar to the effect of noise on the system, which we
have also not explored. Another promising direction that
can follow from our approach is the interplay between agent
complexity and system complexity. In other words, how
much adaptability and stability can one achieve with sim-
ple agents that have a fixed strategy compared to the more
complex agents that can change their strategies. It would be
interesting to apply rigorous mathematical analysis to these
problems.
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