
Auton Agent Multi-Agent Sys (2006) 13:97–115
DOI 10.1007/s10458-006-6105-y

Handling communication restrictions and team formation
in congestion games

Adrian K. Agogino · Kagan Tumer

Published online: 25 February 2006
Springer Science + Business Media, Inc. 2006

Abstract There are many domains in which a multi-agent system needs to maximize a
“system utility” function which rates the performance of the entire system, while subject
to communication restrictions among the agents. Such communication restrictions make it
difficult for agents that take actions to optimize their own “private” utilities to also help
optimize the system utility. In this article we show how previously introduced utilities that
promote coordination among agents can be modified to be effective in domains with com-
munication restrictions. The modified utilities provide performance improvements of up to
75% over previously used utilities in congestion games (i.e., games where the system utility
depends solely on the number of agents choosing a particular action). In addition, we show
that in the presence of severe communication restrictions, team formation for the purpose of
information sharing among agents leads to an additional 25% improvement in system utility.
Finally, we show that agents’ private utilities and team sizes can be manipulated to form the
best compromise between how “aligned” an agent’s utility is with the system utility and how
easily an agent can learn that utility.

Keywords Reinforcement learning · MAS · Teams · Communication

1. Introduction

Many methods exist for coordinating the actions of autonomous agents in a large multi-
agent system when those agents can fully communicate with one another [7, 11, 21, 27, 33,
37]. One particular solution to that problem is given within the framework of “collectives”
defined as large multi-agent systems where there is a well-defined “system utility” function
which rates the possible dynamic histories of the collection, and where each agent is only

A.K. Agogino, (B)
University of California, Santa Cruz, USA
e-mail: adrian@email.arc.nasa.gov

K. Tumer
NASA Ames Research Center, USA
e-mail: ktumer@mail.arc.nasa.gov

98 Auton Agent Multi-Agent Sys (2006) 13:97–115

concerned with maximizing its own “private utility” function [37]. However, many problems
impose communication restrictions among the agents, rendering the coordination problem
more difficult [6]. Examples of these problems, include controlling collections of rovers,
constellations of satellites and packet routers, where an agent may only be able to directly
communicate with a small number of other agents. In addition, even if there are other indirect
ways to share information, they may be costly and an agent may be unwilling to share, if
doing so would hurt its private utility. In all of these problems, the system designer faces the
following difficult task:

– ensuring that, as far as the provided system utility function is concerned, the agents do
not work at cross-purposes (i.e., making sure that the private utilities of the agents and
the system utility are “aligned”).

– ensuring that, agents are capable of achieving high values of their private utilities, (i.e.
making sure an agent’s actions have enough impact on its own private utility so that the
utility is “learnable” and that it can effectively maximize it).

– ensuring that agents can compute their private utilities when they do not have access to
a broad communication network providing them with access to global information.

These issues are at odds with each other and in fact in many cases it will be impossible for
agents to achieve high values of a private utility which is “aligned” with the system utility.1

In addition even if the system utility, computed with global information, can be broadcast
to all the agents, agents may not be able to effectively use this information to select actions
that will be useful to them and to the overall system. In fact many methods of incorporating
local information into the system utility can lead to reduced performance as communication
increases (Fig. 1). This example shows the performance of a system (described in detail in
Section 3) with respect to the amount of communication available to the agents. Note that
increasing the amount of information to which the agents have access can have deleterious
effects on the performance of the system. We will discuss the reasons for this apparent para-
dox and show how problems associated with communication restrictions can be overcome by
modifying the agents’ utility functions and/or forming teams of agents that pool information.

Furthermore, issues related to communication restrictions can also be addressed by agents
aggregating into teams sharing a utility function. Many types of team formation have been
shown to be effective in different domains [24, 26]. In our domain utility sharing encourages
team members to pool their information together, effectively reducing the impact of the com-
munication restrictions. As the size of a team grows, the amount of information to which an
agent has access also grows. However, even if large teams have access to more information,
the agents now face the problem of determining the contribution of their actions to the utility.

We will explore these issues of team formation and communication restrictions through
the collectives framework. This framework focuses on how to create agent-specific private
utilities that are easy for the agents to learn, yet remain aligned with the overall system util-
ity. The collectives framework has been successfully applied to multiple domains including
packet routing over a data network [38], congestion games [39], and the coordination of
multi-rovers in learning sequences of actions [1, 33]. However, unlike what will be presented
in this paper, in all of these other works, agents were not hampered with communication
restrictions.

In this paper we show how moderate communication restrictions can be overcome by
modifying the agents’ utilities. Then we show that team formation can be used when there

1 By “aligned” we mean that actions that improve the agents private utility will also improve the system utility.
We will formalize this concept in Section 2.

Auton Agent Multi-Agent Sys (2006) 13:97–115 99

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

fo
rm

an
ce

Communication Level

Fig. 1 Performance vs. communication level when system utility is combined with partial information. When
the system utility is known, adding additional information about the system can actually hurt performance.
Using standard methods more than 60% of system information has to be revealed before improvements can
be made on the system utility. With better designed utilities presented later in this paper, even small amounts
partial information can be used to increase performance

are severe communication restrictions, and we explore the tradeoff between team size and
communication restrictions. In Section 2, we provide background on collectives and present
four private utility functions for agents facing communication restrictions. In Section 3, we
describe the problem domain and present the collective-based solution to this problem. In
Section 4, we present the simulation results. In Section 5 we summarize related work in agent
communications, team formation and coordination.

2. Design of agent utilities

One can look at utility design for large systems in a similar way one would look at creating
employee incentives in a human company. In a company, the board’s objective is to maximize
a system utility which represents the “bottom line” of the company. The problem faced by the
board is to create incentives for each of the employees such that when the employees max-
imize their incentives, the company’s system utility is maximized. For example, the board
might choose to give employees a compensation package that contains incentives tied to the
company’s stock price (e.g., stock options). The net effect of this action is to align the utility
of the employee with the utility of the company, which ensures that what is good for the
employee is also good for the company. In addition to being aligned with the system utility
of the company it would be beneficial if the relation between an employee’s actions and the
value of the employees were readily discernable by the employee. If this relationship is easy
to learn by the employees, then they would be able to learn to take the correct actions to
maximize their compensation.

When the incentive package of an employee is both aligned with the company’s utility
and has high “learnability”, then employees will both have the incentive to help the company
and be able to determine how best to do so. Note that in practice, providing stock options

100 Auton Agent Multi-Agent Sys (2006) 13:97–115

is more effective in small companies than in large ones. This makes perfect sense from this
perspective since such an incentive package has higher learnability (e.g., is easier for an
employee to learn) in small companies than in large companies.

Designing proper private utilities for agents in a multi-agent system parallels the goal of
the board in setting the incentive of all the employees: ensure that each agent (employee) has
the correct incentive to take actions that will benefit the multi-agent system (company). In this
section, we first summarize the formalization of the concepts of factoredness and learnability
which are essential in deriving good private utilities for the agents [37]. We then present
a class of private utilities satisfying those two properties and discuss four variants (based
on different trade-offs of learnability vs. degree of factoredness) applicable to domains with
communication restrictions (Section 2.3). Finally, we present how forming teams of agents
that pool their information can further improve system performance (Section 2.4).

2.1. Background

Let z characterize the joint move of all agents in the system. In this formulation, z specifies
the full system state. The system utility, G(z), is a function of the full system state. The
multi-agent system design problem is to find the z (e.g., joint action) that maximizes G(z).

In addition to G, for each agent i , there is a private utility function gi . The agents act to
improve their individual private functions, even though, we, as system designers are only
concerned with the value of the system utility G. To specify all agents other than i , we use
the notation −i . Also to specify the part of the system state controlled by agent i and agents
−i , we use the notation zi and z−i , respectively. Note that throughout this paper we “zero
pad" all of our vectors so that z, zi and z−i have the same length and z = zi + z−i .

There are two properties that are crucial to producing systems in which agents acting to
optimize their own private utilities will also optimize the provided system utility. The first of
these deals with the concept of “aligning” the private utilities of the agents with the system
utility. Formally this first property, the degree of factoredness between agent i , utility gi and
the system utility, G, is given by

Fgi =
∑

z
∑

z′ u[(gi (z) − gi (z′))(G(z) − G(z′))]
∑

z
∑

z′ 1
(1)

for all z′ such that z−i = z′−i and where u[x] is the unit step function, equal to 1 if x > 0,
and zero otherwise.

Intuitively, the higher the degree of factoredness between two utilities, the more likely it is
that a change of state will have the same impact on the two utilities (e.g., make both of them
go up). For example, when a company offers stock options, the factoredness of an employee’s
incentives increases because what helps the company, helps the employee. A system is fully
factored when Fgi = 1. In paradigms where we only care about whether the system is fully
factored or not, the property, Fgi = 1, can be defined more simply as:

gi (z) ≥ gi (z
′) ⇔ G(z) ≥ G(z′) ∀z, z′ s.t. zi = z′

i .

In a fully factored system for all pairs of states z and z′ that differ only for agent i , a change
in a i’s state that increases its private utility cannot decrease the system utility.

Any system in which all the private utility functions equal G is fully factored [11]. How-
ever, such systems often suffer from low signal-to-noise, a problem that get progressively
worse as the size of the system grows. This is because for large systems where G sensitively
depends on all components of the system, each agent may experience difficulty discerning the
effects of its actions on G. As a consequence, each i may have difficulty achieving high gi .

Auton Agent Multi-Agent Sys (2006) 13:97–115 101

This signal-to-noise effect, called learnability is the second property that is crucial in the
designing of the agents’ private utility functions. Formally we can quantify the learnability
of utility gi , for agent i at z:

Łi,gi (z) = Ez′
i
[|gi (z) − gi (z−i + z′

i)|]
Ez′−i

[|gi (z) − gi (z′−i + zi)|] , (2)

where E[·] is the expectation operator, z′
i s are alternative actions of agent i at z, and z′−i s

are alternative joint actions of all agents other than i . So at a given state z, the higher the
learnability, the more gi (z) depends on the move of agent i , i.e., the better the associated
signal-to-noise ratio for agent i . Intuitively then, higher learnability means it is easier for
agent i to achieve a large values of its utility. Note that learnability here is a measure of the
relative influence of agents. It is a function of the utility and is independent of the learning
algorithm the agents may use.

2.2. Difference utilities

For agents’ private utilities consider the difference evaluation functions, which are of the
form:

Di ≡ G(z) − G(z−i + ci), (3)

where z−i contains all the variable not affected by agent i . All the components of z that
are affected by agent i are replaced with the fixed constant ci . Such difference utilities are
fully factored no matter what the choice of ci , because the second term does not depend on
agent i’s actions [34, 37]. Furthermore, they usually have better learnability than does a team
game, because of the second term of D, which removes a lot of the effect of other agents
(i.e., noise) from agent i’s evaluation function. In many situations it is possible to use a ci

that is equivalent to taking agent i out of the system. Intuitively this causes the second term
of the difference utility function to evaluate the fitness of the system without i and therefore
D measures the agent’s contribution to the system utility. Note that the effectiveness of the
difference utility and of different values of ci depends on the problem domain.

Figure 2 illustrates the computation of the difference utility in a simple system. As in that
example, in many circumstances there is a particular choice for c that is a “null” move for
that agent, equivalent to removing that agent from the system. For such a c, DU is closely
related to the economics technique of “endogenizing a player’s (agent’s) externalities” [23].2

2.3. Communication restrictions

In general to compute a difference utility there may need to be enough communication to
infer the entire system state. For some specific classes of utility such as the DU, this com-
munication demand may be relaxed, since many of the elements of the system state cancel
out and may be ignored. However, in many real system problems there is not enough com-
munication between agents to compute even the less demanding utilities. In these cases we
must approximate the utility under the constraints of the communication restrictions.

Mathematically, we represent an agent’s knowledge of the system state as the union of
the states directly observed by the agent and the states that indirectly “observed” through

2 Indeed, DU has conceptual similarities to Vickrey tolls [35] in economics. However, DU can be applied
to arbitrary, time-extended utility functions, and need not be restricted to the “null” clamping operator inter-
pretable in terms of “externality payments”. It also appears similar to Groves’ mechanism [18] in mechanism
design. However, the effect of Groves’ mechanism is to create a system utility by subtracting out the benefit
an agent already received directly, not computing the counterfactual impact of an agent on the system utility.

102 Auton Agent Multi-Agent Sys (2006) 13:97–115

Fig. 2 This example illustrates the computation of the difference utility for agent 2, in a four-agent system.
Each agent has three possible actions, and each such action is represented by a three-dimensional unary vector.
The first matrix represents the joint state, z, of the system, where agent 1 has selected action 1, agent 2 has
selected action 3, agent 3 has selected action 1 and agent 4 has selected action 2. The second matrix displays
the virtual state where agent 2s action is the “null” vector (i.e., replacing zi2 with �0). The difference utility of
agent 2 is the difference between the system utility of the first state (z) and the system utility of the second
state (z−i2 , �0)

communicating with other agents. Because this union represents the states whose values are
known to that agent, we will refer to this union as “observable” states for agent i , eliminating
the distinction between first-hand and second-hand state knowledge. We can decompose the
system state z into a component observable by agent i , zoi , and a component hidden from
agent i, zhi (we will denote the concatenated state z by z = zoi + zhi). In this paper we will
define the communication level for agent i as:

Bi =
∫

z Iz j d j
∫

z d j
, (4)

where Iz j is an indicator function return 1 when z j is observable. For a problem with count-
able state elements, Bi reduces to the number of observable elements in the state divided by
the total number of elements in the state. Note that B is always in the range [0.0, 1.0].

If the DU for agent i depends on any component of zhi then agent i cannot compute it
directly. Instead we introduce different approximations to the DU that vary in their balance
between learnability and factoredness. In the four utilities discussed below, the first two letters
of the utility represent how the two terms of the difference utility get their information. “B”
stands for “broadcast” meaning that the system utility is broadcast to the system, “T” stands
for “truncated” meaning that the hidden values are ignored, and “E” stands for “estimated”
meaning that the hidden variable is estimated from the observed variables.

2.3.1. Broadcast/Truncated Utility (BTU)

The first private utility we present for systems with communication restrictions is a variant
of DU, where the subtraction in the second term not only removes agent is contribution, but
also the contribution of all agents that i cannot observe zhi :

BTUi (z) = G(z) − G(z − zhi − zi). (5)

Note that BTU (as well as BEU discussed below) assume that the true system utility can be
broadcast despite the communication restriction (agents have access to G(z), but not to z).
In many applications, this is a reasonable assumption since the system utility can often be
computed once and broadcast throughout the environment [16]. More complex forms of
broadcasting are often used for distributed multi-agent systems [9], but in this paper we will
assume a very simple global broadcast of a single number. In many domains it is also rea-
sonable to assume system utility can even be obtained directly from the environment without
broadcasting [28].

Auton Agent Multi-Agent Sys (2006) 13:97–115 103

Note that despite this “broader” subtraction, BTU is still fully factored. This is because
BTU is in the form of a difference utility (Equation ??) which only requires that constant ci

cannot depend on the state of agent i . Here ci is −zhi , which is independent of the state of
agent i since it can always observe itself. Since an agent cannot influence the second term of
the BTU, the only way it can affect the value of BTU is through the first term, which is the
system utility. However, while being fully factored, BTU may have much more noise than a
pure DU since much more is subtracted out in the second term. Intuitively, only part of the
noise, the part that was observable, has been removed from is utility.

As an example, consider a situation where agent i is an employee in a large company.
Proper DU would remove the impact of the other employees from employee i’s private util-
ity, since their general effect would be present both in the first term G and the second term
G(z−zhi −zi). But if employee i can only communicate with a fraction of the employees, all
the employees with whom it cannot communicate will also be clamped in the second term.
Then the subtraction will not remove their effect from employee is utility. The influence
those employees have on i’s utility will be noise, and employee i will have a harder time
seeing the effect of its actions on its utility.

2.3.2. Truncated/Truncated Utility (TTU)

The second private utility is conceptually similar to BTU except that both terms are computed
under the communication restrictions:

TTUi (z) = G(z − zhi) − G(z − zhi − zi). (6)

This utility is no longer fully factored with respect to the system utility, because the first term
in the difference utility is G(z − zhi) instead of G(z). While not being fully factored with
system utility, TTU can have better learnability than BT U . This is because both terms are
computed using the same truncated state, and thus the systematic error may be removed in
the subtraction for certain types of system utility functions [36].

Continuing with the company example, in this case the contribution of employees that are
hidden from i will not appear in either term of TTU, since both terms are computed with
the communication restriction. Therefore, this utility will have good learnability, since the
noise from the hidden employees will not clutter employee is utility. As long as G(z − zhi)

is sufficiently close to G(z), this utility will have a high degree of factoredness and gains
due to reduced noise will outweigh the loss in factoredness. However, if the assumption
that G(z − zhi) is close to G(z) does not hold (e.g., some hidden employees are crucial to
the company’s profit) then TTU will not produce good system performance. For example
agents using TTU are likely to fail in a congestion game, since the truncation will make the
system seem less congested, inducing agents to make different choices than they would in a
congested system.

2.3.3. Broadcast/Estimated Utility (BEU)

This utility is similar to BTU, except that instead of subtracting out all the components of
zhi , their values are estimated given the values of zoi :

BEUi (z) = G(z) − G(zoi + E[zhi |zoi] − zi), (7)

where E[·] is the expectation operator.3 As long as this estimate is not influenced by the
actions of i beyond zi , this utility is still fully factored, since the first term of the difference

3 While the expectation operator is used in this paper, any function of the observable components could be
used instead.

104 Auton Agent Multi-Agent Sys (2006) 13:97–115

equation is still G(i). While both BTU and BEU are fully factored, BEU may have less noise,
depending on how good the estimate of zhi is.

As in the previous example, suppose that there are a large number of employees that
are hidden from employee i , but that employee i can approximate their contribution to the
company based on the employees that it can observe. In this case the first term of BEU will
contain all of the employees’ contribution to G(z), but the second term will subtract out the
hidden employees’ inferred contribution. Even if effects of the hidden elements cannot be
perfectly estimated, a lot of noise can still potentially be eliminated from the system. Note
however that if the estimate is particularly poor, noise can also be introduced into the system.

2.3.4. Estimated/Estimated Utility (EEU)

This utility is similar to TTU, except that in both terms, the value of zhi is estimated:

EEUi (z) = G(zoi + E[zhi |zoi]) − G(zoi + E[zhi |zoi] − zi). (8)

As was the case with TTU this utility is not fully factored with respect to the system utility G.
However, with a good estimate of zhi , the value G(zoi + E[zhi |zoi]) will be much closer to
G(z) than G(z − zhi), so this utility can be much higher degree of factoredness with respect
to G(z) than can TTU.

Following the example, EEU provides an advantage over TTU in that even if there are
hidden employees whose actions strongly impact the company’s profits, if the actions of
those employees can be predicted, then EEU will be close to being fully factored. This utility
retains the benefits of TTU (both terms computed the same way, leading to good learnability)
while in general having higher factoredness than TTU. Note that unlike with BEU, if the esti-
mate of the hidden components is not particularly good, in general, noise will not be added
to the system because both terms of the utility use the same estimate. Instead, the quality of
the estimate only affects how close this utility is to being fully factored with respect to G(z).
If there are enough observable elements to make a good estimate we expect agents using
EEU to do well. However, if there are so few observable elements that a reasonable estimate
is impossible, then agents maximizing EEU may be lead to lower performance than having
agents simply maximize G directly.

2.4. Team formation

As discussed above, communication restrictions can have serious negative effects on the
utility functions of the agents. One way to remedy this situation is to let agents form “teams”
which “share" their knowledge of the system state. More precisely the observable states for
any member of a team will be the union of all the observable states of the individual team
members. We use the notation zoT for the observable system state for team, T . Note that team
information sharing can be viewed as another form of communication and we can define the
effective communication level of an agent in a team, T , as:

Bef fT =
∫

z Iz j ,T d j
∫

z d j
, (9)

where Izi ,T is an indicator function return 1 when zi is observable from team T . However,
we will always refer to it as information sharing to differentiate from communication that
happens between agents independent of the formation of teams. In real systems, team infor-
mation sharing may have very different properties from general communication. It may have
different constraints, different costs and may be imposed at different times in the creation of

Auton Agent Multi-Agent Sys (2006) 13:97–115 105

a system. There are also many different ways to form teams, but in this paper we use a simple
model that contains similar properties to many other team models [8, 20, 27]. In this paper,
a team is defined as an aggregation of agents where each agent:

1. belongs to one and only one team;
2. receives the utility of the team; and
3. shares knowledge of the system state with its team members.

This definition of a team models many domains, where agents tend to be clustered geo-
graphically in such a way where it is realistic for an agent to be part of one fully communicating
team, but not be part of several teams. Also since each agent is part of a single team and all
the members of the team share a utility, anything an agent does to help another agent in the
team will also help itself. Therefore, it is natural to assume that if possible the agents will
share information with each other, whenever it is needed.

3. Congestion games

This paper tests the effectiveness of the proposed utilities and teams formations on variants
of Arthur’s bar problem [4]. This problem is chosen since it can be analyzed theoretically yet
relates to many important congestion problems, including network routing and traffic man-
agement. Loosely speaking, in this problem at each time step each player i decides whether
to attend a bar by predicting, based on its previous experience, whether the bar will be too
crowded to be “rewarding” at that time, as quantified by a utility function G. The selfish
nature of the players frustrates the system goal of maximizing G. This is because if most
players think the attendance will be low (and therefore choose to attend), the attendance will
actually be high, and vice-versa.

3.1. Non-binary congestion games

Here, we focus on the following more general variant of the bar problem investigated in
Wolpert et al. [39]: There are N players, each picking one out of m bars every week. Each
week, every player chooses a single bar. Then the associated private utilities for each player
are communicated to that player, and the process is repeated. More formally, the global
system utility in any particular week is:

G(z) ≡
m∑

k=1

xk(z) exp

(−xk(z)

c

)

(10)

where xk(z) is the total attendance at bar k; zi is is move in that week; and c is a real-valued
parameter. In this problem when either too few or too many players attend some bar in some
week, the system utility G is low.

Since we wish to concentrate on the effects of the utilities rather than on the RL algorithms
that use them, we use (very) simple RL algorithms. We would expect that even marginally
more sophisticated RL algorithms would give better performance. In our algorithm each
player i has a m-dimensional vector giving its estimates of the utility it would receive for
choosing each possible bar. The decisions are made using the vector, with an ε-greedy learner
with ε set to 0.05. All of the vectors are initially set to zero and there is a learning rate decay
is 0.99.

106 Auton Agent Multi-Agent Sys (2006) 13:97–115

3.2. Multi-time-step congestion games

To test the effects of communication restrictions and teams on a more difficult domain
we use a variant of the previous congestion game called the Time Extended Bar Problem
(TEBP)(Fig. 3). The TEBP is similar to the Bar Problem, except that each week a player can
only choose to attend the same bar, or the bars next to the one he attended the previous week.
To make it an episodic task, every four weeks the agents are reset to a random position, at
which point they are given a reward based on their last choice of bar to attend. This task
forces the agents to come up with a sequence of four actions that will maximize their final
utility at the end of four weeks.

An agent learns in the TEBP using a Sarsa-learner. In every episode its 3 first rewards are
zero and the last reward depends on the final bar attendance as computed in the single time
step variant. The learner is an ε-greedy learner with ε set to 0.05 and γ = 0.9. The learning
rate is set to 0.99v(s,a) where v(s, a) is a count of the number of times an agent took action
a in state s.

3.3. Communication restrictions and team formation

We model communication restrictions in the bar problem by controlling how many other
agents one agent can “talk” to. Without this communication the agent cannot know what
the other agents have done. Here the communication level B will represent the fraction of

Fig. 3 Time extended bar problem. Circles represent bars, figures represent patrons attending a bar and arrows
represent the transitions that patrons can take from week to week. Each week a patron can choose to attend
the same bar or the bars next to the one he attended the previous week

Auton Agent Multi-Agent Sys (2006) 13:97–115 107

all the agents to which an agent can talk. When B = 1.0 an agent can talk to the all other
agents, whereas when B = 0.0 an agent has no communication, and thus is only aware of
its own action. In the Bar Problem, communication restrictions are reduced to how xk(z) is
computed. For truncated versions of the DU, (BTU and TTU), we use xk(zoi) which returns
how many of the observable patrons are going on bar k (note since in BTU the first term
is broadcast, the agent does not need to compute it). For utilities using an estimate of the
state (BEU and EEU), xk(zoi) is scaled, and 1

B xk(zoi) represents the estimate of how many
patrons actually went on bar k. For example when B = 0.25, we assume that xk(zoi) is really
only accounting for one quarter of the patrons, so we scale it by 1

0.25 = 4. Note this is an
extremely simple estimation procedure and does not take any information an agent collects
to modify how it forms this estimate.

Teams in the Bar Problem are modeled by creating disjoint groups of agents of approxi-
mately equal size. Every member of the team receives the same utility. In addition, we allow
the members of a team to pool together all the information known by the team members.
This means that each team member can get information about any agent that any of the team
members can talk to. Therefore for the attendance for bar k that an agent i receives as a
member of team k is: xk(zoT) where zoT contains all the patrons that can be observed by at
least one member of team T .

4. Results

We tested the performance of the four utilities, BTU, TTU, BEU and EEU with varying
levels of communication, with and without teams. The test were conducted using the Bar
Problem and Time Extended Bar Problem with 100 agents and with c = 5. All of the trials
were conducted for 1000 episodes, and were run 25 times.

4.1. Communication restrictions without teams

The first set of experiments were conducted without teams (team size = 1). Figure 4 shows
the performance of the four utilities with different levels of communication. When the com-
munication level is high, the utilities converge to DU so the resulting performance converges.
When communication is very low, the BTU and BEU have the best performance because their
first term G is not affected by the communication restriction. They essentially are reduced
to using the system utility as their individual utility, and give moderately good performance.
Note that the performance of BTU is worse at 50% communication than at 5%. This coun-
terintuitive result is explained by how the utility is computed in the bar problem. With less
communication, the total number of agents that can be seen is small, and the contribution
of the second term is small. With 50% communication on the other hand, the second term
will be large enough to have an impact on the utility. However, because both at 5% and 50%
communication levels xk(zoi) is significantly different than xk(z), neither provide a usable
second term. In fact, rather than subtracting out noise, the second term adds noise.

For most levels of communication restriction, the EEU performs the best and performs up
to 75% closer to optimal than utilities which use the same information. Recall that EEU and
TTU are not fully factored, whereas BTU and BEU are. What helps EEU in this case is that
though it is not fully factored, as long as the estimate for G in the first term is sufficiently
close to G, it is close to being fully factored. Furthermore, because both the first and second
terms use the same estimate for the state, the subtraction does remove noise, as intended.
The utility TTU performs worst of all since, even though there may not be much noise in

108 Auton Agent Multi-Agent Sys (2006) 13:97–115

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G

Communication Level

EEU
BEU
BTU
TTU

Fig. 4 Performance of four utility functions without teams for a range of communication levels (includ-
ing error bars). For moderate communication levels EEU performs best. For very low communication BTU
performs best since, it uses information from system utility

the utility, not only is it not fully factored with respect to the system utility, but due to the
truncation, it may have a very low degree of factoredness.

Figure 5 gives a clearer view of the performances at a fixed level of communication restric-
tion (40% and 70%). EEU is clearly superior at 40% communication. At 70% communication
TTU displays the problem with utilities that have low factoredness: the more the agents learn
the worse the system performance becomes. Because this system is not fully factored (or in
this case, not close to being fully factored) the agents optimizing their private utilities do not
optimize the system utility. Ironically, because TTU has good learnability (i.e., the slope of
TTU shows no sign of flattening out at t = 1000) the agents learn to do the wrong thing
successfully. BTU and BEU on the other hand, are fully factored so G does not decrease.
However, because of learnability issues, after an initial period of improvement, the agents
encounter a difficult signal to noise problem and the system performance stops improving.

4.2. Communication restrictions with teams

Even using the best utility, EEU, a high level of performance cannot be achieved if the
communication level is too low. However, if agents can form small teams where informa-
tion sharing is allowed between team members, good performance is possible even when
communication between teams is low. Figure 6 shows the tradeoffs between choices of team
size at different levels of communication. At most communication levels, there is an optimal
team size that lies between the extremes of not having teams (team size = 1), and only having
a single team (team size = 100). The best team size is typically around 5 or 10 agents. This
optimum represents the best balance between having small team sizes which produce a more
learnable utility and large team sizes which allows for more information sharing.

With the non-fully factored utilities EEU and TTU this balance comes from the tradeoff
between factoredness and learnability. Even though as team sizes get smaller, the utilities
become more learnable, they also become less factored since as information sharing goes
down, the first term in the difference equation diverges from G. For the fully factored utilities
BEU and BTU there is a tradeoff between two different ways noise comes into the system.

Auton Agent Multi-Agent Sys (2006) 13:97–115 109

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

G

Learning Time

EEU
BEU
BTU
TTU

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700 800 900 1000

G

Learning Time

EEU
BEU
BTU
TTU

Fig. 5 Learning rates of four utility functions at 40% communication (left). E EU learns far quicker, since
it produces a much less noisy signal. Note that even though T T U is highly learnable, it has a low degree of
factoredness with respect to G, so it has a flat learning curve. At 70% communication (right) T T U is closer
to being fully factored and can learn quickly, but still not fully factored, causing performance to eventually go
down

BTU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

TTU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

BEU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

EEU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

Fig. 6 Performance with different team sizes and communication levels. Each graph is for a different utility.
From top-left, clockwise the utilities used are: BTU, TTU, EEU, BEU. The two utilities, BEU and EEU, that
estimate hidden values rather than ignoring them, perform much better than their conterparts, BTU and TTU

When teams are large, more components have to be clamped in the second term of the differ-
ence equation allowing more noise from the first term to remain. When teams are small, the
lack of information sharing has a similar effect, in that many of the components in the second
term are clamped because their values are unknown.

Figure 7 shows that even when having teams is possible, the choice of utility is still crit-
ical. As in the case without teams, the EEU tends to perform best under most team sizes.

110 Auton Agent Multi-Agent Sys (2006) 13:97–115

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10

G

Team Size

EEU
BEU
BTU
TTU

G

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 10

G

Team Size

EEU
BEU
BTU
TTU

G

Fig. 7 Performance of four utility functions at 10% communication. EEU performs best for most team sizes
under normal learning time (left).The signal-to-noise advantages of EEU become more apparent when learning
time is reduced to 1/8 of original time (right)

Even though it is not fully factored, it has up to 25% higher performance than a gi = G
system. Only with very small team sizes do the fully factored utilities perform better. When
team sizes are very large, there are no hidden agents, so all the utilities converge to the same
values. Due to the high learnability of EEU, its superiority is even more pronounced when
the agents do not have much time to learn as shown in figure 7 (right).

4.3. Time extended results

To test the effectiveness of our methods on a more difficult problem, we performed the same
experiments on Time Extended Bar Problem. This problem is harder since it is a Markov
Decision Process, unlike the conventional Bar Problem which is a single step problem. In
this problem agents have to find the best sequence of four actions instead of just a single
action. To maximize comparability between the two problems, the time expended problems
were tested identically to the non-time extended problems, except that they were conducted
over 4000 learning steps instead of 1000.4

Figure 8 shows that the time extended problem is significantly harder. In trials with large
team sizes, the agents were unable to learn at all on this problem. This happens because when
the teams were large, the signal-to-noise ratio of the agents’ utilities went down since the
utilities contain the noise from all the other agents on a team. The signal-to-noise problem is
a bigger issue with the Time Extended Bar Problem than with the original Bar Problem, since
the noise is compounded in every time step. Even if an agent were able to take the correct
action in the last three time steps, it may perform poorly if a noisy utility caused it not to take
the correct action in the first time step. Also agents using utilities BTU and BEU suffered at low
communication levels because the amount of noise in these utilities goes up as the communi-
cation level goes down, since less of the noise from other agents gets subtracted out. Figure 9
shows that at 5% communication, the only effective utility is EEU. All the other utilities have
very low performance, resulting in actions that are not much better than random for most
team sizes. This situations contrasts to the easier non-time-extended problem, where many
of the utilities would result in a reasonable performance, especially with large team sizes.

4 Both experiments were conducted for 1000 episodes, but the Time Extended problem has four steps per
episode.

Auton Agent Multi-Agent Sys (2006) 13:97–115 111

BTU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

TTU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

BEU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

EEU

 1

 10

 100

Team Size

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Communication Level

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

Fig. 8 Performance with different team sizes and communication levels for Time Extended Bar Problem.
Each graph is for a different utility. From top-left, clockwise the utilities used are: BTU, TTU, EEU, BEU.
The two utilities, BEU and EEU, that estimate hidden values rather than ignoring them, perform much better
than their conterparts, BTU and TTU. Note that with large team sizes, agents can not effectively learn in the
time extended problem

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 10

G

Team Size

EEU
BEU
BTU
TTU

G

Fig. 9 Performance of four utility functions at 5% communication. Superiority of EEU is even more clear in
the time extended problem

112 Auton Agent Multi-Agent Sys (2006) 13:97–115

5. Related work

Issues related to agent communication and team formation have been studied separately
for many years from a variety of viewpoints. Literature closer to the focus of this paper,
where teams are used to overcome limited communication is less common and tends to come
from sensor-fusion research. In addition there is a large body of related work on multi-agent
systems and how to coordinate multiple agents.

5.1. Communication among agents

The study of communication among agents has taken on many forms. Much work has been
done low level communication issues such as agent communication languages and physical
implementation of communications [12, 13, 29]. Pynadath and Tambe [25] have formalized
many aspects of agent communications, including observability and explicit communica-
tion. For multi-agent Markov decision processes, Xuan et al. [40] dealt with the problem
of partially hidden states of other agents. In their system communication of an agent state
had a cost and they presented a number of algorithms that traded off cost of communica-
tion vs. the expected gain from the knowledge obtained from the communication. A number
of researches have noted that often little communication is needed to coordinate agents [5]
and that in many cases local communication is sufficient [15, 28], though such conclusions
necessarily depend on the chosen domain.

5.2. Teams

There has been extensive research on rule-based agent team formations. Tambe has shown
that coordination rules can be used successfully in many fields including military engage-
ment [31]. A common mechanism to coordinate team agents is for teams to have “joint
intentions” [10] where team agents need to work for a common goal. Groz coins the term
“SharedPlan” [17] to refer to this concept. In this paper we borrow from this concept by
having team members share a common utility. Even more related to this paper is work done
in the field of sensor fusion. Fox has shown that when the amount of information that a robot
receives is restricted, teams of robots, with different sensors, can work together to solve the
robot localization problem [14]. In addition it has been shown that teams can share sensor
information to estimate unobservable parts of the system in robotic soccer domains [30].

Significant work has also been done on coalition formation in distributed systems for the
purpose of increasing efficiency, where coalitions are formed dynamically as the system runs.
In these domains one significant problem is how to assign a value to an individual agent’s
contribution to a coalition. Ketchpel [20] addresses problem through a local auction mecha-
nism. Another issue with coalitions is that, while larger coalitions may provide more benefit,
they may entail substantial costs. Sandholm and Lesser [27] show properties of coalitions
when computational cost of being part of a coalition goes up as the coalition gets bigger.
While in the previous examples agents are trying to maximize coalition utility or system
utility, in Brooks and Durfee [8] agents are self centered, but join congregations to try to
increase their own utilities. In all these works, as in our work, it is assumed that an agent
only belongs to one coalition/team.

5.3. Agent coordination

Learning agents in multi-agent systems must ensure that agents learn to cooperate to opti-
mize the overall system goal. Leveraging game theory and reinforcement learning, Hu and

Auton Agent Multi-Agent Sys (2006) 13:97–115 113

Wellman [19] accomplish this through an algorithm where through Q-learning a pair of agents
could reach a Nash equilibrium in general sum games, even when the agents do not know the
reward function or state transition probabilities. However, this algorithm was not designed
to scale to a large number of agents. In contrast, Mataric [22] has shown that large groups
of foraging robots can be made to cooperate by constructing a set of utilities appropriate for
the domain.

6. Discussion

In this work we focus on the problem of designing a collective with a large number of
autonomous agents in the presence of severe communication restrictions. This problem is
particularly challenging in that the following issues are all present at once:

– There are a large number of agents.
– Agents must learn solution.
– Greedy solutions are highly suboptimal.
– Agents can only observe small fraction of other agents.

In this problem we must promote agent coordination, even when agents may not be able to
communicate with one another. In such cases, private utilities which rely on agents having
access to a fully connected communication network will break down. To address this issue,
we presented four different utility functions that each make different tradeoffs among what
information is available to an agent and how that information should be used. We showed
that one utility in particular, EEU, does far better than all the others in almost all experiments.
Agents using this utility learn much faster and achieve better results on the traditional and
time extended variants of the Bar Problem. Furthermore, agents using this utility can perform
well with far more restricted communication.

In addition, we showed that team formation improves the performance of the system by as
much as 25% on top of the 75% performance increase achieved by using better utilities. This
was due to the increased information available to the members of a team, which alleviated
the communication restriction imposed on the agents. While increasing the size of the team
increased the information available, it also increased the complexity of each team’s prob-
lem. The improved performance illustrated that a good balance point between these tradeoffs
could be found.

These results were all obtained on a (possibly time dependent) congestion problem with
100 agents. This problem is part of an important class of problems, that cover a wide variety
of domains including network routing, traffic control, and multi-robot coordination. Similar
use of difference utilities have shown to work well on an even wider variety of domains
[1, 2, 32, 33, 38]. In addition while scaling results were not explicitly shown, the methods
presented here performed well with 100 agents, and scaled well with different number of
teams. In other works we have shown similar methods to scale well, from 10 to 400 agents
[3, 33].

This performance boost was achieved using a simple team model, where team members
which had a common utility always chose to share information. Also for simplicity, there
were no costs to share information. In certain domains sharing costs may be significant, but
in many cases this cost will not effect the applicability of our utility functions. For example if
the sharing cost is solely a function of team size, it will cancel out in the difference utilities.
In these domains the collective designer should include the cost of sharing in the system
utility and adjust the group size so as to maximize performance in the specific domain.

114 Auton Agent Multi-Agent Sys (2006) 13:97–115

Furthermore, in many problems agents can choose whether to share information or not,
and consequently incur a cost or not. Preliminary results show that in such cases, agents have
a difficult time in learning to maximize their utility functions. This is due to the constant
change in how an agent perceives the system, which now depends on the sharing choices
of many other agents. This in effect creates a more noisy learning environment. Our cur-
rent research focuses on these issues and on prodding the agents to share information in the
absence of teams.

Acknowledgements The authors would like to thank David Wolpert for helpful discussions.

References

1. Agogino, A., & Tumer, K. (2004). Efficient evaluation functions for multi-rover systems. In The genetic
and evolutionary computation conference (pp. 1–12). Seatle, WA.

2. Agogino, A., & Tumer, K. (2005a). Multi agent reward analysis for learning in noisy domains. In Proceed-
ings of the fourth international joint conference on autonomous agents and multi-agent systems. Utrecht,
Netherlands.

3. Agogino, A., & Tumer, K. (2005b). Reinforcement learning in large multi-agent systems. In AAMAS-05
workshop on coordination of large scale multi-agent systems. Utrecht, Netherlands.

4. Arthur, W. B. (1994). Complexity in economic theory: Inductive reasoning and bounded rationality. The
American Economic Review, 84(2), 406–411.

5. Balch, T., & Arkin, R. C. (1994). Communication in reactive multiagent robotic systems. Autonomous
Robots, 1(1), 27–52.

6. Blumrosen, L., & Nisan, N. (2002). Auctions with severely bounded communication. In The 43rd annual
IEEE symposium on foundations of computer science. Vancouver, Canada.

7. Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In Proceedings
of the sixth conference on theoretical aspects of rationality and knowledge, Holland.

8. Brooks, C. H., & Durfee, E. H. (2003). Congregation formation in multiagent systems. Autonomous Agents
and Multi-Agent Systems Journal, 145–170.

9. Busetta, P., Dona, A., & Nori, M. (2002). Channeled multicast for group communications. In Proceedings
of the first international joint conference on autonomous agents and multi-agent systems (pp. 1280–1287).
Bologna, Italy.

10. Cohen, P., & Levesque, H. N. (1991). Teamwork. Special Issue on Cognitive Science and AI, 25(4),
487–512.

11. Crites, R. H., & Barto, A. G. (1996). Improving elevator performance using reinforcement learning. In D.
S. Touretzky, M. C. Mozer, & M. E. Hasselmo, (Eds.), Advances in neural information processing systems
Vol. 8 (pp. 1017–1023).

12. Dastani, M., van der Ham, J., & Dignum, F. (2002). Communication for goal directed agents. In Proceed-
ings of the agent communication languages and conversation policies. Bologna, Italy.

13. Dignum, F., Dunin-Keplicz, B., & Verbrugge, R. (2000). Agent theory for team formation by dialogue.
In Proceedings of the agents, theories, architectures and languages (ATAL 2000) (pp. 150–166). Boston,
MA.

14. Fox, D., Burgard, W. Kruppa, H., & Thrun, S. (2000). A probabilistic approach to collaborative multi-robot
localization. Autonomous Robots.

15. Fredslund, J., & Mataric, M. J. (2002). Robots in formation using local information. In Proceedings, 7th
international conference on intelligent autonomous systems (IAS-7) (pp. 100–107). Marina del Rey, CA.

16. Gage, D. (1993). How to communicate with zillions of robots. In Proceedings of SPIE mobile robots VIII
(pp. 250–257). Boston, MA.

17. Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence, 2(86),
269–357.

18. Groves, T. (1973). Incentives in teams. Econometrica, 41, 617–631.
19. Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical framework and an

algorithm. In Proceedings of the fifteenth international conference on machine learning (pp. 242–250).
20. Ketchpel, S. P. (1994). Forming coalitions in the face of uncertain rewards. In National conference on

artificial intelligence (pp. 414–419).
21. Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94,

79–97.

Auton Agent Multi-Agent Sys (2006) 13:97–115 115

22. Mataric, M. J. (1994). Reward functions for accelerated learning. In Machine learning: Proceedings of
the eleventh international conference (pp. 181–189). San Francisco, CA.

23. Nicholson, W. (1998), Microeconomic theory, 7th ed. The Dryden Press.
24. Petersen, S. A., & Divitini, M. (2002). Using agents to support the selection of virtual enterprise teams.

In Proceedings of fourth international bi-conference workshop on agent-oriented information systems
(AOIS-2002) (at AAMAS 2002). Bologna, Italy.

25. Pynadath, D., & Tambe, M. (2002). The communicative multiagent team decision problem: Analyzing
teamwork theories and models. Journal of Artificial Intelligence Research, 16, 389–423.

26. Pynadath, D., Tambe, M., Chauvat, N., & Cavedon, L. (1999). Toward team-oriented programming. In
Proceedings of the agents, theories, architectures and languages (ATAL’99) (pp. 77–91). Orlando, Florida.

27. Sandholm, T., & Lesser, V. R. (1997). Coalitions among computationally bounded agents. Artificial Intel-
ligence, 94, 99–137.

28. Sen, S., Sekaran, M., & Hale, J. (1994). Learning to coordinate without sharing information. In Proceedings
of the twelfth national conference on artificial intelligence (pp. 426–431). Seattle, WA.

29. Smith, I. A., & Cohen, P. R. (1995). Toward a semantics for a speech act based agent communications lan-
guage. In T. Finin, & J. Mayfield, (Eds.), Proceedings of the CIKM ’95 workshop on intelligent information
agents. Baltimore, Maryland.

30. Stroupe, A., Martin, M. C., & Balch, T. (2001). Distributed sensor fusion for object position estimation
by multi-robot systems. In IEEE international conference on robotics and automation, May, 2001.

31. Talukdar, S., Baerentzen, L., Gove, A., & de Souza, P. (1998). Asynchronous teams: Cooperation schemes
for autonomous agents. Journal of Heuristics, 4, 295–321.

32. Tumer, K., & Agogino, A. (2005). Coordinating multi-rover systems: Evaluation functions for dynamic
and noisy environments. In The genetic and evolutionary computation conference. Washington, DC.

33. Tumer, K., Agogino, A., & Wolpert, D. (2002). Learning sequences of actions in collectives of autonomous
agents. In Proceedings of the first international joint conference on autonomous agents and multi-agent
systems (pp. 378–385). Bologna, Italy.

34. Tumer, K., & Wolpert, D. (Eds.) 2004. Collectives and the design of complex systems. New York: Springer.
35. Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed tenders. Journal of Finance, 16,

8–37.
36. Wolpert, D., & Lawson, J. (2002). Designing agent collectives for systems with Markovian dynamics. In

Proceedings of the first international joint conference on autonomous agents and multi-agent systems.
Bologna, Italy.

37. Wolpert, D. H., & Tumer, K. (2001). Optimal payoff functions for members of collectives. Advances in
Complex Systems, 4(2/3), 265–279.

38. Wolpert, D. H., Tumer, K., & Frank, J. (1999). Using collective intelligence to route internet traffic. In
Advances in neural information processing systems. Vol. 11 (pp. 952–958).

39. Wolpert, D. H., Wheeler, K., & Tumer, K. (2000). Collective intelligence for control of distributed dynam-
ical systems. Europhysics Letters, 49(6). 708–714.

40. Xuan, P., Lesser, V., & Zilberstein, S. (2001). Communication decisions in multi-agent cooperation: Model
and experiments. In Proceedings of the fifth international conference on autonomous agents (pp. 616–623).
Montreal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

