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Abstract: This paper explores a general model of economic
exchange between heterogeneous agents representing firms,
traders, or other socioeconomic entities, that self-organise into
coalitions to fulfil specific tasks. In particular, the work ad-
dresses coalition formation problems in which many tasks are
addressed to the same population over time in an iterative fash-
ion. The purpose of the paper is to describe the necessary el-
ements that lead the system to an equilibrium state and asses
the impact of coalition size constraints on the type of collab-
oration patterns established between agents. By using a novel
data mining technique called collaboration graphs it is possi-
ble to see that stable states can be reached using simple itera-
tive protocols and that the number of stable states increases as
the coalition size limit decreases.
Keywords: MAS, Coalition formation, Request for Proposal,
distributed problem solving, Electronic markets

1. Introduction

In recent years, Multi Agent Systems (MAS) have emerged as
a powerful analytical tool to shed light on phenomena from re-
search areas such as sociology, economics and biology, among
many others. Work in multi-agent systems aims not only to
generate new understanding of complex phenomena in hu-
man societies but also to understand the properties which may
emerge in entirely electronic environment. Progress has been
particularly fast in electronic marketplaces in which trading
systems are often already highly automated with autonomous
agents working on behalf of human traders to react to market
triggers.

In this context, the work presented here focuses specifically
on the challenge of coalition formation in environments char-
acterised by iterated sequences of many request for proposal
(RFP from now on) events and in which agents have little or
no a-priori knowledge of the skill sets of others. Such environ-
ments are common place in many markets -representing regu-
lar calls for tender, contract offers and other requests for tasks
to be carried out which may require not only single providers
but a consortia of organisations with compatible and comple-
mentary skills. Further, in such scenarios, while some infor-
mation on other agents in the population is available this is
unlikely to be complete or accurate. In its generic form, RFP
is a protocol by which an entity submits a description of a re-
quirement and different providers issue different proposals that
satisfy the requirements with different degrees. The proposals
(one or more) which best satisfy the requirements are those
which are rewarded (with the contract to carry out the task and

its associated payment). This mechanism was first studied for
agent systems in [3, 4] and [5] where RFP requests are seen
by the population over time and agents must regularly decide
whether to stay in the coalition they are in, or to leave. In [6]
, agents can further decide which coalitions they would like
to join and whether to accept or reject new members. This pa-
per shows results on the equilibrium dynamics of such iterative
RFP environments where agents may form coalitions and as
more tasks arrive make choices on how to adapt their coalition
structures based on success in the market.

Equilibrium convergence is usually a desirable property of a
system and its establishment depends upon the market proper-
ties. Further, in a given system, there may be more than one
equilibrium and market properties can affect the number of
equilibria present. In the Iterated RFP model studied, stability
is reached when a society is partitioned into coalitions in such a
way that no agent changes the coalition it is in, either because
it is not desirable unilaterally for this agent, or because it is
not desirable for the coalition the agent wants to move to. This
form of stability corresponds to the classical Nash equilibrium
concept in game theory. In this paper it is shown that assuming
an individually rational and pure strategic behaviour among
the agents (score maximization), at least one equilibrium state
is reachable. It is also shown that the number of stable states is
dependant on the coalition size constraints imposed in the sys-
tem. More specifically, there is an inverse relationship between
coalition size limit and number of possible stable states. These
results are proven analytically as well as experimentally by ob-
serving collaboration patterns across different experiments.

Section 2 explains the concrete market mechanism under
study as well as the agent based system designed to model
the iterative RFP coalition formation method, section 3 anal-
yses the equilibrium properties of the system, proving a set of
propositions that are later verified experimentally in section 4,
which also explains the collaboration graph analysis technique
used to check the collaboration patterns established throughout
the set of experiments. Finally section 5 presents conclusions.

2. A Model for the Iterative RFP System

RFP Systems are those where an individual or an entity sub-
mits an invitation (a Request For Proposal) for providers of a
product or service to bid on the right to supply that product
or service to the individual or entity that issued the call. Calls
are an iterative processes that repeats periodically over time
- issuing the same or different tasks at regular intervals. This
way a certain individual that participated in a certain call will
likely participate in the subsequent calls for similar tasks over
and over again, and adapting to the variations in the require-



ments and in the environment in order to be more competitive.
Further, depending on the market rules, both the winning coali-
tion in each cycle and others may be rewarded in ranked order.
Given the competitive nature of the process, proposals tend to
be formed by many partners that complement each other.

2.1. Definitions

A population I consists of a finite number of n individuals
or agents. Agents are able to form coalitions to address a
certain task in a more efficient way. σi = {σi1, σi2, . . . , σim}
denotes a coalition of size |σi| = m, where σij represents
an agent from population I forming part of coalition σi. This
model assumes that an agent can just belong to one coalition.
Agents have heterogeneous capabilities, thus having different
performance levels in different skills. A finite number of k
skills, indexed from 1 to k is set for which each agent σil

has a fixed value: σil = 〈σ1
il, σ

2
il, . . . , σ

k
il〉 . In this manner

it is possible to define a continuum of possibilities between
agents that are specialised in the performance of a certain
skill being unskilled for the rest of them, and agents that
are versatile, being averagely apt for the performance of all
the skills defined. A Task T is specified by a set of k skill
requirements: T = 〈T 1, T 2, . . . , T k〉. Those requirements are
modelled in the form of a number. Each skill T i could be
considered as a necessary subtask for performing task T . The
number of skills for which there is some requirement is noted
as: |T | = ]T i : T i > 0. In a coalition, skills of agents are
aggregated in such a way that each agent gives the best of itself
in a join effort to create a group as competitive as possible
under the requirements of the Task. The coalition has a value
in each skill representing the aggregated effort of its members:

σl
i = max (σl

ij) : 1 ≤ j ≤ m (1)

In this manner, the agent in a coalition which is the best
fit for performing a certain subtask would be the one that
performs it. The set of maximal values corresponding to the
best value in the coalition for each skill is noted as: σ̂i =
〈σ1

i , σ2
i , . . . , σk

i 〉. The aggregated effort of agents in equation 1
is used to measure an score scr(σx, T ) that indicates how well
the agents in coalition σx perform together for accomplishing
a task specification T . The score of a coalition is computed as
the scalar product between σi and T . Amongst many possible
choices, this metric is chosen because it captures in a simple
way the different importance of subtasks T l, and the additive
valuation of all the required skills. Moreover, the function is
monotonically increasing in the size of the coalition, upper
bounded (reflecting the fact that a maximum level of quality is
desired and possible for any given task - a perfect proposal) and
deterministic (i.e. there are no objective or random elements
to the valuation - it is based purely on the competence of the
coalition):

scr(σx, T ) =
k∑

j=0

(σj
x ∗ T j) (2)

2.2. Agent Actions and Strategies

Each player’s strategic variables are its coalition choice to
join σj and a set of agents in this coalition φjk : {(φjk ⊂
σj) ∨ (φjk = ∅)} to eliminate. The possibility of optimisation
that an agent has, responds to the change of value that certain

agents can experiment when in their coalition they are out-
skilled by a new member and so they become redundant be-
cause they are no longer complementary with the other coali-
tion members . The new membership together with the optimi-
sation proposal is not accepted straightforward, it is evaluated
by the members of the target coalition. Just those actions ac-
cepted by a majority (more than the half) of members in the
affected coalition, are performed. An agent that is requested to
take an action can submit a finite number of requests in an spe-
cific order: ψi = 〈(σa, φab), ..., (σp, φpq)〉. Those actions are
evaluated sequentially until one is accepted or none of them is.
If none of its action proposals is accepted, the agent stays in the
same coalition where it was. Each of these actions potentially
changes the coalition structures in the society and with many
agents taking such actions each turn leads to an evolution of
state.

All the agents follow the same strategy. They are score
maximizers, hence they aim to be in the most competitive
coalition as possible, that is, in the coalition with highest score
that accepts them. Each agent σzi constructs an ordered set
of action proposals ψi when requested. ψi contains all the
possible proposals (σx, φxy) such that one of the following
conditions is satisfied:

scr(σx − φxy + σzi, T ) > scr(σz, T ) (3)

scr(σx − φxy + σzi, T ) = scr(σz, T ) ∧
|{σx − φxy + σzi}| < |sigmaz|

(4)

In words, an agent’s action proposal set contain every proposal
that either improves the score of the coalition the agent is in, or
keeps the same score while reducing the size. Action proposals
in a set, are partially ordered having proposal’s score as a first
ordering criterium, and minimal coalition size as a secondary
one.

Agents have information on the score of their current coali-
tion and the potential outcome in terms of score, of any action
they want to consider (however they have no information on
the evolution of coalitions after its decision, nor the individual
skills of agents in other coalitions) .

The economic benefit of being higher ranked is not explic-
itly represented in this paper, however, in [6] it was shown that
score maximising strategy lead to higher benefits than a payoff
maximisation strategy.

2.3. RFP Iterative Model

At time 0, every agent is a coalition of just one element (σi =
{σii}). A task T is issued and a run of negotiation starts in
which every agent, sequentially and following a random order,
is asked about an action to take. Agents have no knowledge on
the order in which they are requested for an action. The run
ends when all agents have been requested for an action. The
process last as many runs as necessary until it converges to
an stable state. Stability is reached when in a complete run, no
agent is willing to leave the coalition is in or none of its actions
are accepted by the hosting coalition.

3. Equilibrium Properties of the Iterative RFP
Model

In order to analyse the complexity of the coalition formation
process, it is necessary to define certain aspects of coalitional



structures of the RFP model: A partition σ = {σ1, σ2, . . . , σm}
of population I is an specification of m coalitions of agents.
Each agent belongs to one, and only one coalition. The
set of coalitions can thus be identified with the index set
M =< 1, 2, . . . , m > . It is convenient to use the partial order
≤ defined in previous section over the set of coalitions, thus
having a partially ordered partition σ =< σ1, σ2, . . . , σm >
as an element of the space Mn. The total number of partitions
in a given population is finite. The concrete amount of parti-
tions of a population of size n corresponds the the n’th Bell
number1Bn. Those partitions define the state space X of the
dynamic process of coalition formation. Coalition formation
in RFP environments is a dynamic process. For each state σ
in X , let FX(σ) represent the set of states achievable by a
one-step move (one agent move from one coalition to another,
replace another agent in a coalition or optimise the coalition
it is in). The model is thus stochastic as there is uncertainty
on which of the achievable states follow a certain state, it will
depend on which agent is elected to make a move. Once the
concrete agent chosen to move it is known, the concrete state
transition is still not deterministic for every case, because al-
though all agents use a pure strategy (see section 2.2), when
their best score choice can be obtained by doing two or more
different actions (scr(σxj ′, T ) = scr(σyj ′′, T )) they would
decide randomly which one they would try first. Let a useful
member of a coalition be an element σil such that σil ∈ σ̂i

hence scr(σi, T ) > scr(σi − σil, T ). The set of skills of a
useful member σil which value is maximal across the values
of the rest of members of the coalition, are called contributing
skills and are noted as σ̂il = {j|∀σiq : q 6= l : σj

il > σj
iq}.

Let a coalition σi be leading in a given partition set if there
is no coalition σj in the same partition σ such that σi < σj .
Note that there could be more than one leading coalition as
coalitions are arranged in partial order (σk might exist such
that σi = σk). A partition σ is unstable if FX(σ) 6= {σ}.
That happens when there is at least one individual who would
be better off in a different coalition, and that coalition would
be better off accepting him or when there is a coalition where
one or more of its members is not a useful member. A parti-
tion is stable otherwise, and is noted as σ∗. It is possible to
demonstrate the convergence of the system into an stable state
σ∗ assuming the specified score-maximising strategic profile
of a fixed population of agents I , as well as a deterministic,
upper bounded and monotonically increasing with the number
of agents |σx| valuation function:

PROPOSITION 1 (monotonically increasing value of σ1).The
leading coalition (σ1) never reduces its value (score).

Having a monotonically increasing with the number of agents
valuation function (equation 1) the value of σ1 can only de-
crease by leaving out members or replacing members by less
competent ones. This cannot happen, as in the one hand, score
maximising strategic profile of agents does not permit the
replacement nor the expel of any useful member, as it will
decrease coalition’s score. In the other hand, no agent σ1l

has an incentive to leave to a coalition σi : i 6= 1 unless
(σi + σil) > σ1, in which case, (σi + σil) would be indexed
with value 1, hence increasing the score of previous σ1. The

1 This can be calculated by summing the Stirling numbers of the second kind
for each number of partitions: Bn =

∑n

k=1
S(n, k). As an example, the

number of partitions of a population of 100 agents is: 4.7585 ∗ 10115

only case in which an agent might leave σ1 not to create a
coalition that outperforms σ1, is the case in which it is ex-
pelled because it is not a useful member, in which case, by
definition of useful member, after its move, the score of σ1

does not change. ¤

PROPOSITION 2 (maximal σ1 with unconstrained size).If coali-
tion size is not constrained to a value smaller than |T |, σ1 al-
ways reaches the maximum possible value in a finite number
of runs.
Let σ∗1 be the set of coalitions with maximum possible value
and minimum number of members, formally:
σ∗1 = {σx|(arg maxy:σxy

scr(σx, T ) ∧ arg miny:σxy
|σx|)}.

Given a fixed T , scr valuation function (equation 2) is max-
imised with a maximal σ̂x, hence the solution set consists on
the set of coalitions with the minimal set of agents with max-
imal values for each required skill (specialist agents): σ∗1 =
{σx|(argmaxy∈Iσ

i
xy : T i > 0∧ arg miny:σxy

|σx|)}. This set
is never empty and may have more than one coalition if there
are different agents with the same value in their contributing
skills of a coalition of σ∗1 .

A coalition with a maximal score is always reached in finite
time, if it were not like that, there would exist a coalition σ1 in
state of equilibrium such that scr(σ1, T ) < scr(σ1′, T )∧σ1′ ∈
σ∗1 . This would imply that ∃i : σi

1 < σi
1′. Let the agent with

contributing skill i of σ1′ be called σ1x′. This agent would have
no incentive to stay in a different coalition than σ1 as is the
leading coalition. This agent will be accepted in the coalition as
max(σi

1, σ
i
1x′) = σi

1x′ hence scr(σ1x′+σ1, T ) > scr(σ1, T ).
The leading coalition in equilibrium has always mini-

mal size. If it were not like that, a coalition σ1 in equilib-
rium would exist, for which scr(σ1, T ) = scr(σ1′, T ) and
|σ1| > |σ1′|. There are two possible reasons for a leading
coalition to be oversized. One is that is contains non useful
agents, in which case the coalition would not be stable as
those agents would be expelled (see equation 4). The sec-
ond reasons is that two or more of its members are con-
tributing in less skills than those in coalitions of σ∗1 . That is

∃σxy : x 6= 1 ∧ σi
xy = σ̂i

1a ∧ σj
xy = σ̂j

1b ∧ i 6= j ∧ a 6= b.
In which case σ1 would not be stable as σxy would be will-
ing to submit the following joining+replacement proposal:
< (σ1, {σ1a, σ1b}) >. This replacement would keep the score
of σ1 while reducing its size, hence it would be accepted and
σ1 would not be stable. ¤

THEOREM 1 (stability).A stable partition σ∗ always exist and
is reached in a finite number of runs
Given Proposition 2, σ1 converges into a stable state in which
the maximum score and minimum size is reached in finite time.
Once this coalition has reached its optimal state, Proposition
1 would apply to σ2, as this coalition score becomes bounded
under the score of σ1. Hence, σ2 will reach a stable maximal
score value. Taking this as step of the inference, the same ar-
gument can be applied for the rest of the coalitions so that
none of them would change their value. This demonstrates that
effectively exists at least one stable state and further, that the
system must converge to one. ¤

PROPOSITION 3 (maximal σ1 with constrained size).If coali-
tion size is constrained to a value smaller than |T |, σ1 con-



verges into a stable state (not necessarily with the maximum
possible value).

If the coalition is constrained to a limited size below |T |, there
would be one or more agents with, necessarily, more than one
contributing skill: ∀i : (∃l : σ̂j

il ∧ σ̂p
il ∧ j 6= p), this fact

may create a deadlock in the following situation: If contribut-
ing skills for two agents σ1x and σ1y in the leading coalition,
are set up in the following way: σ̂a

1x, σ̂b
1x, σ̂c

1y, σ̂d
1y , assuming

that σ1x and σ1y are just contributing in the specified skills. If
|σ1| equals the maximum permitted size. If there exists other
two agents σiw and σjz such that if by doing the following si-
multaneous replacement: σ1′ = σ1−{σ1x, σ1y}+ {σiw, σjz}
the score is improved scr(σ1′) > scr(σ1) and the resul-
tant contributing skills for the new agents in the coalition are
σ̂a

1w′, σ̂b
1z′, σ̂c

1w′, σ̂d
1z′. Under specific circumstances, the pre-

vious replacement could not be possible when agents perform
sequentially (as iterated RFP protocol imposes). ex: For all
of the four possible replacements this situation could happen:
σ1′′ = σ1− σ1x + σiw, having contributing skills set up in the
following manner: σ̂a

1w′′, σ̂b
1l′′, σ̂c

1y′′, σ̂d
1y′′ with scr(σ1′′) <

scr(σ1), hence no sequential replacement would result benefi-
tial and σ1 would remain suboptimal.

The leading coalition would converge into a stable state
because if no deadlock happens, explanation on convergence
shown in proposition 2 holds. If coalition is deadlocked in a
suboptimal state, the deadlock would prevent σ1 for changing,
hence the coalition would be stable. ¤

A direct consequence of this proposition is that in a com-
petition where the size of coalitions is constrained to a value
lower than the number of skills required, the number of possi-
ble stable states is increased by deadlocked states that would
be stable although not necessarily optimal.

4. Experimental Analysis

This section reviews the analysed equilibrium dynamics prop-
erties from an experimental point of view and assesses the ef-
fect of coalition size constraints on the collaboration patterns
established between agents. In order to observe the popula-
tion’s patterns of collaboration, the RFP protocol is used as
many runs of negotiation as necessary (see section 2.2) until
agents reach an stable state. At that point, the one to one re-
lationship established between members of the population are
saved, and after the final experiment, the frequency of these
relationships are compiled across all runs and used to generate
weights in a population graph. The data generated in this man-
ner contains information on which agents often work together
for the task set. The mechanism used to determine clustering
is an implementation of Kamada-Kawai [2] algorithm in Pa-
jek [1]. This algorithm places nodes in a bi-dimensional space
in a close position when they are connected with links of rela-
tive high value. Graphs are created from data obtained by the
clustering algorithm, and for the sake of the clarity, these also
distinguish the frequency of cooperation between agents, not
only by of their position in the graph, but also with the tone of
the arrows in such a way that they look darker when the rela-
tionships are more frequent, and lighter otherwise. Throughout
the rest of the paper, these graphs are referred to as Collabora-
tion Graphs.

4.1. Experimental Set-Up

In order to validate the properties shown, a significant num-
ber of different experiment sets have been performed. Those
parameters that have a scale effect on the system but do not
change the global effects have been fixed. These parameters
are: population size (|I| = 100), number of skills (k = 10), to-
tal value of every agent (

∑k
j=1 σj

xy = 200) and total value of
every task used (

∑k
j=1 T j = 100). The variables under study

have been: coalition size limit (unlimited size, 8, 6 and 4) and
the distribution of value (total value of 200 with an specific
standard deviation in the way it is distributed across skills)
in every agent (stdev equal to: 5,10 or 15). The different dis-
tributions among skills create different scenarios of special-
ity/versatility of agents.

4.2. Stability Properties

4.2.1. Convergence and Non Decreasing Value of Leading
Coalition

For all the experiments performed, it has been confirmed the
convergence of the system into an stable state. Following the
defined notion of stability (see section 3). This has been proved
monitoring the type of orders that agents submit during the
process and observing how in every experiments agents end
up not submitting any action proposal or submitting action
proposals that are not accepted by the hosting coalition.

Figure 1 shows score values of all the coalitions in every
iteration of an experiment. In the graphic it can be appreciated
how leading coalition rapidly stabilises to a certain value. This
coalition is the first one to become stable, as all the agents
are willing to join the best coalition that exists, and rapidly,
those agents that best complement each other, gather in the
same group. Once this coalition has no possibility to increase
its score, it rejects every joining order received, and so the
next ranking becomes the best chance for the second best
group of agents, that find themselves in the second ranking
coalition until there is no possible improvement for it. This
process repeats until the last ranked coalition is stable. This
result illustrates the quick progression to stable states in every
coalition from the top ranked to the worse ones as well as the
non decreasing value of the leading coalition.

4.2.2. Different Values for Leading Coalition

In figure 2 it can be seen how the leading coalition does not
register any variation in the score in the unconstrained coali-
tion size setup across 150 different experiments, whereas in
experiments with coalition size constraint equal to 8, 6 or 4,
there is more than one value for the leading coalition, reveal-
ing the existence of deadlocked states that ended up in subop-
timal outcomes in some stable patterns. The optimality insur-
ance of not constraining coalition size is an important property
of the system to be considered in order to implement this pro-
tocol. Optimality is in any case a desirable outcome for the re-
quester of the proposal. However the fact that size constrained
setups present changes in higher ranks, is not the only factor
that determines the high number of differences of values for
every rank. Next section explores the effect of coalition size
constraints not only analysing the scores of coalitions in ev-



Fig. 1. Progression of score of coalitions during the
convergence process.
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Fig. 2. Number of different values in the score of every
coalition in every rank of 150 repeated experiments in

equilibrium. Comparing different setups of coalition size
constraints we see how constraining size involves more

variability in scores.

ery rank but also the frequency of the structures constructed
themselves.

4.3. Effect of Coalition Size Constraint on Collaboration
Patterns

4.3.1. Collaboration Patterns in an Unconstrained
Coalition Size Setup

Figure 3(a) shows the collaboration graph corresponding to
150 different experiments using the same agent population and
task. The graph reflects stable relationships between agents
across different runs of experiments, indicating that in spite of
the stochastic nature of the process, agents have clear sets of
preferred partners to form coalitions with. As it was shown in
proposition 2, if coalition size is not constrained, the degree of
specialisation of agents becomes the most important factor to
determine the rank that an agent will occupy in the population.
The only possible difference from one equilibrium structure
to another is given by the probability that two or more agents
have the same specialisation degree in a certain skill for which
those agents provide the maximum value. Depending on that
fact, more or less different stable patterns can exist.

Pajek

(a) Collaboration graph corresponding to the unconstrained coalition
size setup

Pajek

(b) Collaboration graph corresponding to coalition size limit = 8 setup

Pajek

(c) Collaboration graph corresponding to coalition size limit = 6 setup

Pajek

(d) Collaboration graph corresponding to coalition size limit = 4setup

Fig. 3. Collaboration graphs for the same task and the same
agent’s population accross 150 experiments for 4 different

values of coalition size boundness.

4.3.2. Collaboration Patterns in a Constrained Coalition
Size Setup

Figures 3(b), 3(c) and 3(d) show collaboration graphs corre-
sponding to different coalition size constraint setup using the
same agent population and task across 150 experiments. Fig-
ures show that a decreasing degree of clustering in the collabo-
ration patterns corresponds to an increasing constraint in size.
This effect is seen for three reasons. The first is the possibil-
ity of deadlock effect showed in proposition 3, that predicts an
increasing number of stable states given to the possible coexis-
tence of suboptimal and optimal states.The second is because
in the bounded size scenario the ranking of coalitions is deter-
mined by a tradeoff between specialisation and versatility of
agents abilities. If for the case of unconstrained size, the num-
ber of different stable states depended on the number of agents



Pajek

Fig. 4. Inherent compatibilities of agent’s popualtion showed
in a collaboration graph for 150 different experiments using

the same agent’s population but a different task per
experiment and no coalition size constraint.

that had the same specialisation degree, in the constrained case
it depends on the number of combinations of agents for which
their aggregated value of their skills is the same. The more
constrained the coalition size is, the lower the values of coali-
tions. Hence the easier (in probability terms) to get equal ag-
gregated values by forming groups of agents. Finally the third
reason of the increment of stable states with the coalition size
constraint is given by an increment on the number of possible
partitions of the population when coalitions are limited to the
maximum size permitted, as the Stirling number of the second
kind S(n, k) that counts the total number of partitions of coali-
tions of size k from a population of n agents, has the following
property: S(100, 10) < S(100, 8) < S(100, 6) < S(100, 4).
The increment in the state space also increments the probabil-
ity of possible stable states. The cloud structure of the con-
strained coalition size demonstrates the high number of sta-
ble states reflecting that almost all the agents are collaborating
with any other agent in some stable state.

4.4. Stable States Across Many Varying Tasks

So far experiments assumed a fixed given task, and the same
population conforming the same call during a set of experi-
ments. By changing the task after an experiment has reached an
stable state, the type of collaboration patterns obtained when
coalition size in not constrained still shows a clear structure of
preferential partnership. Figure 4 shows those structures. This
demonstrates that the inherent compatibilities degree of agents
are not heavily affected by the task requirements. The reason
for this is that specialisation in a task is positively evaluated no
matter what is the task requirement (as long as there is some
requirement), as given the aggregation function used (equation
1) coalitions in every rank have the best agents available for
every skill no matter the degree of requirement of the skill.
Apart from showing that a population of agents has inherent
compatibilities when the setup requires a high degree of spe-
cialisation, the obtention of those results reveals that the proto-
col used preserves those compatibilities that could be learned
by agents and exploited in order to reduce the search across the
space of possibilities every time an agent is requested to make
a movement.

5. Conclusions and Future Work

As electronic trading mechanisms become more common
place and increasingly feasible for complex environments, the
study of the dynamics of such systems will be increasingly
important. In this context, the work presented here addresses
Request for Proposal style environments which iterate over
time and allow agents to gradually adapt their coalition struc-
tures between calls. Specifically, results for score maximis-
ing agents show that despite limited information, equilibrium
states can still be found in such protocols, that the number
of stable states varies with coalition size constraints and that
traces of the stable states can be seen not just in one task but
across many diverse tasks. The paper shows the convergence
of the system modelled as a Nash equilibrium when players
use a pure score maximizing strategy, proving also that the
score of the best coalition is monotonically increasing during
the convergence process. The existence of Nash stable states
is a desirable property for any system in general, and service
composition mechanism in particular. For providers in a ser-
vice composition process, the Nash stable configuration is a
fair outcome, as given the configuration of the system, they
would not be willing to change their situation. Moreover, we
demonstrate that in such a stable state, the best coalition is op-
timal (maximum possible value) as long as the coalition size
is not constrained, whereas when it is constrained, a subopti-
mal configuration may occur as a deadlock situation. Finally,
we show how coalition size constraint determines the collabo-
ration patterns established between agents. More specifically,
size constraints control the importance given to the speciality
or versatility facets of agent’s heterogeneous capabilities and,
depending on this tradeoff, radically different collaboration
patterns are established.

Further research is required to analyse the imperfect/ incom-
plete information scenario by limiting the social awareness of
agents in the population. Further research is also required to
analyse the system properties when there is more than one si-
multaneous task requesting proposals to the same population.
Those extensions will create more realistic assumptions for the
iterative RFP environment in order to consider it as a valid e-
commerce mechanism.
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