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Abstract. Distributed constraint optimization requires the optimization of a global
objective function that is distributed as a set of valued constraints among a set
of autonomous, communicating agents. To date, there does not exist an asyn-
chronous, complete algorithm for general distributed constraint optimization prob-
lems. This paper presentglopt the first such algorithm that is asynchronous,
operates on a general representation, uses linear space and is guaranteed to find
optimal solutions. The main idea behind Adopt is a new distributed search strat-
egy that is similar to iterative deepening search and that allows concurrent execu-
tion by a set of distributed agents. We show that Adopt outperforms Synchronous
Branch&Bound, the only existing optimal algorithm for distributed constraint
optimization. Furthermore, in order to isolate whether the speed-ups are due to
Adopt's new search strategy or its exploitation of asynchrony, we compare to a
synchronous version of iterative deepening, which simulates the centralized iter-
ative deepening search strategy in a distributed environment. We show that the
cause of speed-up is partly due to Adopt's new search strategy and partly due to
its asynchrony.

1 Introduction

Whenever multiple autonomous agents must collaborate to accomplish a given task,
they must reason about how their individual actions interact with other agents’ actions
and with the global objective. An agent’s local action may positively or negatively affect
the global outcome and this effect may be dependent on other agents’ choice of actions.
Human/agent organizations [1], self-reconfigurable robots [7] and distributed sensor
networks[8] are some examples of multi-agent applications where the global effect of
an agent’s local action is dependent on others’ choices. Furthermore, these domains are
inherently distributed due to constraints such as privacy, autonomy, fault-tolerance, etc.
Thus, a solution strategy that redistributes or centralizes the problem is not possible.
One effective way to model the interactions between agent activities and still main-
tain requirements of decentralization is through the distributed constraint reasoning
paradigm. In this approach, global state is described by a set of variables and each



variable is assigned to an agent who has control of its value. Interactions between the
local choices of each agent are modelled as constraints between variables belonging to
different agents. Yokoo, Durfee, Ishida, Kuwabara and Hirayama have presented sig-
nificant results for satisfaction based problems. The Distributed Constraint Satisfaction
(DisCSP) [10][9] framework and associated algorithms allows agents to find an assign-
ment of values to variables such that no constraint is violated, or determine that no such
assignment is possible. While this is an important advance, DisCSP is not adequate
to address many real-world problems. In particular, DisCSP requires that problem so-
lutions be characterized with a binary designation of “satisfactory or unsatisfactory”.
However in many domains, solutions may have degrees of quality or cost. Overcon-
strained problems [3] are an example where no satisfactory solution may be possible
and rather than simply returning failure, agents must find high quality solutions, i.e, a
solution that is closest to a satisfactory solution. The Distributed Constraint Optimiza-
tion Problem (DCOP) [5] [2] is a way to model problems where solutions have degrees
of quality or cost. It requires a set of collaborative agents to optimize a global objective
function that is distributed among them as a setadfiedconstraints, that is, constraints

that are described as functions that return a range of values, rather than predicates that
return only true or false. In this paper, we will deal only with binary constraints. Finally,
note that DCOP is different from parallel computing in the sense that the distribution of
the objective function is mandated by the nature of the problem, not artificially imposed
or manipulated for reasons of computational efficiency or parallel processing.

This paper presensdopt(Asynchronous Distributed Optimization), the first com-
plete asynchronous algorithm for general distributed constraint optimization problems.
Our contribution is two-fold: a) a new distributed search strategy for general distributed
constraint optimization problems that is based on iterative deepening search and re-
quires linear space, b) exploiting this new search strategy to allow concurrent, asyn-
chronous execution. The main idea in Adoptis for agents to asynchronously update/increase
lower bounds on global solution quality. The idea of increasing lower bounds comes
from the iterative deepening search strategy in centralized search [4]. As with other dis-
tributed constraint algorithms, the Adopt algorithm requires agents to be prioritized in
a total order. Given this ordering, an agent communicates its variable value to “linked”
lower priority agents (as defined in Section 3.1) and communicates a lower bound to a
single higher priority agent. Since all communication is completely asynchronous, the
algorithm is able to exploit concurrency whenever possible. Despite the fact that agents
are asynchronously and concurrently choosing values for their variables, Adopt is able
to guarantee globally optimal solution quality.

The only existing complete method for DCOP is the Synchronous Branch and
Bound (SynchBB) algorithm described by Hirayama and Yokoo[2]. The search strat-
egy in branch and bound search is to update/decrease upper bounds during search. Us-
ing synchronous computation, SynchBB simulates branch and bound search in a dis-
tributed environment. It requires agents to perform computation in a sequential manner
in which only one agent executes at a time. The order of execution is determined by a
priority ordering. Lemaitre and Verfaille describe another synchronous algorithm based
on greedy repair search [5], but this algorithm is incomplete and requires a central agent
to collect global state. One asynchronous approach to DCOP has beeniteratbee



thresholding Briefly, the approach relies on converting an optimization problem into a
satisfaction problem by setting a threshold a priori and applying a DisCSP algorithm.
If no satisfactory solution can be found, the threshold is iteratively lowered until a so-
lution is found (Or conversely, the threshold is raised until no satisfactory solution is
possible). Using this approach, Hirayama and Yokoo[2] [3] present iterative algorithms
for specific classes of optimization problems, in particular, Hierarchical DisCSP [3] and
Maximal DisCSP[2]. However, the iterative thresholding method cannot guarantee op-
timality for more general optimization problems such as those discussed in this paper,
because agents cannot asynchronously determine that a global threshold is met.

The paper is structured as follows: Section 2 defines the DCOP problem. Section
3 describes the Adopt algorithm and proves that it is optimal. Section 4 presents our
experimental results. The results show that Adopt significantly outperforms SynchBB
on both overconstrained and weighted DCOPs and that the cause of the speedup is
partly due to the novel search strategy employed and partly due to the asynchrony of
the algorithm. Section 5 concludes the paper.

2 Distributed Constraint Optimization Problem

A Distributed Constraint Optimization Problem (DCOP) consista efariablesV =
{z1,22, ...z}, €ach assigned to an agent, where the values of the variables are taken
from finite, discrete domain®,, D,,..., D,,, respectively. Only the agent who is as-
signed a variable has control of its value and knowledge of its domain. We will assume
each agent is assigned only one variable and use the term agent/variable interchange-
ably!. The goal is to choose values for variables such that an objective function is min-
imized or maximized. For clarity, we will deal mainly with an objective function de-
scribed as addition over costs, where cost is represented as a natural number. However,
the techniques described in this paper can be applied to any associative, commutative,
monotonic aggregation operator defined over a totally ordered set of valuations, with
minimum and maximum element. This class of optimization functions is described for-
mally by Schiex, Fargier and Verfaillie as Valued CSPs [6].

Thus, for each pair of variables, x;, we are given @ost functionf;; : D; x D; —
N U co. The cost functions in DCOP are the analogue of constraints from DisCSP (for
convenience in this paper, we sometimes refer to cost functions as constraints). They
take values of variables as input and, instead of returning “satisfied or unsatisfied”,
they return a valuation. We will deal only with binary constraints. Two agents;
areneighborsif their cost functionf;; is not a constant. Figure 1.a shows an example
constraint graph with four agents and associated cost function. In the example, all con-
straints are the same, but this is not necessary. The objective is to find an assignment
A* of values to variables such that the total cost, dendtets minimized and every
variable has a value. Stated formally, we wish to fihd= .4*) such that#'(A) is min-
imized, where the objective functidh is defined as

! Yokoo and Hirayama describe some methods for converting multiple variables per agent to
single variable per agent for DisSCSP problems[11]



F(.A) = Z fij (dl, d]) ,where T; < di,
zi,z; €V T < dj in A

For example, in Figure 1.&({(z1,0),(z2,0), (23, 0), (z4,0)}) = 4 andF ({(z1, 1),(z2, 1),
(23,1), (x4,1)}) = 0. In this exampleA* = {(z1, 1),(z2, 1), (x3,1), (z4,1)}.

3 Asynchronous Search for DCOP

Section 3.1 defines some terms we will use to describe the Adopt algorithm. For exposi-
tion purposes, Section 3.2 will describe a “bare-bones” version of the Adopt algorithm,
called Simple-Adopt, and Section 3.3 proves that Simple-Adopt is sound and complete.
Section 3.4 will then describe the Adopt algorithm, which includes additional features
over Simple-Adopt that contribute to efficiency rather than correctness.

3.1 Preliminaries

A set of variable/value pairs specifying a (possibly incomplete) assignment is called a
view).
— Definition: A view is a set of variable/value pairs of the fofx;,d;), (x;, d;)...}.

A variable can appear in a view no more than once. Two viewsangpatibleif
they do not disagree on any variable assignment.

The cost of an assignment of value to a variable, with respect to a view, is deter-
mined by the sum of its local cost functions.

— Definition: Thelocal costd incurred atz;, wrt to a given viewww is defined as

d(zivw) = 3 fij(di, dj) ,where x; < d;,
i€V xj + dj invw

For example, in Figure 1.a, if vieww = {(z1,0), (z2,0), (z3,0)}, thend(zs, vw) =
2 because of cost of 1 betweein andxs, plus cost of 1 betweer, andxs.

The Adopt algorithm requires variables to have a fixed total priority order. Any
ordering is sufficient and lexicographic ordering is the simplest method. Figure 1.b
shows an example priority ordering of the constraint graph in Figure 1.a. We will use
the termparentto refer to an agent’s immediate higher priority agent in the ordering
andchild to refer to an agent’'s immediate lower priority agent in the ordering. In Figure
1.b,z, is the parent of-, x5 is the parent of3; andzs is the parent of,. Two agents
z;,x; arelinkedif they are neighbors, it; is the parent or child of;, or if they are
both linked to a common descendent. Note that non-neighbors may be linked. The solid
arrows in Figure 1.b show links. We ulégked descendents (ancestdrsjefer to linked
agents lower (higher) in priority ordering. In Figure 1a, is a linked descendent of
x2. The priority ordering can be formed in a preprocessing step, or alternatively, can be
discovered during algorithm execution. For simplicity of description of the algorithm,
we will assume the ordering is done in a preprocessing step and every agent knows its
parent, child, and linked descendents.
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Fig. 1. (a) Example constraint graph. (b) An example ordering formed from the constraint graph
in (a). (c) Flow of VALUE and VIEW messages between agents.

3.2 Simple Adopt

Procedures from the Simple-Adopt algorithm are shown in Figung Bepresents the
agent’s local variable and, represents its current value. The algorithm begins by each
agent choosing a value for its variable concurrently and sending this value to all its
linked descendents via a VALUE message. After this, agents asynchronously wait for
and respond to incoming messages. Upon receiving a VALUE message, an agent stores
the current value of the linked ancestors inGtarrentvw variable, which represents

x;'s current contextlt then reports to its parent the current lower bound for its current
context. This information is sent via a VIEW message. Figure 1.c shows the flow of
VALUE and VIEW messages between agents as the algorithm executes asynchronously.
To be more concrete,

— Initialize: For each valud, setc(d), the current lower bounébr valued, to zero.
Go to hill_climb.

— hill _climb: For each valud, computesstimate of lower boundenotec:(d) (Fig-
ure 2, Line (iii)). If z; is a leaf agenk(d) is just the local costi(z;, CurrentvwU
(zi,d)); If z; is not a leaf agenk(d) will also include the current lower bound
reported taz; from its child. Choosé such thak(d) is minimized (Figure 2, Line
(iv)) and make it the current value. Send VALUE message to all linked descendents.
Send the lower bound to parent via a VIEW message, but since global context could
change before parent receives the VIEW message, attach the current context under
which the cost was computed.

— when received VALUE: Update current context. If there is a context change, delete
all stored lower bounds. Go to hidlimb.

— when received VIEW: Compare the received context against own current context
(Figure 2,Line (i) to see if they are compatible. If not compatible, throw message
away; If compatible, i.e., the reported lower bound is still valid, only store new
lower bound if it has increased from previously reported lower bound. If lower
bound has increased, go to hilimb.

In the when received VIEW procedure, it is correct to throw away VIEW mes-
sages when there is an incompatibility betw&eésvrentvw and the context attached



# Currentvw: Current view of linked ancestor’s variable values
# x;: Local agent/variable
#d;: x;'s current variable value
# c(d): Current lower bound on cost for subtree rooted at child, giverthooses valug
Initialize: Currentvw < {};d; < null;
Yd € D; :
c(d) «+ 0
hill _climb;
when received(VALUE , (z;, d;))
add(z;,d;) to Currentvw;
# context change
if Currentvw changed then
Yd € D; :
c(d) 0
end if;
hill _climb;
when received(VIEW , vw, cost)
d «+ value ofz; in vw

if vw is compatible with — (@)
Currentvw U {(z;, d)} then
c(d) + max(c(d), cost); — (i)
if ¢(d) changed then
hill _climb;
end if;
end if;
procedure hill_climb
Vd € D;:

#e(d) is z;'s estimate of cost if it chooses
e(d) < 0(z;, Currentvw U {(zi,d)}) + c(d);— (iii)
choosed that minimizes:(d) —(iv)
prefer current valud; for tie;
d; < d;
SEND (VALUE, (z;, d;)) to all linked descendents;
SEND (VIEW , Currentvw, e(d;)) to
parent;

Fig. 2. Procedure for asynchronous search (Simple-Adopt)



to the VIEW message. To see this, realize there can be two cases in which the con-
texts are incompatible; either has a more up-to-date current view than its chilar

x; has a more current up-to-date view than its pargngEither case may occur when

z; andz; have a linked ancestor in common. In caserlmust eventually receive a
VALUE message, triggering a new VIEW message to be sent taith the up-to-date
context. In case 2y; must eventually receive a VALUE message causing it to update
its Currentvw and triggering it to send; a VALUE message. This in turn will cause

x; to resend a VIEW message 1. Whenz; receives this message, the contexts will
match. So in either case, it is safe farto throw away VIEW messages when there is

a context mismatch since the information will eventually be resent.

Next, note that in thdill _climb procedure, an agent always reports to its parent
the cost of its variable value that minimizes its estimate of lower ba(dy In this
way, the lower bounds are always conservative. This is hecessary in order to guarantee
completeness. If an agent does not do this, the cost of a solution may be overestimated
and a good solution may be erroneously discarded by the parent.

Finally, in thewhen received VALUE procedure, an agent updates its current con-
text by updating the current value of its linked ancestor stored ite-entvw vari-
able. It must also delete its stored co&f), since it may now be invalid. By storing
only one current view and storing only the costs that are relevant to this current view,
Simple-Adopt has space requirements (at each agent) linear in the number of variables.

Example In the example from Figure 3.a, assume that the all agents concurrently
choose value 0 for their variable. Each agent sends its value to all linked descendents.
Since the algorithm is asynchronous, there are many possible execution paths from here
— we describe one possible execution pathwill have Currentvw = {(z1,0)} and
will choose a value that minimizes its cost. Its best choicg is- 0. z» sends a VIEW
message with cost of 1 tg,. It is safe forz, to report this cost because, given's
choice, 1 is a lower bound oglobal solution cost. This is true because 0 is a lower
bound on cost below, and 1 is a lower bound on local costat Sincel +0 = 1, the
agents below; can do no better than 1. Now concurrently witlis executions will
evaluate its constraints with higher agents and realize that it is incurring a cost of 2 due
its interaction withz; andz,. We haved(zs, {(z1,0), (22,0), (z3,0)}) = 2. Achange
of value toxz = 1 would incur a cost of 4, so insteads will stick with 23 = 0. x5
will send a VIEW message of cost 2, with associated conftéxt, 0), (z2,0)}, to its
parentz,. x» will store this cost ag(0) = 2.

Whenz, receivesrs’s VIEW message, it will change its value to one with lower
cost, namelyr; = 1. It will again send VALUE messages to its linked descendents
(Figure 3.b). When, receivese; 's new value, it will choose the best value it can. Note
thatx, will not use the previous cost report of 2 frarp to choose its best value since
its current contex{(z;, 1)} is no longer compatible with the cost report context from
z3, which was{(z1,0), (x2,0)}. Figure 3.c shows the change in bathandz; values
after receivinge;’s VALUE message. In this way, the agents will ultimately settle on
the optimal configuration with all values equal to 1 (total cost = 0).
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Fig. 3. Example of algorithm execution

3.3 Algorithm Correctness

We show that if Simple-Adopt reaches a stable state (all agents are waiting for in-
coming messages), then the complete assignment chosen by the agents is equal to the
optimal assignment, and we also show that Simple-Adopt eventually reaches a stable
state. Lemma 1 states that an agent’s estimate of lower bound is never an overestimate,
and Lemma 2 says that in a stable state, an agent’s estimate of lower bound for its final
choice is equal to the minimum cost possible for that choice(l(@f;, vw) denote the
local cost atr; plus the cost of the optimal assignment to descendentg given that
x; and its ancestors have values fixed to those givemin

Lemma 1: An agent’s estimate of the cost of a solution is never greater than the
actual costyz; € V,Vd € D;,

e(d) < C(z;, Currentvw U {(z;,d)})

proof: See appendix.
Lemma 2: If Simple-Adopt is in a stable state addis x;'s final value, then,

e(d;) = C(z;, Currentvw U {(x;,d;)})

proof: See appendix.

Theorem 1: Assume Simple-Adopt is in a stable state. Then, there existsuch
thatVz; € V, if d; is the value of;, then(z;, d;) € A*.

proof: Assumer; is the rootagent. For the currentassignmint(d;) = C(z;, {(zi, di)})
by Lemma 2.z; choosesd; so thate(d) is minimized. Using Lemma 1g(d;) =



C(zs, {(zi,di)}) < e(d) < C(ay, {(z;,d)}) foralld € D;. Thuse(d;) = ming C(z;, {(x;,d)}).
By definition, the cost of4* is equal taningep, C(x;, {(z;,d)}), which means the to-
tal cost is minimized whem; = d;. O

Finally, we have left to show that the algorithm does indeed reach a stable state in
which all agents are waiting for incoming messages. We first prove Lemma 3 which
states that an agent’s estimate of cost never decreases.

Lemma 3: If z;’s Currentvw does not change, then foré&l D;, the value of(d)
is non-decreasing over time.

proof: Figure 2, Line (ii) ensures thatd) never decreases.

Theorem 2: Simple-Adopt will reach a stable state.

proof: We show by induction on priorities that each agent stops sending messages.
Base caseAssumez; is the highest priority agent:; only sends VALUE messages
and only in reponse to the receipt of a VIEW message that changes(dpsfThe
highest priority agent has an empty non-chandihg-rentvw. By Lemma 3,¢(d) is
non-decreasing and by Lemma 1, has an upper bound. So, evenidaliypust stop
changing andr; will stop sending messagemductive Step: Assume all agents of
higher priority thanz; have stopped sending messageswill never receive another
VALUE message and s®;'s Currentvw has stopped changing. As in the base case,
we can apply Lemma 3 and combine with Lemma 1 to seesthedill eventually stop
sending messages. By induction, the system reaches a stabl&istate.

In summary, we have shown that Simple-Adopt is indeed guaranteed to find the
optimal solution while performing distributed asynchronous search.

3.4 Algorithm Improvements

We make two modifications to the Simple-Adopt algorithm to improve efficiency. The
first modification allows an agent to store more context information in order to avoid
deleting its stored lower bounds unnecessarily when a context switch occurs. The sec-
ond modification requires a parent to send a lower bound down to its child, thereby
allowing the child to find an optimal solution faster.

One source of inefficiency in the Simple-Adopt algorithm is that all stored lower
bounds must be deleted whenever context changes occur (a linked ancestor changes
variable value). This is wasteful since some of the stored bounds may not be affected
by the context change and thus may still be valid. For exampleylée the parent of
x;, ¢; be the parent of; and letz; be theonly linked descendent af;,. Supposer;
has stored a lower boundd) = « that was reported from child;. Then, suppose;
receives a VALUE message from its pareptwhich changes its current view. Simple-
Adopt will require z; to sete(d) = 0, deleting the stored cost af But the lower
bounde(d) = a is still valid since there is no interaction betweep andz;, except
throughz;. Thus,z; is unnecessarily forced to rediscover the lower bound.die
can avoid this inefficiency by requiring agents to store context associated with each
reported cost. For example, upon receiving message (Vieda) from z;, z; will
store not only(d) = a, but alsocontext(d) = vw. In the above examplew will not
containzy sincer; andx; are not linked. Then, whety, changes its variable value;
can compar&urrentvw with context(d), realize that they are still compatible, and



therefore not delete(d). This modification preserves completeness because agents still
delete lower bounds when context changes occur but only when absolutely necessary.
Another source of inefficiency in the Simple-Adopt algorithm is that frequent con-
text changes may cause the same parts of the search space to be revisited over and over
again. To see this, suppose for a moment that ail;sflinked ancestors have already
chosen optimal values ang must now decide what to choose. Suppeasédas two
possible values]; ord», ande(d;) = 0 ande(ds) = 0. x; choosesl; as its variable
value and sends a VALUE message to all its linked descendents, including ite:child
x; subsequently sends a VIEW message with some non-zero cesAfter receiving
this cost reportz; will immediately switch tod,, sincec(ds) = 0 < ¢(d;) = a. x;
will send VALUE messages and descendents will then begin exploring their own values
given this choice. If the lower bound fak ever exceeds the lower boundwfor d;,
x; will switch back tod, triggering context changes in descendents who are forced to
explore a previously explored solution from scratch. This results in wasteful search. We
can mitigate this effect in the following way. In the above scenario, whewitches its
value fromd, back tod;, it can send:(d;) = a to z; as a costhreshold Sincez; has
previously reported as a lower bound on the costs for the subtree rooteg, ay and
its descendents can use this threshold todinglsolution at this cost and be guaranteed
it is the best one. In particulat; only need switch values wheid;) (z;’s estimate of
cost for its current value) exceeds the cost of this threshold. This is similar to cost-depth
limits in iterative deepening search. Note that this modification does not affect the lower
bound reporting fromx; to x; — x; will still report the same lower bound as before —
but it only prevents unnecessary context switcheg:byrhis modification has space
requirements (at each agent) linearrix | D; |. Generalizing this technique to the
case where an agent has more than one child, i.e., the priority ordering is a tree, while
still maintaining linear space requirements seems to be a difficult task. In summary,
Simple-Adopt can be modified to take advantage of cost thresholds to reduce repeated
search.
Figure 4 shows the Adopt algorithm, a modification of Simple-Adopt which imple-
ments the above features.

4 Experimental Evaluation

In this section, we present the empirical results from experiments using three different
distributed optimization algorithms for the distributed constraint optimization — Syn-
chronous Branch and Bound (SynchBB), Synchronous Iterative Deepening (SynchID)
and Adopt. We illustrate that Adopt outperforms SynchBB, the only known complete
algorithm for distributed constraint optimization. Furthermore, we would like to know
whether Adopt's speed-ups are due to its new iterative deepening search strategy or
its asynchrony (which enables concurrency), or both. To answer this question, we have
constructed a synchronous version of iterative deepening search, called SynchID, which
performs distributed iterative deepening search in a synchronous manner.

In the previous SynchBB algorithm[2], each agent is assigned a priority and the
highest priority agent chooses a value for its variable first. It informs the second priority
agent of its choice, who then chooses a value. The second agent then sends the first



# threshold: Lower bound on solution cost
# context(d): Context associated with(d)
Initialize: threshold« O;
Vd € D; :
context(d) + {}
when received(VALUE , (z;, d;), limit)
add(z;,d;) to Currentvw;,
Vd € D;
# change from Simple-Adopt — check for context incompatiblities
if context(d) incompatible withCurrentvw then
c(d) «+ 0
context(d) « {}
end if;
if z; is parent
threshold— limit
end if;
hill climb;
when received(VIEW , vw, cost)
d + value ofz; in vw
#child is my neighbor
if vw contains(z;, d) then
remove(z;, d) from vw;
if vw compatible withCurrentvw andcost > c¢(d) then
c(d) « cost;
context(d) + vw;
#child is not my neighbor
elsevd’ € D; :
if vw compatible withCurrentvw andcost > c(d’) then
c(d') « cost;
context(d') < vw;
end if;
if ¢(d;) changed then
hill _climb;
procedure hill_climb
Vd € D;:
e(d) « 0(z;, Currentvw U {(zi,d)}) + c(d);
choosel that minimizes(d)
prefer current valud; for tie;
# change from Simple-Adopt — switch value only if cost exceeds threshold
if e(d;) > threshold
d; < d;
childLimit « max(c(d;), threshold 4 (z;, Currentvw U {(zs,d;)}))
SEND (VALUE , (z;, d;), childLimit) to all linked descendents
# only choose variables relevant to local cost
Neighborvw = {(z;,d;) € Currentvw | z; is neighbor ofr; }
viewContext < Neighborvw U {U,¢ p, context(d)}
#1to preserve completeness — VIEW is for best vdlu®t current valuel;
SEND (VIEW , viewContezt, e(d)) to
parent;

Fig. 4. Efficiency Modifications to Simple-Adopt (Adopt algorithm)



agent’s choice plus its choice, to the third agent, etc. Also sent is cost of the current
partial solution. When a solution is complete, its cost is stored as an upper bound and
backtracking occurs. In this way, agents synchronously and systematically search for
the optimal solution, backtracking whenever current partial solution cost exceeds the
cost of the best solution found so far. In SynchID, each agent is assigned a priority and
the highest priority agent chooses a value for its variable first. It informs the second
priority agent of its choice along with a “cost-depth limit” [4], which is initially zero.

The second agent attempts to find a value for its variable such that the cost is less than
the search limit and sends a message to the third agent, etc. If an agent finds that it has
no choice of variable value such that the total cost is less than the current search limit, a
backtrack message is sent back up the chain. In this way, agents synchronously search
for a global solution under a given search limit. Once the highest priority agent receives
a backtrack message, it increases the search limit and the process repeats.

As in previous experimental set-ups[3], we experiment on distributed graph color-
ing with 3 colors. One node is assigned to one agent who is responsible for choosing
its color. Agents must find a coloring that minimizes the total number of constraint
violations. As in previous expermintal set-ups, time to solution is measured in terms
of synchronous cycles. Oreycleis defined as each agent receiving all its incoming
messages and sending out all its outgoing messages.

Table 1 and 2 show how SynchBB, SynchID and Adopt scale up with increasing
number of variables on graph coloring problems. Table 1 shows the results for sparse
graphs, with link density 2. A graph wittnk densityd hasdn links, wheren is the
number of nodes in the graph. The median number of cycles over 25 random problem
instances for each datapoint is reported. The problems were not explicitly made to be
overconstrained but subsequent inspection showed that more than half of the randomly
generated problems were in fact overconstrained in which case the solution with a min-
imum number of violations must be found — an optimization problem. The agents use
a random priority ordering and arbitrary (but deterministic) value ordering. The results
in Table 1 show that Adopt significantly outperforms both SynchBB and SynchiID. The
speed-up of Adopt over SynchBB is 20-fold at 14 variables and at least 25-fold at 16
variables. The speed-up of Adopt over SynchlID is 3-fold at 16 variables and 4-fold at
18 variables. The speedups due to search strategy are significant for this problem class,
as exhibited by the difference in scale-up between SynchBB and SynchlID. In addition,
the table also show the speedup due exclusively to the asynchrony of the Adopt algo-
rithm. The speedup due to asynchrony is exhibited by the difference between SynchID
and Adopt, which employ the same search strategy, but differ in amount of concurrency.
In SynchiD, only one agent executes at a time so it has no concurrency, whereas Adopt
exploits concurrency when possible by allowing agents to choose variable values in par-
allel. In summary, we conclude that Adopt is significantly more effective than SynchBB
on sparse constraint graphs and the speed-up is due to both its search strategy and its
exploitation of concurrent processing. Table 2 shows the same experiment as above, but
for denser graphs, with link density 3. We see that Adopt still outperforms SynchBB —
around 3-fold at 14 variables and at least 5-fold at 16 variables. The speed-up between
Adopt and SynchlD, i.e, the speed-up due to concurrency, is around 2-fold for both 16
variables and 18 variables. This shows that in denser graphs, a larger portion of the



speed-up of Adopt over SynchBB is due to asynchrony rather than search strategy, as
compared to our results from sparser graphs.

Finally, Table 3 shows a different experimental setup in which the three algorithms
are compared on random weighted CSPs. In a weighted CSP, each constraint is assigned
a random weight between 1 and 10. If the constraint is broken, the agents pay a cost
equal to its weight and the goal is to minimize the total cost of a solution. Problem
instances are described by four parametersn, p1, p2). n is the number of variables,

m is the number of values for each variahbe,is the proportion of variable pairs that

are constrained angh is the proportion of value pairs that are nogoods. For a random
problem in a given problem class, we randomly selget — 1)p; /2 variable pairs to

be constrained anek?p, value pairs to be nogoods. For 12 variables, Adopt obtains a
10-fold speed-up over SynchBB and a 6-fold speed-up over SynchlID. For 15 variables,
Adopt obtains at least a 12-fold speed-up over SynchBB and a 4-fold speed-up over
SynchID. In summary, we can see that Adopt continues to obtain significant speed-ups
even for the more general constraint optimization problem where constraints can have

weights.

Table 1. GraphColor (Link density=2)

Median Cycles

n |SynchBBSynchlDAdopt]
8 767 212 | 125
100 2239 390 | 255
12| 7401 544 | 345
14} 20899 | 1062 | 423
16 >50000| 5880 | 1851
18 - 14604 | 3304

Table 2. GraphColor (Link density=3)

Median Cycles

n |SynchBBSynchlDAdopt]
8 | 1955 | 2220 | 1717
10, 5251 | 3046 |2413
120 14713 | 7468 |5589
14| 61847 | 28610 |17425
16/>100000 46348 |21714
18 - 127476|58846




Table 3. Weighted CSP (Non-Uniform Weights)

Class Median Cycles
(n,m,pl,p2 SynchBBSynchID Adopt
(8,3,04,04 | 81 20 | 13

(10,3,0.4,0.4| 844 80 32
(
(

12,3,0.4,0.4| 10180 | 640 | 136
15, 3, 0.4, 0.4| >50000( 11964 | 3087

5 Conclusion

Distributed constraint optimization is an important problem in many real multi-agent
domains where problem solutions are characterized by degrees of quality or cost and a
set of agents must find optimal solutions in a distributed decentralized manner. We have
presented the first general-purpose asynchronous algorithm for distributed constraint
optimization that is guaranteed to converge to the optimal solution. The main idea be-
hind the presented algorithm is a new distributed search strategy that allows agents to
asynchronously increase lower bounds on solution quality and enables agents to operate
asynchronously, thereby exploiting parallelism when possible. We have shown signifi-
cant orders of magnitude speedups over the best previous algorithm SynchBB. We also
showed that the speed-ups obtained by the algorithm can be attributed to both its novel
search strategy and its ability to exploit parallelism. In future work, we will obtain
further speed-ups by investigating memory/time tradeoffs and more efficient variable
orderings.

References

1. H. Chalupsky, Y. Gil, C.A. Knoblock, K. Lerman, J. Oh, D.V. Pynadath, T.A. Russ, and
M. Tambe. Electric elves: Applying agent technology to support human organizations. In
Proceedings of Innovative Applications of Artificial Intelligence Confere2681.

2. K. Hirayama and M. Yokoo. Distributed partial constraint satisfaction problem. In
G. Smolka, editorPrinciples and Practice of Constraint Programming — CPp@ges 222—

236. 1997.

3. K. Hirayama and M. Yokoo. An approach to over-constrained distributed constraint satisfac-
tion problems: Distributed hierarchical constraint satisfactiorProc. of the 4th Intl. Conf.
on Multi-Agent Systems(ICMAS)uly 2000.

4. Richard E. Korf. Depth-first iterative-deepening: an optimal admissible tree séatiticial
Intelligence 27(1):97-109, 1985.

5. M. Lemaitre and G. Verfaillie. An incomplete method for solving distributed valued con-
straint satisfaction problems. [IRroceedings of the AAAI Workshop on Constraints and
Agents 1997.

6. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: Hard and
easy problems. linternational Joint Conference on Atrtificial IntelligencE95.

7. WM Shen and P. Will. Docking in self-reconfigurable robotsPtoceedings of IROR001.

8. BAE Systems. Ecm challenge problem, http://www.sanders.com/ants/ecm.htm. 2001.



9. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac-
tion problem: Formalization and algorithm$EEE Transactions on Knowledge and Data
Engineering 10(5):673—-685, 1998.

10. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint
satisfaction problems. IRroceedings of International Conference on Multi-Agent Systems
1996.

11. M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for complex local
problems. INCMAS July 1998.

Appendix

Lemma 1: An agents estimate of the cost of a solution is never greater than the actual cost.
Vz; € V,Vd € D;,

e(d) < C(zi, Currentvw U {(z;,d)})

proof: By induction on agent priorities. In the base case, asstyris the lowest priority.
Thene(d) = d(zi, Currentvw U {(z;,d)}) = C(z;, Currentvw U {(z;,d)}) and we are
done. So the base case is proved. By the inductive assumption, iprealD;,

ei(d;) < C(xy, Currentvw U {(zi,d)} U {(z1,di)}) 1)
By definition,
C(zi, Currentvw U {(zi,d)}) =
0(zi, Currentow U {(z;,d)}) +
ming, C(z;, Currentvw U {(z;,d)} U {(z;, d;)}

From 1 we have,
n(liin el(d;) < n;in C(z1, Currentvw U {(xs,d)} U {(z1,di)})
1 1

Line (iii) of Figure 2 gives
e(d) = d(zi, Currentvw U {(z,d)}) + ¢(d)

x; reportsming, e(d;) to only z;. If ; has received a message (VIEWurrentvw U
{(zi,d)}, er(dr)), thenc(d) = e;(d;). Otherwise¢(d) = 0. In either case,

= 0(z;, Currentvw U {(zi,d)}) + c(d)
< (x4, Currentvw U {(z;,d)}) + ming, e(d;)
< d(zi, Currentvw U {(z;,d)}) +
ming, C(z;, Currentvw U {(z;,d)} U {(z;, d;)})
= C(z;, Currentvw U {(zi,d)})

which is to be shown. By induction, the Lemma is proved.
Lemma 2: If Simple-Adopt is in a stable state adgis x;’s final value, then,

e(d;) = C(z;, Currentvw U {(zi,d;)})

proof sketch: The structure of the proof is identical to Lemma 1, except in the last step we
know all messages have been received;(d) = e;(d;).



