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Abstract. Satisficing, or being “good enough,” is the fundamental obligation of rational decision mak-
ers. We cannot rationally choose an option, even when we do not know of anything better, unless we
know it is good enough. Unfortunately, we are not often in the position of knowing that there could be
no better option, and hence that the option must be good enough. A complete search through all logi-
cal possibilities is often impractical, particularly in multi-agent contexts, due to excessive computational
difficulty, modeling complexity, and uncertainty. It can be equally impractical, if it is even possible, to
determine the cost of the additional required search to find an option that is good enough. In a departure
from the traditional notion of satisficing as a species of bounded rationality, satisficing is here redefined
in terms of a notion of intrinsic rationality. Epistemic utility theory serves as the philosophical founda-
tion of a new praxeological decision-making paradigm of satisficing equilibria that is applicable to both
single- and multiple-agent scenarios. All interagent relationships are modeled by an interdependence
function that explicitly accommodates both self and group interest, from which multilateral and unilat-
eral selectability and rejectability mass functions can be derived and compared via the praxeic likelihood
ratio test.
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1. Introduction

When Simon introduced the notion of “bounded rationality,” he appropriated the
term satisficing to describe a process of constructing expectations, or aspiration lev-
els, of how good a solution might reasonably be achieved, and halting search when
these expectations are met [25, 26, 27]. Subsequently, other notions of bounded
rationality were generated by relaxing one or more assumptions of standard opti-
mization approaches. Procedures such as augmenting the utility function with com-
putational costs are species of constrained optimization (see, for example, [23, 10],
and yield optimal solutions according to modified criteria. Regardless of the details
of how a boundedly rational decision is obtained, however, the ultimate reason for
adopting it is that it represents a compromise between performance and cost that
is, by definition if for no other reason, “good enough.”
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The notion of being good enough is an underlying issue in all decision prob-
lems. While it is tacitly understood that a truly optimal solution to any well-framed
problem is certainly good enough, the issue becomes problematic when other-
than-optimal procedures are implemented. A characteristic of boundedly rational
approaches à la Simon is that the aspiration levels are arbitrary; if set too low, per-
formance may be sacrificed needlessly, and if set too high, the solution set may be
empty. Although aspiration levels at least superficially establish minimum require-
ments, the approach provides no guidance as to how these levels are to be specified,
and relies instead upon experience-derived expectations. But it is difficult to estab-
lish a good and practically attainable aspiration level without first exploring the
limits of what is possible, that is, without first identifying optimal solutions—the
very procedure satisficing is designed to circumvent. For simple, low-dimensional
problems, specifying the aspiration levels may be noncontroversial. But, particu-
larly with multi-agent systems, interdependence between decision makers becomes
complex, and aspiration levels become conditional (what is satisfactory for me may
depend upon what is satisfactory for you). The current state of affairs regarding
aspiration levels does not appear to address completely the problem of specifying
minimum requirements in multi-agent contexts. Perhaps what is needed is a notion
of “minimum requirements” that does not depend upon aspiration levels.
A characteristic of boundedly rational approaches à la constrained optimization is

that the modification to strict optimality accounts for criteria (such as computational
costs) that are independent of actual performance. It is also possible, even for
single-agent decision problems, that slightly modifying one or more assumptions of
a bounded optimality-based solution methodology can lead to solutions that would
not otherwise have been “good enough.” This issue becomes even more delicate for
multi-agent systems, since the interconnections between agents can be extremely
sensitive, and slightly modifying an assumption can have a substantial effect on the
outcome.
In this paper we propose a new definition for satisficing, or being good enough,

that applies to both single- and multi-agent situations. As we define it, satisficing
does not rely on notions of bounded rationality either à la aspiration levels or
à la constrained optimization. Instead, our definition hinges on a new notion of
rationality that is constructive, in that it leads to a practical framework for decision
making. In Section 2 we motivate and formalize this definition and establish a new
concept for equilibrium. In Section 3 we develop the mathematical structure of
our decision framework, in Section 4 we extend it to the multi-agent case, and in
Section 5 we apply our theory to the Prisoner’s Dilemma game. Finally, in Section 6
we summarize our results, discuss some practical applications, suggest some research
directions, and finish with reflections on the relationship between our engineering
need to act and our scientific need to know.

2. A comparative paradigm

If the notion of “good enough” is to be made precise in a way analogous to, but
distinct from, the way “best” is made precise, we must rely on a notion of rationality
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that does not depend upon optimization. At the same time, we must not retreat into
ad hocism, that is, decision making based on notions of desirability or convenience
without any definitive measures of quality. Heuristic procedures lack a means of self
criticism; there is no way for the decision maker to evaluate its own performance.
It may foster good, even very good, outcomes, but we cannot know if they are good
enough.

2.1. An example

Strict optimality and pure heuristics represent two extreme views of decision mak-
ing. We illustrate this situation by means of an example. One of the most widely
studied of all games is the Prisoner’s Dilemma. This game involves two agents, X1
and X2, who have been charged with a serious crime, arrested, and incarcerated in
a way that precludes any communication between them. The prosecution has evi-
dence sufficient only to convict them of a lesser crime with a short jail sentence.
To get at least one conviction on the more serious crime, the prosecution entices
each prisoner to give evidence against the other. Each prisoner has two options:
either to confess (C), or to stonewall (S). Confession yields dropped charges if
the other stonewalls; stonewalling yields the maximum sentence if the other con-
fesses. If both stonewall, both receive short sentences; if both confess, both receive
intermediate-length sentences.
The most widely recognized optimal solution is obtained via von Neumann-

Morgenstern (VNM) game theory in terms of a payoff matrix, which is a table
of juxtaposed individual expected utility functions. This matrix is illustrated in ordi-
nal form in Table 1. The most widely accepted notion of what constitutes a viable
solution to games such is this is the concept of equilibria. An equilibrium for a
single-stage game such as Prisoner’s Dilemma is an array of options (one for each
player), or joint option, such that each player’s individual option is acceptable to
it according to some criterion. Three of the most widely used equilibrium concepts
are dominance, Nash equilibria, and Pareto optimality (see, for example, [22] for
an expanded discussion of game-theoretic equilibria). A joint option is a dominant
equilibrium if each individual option is best for the corresponding player, no matter
what options the other players choose. A joint option is a Nash equilibrium if, were
any single agent to change its decision, it would reduce its level of satisfaction.
A joint option is Pareto optimal if no single agent, by changing its decision, can

Table 1. Payoff matrix in ordinal form for traditional
Prisoner’s Dilemma game

X2

X1 S C

S (3, 3) (1, 4)
C (4, 1) (2, 2)

Key: 4 = best; 3 = next best; 2 = next worst; 1 =
worst.
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increase its level of satisfaction without lowering the satisfaction level of at least
one other agent.
By inspection, playing �C�C� is a dominant equilibrium. Furthermore, �C�C�

is also the unique Nash equilibrium. Unfortunately, both of these equilibria are
inferior to playing the “cooperative,” Pareto-optimal equilibrium, �S� S�, as they
result in next-worst, rather than next-best, play. Hence, the dilemma.
One of the main characteristics of the VNM approach is that it abstracts the

game from its context, or story line—all relevant information is captured by the
expected utility functions. These expected utilities represent individual preferences
as functions of joint actions; they do not represent joint preferences. It is only when
the two utility functions are juxtaposed in the payoff matrix, as in Table 1, that
the “game” emerges and strategies can be devised. Under this view, the players
are assumed to be absolutely certain that self-interest is the only issue. The VNM
approach does not countenance mixed motives. Accounting for any dispositions for
coordinated behavior would change the payoff matrix and, hence, the game.1 There
is no room for equivocation. This is a powerful, but necessary, assumption under
the VNM approach to this game.
This game has also been analyzed in the context of repeated play. Of course, the

standard VNM approach must return the Nash solution, no mater how many times
the game is played, but other approaches have revealed quite different behavior.
A very interesting approach was introduced by Rapoport, who proposed a simple
tit-for-tat rule of repeated play: start by stonewalling, thereafter play what the other
player chose in the previous round. This purely heuristic rule won the Axelrod
Tournament [1]. One of its main characteristics is that it does not abstract the
game from the story—the actions are taken completely within the game context.
The VNM and Rapoport approaches to the Prisoner’s Dilemma represent two

extremes. With the VNM approach, all relevant knowledge is assumed to be com-
pactly and precisely encoded into mathematical expressions, self interest is the only
issue, and expected utility maximization is the operative solution concept. With the
Rapoport approach, the players’ dispositions enter into the decision, the solution
concept is an ad hoc rule to be followed, and there are no attempts to rank-order
options or maximize performance.2

2.2. Intrinsic rationality

The need for an alternative to the extremes of strict optimality on the one hand
and pure heuristics on the other was recognized by Kreps, who observed that

� � � the real accomplishment will come in finding an interesting middle ground between
hyperrational behavior and too much dependence on ad hoc notions of similarity and
strategic expectations. When and if such a middle ground is found, then we may have
useful theories for dealing with situations in which the rules are somewhat ambiguous [12,
p. 184].

In matters of grammar, there are three degrees of comparison. The highest,
or superlative, degree, is founded on the notion of being “best,” which requires



satisficing equilibria 309

rank-ordering preferences for the consequences associated with the options. The
evaluation of an option under the superlative paradigm requires comparing prefer-
ences for its consequences with the preferences for the consequences of all other
possible options. Such evaluations are extrinsic, since they depend upon qualities
that are external to the option under evaluation. In the literature, decision mak-
ers who operate under the superlative paradigm are said to be substantively rational
[8]. To reflect the relativity of this rationality notion, we will refer to substantive
rationality also as extrinsic rationality.
The lowest, or positive, degree of comparison is founded on the notion of being

“good,” which requires no explicit preference orderings or comparisons. Decision
makers who operate under the positive paradigm are often characterized as being
procedurally rational [8]. Procedures are developed by experts, and derive their valid-
ity from that authority. Substantive rationality tells us where to go, but not how to
get there; procedural rationality tells us how to get there, but not where to go.
Substantive rationality is viewed in terms of the outcomes it produces; procedural
rationality is viewed in terms of the methods it employs.
There is a logical gap between the superlative paradigm and the positive paradigm.

This gap is filled by the comparative paradigm of being “better.” Literature involving
the superlative paradigm, particularly that of statistical decision theory, game theory,
optimal control theory, and operations research, is overwhelmingly vast, reflecting
many decades of serious research and development. The positive paradigm, manifest
in the form of heuristics, rule-based decision systems, and various other ad hoc
techniques, has also been well-represented in the computer science, social science,
and engineering literatures. A formally stated comparative paradigm, however, has
not yet been well represented in the literature as a basis for a viable decision-making
concept for general application.
As a first step toward the development of a comparative paradigm, we must

formalize a notion of rationality that does not depend upon rank-ordering, yet is
amenable to self policing. Rank-ordering is an extrinsic exercise involving inter-
option comparisons; that is, comparing a given attribute of one option to the
same attribute of another option or to a fixed standard. This is not, however,
the only way to make comparisons. We may also consider making intra-option, or
intrinsic, comparisons; that is, comparisons between different attributes of a given
option.
The approach we advocate is very simple, and well-precedes any formal theories

regarding its use: a common way people evaluate personal and business propositions
is to compare potential gains with potential losses. Forming dichotomies provides
a convenient way of accounting for the desirable and undesirable properties associ-
ated with options under consideration, and conforms with common praxeological3

behavior. We will say that a decision is intrinsically rational if the gains achieved by
making it equal or exceed the loss incurred, provided the gains and losses can be
expressed in commensurable units. This is perhaps the most primitive form of self
policing—it is local, rather than global.
As a formalized means of decision making, the concept appears in at least two

very different contexts: economics and epistemology—the former intensely practical
and concrete, the latter intensely theoretical and abstract. Economists implemented
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cost-benefit analysis in the 1930’s. The usual procedure is to express all costs and
benefits in monetary units, and to sanction a proposition if “the benefits to whom-
soever they accrue are in excess of the estimated costs” [17]. Cost-benefit analysis
is a useful way to reduce a complex problem to a simpler, more manageable one.
One of its chief virtues is its fundamental simplicity.
Epistemic logic, or the classification of propositions on the basis of knowledge

and belief regarding their content, has also made use of a comparative paradigm.
The pioneering works of Levi [13] have lead to a distinctive school of thought
regarding the evolution of knowledge corpora. Unlike the conventional epistemo-
logical doctrine of expanding one’s knowledge corpus by adding information that
has been justified as unequivocally true, Levi proposes the more modest goal of
avoiding error. This theory has been detailed elsewhere (see [5, 31, 34]), and we
provide here only a brief summary. The gist of it is that, given the task of deter-
mining which, if any, of a set of propositions should be retained in an agent’s
knowledge corpus, the agent should evaluate each proposition on the basis of two
distinct criteria—first, the credal, or subjective, probability of it being true, and sec-
ond, the informational value4 of rejecting it, that is, the degree to which discarding
the proposition results in a corpus with the kind of information that is demanded
by the question. Thus, for a proposition to be admissible, it must be both believable
and informative—all implausible or uninformative options should be rejected. Levi
proposes a very simple test, based on the mathematical structure of probability the-
ory, to perform such evaluations. He constructs an expected epistemic utility function,
defined as the difference between credal probability and a certain constant (called
the index of boldness) times another probability function, termed the informational-
value-of-rejection probability. The set of options that maximizes this difference is
the admissible set—all others are rejected. A key feature of this procedure is that
the admissible set is generally not a singleton.

2.3. Satisficing equilibria

Following the tradition in economics and epistemology, we define a satisficing option
as any option that is intrinsically rational. We retain the “satisficing” terminology
because we are driven by exactly the same issue that motivated Simon’s original
usage of the term—to find options that are good enough by directly comparing
attributes of options. We differ only in the standards used for comparison. Whereas
Simon’s approach is extrinsic, and compares attributes to fixed aspiration levels, our
approach is intrinsic, and compares the positive attributes to the negative attributes
of each option.
Under the superlative paradigm, once the utilities are in place, all actual decision

making ceases—expected utility maximization is simply a matter of searching. Under
the comparative paradigm, the utilities are used to provide rankings of attributes for
each option. Thus, instead of making one global decision with respect to the entire
collection of options, the comparative paradigm requires a separate local decision
to be made for each option. Each option is thus subjected to individual scrutiny,
and a decision is made either to retain it as an admissible choice or to reject it.
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The comparative paradigm enables the formation of a precise definition of satis-
ficing equilibria without the need to invoke any notions of optimality. We will say
that an option is in a state of satisficing equilibrium if

S-1 The benefits derived from adopting it at least compensate for the costs incurred.
S-2 No other option provides more benefit without also costing more, or costs less

without also providing less benefit.

Condition S-1 provides a weak notion of adequacy, and is a valid praxeological con-
cept. Condition S-2 applies the domination principle to the cost-benefit framework
to eliminate options that needlessly either sacrifice performance or incur expense.
In general, the set of satisficing equilibrium options will not be a singleton, and

further refinement will be required before action can be taken. Each element of this
set, however, enjoys the property that it results in a tradeoff that favors benefits over
costs—there are no bad choices. The final choice depends upon the disposition of
the decision maker. If the budget is tight, then the results may be commensurately
low, but if cost is no object, then performance need not be sacrificed.5 Whereas the
essence of the superlative paradigm is “Nothing but the very best will do,” and the
essence of the positive paradigm is “It has always worked before,” the essence of
the comparative paradigm is “You get what you pay for.” In this sense, satisficing
equilibria provide an operational definition of being “good enough.”
By weakening the principles of rationality we hope better to accommodate both

individual and group preferences. Our philosophy is consistent with Levi’s dic-
tum that

� � � principles of coherent or consistent choice, belief, desire, etc. will have to be weak
enough to accommodate a wide spectrum of potential changes in point of view. We may
not be able to avoid some fixed principles, but they should be as weak as we can make
them while still accommodating the demand for a systematic account [14, p. 24].

In particular, our goal is to develop a satisficing notion that is equally applicable to
both group and individual points of view.
We do not view intrinsic rationality, and satisficing equilibrium in particular,

as a replacement for substantive rationality, or for conventional game theory in
general. We do, however, invite consideration of intrinsic rationality for situations
where complexity and uncertainty make it difficult or inappropriate to apply classi-
cal superlative approaches. We view it as an additional tool, not as a competitor, and
certainly not as a panacea. In the final analysis, all decision methods are subjective;
they are simply tools to be used with judgment and skill.

3. Praxeic utility

Our notion of satisficing requires us to obtain dichotomous mathematical descrip-
tions of cost and benefit, and then to use the resulting cost-benefit pair to identify
members of the satisficing equilibrium set. Our approach is to adapt the mathe-
matics of epistemic utility theory, originally developed for epistemological decision
making (committing to beliefs), to the praxeological domain (taking action). Our
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interest in this theory is motivated by its striking compatibility with the compara-
tive paradigm, since it permits costs and benefits to be characterized via probability
measures that can be evaluated by the expected epistemic utility test discussed in
Section 2.
Epistemic utility theory offers a number of significant features. First, it addresses

an important issue of insuring comparable units by ascribing a unit of mass to both
belief and informational value; second, it permits the evaluation of non-singleton
sets of options; and third, it permits the extension of such evaluations to the multi-
variate case (that is, situations involving more than one decision maker or multiple
attribute decision problems for a single agent).
Epistemic utility theory captures the essence of Popper’s imperative: “Yet we must

also stress that truth is not the only aim of science. We want more than truth: what
we look for is interesting truth” [19, p. 229]. Although truth and informational value
are natural semantic notions for cognitive decision making, they are not always nat-
ural for practical decision making. To apply the ideas of epistemic utility theory to
practical decision making we must formulate praxeological analogs to the epistemo-
logical notions of truth and informational value.
A natural analog for truth is success, in the sense of achieving the fundamental

goal of taking action. To formulate an analog for informational value, we observe
that, just as the management of a finite amount of relevant information is impor-
tant when inquiring after truth in the epistemological context, taking effective action
requires the management of a finite amount of resource, such as wealth, materials,
energy, safety, or other assets, in the praxeological context. Thus, an apt praxeolog-
ical analog to informational value of rejection is conservational value of rejection. We
thereby rephrase Popper’s injunction to become: we want more than success—what
we look for is efficient success. (Note that this is a softer goal than the superlative
imperative of minimizing cost or maximizing payoff.) Thus, we change the context
of the decision problem from one of acquiring information while avoiding error to
one of conserving resources while avoiding failure. With the context shift from the
epistemological issue of belief to the praxeological issue of action, we refer to the
resulting utility function as praxeic utility, rather than epistemic utility.
Our development mathematically parallels Levi’s original development of epis-

temic utility theory. We will refer to the degree of resource consumption as
rejectability, and require rejectability to be expressed in terms of a function
that conforms with the axioms of probability. We use this new terminology to
emphasize the semantic distinction of using the mathematics of probability in a
non-conventional way. Thus, for a finite action space, U , rejectability is expressed
in terms of a mass function, pR� U → �0� 1 such that pR�u� ≥ 0 for all u ∈ U
and

∑
u∈U pR�u� = 1. Inefficient options (those with high resource consumption)

should be highly rejectable; that is, if considerations of success are ignored, one
should be prone to reject options that result in large costs, high energy consump-
tion, exposure to hazard, etc. Normalizing pR to be a mass function, which we
will term the rejectability mass function, insures that the agent will have a unit of
resource consumption to apportion among the elements of U . We may view pR as
the inutility of consuming resources. If u ∈ U is rejected, then the agent conserves
1− pR�u� worth of its unit of resources which is therefore available to be applied
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to other options. We will usually assume that pR�u� > 0 for all u ∈ U (that is, there
are no completely cost- or risk-free options).
Failure is avoided if successful options are not rejected, but efficiency, as well

as success, must also be considered. Our approach to evaluating candidate sets of
options for retention is to define the utility of not rejecting them in the interest of
both success and resource conservation, and to retain the set that maximizes this
utility. Suppose that implementing u ∈ U would lead to success, and let A ⊂ U be
a set we are considering for retention. The utility of not rejecting A in the interest
of avoiding failure is the indicator function,

IA�u� =
{
1 if u ∈ A

0 otherwise�
[1]

This utility function is very even-handed; it is concerned only with the value of not
rejecting A when u is successful—it does not count one option to be more desirable
than another. Matters of desirability are deferred to the conservation-determining
function, pR, and not with accounting for the seriousness of one failure relative to
another. We define the praxeic utility of not rejecting A when u is successful as the
convex combination of the utility of avoiding failure and the utility of conserving
resources:

��A� u� = �IA�u�+ �1− ��

(
1− ∑

v∈A
pR�v�

)
� [2]

where � ∈ �0� 1 is chosen to reflect the agent’s personal weighting of these two
desiderata—setting � = 1

2 associates equal concern for avoiding failure and con-
serving resources.
Clearly, praxeic utility is maximized when A = �u� (the singleton set). Unfor-

tunately, it generally is not known precisely which u will lead to success (or that
only one u will do so), so we cannot simply reject U\�u�, the complement of �u�.
We may, however, possess information regarding the degree of success support pos-
sessed by each u. Let pS� U → �0� 1 be a mass function that evaluates each option
with respect to the degree to which it accomplishes the objective of the decision
problem, independently of how much resource is consumed by implementing it. We
will refer to the degree of success support as selectability, and we will term pS the
selectability mass function.
In the tradition of VNM theory, we may then calculate expected praxeic utility for

any set A ⊂ U by weighting the utility by the degree of success support associated
with each u and summing over all u ∈ U . The expected praxeic utility is then

�̄�A� = ∑
u∈U

[
�IA�u�+ �1− ��

(
1− ∑

v∈A
pR�v�

)]
pS�u�

= �
∑
u∈U

IA�u�pS�u�− �1− ��
∑
v∈A

pR�v�
∑
u∈U

pS�u�+ �1− ��
∑
u∈U

pS�u�

= �
∑
v∈A

pS�v�− �1− ��
∑
v∈A

pR�v�+ �1− ��� [3]
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Since
∑

u∈U pS�u� = 1. Because VNM utility functions are invariant with respect to
positive affine transformations, dividing by � and ignoring the constant term yields
a more convenient but equivalent form for expected praxeic utility:

�̄�A� = ∑
u∈A

�pS�u�− bpR�u�� [4]

where b = 1−�
�
.

We may obtain the largest set of options for which the selectability is greater than
or equal to b times the rejectability by choosing the set that maximizes6 expected
praxeic utility, resulting in the satisficing set

�b = argmax
A⊂U

�̄�A� = �u ∈ U� pS�u� ≥ bpR�u�� =
{
u ∈ U�

pS�u�

pR�u�
≥ b

}
� [5]

�b is the set of all options for which the benefits outweigh the costs, as scaled by b.
The parameter, b, is the boldness of the decision problem, and parameterizes the
degree to which the agent is willing to risk rejecting successful options in the interest
of conserving resources. Setting b > 1 attributes more weight to resource conser-
vation than to success. Setting b ≤ 1 ensures that �b �= �, since otherwise pS�u� <
bpR�u� for all u ∈ U , which would imply 1 = ∑

u∈U pS�u� < b
∑

u∈U pR�u� = b, a
contradiction. We will refer to (5) as the Praxeic Likelihood Ratio Test (PLRT).
The set �b contains all options such that the benefits of adoption outweigh the

cost and therefore is consistent with condition S-1, but it may include options that
needlessly sacrifice benefit or incur cost. We may eliminate such options as follows.
For every u ∈ U let

BS�u� = �v ∈ U� pR�v� < pR�u� and pS�v� ≥ pS�u��

BR�u� = �v ∈ U� pR�v� ≤ pR�u� and pS�v� > pS�u���
[6]

and define the set of options that are strictly better than u:

B�u� = BS�u� ∪ BR�u�� [7]

that is, B�u� consists of all possible options that are either less rejectable and not
less selectable than u, or are not more rejectable and more selectable than u. If
B�u� = �, then no options can be preferred to u on the basis of both selectability
and rejectability. The set of equilibrium options is consistent with condition S-2,
and is defined as

� = �u ∈ U� B�u� = ��� [8]

The set of satisficing equilibrium options is the intersection of the satisficing and
equilibrium sets:

�b = � ∩ �b� [9]
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4. Multi-agent systems

4.1. Background

Perhaps the most intensely studied multi-agent decision formalism is game theory.
Game theory is built on one basic principle: individual self-interest. Under the VNM
view, when a player is faced with uncertainty, the only justifiable course of action
is to choose an action that maximizes expected utility, conditioned on the expected
actions of other players. This is called the principle of individual rationality. For two-
person constant-sum games, individual self-interest is the only possible non-vacuous
principle—what one player wins, the other loses. Game theory insists, however, that
this same principle applies to the general case. Thus, even in situations where there
is the opportunity for group, as well as individual interest, only individually rational
actions are viable: if a joint (that is, for the group) is not individually rational for
some agent, that exclusively self-interested agent would not be a party to such a
joint action. This is the crux of the Prisoner’s Dilemma.
This limitation of game theory has been observed by Luce and Raiffa:

� � � general game theory seems to be in part a sociological theory which does not include
any sociological assumptions � � � it may be too much to ask that any sociology be derived
from the single assumption of individual rationality [15, p. 196].

With conventional game theory, attitudes such as cooperation and conflict are not
built into the expected utility functions. Expected utilities are functions only of the
actions, or strategies, of the player, and not of their preferences. It is not until the
expected utilities of all players are juxtaposed that the “game” aspect of the decision
problem emerges.
Social choice theory has also built largely on the foundation of individual ratio-

nality. For example, under Harsanyi’s formulation, a social-welfare function is a pos-
itive linear combination of individual expected utilities, and each player proceeds
under the substantively rational paradigm by maximizing its social-welfare function
[7, 9]. Each individual expected utility in this combination serves to map group
actions to individual preferences, then the weighted combination of these individ-
ual preferences is used to define the preference of society. Thus, this social-welfare
function requires a sequence of two couplings: the first provides a group-action to
individual-preference coupling, and the second provides an individual-preference to
group-preference coupling.
Perhaps the most fundamental type of coupling, however, is that of individual

preferences to individual preferences. Suppose decision maker Xi becomes aware
of decision maker Xj (perhaps not exclusively). The most fundamental question
Xi can consider, in this regard, is “How will Xj ’s preferences affect my prefer-
ences?” VNM utility, however, requires Xi to consider instead the question “How
will Xj ’s actions affect my preferences?” The answers to this latter question are
what comprise the individual utility functions, which in turn comprise Harsanyi’s
social-welfare function. Unfortunately, this function does not necessarily reflect the
most fundamental relationships that exist between decision makers, and does not
provide a notion of group rationality that is distinct from individual rationality.
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4.2. Interagent modeling

We suggest that there should be explicit linkages between different individual pref-
erences and between group preference and individual preferences. These linkages,
however, may be quite different from the type of preference orderings that are
the substance of conventional utility theory. An act by any single member Xi of a
multi-agent system, �X1� � � � �XN�, has possible ramifications throughout the entire
community. Some of the agents may be benefited, some may be damaged, and some
may be indifferent. Furthermore, although the single agent may perform the act for
its own benefit, or for the benefit of other agents, or for the benefit of the entire
system, the act is usually not implemented free of cost. Resources are expended, or
risk is taken, or some other penalty or unpleasant consequence is incurred, perhaps
by the single agent itself, perhaps by other agents, and perhaps by the entire com-
munity. Although these undesirable consequences may be defined independently
from the benefits, the measures associated with benefits and costs cannot be spec-
ified independently of each other, due to the possibility of interaction. A critical
aspect of modeling the behavior of such a collection, therefore, is the means of
representing the interdependence of both positive and negative consequences of all
possible multipartite options that could be undertaken.
This representation must account for group interest as well as for self interest.

One way to accommodate group interest is for agent preferences to be sensitive to
the preferences, as well as the choices, of other agents. To develop the means of
representing these preferences, we require some definitions.

Definition 1 A mixture7 is any subset of agents considered in terms of their
interaction with each other, exclusively of possible interactions with other agents
not in the subset.
A selectability mixture, denoted � = Si1 � � � Sik , is a mixture consisting of agents

Xi1
� � �Xik

being considered from the point of view of success. The joint selectability
mixture is the selectability mixture consisting of all agents in the system, denoted
S = S1 � � � SN . A myopic selectability mixture is a mixture of the form � = Si; that is,
when an agent views success as though it were functioning with complete disregard
for all other agents.
A rejectability mixture, denoted � = Rj1

� � � Rj!
, is a mixture consisting of agents

Xj1
� � �Xj!

being considered from the point of view of resource consumption. The
joint rejectability mixture is the rejectability mixture consisting of all agents in the sys-
tem, denoted R = R1 � � � RN . A myopic rejectability mixture is a mixture of the form
� = Ri.
An intermixture is the concatenation of a selectability mixture and a rejectabil-

ity mixture, and is denoted �� = Si1 � � � SikRj1
� � � Rj!

. The joint intermixture is
the concatenation of the joint selectability and joint rejectability mixtures, and is
denoted SR = S1 � � � SNR1 � � � RN . A myopic intermixture is a mixture of the form
�� = SiRi.

Definition 2 Given arbitrary action spaces Ui, i = 1� � � � �N , the product action
space, denoted U = U1 × · · · × UN is the set of all N -tuples u = �u1� � � � � uN �
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where ui ∈ Ui. The selectability action space associated with a selectability mixture
� = Si1 � � � Sik is the product space U� = Ui1

× · · · × Uik
. The rejectability action

space associated with a rejectability mixture � = Rj1
� � � Rj!

is the product space
U� = Uj1

× · · · × Uj!
. The interaction space associated with an intermixture �� =

Si1 · · · SikRj1
· · ·Rj!

is the product space U�� = Ui1
× · · · ×Uik

×Uj1
× · · · ×Uj!

. The
joint interaction space is USR = U× U.

Definition 3 A selectability mass function (smf) for the mixture � = �Si1 � � � Sik�
is a mass function denoted p� = pSi1 ���Sik

� U� → �0� 1. The joint smf is an smf for
S, denoted pS.
A rejectability mass function (rmf) for the mixture � = �Rj1

� � � � Rj!
� is a mass

function denoted p� = pRj1
���Rj!

� U� → �0� 1. The joint rmf is a rmf for R, denoted
pR .
An interdependence mass function (imf) for the intermixture �� = �Si1 � � �

SikRj1
� � � Rj!

� is a mass function denoted p�� = pSi1 ���Sik
Rj1

���Rj!
� U� × U� → �0� 1.

The joint imf is an imf for SR, denoted pSR .

Let v ∈ U� and w ∈ U� be two joint options. Then p���v�w� is a representa-
tion of the success support associated with v and the resource consumption associ-
ated with w when the two joint options are viewed simultaneously. In other words,
p���v�w� is the mass associated with adopting v in the interest of success and
rejecting w in the interest of conserving resources.
The joint imf provides a complete description of the individual and interagent

relationships in terms of their positive and negative consequences, but specifying
the imf can be complex, especially for high-dimensional systems. Fortunately, the
structure of the imf makes it possible to generate global behavior (the joint imf)
from interdependence mass functions for intermixtures. To develop this theory we
require some additional definitions.

Definition 4 Given an intermixture �� = Si1 � � � SikRj1
� � � Rj!

, a subinter-
mixture of �� is an intermixture formed by concatenating subsets of �
and �� �1�1 = Sip1

� � � Sipq Rjr1
� � � Rjrs

, where �ip1� � � � � ipq � ⊂ �i1� � � � � ik� and
�jr1� � � � � jrs � ⊂ �j1� � � � � j!�. We shall use the notation �1�1 ⊂ �� to indicate that
�1�1 is a subintermixture of ��.
The ��-complementary subintermixture associated with a subintermixture �1�1

of an intermixture ��, denoted ��\�1�1, is an intermixture created by concate-
nating the selectability and rejectability mixtures formed by the relative compli-
ments of �1 and �1. Clearly, ��\�1�1 ⊂ ��. We will say that �� is the union
of ��\�1�1 and �1�1, denoted �� = ��\�1�1 ∪�1�1.

Definition 5 Let �� be an intermixture with subintermixture �1�1. A con-
ditional interdependence mass function, denoted p��\�1�1��1�1

, is a mapping of
�U��\�1�1

× U�1�1
� into �0� 1 such that, for every v ∈ U�1�1

, p��\�1�1��1�1
�·�v� is a

mass function on U��\�1�1
.
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We require all conditional interdependence mass functions to be consistent with
interdependence mass functions, that is, For �� an arbitrary intermixture with
subintermixture �1�1 with w ∈ ��\�1�1 and v ∈ �1�1, we have

p���v�w� = p��\�1�1��1�1
�w�v� · p�1�1

�v�� [10]

Example 1. Let �X1�X2�X3� be a multi-agent system, and let � = S1S2 and
� = R3. Then �� = S1S2R3 and SR\�� = S3R1R2. The imf is

pS1S2S3R1R2R3
�v1� v2� v3�w1�w2�w3� = pS3R1R2 �S1S2R3

�v3�w1�w2�v1� v2�w3�

·pS1�S2R3
�v1�v2�w3� · pS2R3

�v2�w3�� [11]

pS3R1R2 �S1S2R3
�v3�w1�w2�v1� v2�w3� is the conditional selectability and rejectability

associated with X3 selecting action v3, X1 rejecting action w1, and X2 rejecting
action w2, conditioned on X1 ascribing its entire unit of selectability mass to v1, X2
ascribing its entire unit of selectability mass to v2, and X3 ascribing its entire unit of
rejectability mass to w3. The other two conditional interdependence mass functions
are interpreted similarly.

An advantage of factoring the imf into conditional components is that preferences
conditioned on various situations makes it possible to characterize global preferences
in terms of conditional local preferences. As noted by Pearl [18], it is often easier
to specify conditional local characteristics rather than unconditional joint global
characteristics. Conditional probabilities permit local, or specific responses to be
characterized; they possess modularity features similar to logical production rules.
Factorizations make it possible to simplify the structure of the interdependence

function when agents or agent groups are indifferent to each other, in which case
the interdependence function will factor into products of marginal interdependence
functions. When agents are conditionally independent of each other, various Marko-
vian structures may be present, which also results in a significant simplification of
the interdependence function. The interdependence function thus provides a parsi-
monious way of accounting for interagent relationships. This is important, because
as the dimensionality of the agent system becomes large, the number of possible
inter-agent relationships grows combinatorially. Thus, it is necessary to exploit any
simplifying structure that may exist, while at the same time not ignoring dependen-
cies that are critical. Multivariate probability theory is ideally suited to this task.
While it can be complex, it is not more complex than it needs to be. It fulfills the
dictum offered by Palmer:

� � � complexity is no argument against a theoretical approach if the complexity arises not
out of the theory itself but out of the material which any theory ought to handle [16,
p. 176].
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5. Satisficing games

5.1. Multilateral and unilateral decisions

The role of the joint imf is to characterize all of the logically possible interagent
preference relationships that exist between the members of the multi-agent system.
Once this function is defined, dichotomies may be extracted from it by computing
appropriate marginals. We examine two perspectives. The first is appropriate for
multilateral, or group decision making, and the second is appropriate for unilateral,
or individual decision making. We then expose some relationships between group
decision making and individual decision making.
To form a multilateral decision, we compute the joint selectability and rejectability

marginals as

pS�u� =
∑
v∈U

pSR�u� v� [12]

pR�v� =
∑
u∈U

pSR�u� v� [13]

for all �u� v� ∈ U×U. These marginals may then be used to generate the multilateral
satisficing set according to a straightforward extension of the PLRT:

�b = �u ∈ U� pS�u� ≥ bpR�u��� [14]

The multilateral satisficing equilibrium set is

�b = � ∩�b� [15]

where � is the set of multilateral satisficing equilibrium options defined in accor-
dance with Eq. [8].
The multilateral satisficing set given by Eq. [14] provides the set of jointly satis-

ficing options as viewed from the group perspective. To obtain the individual per-
spective, we must compute the univariate satisficing sets for each agent. We first
computing the univariate selectability and rejectability marginals, given, for agent
Xi, by

pSi
�ui� =

∑
j �=i

pS1···SN �u1� � � � � ui−1� ui� ui+1 � � � � uN � [16]

pRi
�ui� =

∑
j �=i

pR1···RN
�u1� � � � � ui−1� ui� ui+1 � � � � uN �� [17]

The univariate satisficing set for Xi is

�i
b = �u ∈ Ui� pSi

�u� ≥ bpRi
�u��� [18]

and the unilateral satisficing equilibrium set is

�i
b = �i ∩ �i

b� [19]
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We may examine the relationships between group-level satisficing and individual-
level satisficing, that is, between �b and the family of individually satisficing sets
��i

b� i = 1� � � � �N�. Under the special circumstance of all agents acting completely
independently of each other, the joint distributions will factor into the product of
the marginals, yielding

pS�u� = pS1
�u1� · · ·pSN

�uN � [20]

pR�u� = pR1
�u1� · · ·pRN

�uN �� [21]

in which case

�b = �1
b × · · · × �N

b � [22]

In general, however, the interdependencies among agents will render Eq. [22]
invalid, and jointly satisficing actions will not necessarily be individually satisficing
for all agents. Jointly satisficing and individually satisficing solutions must, however,
obey a weak consistency relationship in that, if ui is individually satisficing for Xi,
then it must be an element of some jointly satisficing vector. To establish this claim,
we prove the contrapositive: if ui is not the i-th element of any u ∈ �b, then ui �∈ �i

b.
Without loss of generality, let i = 1. By hypothesis, pS�u1� v� < bpR�u1� v� for all
v ∈ U2 × · · · × UN , so pS1

�u1� =
∑
v pS�u1� v� < b

∑
v pR�u1� v� = bpR1

�u1�, hence
u1 �∈ �1

b. This result says that no one is ever completely frozen out of a deal—every
individual has a seat at the negotiating table. This is perhaps the weakest condi-
tion under which meaningful negotiations are possible. It is not true, however, that
there always exists a jointly satisficing option vector such that each component is
simultaneously individually satisficing—it is possible that �b ∩ ��1

b × · · · ×�N
b � = �,

as evidenced by the following simple example. Let U1 = �u� u′�, U2 = �v� v′�, and
let pS1S2

and pR1R2
be given in Table 2. From this we easily obtain, for b = 1, that

�b = ��u� v′�� �u′� v�� and �1
b × �2

b = ��u� v��. As b is decreased, however, these
decision sets change. At the value b = 0�933, we have �b = ��u� v�� �u� v′�� �u′� v��
and �1

b × �2
b = ��u� v��, so �b ∩ ��1

b × �2
b� = ��u� v��, and there does indeed exist,

at this level of boldness, a jointly satisficing option vector whose components are
both individually satisficing. Reducing the boldness, b, is a controlled way to relax
the standards of intrinsic rationality, which may be necessary in difficult situations
if a compromise is to be reached. The amount b must be reduced below unity is
a measure of the amount of compromising needed to reach a mutually acceptable
solution.

Table 2. Selectability and rejectability functions

pS1S2
v v′

u 0.28 0.40
u′ 0.30 0.02

pR1R2
v v′

u 0.30 0.30
u′ 0.20 0.20
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5.2. The Prisoner’s dilemma

Let us now apply satisficing game theory to the Prisoner’s Dilemma game. Our task
is to define the imf, from which the smf and rmf can be obtained and compared for
each joint option. To generate the imf, we must first define operational notions for
success and resource consumption.
The fundamental objective of the players, as expressed by their utility functions,

is to get out of jail quickly—self-interest is the primary consideration. Laboratory
experiments with randomly selected humans, however, result in the cooperative
solution being chosen relatively frequently with single play and no communication
between the participants [36]. This evidence suggests that for the game to be a
model of human behavior, there may exist motives in addition to self interest. An
obvious possibility is group interest, which apparently emerges in repeated play as a
result of learned cooperation.8 We view the players of this game as individuals who
are concerned primarily with their own task, but at the same time have a degree
of consideration for other players’ difficulties, and consider it a cost to them if an
action they take makes it difficult for others. Such players are enlightened liberals,
who are intent upon pursuing their own self interest but give some deference to
the interests of the group in general. Accordingly, we proceed by associating suc-
cess with reducing individual jail time and associating resource consumption with
increasing group jail time. Thus, short individual sentences will have high selectabil-
ity, and long group sentences will have high rejectability.
The notion of group interest can have significance only if the players each

acknowledge some form of dependence on the other, however weak it may be.
To the extent that these dependencies reinforce each other, the players implic-
itly forge a joint opinion regarding the relative merits of cooperation and conflict.
The success of Rapoport’s approach suggests that there may be (at least) two
attitudes in the minds of the players that may affect their decisions: (a) a propen-
sity for dissociation, that is, for the agents to go their separate ways without
regard for coordination, and (b) a propensity for vulnerability, that is, for the
agents to expose themselves to individual risk in the hope of improving the joint
outcome.
Let � ∈ �0� 1 be a measure of the joint value the players place on rejecting the

joint option �S� S�. We may identify � as a dissociation index: if � ≈ 1, the agents
are completely dissociated and coordination is unlikely. Also, let & ∈ �0� 1 be a
measure of the joint value placed on rejecting the joint option �C�C�. & may be
viewed as a vulnerability index: & ≈ 1 means the agents are each willing to risk
a long jail sentence in the hope of both obtaining a shorter one. A condition of
high dissociation and high vulnerability would indicate a contradictory unconcern
for possible cooperation while implying a hope for cooperation. We may prohibit
this situation by imposing the constraint that �+ & ≤ 1. If, for example, � = 1 and
& = 0, then self-interest is the only consideration. If, however, � = 0 and & = 1,
then the players are willing to assume high risk to achieve cooperation.
If the sentence lengths are independent of the identity of the agents, then the

joint rejectability of �C� S� should be equal to the joint rejectability of �S�C�. With
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this assumption and the constraints on � and &, we define the joint rmf:

pR1R2
�S� S� = �� pR1R2

�S�C� = 1− �− &

2

pR1R2
�C� S� = 1− �− &

2
pR1R2

�C�C� = &� [23]

Although selectability deals with individual objectives, it is a joint consideration,
since the consequences of the agents’ decisions are not independent, and thus pref-
erences cannot be independent. A convenient way to express this dependency is to
exploit the probabilistic structure of the imf and to compute joint selectability con-
ditioned on joint rejectability, pS1S2 �R1R2

�v1� v2�w1�w2� for all �v1� v2� and �w1�w2� in
U ×U = U = ��S� S�� �S�C�� �C� S�� �C�C��, from which the imf may be obtained
by the product rule:

pS1S2R1R2
�v1� v2�w1�w2� = pS1S2 �R1R2

�v1� v2�w1�w2� · pR1R2
�w1�w2�� [24]

The conditional selectability mass function, pS1S2 �R1R2
�v1� v2�w1�w2�, characterizes

the selectability of the joint option �v1� v2� given that the agents jointly place all of
their rejectability mass on �w1�w2�. We may compute the conditional selectability by
invoking straightforward and intuitive rules of the form: “If X1 and X2 jointly reject
�w1�w2�, then they should jointly select �v1� v2�.” Let, say, �w1�w2� = �S� S�, that
is, the agents jointly reject stonewalling. Given this situation, it is trivially obvious
that the preferred joint option is to both confess.9 We may encode this rule into
the conditional selectability mass function by placing all of the mass of on the
joint option �C�C�, that is, pS1S2 �R1R2

�C�C�S� S� = 1. If exactly one agent rejects
stonewalling, then it is obvious that, in this case as well, the preferred joint option is
to both confess, consequently, pS1S2 �R1R2

�C�C�S�C� = 1 and pS1S2 �R1R2
�C�C�C� S� =

1. Finally, if both agents reject confessing, then it is clear that pS1S2 �R1R2
�S� S�C�C� =

1. Table 3 summarizes the structure of this conditional credibility function.
Substituting the conditional selectability interdependence function given by

Table 3 and the joint rejectability given by (23) into (24) and applying Eq. [12]

Table 3. Conditional credibility for the satisficing Prisoner’s Dilemma

pS1S2 �R1R2 �v1� v2�w1�w2�

�w1�w2�

�v1� v2� �S� S� �S�C� �C� S� �C�C�

�S� S� 0 0 0 1
�S�C� 0 0 0 0
�C� S� 0 0 0 0
�C�C� 1 1 1 0
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Figure 1. Decision regions for (a) bilateral decisions and (b) unilateral decisions.

yields the joint selectability function:

pS1S2
�S� S� = & pS1S2

�S�C� = 0 [25a]

pS1S2
�C� S� = 0 pS1S2

�C�C� = 1− &� [25b]

Comparing the bilateral selectability, given by Eq. [25a], with the bilateral
rejectability, given by Eq. [23], we obtain the bilateral satisficing set, which consists
of all decision pairs, �w1�w2� ∈ U, such that pS1S2

�w1�w2� ≥ bpR1R2
�w1�w2�. Thus,

parameterized by � and &, this set is, for the special case b = 1,

�b =



��S� S�� for & ≥ 1

2

��C�C�� for & ≤ �

��S� S�� �C�C�� for � < & < 1
2

� [26]

These regions are depicted in Figure 1(a). The bilateral satisficing set coincides with
the Pareto-optimal solution, �S� S�, when the vulnerability index is at least as large
as 1

2 . It coincides with the Nash solution when the vulnerability index is less than
the dissociation index. If the vulnerability index is greater than dissociation index
but less than 1

2 , then the bilateral satisficing set contains both �S� S� and �C�C�. To
take action in this situation requires the invocation of a tie-breaker. For example,
�C�C� is the satisficing option placing higher emphasis on individual interest (higher
selectability), and �S� S� is the satisficing option placing higher emphasis on group
interest (lower rejectability).
We may compute the unilateral satisficing equilibrium set by computing the uni-

variate selectability and rejectability marginals in accordance with Eqs [16] and [17],
from which the univariate satisficing set for either agent is

�b =



�S� for & > 1+�

3

�C� for & < 1+�
3

�S�C� for & = 1+�
3

� [27]

The unilateral decision regions are illustrated in Figure 1(b). Note that the set is a
singleton except in the special situation of & = 1+�

3 .
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In contrast to the VNM solution to this game, the satisficing solution accounts
for the inclinations of the players. The VNM solution emerges as a special case
(e.g., � = 1 and & = 0), but the satisficing solution gives the solution for all admis-
sible ��� &� pairs. Uncertainty regarding these parameters may be handled in sev-
eral ways. An agent is free to regard them as (a) random variables with known or
interval-valued distributions and compute expectations, (b) deterministic interval-
valued parameters and perform worst-case analysis, or (c) unknown parameters
for which only an ordinal relationship is assumed. Thus, under fairly general cir-
cumstances, a decision can be rendered even though there may be considerable
uncertainty regarding the values of the dispositional indices.

6. Summary and discussion

6.1. Summary

Current decision-making methodologies have two extreme categories: (1) superla-
tive approaches, such as VNM game theory, that rely on expected utility maxi-
mization; and (2) positive, or heuristic approaches, such as searching, planning,
and scheduling procedures, that rely on the knowledge and experience of recog-
nized experts. Much current work is devoted to finding hybrid approaches, such as
bounded rationality, which blend optimality and heuristics by modifying the perfor-
mance or stopping criteria. In this paper we do not rely upon optimality, or heuris-
tics, or even a hybrid. Instead, we invoke a comparative paradigm and establish
a concept for satisficing based on the logical middle ground between the superla-
tive and positive paradigms. Using this concept, we define satisficing equilibria and
establish it as a basis for making decisions that can be systematically justified as
“good enough.” Table 4 provides a summary of the two extreme paradigms and
ours, and compares them in terms of the solution concept, and knowledge require-
ments.
Substantive rationality—seeking the best and only the best—is perhaps the

strongest possible notion of rationality, but it is more important to be good enough

Table 4. Frameworks for decision making

Rationality Decision Solution Knowledge
concept paradigm concept requirements

Substantive Superlative Maximal Global
(extrinsic) degree expectations mathematical
rationality (optimal) models

Intrinsic Comparative Acceptable Local
rationality degree tradeoffs mathematical

(dichotomous) models

Procedural Positive Authoritative Local
rationality degree procedures behavioral

(heuristic) rules
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than to be best. Intrinsic rationality—getting what you pay for—is a weaker notion,
but it is also more fundamental. Stated another way, evaluating dichotomies is a
more elementary activity than searching for maxima. It is local, rather than global;
it is an internal, rather than external, evaluation.
The primary mechanism for identifying intrinsically rational options is epistemic

utility theory. This theory is a cognitive decision-making procedure designed to
acquire information and avoid error. Using the same mathematical structure, we
provide new semantics for the design of a practical decision-making procedure
designed to conserve resources and avoid failure. To distinguish this practical con-
text from the cognitive context, we term this approach praxeic utility theory. This
approach applies to both univariate (single-agent) and multivariate (multi-agent)
decision making. It provides a compatible interface with the notion of satisficing
we use, since it is designed to accommodate dichotomies. Furthermore, the mathe-
matical structure of the interdependence function (as a mass function) permits the
characterization of global interdependence in terms of conditional local interdepen-
dence, and provides a viable means of constructing the interdependence function
to account for whatever dependencies exist among the agents.
In complex and uncertain environments, it is essential that decision-making pro-

cedures be parsimonious and robust. The middle ground offered by the comparative
paradigm accommodates both of these desiderata in a natural way. By softening the
demands of strict optimality, the door is opened for a flexible and economical way of
characterizing multi-agent behavior while not abandoning demands for acceptable
performance. The comparative paradigm uses whatever modeling information and
performance principles are available to formulate the interdependence function and
apply the praxeic likelihood ratio test. The resulting satisficing solutions are justified
as being good enough in the sense that they result in tradeoffs that favor benefits
over costs. This line of research is still in its early stages of development, but sub-
stantive results are beginning to emerge. In the single-agent context, [5, 6, 29, 32]
demonstrate its applicability to the control of nonlinear dynamic systems that have
proven to be difficult to solve using conventional means. In (Stirling and Goodrich,
1999a; Stirling et al., 1996b; Stirling and Goodrich, 1999b) the approach is applied to
the multi-agent case, resulting in the formalization of the notion of satisficing games.

6.2. Some questions and reflections

The approach developed in this paper provides a contrast to conventional game the-
ory, which tells us about outcomes we can expect from substantively rational agents.
Game theory has been used extensively as a means of modeling human behavior,
but there is considerable evidence that people often do not behave in ways consis-
tent with substantive rationality; that is, they are not optimizers, or even constrained
optimizers [2, 3, 4, 21, 28]. An important open question is whether or not, and under
what conditions, our notion of satisficing based on intrinsic rationality provides a
valid model for human behavior; that is, are people satisficers as we have defined
the term? An answer to this question may be provided by appropriately designed
psychological testing and evaluation.
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Another characteristic of conventional game theory is that it employs rationality
postulates that are imposed at the individual level, rather than on the group. Game
theory does not easily accommodate group interests, since the preferences of each
agent are expressed as functions only of the choices of other agents, and are not
conditioned on their preferences. With conventional game theory, attitudes such as
cooperation and conflict are not built into the utility functions, but become evident
only when the utilities are juxtaposed—the linkages are external. A characteristic
of our approach, however, is that preference relationships between agents can be
expressed via the interdependence function—the linkages are internal. This feature
invites further investigation into its significance. Does the explicit linkage of inter-
agent preferences provide a basis upon which to construct an artificial society that
captures important aspects of human behavior?
Satisficing decision theory may provide a convenient framework for negotiation.

One of the problems with VNM game theory as a framework for negotiation is that
it is not constructive—it may identify a best compromise, but does not provide a
procedure for reaching it. The main trouble is dealing with the dynamic nature of
coalition formation. Consequently, the strategic form is used extensively, and much
of classical game-theoretic attention has been focused on situations where the pro-
cess of negotiation can be presumed irrelevant to actual play. In other words, all of
the deals, promises, threats, etc., are presumed to take place before the first move is
actually played [24]. Heuristic approaches to negotiation are naturally amenable to
the development of processes, but they lack the capacity for self-policing, and qual-
ity cannot be assured. The principal run-time “decision-making” activity under sub-
stantive rationality is searching for an option that possesses the externally defined
attribute of “optimality,” and under procedural rationality it is rule-following. But
under intrinsic rationality, the principal run-time activity is evaluating dichotomies
and actually making choices dynamically and interactively according to internal
assessments of both group and individual preferences. This feature is potentially
a great advantage when designing negotiatory processes. When negotiating, is seek-
ing a good enough compromise a more robust and flexible posture than directly
seeking a best compromise?
No realistic decision problem can account for all logically possible options. All

decision problems are framed against a background of knowledge and assumptions
that result in a subset of options that are deemed relevant by the decision maker.
This set may or may not be adequate for the task at hand, and one of the most
difficult of all decision-theoretic issues is to decide whether or not this set of options
should be enlarged, and if so, how to go about expanding it. Rank-ordering-based
techniques, by their very nature, provide only relative information and cannot be
used to address this concern. Dichotomy-based techniques, such as praxeic utility
theory, may stand a better chance of addressing this issue, since they are grounded
in the fundamental properties of the options and permit self policing.
For example, being unable to find a good enough option in a situation may lead

an agent to reconsider what it is willing or unwilling to do. If, for another example,
there are no options for which the benefit-to-cost ratio provides a clear choice, this
is evidence that the decision problem is a tense one for the agent. This is not to
say that the agent cannot make a good decision. Rather, it is merely evidence that
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it may not be well-suited, at present, for the task. This realization may trigger the
expansion of the set of options. In practical situations this may require activating
additional sensors, applying more computational power, interrogating information
sources, or other means of acquiring additional information, perhaps at a cost, in
an attempt to better equip the agent to deal with its environment. Once again the
praxeic has influenced the epistemic. Our need to act has led our need to know.

Notes

1. It is interesting to note that the story that gives the Prisoner’s Dilemma its name was invented post
factum to conform, for pedagogical illustration, to the payoff matrix with the given structure, rather
than the other way around [35]. This illustrates the mind-set of many game theorists: the actual
“game” is the payoff matrix, not the story.

2. Traditional game theorists are quick to point out that Rapoport’s solution is not optimal. In fact,
however, Axelrod proves [1] that, for repeated-play games where future payoffs are important, there
does not exist an optimal strategy that is independent of the strategies used by other players.

3. Praxeology: the branch of knowledge that deals with practical activity and human conduct; the science
of efficient action [11].

4. Informational value, as used in this context, is distinct from the notion of “value of information”
of conventional decision theory [20], which deals with the change in expected utility that obtains if
uncertainty is reduced or eliminated from a decision problem.

5. Such tradeoffs are also made under the superlative paradigm, but in a different way. As every control
engineer well knows, specifying the performance criterion and solving for the optimum is only the
first step in a subjective exercise of controller design. Consider, for example, the elementary control
problem of designing an optimal linear quadratic regulator, where the goal is to maintain the state
of a linear dynamical system within acceptable deviations from a desired set point while keeping the
cost of control at an acceptable level. The tradeoff between performance and cost is accomplished
by adjusting the relative weights of these two desiderata. Each weighting ratio leads to a different
optimal control policy, and the task for the designer is to tune the weights iteratively to achieve
an acceptable balance. In reality, there is no universally optimal solution—the “optimal” solution
technique is nothing more than a convenient and systematic design procedure to achieve a solution
that can be defended, at the end of the day, as being “good enough.”.

6. It is in this sense only that the superlative paradigm is involved in our usage of satisficing; the members
of this set do not necessarily inherit any superlative attributes.

7. Not to be confused with a mixture of distributions, which is a convex combination of probability
distributions.

8. Although other psychological factors, such as expected behavior, may contribute to the results of
repeated play games, for simplicity we restrict attention to the notion of group interest.

9. This apparent triviality is a consequence of each agent having only two options, since rejecting one
implies selecting the other, but the situation is not so trivial when there are more than two options.
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