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Abstract

Multi Agent Systems (MAS) have recently attracted a lot of interest becatitheir ability to model

many real life scenarios where information and control are distributed guaget of different agents.
Practical applications include planning, scheduling, distributed contreburee allocation, etc. A
major challenge in such systems is coordinating agent decisions, suckgtbhglly optimal outcome
is achieved. Distributed Constraint Optimization Problems (DCOP) are a frarkdWwat recently

emerged as one of the most successful approaches to coordinatiorSn MA

This thesis addresses three major issues that arise in DCOP: efficient aitmialgorithms, dy-
namic and open environments, and manipulations from self-interested Waersake significant con-
tributions in all these directiong&fficiency-wisewe introduce a series of DCOP algorithms, which are
based on dynamic programming, and largely outperform previous DC@HRthlgs. The basis of this
class of algorithms is DPOP, a distributed algorithm that requires only a lineaber of messages,
thus incurring low networking overhead. Fdynamic environmentse introduce self-stabilizing al-
gorithms that can deal with changes and continuously update their solufiorself interested users
we propose the M-DPOP algorithm, which is the first DCOP algorithm that ntadesst behaviour
an ex-post Nash equilibrium by implementing the VCG mechanistributedly We also discuss the
issue ofbudget balanceand introduce two algorithms that allow fiadistributing(some of) the VCG
payments back to the agents, thus avoiding the welfare loss caused bygwhstWiCG taxes.

Keywords: artificial intelligence, constraint optimization, dynamic systems, mgeltiasystems,
self-interest
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Résumé

Les systmes multiagent (MAS) onecemment atté beaucoup d’ifirét en raison de leur capagit
de moctliser beaucoup de &narios éels @ I'information et le contdle sont distribés parmi un en-
semble de diffrents agents. Les applications pratiques incluent la planification, I'nedmement,
les sysémes de condle distribies, ou encore l'attribution de ressources. @i énportant dans de
tels sysémes est la coordination desailsions des agents, afin que desultats globalement optimaux
soient obtenus. Les prabhes d’optimisation distrilke sous contraintes (DCOP) sont un cadre qui
a recemmenemerg@ commeétant une des approches les plus performantes pour la coordination de
MAS.

Cette these adresse trois points principaux de DCOP : les algorithmes efficaqe#mdsation, les
environnements dynamiques et ouverts, et les manipulations par des stgggsques. Nous appor-
tons des contributions significatives dans toutes ces directions : en certpérne Efficacig, nous
présentons unesie d’algorithmes de DCOP qui sont Bassur la programmation dynamique, et offrent
des performances considerablement meilleures que les algorithetedemts. La base de cette classe
d’algorithmes est DPOP, un algorithme distégui exige seulement un nombredaire de messages,
économisant ainsi des ressourceséieau. Pour lesnvironnements dynamiquemus pesentons des
algorithmes auto-stabilisants qui peuvent prendre en compte des chantgelaes I'environnement
et mettenta jour les solutions en tempéeal. Pouragents stre&giques nous proposons l'algorithme
M-DPOP, qui est le premier algorithme de DCOP qui faitalhmportement hor@teun équilibre post-
Nash en appliquant le@canisme de VC@e facon distribée Nous discutonggalement de la question
de lequilibre du budgetet peésentons deux algorithmes qui permettenteghstribuer [partiellement]
les paiements VCG aux agenésitant ainsi la perte d'utilé provoqée par le gaspillage des taxes
VCG.

Mots-ckes : intelligence artificielle, optimisation sous contraintes,&systs dynamiques, sgshes
multiagent, agents stiegiques
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Chapter 1

Introduction

“A journey of a thousand miles begins with a single step.”
— Lao tzu

Many real problems are naturally distributed among a sedgaints each one holding its own
subproblem. Agents a@utonomousn the sense that they have control over their own subproblems,
and can choose their actions freely. They iatelligent, in the sense that they can reason about the
state of the world, the possible consequences of their actions, and the uélityvduld extract from
each possible outcome. They may dmf-interestedi.e. they seek to maximize their own welfare,
regardless of the overall welfare of their peers. Furthermore, theyhaeeprivacy concerns, in that
they may be willing to cooperate to find a good solution for everyone, butaheyeluctant to divulge
private, sensitive information.

Examples of such scenarios abound. For instance, producing conqudg tike cars or airplanes
involves complex supply chains that consist of many different actopp(®us, sub-contractors, trans-
port companies, dealers, etc). The whole process is composed of migppklems (procurement,
scheduling production, assembling parts, delivery, etc) that can ballylaptimized all at once, by
expressing everything as a constraint optimization problem. Another quitsnoa example is meeting
scheduling (127,141, 239]), where the goal is to arrange a setetimgs between a number of partic-
ipants such that no meetings that share a participant are overlappirfgp&icipant has preferences
over possible schedules, and the objective is to find a feasible solutiobhdbisatisfies everyone’s
preferences.

Traditionally, such problems were solved in a centralized fashion: all thereblems were com-
municated to one entity, and a centralized algorithm was applied in order to &wgtimal solution. In
contrast, a distributed solution process does not require the centralishibithe problem in a single
location. The agents involved in the problem preserve their autonomy amdt| over their local
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problems. They will communicate via messages with their peers in order to agmebment about
what is the best joint decision which maximizes their overall utility. Centralizedrékgns have the
advantage that they are usually easier to implement, and often faster thébuthsgtiones. However,
centralized optimization algorithms are often unsuitable for a number of reasbich we will discuss
in the following.

Unboundedness: it may be unpractical or even impossible to gather the whole problem into a
single place. For example, in meeting scheduling, each agent has a (typinallynumber of meetings
within a rather restricted circle of acquaintances. Each one of these ngeptiagibly conflicts with
other meetings, either of the agent itself, or with meetings of its partners. ¥ddng such a problem
in a centralized fashion, it is not known a priory which ones of these iateronflicts will manifest
themselves during a solving process. Therefore, it is required thaettietized solver acquire all the
variables and constraints of the whole problem beforehand, and apphyti@lized algorithm in order
to guarantee a feasible (and optimal) solution. However, in general it ysdifficult to bound the
problem, as there is always another meeting that involves one more agarit,hals another meeting,
and so on. This is a setting where distributed algorithms are well suited, deettzey do not require
the centralization of the whole problem in a single place; rather, they make twoallchanges, which
eventually lead to a conflict-free solution.

Privacy: isanimportant concernin many domains. For example, in the meeting scheddirayio,
participating in a certain meeting may be a secret that an agent may not wawé#b to other agents
not involved in that specific meeting. Centralizing the whole problem in a seleatd reveal all this
private information to the solver, thus making it susceptible to attacks, bribtry In contrast, in a
distributed solution, usually information is not leaked more than required éosdlving process itself.
Learning everyone’s constraints and valuations becomes much moraltifffican attacker.

Complex Local Problems: each agent may have a highly complex local optimization problem,
which interacts with (some of) its peers’ subproblems. In such settingsptetthe centralization
itself may well outweigh the gains in speed that can be expected when usngralized solver. When
centralizing, each agent has to formulate its constraints on all imaginable ®pgforehand. In some
cases, this requires a huge effort to evaluate and plan for all thesa&r&se for example, a part supplier
would have to precompute and send all combinations of delivery datees il quantities of many
different types of products it is manufacturing.

Latency: in a dynamic environment, agents may come in the system or leave at all timegechan
their preferences, introduce new tasks, consume resources, sthlfi problem is solved centrally,
then the centralized solver should be informed of all the changes, reutesgutions for each change,
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and then re-distribute the results back to the agents. In case changes lfest, the latency introduced
by this lengthy process could make it unsuitable for practical applicationsoritrast, a distributed
solution where small, localized changes are dealt with using local adjustrremisotentially scale
much better and adapt much faster to changes in the environment.

Performance Bottleneck: when solving the problem in a centralized fashion, all agents sit idle
waiting for the results to come from the central server, which has to hatleealbmputational resources
(CPU power, memory) to solve the problem. This makes the central seregfaarpance bottleneck.

In contrast, a distributed solution better utilizes the computational power aegitabach agent in the
system, which could lead to better performance.

Robustness:  to failures is a concern when using a single, centralized server for thieywhocess,
which is a single point of failure. This server may go offline for a varietseafsons (power or processor
failure, connectivity problems, DOS attacks, etc). In such cases the priicess is disrupted, whereas
in a distributed solution, the fact that a single agent goes offline only impactat number of other
agents in its vicinity.

All these issues suggest that in some settings, distributed algorithms ard thdamnly viable
alternative. To enable distributed solutions, agents must communicate witbteéacko find an optimal
solution to the overall problem while each one of them has access to ontyaf flais problem.

Distributed Constraint Satisfaction (DisCSP) is an elegant formalism deacbltipaddress con-
straint satisfaction problems under various distributed models assump8p88[203, 205, 225]. When
solutions have degrees of quality, or cost, the problem becomes an optimizaé@nd can be phrased
as a Constraint Optimization Problem or COP[189]. Indeed the last fevs yewe seen increased
research focusing on the more general framework of distributed GQR;OP[81, 141, 160, 237].

Informally, in both the DisCSP and the DCOP framewaorks, the problem isegpd as a set of
individual subproblems, each owned by a different agent. Each’agemproblem is connected with
some of the neighboring agents’ subproblems via constraints over skaialles. As in the central-
ized case, the goal is to find a globally optimal solution. But now, the computatiate! is restricted.
The problem is distributed among the agents, which can release informatipthorugh message
exchange among agents that share relevant information, accordingeoifiex! algorithm.

Centralized CSP and COP are a mature research area, with many efficlamgjtees developed
over the past three decades. Compared to the centralized CSP, Dis@iBmistsinfancy, and thus
current DCOP algorithms typically seek to adapt and extend their centrabzederparts to distributed
environments. However, it is very important to note that the performancsuressfor distributed algo-
rithms are radically different from the ones that apply to centralized opecifically, if in centralized
optimization thecomputation times the main bottleneck, in distributed optimization it is rather the
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communicatiorwhich is the limiting factor. Indeed, in most scenarios, message passingeis @i
magnitude slower than local computation. Therefore it becomes appaatittithdesirable to design
algorithms that require a minimal amount of communication for finding the optimatienluThis
important difference makes designing efficieiigtributedoptimization algorithms a non-trivial task,
and one cannot simply hope that a simple distributed adaptation of a sutaesdfalized algorithm
will work as efficiently.

1.1 Overview

This thesis is organized as follows:

Part I: Preliminaries and Background: Chapter 2 introduces the DCOP problem, and a set of
definitions, notations and conventions. Chapter 3 overviews related amatithe current state of the
art.

Part II: The DPOP Algorithm: Chapter 4 introduces the dynamic programmidf¢OP algorithm.
Chapter 5 introduces the H-DPOP algorithm, which shows how consistecloyiggies from search
can be exploited in DPOP to reduce message size. This is a technique thladbgooal to most of the
following algorithms, and can therefore be applied in combination with them ks we

Part 1ll: Tradeoffs:  This part discussesxtensiongo the DPOP algorithm which offer different
tradeoffs for difficult problems. Chapter 6 introduces MB-DPOP, aorilym which provides a cus-
tomizable tradeoff between Memory/Message Size on one hand, and Nafilbessages on the other
hand. Chapter 7 discusses two algorithms (A-DPOP and LS-DPOP) tthaipéimality for reductions
in memory and communication requirements. Chapter 8 discusses an alteapgtivach to difficult
problems, which centralizes high width subproblems and solves them in alcadrway.

Part IV: Dynamics:  This part discusses distributed problem solvinglymamic environments.e.
problems can change at runtime. Chapter 9 introduces two self-stabilizimgtlaigs that can operate
in dynamic, distributed environments. Chapter 10 discussiesion stabilityin dynamic environments,
and introduces a self-stabilizing version of DPOP that maintains it.

Part V: Incentives:  In this part we turn to systems with self-interested agents. Chapter 11skscus
systems wittself-interested userand introduces the M-DPOP algorithm, which is the first distributed
algorithm that ensurelsonest behaviouin such a setting. Chapter 12 discusses the issumidfet
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balance and introduces two algorithms that extend M-DPOP in that they allovetlistributing(some
of) the VCG payments back to the agents, thus avoiding the welfare lossdchyisvasting the taxes.

Finally, Chapter 13 presents an overview of the main contributions of thisstimeSection 13.1,
and then concludes.
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Chapter 2

Distributed Constraint Optimization
Problems

“United we can't be, divided we stand.”

This chapter introduces the Distributed Constraint Optimization formalism ($€2ti), a set of
assumptions we make for the most part of this thesis (Section 2.2), and a mof@pplications of
DCOP techniques (Section 2.3).

2.1 Definitions and Notation

We start this section by introducing the centralized Constraint OptimizatioridPnalCOP)[19, 189].
Formally,

Definition 1 (COP) A discreteconstraint optimization probleg¢COP) is a tuple{X’, D, R) such that:

e X ={Xy,.., X,}Iis aset ofvariablege.g. start times of meetings);
e D ={dy,...,d,} is aset of discrete, finite variabiomaing(e.g. time slots);

e R = {r,...,mn} is a set of utility functions where eachr; is a function with the scope
(Xiy, -+, X5,), 1 @ diy x..xd;, — R. Such a function assigns wtility (reward) to each
possible combination of values of the variables in the scope of the functegatide amounts
meancosts Hard constraints (which forbid certain value combinations) are a spe@akoof
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utility functions, which assign 0 to feasible tuples, ansb to infeasible oneg

The goal is to find a complete instantiatidfi for the variablesX; thatmaximizeghe sum of utilities
of individual utility functions. Formally,

X* = argmarx Z ri(X) (2.2)
rER

where the values of; are their corresponding values for the particular instantiaiomheconstraint
graphis a graph which has a node for each variakle= X and a hyper-edge for each relatigne R.

Using Definition 1 of a COP, we define the Constraint Satisfaction Probleanspscial case of a
COP:

Definition 2 (CSP) A discreteconstraint satisfaction proble(@SP) is a CORX, D, R) such that all
relationsr; € R are hard constraints.

Remark 1 (Solving CSPs)CSPs can obviously be solved with algorithms designed for optimization:
the algorithm has to search for the solution of minimal cost (which is 0, if tbblpm is satisfiable).

Definition 3 (DCOP) A discretedistributed constraint optimization problgf@COP) is a tuple of the
following form: (A, COP, R*) such that:

o A={A,..., A} isasetof agents (e.g. people participating in meetings);

e COP = {COP,,...COP.} is a set of disjoint, centralized COPs (see Def. 1); e@tDP; is
called thelocal subproblem of agem;, and is owned and controlled by age#f;

e Ri“ = {ry,...r,} is a set ofinteragent utility functionslefined over variables from several
different local subproblem&OP;. Eachr; : scope(r;) — R expresses the rewards obtained by
the agents involved in; for some joint decision. The agents involved-jthave full knowledge
of r; and are called “responsible” for-;. As in a COP, hard constraints are simulated by utility
functions which assign 0 to feasible tuples, ansb to infeasible ones;

Informally, a DCOP is thus a multiagent instance of a COP, where each lagleistits own local
subproblem. Only the owner agent has full knowledge and control ofdés l@riables and constraints.
Local subproblems owned by different agents can be connectigddgigent utility functiongk’® that
specify the utility that the involved agents extract from some joint decisidaragent hard constraints

IMaximizing the sum of all valuations in the constraint network will chooseaaifge solution, if one exists.
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that forbid or enforce some combinations of decisions can be simulated &R dy utility functions
which assign O to feasible tuples, ardx to infeasible ones. The interagent hard constraints are
typically used to model domain-specific knowledge like “a resource calidmated just once”, or “we
need to agree on a start time for a meeting”. Itis assumed that the interéiigrfunctions are known

to all involved agents.

We call theinterface variable®of agentA; the subset of variable%’fl"t C X; of COP;, which are
connected via interagent relations to variables of other agents. Thevaitiegles of4;, X" C X;
are callednternal variables and are only visible tol;. We have thaft; = X/ L X,

As in centralized COP, we define thenstraint graphas the graph which is obtained by connecting
all thevariableswhich share a utility function. We catieighborgwo agents which share an interagent
utility function. Theinteraction graphis the graph which is obtained by connecting pairwise all the
agentswhich are neighbors. Subsequently, we will assume that only agents af@icdonnected in the
interaction graph are able to communicate directly.

As in the centralized case, the task is to find the optimal solution t6@Rproblem. In traditional
centralized COP, we try to have algorithms that minimize the running time. In DC@R|drithm
performance measure is not just the time, but also the communication load ,anosbaly the number
of messages.

As for centralized CSPs, we can use Definition 3 of a DCOP to define theldistd Constraint
Satisfaction Problem as a special case of a DCOP:

Definition 4 (DisCSP) A discretedistributedconstraint satisfaction problem (DisCSP) is a DCOP
< A,COP,R"™ > such that (a)YCOP; € COP is a CSP (all internal relations are hard constraints)
and (b) allr; € R are hard constraints as well.

Remark 2 (Solving DisCSPs)DisCSPs can obviously be solved with algorithms designed for DCOP:
the algorithm has to search for the solution of minimal cost (which is 0, if thblpm is satisfiable).

Remark 3 (DCOP is NP-hard)

2.2 Assumptions and Conventions

In the following we present a list of assumptions and conventions we wilthrseighout the rest of
this thesis.
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2.2.1 Ownership and control

Definition|3 states that each ageht owns and controls its own local subroble@) P;. To simplify

the exposition of the algorithms, we will use a common simplifying assumption inteotlig Yokoo

et al.[225]. Specifically, we represent the whal® P; (and agentA; as well) by a single tuple-
valued meta variabl&’;, which takes as values the whole set of combinations of values of the c#erfa
variables ofA;. This is appropriate since all other agents only have knowledge of thes#aoe
variables, and not of the internal variablesAf

Therefore, in the following, we denote by “agent” either the physical entitging the local sub-
problem, or the corresponding meta-variable, and we use “agent” anidtie” interchangeably.

2.2.2 ldentification and communication patterns

Theoretical results (Collin, Dechter and Katz[38]) show that in the alesehagent identification (i.e.
in a network of uniform nodes), even simple constraint satisfaction in angtgork is not possible.
Therefore, in this work, we assume that each agent has an uniquadhat it knows the IDs of its
neighbors.

We further assume that neighboring agents that share a constraintdautwother, and can ex-
change messages. However, agents that are not connected byiotsmstre not able to communicate
directly. This assumption is realistic because of e.g. limited connectivity in wirgegironments,
privacy concerns, overhead of VPN tunneling, security policies mfescompanies may simply forbid
it, etc.

2.2.3 Privacy and Self-Interest

For the most part of this thesis (Part 1 up to and including Part 4), werssthatthe agents are not
self-interested.e. each one of them seeks to maximize the overall sum of utility of the system as a
whole. Agents are expected to work cooperatively towards finding tstesbéution to the optimization
problem, by following the steps the algorithm as presscribed. Furtheriiavacy is not a concenn

i.e. all constraints and utility functions are known to the agents involved in thericé\that this does

not mean that an agent not involved in a certain constraint has to knoaw &b@ontent, or even its
existence.

In Part 5 we relax the assumption that the agents are cooperative, andsdsystems with self-
interested agents in Chapters 11 and 12.
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2.3 Example Applications

There is a large class of multiagent coordination problems that can be madeted DCOP frame-
work. Examples include distributed timetabling problems[104], satellite constaktib], multiagent
teamwork[206], decentralized job-shop scheduling[205], humantaiyganizations[30], sensor net-
works[14], operator placement problems in decentralized peer-toReee@orks[71,173], etc. In the
following, we will present in detail a multiagent meeting scheduling applicatiamgie[127,171, 239].

2.3.1 Distributed Meeting Scheduling

Consider a large organization with dozens of departments, spread domens of sites, and employing
tens of thousands of people. Employees from different sites/depart(tieegs are the agentt) have
to set up hundreds/thousands of meetings. Due to all the reasons citedindabdaction, a centralized
approach to finding the best schedule is not desirable. The organiaatiowhole desires to minimize
the cost of the whole process (alternatively, maximize the sum of the indiMidilities of each ager@)

Definition 5 (Meeting scheduling problem) A meeting scheduling probleiMSP) is a tuple of the
following form: (A, M, P,7,C,R) such that:

o A={Ay,.., A} is asetof agents;

e M ={M,..., M,} is a set of meetings

e P ={pi1,...,pr}is a set of mappings from agents to meetings: each M represents the set
of meetings thatl; attends;

e 7 ={ty,...,1,} is a set of time slots: each meeting can be held in one of the available time slots;
e R = {ry,...,mi} is a set of utility functions; a function; : p;, — R expressed by an agent;

representsi;’s utility for each possible schedule of its meetings;

In addition, we have hard constraints: two meetings that share a partitiparst not overlap, and the
agents participating in a meeting must agree on a time slot for the meeting.

The goal of the optimization is to find the schedule which (a) is feasible (i.pecesall constraints)
and (b) maximizes the sum of the agents’ utilities.

Proposition 1 MSP is NP-hard.

2A similar problem, calledCourse Schedulinig presented in Zhang and Mackworth[239].
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Example 1 (Distributed Meeting Scheduling) Consider an example where 3 agents want to find the
optimal schedule for 3 meetingd; : {M;, M3}, As : {M1, Ma, M3} and As : {Ma, M3}. There are

3 possible time slots to organize these three meeti®idd:/, 9AM, 10AM . Each agent4; has a local
scheduling problend’O P; composed of:

variablesA;_M;: one variableA;_M; for each meetind/; the agents wants to participate in;

domains: the 3 possible time slo&AM,9AM,10AM;

hard constraints which impose that no two of its meetings may overlap

utility functions: model agent’s preferences

Figure/2.1 shows how this problem is modeled as a DCOP. Each agent lmsrnitibcal subprob-
lem, and Figure 2.1(a) showsO P, the local subproblem of;. CO P, consists of 2 variabled _M;
and A, _M; for M7 and M3, the meetingsi; is interested in.A; prefers to hold meeting/; as late
as possible, and models this with by assigning high utilities to later time slots fa#;. A; cannot
participate both inM; and in M3 at the same time, and models this withby assigning—cc to the
combinations which assign the same time slattpand /3. Furthermore,A; prefers to hold meeting
M after M, and thus assigns utility 0 to combinations in the upper triangle pnd positive utilities
to combinations in the lower triangle of .

To ensure that the agents agree on the time slot allocated for each meetynguttecoordinate
the assignments of variables in their local subproblems. To this end, weung&aodter-agent equal-
ity constraints between variables which correspond to the same meetinga $ooktraint associates
utility O with combinations which assign the same value to the variables involved.-andor dif-
ferent assignments. In Figure 2.1(b) we show each agent’s locatahlbm, and interagent equality
constraints which connect corresponding variables from differemat lsubproblems. For examplg,
models the fact thatl; and A, must agree on the time slot which will be allocated\ife. This model
of a meeting scheduling problem as a DCOP corresponds to the model]in[127

This distributed model of the meeting scheduling problem allows each ageatitedon its own
meeting schedule, without having to defer to a central authority. Furthetrin@ model also preserves
theautonomyof each agent, in that an agent can choose not to set its variablediagdorthe specified
protocol. Assuming this is the case, then the other agents can decide to f@ldecision, or hold the
meeting without him.

2.3.2 Distributed Combinatorial Auctions

Auctions are a popular way to allocate resources or tasks to agents in a entligggtem. Essentially,
bidders express bids for obtaining a good (getting a task in reverse @a)ctitdsually, the highest
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/(a) Local subproblem COP, of A (b) DCOP with 3 agents and 3 meeting?

r° A]f:

0
4 h

Time

819 ]
@ Uty |2 10

ri M1

8 [-nf[ 0] 0
M3 9| 4 |-inf] 0
10065 [-nf

» Al participates in M1 and M3 (non overlap)
* One variable for each meeting = its time slot
» 3 possible values for each variable: 8,9,10

« rl: non overlap of M1 and M3 (-inf on diagonal) * Each agent has its own local subproblem
: Al prefers M3 to take place after M1 * Inter-agent equality constraints ensure
0 agents agree on the same schedule
'\r1 : Al prefers M1 to start late /

Figure 2.1: A meeting scheduling example. (a) is the local subprobleagefitA; (each meeting has
an associated variable that models its allocated time slptmodels the non-overlap df/; and M3,
and the fact thatd; prefers to havel/; after M; r{ expressesi;’s preference to havé/; as late
as possible;) (b) DCOP model where agreement among ageetsfasced with inter-agent equality
constraintscy, ¢s, c3.

bidder (lowest one in reverse auctions) gets the good (task in rewgrterss), for a price that is either
his bid (first price auctions) or the second highest bid (second priddckrey auctions).

Combinatorial auctions (CA) are much more expressive because theyladlders to express bids
on bundles of goods (tasks), thus being most useful when good®®rwgeamentary or substitutable
(valuation for the bundle does not equal the sum of valuations of indiVigioods).

CAs have received a lot of attention for a few decades now, and therdaige body of work
dealing with CAs that we are not able to cover here (a good survey epingd7]). There are many
applications of CAs in multiagent systems like resource allocation[148], teslation[217], etc.

There are also many available algorithms for solving the allocation problemGABOB[185]).
However, most of them are centralized: they assume an auctioneer teatscthe bids, and solves the
problem with a centralized optimization method.

There are few non-centralized methods for solving CAs. Fuijita et al. gsen [80] aparallel
branch and bound algorithm for CAs. The scheme does not deal withtineg at all, and works
by splitting the search space among multiple ageiotsefficiency reasonsNarumanchi and Vidal
propose in[145] several distributed algorithms, some suboptimal, andtanabne, but which is
computationally expensive (exponential in the number of agents).
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Definition 6 (Combinatorial Auction) A combinatorial auction(CA) is a tuple< A, G, B > such
that:

o A={A,.., A} is asetof bidding agents;
e G=1{g1,...,9n} is aset of (indivisible) goods

o B ={by,..., by} is asetof bids; a bid; expressed by an ageH is a tuple(4;, G%, vi), where
vt is the valuation agent!; has for the bundle of goods:, C G; when A, does not obtain the
whole setG¢, thenv! = 0;

A feasible allocationis a mappingS : B—{ true, fal se } that assigng rue or f al se
to all bidsb: (t r ue means that agem; wins its bidb) such thatvdi, b, if 3g; € G s.t. g; €
G N\gj € G (whereGi andG?" are sets of goods comprised in the two Hiflgndb!", respectively),
then at least one dfi, b is assigned al se. In words, no two bids that share a good can both
win at the same time (because goods are assumed to be indivisible). ThefaluallocationS is

UQZ(S) = Zb};EBs.t.S(bi):true lec

Proposition 2 Finding the optimal allocationS* = argmaxg(val(S)) is NP-hard[182] and inap-
proximable[183].

We detail in the following how to cast CAs to a DCOP model. Let us assume that.dghas bid
b; = (Ai, Gi, v;). For each good; € G;, A; creates a local variab_kjg'. that models the winner of good
gj. The domain of this variable is composed of the agents interested inggdtite ones whose bids
containg;).

A; connects all variableg;ﬁ from its local problem with a relation; that assigns; only to the
combination of valuegg; = A;,g;, = A;,...) (the one that assigns all googdls € b; to A;), and 0 to
all other combinations.

Example 2 (Distributed Combinatorial Auctions) See Figure 2.2 for an example CA with 3 bidders
and 3 goods. Figure 2/2(a) shows a centralized constraint optimizaticdehuf the problem. The
variables represent goods, and each one has as possible valuegehts avhich bid on that good.
Assigning a variableg, to one of its valuesl; means thatd; will get goodg;.. The relations expressed
by agents on subsets of variables model bids. For example, thte bid A;, {g1, g3}, 10) of agentA;

is modeled as the binary relation involvimg and g3 in Figure/2.2(a). This relation assigns value 10
to the tuple(g; = A1, g3 = A1), and 0 to all other tuplegg; x g3).

Moving to a decentralized, DCOP model is shown in Figure 2.2(b). Thisviegoeach agent
creating copies of the variableg from the centralized model, and expressing their bids locally, as
relations on the copy variables, just as in the centralized case. To etimifeasibility of the resulting
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(a) Centralized model | (b) Distributed model with replicated vars

* Variables = winners of goods
* Values = agents
* Bids as n-ary relations:

* Local variables model recipients of goods

- Bids are private relations in local problems (blue)
- Utility > 0 for complete bundle * Interagent equality constraints model agreement
- Utility = O for other combinations about recipient of good (green)

Figure 2.2: Combinatorial Auctions modeled as Constraint Optimization. (a) shows a CA
with 3 bidders and 3 goods modeled as a centralized COP, and (b) sheweqthivalent
decentralized DCOP model.

allocation, we also need to connect all the copies that correspond togeamhvia equality constraints;
thus, agreement about the final recipient of each good is ensuceeéxemple, both agent$; and A-
have bids ony;. Therefore, they create local copies of the variafpleand connect these copies via the
equality constraint as shown in Figure 2.2(b).

2.3.3 Overlay Network Optimization

Another setting for distributed constraint optimization is the optimal placemenataf @ggregation
and processing operators on an overlay network[71,100, 173hidrapplication, there are multiple
users and multiple servers. Each user is associated with a query analierst anachine located at
a particular node on an overlay network. A query has an associatef data producersknown to
the user and located at nodes on the network. Each query also reg@et®f data aggregation and
processing operators, which should be placed on server nodesepetineenodes with data producers
and the user’'s node. Each user assigns a utility to different assignnfeopemtors to servers to
represent her preferences for different kinds of data aggregaiaamples of in-network operators
for data aggregation include database style “join” operators, or cus@impoovided by an end user.
For instance, one may have an operator (snippet of code) that diadmsga JOINs. Then, a user may
desire “volcano data X” and “earthquake data Y” joined and sent to thenaddiress this, a specific
operator that we call “VolcanoXEarthquake)in” is created and put into the network. Naturally, each
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(a) Centralized model (b) Distribution via replicated variables (c) DFS traversal

*Variables model loads *Each variable models a server load solid = tree edge
*Agents' preferences *Equality constraints model agreement *dashed = backedge
expressed as blue *Agents have private preferences *n-ary constraints as
relations on server loads cliques

Figure 2.3: An operator assignment problenfa) The centralized COP model: each server has
an associated variable that models the feasible combinatad operators that can be executed at the
server’s node. Agent preferences on assignments of opsa®expressed as relations (blue); erd.,
states thatd; obtains utility 10 if operatord;_o; runs onSs, and only 5 if it runs orbs. (b) The DCOP
model with replicated variables, where agreement amongi@ge enforced with equality constraints
between local copiegr) A DFS arrangement of the graph in (b), used by the DPOP algorit

user has preferences on the possible placement of their operat@s/erssn the network. The task is
to allocate operators to servers such that capacity constraints argezhsard that the sum of utilities
of individual users is maximized.

A distributed algorithm, to be executed by user clients situated on networls hailedetermine
the assignment of data aggregation and processing operators to isedest The server nodes are
assumed to “opt-in” in that they will implement whatever allocation is determinedéssu Constraints
on server nodes, e.g. based on maximal load, are commonly known tcaunskettsus captured through
public constraints. There are also other side-constraints becausedhesduave prerequisites that
have to run on a server in order for the query to be executed theneerSerdes play no active role in
the algorithm.

This problem maps easily to a DCOP model. Each user has a number of opératould like to
place. Each operator could be placed on (potentially) many servejscstdthe capacity constraints
of the servers. To model this we introduce a variable for each sertchwnodels in its domain the
feasible combinations of operators that can be executed by that sEa@hr. user has preferences on
the possible placements of its operators.

Example 3 (Operator Placement)In Figure[2.3, assume that; wants to place an operatofs_o.
It has two alternatives: either 085, or on S3. This is modeled as follows4; has a variable for
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the feasible assignment of operators on sernvgrand S3. The domains of these variables contain
all feasible combinations of operators each server can execute. Atheeg combinations, there are
some that includels’s operator,A3_o;. Assumeds obtains utility 10 if its operatords_o; runs onsSs,,
and only 5 if it runs onS3. A3 models this preference with the relatiofy which assigns utility 10 to
all cases in whichSs runs its operator, 5 to all cases whef runs its operator, O to all cases where
its operator is not run anywhere, andoo for cases where botl, and.S3 run the operator.

2.3.4 Distributed Resource Allocation

Definition 7 (Distributed sensor allocation problem (SAP)) The distributed sensor network problem
formalized in[14] consists of:

e a sensor field composed of n sensdis= {sq, s2, ..., Sp }

e m targets that need to be trackefl:= {¢1,ta,...,t: }

Each sensor has a certain “range” (the maximum distance that it caeQoeand in order to success-
fully track a target, 3 sensors have to be assigned to that target (triangalatia be applied using the
data coming from those 3 sensors). The following restrictions apply:

e any one-sensor can only track one target at a time;

e the sensorsin the field can communicate among themselves, but regardgevery sensor with
every other sensor (the sensor connectivity graph is not fully connedied 3 sensors tracking
a given target must be able to communicate among themselves;

We can formalize the problem as a DisCSP assigning one agent for egeh tae variables are
the required sensors (three variables per agent), and the valuehofag@ble are the sensors that can
track that target (are within range). Assume we have one afjefior each targef; to be tracked. This
agent would then have 3 variables to contrgl: s%, s; each of them represents one sensor that has to
be assigned to track this target. The domain of the variables of each agsigts of sensors that can
actually “see” the respective target).

In this representation of the problem, we have two types of constraints:

e intra-agent constraints (the constraints within one agent): (a) no twdblesiaan be assigned
the same value (one agent must have tldiferentsensors tracking it) and (b) there must be a
communication link between every two sensors that are assigned to eath age
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Sensors

————

Figure 2.4: A sensor allocation problem example. 3 different sensors have to batabior
each target. The figure shows allocation conflicts§ass allocated to several targets at once.

e inter-agent constraints (the constraints between agents): no two varsiglaiads{ from any two
agents4; and A; can be assigned the same value (one sensor can track a single targetat a
time)

The problem is to allocate sensort to targets such that the maximal numbegeittare tracked.
Alternatively, each target can yield a “reward” for being tracked, thieth the problem is to maximize
the sum of rewards.

Proposition 3 SAP is NP-hard.

It is interesting to note that all constraints in this problem (except for thebilitg” ones) are
constraints of mutual exclusion (typical in resource allocation problems).

Example 4 Please refer to Figure 2.4 for an example SAP. The sensors are placedrid &illed
circles) and the targest are scattered randomly in the grid (filled sq)arEse ovals depicted in the
figure are each alomainof one of the targets (for exampl&om.T; contains all sensors that are
within range ofT3). An arrow connecting a sensor to a target denotes that the sensor tatdlb to
that target. In the figure there are some conflicts, as the sesisar allocated to multiple targets at the
same timeTy, T5, T3, Ty.

2.3.5 Takeoff and Landing Slot Allocation

In this example, airports allocate takeoff and landing slots to different artamel need to coordinate
these allocations so that airlines have corresponding slots for their fllgéts, the airports and airlines
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are agents; airports decide which airlines to allocate available slots to, wHitesidecide which

flights to operate. These decisions must be coordinated so that for #gétythe airline has the

required slots for its takeoff and landing. Nevertheless, airports waep control over the decision
process as to which airline is allocate which ones of their available slots.efbney a centralized
controller that would jointly optimize the whole slot allocation for all airports in tleeld/is completely

unrealistic.
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Chapter 3

Background

Centralized Constraint Satisfaction Problems[48,125,142,210] (&®&FDefinition 2) have been an
area of active research since the 70’s, when they were formalizeskferal applications including
scene labeling in image processing[142]. CSPs have been extendedsina@d Optimization Prob-

lems[76, 79] (COP, see Definition 1) for problems which have solutions \iffiéreint degrees of opti-

mality or cost.

Algorithms for centralized CSP can be classified into two main categorssaoéh(e.g., depth-first
or best-first search[24,85,112,215]) ainference(e.g., dynamic programming[15, 16, 19], variable
elimination[50], join-tree clustering[51, 55]). Search algorithms have lkedanced with various forms
of consistency techniques[21, 45, 56, 142], and with variations ofrérech and bound principle[58] for
optimization problems. Dynamic programming algorithms on the other hand haveesdaextended
to bounded-error approximations, and also hybridized with search{0@6119, 120, 180].

Search and inference algorithms can be distinguished primarily by their timspace complex-
ities. An inference algorithm such as bucket-elimination[50] is time and spgumanential only in
the graph’s treewidth. On the other hand, brute force search caatepeith only linear memory but
seems to lack structure-based time bounds, thus usually being time expoimaiigasize of the prob-
lem. Recently however, AND/OR search schemes were shown to accomngoalebased bounds
as well[133]. Specifically, AND/OR search spaces[146] for CORE@8Ps capture problem decom-
position through AND nodes and they can be traversed in linear spade &inte exponential in the
depth of a spanning pseudo-tree of the problem’s graph[54]. Whahirgpof subproblem solutions
is used[8,42,132], time and space complexity of those AND/OR searchthlgs can be reduced to
exponential in the treewidth as well.

In the early nineties, distributed constraint satisfaction was formalize2i)88224, 225], and a first
generation of distributed algorithms for DisCSP was proposed[2232285,

Naturally, emerging DCOP algorithms extend traditional centralized COP algmithnd as such

23
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fall into the two main categories of search and dynamic programming. Wenpriesthe following

a comprehensive view of distributed CSP and COP algorithms. We show widigld search and
inference algorithms, and discuss their strengths and weaknessextimS3.1.1.2 we introduce new
synchronous distributed AND/OR algorithms for COP having linear-size agesswhose number is
bounded exponentially in either the depth of the guiding DFS tree or in its trédevaddpending on

the level of caching. Focusing on distributed inference in Section 3.2,ewiew the bucket-tree-

elimination algorithm (BTE)[50, 107].

The strengths and weaknesses of distributed search and distributezhagfeare discussed and
compared empirically throughout Parts Il and 11l of this dissertation.

The focus of this thesis is on algorithms based on DFS structures, whichrnwdune and discuss
in Section 3.4. However, a large body of work in the DisCSP arena is onitalgxs that use arbitrary
orderings, not necessarily DFS ones. For constisatisfaction the most prominent algorithms are
the Asynchronous Backtracking (ABT) algorithm of Yokoo et al[226¢ Asynchronous Weak Com-
mitment search (AWC) of Yokoo[223], and the Asynchronous Seaiithh Aggregations (AAS) by
Silaghi et al.[197]. For constraimptimization there is the Asynchronous Forward Bounding algo-
rithm of Gershman et al[139]. We review all these algorithms in Selction 3.1.

Parallel Constraint Satisfaction In a different line of research, Zhang and Mackworth [239]
describe algorithms based on junction trees and tree decompositioparédiel constraint satisfac-
tion/optimization. These algorithms are developed for problems which are initiafifralized, and
they assume that nodes from the junction tree can be assigned at will ts &ge@erform the respec-
tive computationfor efficiency reasonsin contrast, we are concerned with solving problems which
aredistributed by natureand our algorithms seek to maintain the initial partition of the problem to the
owner agents for several reasons, privacy included.

3.1 Backtrack Search in DCOP Algorithms

With few exceptions, the vast majority of work in distributed optimization haslvedoaround extend-
ing various forms of backtrack search[24,85,112,215] originalligied for centralized COP, to a
distributed environment. Loosely, centralized search algorithms work tapleshing an ordering of
the variables, and then executing a form of backtrack search baghdtardering. This works by as-
signing to variables values that are compatible with the values chosen foatioeistors, then moving
forward to the next variable. When for a variable there is no value thatnigpatible with the values
chosen for its ancestors, a backtrack occurs. The culprit assigmiignancestors is calledrabogood
For satisfaction algorithms, the search continues until either (a) an empbpdag discovered (i.e.
there is no solution to the problem) or (b) a full instantiation is discovered wihdes not contain
any conflicts. For optimization algorithms, the search continues until "erfaafghe search space is
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explored to be able to infer that the optimal solution is found.

To increase efficiency, various schemes were developed which try to minthezportion of the
search space which has to be visited in order to prove that the algorithatrbady found the optimal
solution. The most well known such scheme is lb@nch-and-boundcheme from centralized opti-
mization[58]. Branch and bound works as follows: as soon as we hawenglete instantiation, we
store it as the current best solution, and the cost of this instantiationugspan boundn the cost that
the algorithm tolerates. Later on during search, whenever a new valuedddr a variable, one com-
putes the partial cost accumulated up to that variable, plus the cost iddwyrithe new instantiation.
If this cost is larger than the current upper bound, then the assignmgniried as it cannot lead to
a better solution than the current best solution, and the search baskthtienever we find a new
complete instantiation which has a lower cost than the current best solugarpaate the best current
solution to the new one, and the upper bound to the cost of this new solution.

DCOP algorithms typically seek to adapt and extend their centralized coarttetp distributed
environments, and are based on the same principles: backtrack saagcbome bounding scheme
for pruning. However, it is very important to note that the performancesores for distributed algo-
rithms are radically different from the ones that apply to centralized opecifically, if in centralized
optimization thecomputation times the main bottleneck, in distributed optimization it is rather the
communicatiorwhich is the limiting factor. Indeed, in most scenarios, message passingeis @i
magnitude slower than local computation. This important difference makégndes efficientdis-
tributed optimization algorithms a non-trivial task of simply adapting centralized algorithmgoté
distributedly.

Execution Model = DCOP algorithms are distinguished to be either synchronous or asymttson
In the following, we describe briefly these two execution models in an infowagl In asynchronous
algorithm, each agent waits for the messages it is supposed to recaivétgrpeers, and only after
having received them, it starts performing computation and sending outlitsn@ssages. In aasyn-
chronousalgorithm, all agents start performing computation and sending out messagedefore
having received any message from its peers. As incoming messages ey incorporate them into
their computation, and if needed, they send out updated messages ofwheilTbe asynchronous
execution has the potential advantage that agents don't sit idle waiting &xages, when they could
possibly perform computations. On the other hand, a synchronoustsemodel ensures that agents
perform their computation based oglevant, most up to datmformation. Therefore, the need to
perform another computation when an updated message arrives is eliminated
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3.1.1 Synchronous search algorithms

In this section we discuss the SynchBB algorithm of Hirayama and Yokabtvemsynchronous algo-
rithms that we have developed, and which work on a DFS tree.

3.1.1.1 Synchronous Branch and Bound (SynchBB)

The SynchBB algorithm is the first complete algorithm for DCOP, and wagfioposed by Hirayama
and Yokoo in[98]. This algorithm is a simple, distributed version of the claksientralized branch &
bound scheme[118]. SynchBB does not use a DFS tree, but ratheaa dirdering of the ageprts

After an ordering is established (e.g. lexicographic ordering), thetagemform a synchronous
branch and bound search. The process works like the centralizechtaad bound algorithm; however,
the agents, each associated with a single variable do not have accesglab#ieipper/lower bounds
on solution quality. This problem is addressed by simply passing these $bankl and forth, together
with the forward value assignment messages and the backward baakieaskges.

This algorithm may require that any 2 agents/variables can communicate diteatlyiolating our
assumption from Section 2.2.2 which allows only for direct neighbors to conuaign Furthermore, it
has been shown by Modi et al[141] to be quite inefficient, and is easifyesiormed by more elaborate
schemes.

Next, we will introduce a synchronous algorithm that performs an AND/€drch in a distributed
fashion (Section 3.1.1.2), its branch and bound variant (Section 3.1ah@)ye will also present the
NCBB algorithm of Chechetka and Sycara (Section 3.1.2.3).

3.1.1.2 dAO-Opt: Simple AND/OR Search For DCOP

The AND/OR search spaces are a powerful concept for searcthalsabeen introduced by Nilsson
in[146], and subsequently further developed in many other contex®}3931, 135]. Recently, Dechter
and Mateescu[54] showed how AND/OR graphs can capture seacbsfor general graphical models
that include constraint networks and belief networks. These AND/Ophgrare defined relative to the
pseudo-tree of the graphical model.

AND/OR search spaces are a formalization of the idea that search ondop®e structure is po-
tentially exponentially better than traditional search on linear variable ogiegspecially if caching
is not allowed The reason is that when performed on a DFS structure (or more gjgnensa pseu-
dotree), search can be done in parallel on distinct branches of th& hiseyields search processes that
in the worst case are time exponential in the depth of the tree. In contraipinal search algorithms

'One can think of this algorithm as working on a pseudochain, rather tharpsaudotree
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that operate on linear variable orderings are time exponential in the nurhbariables. Therefore,
it is always beneficial to perform search on DFS trees with low depth pesagal to linear variable
orderings.

To see an example of this idea, consider the tree in Figure 3.3. It is easg thateonceX| is
instantiated to a value from its domain, what remains is actually a set of two distibproblems,
independent from each other. Therefore, they can be exploredafiggaThe process can be applied
recursively (instantiating(; as well leaves us with 2 independent subprobleri&’s, X, Xg} and
{X4, X9, X10}, which depend only ok, and X, but not on each other). On this particular exam-
ple, the worst case complexity is reduced thus frofezp(14)) (the depth of a linear ordering) to
O(exp(4)) (the depth of the DFS tree).

Freuder[78], Bayardo and Miranker[13] and recently Dechter Mateescu[54] describe search
algorithms that apply this principle in a centralized setting. In[39] a distribuggatighm for constraint
satisfactionis described. This algorithm also traverses an AND/OR search spadsdimg a single
solution. In the following, we introduc@AO-Opt asimple synchronize@xtension of AND/OR search
for distributed optimization problems. As with[32JAO-Optalso performs distributed search on a DFS
tree in a depth-first manner, with the difference that it works for optimizatimlems as well. The
formal description olAO-Optis presented in Algorithm 1.

Again, we start with a pre-established DFS tree. The poostarts the search process by assigning
itself a valuev? from its domain, and informing its children about this choice with an EVAL( = v?))
message. Each one of the children then picks a value for its variablesgadewn to its children, and
so on. EaclEVAL message sent to a chiki; of an agentX; contains an assignme(ifep;) for each
variable inSep;, in order to allowX; to evaluate the constraints it has with all its ancestors (not just
with its parent).

When an agenk; receives anE’V AL({Sep;)) message from its parent, the message includes a
full assignment of all variables ifep;. Given this assignmentX; can evaluate those utility func-
tions it has with its ancestors which are fully instantiated, for each one oflmesm{ € dom(X;).

In the case of non-binary functiong;; limits this evaluation to only the functioria the bucket of
X;[50], i.e. those relations whose scope does not include any;sfdescendants; these functions
are already fully instantiated, and can be evaluated(d% The corresponding costs are denoted by
local,cost(vf, <Sepz->),va € dom(X;):

Definition 8 (Local Cost) F For each agenfX;, we denote by)cal,cost(vf, (Sepi)) = > _,.cx, (n(vg, <Sep,~>)) ,
such that-; is fully instantiated. This is the cost of its utility functions and constraints with its émises
when these ancestors are assigned the values &Sdp;), and X; = v/. If the assignmenk; = v/

violates any such constraint, then the cost is infiniteal_cost (v}, (Sep;)) = oco.

2The functions which include in their scopg and descendants &f; will be evaluated byX;’s descendant that is lowest
in the DFS tree.
3The local cost as defined here is also calledahel of the node in[54]
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Algorithm 1 dAO-opt - distributed AO search for cost minimization.
dAO-opt(X, D, R): each agenk; does:

Construct DFS tree execute Alg 3; after completioX’; knowsP;, PP;, C;, PC;

procedure EVAL: X; waits for EVAL({Sep;)) messages fron®; (unless root)
when EVAL((Sep;)) message received: léfep;) be the assignment dfep;
forall v; € dom(X;) do

N

cost(v;) « local_cost(v;, (Sep;))
forall X; € C; do

send EVAL(Sepx;)) message td; containing the currentSepx )
wait for the COST message reply
cost(v;) = cost(v;) + costx; (v;)

[ee]

pick v} s.t.vf = argming,cdom(x;)(cost(v;))
if X; is rootthen v} is the root’s value in the optimal solution, anekt(v;) is the optimal cost
10 elsesendCOST (cost(v})) to P;

©

WhenEVAL messages have reached the leaves, or in case of a deadend (i.e nvelgemtacannot
find a value in its domain which is consistent with the assignments of its ancestwd)acktrack
process begins. The leaves will cycle through their values, determinestiieobes for the current
instantiation of their ancestors, and reply with the best cost. A dead-ewgged replies with an infinite
cost. Subsequently, whenever an ag&nthas received cost messages from all of its children for its
current value, it tries the next: it informs the children about its new valsigasient, and awaits the cost
replies. When all its values are tried, the agent chooses the best one (htiagthar maximal utility,
depending on whether we do minimization or maximization). The agent thertsepercorresponding
cost to its parent via @OSTmessa&;e and the parent starts cycling through its values, and so on.

When the rootX, has cycled through all its values, and has rece@&-5T messages for each
one, it can pick the best one. The cost (utility) associated with the roattsvbtue is the optimal cost
(utility) for the whole problem.

Re-deriving solutions for subtrees — extra work in the absence of ¢ aching:  So far, this
process allows only for determining the cost (utility) of the best solutiombtmecessarily the solution
itself. The reason is that this simple scheme does not do any caching farkermhen the root finds
out what is its optimal value, and announces it, its children do not know wéia their corresponding
optimal values, and they will have to re-derive them. Therefore, therethar top-down search phase
initiated by the root, where each agent announces its optimal value, anddi®itsolve again their
subtrees in the context of the values taken by their ancestors. Thus,rsamallemaller subtrees are
solved again, for the purpose of re-deriving the optimal values of tbts raf these subtrees, in the

“This cost is called thealueof a node in[54]; we use the ter@OSThere to maintain consistency with the most part of
the DCOP literature, and to avoid confusion with WL UE messages.
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context of the ancestors being already assigned their optimal valuestugihg, the process reaches
the leaves, and at this point, all agents are assigned their values froptitmalcsolution.

Remark 4 The problem of rediscovering the solution is a problem that apparentlyredo all dis-
tributedsearch algorithms that do not do full caching. However, this does noirda a centralized
algorithm, as in that case "the best solution so far* can be stored, andeetd at the end of the
process. This is another complication that has to be solved in order toVeyeefficiendistributed
search algorithms.

Proposition 4 (dAO-opt complexity) dAO-opt (Algorithm 1) requires a number of messages which is
exponential in the depth of the DFS tree used. Message size and m@&qgoigments are linear for
each agent.

ProoOF Straightforward from the centralized case, as dAO-opt simulates dsymized AND/OR
search in a distributed fashion[54].

It becomes apparent that it is desirable to find DFS arrangements with lotl, des the worst
case complexity of dAO-opt depends on this parameter. We review in S&c#idh1 some existing
heuristics for generating shallow pseudotrees.

3.1.1.3 dAOBB: AND/OR Branch and Bound for DCOP

The simpledAO-optdoes not take advantage of any pruning techniques, and therefap@ates the
full search space. This is not a problem for enumeration tasks suduasrgy solutions or computing
the probability of evidence[135]. However, for simpler tasks like findirgydaptimal solution, travers-
ing the whole search space is not always required, and implies spemtdirgassary effort. Marinescu
and Dechter introduced in[131] an adaptation of the classical brartbh@md algorithm on a pseu-
dotree, thus yielding an algorithm called AOBB (AND/OR Branch and Bou{)BB was shown
in[131] to be quite efficient in a centralized setting, especially when using odkéi heuristics for
generating tighter upper bounds.

We present herdAOBB an adaptation of the AOBB algorithm for the distributed case. The algo-
rithm is described in Algorithm 2. As idAO-opt the search starts top-down, with agents assigning
themselves values, and sendiBYAL messages to their children. However, in order to be able to
prune parts of the search space according to the branch and bdwerdeseach aget¥; needs some
information about the current cost structure:

1. the costpa(X;, (Sep;)) already accumulated by the current partial assignment from the root, to
the current agent.
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2. the costocal_cost(v], (Sep;)) of each one of the values 6f;, given the current values of;’s
ancestors

3. the cost of the best currently known solution of the subtree rootéd,ate. the current upper
bound

Definition 9 (Cost of current Partial Assignment - CPA) We define the cost of the current partial
assignmentpa((Sep;)) as the cost accumulated from all the cost functions along the current branc
which are fully instantiated:

cpa({Sep;)) = Z local_cost(vj, (Sep;)) (3.1)

Xjancestorof X;

The CPA represents the sum of the cost functions encountered froragh® the parent o,
which are fully instantiated. Normally (e.g. #AO-opt or ADOPT), agents do not have access to these
costs incurred above themselves. Therefore, we introduce a modifitatioeEVAL messages: now,
they also include the cost of the partial assignment so far. These pastalaccumulate and propagate
down together with th&VAL messages sent from agents to their children.

The CPA received from the parent in tB¥ALmessage, plus the evaluatieal_cost(v] ), give the

cost of the current partial assignment, extended’by- vf: cost((Sep;, X; = vf> = cpa(X;, (Sepi))+

local,cost(v{, (Sepi, Xi = vﬁ)). Clearly, this cost is a lower bound on the cost of any complete as-
signment, for any instantiation of the variables in the subtre¥,of

The propagation of thEVALmessages proceeds down the DFS tree, towards the leaved/s3-in
opt Initially, all agents start with lower bounds equal to the cost of the cupartial assignment (see
Algorithm|[2, line 7), and infinite upper bounds (line 4).

When a leaf receives aBVAL message, it computes the cost of each one of its values with the
constraints it has with ancestors, just like a normal agent. As the leaf halsildoen, it can simply
select the best value from its domain (lowest cost with ancestors), plydb&ck to the parent with a
COSTmessage that reports this lowest cost.

When an agenk; receives COST messages from its children, it does the following:
1. sum up all COST messages from children - lines 9-12. The result igptivaal cost for all the
subtree rooted aX;;, for the current instantiation ofep;.

2. If this optimal cost improves the current upper bound, then updatepier bbound as a better
solution has been found - line 13.

3. Consider nextuntried valué € dom(X;). Compute its lower bound: B(v!) = epa(X;, (Sep;))+
local cost(v!). If LB(v)) > UB (i.e. the minimal cost incurred by choosidg = v is larger
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than the best solution found so far), then it is useless to try assigfiing vzj as this could not
lead to a better solution. Therefore, prukie= fuﬁ and try another value.

4. Otherwise, tryX; = v/. SendEV AL(X; = v/, LB(v])) to all children ¢.B(v/), computed
asLB(v!) = cost + cost(v]) represents the cost of the current partial assignment extended by
X; = ug’). Wait for COSTreplies, and repeat previous step until no more values to try.

5. when all values are tried, pick optimal valyjethat minimizegotal_cost(v}) = cost+cost(v} )+
>.c, COSTe,(vf). Send to paren; a cost messag€XOSTx, (total cost(v}))

6. when parent sends anotlevAL message, reset bounds, and repeat the process (cycle through
all the values in own domain).

When the root has receiv&ZfOSTmessages for all its values (or pruned them), the optimal cost for
all the problem has been found.

Remark 5 As with dAO-Opt (Section 3.1.1.2), when caching is not allowed, one teeslssit parts
of the search space to rediscover the optimal solutions for certain sghtidewever, in the case of
dAOBB the problem may not be as severe as for dAO-Opt, as the prunoiganiem may limit the
amount of extra effort required.

Proposition 5 (AAOBB complexity) dAOBB (Algorithm 2) requires a number of messages which is
exponential in the depth of the DFS tree used. Message size and memuoirgments are linear for
each agent.

ProoOF. Follows from Proposition|4, and from the fact that the branch anddeaheme has the same
worst case complexity as the AND/OR search.

dAOBB with heuristics: It is well known that good initial bounds are essential to the efficiency

of a branch and bound scheme. For this purpose, the centralized AlgBitlam has been enhanced
in[131] with both static and dynamic heuristics based on mini-buckets. The btatitds based on
minibuckets are computed by running a bounded inference phase inragesging step, and saving
the bounds obtained as lower bounds, which are then used in the maimh lrzshtound phase. The
dynamic bounds are computed by interleaving the bounded inference witaghe branch and bound
process, and continuously updating the lower bounds. Petcu and FalS8gmtroduce A-DPOP, an
adaptation of the minibucket scheme to a distributed setting; A-DPOP canilyeusasl in conjunction
with dAOBB to produce better bounds, either static or dynamic.

dAOBB(i): Distributed AND/OR Branch and Bound with caching Similarly to AOBB with
caching[132], one can extend dAOBB to equip it with a customizable angtaole caching scheme.
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Algorithm 2 dAOBB - distributed AO B&B search for cost minimization.
dAOBB(X, D, R): each agenk; does:
Construct DFS tree after completion,X; knowsP;, PP;, C;, PC;

1 if X; is rootthen do EVAL

2 elsewait for EVAL messages from parent

procedure EVAL: X, received an EVAL(Sep;), cost) message fron#;
3 let (Sep;) be the received assignment of variableS'ap;
4 UB «—
5 forall v; € dom(X;) do

cost(v;) < cost betweerX; and its ancestors, wheXj; < v; andSep; < (Sep;)
LB(v;) = cost + cost(v;)
if LB(v;) < UB then

9 forall X; € C; do

10 send EVAL(Sepy;,), LB(v;)) message td; containing the currenfSepy )
11 wait for theCOSTx; (v;) replies from children

12 cost(v;)+ = COSTx, (v;)

13 if cost(v;) < UBthenUB = cost(v;)

14 pick v} S.t. v = argming,cdom(x;)(cost(vi))
15 if X; is rootthen v is the root’s value in the optimal solution
16 elsesendCOST (cost(v})) to P;

The user can specify the parameterhich represents the maximal size of any cache table; subse-
guently, each agent; caches in its table results of searches for a subset of variablesSiepitsvhich

is bounded by. Previous search results can be retrieved from the cache; howdwemever one of

the agents iSep; not included in the cache changes its value, the cache table has to bd paye
recomputed. Depending on the structure of the prob®@BB(i)can provide exponential speedups
over simpledAOBB

Concretely, the caching mechanism can be added to dAOBB by making theifglahanges to
Algorithm|2:

e initialize cache of size’ after line 2;

e in EVAL (after line 3) purge cache if any agent$&p; which is not in the cache changed its
value in(Sep;);

e in EVAL (after line 3) check if the received assignment {8ep;) is found in the cache; if so,

return it with its corresponding cost. Otherwise, after line 14 cdcBep;, v}), cost(v;))

Proposition 6 (AAOBB(i) complexity) dAOBB(i) requires at mosP(exp(i)) memory at each agent.
Messages are of linear size. The number of messages required wette the level of caching:
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O(exp(w)) when using full caching (i.ei > w) and O(exp(depth)) when using bounded caching
(i.e.i < w).

ProoFr Follows straightforwardly from the centralized case[132].

Similar to dAO-opt,dAOBB(i) can also benefit from DFS arrangements with low depth (see
Section 3.4.2.1 for some heuristics). However, considering that the nwhherssages depends also
on the induced width (when full caching is used) it becomes apparenit featesirable to minimize
not only the DFS depth, but also the induced width.

3.1.2 Asynchronous search algorithms

The vast majority of algorithms developed so far for DisCSP/DCOP arechsymous algorithms.
Asynchrony is appealing for distributed algorithms for a number of readeinst, asynchrony can offer
in principle a better distribution of the computation between the agents involledjémts can execute
in parallel, and do not necessarily have to wait for messages from theg)p&econd, asynchronous
algorithms are in principle less sensitive to message delays and message lagents execute even
without necessarily having received the most up to date messages frioipeiies.

We start this section with a short review of asynchronous algorithms fanildited constraint
satisfaction Next, we move to algorithms for distributed constraiptimizationand describe ADOPT,
NCBB and AFB.

3.1.2.1 Asynchronous search for DisCSP

This section describes existing asynchronous approaches for DisttiGonstrainSatisfactionProb-
lems. This is by far the area which has received the most attention sincedgimmibgs of the dis-
tributed constrain reasoning field, in the early nineties. Undoubtedly, thé infagential piece of
work is Yokoo’s Asynchronous Backtracking (ABT) algorithm, whiclpmesented the basis for many
subsequent developments. We describe this algorithm in the following.

Asynchronous Backtracking (ABT) Asynchronous Backtracking (ABT[224]) is the first asyn-
chronous algorithm that has been proposed for DisCSP. ABT laid tmel&tions of DisCSP, being the
first algorithm to allow agents to execute concurrently and asynchrnous

In ABT, agents are ordered linearly. They assign values to their vasi@olecurrently and asyn-
chronously, and announce the assignments to their lower-priority nefgkiamnk? messages. When
an agent receives ark? message, it updates igent view? and tries to find a compatible value for

°A data structure holding the agent’s view of the current assignmentesitagf higher priority
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its variable. If it can, it announces this to lower priority agents witho#i? message, otherwise, it
backtracks with aogood message. When receivingn@good message, an agent tries to find an-
other value for its value, compatible with its own agent view. If it cannot, ikbvacks with anogood,
and so on. The algorithm terminates if an empty nogood is discovered (thieprdvas no solution),
or if quiescence is reached, in case a solution is found. Note that detduaing solution was found
requires an additional termination detection algorithm, which may introduce seenesad.

ABT is sound and complete, and its complexity is polynomial amount of memoryggmhential
number of messages in the worst case. ABT has been extensively stirdiedts original publication
by Yokoo in '92[224], and much of the later work in DisCSP is based on it.

Asynchronous Weak Commitment (AWC): Asynchronous Weak Commitment (AWC[223]) is
an alternative to ABT which was proposed in order to simulate the dynamidl@oedering heuristics
from the centralized case, which have been shown to offer importafdrpemce improvements in
some cases. Specifically, whenever an agent initiates a backtrack, gtttakdirst position in the
ordering. This step is designed to refocus the algorithm on the newly dissdwifficult part of the
search space. AWC is shown to be more efficient than ABT on difficultlpros[86, 223]. However,
in this case, AWC must store all nogoods discovered during search targaa completeness, which
makes it space-exponential in the size of the problem in the worst case. sidle note, Yokoo and
Hirayama[227] introduce a modification of AWC which deals with complex locabfems, i.e. an
agent owns several variables as opposed to a single one.

Dynamic Variable Reordering: In order to allow distributed search to benefit from dynamic vari-
able ordering heuristics like AWC, but without AWC's exponential spaoblems, variable reordering
techniques have been developed for the ABT algorithm in[193, 199, 204a then also in[242]. These
techniques work by allowing only for a limited type of reordering, namely esgdnt can impose
new orderings for agents below itself in the ordering, and inform theserlgwority agents of the
new ordering. Upon being announced of a change in the ordering,e lmiority agent updates its
agent _vi ew, and discards obsolete nogoods. A more advanced reordering @rstagtroduced by
Silaghi et al.[201]. This protocol allows for general reorderingsstbeing able to simulate AWC with
polynomial space requirements.

Asynchronous Aggregations in Search (AAS): AAS (asynchronous aggregations in search)
[197] is an algorithm that operates on the dual model of the CSP, i.e. \agergs own and control the
constraints, not the variables, which are public. The domains are novg tfldssignments of variables
from the original CSP formulation, and can be large. AAS exploits the fatittcases where variables
have large domains, it could happen that several values in the domawel®halarly with respect to
constraints. Thus, it can be beneficial to group several values inadeni sets, and perform ABT on
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such a modified problem, and managing the grouping into sets dynamically dednch.

Asynchronous Consistency Techniques: Consistency techniques have been shown to be very
effective in centralized CSP, and have been also implemented in distribttiadg€6, 95, 138, 139, 195, 200].
Asynchronous Forward-Checking introduced by Meisels and Zh&8][works by having agents per-

form backtracking sequentially, and announcing their assignments ihgbéoaall other agents lower

in the ordering, which perform forward checking in parallel. Hamadppses a distributed arc consis-
tency algorithm in[95]. Silaghi introduces MHDC[195], an algorithm whichintains arc consistency
during search in AAS, which is shown to improve AAS'’s performance sicgitfily.

Concurrent Search:  Multiple search processes operating concurrently and exchanginmgniafo
tion have also been investigated. The idea is to launch parallel seara@spesdhat explore different
parts of the search space, and let them communicate relevant nogdwdsméhemselves, such that
they avoid exploring the same dead ends. [176, 241] report promisaise

The vast majority of algorithms that do not operate on a DFS require comntionidzetween
non-neighbors. This is also the case of ABT (requestedddhlink messages) and derivatives, AWC,
DisFC, ConcBT, etc. All these algorithms violate our assumption from SectRinAh extension to
ABT proposed by Besére and colleagues[22] eliminates the need to add links, but incurs a-perfo
mance hit for doing so.

Distributed Local Search: A local search method called the Distributed Breakout Algorithm[226]
has also been developed. DBA is not complete, and works only for sdisfaroblems, but in some
cases it can find solutions very fast, and it also exhibits anytime behavioavéoconstrained prob-
lems. In DBA, agents execute a hillclimbing algorithm in parallel, and try to esitapequasi-local
minimaE using the breakout method[143]. In DBA, agents initially choose arbitvalyes for their
variables, and announce their choices to their neighborsatith messages. Subsequently, when re-
ceivingok? messages, each agent evaluates the number of conflicts its currentassigproduces
with the assignments of its neighbors. The agent (internally) evaluatesechattion in the number of
conflicts it could make by changing its value, and advertises this possibleverpent to its neighbors
with ani nmpr ove message. Neighboring agents thus exchamg® ove messages, and the one with
the highest improvement wins and actually changes its value (ties are taokerding to agent ID).
The cycle then repeats, wittkk? andi npr ove messages. In case a solution is found, the algorithm
reaches quiescence (a termination detection is provided). If a solutiotfeumal, or none exists, DBA
cycles forever.

As with ABT, DBA has been the object of many subsequent improvement$b2157, 236, 238].

6In[143], the breakout method is used to escape fgtwhal local minima, but in a distributed setting it is difficult for the
agents as a group to realize they are stuck in a global minima; thus quakiotdma is used as a loose, cheaper alternative.
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An improvement to DBA appears in[155] which useterchangeabilitie]§¥ 7] to try to contain conflicts,
and keep them localized. This works by using neighborhood interchaiiigg and neighborhood
partial interchangeability to select new values for the variables that gli@®&dn conflict with other
variables, such that we do not risk creating new conflicts by switching toewwevalues. Experimental
results show that the new algorithms are able to solve more problems, and wigfftet especially for
difficult problems, close to the phase transition. Another improvement of B@#sisting in a value-
ordering heuristic appears in[157]. This heuristic is developed in theexbof resource allocation
problems (e.g. sensor networks), and it works by trying to allocate thedeatended resources first.
This tends to produce good allocations from the beginning of the executidBA, and thus requires
less subsequent effort. Another extension to DBA that identifies hdoprsblems and solves them
with a complete search algorithtiius guaranteeing completendsss been proposed in[62].

Alternatively, distributed stochastic search algorithms have been praijog8, 235].

In the next sections we focus on algorithms that were specifically desfgn&COP.

3.1.2.2 ADOPT

ADOPT by Modi et al. (141]) is a backtracking based bound propaganechanism. ADOPT was
the first decentralized algorithm to guarantee optimality, while at the same time ajltivéragents to
operate asynchronously.

The algorithm works as follows: first, the DFS structure is created. Thacktrack search is
performed top-down, using the following value ordering heuristic: ahgrnt in time, each agent
chooses the value with the smallest lower bound. It announces its dastgndits choice vi¥ ALUE
messages, and waits f@OSTmessages to come back from the children (please refer to Figure 3.1
for a diagram that shows the message flow in ADOPT). Each agent aeld®sks received from its
children to the lower bound of the current value taken by the agent. [é tiseanother value in the
domain that has a smaller lower bound, the agent switches its value, anshtiesprepeats, refining
the lower bounds iteratively.

One of the innovative ideas behind ADOPT is that it achieves asynchnpajlowing the agents
to change their variable values whenever they detecptissibilitythat some other values are better
than the current ones (i.e. they have smadtierer bound¥ Notice that this does not mean that the new
values are guaranteed to be better. This strategy allows for asyncisroperation since the agents
do not have to wait for achieving global information abopper bound®n cost to take their local
decisions, as would normally happen in classical branch and bound.

However, abandoning partial solutions before proving their suboptimalikemia sometimes nec-
essary to revisit several times some of the previously explored partidig@u One solution to this
problem would be to store all these partial results, and retrieve them lgtesitbout any more search
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-<— Value msg
PP Cost msg
- Threshold msg

(a) DFS structure (b) Communication

Figure 3.1: ADOPT: (a) a simple problem graph, arranged as a DFS tree; (b) diagr
showing the flow of messages: VALUE assignments are sent by agelhthéir descendants
in the tree; children respond to their parents with COST messages; paemtstheir children
THRESHOLD messages.

effort. The drawback of this approach is that the amount of memory esjtordo so is exponential
in the width of the DFS ordering chosen. ADOPT tries to mitigate this problem img @sbacktrack
thresholdwhich is an allowance on solution cost intended to reduce the need fotrdekikg, while
maintaining a low memory profile (polynomial).

3.1.2.3 Non-Commitment Branch and Bound

Chechetka and Sycara propose in[33] another DCOP algorithm thettep®n a DFS: NCBB (Non-
Commitment Branch and Bound). This algorithm is a variant of AOBB, with the mapo difference
that NCBB includes a parallelization technique where an agent adveriit=emnt values of itself to
different children at the same time. This parallelization technique ensureslittize subtrees of any

agent are working in non-intersecting parts of the search space add aa need to worry about the
solution costs between them.

Similar to dAOBB with i-bounded caching (Section 3.1/1.3), NCBB was also drtmwith a
caching mechanism in[32].

3.1.2.4 Asynchronous Forward Bounding (AFB)

AFB[81] is also based on branch and bound, and works on a linearingdof the variables. AFB
is similar to SynchBB: agents assign their variables and generate a paltigssequentially and
synchronously. As in classic B&B, agents extend a partial solution as letigedower bound on its
cost does not exceed the global bound, which is the cost of the hegbedound so far. The current
partial assignment is propagated together with the cost of the best solotiod §o far. Each agent
which receives the CPA, extends it with its local assignment, if an assignwignt lower bound
smaller than the current global upper bound can be found. Otherwlimektracks by sending the CPA
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to a former agent to revise its assignment. An agent that succeeds to thaéerssignment on the CPA
sends forward copies of the updated CPA, requesting all unassigeatsao compute lower bound
estimations on the cost of the partial assignment. The assigning agent willedhese estimations
asynchronously over time and use them to update the lower bound of the3aR#ering updated lower
bounds from future assigning agents, may enable an agent to discavtrahower bound of the CPA
it sent forward is higher than the current upper bound (i.e. incongjst&his discovery triggers the
creation of a new CPA which is a copy of the CP A it sent forward. Thevagesumes the search by
trying to replace its inconsistent assignment. The authors provide anrexpéal evaluation of AFB
against SynchBB, and show that it performs better.

3.1.3 Summary of distributed search methods

The advantage of the search algorithms we have presented is that thé r@gjynomial memory.
Their downside is that they may produce a very large number of small messsagulting in large
communication overheads. As far as ADOPT is concerned, severaisexte have been proposed
(e.g.[127,194]) to deal with this problem. In some cases they show impqmedormance over the
basic ADOPT, but in the worst case, they all produce an exponentid@euof small messages.

If more memory is available, search can be executed more efficiently by caglgng schemes
like dAOBB(i) or NCBB(i); however, in the worst case search algorithmy stél require exp(w)
messages.

3.2 Dynamic Programming (inference) in COP

Dynamic programming[15, 16] (inference) has been long recognizadawerful paradigm for solv-
ing combinatorial optimization problems[19]. Loosely, dynamic programmingdsvby eliminating
variables one by one while computing the effect of each eliminated variatifeearst of the problem.

Bucket elimination (BE) is a unifying algorithmic framework for dynamic prognaing algo-
rithms, introduced by Dechter in[50, 51]. It is applicable to any graphieadel such as probabilistic
and deterministic networks. The input to a BE algorithm consists of a collectifunofions or re-
lations of a reasoning problem. Given a variable ordering, the algorithtitigas the functions into
buckets, each associated with a single variable. A function is placed in ¢ketnf its latest argument
in the ordering.

The algorithm processes each bucket, top-down from the last variaible fiost by a variable elim-
ination procedure. This procedure computes a new function using cotiliii@in) and marginaliza-
tion (project, or eliminate) operators in each bucket. The new function igglacthe closest lower
bucket whose variable appear in the function’s scope. When the sohitithre problem requires a
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complete assignment (e.g., finding the most probable explanation in beliefrkejwsecond, bottom-
up phase, assigns a value to each variable along the ordering, congudtignctions created during
the top-down phase.

3.21 BTE

BTE (bucket tree elimination) is a centralized algorithm introduced by Kask ¢f.07]) and Shenoy
(190]). This algorithm leverages the basic bucket elimination mechan®rmjboperating on ducket
tree, and performing bucket elimination on this tree in both top-down and bottonfhaggs.

This requires twice the amount of effort as the normal bucket eliminaticgnsehbut the advantage
is that it enables complex tasks like belief updating in a Bayesian networlgropwting optimal
utilities for each value of each variable in the problem. In these cases, thwhloucket elimination
scheme would have to be applied once for each variable in the problem, tihegsimg the complexity
of the process linearly with the number of variables.

3.3 Partial Centralization: Optimal Asynchronous Partial Overlay
(OptAPO)

Optimal Asynchronous Partial Overlay (OptAPO[129]) is a sound artiingp algorithm for solving
DCOPs that uses dynamic, partial centralization (DPC). Conceptually,i®®@&chnique that discov-
ers difficult portions of a shared problem through trial and error @mtkalizes these sub-problems into
a mediating agent in order to take advantage of a fast, centralized solxaalOthe protocol exhibits
an early, very parallel hill climbing behavior which progressively transginto a more deliberate,
controlled search for an optimal solution. In the limit, depending on the diffiaflthe problem and
the tightness of the interdependence between the variables, one or rente gy end up centralizing
the entire problem in order to guarantee that an optimal solution has be®th fou

The authors report that OptAPO’s message complexity is significantly smalle ADOPT’s[129].
However, it is possible that several mediators solve overlapping propteosneedlessly duplicating
effort. This has been shown in[169] to cause scalability problems for PPtAespecially on dense
problems. Furthermore, the asynchronous and dynamic nature of thetimediessions make it im-
possible to predict what will be centralized where, how much of the prokldhibe eventually cen-
tralized, or how big a computational burden the mediators have to cargs lbéen reported by Davin
and Modi in[44] that often a handful of nodes centralize most of thélpro, and therefore carry out
most of the computation.



40 Background

(a) Original (b) PT from X (c) DFS from X

Figure 3.2: A simple problem (a), a possible pseudotree(b), and a rooted DFS}réddtice
that (c)is a pseudotree, while (b3 nota DFS tree.

3.4 Pseudotrees / Depth-First Search Trees

Definition 10 (Pseudo-tree)A pseudo-tree arrangement of a graph G is a rooted tree with the same
nodes as G and the property that adjacent nodes from the original dedhin the same branch of the
tree (e.g.Xo and X1 in Figure/3.3).

Notice that Definition 10 allows for the pseudotree to be a rooted treemdtte edges than the
original graph G For example, consider a problem that is a chain with 7 nodgs.. . X; (see Fig-
ure 3.2(a)). A pseudotree for this problem can be as in Figure 3.2(s).0Xotice that the pseudotree
in Figure 3.2(b) requires the addition of the two dotted ed§ges- X, and X, — Xg, while the one in
Figure 3.2(c) contains only edges from the original graph.

The use of pseudotrees in constraint satisfaction was first introdycedebder in[78], and sub-
sequently exploited in (13,38, 39,54, 141]). The idea is that nodeg Iyirifferent branches of the
DFS tree become conditionally independent when all their ancestorsraceed. It is thus possi-
ble to perform search in parallel on these independent branchesifi&ly, one starts instantiating
nodes top-down (starting from the root); then for each node, once #tisritiated, its subtrees become
completely independent, and can be explored in parallel.

3.4.1 DFS trees

A special case of a pseudotree is when all arcs of the pseudotreg beline original graph. It is easy
to see that this special class can be generated by a depth-first seasrkdr of the graph. Therefore,
these are called DFS trees. Formally,

Definition 11 (DFS tree) A DFS arrangement of a graph G is a rooted tree with the same nalés
edgesas G and the property that adjacent nodes from the original graph fall irsémee branch of the
tree (e.g.Xo and X1, in Figure[3.3).

It is well known that a depth-first traversal of a graph produceseagstree arrangement; DFS
trees are thus a subclass of pseudotrees. However, there aretpsew@drangements that are not DFS
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(a) a simple graph (b) a depth-first traversal from X0

Figure 3.3: A problem graph and a rooted DFS tree. Non-binary constraints (ikeare
treated as cliques of the variables involved. Tree edges are solid linds, lvétk-edges are
dashed lines.

trees, for example the one from Figure 3.2(b). For the purposes abdistl optimization algorithms,
we will focus on DFS structures, because we assume that only neigblagrénts can communicate
directl (see Section 2.2.2). In addition, it is well understood how to generate arb&8istributedly,
while it is far less clear for pseudotrees that are not DFS trees. Neles# all the algorithms we will
present can, in principle, work on general pseudotree structuiess wa relax this communication
assumption.

Figure 3.3(b) shows an example of a DFS tree for the graph in Figure) 3:@¢ave shall refer to
in the rest of this section (ignore for now the shaded areas). We distingefa/eertree edgesshown
as solid lines (e.gXs — X3), andback edgesshown as dashed lines (e Fs — X1, X12 — X3). We
call a path in the graph that is entirely made of tree edgeegapath A tree-path that connects a node
with one of its descendants is callethanch A tree-path associated with a back-edgéehe tree-path
connecting the two nodes connected by the back-edge.

Definition 12 (DFS concepts)Given a rooted DFS tre@ of a graphG, for each nodeX; in the tree,
we define:

e Thechildren C; / parent P; of nodeX;: these are the descendants / ancestoXgfvhich are
connected toX; through a tree edge (e.g = X1, C1 = { X3, X4}).

e Thepseudo-parentsP P; of nodeX; are X;’s ancestors that are connected Xq through back-
edges PPy = {X1}). Notice thatP; ¢ PP;.

e Thepseudo-children PC; of nodeX; are X;'s descendants directly connectedXg through
back-edges (e.g?Cy = { X4, X5, X11}).

7 In the example problem from Figure 3.2, if one uses the pseudot@egament from Figure 3.2(b), the 2 pairs of agents
X4 — X5 and X4 — X6 would be required to communicate even though they are not neighbores iiménaction graph.



42 Background

e Sep; is the separator of nodeX;: all ancestors ofX; which are connected witlX; or with
descendants ak; (e.g. Seps = {X1}, Seps = {Xo, X2} and Sepg = { X1, X3}); otherwise
stated, given a DFS treéep; is the minimal set of ancestors &f; whose removal completely
disconnects the subtree rooted’4t from the rest of the problem. For treeSep; = {P;},VX; €
X.

Each nodeX; can easily determine its separafyp; as the union of: (a) separators received from
its children, and (b) its parent and pseudoparents, minus itself (sedtidafit?). Formally,

Sep; = UXjeCisepj UP,UPP\ X;. (3.2)

Given a DFS arrangement of a constraint graph, we defindghthof the DFS tree as the number
of nodes on the longest branch. Additionally, thduced widtij51,110,111] of a graplé- given an
orderingo = X1, ..., X, is defined as follows:

Definition 13 (Induced Width) Given a graph and an orderingp = X1,..., X, on its nodes, the
induced widthof the graph according to this ordering is defined as follows: we procéswdes in
the reverse order af. When processing a node, we connect all its neighbors which precedthe
orderingo. The width of the current node is given by the number of its induced raigjtathich precede
it in the orderingo. Theinduced width of the orderingis the largest width of any node in orderiing

When considering as an orderinghe depth-first traversal of the nodesGhalong a given DFS
arrangement of7, we have:

Proposition 7 The induced width of a grapfy along a given DFS arrangement is equal to the size of
the largest separator of any node in the DFS arrangement.

PrRoOOF Consider Definition 13 of the width of each node in the DFS arrangemenpri¢ess the
nodes inG in the reverse DFS order. When processing a node as in Definition 18nvect all its
neighbors inG which are its ancestors in the DFS, i.e. we connect its parent with all its pgarehts.
We do this recursively in reverse DFS order, from the leaves until aghréhe root. At the end of the
process, for each nodg in the DFS, we will have an (induced) neighboring relation betw&eand
all its ancestors which are connectedirwith either X or any of its children. This means that using
Definition[13 for the width of a node, we fall exactly on the Definition 12 of tepasator of the node.
Therefore, the induced width of the DFS ordering equals the size of thestaseparator of any node
in the DFS, as in Definition 122
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3.4.1.1 Distributed DFS generation: a simple algorithm

Generating DFS trees in a distributed manner is a task that has receiveaf attention, and there are
many algorithms available: for example Collin and Dolev[40], Barbosafliglpn[36], Cheung[35] to
name just a few. For completeness, we specify a possible distributed Dét8haty which is similar
to Cheung[35]. We present this simple algorithm in Algorithm 3, and we willmssit is executed
in a preprocessing phase by all the algorithms that we will present for sgatiiwization. When we
move to dynamic problems in Chapter 9, we will assume the self-stabilizing algooiti@ollin and
Dolev[40]. In Section 3.4/2, we will extend Algorithm 3 with different hetigs that produce better
quality DFS trees.

Algorithm|3 starts with each agea; identifying its set of neighborsy gh(X;), as all other agents
X; with whom X; shares a relation or a constraint (see Chapter 2). Each agent thinitaemally
its neighbors agot-visited One of the agents in the graph is designated asoibteusing for example
a leader election algorithm like[2], or simply picking the agent with the lowestésgiD.

The root then initiates the propagation ab&en which is a uniqgue message that will be circulated
to all the agents in the graph, thus "visiting“ them. Initially, the token containgljgstD of the root.
The root sends it to one of its neighbors, and waits for its return betadisg it to each one of its
(still) unvisited neighbors. When an ageXi first receives the token, it marks the sender apdtent
All neighbors ofX; contained in the token are marked8ss pseudoparentd{F;).

After this, X; adds its own ID to the token, and sends the toketurn to each one of itsot-
visited neighborsX;, which become itghildren Every time an agent receives the token from one of
its neighbors, it marks the sendenasited The token can return either froii; (the child to whom
X; has sent it in the first place), or from another neighBgy, In the latter case, it means that there is
a cycle in the subtree, anxi, is marked as @seudochild

When all its neighbors are markeiited X; has finished exploring all its subtre&, then removes
its own ID from the token, and sends the token back to its parent; the griscisished forX;. When
the root has marked all its neighbafisited the entire DFS construction process is over.

Proposition 8 Algorithm 3 produces a correct DFS arrangement which is maintaineddis@ibuted
fashion.

ProOF Algorithm|3 is correct because it simulates exactly a centralized depthsdiasch process.
Furthermore, due to the fact that each node adds its ID to the token wh@ingdt to its children, and
then removes it when sending it back to its parent, the structure of the wiatlkeem remains hidden
from individual agents. Each agent only knows its position in the tree,imikigiven by its knowledge
of its parent, children, pseudoparents, and pseudochildren.

Proposition 9 Algorithm 3 produceg x | E| messages of linear size, whefd is the number of edges
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in the graph.

PROOF It is easy to see that there is exactlpES message going in each direction through each
edge: once when the parent node sends the token to the child the firstnidnene more time when
the child has finished exploring its subtree and returns the token. Thugdahaumber of messages is
2 x |E|. The size of these messages is linear, the largest one having a numbsiiotte context that
equals the height of the DFS tree.

Remark 6 (Non-binary constraints) Non-binary constraints are automatically handled correctly by
Algorithm 3 as a result of the fact that all agents involved in a constrainetation (be it binary or non-
binary) label each other as neighbors (Chapter 2). Then, in Algoriththef or loop in line 6 ensures
that the first agent involved in a non-binary constraint, when receiviadgdken, will subsequently pass

it to all other agents involved in that constraint, thus making them its deso¢éhd@his ensures that
there are no cross-edges between different subtrees and the DR&eistlyoconstructed. For example,

in Figure[3.3 (left), there is a 4-ary constraifl, involving { Xy, X2, X5, X11}. By Definition 3, this
implies that{ Xy, X2, X5, X11} are neighbors, and in the DFS construction process and they will
appear along the same branch in the tree. This produces the result ineF3g8i (right).

For the rest of this chapter, we will assume that all the algorithms preseiitecsevAlgorithm| 3
in a preprocessing phase, to establish the required DFS structure.

Example 5 (Execution of DFS construction Algorithm 3) Please refer to Figure 3.3 for an example.
Without loss of generality, let us assume that agénhas been chosen as the root of the DFS tEg.
sends a token with just its ID, DFS[0], to one of its neighbors (e.gXih Xy marksX; as its child,
and X; marksXj as its parent P(X;) = Xy). X; adds its own id to the context of the received DFS
message, and then sends it to an unvisited neighbor (eXj4)to

X, receives DFS[0,1] frond; and marks it as its parent. Now, singg is X,'s neighbor, andX
is also present in the context of the message Mateceived fromX, X, marksXj as its pseudopar-
ent, and sends the message DFSJ[0,1,4Xto Thus,X, can also markX, as its pseudochild.

X4 continues by sending DFSJ[0,1,4] £y, receiving it back, and t&;o and receiving it back. At
this point, X4 has finished exploring its subtree (all neighbors are visited), so it sbadk toX; a
DFSJ[0,1] message, which infornd§; that the discovery of the subtree hanging framis finished. X
can then continue with the exploration of its other subtree, and sends it 8fiessage t3. X3
sends DFS[0,1,3] tds, which marksX; as its pseudoparent and sends it DFS[0,1,3,8], which means
that X; can also markXg as its pseudochild, and so on.
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Algorithm 3 A DFS construction algorithm for DCOP.

Inputs: each agenk; knows all its neighbors(; € Ngh(X;)
Outputs: eachX; labels all its neighbors as eithéx, PP;, C;, PC;.

Procedure Initialization
1 The agentst’ choose one of thenX, as the root (e.g. via leader election).
2 All agents execute procedufeken_Passing

Procedure Token Passindperformed by each "virtual agen’;)

if X is rootthen P; = null; create empty tokeWF'S = ()
elseD F'S=Handle_incoming_tokens()
[Optional: sort Ngh(X;) according to heuristic (see Section 3.4.2)]
forall X; € Ngh(X;) do
if X; not visited yethen

add X; to C;
sendDF'S; to X;
wait for DF'S; to return fromx;

o U1 b~ W

© o

10 X;’s subtree completely explored; remaXe from DFE'S; and send it back t@;
Procedure Handleincoming_tokens()

11 wait for any incomingD F'S; message; leX; be the sender; mark; visited
if this is the firstD F'S message (i.eX; is my parentthen

12 | P=Xp; PP ={Xy # Fi|X) € Ngh(Xi) N DF5}
else

13 [Optional: sort unvisited neighbors according to heuristic (see Sectior2§.4
if X; € C; (i.e. this is a DFS message returning from a chitogn

14 ‘ continue with other neighbors
15 else(i.e. this is a DFS message coming from a pseudoclald) X; to PC;

3.4.2 Heuristics for finding good DFS trees

The complexity of all the algorithms we will present in the following sections ddp@n the particular
DFS tree we choose. In the case of linear-size search-based algof8ent®n 3.1), the complexity
is time exponential in the depth of the DFS tree. Dynamic programming method&($82) on the
other hand are time and space exponential in the width of the DFS tree.fdrieemepending on the
algorithm to be used, one would like to have either the minimal depth DFS trees orittimal width
tree. However, it has been shown that finding either of these is an MRptablem. Typically, one must
settle for an approximation of the best DFS tree, that can be obtained asimgleuristic generation
process. The DFS construction Algorithm 3 can be parametrized with theéges: the start agent (the
root), and a heuristic function that each agent uses to decide at epc¢h stkich unvisited neighbor it
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will send the token next.

There exist already a number of heuristics to generate good DFS trees gerniralized case.
However, implementing these techniques in a distributed fashion may notyp@eagen feasible. We
will discuss some possibilities for distributed adaptations, for search algwrithquiring shallow trees
in Section 3.4.2.1 and for inference algorithms requiring trees with low widthatic®e3.4.2.2.

3.4.2.1 Heuristics for generating low-depth DFS trees for search algo rithms

While many algorithms exist for generating shallow DFS trees in the centrabzede.q.[127,132, 135]),
it is unclear how to implement them in a distributed way, and little work has beea idothis area.
Chechetka and Sycara introduced in[31] the first distributed algorithtwtimstructs a pseudotree[78]
using a heuristic designed to minimize the depth of the pseudotree. The algomtk® well, but in
general it does not produce DFS trees, rather pseudotrees, thasngmur requirement from Sec-
tion(2.2.2.

Actually, the fact that we require DFS trees as opposed to just any giseadneans that search
algorithms can be arbitrarily bad compared to dynamic programming ones. eTihise consider a
simple example of a ring constraint network withagents. Any DFS arrangement of such a network
will have depthn, thus making search algorithms run in time exponential {nuntime isO(d™)). In
contrast, a dynamic programming algorithm like DPOP would only be exponémtiaé¢ width of the
DFS, which is 2 for a ring, thus offering an exponential speedup (rurisréd?)).

3.4.2.2 Heuristics for generating low-width DFS trees for dynamic progr amming

The objective of these methods is to produce the DFS arrangement with tbst ioduced width. In
a centralized setting, the most common heuristics for this problem are the fajlowyie maximum
cardinality sef207], themaximum degrg207], and themin-fill heuristic[110]. The min-fill heuristic
does not produce in general pseudotree orderings (much less @B and is difficult to implement in
a distributed setting because it would require coordination at each stepdyeall the remaining agents
in order to decide which one should be considered next in the eliminationirgdén the following
we describe distributed adaptations of the maximum cardinality set and mesedegpuristics.

MCN: maximum connected node A heuristic calledthe most connected node (MCRIso
known asmax-degreghas been proved quite effective. MCN was introduced by[207], arxbe-
guently re-explored in[25,84,111, 127]. This heuristic works as\alahe agent with the maximum
number of neighbors is selected as the root (ties are broken by pickiragém with the lowest ID).
Afterwards, the process proceeds by visiting at each step neightagergs with the highest number
of neighbors (ties are again broken by picking the neighbor with the lo\Dést
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Concretely, the process is implemented by changing the DFS algorithm 3 in te@splBirst, in
step 1 each agent broadcasts the number of its neighbors; the adet highest is chosen as the root.
Second, step 5 is implemented by having each agent sort the list of its nedghii®most connected
ones first. The rest proceeds as normal.

MCS: maximum cardinality set adapted to DFS trees Themaximum cardinality sdteuristic
was introduced by[207], and was subsequently used in many othextofike[25,84,111]. This
heuristic is designed to find low-width elimination orders for variable eliminatioeguiures. It works

by selecting some agent as the first one to be eliminated, and adding it to thie@fkeisited agents.
Then, each agent not $iis considered in turn. The one that has the most number of neighbordyalrea
in S is selected to be eliminated next, and is placed in thé s&tes are broken randomly (or by agent
ID). The process is repeated until all agents ar&.in

MCS as was originally described in[207] does not produce a DFS ioglef the agents in the
graph. Therefore, we propose in the following a simple adaptation of ti8deReration Algorithm|3
that takes advantage of the MCS heuristic. We replace the DFS messatii@dande from Algo-
rithm[3 (lines 11-15) with the following process, which is intended to simulate tkxSMeuristic:
Whenever an agent; receives a DFS message from one of its neighbéfsdoes the following:

e select its neighbors that are not either already visited, nor in the corftthe ® F'S message :
these are agents not yet visited, future children/pseudochildren;

e ask each one of them how many of their neighbors are already in the tohtbe DF'S mes-
sage;

e send theD F'S token next to the neighbor which replies with the highest number;
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Chapter 4

DPOP: A Dynamic Programming
Optimization Protocol for DCOP

“Good things come in large packages.”

In this chapter we introduce the DPOP algorithm for DCOP. D@ an algorithm based on
dynamic programming[19] which performs bucket eliminaf4f] on a DFS tree in a distributed
fashion. DPOP’s main advantage is that it requires only @#innumber of messages, thus intro-
ducing exponentially less network overhead than searcbréilgns when applied in a distributed
setting. Its complexity lies in the size of the UTIL messaghich is bounded exponentially by
theinduced widthof the DFS ordering chosen. DPOP is therefore an excelleoitcehfor solving
DCORP in case the problems have low induced width.

In case the problems have high induced width and DPOP is siiflea other techniques must be
explored. The whole part |1l of this thesis (Chapters |6, 7/@hdiscusses techniques that deal with
the exponential space problem in different ways, offeriffgr@nt tradeoffs.

For the centralized case, we have reviewed in Section|3.2.1 the BTE algamitfeaiuced by Kask
et al. (107]) and Shenoy (190]). BTE is a general algorithm whiphrates on any variable ordering
(which is assumed to be given as input). BTE then creates a pseudotiee aohresponds to this
ordering, and operates on this pseudotree. The issue in a multiagent isgttetgpperating on arbitrary
pseudotrees (i.e. non DFS) breaks the assumption that only neighnaceroanunicate directly (see
Section 2.2).

Therefore, this chapter introduces DPOP, a special case of BTEgbi&ites on a variable ordering
which is given by a DFS arrangement of the problem graph. This gtesithat the restrictions from
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Section 2.2 hold.

4.1 DPOP: A Dynamic Programming Optimization Protocol for
DCOP

DPOPis a complete algorithm, and has the important advantage that it generatedioabraumber
of messages. This is important in distributed settings because sendingruariger of small messages
(like search algorithms do) typically entails large communication overheads.

In the following sections we will present in more detail DPOP'’s three phdsesa formal descrip-
tion, see Algorithm 4.

Algorithm 4 DPOP: Dynamic Programming Optimization Protocol
DPOP(X, D, R): each agenk; does:
DPOP phase 1: DFS arrangement run token passing mechanism as in Algorithm 3
1 At completion,X; knowsP;, PP;, C;, PC;, Sep;
DPOP phase 2: UTIL propagation(bottom-up UTIL message propagation)
2 JOIN]" = null
3 forall X; € C; /*for all children of X;; if X; is a leaf, skip this */do

4 waitforUTI L} message to arrive fron¥
5 JOINipi = JOINfi <) UTIL§ /lwe add to the join UTIL messages from children as they
arrive
6 JOIN! = JOIN" & R @ (@Xjeppi R{) /lalso join all relations with parent/pseudoparents
7 UTILfi = JOINZ.Pi 1 x, /luse projection to eliminate self out of message to parent
s SendUTIL!" message t&,
DPOP phase 3: VALUE propagation(top-down VALUE message propagation)
9 wait for VALUE,, ((Sep;)*) msg fromP; /I (Sep;)* is the optimal assignment for all vars {Sep;)
10 X} — argmazy,ecq, (JOINT [(Sep;)*]) Il slice JOIN!* corresponding tdSep;)*; find besty;
11 forall X; € C; /*for all children of X;; if X is a leaf, skip this */do

12 sendVALUE((Sep;)* N (Sep;) U X¥) message t;

4.1.1 DPOP phase 1: DFS construction to generate a DFS tree

In phase 1, DFS traversal of the graph is done using Algorithm 3.  The DFS tree thus obtained
serves as a communication structure for the other 2 phases of the algorifimptdpagation (UTIL
messages travel bottom-up on the tree), and VALUE propagation (VALU&Sages travel top-down
on the tree).
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(a) a simple graph (b) a depth-first traversal from X0

Figure 4.1: A problem graph and a rooted DFS tree. Non-binary constraints (ikeare
treated as cliques of the variables involved. Tree edges are solid linds, lvétk-edges are
dashed lines.

4.1.2 DPOP phase 2: UTIL propagation

Phase 2 UTIL propagation : this is a bottom-up process, which starts from the leaves and propagates
upwards only through tree edges. In this process, the agentdddhdnessages (see Definition|/14)

to their parents. These messages summarize the influence of the sendingrabiés whole subtree

on the rest of the problem. They are equivalent to the induced constcaimiguted in the variable
elimination steps in the bucket elimination scheme ([49, 51]).

Definition 14 (UTIL message) UTIL{, the UTIL message sent by agent to agentX; is a multi-
dimensional matrix, with one dimension for each variable presefkijn. dz’m(UTIL{) is the set of
individual variables in the message. Note that alwayse dim(UTIL)).

The semantics of such a message is similar to an n-ary relation having astlseo@eiables in the
context of this message (itsmensions The size of such a message is the product of the domain sizes
of the variables from the context.

Definition 15 (Slice) Given a relation (UTIL messages are relations) defined over a set of variables
dims(U), and an instantiated subsé? of its dimensions) C dims(U)), a slice throughU along

D, U[D] is a lower-dimensionality relatio®' that has as dimensior{gl|d € {dims(U) \ D}} and as
values the values froii that correspond to the tuplggiims(U) \ D}. If D = dims(U), U[D] is a
relation of arity O, i.e. the corresponding value frdin

Definition 16 (JOIN operator) The @ operator (join, or combine):U = UTIL! ® UTIL), is the
join of two UTIL matrices (relations)J is also a matrix (relation) withlims(U) = dz’ms(UTIL{) U
dz‘ms(UTILi) as dimensions. For each possible instantiatioof the variables indims(U), the
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corresponding value df/[s] is the sum of the corresponding cells in the two source matrigesc
U,U[s| = UTIL![s] + UTIL)]s].

Example 6 Given 2 matrice&/ T1 L] andUT1 L}, withdim(UTIL]) = {X1, X;} anddim(UTIL),) =
{X2, X;}, then the value corresponding {&; = o7, Xo = v3, X; = v]) is UTIL (X, =, X; =

vh) + UTILL(Xy = v§, X; = v5). Also,dim(UTIL! & UTIL]) = {X1, X2, X; }.

Definition 17 (PROJECTION operator) The_L operator (also known in the literature @&imination
or marginalizatiol: if X € dz’m(UTIL{), UTIL{ 1 x, is the projection through optimization of
the UTIL? matrix along theX), axis. Formally,Vs € {dim(UTIL})\ X,},UTIL! 1x, [s] =
mazx, UTIL][s] (i.e. for each possible instantiationof the variables other thaX}, the optimal
instantiation for X, is chosen and the corresponding utility recordedUﬂ“IL{ 1x,). The result
UTIL] Lx, is also a UTIL matrix, with one less dimensiakiy).

The subtree of an ageati; can influence the rest of the problem only throug}s separatorSep;.
Therefore, a message contains the optimal utility obtained in the subtreefoinstantiation ofSep;.
Thus, messages are exponential in the separator size (bounded byubednvidth).

To compute this message, an ag&npthas to join all the messages it received from its children, and
the relations it has with its parent and pseudoparents, as in Equation 4.1:

JOIN/ = |  UTIL. | & b =r (4.1)
Xc€C; XPE{PiUPPi}

To obtain its UTIL messageY; projects itself out of the resulting hypercube as in Equation 4.2:

UTILP = JOIN}" 1y, (4.2)

Example 7 In figure/ 4.1,X, computes ité/T'I L} message foX; as in equation 4.3:

dim={X4,X0,X1}

dim={X4}
JOIN; = (UTILg ® UTIL{,®R}®R}); UTILy = JOIN; 1y, (4.3)
N——
dim={X4,Xo0} dim={Xo,X1}

The leaf agents initiate the UTIL propagation. Subsequently, each ageetays the UTIL mes-
sages as follows:

e Wait for UTIL messages from all children. Since all the respective subtrees are gigimimg
messages from all children givé§ exact information about how much utility each of its values
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yields for the whole subtree rooted at itself. To assemble the message farats §;, X; has
to also joinR{ and any back-edge relation it may have with agents aBoves in Equation 4.1.
Then it projects itself out of the result, as in Equation 4.2 (see lines 5-7 inritign4). The
result is theUTIL{ message (see equation 4.3 8611 L)).

e If X isthe rootagent, itreceives all t5TIL messages as vectors with a single dimension (itself).
It can then compute the optimal overall utility corresponding to each one dlites (by joining
all the incomingUTIL messages) and pick the optimal value for itself (project itself out).

Remark 7 (Non-binary relations and constraints) A k-ary relation/constraint is considered in the
UTIL propagation only once, by being introduced in its UTIL message éYothiest agent in the DFS
arrangement that is part of the scope of the relation. For example, inr€ig.1(b), the constraint’,

is introduced by agenky; in its UTIL message to its parent, and subsequently propagated in the UTIL
messages of ageni§; and X». However, agentX’s and X, do not explicitely take€”, into account.

4.1.3 DPOP phase 3: VALUE propagation

Phase 3 VALUE propagation top-down, initiated by the root, when phase 2 has finished. Each agent
determines its optimal value based on the computation from phase 2 aNélthéE message it has
received from its parent. Then, it sends this value to its children throdglJE messages.

Clearly DPOP produces a linear number of messages. Its complexity lies in the size OfTilhe
messages, which is time and space exponential in the width of the DFS ordseidg

Example 8 (A numerical example) Figure/4.2 shows a simple example of a problem, to facilitate the
understanding of the computation being performed by each agent. dhéepr has a tree structure
(Figure[4.2(a)), with 3 relations3 (X2, X1), r3(X3, X1), andr?(X1, Xo) detailed in Figure 4.2(b)
and (c)-low.

UTIL phase X and X3 project themselves out e andri, respectively. The results are the green
cells inr} andr! in Figure/4.2(b). The projections are the messagés/ L} and UTIL} that they
send toX;.

X, receives the messages frdfp and X3, and computes the joilOINY = UTILioUTILi®r!
- Figure[4.2(c). It then projects itself out/TILY = JOINY | X;; each value in the message
represents the total utility of the entire problem, whEp takes that value. The result is depicted in
Figure4.2(d). X, receives this utility message froi;, and can then simply choose its value that
produces the larges utility for the whole problenYy = a (X¢ = a and Xy = ¢ produce the same
result in this example, so either one can be chosen).

VALUE phaseThe VALUE phase then startX,, informs its child, X of its choice via a message
VALUE( X, = a). X; then restores its value that was found optimal 65 = «: the blue cells in
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/ Message Flow \

(a) Simple DCOP with (b) Relations of X, (c) Messages to X, and (d) final result
4 agents, 3 relations and X, with X, join with relation with X_

Figure 4.2: A simple problem (a). Relations are detailed in (b) and (c)-low. Computation
consists of (b)- projections 0f; and X3 out of their relations withX;. Then, in (c)X; joins

the messages froti; and X3 with its relation with X. Finally, X; projects itself out, and
sends the result t& in (d).

Figure 4.2(c) point to this computation, ad,’s optimal value isX; = ¢. The process continues with
X1 sending a message VALUE; = ¢) to X, and X3. Just likeX; did, Xo and X3 restore their
optimal values forX; = ¢, i.e. Xo = b, and X3 = a. The algorithm thus terminates with the optimal
solution(Xy = a, X7 = ¢, X2 = b, X3 = a) that gives the maximal utility 15.

4.1.4 DPOP: Algorithm Complexity

Theorem 1 DPOP (algorithm 4) requires a number of messages which is linear in timebeu of
variables. The DFS construction and the VALUE propagation requiresages of size linear in the
number of variables. DPOP’s complexity lies in the size of the UTIL messawghich are space-
exponential in the induced width of the DFS tree used.

PrRoOF Follows easily from the complexity proof of BTE[107]. Specifically,

Number of messagesThe DFS construction (algorithm 3) requirgs m messages, where is
the number of edges in the interaction grapm i$ the number of agents in the problem, then the UTIL
phase requiresa — 1 bottom-up messages, and the VALUE phase requiresl top-down messages
(one through each tree-edge).
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Size of messagesBy construction, both the DFS and the VALUE messages are of size linear in
the number of agents in the problem. The BTE algorithm is time and space et@bnethe size of
the largest bucket encountered in the elimination process. In the cas®d®,Dhe size of each agent’s
bucket is given by the size of the agent’s separator, and Propadsitioowisghat the size of the largest
separator equals the induced width.

4.1.5 Experimental evaluation

We performed experiments on meeting scheduling problems(MS)[127] xpdranents are run on a
P4 machine with 1GB RAM, using the FRODO[154] simulation platform.

We generated a set of relatively large problems. The model is as infd@Ilescribed in detail in
Section 2.3.11. Briefly, an optimal schedule has to be found for a set of geéttween a set of agents.
The test instances contained from 10 to 100 agents, and 5 to 60 meetitdjagyi@ge problems with
16 to 196 variables. The larger problems were also denser, thergrenmre difficult (induced width
from 2 to 5).

The experimental results are presented in Figure 4.3. Figure 4.3(a¥ shewumber of messages
exchanged, and Figure 4.3(b) shows the sum of all message sizese@n Bygure 4.3(¢) shows the
runtime in miIIisecondsm. Please notice the logarithmic scale! ADOPT did not scale on these prob-
lems, and we had to cut its execution after a threshold of 2 hours or 5 millioragesswhichever
occured first. The largest problems that ADOPT could solve had 2Gsf&variables).

As predicted by the theory, DPOP only requires a linear number of mességet is interesting
to note is that even though DPOP sends larger messages than ADORill, dvexchanges much less
information (Fig 4.3(b)). We believe there are 2 reasons for this: ADGfiis many more messages,
and because of its asynchrony, it has to attach the full context to all of fiwbich produces extreme
overheads).

4.1.6 A Bidirectional Propagation Extension of DPOP

In DPOP, any UTIL message from an agent to its parent summarizes the ufbitgneion from all the
subtree rooted at the respective agent. Therefore, the bottom-updudplgation gives the root global
utility information, but all other agents have accurdfelL information only about their subtrees.

Similar to BTE[107], we extend thdTIL propagation by making bbidirectional, in the sense that
it traverses the DFS tree in both directions: not only bottom to top, as in DROB|so top to bottom,
from each agent to its children. A message from a parent to its child summtrizatility information
from all the problem except the subtree of that child. This new messageegained together with all

'Each data point is an average over 10 instances
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the messages received by an agent from its children. The result is a syoitize utility information
from the whole problem, which gives each agent a global view of the reydtgically making each
agent in the system equivalent to the root.

Notice that a similar effect can be obtained by running DROfimes, once with each variable
as the root. However, this approach clearly would require spending efforgé than the bidirectional
utility propagation we propose here: roughly speakintimes the effort spent by DPOP, vs. twice this
effort.

The process is initiated by the root when it has receivedUfilk messages from its children. Each
agentX; (including the root) computes for each of its chiIderaUTIL{ message. To do s&; first
builds the join of the messages received from its other neighborsXhaplus therelation it shares
with X2 JOIN] = R} @ (@,eqpucx;; UTILL).

The set of dimensions of the joined message is always a superset of thesiinsethat have to be
passed down to the children. Subsequently, aggrapplies a projection step to the outgoing message
for X}, such that only theelevantdimensions are kept. This is done by projecting out in principle all
dimensions not present $ep;, with two exceptions:

1. the dimension o¥; itself

2. the dimension of the sending ageqy, if X; has a pseudochild in the subtree rooteXat this
information is a byproduct of the DFS algorithm.

OnceX; has determined the relevant dimensions, it projects out everything else:

UTIL] = JOIN] J-Xke{dim(JOINg)\dim(UTIL{)}

Example 9 (Bidirectional UTIL propagation) Let us consider the problem from Figure 4.4 (same
DFS asinFiguré 4.1). As aresult of the normal bottom-up UTIL progiagaX, receives thé/ 71 L9
message from its chil&s and can now compute its UTIL messagefor JOIN} = UTILY & R}.

X has a pseudochildX,) in the subtree rooted aX1, therefore it cannot project itself out of the UTIL
message it sends 1%,. Therefore X, sends taX; UTIL} = JOIN,.

SubsequentlyX; builds JOIN; = R3 @ UTIL} @ UTIL,. AsUTIL! previously received by
X, from X3 does not containX as a dimensionX; will project X, out of the UTIL message it will
send toX3. Similarly to X, X; also identifies a backedge to itself originating from the subtree rooted
at X5. Therefore, it cannot project itself out of the messageXor UTIL3 = JOIN} Lx,.

X, then prepares its message for its other chil,: JOIN{ = Rt ® UTIL} ® UTILS. As
UTIL} previously received by; from X, does containX, as a dimensionX; will not project X,
out of the UTIL message it will send ;. Furthermore,X; does not have any backedge with any agent
in the subtree rooted aX, so it can project itself out. Thus(; sendsX, UTIL{ = JOIN{ 1x,.
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Figure 4.4: An example of a problem where bidirectional propagation is performegthE
arrow represents an UTIL message, and the numbers in bracket®abpresent the dimen-
sions of the UTIL message. For examglg, I L} has two dimensionsX; and X, (because

of the backedgé}, X, cannot project itself out from the message goingQ.



Chapter 5

H-DPOP: compacting UTIL messages
with consistency technigues

DPOP groups many valuations together in fewer (and alsodgrghnessages, thus producing small
communication overheads. However, the maximum messages sikvays exponential in the in-
duced width of the constraint graph, leading to excessivaong and communication requirements
for problems with large width.

Many real problems contain hard constraints that signifitareduce the space of feasible assign-
ments. However, dynamic programming does not take adveaiofae pruning power of these hard
constraints; thus, DPOP sends messages that explicithesemt all value combinations, including
many infeasible ones. Search algorithms mitigate this lprabby various methods for pruning
(partial assignments that have lead to an inconsistencynatdurther explored). Further pruning
is achieved through consistency techniques, as well asrttreb-and-bound principle.

This chapter brings two contributions: the first is H-DPOPhgbrid algorithm that is based
on DPOP. H-DPOP uses Constraint Decision Diagrams (CDDg,[34]) to rule out infeasible
combinations, and thus compactly represent UTIL messages highly constrained problems,
CDDs prove to be extremely space-efficient when compardtetextensional representation used
by DPOP: experimental results show space reductions of itiame 99% for some instances. H-
DPOP is an orthogonal technique, which can nicely compldrogrer improvements to DPOP like
MB-DPOP, LS-DPOP, A-DPOP, etc.

The second contribution of this chapter is a detailed corngmarbetween search with caching[32,42,132]
and dynamic programming with CDDs. H-DPOP outperforms trearsh algorithm by a large mar-

gin on the number of messages exchanged while exploringlasgearch space and thus is better
suited for distributed environments.

In this chapter, we consider how to apply known hard constraints oibfeaglue combinations
to prune such combinations, so that only information that actually corrdsporfeasible solutions is
transmitted. We do this by encoding value combinations usargtrained decision diagrarifGDDs)
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([34]). CDDs eliminate all inconsistent values and only include costs or utifitiegalue combinations
that reach a consistent leaf node. In experiments on several praotitddéms, we show that this cuts
message size by up to 99%, putting problems of practical size within reactbéi®P.

A technique that explores hard constraints in a similar way is to cache pasialts during the
search[42], as implemented in the NCBB algorithm (33]). Similar to dynamigraraming with
CDDs, the caches contain only utility values for value combinations that &ralloconsistent. How-
ever, the pruning carried out by CDDs is very different from thaietd by backtrack search: while
backtrack search prunes all value combinations that are inconsistenvaniables that arkigherin the
ordering, CDDs do the pruning from the bottom up and prune value cotitrisahat are inconsistent
with variabledower in the ordering.

To compare the pruning achieved by the two methods, we have modified th® N€&ch al-
gorithm (33]) to obtain another version that (a) maintains a complete caxhéb does not use the
branch-and-bound heuristic which we cannot reproduce in CDDscAiVgare the space explored in
dynamic programming with CDDs to that explored in backtrack search by aimgpthe size of the
cache that has been used. We evaluate our CDD-based algorithmt aiféénsnt versions of NCBB,
and show on several example domains that CDDs achieve essentially th@rsarimg achievable by
search with the added advantage that only a linear number of messagequired. Thus, dynamic
programming with CDDs achieves similar benefits but is more suitable for distilseténgs.

The rest of this chapter is structured as follows: Section 5.1 presentsaarpke problem which
contains hard constraints, and introduces constraint decision diagatsof 5.1.11). Section 5.2 in-
troduces the H-DPOP algorithm. Section 5.3 discusses search in gendrabrapares H-DPOP with
the NCBB algorithm with caching from a theoretical point of view. Section brta@ins a comprehen-
sive experimental evaluation of H-DPOP against DPOP and NCBB. Séctgriaces H-DPOP in the
context of existing work, and Section 5.6 concludes.

5.1 Preliminaries

Without loss of generality, hard constraints can be simulated using scftraonts by assigning utility
—oo to disallowed tuples, and utility O to allowed tuples. Then, simply using any utility maxtioiza
algorithm such as DPOP avoids infeasible assignments and finds the optiotedrsoHowever, by
doing so one does not take advantage of the pruning power of hasttaioins. This drawback becomes
severe for difficult problems (high induced width).

We introduce below one such real world problem and show the spaceti@d ability of hard
constraints.
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Optimal query placement: Recall from Section 2.3.3 the problem of optimally placing a set of
guery operators in an overlay network. Each user wants a set aéeete be performed by servers in
the network. Servers are able to perform services with distinct netwatlcamputational character-
istics. Each server receives hosting requests from its users (togéthéhe associated utilities). We
model the resulting DCOP with servers as variables (agents) and thelpassiice combinations as
the domains.

To avoid accounting the utility from the same service being placed simultanemus$iyo servers
we introduce hard constraints between server pairs. These constligaltsw the same service to be
executed by two servers at a time. Although this constraint is simple, it makgsdahem highly
constrained and computationally difficult.

Note that the above model may not be an exactly equivalent model for ogfirag} placement but
it helps to make the problem tractable. The optimal solution may include runniagriges on more
than one server but the problem would become much more complex in its originality

Figure 5.1(a) shows a DFS tree arrangement for servers in an ovexrtaprk. The services each
server can execute are listed adjacent to nodes. During the utility ptogpaghase of DPOP nod¥,
will send a hypercube wittX;, X> and X5 as context variables to its parei (see figure 5.1(b)).
However such a message scheme will send combinations which will nevearaippa valid solution.
For example combinations likeX; = a, X2 = a, X3 = b) which share a common service are infeasi-
ble. The total size of this hypercube will be 64 with only 24 @!) valid combinations. Eliminating
these combinations using hard constraints can provide significant savings

Consider an instance of a server problem with 9 variables (serversjheittame domain of size
9. The resulting network will be a chain with constraints between evereseair. The maximum
size of hypercube in DPOP will i and the number of valid combinations will be oly So we are
wasting 99.9% of the space in the message by sending irrelevant combin&tivinghe help of hard
constraints we can prune such infeasible combinations and get extremgssav

5.1.1 CDDs: Constraint Decision Diagrams

CDDs (constrained decision diagrams)[34] are compact represestédiogeneral n-ary constraints.
They generalize binary decision diagrams (BDD)[28]. Their main fedtutkat they combine con-
straint reasoning and consistency techniques with a compact data grudhlike extensional repre-
sentations that store each individual tuple separately (therefore irggoiemory exponential in the
arity of the constraint), CDDs have the potential to drastically reduce spgo@ements.

Formally, a CDD is a rooted, directed acyclic graph (DAG)- (VUT, E). TheO—terminal (0 €
T) represent§alse andl — terminal (1 € T') representsrue. Each non terminal node € V' con-
nects to a subset of nod&sC V UT — {v}. Itis denoted by a non-empty sffic1, u1), ..., (¢m, Um) }-
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Uti array amm x1

1¢]a) a[<ld] albld] [alble] X,

{a,b,c,d} X, ]

{a,b,c,d} X2

(a) DFS Tree (b) Hypercube (c) CDD Message

Figure 5.1: A DFS tree, an extensional UTIL message (hypercube) semt ffg to X3 and its
CDD equivalent. The constraints ox, X5, X5, X, impose that they must take different values. The
hypercube contains all combinations &f , X5, X3, whereas the CDD only the feasible ones, thus
saving space.

Each branclic;, u;) consists of a constraiet(x, ..., ;) and a successat; of v.

A CDD rooted at the node = {(c1,u1), ..., (Cm, um) } iS reduced if and only if each CDD graph
G’; rooted atu; is either terminal or reduced, and

ciNcj = false (5.1)
up # s (5.2)

Example 10 (CDD) We show in Figure 5.1(c) an example CDD that represents compactly ariern
constraint () betweenX;, X, and X3 with domain ;) listed adjacent. The constraiit requires
the variables to take distinct values. Each CDD node is of the fdum € r1, u1), ..., (xx € T, Um )}
wherery, ..., 7o C Dy are pairwise disjoint to satisfy Property (1) of a reduced CDD. Propefy (
allows node sharing marked by dashed lines in Figure 5.1(c).

5.2 H-DPOP - Pruning the search space with hard constraints

The H-DPOP algorithm combines this pruning power with CDDs to effectivedijuce message size.
Figure| 5.1(c) shows the corresponding CDD message for the hygerXylsends toXs; in Fig-
ure/5.1(a). In a CDD, every path from root to leaf is a valid combinationashain values of the
involved variables. The explicit representation of domain values and myhinisto the problem nature
allows us to prune combinations like (X1, a)(X2,a)(Xs,b) > for service placement problems even
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at the bottommost level.

Utilities in a CDD message are represented by a linear array storing utility valuedtg path
numbers. Each path in a CDD is assigned a unique index obtained by a DESataf the CDD tree.
Additionally we also need to send the domain values of each variable in a CD8ageesThis step
is necessary to ensure pruning at higher levels which is based on examamignations of actual
domain values.

Definition 18 Dim(X) is the tuple< X, dom(X) > consisting of the variableX and its domain
dom(X).

We now describe th€DDMessagewhich nodeX will send to Px. It is composed of three
components:

e CDDTree: It represents all valid combinations of variables involved in the messah [Evel
in CDDTreecorresponds to one variable.

e UltilArray: Itis the array of all utilities corresponding to each pattCBDTree

e DimensionArray: It is an array containindim(X;) whereX; € {variables involved in mes-
sage.

As in DPOP, H-DPOP contains three phases as well: DFS arrangemenmagtt/TIL propa-
gation and top-down VALUE propagation. The DFS and VALUE phaseddentical to the ones of
DPOP, and the modified UTIL propagation phase is described below in B8&cHdL.

5.2.1 UTIL propagation using CDDs

This phase is similar to the UTIL phase of DPOP, with the difference that tem&®nal representa-
tions of UTIL messages from DPOP (hypercubes) are replaced with @Bd3ages and the associated
utility vectors. The JOIN and PROJECT operators on hypercubes deéred in the following for
CDD messages.

5.2.1.1 Building CDDs from constraints:

Algorithm|5 describes the construction of CDDTree corresponding to fipetdube with dimension
setDim[dimSize] C is the partial assignment currently found to lead to a valid solution. Whenever
a new domain value is added @ a consistency check is performed in line 6 to see if the newly
instantiated domain value will lead to a solution. This is a key step in pruning tmehsspace as
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Algorithm 5 Construction of a CDDtree
ProcedureConst r uct CDD
input : Dim[dimSize] C[dimSize] currentLevel
output : The root of the CDDTree

if dimSize == 0|| currentLevel == dimSiz¢hen return null
X = node at currentLevel),, = X;,.domain
S=0,D,.=0

forall d € D;, do

A W N P

[é)]

ClcurrentLevel] = d
6 if i sConsi st ent ( C, currentLevel == true then

u =Const ruct CDD( Dim, C, currentLevel + 1)
if w==null || (u# null N u#0)then

9 S=8SuU{<du>}
10 D) = D, U {d}

11 if D = 0 then return O
12 v = nkNode( X, S, Dy)
13 return v

ProcedurenmkNode
input : X}, S D) whereX), = variable, S=children]); = valid values
output : A CDDNode corrresponding to variabl, with given domain and children set

14 v={(Xp eru):d,d er<—=<du><d,u>eS}
Ili.e. X+ dand X}, — d point to same node u
15 if htableget (v.hashKey()) == null then

16
17

htable.add( vhashKey(), V) //htable contains all discovered nodes
return v

else
/i .e. T st.v=v
return v’

18
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util array Util array

X,

(a) Hypercube Join (b) CDDMessage join

Figure 5.2: H-DPOP: comparative view of joining hypercubes vs. joining CDDs

inconsistent combinations are ruled out via this check. Paranseteentleveldenotes the current
level in CDDTree under exploration. Its initial value is zero denoting the @iobD

The procedur€onst r uct CDDis based on a depth-first backtrack search algorithm (sed34]). Set

S (initially empty) consists of the branches of the CDDNode, @Nfdconsists of values of variable

X which can lead to valid combinations. Next, for each value in the domak.df=D,), we check

if it can lead to a feasible solution (line 6). If no, it is ruled out otherwise weursively invoke
Const r uct CDDto find the CDDNoda! for the next level §urrentlevel+1line 7). If uis a 1-terminal

(null nodeg or is not a O-terminal , we add the branahu to S, and insert d taD;, (lines 8 ta 10). If

D;. = ( after all iterations are over, a O-terminal is returned. Otherwik®lode is called to return the
CDDNode for the current variable with given children and domain Setr(d D;, respectively).

ProcedurerkNode is shown in algorithm 5. In line 14, an intermediate nede created such that
for everyd € r, X}, — d leads to the same child nodeNext we check if an equivalent nodeexists
for nodev to satisfy property (2) of a reduced CDD (line/ 15). If an equivalemtenexists we reuse that
node otherwise insertto V and returrv (line/17).

5.2.1.2 Implementing the JOIN operator on CDD messages

In Algorithm(6 we describe the method for combining two CDD messages. TregarameteleafDi-
mensionspecifies which variable should be placed at the leaf level in the resultimgined CDDTree
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(line(2). Each node places itself as tleafDimensionwhile combining CDD messages from its chil-
dren. This is an optimization which ensures that each node can projecbitseif the resulting CDD
message very efficiently (see functipnoj ect M ne, algorithm 7) before sending the message to its
parent. The union of dimensions of combining messages forms the dimen§iomsloined message
(line[1). With this new set of dimensions, a new CDD message is constructeadnvemptyUtilAr-

ray. The for loop in line 5 iterates over all the paths of the newly formed CDDTheds the relevant
contributions from individual CDD messages (functfonndUt i | , line[7), and sets the utility of the
current path in the combined message (line 9). Finally, the combined CDD geeisseeturned after
setting the utility of each path. Figure 5.2 shows the join of hypercubes afsCD

The proceduréi ndUt i | (algorithm 6) returns the utility value corresponding to CDDMessage’s
local contribution for the input source path with the specified set of dimeasioionDim The Array
myPathstores the local contribution of the CDDMessage to igraPath It is initialized with values
from srcPatHor the corresponding dimensionsntyDim andunionDim (line[13). The utility value for
myPathis extracted fronUtilArray by finding the index of this path (line 14). To increase performance,
each CDDMessage hashes every path of its CDDTree with value as patteind key as the path itself.

5.2.1.3 Implementing the PROJECT operator on CDD messages

Procedurepr oj ect M ne (algorithm7) is used by a node to project out its own dimension after it
has joined the UTIL messages from its children and the relations with its paseuatlp parents. Since
the conbi neCDDMessages function places the dimension of the current node as the leaf level of
CDDTree, projecting out the current node is very efficient: we iteratautiir all the paths (line/ 2) and
choose the best utility among paths having the same prefix, except for theviela(line[7). We also
need to reconstruct the CDD message and initialize the utility array after tjecoo operation to
keep the CDD size optimal. Finally the newly formed CDDMessage is returnezigerii to the parent

of the current node.

5.2.1.4 The i sConsi st ent plug-in mechanism

Thei sConsi st ent (see algorithm 5, line|6) function is like a gateway to the constraint problem
being solved and uses hard constraint propagation for pruning thehsgaace. Until now existing
DCOP algorithms like ADOPT or DPOP did not try to take advantage of domaicif&plnowledge
while solving a particular DCOP instance. H-DPOP is unigue in this sense mwities the constraint
optimization algorithm with knowledge about the problem domain through this moplulg-in mech-
anism. Our results show that this knowledge can help reducing the sizeldTthanessages by up to
99%. This function is problem-specific and encapsulates the pruning logic inté-DEOP algorithm.
The input to this function is the constraint arr@y which is a partial assignment. The function then
processes this input using hard constraint propagation and determinesfesents a feasible combi-
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Algorithm 6 Combining two CDDMessages: JOIN operation
Procedureconbi neCDDMessages
input : Msgl Msg2 leafDimension
output : Combined CDDMessage of Msgl and Msg2

begin

Dim[] union= M sgl.DimensionArray U M sg2.DimensionArray
Rearrange/nionarray to makéea f Dimension as the last one

CDDRoot= Const r uct CDD( union, new Array(union.length),

0) N each path € {Msgl U Msg2}

4 combinedMsg= newCDDMessage( CDDRoot, union, CDDRoot.pathsColint
/lpat hsCount represents total paths fromroot to | eaves

end
foreach path of CDDTree with root = CDDRooto

[¢)]

path= current path under consideration

utill = Msglfi ndUti | (union, path)

util2 = Msg2f i ndUt i | (union, path

combinedMsget Ut i | it y(utill+util2, path.indey
return combinedMsg

© 0 N O

=
o

Proceduref i ndUt i |
input : unionDim srcPath
output : The utility value corresponding to local contributiongPath

11 myDim = thisDimensionArray
12 Initialize myPath= new Vector(myDimlength)
13 myPath=
< (d;j = srcPath[j]) >: i € [0,myDim.length] N 3j s.t. srcDim[j|.id = myDim]|i].id
14 index= htableget val ueByKey( myPath
15 return this.UtilArray[index]
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Algorithm 7 PROJECT operation for a CDDMessage
Procedurepr oj ect M ne: projects out the last dimension of this CDDMessage
output : returns the new CDDMessage

[N

Initialize BestUtilities= new Vector()
foreach path of CDDTree of this CDDMessagde

N

path = currentPath under consideration
pathPrefix = pathpr ef i x( 0, path.size-1L
if utility already set for pathPrefithen

6 \ continue
else

7 util =
Max(P;.util : P.prefix(0,P;.size—1) = pathPrefizNP; € {paths of CDDTree})
8 BestUrtilitiess et ( util, pathPrefiy

9 Initialize newDim/[] to this.DimensionArray[0] to [totalSize-1]

10 newTree =constr uct CDD( newDim, new Array(newDim.length)) O

11 newM sg = newCDDMessage( newTree.root, newDim, newTree.pathsCount
12 Initialize new M sg.UtilArray from BestUtilities

13 return newMsg

nation. For the server problem described in SectionissTonsi st ent simply returns al se for
all partial assignments where several variables take the same valuesédta hard constraints do not
allow this.

Procedure 8isConsistent(C, currentindex)
output : true if C is valid, false otherwise
for i = 0 to currentindexr — 1 do
if C[i] == Cl[currentIndex] then return false
return true

The next section discusses the relationship between H-DPOP and akpméthms.

5.3 Comparing H-DPOP with search algorithms

Distributed search ([33,81,141,194]) is an alternative approachfeoeimce based algorithms like
DPOP. Algorithms based on sequential search naturally provide pruaisgdion hard constraints:
partial assignments that have led to an inconsistency are not furtherecdmd the search backtracks.
Further pruning is achieved through more sophisticated consistencygaebnand by using variants
of the branch-and-bound principle. The main advantage of searclindeeence based algorithms like
DPOP ([160]) is that search uses only polynomial space, which makesabk for memory limited

platforms. The main drawback is that typically, search algorithms require@onential number of
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small messages, thus producing high network overheads.

A major improvement to search has been to use a cache at each node to exmpashbesults ([42]).
The total size of all caches represents the explored search spagaeémsal search. Experimentally we
will show that the total explored search space in searchfwitibachingis similar to the explored space
in H-DPOP. This comparison will provide a further testimony to the pruninggraf H-DPOP with
an important advantage that H-DPOP uses linear number of messaggpoasmdto an exponential
number in search.

In addition, we will show comparisons with a version of search which exphoitgshard constraints
without using the branch and bound principle. This version of seardbsercto our H-DPOP algorithm
as H-DPOP does pruning using hard constraints only without any othewig. Our experiments
show that search only using hard constraints provides similar perfomamioranch and bound search
with only minimal degradation in cache size and message exchanges. Théar faighlights that the
hard constraints are the dominating factor in all these problems and H-DR@PR efficiently exploits
them with linear number of messages is superior to search.

5.3.1 NCBB: Non Commitment Branch and Bound Search for DCOP

NCBB ([33]) is a polynomial space distributed branch and bound sdardtistributed optimization.

The basic idea of branch and bound is the same as in centralized brahtivamd search ([118]).
The distributed nature of search allows it to use different agents tolst@raion intersecting parts of
search space concurrently providing speed and computational cesadvantage. It also allows for
eager propagation of bound changes from children to parent prgvmditter pruning. The details of
NCBB can be found in [33]. We will describe it shortly here.

NCBB works on the DFS tree arrangement of agents in the constrairit.gfap DFS ordering can
be done in the same way as in Section 3.4.1 or in[33]. The main advantageho&iswrdering over
the traditional OR based search is that given ancestor assignments thg iage given subtree can
work independentlyo minimize their cost. The time complexity 6f(d") in the OR based searcli i
the maximum domain size, is the number of agents) reduces¢d” 1), whereb is the branching
factor of DFS tree arrangementjs the maximum domain size arid is the depth of DFS traversal of
constraint graph.

During the initialization of search in NCBB all agents compute the global upettaaver bounds
on the solution cost. Then each agent chooses its value greedily prdaleleshcestor assignments
to minimize its contribution (excluding the its subtree) to the global solution costr iitelization
agents start performing the main search procedure. An aggemiitiates search (in its subtree) only
after receiving an expliciBEARCHmessage from its parent. Before tlSEARCHmMessage alX;’s
ancestors choose their values and announce them to all their destsendan
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A distinct feature of NCBB is that whelX; selects a value to explore on a given subtree it may
choose different values for its different subtrees (tlo@ commitment part The advantage of such
concurrent search is that it allows for tighter upper bound when a valuged in a different subtree
as we can take into account the already known cost for the complete@esierches and do better
pruning. Once the search is finished at the root for all subtrees amddh of root's values we have
the solution to the optimization problem.

5.3.1.1 NCBB with caching

The main advantage of search over inference based algorithms like OR&R) (is that search uses
only polynomial space making it suitable for memory limited platforms. Howeverdhampmial space
comes with a price: search forgets everything from the past, so it maythaeeexplore some parts
of the search space. A natural extension of search would be to usebleaized cache at each agent
storing the previous search results, so that when the search explevesugly visited search space its
value can be directly looked upon in the cache. Such a scheme greatly eagtmperformance of
search (as shown in[42], [32]) and allows the user to control theespiae tradeoff by varying the
cache size (using user defined cache factor).

An advanced version of NCBB ([32]) incorporates such a cachihgree. The maximum cache
size at any nodg; is d/*¢ri| (see Section 3.1.2.3). In the original NCBB the cache stores the solution
cost, indexed by the value assignmentiep;, provided by the subtree &f;. The results are entered
in the cachegiventhe subtree can provide a solution within the current bounds; alOtherwise the
result is not cached. In practice such a scheme keeps the cache silex atrthe expense of extra
effort (number of messages) invested for re-exploring the previgualyed and not cached parts of the
search space.

NCBB*: NCBB with a modified caching policy We have modified the caching in NCBB
(called NC BB*, shown in graphs adCBB Modified so that we also store the cost, Sep; > pair at

X; even if for the currenbep; assignment subtree can not provide a solution within the bounds. This
saves us the extra effort when such a combination is encountered agiaénsearch N C' B B* works

on the same DFS tree as in H-DPOP using the MCN heuristic ([127,207])otodgr comparable
results. We have implemented another version of search which works ortlyeohard constraints
without any other bounds NCBB Hard Constraints

In NC BB* we store the< Sep;, cost > pairs in the cache even if the subtrees rooted at agent
can not provide a solution within the current bounds. This modificationsstneeoverhead in terms
of messages exchanged when the s&we assignment is explored again. Figure 5.8(b) shows the
number of messages exchanged in NCBB ahdBB* (for experimental setup see Section 5.4.1.2,
here it suffices to know thator edge inclusion probability, plotted on the x axis, is a graph parameter).
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Figure 5.3: NCBB vs NC BB*: NQueen graphs

NCBB* always requires a smaller number of messages, and the savings areutéesignificant
(between 40% and 65% f@r=0.19).

In contrast, the cache size usedNT' B B* is more than the cache in NCBB but this increase in
the cache is more than compensated by reduced message exchangstdt imthave a slightly bigger
local cache than to increase the network overhead by exchanging tamgéer of messages. The idea
of search with caching being better than the search alone is a testimony togioscp

Hence in our opinion the comparison of H-DPOP wild' B B* is more accurate than H-DPOP vs
NCBB, as both H-DPOP an¥C' B B* traverse a similar search space.

5.3.2 Comparing pruning in search and in H-DPOP

NCBB Hard Constrainand H-DPOP both prune the search space based on only hard cdesgain
we would expect that the size of explored search space should be @éntloth cases. However,
the experimental results show that there are slight variations. We show fallihweing the different
pruning strategies employed by search and H-DPOP which accountddaliffierence.

Figure 5.4 shows a DFS arrangement of a constraint network. Firstd=arthe pruning done by
H-DPOP. H-DPOP does pruning frooottom up As the message goes up from the leaf in the subtree
of node N3 it prunes all the inconsistent combinations. H-DPOP always explore Hrelsspace at
any nodeN; which is consistent given the assignmentSep,; nodes atV; and the subtree a¥,;. On
the contrary this is not true for search algorithms. Search prunes assigs from top to bottom. At
the nodeVy, the partial solution from roaV,...; until Ny is consistent. However, there is no guarantee
that this consistent partial solution will be consistent upon further exjpboraf the subtree av; .

Furthermore, there is no guarantee in either search or the H-DPOP atgthith they always ex-
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Figure 5.4: A DFS tree arrangement to illustrate differences in bottom-up pruning (B8P
vs. top-down pruning (search)

plore onlyglobally consistencombinations. H-DPOP explores consistent solutions in the assignment

space ofSep; nodes and the subtree of any nade However, such combinations may become incon-
sistent as UTIL messages goes up the DFS tree on two accounts. In/Figuhg sends its message
to its parent. The parent combines this message message with its otheNghilthessage. During
this process the combinations which are present in both sibling’s messagessaed up, and the rest
are pruned. The other source of pruning are the constraing efith its parent and pseudo parents,
which could make some combinations from the childrevgfinconsistent.

In search, any consistent partial solution may become inconsistent asatah £xpands lower
nodes in the DFS tree. So this leads to inconsistent search space expliordloBB Hard Constraint

5.4 Experimental Results

This section discusses the performance of H-DPOP on a number of msibtgtimal query place-
ment(introduced in Section 5.1), distributed graph coloring and winnerrditation in distributed

combinatorial auctions (only with buyers). All these problems have a saisficcomponent (solutions
must not violate any hard constraints, thus incurring infinite costs), angtmization one (maximiz-

ing utility, or minimizing cost, respectively). The experiments were perfornmettie FRODO platform

(publicly available,[154]). The machine used has 1GB RAM with two P4 3Gidegssor.

We performed two sets of experiments : (1) H-DPOP vs DPOP (see Sectidh &nd (2) H-DPOP
vs NCBB (see Sectian 5.4.2). The H-DPOP vs DPOP experiments mainly docthe space savings
provided by H-DPOP by pruning the search space. The secondegi@fiments (H-DPOP vs NCBB)
compares the search space explored and message exchanges irPHdifierent versions of NCBB.
For space comparisons we compare the logical sizes of the correspamiiis (hypercubes in DPOP,
CDDs in H-DPOP and total cache size in search with caching).
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5.4.1 DPOP vs H-DPOP: Message Size

These experiments mainly focus on the space savings provided by H-BP@Rining the search
space. We have performed 4 sets of experiments: query placemel@msolraph coloring problems,
n-queens problems, and combinatorial auctions problems.

5.4.1.1 Optimal query placement in an overlay network

For experiments the problem is made deliberately very constrained by agstiinaieach server is able
to execute the complete set of services. For simplicity’s sake, each sarverxecute only a single
service at a time. The objective of the DCOP algorithm is to maximize the overall .utility

We generated random problems of different sizes, with a random nurhgeft constraints among
variables. All-different hard constraints are introduced thus making ¢instraint graph fully con-
nected. The size of the hypercube is the number of entries in the hypertébsize of the CDD
Message is the number of entries in the Util array combined with the logicalsZ@DTree (each en-
try in the CDDNode corresponds to 1 unit in the space measurement, linkédieohare also counted
as 1 unit).

Figure| 5.5(a) shows the maximal/total message size in H-DPOP versus DRIDRNP size is
denoted bym * n implying m variables each having the same domain of sizeResults show that
H-DPOP is much superior to DPOP for all problem sizes, culminating with thedagmroblems (9
serversx 9 services) where H-DPOP produces 3 orders of magnitude smallergeessad smaller
total message.

Figure 5.5(b) shows the effect of problem size on space saving&lprblly CDDs. We count the
percentage of unfeasible assignments carried in the UTIL messageagsegol this as “wasted space
in DPOP”. We see that the space wasted by DPOP is above 90%, andgier érd more difficult
problems, close to 100%. In contrast, CDDs enable H-DPOP to avoid thidepro Even though
CDDs introduce the overhead of representing the CDDTree explicitetyatithe space savings they
provide by not sending infeasible combinations more than compensatagysatart around 48% for
small problems (5*5), and increase with problem size, up to 99% for 95Blpms.

5.4.1.2 Random Graph Coloring Problems

We performed experiments on randomly generated distributed graph cpfwoblems. In our setup
each node in the graph is assigned an agent (or a variable in DCOP térhesonstraints among
agents define the cost of having a particular color combination. The €bsbaeighboring agents
choosing the same color is kept very high (10000) to disallow such combisailitledomainof each
agent is the set of available colors. The mutual task of all the agents is tarightimal coloring
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Figure 5.5: Query placement problems: H-DPOP vs DPOP performance

assignment to their respective nodes.

For generating these graphs we have two parameters-number of age e a&onstraint density.
We keep the number of agents fixed to 10. We start with a fully connectpt grad remove the edges
successively until we reach the desired constraint density and thieprabstill connected.

Figure 5.6 shows the results on a 10 nodes randomly generated prolrlamafoge of constraint
densities (0.2-0.89). The problems within densities 0.2-0.5 were 4-coldraipy/ing domain size 4).
The problems from 0.5-0.9 were 6-colorable. For statistically sound rdsuksich constraint density
we generated 50 random problems and the results shown are the aveb@geins.

Figure 5.6(a) shows the full spectrum of performance of H-DPOP \@® terms of the max-
imum/total message size. For accounting the message size we take into aceoumtntier of util
values in the hypercube for DPOP, for the H-DPOP we count the lengthedTIL array and the
(logical) size of the CDD tree in the CDD Message. As can be seen, H-D®O&tter for most of
the regions (density 0.4-0.89) except for densities from 0.2-0.4. Terstahd the characteristics of
H-DPOP we divide the densities into three regions- low density (0.2-0.4)iumedensity (0.4-0.7)
and high density (0.7-0.9).

For thelow densityregion (Figure 5.6(b)) DPOP performs better than H-DPOP. The exjaria
the same as in Section 5.4.1.1: at low density the size of the hypercube is smBk. & bw density
do not provide sufficient pruning to overcome the overhead introdbgete size of the CDDTree in
the CDDMessage.

For themedium densitgegion (Figure 5.6(c)) H-DPOP is much better than DPOP. The sizes of both

hypercubes and CDDMessages increase with density. This is the ekpebi@vior as with the increas-
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ing constraint density the width increases leading to exponential increasesisage size. However
with CDDs we still get much space savings.

The high densityregion (Figure 5.6(d)) provides interesting results for the H-DPOP.ROB, as
expected, the maximum message size increases with the density. Howewss are @posite trend in
H-DPOP, instead of CDDMessage size increasing with the density, it seamsasing. The reason is
that at high constraint density the extent of pruning done by CDDs is alsohigh. So although the
problem becomes more complex with high connectivity, the increased prhyitige CDDs overcome
this increase and at very high densities the pruning dominates the incrgasblem complexity.

5.4.1.3 NQueens problems using graph coloring

For ann x n chessboard a queen graph contaihgodes, each corresponding to a square of the board.
Two nodes are connected by an edge if the corresponding squarés tae same row, column, or
diagonal. The intuition behind using graph coloring on a queen graph isvthaain place: sets ofn
gueens on the board so that no two queens of the same set attack eadhtothehromatic number of
the graph is at least.

For our experiments we took the problems from Stanford Graphbas8]{]1Bor a 5-colorable
5 x 5 queen graph (width 19, 25 agents, density 0.53) DPOP was unable td@ke@ximum message
Size19073486328125). H-DPOP successfully executed in 15 seconds with a maximum message size
of 9465, achieved through the high pruning power of the CDDs.

However, for board size$ x 6 (7 colorable with width 31, density 0.46) and above H-DPOP was
also unable to execute due to increased width and domain size. Relaxindyadoigstrained problem
is a well known technique in CSP literature. We adopt this technique into gé@mpgueen graphs so
that the inclusion of any edge in the graph is done with a probability this probability is 1 we get
the complete queen graph.

We experimented by varying this probability from 0.05 to 0.25or 6 board with the resulting
graphs being 4-colorable. For each datapoint we took the avera@erahBomly generated problems.
Graph remains 4-colorable unif0.25 and increasing the beyond increases the coloring number.
A direct implication of this fact is that gi=0.25 the graph is highly constrain@dth respect tahe
coloring number 4. This observation lead us to believe that the nature d?®&FDand DPOP should
be similar to the random coloring experiments.

Figure 5.6(e) shows the result for maximum and total message size agaipsbbabilityp. The
dotted vertical line at x=0.14 divides the graph into two regions. For theréigson both H-DPOP and
DPOP increase in the maximum message size. However as the density (whigdtily delated to
p) increases we see the same trend as in random problems. DPOP contimoesase in maximum
size but the size in H-DPOP remains constang ([0.14, 0.20]), and it starts decreasing in the region
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Figure 5.7: Combinatorial Auctions: H-DPOP vs DPOP comparison

[0.20,0.25].

5.4.1.4 Winner Determination in Combinatorial Auctions

Combinatorial Auctions (CA) provide an efficient means to allocate ressui@ multiple agents. In
CA bidders can bid on a bundle of goods in addition to single item bidding. Toisdes for comple-
mentarity and substitutability among the goods. In our experimental setting thesengfe seller and
multiple buyers (agents). The agents are distributed (geographicallyicallggyyand have information
aboutonly thoseagents with whom their bids overlap. The mutual task of agents is to find a solutio
(assign winning or losing to bids) which maximizes the seller’s revenue prayvalfeasible solution
(no overlap among winning bids).

In our formulation we do search through the constraint network of bigsgmted (rather than con-
sidering all possible bids). Such a formulation has been shown to beffective in CABOB[183, 185]
and BOBJ[184]. However we do not intend to compare with these appesahthey are both central-
ized and use linear programming to augment the search method (not feasiigibuted setting).

Thevariablesin our setting are thbids presented by the agents. Each agent is responsible for the
bid it presents. Theomainof each variable is the sétvining, losing}. Hard constraints are for-
mulated between bids sharing one or more goods, disallowing severahotdhee assignedinning
The value of each bid is modeled as an unary constraint on the assoGatdale:

We generated random problems using CATS (Combinatorial Auctions Tas{&1P]) using the
pathsandArbitrary distributions. For the paths distribution the number of bids was varied foed fix
number of goods (100). Each agent is allowed to present only onerbypéittsdistribution goods are
the edges in the network of cities. Agents place bids on a path from one citheo lmased on their
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utilities. In our setting we fixed the number of cities to 100 with initial connection X (iaensity).
Since the city network structure is fixed, as the number of bids increasespeet a higher number of
bids to overlap with each other and increase the problem complexity. Férltiiteary distribution we
use all the default CATS parameters. The number of goods is 50, anditiigen of bids varies from
25 to 50 increasing the complexity of the problem. Each data point is obtainthe@ average of 20
instances.

Figure 5.7(a) shows a comparison of DPOP with H-DPOP (average afd®lems for each data-
point) onpathsdistribution. DPOP as expected increases in message complexity with the noimber
bids. The pruning provided by H-DPOP is very high (around 99% ofhgybes) and increases with
number of bids. Because of such high pruning H-DPOP runs on problthsvery high width (35,
bids=70) where memory requirements for DPOP are prohibitively expen¥ie see a similar trend
for the arbitrary distribution (figure 5.7(b)). H-DPOP is much superior to DPOP and previgey
high pruning.

5.4.2 H-DPOP vs NCBB: Search Space Comparison

This second set of experiments (H-DPOP vs NCBB) compares the sgzach explored and message
exchanges in H-DPOP vs different versions of NCBB. For space adsgms we compare the logical

sizes of the corresponding units (hypercubes in DPOP, CDDs in H-C#P@Botal cache size in search
with caching).

5.4.2.1 H-DPOP vs NCBB: N-Queens

We performed a comparison of search space using the number of gacies @ NCBB's different
versions and the number of util values in H-DPOP (excluding the size of Di@®for fair comparison)
at each agent on the graph coloring problem. We selected a particulardasthqueen grapl6 (x 6
board,p=0.2, domain size=4, width=9). Our aim was to find a 4 coloring of the grapim&ing the
costs assigned for color combinations. As the performance of anytbeardt bound search is cost
dependent we generated 50 random instances of the same problemglifieghe cost assignment to
color combinations, each data-point is an average of 50 instances.

As stated in Sectidn 5.3.1.1, NCBB uses much smaller cache size for all agigrt€(5.8(a)). The
reason is the non inclusion 8%p; assignments for which subtrees do not provide a solution within the
bounds. The cache size MC' BB* is similar for most of the agents to the message size in H-DPOP.
There are a few cases (for agents 7,10,11,12,17,19,33) in whi¢B B* is better than H-DPOP.

The relevant part of the DFS tree (with depth 15) for this problem is shioviigure|5.8(b), all
nodes without any children are the leaves. A deeper look into the DFSgameent suggests that all
the nodes with size variations are in the lower part of the DFS tree. A salgatithm will have tighter
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Figure 5.9: NQueen Problems (full range): H-DPOP vs NCBB comparison

upper bounds on the solution cost when it is expanding a high depth smdés natural that the effect
of bounding is more pronounced for such nodes. On the contrary BFD#bes not make use of any
bounding, it prunes only the inconsistent combinations. Hence it takesgpace at such nodes lower
in the DFS.

An interesting result is that at the node with maximum size (Agent 6, with highieish=9) H-
DPOP is much better (with size 216) as compared to cache size of 1094'iBB*. At high width
regionsNC BB* does not provide good pruning (based only on bounding) howevePB¥P prunes
many combinations based on consistency check. This is consistent withresioys results that at
highly constrained regions H-DPOP provide very high pruning and almegsites the effect of in-
creasing complexity.
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Figure[ 5.9 compares NCBB and H-DPOP on the full rangé »f6 board size queen problems.
The problems are same as used in Section 5/4.1.2 for solving NQueen praditegrgraph coloring.
For each data point there are 20 randomly generated instances. Aa seecfiom the explored search
space graph (figure 5.9(a)) ba¥hC' B B* and H-DPOP explore nearly similar size search spi&BB
Hard Constraintexplores marginally larger search space tharB B* and as expected its search space
size is very similar to H-DPOP since both H-DPOP &iteBB Hard Constraintlo pruning based only
on hard constraints.

There is not a dramatic benefit of bounding on the search betw&em B* and NCBB Hard
Constraint This further strengthens our claim that the major portion of pruning is atitribio the hard
constraints which are exploited more efficiently by H-DPOP. One importargradge of H-DPOP is
that it uses much less messages than NCBE 6B B* (figure 5.9(b)). Even for the simpler problems
(with p = 0.05), NC B B uses far more number of messages than H-DPOP which always hagantons
message count (70). This advantage coupled with nearly equivalplared search space make H-
DPOP much superior to a branch and bound scheme like NCBB.

5.4.2.2 H-DPOP vs NCBB: Combinatorial Auctions

In this section we compare NCBB'’s different versions and H-DPOP omtetrics: explored search
space and messages exchanged. The comparisons are shown i fifur&he data set used is the
same as in the previous section (H-DPOP vs DPOP on CA).

Notably explored search space is similar for both' B B*, NCBB Hard Constrainand H-DPOP
for all bids. NCBB Original uses smaller cache size as it does not caches all combinations. The
difference betweeNCBB Hard ConstrainandNCBB Modifieds again minimal suggesting that only
the hard constraints play the vital role for pruning.

With respect to the message exchanges H-DPOP is much superior to mhgeySNCBB on both
paths and arbitrary distribution (figure 5/10). There is a slight diffexendhe number of messages
betweenNCBB Modifiedand NCBB original but it is small to be visible on grapNCBB Modified
uses less number of messages (by around 5%).

Interestingly on the arbitrary problems (figure 5.10(M3BB Hard Constrainis slightly better
than its other two counterparts in terms of message exchanges. We foutichthis trend occurs
becaus&CBB Hard Constrainbacktracks whenever it finds a single inconsistency in the partial solu-
tion. However both NCBB original and NCBB Modified tolerate inconsistehit®ons until they find
a better one. Figuring out the upper bound (the cost of violating onedeaistraint) on the consistent
solution makes NCBB and NCBB Modified to exchange extra messages.

Once again in these set of experiments we have shown that explorel space is similar in both
NCBB and H-DPOP, with H-DPOP requiring only a linear number of messag&s®o the effect of
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Figure 5.10: Auctions: H-DPOP vs NCBB comparison

bounding is negligible on pruning the search space as main pruning is @ddwthe hard constraints.

5.5 Related work

H-DPOP draws mostly from the dynamic programming algorithm DPOP (Chaptand Constraint
Decision Diagrams (Cheng and Yap[34]). DPOP produces large alitiares that are sent over the
network. On the other hand, CDDs can take advantage of hard cotstamepresent compactly such
large arity relations, thus being a well suited alternative for minimizing netwaifkidrand memory
requirements for DPOP.

Recently, And/Or Multi-valued Decision Diagrams (AOMDDSs) have been thtced by Mateescu
and Dechter in[136]. They first arrange the problem as a pseuddefevhich DFS is a special case).
Subsequently, on that pseudotree structure, they start a bottom-up donpitey computing (and
subsequently joining) high-arity relations (as in DPOP). However, thejsgae is to have a compact
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compilation of the entire constraint network in the root node. Therefoeg,dh not execute projections
at each node along the way, thus obtaining a large AOMDD at the root, épeg¢gents the entire
network. AOMDDs are space- and computation-exponential in the induickd of the DFS ordering
used.

In principle, CDDs are OR-based structures, so for a complete compildtiba network, they are
exponential in the path—wid@mf the problem, rather than exponential in the induced width. Therefore,
they could be less space-efficient than AOMDDs. However, sinceeaicble projects itself out of the
outgoing message, our CDD representations are also guaranteed iy bgpmmential in the induced
width of the DFS ordering used, as opposed to exponential in the proidem s

Wilson[221] introduced SLDDs (Semiring-Labelled Decision Diagramsgreegalization of CDDs
to semiring structures. Our dynamic programming framework (DPOP) is easilgaable to semiring
structures as well, by using SLDDs instead of CDDs as data structuréeefanessage exchange.
As CDDs, SLDDs are also OR-based structures, which means that theyzarexponential in the
path-width of the problem. However, for the same reasons cited abol)Shapplied in our context
(variable elimination along a DFS tree) would also be exponential only in theéaduizith as opposed
to the path width.

5.6 Summary

This chapter introduced H-DPOP, a new algorithm for constraint optimizdtémed on DPOP. H-
DPOP applies consistency techniques to reduce message size and mequognrents in DPOP by
using CDDs. H-DPOP is an orthogonal technique, which means it canrbkiced with other exten-
sions of DPOP like LS-DPOP, MB-DPOP, A-DPOP, etc. Experimentaltesiiow that in cases where
the problems are highly constrained, this representation allows for as rmu¥Pa space savings as
compared to the basic dynamic programming approach.

The second contribution of this chapter is an extensive comparison witthsalgorithms, which
compares the pruning achieved by search with the one achieved by U3Dg i@ dynamic program-
ming. Pruning techniques are very natural to search algorithms, andoantheir performance sig-
nificantly. Introducing CDDs into DPOP gives dynamic programming algorithmgas pruning ca-
pabilities, and yields similar performance improvements. Our extensive @ah@ws that although
pruning in H-DPOP works bottom-up as opposed to top-down in search, sefféets are obtained,
and the portions of the search space explored by H-DPOP and seangrasimilar.

There are many realistic scenarios where hard constraints restrictatw space significantly.
For example, several types of auctions have this property: auctiongwbents bid on paths in space
like railroad auctions, auctions for airport time slots, etc. Other examplesimeldvanced versions of

!Path-width is the induced width of linear orderings
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the service allocation problem, or scheduling with resource constraintshesé problems are large,
highly constrained problems, and can be efficiently solved by H-DPOP.

We conclude that in many applications such as those described abovBOR-I3 an excellent
approach, because it combines the best of both search and dynagrarpnoing: it requires only a
linear number of messages like dynamic programming (i.e. low networking @xdyhand by using
CDDs and their pruning power we can effectively limit the size of these rgesséke in search.



86



Part Il

Tradeoffs

In this part of the thesis we discuss tradeoffs in DCOP alodin®nsions: solution quality (complete vs.
incomplete algorithms), memory requirements (linear ¥pomial / exponential), communication requirements
(few large messages vs. many small messages), degreeribiudiish (fully distributed algorithms vs. partial

centralization algorithms).
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Chapter 6

Tradeoffs between Memory/Message
Size and Number of Messages

In this chapter we discuss possible tradeoffs that variaftthhe DPOP algorithm can offer for
problems with high induced width, where the basic DPOP atgor cannot be applied due to
memory or communication restrictions. The chapter is orgeah as follows: we start with a quick
recapitulation of DPOP, and its main features in Section @#ien we present the first contribution
of this chapter: a generic, configurable framework for idgfimg and isolating difficultsubprob-
lemsof high width, which cannot be solved with the high-perfonceaDPOP propagations. A
distributed algorithm to this effect is presented in Set6@. Once such difficult subproblems are
identified, they can be solved with any of a number of altéveahethods, and the partial results
integrated in the overall DPOP propagation.

The second contribution is MB-DPOP, a configurable algoritthat uses theycle-cutsetdea to
offer a tradeoff between the amount of memory used and theeruni messages. MB-DPOP is
shown to perform up to 5 orders of magnitude better than AD@RT state of the art in memory-
bounded search.

The third contribution is O-DPOP, a hybrid of best-first setaand dynamic programming, which
combines some advantages of both worlds: First, it usesagessvhose size only grows linearly
(as in search) with the treewidth of the problem. Secondettinty agents explore values in a best-
first order, it avoids incurring always the worst case compileas DPOP, and on average it saves
a significant amount of computation and information excleang

6.1 DPOP: a quick recap

The basic dynamic programming algoritHBPOP has been introduced in Chapter BPOP is an
instance of the general bucket elimination scheme from[51], which istedidpr the distributed case,
and uses a DFS traversal of the problem graph as an ord&®P@QP has 3 phases:
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Tradeoffs between Memory/Message Size and Number of Messag

1. DFS traversal: a DFS traversal of the graph is done using a distributed DFS algorithm, like
in[160], which works for any graph requiring a linear number of messaghe outcome is that
all nodes consistently label each other as parent/child or pseudopaeemifehild, and edges
are identified as tree/back edges. The DFS tree serves as a communicattmesfor the other
2 phases of the algorithm: UTIL messages (phase 2) travel bottom-up/AndE messages
(phase 3) travel top down, only via tree-edges.

2. UTIL propagation : the agents (starting from the leaves) séidL messages to their parents.
The subtree of a nodE; can influence the rest of the problem only througfs separatorSep;.
Therefore, a message contains the optimal utility obtained in the subtreecfoinstantiation of
Sep;. Thus, messages are size-exponential in the separator size (whichris fiotunded by the
induced width).

3. VALUE propagation: atop-down optimal assignment propagation phase is initiated by the root,
when phase 2 has finished. Each node determines its optimal value bagedaomputation
from phase 2 and théALUE message it has received from its parent. Then, it sends this value
to its children throughlVALUE messages.

DPOP complexity:

e number of messages: linear in the number of agents

e Mmessage size: largest UTIL message is space-exponential in the widéh@Fghordering used.
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6.2 DFS-based method to detect subproblems of high width

We have seen that DPOP’s memory requirements are exponentialiidtieed widthof the constraint
graph, which may be prohibitive for problems with large width. For suchgase introduce the control
parametek which specifies the maximal amount of inference (maximal message dimensiprighity
parameter is chosen s.t. the available memory at each node is greatéf ttais the domain size).

We propose in this section an algorithm that identifies subgraphs of theeprgtlusters) that have
width higher thark, where due to memory limitations, it is not possible to perform full inferende as
DPOP. Nodeinsidesuch clusters will have to recourse to some other techniques (see $Se8tiGe6
tion[8, Section 7.1, Section 7.2). Nodmstsidethese clusters can perform the normal DPOP UTIL and
VALUE propagations, which have the advantages we previously disdysptimality guarantees, low
overhead, etc). The result is that in most parts of the problem, high+pehce DPOP propagations
are used, and only in minimal, high-width subproblems we have to recoursiecioadternatives.

Definition 19 (Cluster node) Given a DFS tree and a humbér a nodeX; in the DFS is called a
cluster-nodeff |Sep;| > k.

A cluster is bounded at the top by the lowest node in the tree that has teepdrsizek or less. We
call these top-bounding nodekister roots(CR).

Definition 20 (Cluster root node) Given a DFS tree and a numbgr a nodeX; in the DFS is called
acluster-root nodéf 3X; € C; s.t.|Sep;| > k, and|Sep;| < k.

Definition 21 (Cluster of width greater than k) Given a DFS tree and a numbér a clusterC,. of
width greater than k is a set of nodes which are all labeled as cluster nodester root, and there is
atree path between any pair of nod&g, X; € C,, that goes only through cluster nodes.

Briefly, the clusters are identified in a bottom-to-top pass on the DFS treeprohess works by
labeling the nodes with separator size larger thascluster-nodesand including them in a cluster.
Subsequently, inside a cluster, we use an alternative UTIL propagalimiwses less memory than
the normal DPOP propagations. The goal is to find an optimal solution fdr easter for each
assignment of the variables in the separator of the cluster root. The rasulttached (8,42, 132]) by
the respective cluster roots and then integrated as normal UTIL meseamése overall DPOP-type
UTIL propagation. Subsequently, during the final VALUE propagatibage, the results cached in the
UTIL phase are retrieved, and the VALUE propagation continues asrmaldPOP.

If w is the induced width of the problem given by the chosen DFS orderingndiépg on the value
chosen fork, we have 3 cases:
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Algorithm 9 LABEL-DFS - a protocol to determine the areas of high width.
LABEL-DFS(X, D, R, k) (assumes a DFS tree created with Algorithm 3). Each a§endbes:

Labeling protocol:

wait for all LABEL; _,; msgs from children
Sep; = Ux,ec;Sepj U P; U PP, \ X;

if |Sep;| > k then label self axluster-node
else

A W N P

[¢)]

if 3X; € C; suchthatSep;| > k then label self agluster-root
elselabel self as normal

7 sendLABEL!" = [Sep;] to P,

[e)]

1. If £ =1, only linear messages are used, and memory requirements are also linear.

2. If k < w, full inference can be performed in areas of width lower thamand an alternative
processing in areas of width higher thianMemory requirements a@(exp(k)).

3. If £ > w, full inference is done throughout the problem, and the algorithm is atgnt with
DPORP (i.e. full inference everywhere). Memory requirements_Hre:p(w)).

Intuitively, the larger thé:, the less need for identifying clusters, and the larger the parts of théeprob
where standard DPOP is applied.

In the next sections, we will discuss a number of extensions of DPOPhwahi@entify complex
subproblems in this way, and then apply different techniques to deal with tBection 6.3 discusses
MB-DPOP, which applies cycle-cutsets to reduce message size, at thiesexpf an increase in the
number of messages. Section 8 introduces the PC-DPOP algorithm, whick fdlothe partial cen-
tralization of difficult subproblems. Section 7.1 introduces the LS-DPORittign, which applies local
search in difficult subproblems, and limited dynamic programming to guide it. 8€tiiintroduces
the A-DPOP algorithm, an approximation scheme which limits the size of the megsa@&#") and
propagates upper and lower bound messages in subproblems with high width

In the following Section 6.2/1, we explain how to determine high-width areag édgorithm/9.

6.2.1 DFS-based Label propagation to determine complex subg raphs

This is an intermediate phase between the DFS and UTIL phases, and itehgealhto delimit
high-width clusters. We emphasize that this process is described agategyhese only for the sake of
clarity; these results can be derived with small modifications from either thmarDFS construction
algorithm, or the subsequent UTIL phase.

Labeling works bottom-up like the UTIL phase. PABEL;_, p, message is composed of the list
of nodes in theseparatorSep; of the sending node(;. Each nodeX; waits for LABEL; _.; messages
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DFS arrangement, and clusters of width=>2

Figure 6.1: A DFS tree of widthv = 4. Minimal areas of high width are identified based
on the node separator size (shaded clustérsCsy and Cs). In low-width areas the normal
UTIL propagation is performed. In high width clusters, alternative UTIbpgagations are
used, and cluster rootsX(y, X9, X14) cache intermediate results.

from its childrenX; € C;, computes its own labdlABEL; _, p,, and sends it to its parel,. The
process finishes when the root has received3 /L. messages from all its children.

Recall that each nod&; can easily determine its separator recursively, as in Equation 3.2. If the
separatoSep; of X; contains more thakh nodes, this means that the UTIL message that normal DPOP
would send would exceed the size limil{exp(k). Therefore,X; is part of a high-width cluster, and
labels itself as &luster-nodeIf a nodeX; has separator size equalit®r less, then the node could be
in one of these two cases:

e if X; has any child which is a cluster-node (i.e. the separator of the child is loaek), then
X, is a cluster-root
e if X; has only children with separators equaktor smaller thark, thenX; is a normal node
Example 11 in Fig. 6.1, letk = 2. Light nodes (e.g. Xy, X1, X3, etc.) all have separator size

less than 2. Bold nodes on the other hand have separator size greate2tfeg. nodeX, has
Sep1a = {Xo, X5, X11}). The shaded areas are the clustérs, C> and C5 identified after running
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Algorithm 9.
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6.3 MB-DPOP(k): Trading off Memory vs. Number of Messages

This section introduces MB-DPOB)((Algorithm [10), a new hybrid algorithm that can operate with
bounded memory. MB-DPOR] is controlled by a parametérwhich allows the user to specify the
maximal amount of inference (maximal message dimensionality). This parametarsisn such that
the available memory at each node is greater tiaifd is the domain size).

MB-DPOP) operates in the framework of Section 6.2 for detecting high-width clustérste it
is not possible to perform full inference as in DPOP. Clusters of high véigthexplored with bounded
propagations using the idea®fcle-cutfs1]. The cycle-cut nodes (CC) are a subset of nodes such that
once removed, the remaining problem has wikltr less. Subsequently, in each cluster all combina-
tions of values of the CC nodes are explored using sequénbalunded UTIL propagations. There-
fore, in these areas of high width, MB-DPOP offers a tradeoff of the fine@anber of messages of
DPOP for polynomial memory. In areas of low width, MB-DPOP uses the nipimgh performance
DPOP propagations.

The overall behavior of MB-DPORJ is as follows: ifw is the induced width of the problem given
by the chosen DFS ordering, depending on the value chosén fag have 3 cases:

1. If £k = 1, only linear messages are used, and a full cycle cutset is determinedPB?(1) is
similar to the AND/OR cycle cutset scheme from[135]. Memory requirementinesa.

2. If £ < w, MB-DPOP¢) performs full inference in areas of width lower thanand bounded
inference in areas of width higher thanMemory requirements a@(exp(k)).

3. If k > w, full inference is done throughout the problem; MB-DP®F6 then equivalent with
DPORP (i.e. full inference everywhere). Memory requirements_Hrerp(w)).

Partial results within each cluster are cached (8,42, 132]) by thectge cluster root and then in-
tegrated as messages into the overall DPOP-type propagation. Thisduips the overall complexity
from exponential in the total number of cycle-cut nodes to exponentiakitatigest number of cycle
cuts in a single cluster.

The rest of this section is organized as follows: we explain how to deternigiewidth areas
and the respective cycle-cuts (Section 6.3.1) and what changes wetmékeUTIL and VALUE
phases (Section 6.3.2 and Section 6.3.3). The complexity of the algorithm zeshdormally in
Section 6.3.4. In Section 6.3.5, we compare MB-DPOP with ADOPT[141], tinect state of the
art in distributed search with bounded memory. MB-DPOP consistently datpes ADOPT on 3
problem domains, with respect to 3 metrics, providing speedups of up tebsoof magnitude.
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DFS arrangement Cluster C,

w=4 (" C2

w=4 > k=2, thus
bounded inference with
2—cutset=(X9,X0)

X . X, are CccC

-d? x 2-dimensional
propagations (X_,X,)
-best ones cached by X
*Memory is O(d?), not d*!

(b)

Notice that X, is not
CC in C_, but in C_!!

(a) —normal UTIL, g hounded.

Figure 6.2: A DFS tree of width w=4. In low-width areas the normal UTIL propagation is
performed. In high width areas (shaded clustés C> andCs in (a)) bounded UTIL propa-
gation is used. All messages are of size at nibs€Cycle-cut nodes are hashelif, Xo, X13),
and X, X9, X14 are cluster roots. In (b) we show a 2-bounded propagation.

6.3.1 MB-DPOP - Labeling Phase to determine the Cycle Cuts

This is an extension of the framework of Section 6.2 for detecting high-widipreblems, where it is
not possible to perform full inference as in DPOP. In addition to groupmges into clusters of high
width, this extension also designates a subset of these nodes to be wyotses (called av-cutset
in[23]).

As in Section 6.2, labeling works bottom-up like the UTIL phase. Each dgdeaits forLABEL;'.
messages from its childreli;, computes its own IadeABELfi, and sends it to its paredt. In
Section 6.2, label messages contain the separator of the sending noelewelextend them by adding
to each message a li6tC; of nodes to be designated as cycle cuts. The semantics of tli&listent
from X; to P; is as follows:V.X. € C'C;, there is a nod&; in the cluster which containX;, such that
X; has|Sep;| > k, andX; therefore declared’. as a CC node. Each node computes this list through
a heuristic function based on the separator of the node, and on the ligid®fcuts received from the
children (see next section).

As the labeling process proceeds, the list of CC nodes will “accumulateétoltister root, which
is able to send its UTIL message as in normal DPOP, since its size limit is obs@weskequently, the
cluster root will send an empty CClist to its parent, as the nodes in its own chesternot be treated
as CC nodes upstream.
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Algorithm 10 MB-DPOP - memory bounded DPOP.
MB-DPOP(X, D, R, k): each agenk; does:

Labeling protocol:
1 wait for all LABEL§ msgs from children
2 if |Sep;| < k then

3 if UCClists # () then label self as CR
4 elselabel self as normal

5 CC’i — @
6 else

let N = Sep; \ UCClists
select a se€'C),¢,, Of |[N| — k nodes fromV
returnCC; = CChew U CClists

10 sendLABEL!" = [Sep;, CCy] to P;

UTIL propagation protocol
11 wait for UTILi messages from all childrek, € C (i)
12 if X; = normal nodeghen do UTIL / VALUE as DPOP
13 else

14 | do propagations for all instantiation 6fC'lists
15 if X; is cluster rootthen

16 update UTIL and CACHE for each propagation
17 when propagations finish, send UTIL to parent

VALUE propagation(X; receivesSep; from F;)
18 if X; is cluster rootthen

19 find in cache the&”C* corresponding t&'ep;
20 | assign self according to cached value
21 sendC'C* to nodes inC'C' via VALUE messages

22 else

23 | perform last UTIL withC'C nodes assigned ©0C*
24 assign self accordingly

25 SendVALUE(X; — vf) to all C(i) andPC(3)

6.3.1.1 Heuristic labeling of nodes as CC

Letlabel(Sep;, CClists, k) be a heuristic function that takes as input the separator of a node, the lists
of cycle-cuts received from the children, and an integer k, and itmetanother list of cycle cutset
nodes.

It builds the setV; = Sep; \ {UCClists}: these are nodes iN;’'s separator that are not marked
as CC nodes by;’s children. If |NV;| > k (too many nodes not marked as CC), then it uses any
mechanism to select froidy; a setCC),.,, of |N;| — k nodes, that will be labeled as CC nodes. The
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function returns the set of nodé€&’; = UCClists U CCep.

If the separatofep; of X; contains more thah nodes, then this ensures that enough of them will
be labeled as cycle-cuts, either by the childreXpbr by X; itself. If [Sep;| < k, the function simply
returns an empty list.

Mechanism 1: highest nodes as CC The nodes inV; are sorted according to their tree-depth
(known from the DFS phase). Then, the highéé — k& nodes are marked as CC.

Example 12 in Fig.[6.2, letk = 2. Then,Sepi1s = {Xo, Xg, X11}, CClists1a = 0 = Nig =
Sepro = CCig = {Xo} (Xo is the highest amongg, Xs, X11)

Mechanism 2: lowest nodes as CC This is the inverse of Mechanism 1: the lowedt| — &
nodes are marked as CC.

Example 13in Flg m, letk = 2. Then,Sep12 = {Xo,Xg,Xll}, CClists1s = 0 = Nig =
Sepia = CC1r2 = {X11} (X11 Is the lowest among&y, X5, X11)

6.3.2 MB-DPOP - UTIL Phase

The labeling phase (Section 6.3.1) has determined the areas where the \aidtieisthan k, and the
corresponding CC nodes. We describe in the following how to perfomded-memory exploration
in these areas; anywhere else, the original UTIL propagation fromMD&plies.

Let X; be the root of a cluster. Just like in DPQ¥P, creates eUTILfi table that stores the best
utilities its subtree can achieve for each combination of values of the variabtes,;. X;’s children
X; that have separators smaller than &e¢p;| < k) sendX; normaIUTIL§ messages, as in DPOP;
X, walits for these messages, and stores them.

For the childrenX; that have a larger separatd6¢p;| > k), X; creates &ache table with one
entryCache(sep;) that corresponds to each particular instantiation of the sepasatpre (Sep;); the
size of theCache table is thus exactly the same as the outgoing UTIL messag€)(ieap(|Sep;|)).

X; then starts exploring through k-bounded propagation all its subtreebdhatsent non-empty
CClists. It does this by cycling through all instantiations of th€" variables in the cluster. Each
one is sent down to its children viacantextmessage. Context messages propagate top-down to all the
nodes in the cluster.

The leaves of the cluster then start a bounded propagation, with the S mmiantiated to the
values specified in the context message. These propagation aretgadreminvolve k dimensions or
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less, and they proceed as in normal DPOP, until they régcthe root of the clusterX; then updates
the best utility values found so far for eagtp; € (Sep;), and also updates the cache table with the
current instantiation of the CC nodes in case a better utility was found.

When all the instantiations are explored, simply sends to its parent the upda’(é()FILfi table
that now contains the best utilities &f;'s subtree for all instantiations of variables$iap;, exactly as
in DPOP. P, then continues the UTIL propagation as in normal DPOP, and all the comptexitye
cycle cutset processing performed below in the cluster rootéd &t transparent to it.

Example 14 In Figure|6.2, letk = 2; then Cy = {Xo, X10, X11, X12, X13} is an area of width
higher than 2. X is the root ofC5, as the first node (lowest in the tree) that hag; < k. Using
the Mechanism 1 for selecting CC nodes, we h&yeX, as CC inCy. Xy cycles through all the
instantiations(Xy, Xy), and sends its child{;, context messages of the fofy = a, Xy = b)
(only to X9 becauseX 5 requires no cycle cutset processing, and has already sent its UTdkage
to Xy). These context messages travel to all nodes in cluster X1, X711, X12 and Xi3. Upon
receiving a context messagk;> and X3 start 2-bounded UTIL propagationX(;» with X1, and Xg
as dimensions, and’; 5 with X711 and X34 as dimensions).

6.3.3 MB-DPOP - VALUE Phase

The labeling phase has determined the areas where bounded inferesiderapplied due to excessive
width. We will describe in the following the processing to be done in thesesapeiéside of these, the
original VALUE propagation from DPOP applies.

The VALUE message that the rodf; of a cluster receives from its parent contains the optimal
assignment of all the variables in the separaiep; of X; (and its cluster). X; retrieves from its
cache table the optimal assignment corresponding to this particular instantibti@separator. This
assignment contains its own value, and the values of all'tiemodes in the clustetX; informs all the
CC nodes in the cluster what their optimal values are A& UE messages).

As the non-CC nodes in the cluster could not have cached their optimabvalua! instantiations
of the CC nodes, it follows that a findUTIL propagation is required in order to re-derive the utilities
that correspond to the particular instantiation of €' nodes that was determined to be optimal.
However, this is not an expensive process, since it is a single priagaith dimensionality bounded
by k& (the CC nodes are instantiated now). Thus, it requires only a linear number obgessthat are
at mostezp(k) in size.

Subsequently, outside the clusters, ¥ _UE propagation proceeds as in DPOP.
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6.3.4 MB-DPOP(k) - Complexity

Assume we have chosen a given In low-width areas of the problem, MB-DPOP behaves exactly
as DPOP: it generates a linear number of messages that are af’iminstize. Clusters are formed
where the width exceeds. Let T be such a cluster; we denote [§§| the number of nodes in the
clusterT’, and by|C'C(T')| the number of cycle cut nodes in clust®r Let T* be the cluster such that

T* = argmazp|CC(T)| (the cluster with the largest number of cycle cut nodes). Then we have the
following:

Theorem 2 (MB-DPOP Complexity) MB-DPOP ) requires at most) (exp(k)) memory at each node.
MB-DPOP) requires at mosO (exp(|CC(T™)|)) messages, each of size at mosexp(k)).

PROOF For the first part of the claim: during the initial labeling phase, each netigmines the size of

its separator. Nodes with separator size smaller thact as in DPOP, and thus send messages smaller
thanO(exp(k)), and require memory smaller thaexp(k)). Nodes with separator size greater than

k turn to the bounded inference process, which limit the size of their messag¢szp(k)).

For the second part of the claim: MB-DPQ@pexecutes!/““(TI k-bounded propagation in each
clusterT'. Each propagation requirés| — 1 messages, as each execution is similar to a limited DPOP
execution. The size of these messages is boundétl by construction. Itis easy to see that the overall
time/message complexity is given by the most difficult clustér, O(exp(|CC(T*)|)) whereT* is
the cluster that has the maximal number of CC nodes.

6.3.5 MB-DPOP: experimental evaluation

We performed experiments on 3 different problem domains: distributesbsaptworks (DSN), graph
coloring (GC), and meeting scheduling (MS). All experiments are run od anBchine with 1GB
RAM, using the FRODOJ[154] simulation platform.

6.3.5.1 Meeting scheduling

We generated a set of relatively large distributed meeting scheduling prebléghe model is as in[127],
and described in detail in Section 2.3.1. Briefly, an optimal schedule has floubd for a set of

meetings between a set of agents. The test instances contained from 0 ageints, and 5 to 60
meetings, yielding large problems with 16 to 196 variables. The larger probl&res also denser,
therefore even more difficult (induced width from 2 to 5).

The experimental results are presented in Figure 6.3. Figure 6.3(a¥ $hewumber of messages
exchanged, and Figure 6.3(b) shows the sum of all message sizese@n Bygure 6.3(¢) shows the
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Figure 6.3: MB-DPOP) vs ADOPT - evaluation on meeting scheduling problems.

runtime in miIIisecondsm. Please natice the logarithmic scale! ADOPT did not scale on these prob-
lems, and we had to cut its execution after a threshold of 2 hours or 5 millioragesswhichever
occured first. The largest problems that ADOPT could solve had 2Gs{variables).

We also executed MB-DPOP with increasing boukd#As expected, the larger the bouhdthe
less nodes will be designated@s¢’, and the fewer messages will be reqL@(.eldowever, message size
and memory requirements increase.

Itis interesting to note that even MB-DPOP(1) (which uses linear-sizeagessjust like ADOPT)
performs much better than ADOPT: it can solve larger problems, with a smalheber of messages.
For example, for the largest problems ADOPT could solve, MB-DPOP(@Jyced improvements

'Each data point is an average over 10 instances
2Mechanism 1 for CC selection was used.
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of 3 orders of magnitude. MB-DPOP(2) improved over ADOPT on somenastafor 5 orders of
magnitude.

Also, notice that even though MB-DPQOP¢ 1) sends larger messages than ADOPT, overall, it
exchanges much less information (Fig 6.3(b)). We believe there are @hets this: ADOPT sends
many more messages, and because of its asynchrony, it has to attach toatkxt to all of them
(which produces extreme overheads).

6.3.5.2 Graph Coloring

The GC problems are the same as the ones used in[127], and are availliidead[151]. These
are small instances (9 to 12 variables), but they are more tightly connecig@dre quite challenging
for ADOPT. ADOPT terminated on all of them, but required up to 1 hour cdatfmn time, and 4.8
million messages for a problem with 12 variables. The results are shown irefég

6.3.5.3 Distributed Sensor Networks

The DSN problems are also the same as the ones used in[127], and availaideat[151]. The DSN

instances are very sparse, and the induced width is 2, so MB-DPOR) always runs with a linear
number of messages (from 100 to 200 messages) of size at most 25. Ruatiesefrom 52 ms to

2700 ms. In contrast, ADOPT sends anywhere from 6000 to 40.000 ge=ssand requires from 6.5
sec to 108 sec to solve the problems. Overall, these problems were vgrpedB-DPOP, and we

have experienced around 2 orders of magnitude improvements in termdJbofil@® and number of

messages.

All three domains showed strong performance improvements of MB-DP@Ptlog previous state
of the art algorithm, ADOPT. On these problems, we noticed up to 5 ordenaghitude less compu-
tation time, number of messages, and overall communication.

6.3.6 Related Work

The w-cutset idea was introduced in[177]. wkcutsetis a setC'C of nodes that once removed, leave
a problem of induced widttv or less. One can perform search on the w-cutset, and exact inéfepenc
the rest of the nodes. The scheme is thus time exponenti&fin and space exponential in

If separators smaller thanexist, MB-DPOPE) isolates the cutset nodes into different clusters, and
thus it is time exponential iIC'C(T,q.)| as opposed to exponential [@C|. Since|CC(Taz)| <
|CC|, MB-DPOP(w) can produce exponential speedups oventhautset scheme.

AND/OR w-cutset is an extension of the w-cutset idea, introduced in[135]. uHeatset nodes
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are identified and then arranged astart-pseudotreeThe lower parts of the pseudotree are areas of
width bounded byw. Then AND/OR search is performed on tlecutset nodes, and inference on the
lower parts of bounded width. The algorithm is time exponential in the depthedfttirt pseudotree,
and space exponential in.

It is unclear how to apply their technique to a distributed setting, particulargrass the identi-
fication of the w-cutset nodes and their arrangement as a start pssidoérconcerned. MB-DPOP
solves this problem elegantly, by using the DFS tree to easily delimit clustersl@mify w-cutsets.
Furthermore, the identifie@d-cutsets are already placed in a DFS structure.

That aside, when operating on the same DFS tree, MB-DPOP is superierAND/OR w-cutset
scheme without caching on the start pseudotree. The reason is that?BRan exploit situations
where cutset nodes along the same branch can be grouped into difflertiers. Thus MB-DPOP’s
complexity is exponential in the largest number of CC nodes in a single clugtereas AND/OR
w-cutset is exponential in the total number of CC nodes along that branBADROP has the same
asymptotic complexity as the AND/OR-cutset withw-bounded caching.

Petcu and Faltings present in[156] a distributed cycle cutset optimization dneffire idea of
isolating independent cyclic subgraphs appears there, too, butumditely there is no efficient method
presented for identifying cycle cutset nodes, nor for isolating indegr@nzy/clic subgraphs. Here, the
DFS traversal of the graph is an excellent way to achieve both goalge,Tihe separator sizes are
always forced to 1, resulting in less opportunities for finding small clustieas have a small number
of cycle cuts. The inference is also bounded te: 1, not allowing the algorithm to take advantage of
additional memory that may be available. The complicated synchronizatioteprsiibetween cycles
from that method are solved here by simply making each cluster root waibfoplete exploration of
all its cluster(s) before sending its message to its parent.

Finally, tree clustering methods (e.g.[107]) have been proposed forsjpmee tradeoffs. MB-
DPOP uses the concept loosely, only in high-width parts of the problena oen DFS tree, optimal
clusters are identified based on the boérahd on node separator size.

6.3.7 Summary

We have presented a hybrid algorithm that uses a customizable amount ofryremioguarantees
optimality. The algorithm uses cycle cuts to guarantee memory-boundedmgsmehing between
clusters to reduce the complexity. The algorithm is particularly efficient oselqgaroblems, where
most areas are explored with a linear number of messages (like in DP@Pyngnsmall, tightly
connected components are explored using the less efficient boundeenicé. This means that the
large overheads associated with the sequential exploration can bechivoidest parts of the problem.

Experimental results on three problem domains show that this approashgged results for low
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width, practically sized optimization problems. MB-DPOP consistently outpmddhe previous state
of the artin DCOP (ADOPT) with respect to 3 metrics. In our experiment$)ave observed speedups
of up to 5 orders of magnitude.
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6.4 O-DPOP: Message size vs. Number of Messages

In this section we propose O-DPOP, a new distributed algorithm for DCQRcé#maalso be applied
to openconstraint optimization problems (OCOP), i.e. problems that feature unbdutamains[70].
The O-DPOP algorithm explores the same search space as DPOP or ADRRRDBut does so in an
incremental, best-first fashion suitable for open problems.

As seen in Chapter 3, complete algorithms for distributed constraint optimizafian fwo main
categories: search (see[39, 96,141,198, 225]), and dynangcgonming (see[107, 160]).

On one hand, search algorithms (e.g. ADOPT) require linear memory arghgeesize, and the
worst case complexity can sometimes be avoided if effective pruning isbpmsklowever, they pro-
duce an exponential number of small messages, which typically entails keirgerking overheads.

On the other hand, dynamic programming algorithms (e.g. DPOP) have the intpaxtsantage
that they produce fewer messages, therefore less overhead. DP&®inple requires a linear number
of messages. The disadvantage is that the maximal message size and meuioeynents grows
exponentially in the induced width of the constraint graph. Furthermoreydingt case complexity is
always incurred.

In this section we introduce O-DPOP, a hybrid which combines some adesntédpoth worlds:
First, it uses messages whose size only grows linearly (as in search) aitied¢hvidth of the problem.
Second, by letting agents explore values in a best-first order, it avaidgiing always the worst case
complexity as DPOP, and on average it saves a significant amount of tatiopuand information
exchange. This is possible because the agents in O-DPOP use a besdérdor value exploration,
and an optimality criterion that allows them to prove optimality even without explaihtpe values
of their parents. This makes O-DPOP applicable also to open constraint ggtoniproblems, where
variables may have unbounded domains[70].

We describe next the O-DPOP algorithm (Section 6.4.1 and Section 6.408),estamples, and
evaluate its complexity, both theoretically (Section 6.4.3) and experimentalliig6éc4.4). Although
its worst case complexity is the same as for DPOP, O-DPOP exhibits in ouriraepes significant
savings in computation and information exchange.

O-DPOPis described in Algorithm 11. It works in 3 phases:

1. Phase 1 - ®FS traversal, as in DPOP (see Figure 6.5 for an example DFS).

2. Phase 2 -ASK/GOOD) phase, which is a replacement of the UTIL phase from DPOP. It is
an iterative, bottom-up utility propagation process, where each nodateeibe asks (vigASK
messages) its children for valuatiorgo6d$ until it can compute suggested optimal values for
its ancestors included in its separator. It then sends these goods to its e phase finishes
when the root received enough valuations to determine its optimal value.
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Figure 6.5: A problem graph and a rooted DFS tree. ASK messages go top-dodG@oD
messages (valued goods) go bottom-up. All messages are of lingar siz

Algorithm 11 O-DPOP - Open/Distributed Optimization
O-DPOPX, D, R): each agenk; does:
DFS arrangement run token passing Algorithm 3

1 At completion,X; knowsP;, PP;, C;, PC;, Sep;

Main process
2 sent_goods «— ()
3 if X, isrootthen
ASK/GOQD until valuation sufficiency
4 else

5 while Ireceived VALUE messagi®

6 Process incoming ASK and GOOD messages

Process ASK
7 while Isufficiency conditional orent_goods do

selectC?* amongC;

send ASK message to &ll*s*
10 wait for GOOD messages
11 find best_good € Sep; S.t. best_good ¢ sent_goods
12 addbest_good to sent_goods, and send it tab;

ProcessGOOD(gd, Xk)
13 addgd to goodstore(Xy,)
14 check for conditional sufficiency

3. Phase 3 VALUE propagation as in DPOP
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6.4.1 O-DPOP Phase 2: ASK/GOOD Phase

In backtracking algorithms, the control strategy is top-down: starting ff@mwoot, the nodes perform
assignments and inform their children about these assignments. In tbtighildren determine their
best assignments given these decisions, and inform their parents aiitheubounds on this utility.

This top-down exploration of the search space has the disadvantagfestiparents make decisions
about their values blindly, and need to determine the utility for every one oidlees before deciding
on the optimal one. This can be a very costly process, especially wherirdoana large.

Additionally, if memory is bounded, many utilities have to be derived over ardayain[141, 170].
This, coupled with the asynchrony of these algorithms makes for a largeramibeffort to be dupli-
cated unnecessarily[241].

6.4.1.1 Propagating GOODs

In contrast, we propose a bottom-up strategy in O-DPOP, similar to the onP©OPDIn this setting,
higher nodes do not assign themselves values, but instead ask theierchildat values would they
prefer. Children answer by proposing values for the parents’ VasalEach such proposal is called a
good and has an associated utility that can be achieved by the subtree rotbiedlaitd, in the context
of the proposal.

Definition 22 (Good) Given a nodeX;, its parentP; and its separatoSep;, agood messagé?OODfi
sent fromX; to P, is a tuple (assignments, utility) as follows: GOODZP" = ({X; = vﬂXj €
Sepi,v;? € Dj},veR).

In words, a goocGOODfi sent by a node; to its parentP; has exactly one assignment for each
variable inSep;, plus the associated utility generated by this assignment for the subtred abdie
In the example of Figure 6.5, a good sent frdfg to X, might have this formGOOD? = (X; =
a, Xo = ¢, 15), which means that iKs = a and X, = ¢, then the subtree rooted & gets 15 units of
utility.

Definition 23 (Compatibility: =) Two good messagesO0O D, and GOO D, are compatible (we
write thisGOOD; = GOO Dy) if they do not differ in any assignment of the shared variables. Other-
wise,GOOD, # GOOD,.

Example:(Xs = a, Xg = ¢,15) = (X3 = a, 7), but(Xs = a, Xg = ¢,15) # (X = b, 7).

Definition 24 (Join: @) Thejoin & of twocompatiblegood message@OODj = (assigj,val;) and
GOOD:, = (assigy,valg) is a new gOOCGOODj-’k = (assig; U assigy, val; + valy)
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Example in Figure 6.5: lefOOD}, = (X5 = a, Xo = ¢, 15) andGOOD}, = (X5 = a, X2 = b, 7).
ThenGOOD?, ® GOOD3y = (X5 = b, Xy = ¢, X5 = a,22).

6.4.1.2 Value ordering and bound computation

Any child X; of a nodeX; delivers to its pareni; a sequence oGOOD;? messages that explore
different combinations of values for the variablesSap;, together with the corresponding utilities.
We introduce the following important assumption:

Best-first Assumption leaf nodes (without children) report thei#OODs in order of
non-increasing utility.

This assumption is easy to satisfy in most problems: it corresponds to gyderiries in a relation
according to their utilities. Similarly, agents usually find it easy to report wreit thost preferred
outcomes are.

We now show a method for propagati6g)O Ds so that all nodes always rep6tOO Ds in order
of non-increasing utility provided that their children follow this order. Tibge with the assumption
above, this will give an algorithm where the filSOO D generated at the root node is the optimal
solution. Furthermore, the algorithm will be able to generate this solution witrenibhg to consider
all value combinations.

Consider thus a nodd; that receives from each of its childrexy; a stream ofGOODs in an
asynchronous fashion, but in non-increasing order of utility.

Notation: let LAST]? be the last good sent hi; to X;. Let (Sep;) be the set of all possible
instantiations of variables ifiep;. A tuples € (Sep;) is such an instantiation. LﬁOOD;l(t) be a
good sent byX to X; that is compatible with the assignments in the tuple

Based on the goods thaf; has already sent t&(;, one can define lower (LB) and upper (UB)
bounds for each instantiatiene (Sep;):

LB;( ) = val(GOODS(t)) if X; sentGOODY(t) st.t=s
—00 otherwise

val(GOODI(t)) if X; sentGOOD}(t)st.t=s
UBj(s) = val(LASTY) if X; has sent angzOOD;;
400 if X; has not sent angOO D’
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The influence of all children ok; is combined in upper and lower bounds for each (Sep;) as
follows:

e UB(s) = ZX]EQ UB;?(s); if any of X; € C; has not yet sent any good, thUrBj-(s) = 400,
andU B'(s) = +o0. UB'(s) is the maximal utility that the instantiationcould possibly have
for the subproblem rooted &f;, no matter what other goods will be subsequently received by
X;. Note that it is possible to infer an upper bound on the utility of any instantiatierSep;)
as soon as even a singl& 0O D message has been received from each child. This is the result of
the assumption th&' OO Ds are reported in order of non-increasing utility.

o LBi(s) = Exjeci LBJ".(s); if any of X; € C; has not yet sent any good compatible with
s, then LBj(s) = —oo, andLB’(s) = —oo. LB'(s) is the minimal utility that the tuple
s € (Sep;) could possibly have for the subproblem rooted@atno matter what other goods will
be subsequently received B;.

Examplesbased on Table 6.2:

e GOOD} (X4 =rc) = (X4 =c],4).

LAST{, = ([ X4 = a],3).

LB{y(X4 = c) =4andLB§(X, = c¢) = —oo , becauseX, has received &00D},(X4 = c)
from X1, but not aGOOD3 (X4 = ¢) from Xo.

Similarly, UB{,(X4 = ¢) = 4 andUB3(Xy = ¢) = val(LASTy) = val(GOOD§(X, =
f)) =1, becauseX, has received &00D (X, = c) from X1, but not fromXy, so the latter
is replaced by the latest received good.

6.4.1.3 Valuation-Sufficiency

In DPOP, agents receive allOO Ds grouped in single messages. In O-DPGBO Ds can be sent
individually and asynchronously as long as the order assumption is satisherefore X; can deter-
mine when it has receivegshoughgoods from its children in order to be able to determine the next best
combination of values of variables #ep;[70]. In other words X; can determine when any additional
goods received from its childrek; will not matter w.r.t. the choice of optimal tuple féfep;. X; can

then send its parerft; a valued good* € Sep; suggesting this next best value combination.

Definition 25 Given a subsef of tuples from(Sep;), atuplet* € {(Sep;)\S} isdominant conditional
on the subse$, whenvt € {(Sep;) \ S|t # t*}, LB(t*) > UB(t).
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In words, t* is the next best choice fdfep;, after the tuples irs. This can be determined once
there have been received enough goods from children to allow thedititib one tuple’s lower bound
is greater than all other’s upper bound. Then the respective tuple détiomal-dominant.

Definition 26 A variable isvaluation-sufficient conditional on a subsetC (Sep;) of instantiations
of the separatowhen it has a tuple* which is dominant conditional off.

6.4.1.4 Properties of the Algorithm

The algorithm used for propagatifgOO Ds in O-DPOP is given by process ASK in Algorithm|11.
Whenever a new=OOD is asked by the parentX; repeatedly asks its children fa*fOODs. In
response, it receiveSOO D messages that are used to update the bounds. These bounds are initially
settoLB!(Vt) = —oo andU B¥(Vt) = +oo. As soon as at least one message has been received from
all children for a tuple, its upper bound is updated with the sum of the utilities received. As more and
more messages are received, the bounds become tighter and tighter,euietiveh bound of a tuplée
becomes higher than the upper bound of any other tuple.

At that point, we callt* dominant X; assembles a good messa@é)ODiPi = (t*,val =
LB (t*) = UB'(t*)), and sends it to its paref. The tuplet* is added to theent_goods list.

Subsequentd S K messages fron®; will be answered using the same principle: gather goods, re-
compute upper/lower bounds, and determine when another tuple is domiravevét, the dominance
decision is made while ignoring the tuples framt_goods, so the "next-best” tuple will be chosen.
This is how it is ensured that each node in the problem will receive utilitietufgiesin decreasing
order of utilityi.e. in a best-first order, and thus we have the following Theorem:

Proposition 10 (Best-first order) Provided that the leaf nodes order their relations in non-increasing
order of utility, each node in the problem ser@®O Ds in the non-increasing order of utility i.e. in a
best-first order.

PROOF By assumption, the leaf nodes se&#@O Ds in best-first order. Assume that all children of
X; satisfy the Theorem. Then the algorithm correctly infers the upper bamtie various tuples, and
correctly decides conditional valuation-sufficiency. If it sends@O D, it is conditionally dominant
given all GOO Ds that were sent earlier, and so it cannot have a lower utility tharGapg D that
might be sent latefd

Example 15 (Conditional valuation-sufficiency: an example)Let us consider a possible execution
of O-DPOP on the example problem from Figure 6.5. Let us consider tthe Xig, and let the relation
r1 be as described in Table 6.1.
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Xi/Xg=|a|blc|d|e]|f
Xi=a [1]|2]6]2]1|2
Xi1=b |5]1|2|1/2]|1
Xi=c¢c |2|1]|1|1|2]|1

Table 6.1: RelationR( X4, X7).

X9 X10 X1
(X4 =4a,6) | (X4=0,5) | (X4=1¢,X1 =aqa,6)
(Xy=4d,5) | (Xy=¢,4) | (Xg=a,X1=Db,5)
(Xa=f,1) | Xg4=2a,3) | (X4=0b,X1=0a0,2)

Table 6.2: Goods received by . The relationr} is present in the last column, sorted best-
first.

As a result to its parenk; asking X, for goods, let us assume that has repeatedly requested
goods from its childrenXy and X1¢. X9 and X1y have replied each with goods; the current status is
as described in Table 6.2.

In addition to the goods obtained from its childreXy, has access to the relatimj with its parent,
X1. This relation will also be explored in a best-first fashion, exactly as the suplseived fromX,’s
children (see Table 6.2, last column).

Let us assume that this is the first tilig has askedX, for goods, so theent_goods list is
empty. We compute the lower and upper bounds as described in theysresgotion. We obtain
that LB'((X4 = a,X; = b)) = 14. We also obtain tha¥t # (X, = a,X; = b), UB'(t) <
LB'({X, = a, X1 = b)) = 14. Therefore{ X, = a, X; = b) satisfies the condition from Definition 26
and is thus dominant conditional on the curresatt_goods set (which is empty). Thug, records
(X4 =a,X1 =0,14) in sent_goods and send€xO0D(X; = b, 14) to Xj;.

ShouldX; subsequently ask for another gool, would repeat the process, this time ignoring the
previously sent tupl&OOD(X; = b, 14).

6.4.1.5 Comparison with the UTIL phase of DPOP

In DPOP, the separatdiep; of a nodeX; gives the set of dimensions of thE'IL message fronX; to
its parent:Sep; = dims(UTIL!") Therefore, the size of dTIL message in DPOP i#%:|, whered
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is the domain size. This results in memory problems in case the induced width afribieaint graph
is high.

In O-DPOP, theASK/GOODphase is the analogue of thEIL phase fronDPOP. A GOODfi
message corresponds exactly to a single utility froﬁﬂa[Lfi message from DPOP, and has the same
semantics: it informg”; how much utility the whole subtree rooted &t obtains when the variables
from Sep, take that particular assignment.

The difference is that the utilities are sent on demand, in an incrementarfaghparentP; of a
nodeX; sends taX; anASKmessage that instruct§; to find the next best combination of values for
the variables irfep;, and compute its associated utilit¥; then performs a series of the same kind of
gueries to its children, until it gathers enough goods to be able to determimeghisest combination
t* € (Sep;) to send taP;. At this point, X; assembles a messa@@ODiPi (t*,val) and sends it td;.

6.4.2 O-DPOP Phase 3: top-down VALUE assignment phase

The VALUE phase is similar to the one froDMPOP. Eventually, the root of the DFS tree becomes
valuation-sufficientand can therefore determine its optimal value. It initiates the top-déMlrJE
propagation phase by sendinyALUE message to its children, informing them about its chosen value.
Subsequently, each nodg receives theVALUE}Di message from its parent, and determines its opti-
mal value as follows:

1. X; searches through ite:nt _list for the first goodGOOD™ (highest utility) compatible with
the assignments received in fiALUE message.

2. X; assigns itself its value fro@OOD™: X; — vy

3. VX; € C;, X; builds and sends YALUE message that contaids; = v} and the assignments
shared betweel ALUE}, andSep;. Thus,X; can in turn choose its own optimal value, and
S0 on recursively to the leaves.

6.4.3 O-DPOP: soundness, termination, complexity

Theorem 3 (Soundness)O-DPOP is sound.

PrROOF O-DPOP combines goods coming from independent parts of the probldmrges in DFS
are independent). Theorem 10 shows that the goods arrive in théireesirder, so when we have
valuation-sufficiency, we are certain to choose the optimal tuple, provigetliple fromSep; is opti-
mal.
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The top-downVALUE propagation ensures (through induction) that the tuples selected totbe par
of the overall optimal assignment, are indeed optimal, thus making also all asi¢sfor allSep;
optimal. O

Theorem 4 (Termination) O-DPOP terminates in at mogth — 1) x d* synchronous ASK/GOOD
steps, wheré is the depth of the DFS treéd,bounds the domain size, aadis the width of the chosen
DFS. Synchronous here means that all siblings send their messatipessame time.

PrRoOOF The longest branch in the DFS tree is of lenfith- 1 (andh is at mostn, when the DFS is
a chain). Along a branch, there are at mét": ASK/GOODmessage pairs exchanged between any
nodeX; and its parent. Sinc8ep; < w, it follows that at mosth — 1) x d* synchronous®\SK/GOOD

message pairs will be exchangedl.
Theorem 5 (Complexity) The number of messages and memory required by O-DPORd$).

PROOF By construction, all messages in O-DPOP are linear in size. Regardimgithieer of mes-
sages:

1. the DFS construction phase produces a linear number of mes@ages:messagesn is the
number of edges);

2. theASK/GOODphase is the analogue of thIL phase in DPOP. The worst case behavior of
O-DPORP is to send sequentially the contents ofufi¢l. messages from DPOP, thus generating
at mostd® ASK/GOODmessage pairs between any parent/child ndde the maximal domain
size, andw is the induced width of the problem graph). Overall, the number of messages
O((n — 1) x d“). Since all these messages have to be stored by their recipients, the memory
consumption is also at mog?’.

3. theVALUE phase generates — 1 messages,n(is the number of nodes) - one through each
tree-edge.

Notice that thel™ complexity is incurred only in the worst case. Consider an example: a Kpde
receives first from all its children the same tuple as their most prefermmediden this is simply chosen
as the best and sent forward, akigdneeds only linear memory and computation!

6.4.4 Experimental Evaluation

We experimented with distributed meeting scheduling in an organization with adhiexa structure
(a tree with departments as nodes, and a set of agents working in eacintent). The CSP model is



Tradeoffs between Memory/Message Size and Number of Messages 115

Agents 10 20 30 50 100
Meetings 3 9 11 19 39
Variables 10 31 38 66 136
Constraints 10 38 40 76 161
# of messages | 35/9 778/30 | 448/37 | 3390/65 9886 /135
Max message size 1/100 | 1/1000 | 1/100 1/1000 1/1000
Total Goods | 35/360| 778/2550| 448/1360| 3390 /10100 9886 / 16920

Table 6.3: O-DPOP vs DPOP tests on meeting scheduling (values stated as O-DPOP) DPO

the PEAV model from[127]. Each agent has multiple variables: one fasttretime of each meeting it
participates in, with 10 timeslots as values. Mutual exclusion constraints arsespn the variables
of an agent, and equality constraints are imposed on the correspondilgies of all agents involved
in the same meeting. Private, unary constraints placed by an agent on t&oalries show how much
it values each meeting/start time. Random meetings are generated, each evidirawtility for each
agent. The objective is to find the schedule that maximizes the overall utility.

Table 6.3 shows how our algorithm scales up with the size of the problemsxpdrienents are
run on the FRODO multiagent simulation platform[154]. The values are depast©-DPOP / DPOP,
and do not include the DFS and VALUE messages (identical). The numbmes$ages refers to
ASK/GOODmessage pairs i@ — DPOP andUTIL messages i PO P. The maximal message size
shows how many utilities are sent in the largest messaB®@P, and is always 1 in O-DPOP (a single
good sent at a time). The last row of the table shows significant savings imuthber of utilities sent
by O-DPOP GOOD messages) as compared to DPOP (total size dJifie messages).

6.4.5 Comparison with search algorithms

In backtrack search algorithms, the control strategy is top-down: stdrtingthe root, the agents per-
form assignments and inform their children about these assignmentsuin,rde children determine
their best assignments given these decisions, and inform their parehts wiility or bounds on this
utility. This top-down exploration of the search space has the disadvathiaigihe parents make deci-
sions about their values blindly, and need to determine the utility for everpbiieir values before
deciding on the optimal one. This can be a very costly process, espedmdlydomains are large. Ad-
ditionally, if memory is bounded, many utilities have to be derived over andamyain[141,170]. This,
coupled with the asynchrony of these algorithms makes for a large amoeffodfto be duplicated
unnecessarily[241].

In contrast, O-DPOP uses a bottom-up strategy, similar to the one of DP@#s Betting, higher
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agents do not assign themselves values, but instead ask their childremalves would they prefer.
Children answer by proposing values for the parents’ variables. eTpegposals are similar to the
COST messages in search algorithms, the difference being that theynamgragctively, and in the
context chosen by the lower agents, as opposed to search, wherepbeals are chosen by the higher
agents. By using the idea ehluation sufficiengyO-DPOP can possibly find the optimal solution
without exploring all values of some of the variables, which is in contrast sg#rch algorithms. This
also enables O-DPOP to be able to deal wiplenproblems, i.e. problems with unbounded domains.

6.4.6 Summary

O-DPOP uses linear size messages by sending the utility of each tupleisbp&ased on the best-first
assumption, we use the principle of open optimization[70] to incrementally gadpahese messages
even before the utilities of all input tuples have been received. This eaxjploited to significantly
reduce the amount of information that must be propagated. In fact, the dptiadon may be found
without even examining all values of the variables, thus being possibletovleanbounded domains.

Preliminary experiments on distributed meeting scheduling problems show tB&QR gives
good results when the problems have low induced width.

As the new algorithm is a variation of DPOP, we can apply to it the techniqueslfestabilization[165],
approximations and anytime solutions[158], distributed implementation and meeimpatibility[171]
that have been proposed for DPOP.



Chapter 7

Tradeoffs between Memory/Message
Size and Solution Quality

In this chapter we discuss possible tradeoffs betweenisolguality on one hand, and compu-
tation/memory/communication requirements on the othadh&Ve introduce two algorithms that
offer configurable tradeoffs quality/effort.

In Section 7.1, we introduce LS-DPOP(k), a hybrid algorittvimich is a mix between classical
local search methods in which nodes take decisions basgdarbcal information, and full infer-
ence methods that guarantee completeness. LS-DPOP opardtes framework from Section 6.2
for detecting difficult subproblems, where normal DPOP a#nme applied. In such subprob-
lems, LS-DPOP executes a local search procedure guided byuah inference as allowed lay
LS-DPOP(K) can be seen as a large neighborhood search, véxgenential neighborhoods are
rigorously determined according to problem structure, godynomial efforts are spent for their
complete exploration at each local search step.

The second contribution of this chapter is A-DPOP (Secti@), & parameterized approximation
scheme based on DPOP, which allows the desired tradeofieleetwsolution quality and computa-
tional complexity. A-DPOP allows to adapt the size of thgémt message to the desired approxi-
mation ratio. Clusters of high width are detected as in $#t6.2 and explored with approximate
propagations using the idea of minibuckets[49, 51].

7.1 LS-DPOP: a local search - dynamic programming hybrid

We present a hew hybrid algorithm for local search in distributed combiinhtuptimization. This
method is a mix between classical local search methods in which nodes tagiemniebased only on
local information, and full inference methods that guarantee completeness

We propose LS-DPORY], a hybrid method that combines the advantages of both these approaches

117
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LS-DPOPE) is a utility propagation algorithm controlled by a paraméterhich specifies the maximal
allowable amount of inference. The maximal space requirements areemtgiiin this parameter. In
the dense parts of the problem, where the required amount of infenec®eds this limit, the algorithm
executes a local search procedure guided by as much inferencewsdaldy k. LS-DPOPE) can
be seen as a large neighborhood search, where exponential mbigbtte are rigorously determined
according to problem structure, and polynomial efforts are spentéar¢bmplete exploration at each
local search step.

For difficult optimization problems, local search methods have been dedlophese methods
start with a random assignment, and then gradually improve it by applyingnmettal changes. Their
advantage is that they require linear memory, and in many cases providesgabions with a small
amount of effort. However, the decisions taken are often myopic in treegbat they take into account
only local information, thus getting stuck into local optima rather easily. Laggghtvorhood search[3]
tries to overcome this problem by exploring a much larger set of neighbstidtes before moving to the
next one. Dynamic programming has already been recognized as @meffiay to explore exponential
size neighborhoods with a polynomial effort[67]. Another example chsaihybrid technique is the
work of Kask and Dechter from[105] (see Section 7.1.5).

For distributed environments, there are distributed local search metho@Sk¢109]) / DBA([237])
for optimization, and DBA for satisfaction ([226]). To our knowledge, thecept of large neighbor-
hoods has not been exploited in distributed environments.

We propose a distributed algorithm that combines the advantages of bothahye®aches. This
method is a utility propagation algorithm controlled by a paramgterhich specifies the maximal
allowable amount of inference. The maximal space requirements areemtfiin this parameter. In
the dense parts of the problem, where the required amount of infenec®eds this limit, the algorithm
executes a local search procedure guided by as much inferencevasdalty k. If this parameter
is equal to the induced width of the graph or larger, then the algorithm is fidience, therefore
complete. Larger values @fare conjectured to produce better results.

We show the efficiency of this approach with experimental results from itgkdited meeting
scheduling domain.

The rest of this chapter is structured as follows: Section 7.1.1 presenkgylbhniel optimization
algorithm. Section 7.1/4 presents an experimental evaluation. Section 7.4ehisréhe relationship
between this approach and existing work. Section 7.1.6 concludes.

7.1.1 LS-DPOP - local search/inference hybrid

We keep the basic utility propagation mechanism from DPOP, but we intrcagoatrol parameter
k which specifies the maximal amount of inference (maximal message dimensipnidithe dense
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Original problem DFS from X = pseyudotree arrangement DPOP (X)) on C,
—»

(a)

Figure 7.1: A problem graph, one possible rooted DFS tree, and an execution dEEROP
in Cs.

parts of the problem, the exact propagation produces messages with imeresihns than this limit.
In such cases, the algorithm executes a local search procedurd §yide much inference as allowed
by k. The nodes whose processing by inference would exceddltinét are the ones who execute the
local search procedure. All other nodes execute the normal utility getiga protocol.

7.1.1.1 Detecting areas where local search is required

During the utility propagation procedure frobPOP, each node computes thETIL message for its
parent. In high width areas, some nodes have to send messages whossiahaldy exceeds.

In such cases, those nodes chodges — k dimensions of the message, mark thenoasl search
dimensions, project them out of the outgoing message, and add these idimsdnghecontextof the
message. Thus, the final dimensionality of the messagddize limit observed). The dimensions to
be marked ad.S are chosen according to their level in the pseudotree. This is easy tondetdpr
each node just by finding their position in the node’s root path.

Example 16 For example, conside€’s in Figure/7.1(b). If we run LS-DPOP with = 2, then the
message§/ T1 L1} andUTIL} proceed normally as in DPOP, wittims(UTILi}) = {11,0} and
dims(UTILY) = {11,9}. Howeverdims(UTILYY) = {10,0,8,9}, thus it exceeds = 2. There-
fore, X1; marks X, and Xg (the 2 highest nodes idims(UTIL1))) as LS nodes, projects them
out of UTILYY, and adds them to the context G L{). Thus,dims(UTIL1}) = {10,9} and
context(UTILLY) = {0*,8*}.

The propagation continues, and when the respective messages driyeaad X, they know that



120 Tradeoffs between Memory/Message Size and Solution Quality

they must revert to local search. Note that in this examfilgjs labeled as LS only i, and not in
Cs (k not exceeded ifs), so it will receive an exact message frafy, and it will perform local search
in C3, together withXg.

7.1.1.2 Local search in independent clusters

In the example of Figure 7.1, we notice that there are 4 independent gads @0 not communicate
between themselves except for some "frontier” nodes. These 4 cyblitaphs C; —C4), separated by
the nodesXy, X1, X9 can be explored separately for optimal solutions, and then the resultstdsde
through the samBTIL/VALUE propagations. The advantage of this separation becomes apparent if we
consider that many such separate problem components could be too coonpbgty the exaddPOP
propagation, and it may be needed to apply the local search mechanism, ifTiseobvious that by
applying local search on each independent compofigseparately, we restrict the search space that
needs to be explored from’S! to dI-5(¢4)l, where| LS| is the total number of Snodes in the whole
problem, and LS(C})| is the number of.Snodes in the componet;. This, together with optimal
combination of these local optima throubhTIL/VALUE propagations, gives us a much better chance
of finding a better overall local optima.

Identifying these frontier nodes is easy using the following definition:

Definition 27 (Width of a tree edge) We define thevidth of an edge as follows: 0 if the edge is a back
edge; if the edge is a tree edge, its width is the number of back edges witletdistimlers that include
this edge in their associated tree paths.

Please note that this definition coincides with the dimensionality ofufi. message that travels
through this edge in DPOP. A node is a frontier node for a subgraph if tissage it receives from
its child contains only itself as dimension/context. For examflgjs a frontier node foCy because
UTILY; contains only itself as dimensioiX§ — X;5 has width 1). X is not a frontier node for the
subgraph rooted at’ becausé]TIL“f0 hasXy, Xg, Xo as dimensions/contexKy — Xy has width
3). This classification is determined at run time based otk messages received from children.

If a frontier node is also desighatedl& node in one of its subtrees, then that node will send its
UTIL message to its parent only after having explored through local searcbsihective subtree. For
example, assumé€, hanging out fromXy would be so complex as to require local search. TRgn
would be marked akS, and it would first participate in the local search(f, and only after a local
optimum is reached there, would it start its propagation(€)4n The utilities computed as the local
optima for each of its values iy are then added to the messages going thraughThe process is
logically equivalent to replacing’, with a unary constraint oXy.
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7.1.1.3 One local search step

In the subgraphs where local search is required,Lth@odes start by assigning themselves values.
Then, we can run a DPOP-like propagation on the cyclic subgraph &rleanode X,,. For each
propagation, we consider allS nodes assigned with their current values, exceptX¥qr Such a
propagation is just a simple variation of thePO P one, where instead of applying projections for all
nodes, we execute slices for the nodes in the LS ex&gpfThus, X,, can determine how much utility
each one of its values gives for the whole cyclic subgraph in which it idvedoprovided the other LS
nodes maintain their current valuel does so by joining all incomin§ 7'/ L. messages, and projecting
out any other dimensions than itself. The result is a vector (one dimensithnihe desired valuations.
The value giving the maximal valuation can be proposed as the next valoasgnit is different than
the current value).

Figure 7.1.(c) shows an example execution of a local search stéfyfokll LSnodes send to their
pseudochildren value messages, announcing their current valieprdpragation starts normally from
the leaves X1> sendsX;; a message wittk;; and X as dimensions).X; performs normally the
join between the messages it received from its children. Note that the reéssaapived initially from
X3 can be reused, since there is no link in that subtree with/afyode. Additionally, sinceXy is
considered fixed at its present value, the relatlon— X, is logically replaced by a corresponding
unary constraint otX 1 (this is the slice of?$; along the current value ofs, computed byX1;). The
join is performed also with this induced unary constraint, and the reldi§n X 11 projects itself out
of the join, and sends the messageXiq. The propagation continues unfilg, which performs the
join UTILS & RY. Instead of projecting itself out of the join to compufd'7 LY, X5 performs a slice
of this join along its current value (the one previously announcedtg. It then send€/T 1L to
Xo, who receives complete information about how much each of its values ik Worthe wholeC’s,
provided X keeps its current value.

X can now computé\ Xy = UTILg Lx, —UTILg[XO = vp], which is the maximal improve-
ment that the whol&’s can achieve ifX; changes from its current value to the new optimal okig,
keeps its present value, and all the other nod€ssichange to their new optimal values.

X, also initiates a top-down propagation with itself ab@node. It sendsXs UTILS, with
dims(UTILS) = {Xo, Xs} (actually, this message is exactl§f, since X, does not have anything
else to join for sending td&(s. R}? is taken into account by(;5, when sending o/ 77 L13).

Xy joins this message with' I L§, and performs a slice of this join, along its current value. The
result is exactly the same vector &% receives fromXg asUT[ Lg. What we achieved with the
uniform propagation is thus the ability dfg to have the same information &8 about the possible
improvementsX, can make ifXg keeps the current value.

After having run all propagations (with one of th& nodes being allowed to change at the time),
eachLS node X; can thus computé X ; for each othet.Snode.X; in the same cyclic subgraph. In
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other words, eachS node X; can thus compute the maximal improvements that each ahaode
X, can make, provided only; is allowed to change.

For the change itself, one can apply any policy known in current lo@athemethods, and guide
this policy by theAs computed like this. The termination policy can be either a maximal number of
cycles, or detection of local/global minima by detecting that 8lhodes have\ = 0.

Correctnessin the current formulation, only the node with the highest improvement clsaitge
value. Thus, the algorithm executes a hill climbing procedure for the ramtegnated as LS, and exact
inference for the rest, therefore it will reach a local maximum given bgllo@xima in each individual
cyclic subgraph.

7.1.2 Large neighborhood exploration - analysis and comple xity

Let us assume that in a cyclic subgraph there arecc; nodes designated &sS nodes,n; total
nodes, andn; edges. The size of the neighborhood completely explored at each Emahsstep
is ccy x d x d™ < (for all values of eacth .S node, complete exploration of thmn-LSnodes). The
effort for each step consists Bfx (n; — 1) UTIL messages sent for exploridg. The largest message
is of sized**!. Thus, each step explores an exponential size neighborhood withreopail amount
of effort.

Assume the termination policy for the local search process involves atiriostal search steps.
The whole process is then equivalent to exploring cc; x d x d™~°t neighboring states. An ex-
haustive search method would require at least as many messages (bigrioatimn overhead), while
classical local search would not be guaranteed to completely exploreathisfphe search space.

7.1.3 lterative LS-DPOP for anytime

A straightforward adaptation of LS-DPOP can be used for online solwngxkcuting LS-DPOP it-
eratively with increasing bounds as described in Algorithm 13. Iterative LS-DPOP starts with low
values fork, which means that the UTIL messages, and can be quickly computed anovsertihe
network. This means that a (relatively) good solution can be obtainedfagtryAs time goes by, ex-
ecutions of LS-DPORY) proceed, with increasing values lof which means that the clusters of width
higher thank where local search must be applied get smaller and smaller. Thus, moneca@dreas
of the problem are explored by exact inference, and not by locatiseahich is expected to lead to
better and better global solutions. Like this we simulate an anytime behaviour S4AIDROP.

Remark 8 (lterative LS-DPOP can reuse computation between itetions.) Notice that once the thresh-
old k exceeds the size of a nodg’s separator, and of all descendants ®f, the UTIL message com-
puted and sent by; is exact(i.e. it is the result of only exact inference, without any local search).
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Algorithm 12 LS-DPOP - local search/inference hybrid.
LS-DPOP(X, D, R, k): each agenk; does:

UTIL propagation protocol
1 wait for UTIL messagesXy, UTIL:) from all childrenX;, € C(i)
2 if any of UT'I L} contains myself as LS notieen execute LS procedure
3 else

P(i i c

s | JOIN/Y = ((@cecu) UTILC> & <®ce{P(i)uPP(i)} Rz))

5 if X; is rootthen startVALUE propagation

else

6 if |dims(JOINT™)| > k then

7 SOI’tdims(JOINiP(i)) by root path f(i) is always last)

8 mark the firsqdims(.]OINiP(Z)ﬂ — k non-LS dimensions from the JOIN as LS, project
them out and add them to the contextﬁﬁ)[]\f;(’). P(i) is always kept in.

9 computeUTILiEi) = JOINiP(i) 1 x, and send it to P(i)

Local search procedure
10 assign a value according to heuristic (can be random)
11 while termination criteria for local search not meio

12 | sendVALUE(X; < current_value) messages to alPC'(7)

13 wait for all corresponding) TIL messages to arrive

14 | join them, and slice through; <« current_value); store
get and store imgent_view all VALUE messagesX, < vj)

15 v} — argmazy, (JOIN;@ [v(P(3)), v(PP(i))])

16 SendVALUE(X; «— v¥) to all C'(i) and PC(3)

VALUE propagation(Xy < vg)
17 if sending nodeX, is pseudoparenthen

18 perform s.IiceRi.C [X = vx] and join it withUTIL messages from children
19 project self out of this join, ad&’, «— v to the context of the message and send it to parent

20 get and store imgent_view all VALUE messagesX, < v})
21 vf «— argmaxy, (JOIN;@ [v(P(i)), U(PP(%))])
22 SendVALUE(X; — o) to all C (i) and PC(3)

Afterwards, for subsequent executions of LS-DPOP with larger valuds #6,’s parent P; can simply
reuse theUTILfi message it has previously received frdim Like this,X; and its whole subtree have
no more computation or message passing to do until the end of the algorTthisieffectively means
that Iterative LS-DPOP explores easy (low width) parts of the problem fast in the beginning, and
then most of the work is concentrated in the difficult parts of the problem.
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Algorithm 13 lterative LS-DPOP: Anytime based on iterative LS-DPOP
Iterative LS-DPOP(X, D, R):

1 Construct DFS treeusing Algorithm 3

2 eachX; € X knowsSep;

3 w = argmaxx,|Sep;| (the induced width)

sfork=1...wdo

run Algorithm(9 to discover clusters of width higher thian

run LS-DPOP%) as follows:

if |Sep;| < k andV.X; descendant ak;, |Sep;| < k then

8 ‘ X; reusedts UTIL message from LS-DPOPR( 1) in LS-DPOPE).
9 set temporary solution according to LS-DP®P(

7.1.4 Experimental evaluation

Our experiments were performed on distributed meeting scheduling problégensiodeled a realistic
scenario, where a set of agents working for a large organization tryntityjéind the best schedule for
a set of meetings. The organization itself has a hierarchical structuee with departments as nodes,
and a set of agents working in each department. We generate meetings Withrolggbility within
departments, and with a lower probability between agents belonging to duithtlepartments.

We model this problem as a DCOP following[127]. Specifically, each adgehas a set of variables
XZJ one for each meeting it is involved in. Each such varia’éfeis controlled only by the agem;,
and represents the time when meeting j of agénwill start (Xij has time slotg;, as values). There is
an equality constraint connecting the equivalent variables of all agestiwénl in a particular meeting
(all agents must agree on a start time for their meeting). If a meeting hadicipants, it is sufficient
to createk — 1 equality constraints that connect the corresponding variables in a ctwaireéd to fully
connect them pairwise). Since an agent cannot participate in 2 meetitigssgme time, there is an
all-different constraint on all variabIeEij belonging to the same agent.

We model the utility that each agedt assigns to each meeting; at each particular timg, <
dom(XZ-j) by imposing unary constraints on the variabIé;é each such constraint is a vector private to
A;, and denotes how much utilit; associates with starting meeting; at each time;,. The objective
is to find a schedule s.t. the overall utility is maximized.

We have run 2 series of experiments with random problems generatedafiespbefore. In the
first part, we generated "easy” problems, such that they can be sbfwdte complete algorithm as
well, in order to see how far from the global optima the local search methodhs.problems had
induced width 8, and the domain size was 8, meaning the largest message amiblete algorithm
has8® ~ 16.5M values. These problems are quite close to the feasibility limit for a completethigor

The results of these experiments are presented in Table 7.1. Each rese®{s an execution with
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k | LS# | %Non-LS | Cycles| Avg LS/cycle | Avg non-LS/cycle| Sol %off Effort/step

1| 68 68 11 6 13 —d'3 10.86 640 (O(d?))

2 | 39 81 9 4 19 —d'f 10.62 30720(d?))
3| 25 88 8 3 23 —d*3 9.71 204800 (d*))
4 | 15 93 6 2 33 —d* 9.3 1310720(d?))
5 5 97 2 2 105 — ' 8.25 7864320 (d"%))
6 | 2 99 1 2 214 — d?14 7.26 | 4194304Q(d"))
co| O 100 0 0 216 — d?16 0.0 O(d®)

Table 7.1: LS-DPOP tests: 100 agents, 59 meetings, 199 variables, 514 consirétits3d

an increasing bound. The columns represent (in order): thebound,LS#is the total number of
nodes executing the local search procedwion-LSs the percentage of nodes executing the normal
propagationCyclesis the number of independent subgraphs identi#ed, LS/Non-LS nodes per cycle
is the average number of LS/non-LS nodes in a single compo8ehgooffis the distance from the
optimal solution in percent, argffort/stepis an upper bound on the total amount of data transmitted
within an independent component, for one local search step.

We have run the algorithm with increasiig and noticed relatively small increases in solution
quality (percent off the true optimum decreases slowly) and exponentiaases of the amount of
effort spent for each local search step.

We notice that small values @&f are already producing good solutions, with relatively low effort.
We explain this by the fact that even small value afllow for a large percentage of nodes to execute
the exact propagation, and thus at each local search step, a laogeakpl neighborhood is explored.
For example, imposing = 1 (first row in Table 7.1) still leaves on the average almost 70% of the nodes
to execute the exact propagation. On the average, in a subgrapbnd3Snodes adjust optimally to
the values of the 6Snodes, which is equivalent to explorigg® neighboring states at eatl$ step.

The second sets of experiments involved much larger and more difficulhaestaof the same
meeting scheduling problems. In this case, the problems were generate@Wabeénts, 498 variables
and 1405 constraints. The induced width was 20, making fgt’amaximal message size, which
renders DPOP completely infeasible. We ran ag&®@rDPOPwith increasingt, and noticed a similar
behavior: a large percentage of nodes execute exact propagatiofogswmallk, and solution quality
improves slowly with increasing. The results are shown in Table 7.2. We conjecture that these results
are close to the true optimum.
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k | LS# | %Non-LS| Cycles| Avg LS/cycle | Avg non-LS/cycle| Solution Effort/step

1| 194 61 10 19 30 —d*° 7910.0 | 40320(d?))
2| 131 73 10 13 36 —d* 7946.0 | 230400(d%))
3] 96 80 9 10 44 — q4 7964.0 | 1392640(d*))
4| 73 85 9 8 47 — d*7 7980.0 | 8847360 (d’))
5| 58 88 9 6 48 — d*8 8021.0 | 6029312((d%))

Table 7.2: LS-DPOP tests: 200 agents, 498 variables, 1405 constraints, width 20

7.1.5 Related Work

The nodes involved in the local search process can be thoughtcythescutset nod¢sl, 53]. From
this perspective, there are a number of similar existing approaches.

Kask and Dechter present in[105] a method of combining a local se&golitam (GSAT) with
inference. That method is formulated for constraint satisfaction probl@nascentralized setting. A
subset of the problem nodes are given as cycle cutset nodes, ahddacch is performed on this
subset. For each instantiation of the cutset nodes, a tree inferencighafgisr applied to the rest of
the problem. The differences between these methods are manyfold. Hirshethod is distributed,
and is defined for optimization, not satisfaction. Second, the set of lbdeperform local search is
identified at runtime (not given a priori). Third, we allow for inference withximal width greater than
1, controlled byk. Finally, we separate the problem in distinct cyclic subgraphs which gierex
separately, and the subsolutions are aggregated in a distributed fashion.

Petcu and Faltings present in[156] a distributed cycle cutset optimization dhéfthe idea of iso-
lating independent cyclic subgraphs appears there, too, but urdtetyrihere is no efficient method
presented for identifying cycle cutsets nodes, nor for isolating indegmerogclic subgraphs. Here, the
DFS traversal of the graph is an excellent way to achieve both goalse,Tééhaustive search is per-
formed on the cycle cutset variables, as opposed to local searctgptmpahere. The synchronization
problems between cycles from that method are solved here by simply makihnghede that borders
2 cyclic subgraphs wait for complete exploration of all its subtrees befemeing its message to its
parent.

7.1.6 Summary

We have presented the first approach to large neighborhood seadlidtributed optimization. Ex-
ponential neighborhoods are rigorously determined according to pnotkeicture, and polynomial
efforts are spent for their complete exploration at each local seangh ste
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The algorithm explores independent parts of the problem simultaneousisgnchronously, and
then combines the results, all in a distributed fashion. The experimentikrelsow that this approach
gives good results for low width, practically sized dynamical optimization lprab. For loose prob-
lems, most of the search space is optimally explored, and only small, tightly cedremponents are
explored by local search. This increases the chance that the algorittids aome of the local optima,
especially for loose problems.

For future work we plan to experiment with several different value switgipolicies (like simul-
taneous switches by several variables or allowing non-improving swijtetmesdifferent termination
policies.
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7.2 A-DPOP: approximations with minibuckets

This section introduces A-DPOP, a parameterized approximation scheetedraBPOP, which allows
the desired tradeoff between solution quality and computational complexiDP@P allows to adapt
the size of the largest message to the desired approximation ratio. SpeciicBIBOP can operate in
two ways:

e The user can specify a parameterwhich specifies the maximal dimensionality of any UTIL
message produced by the algorithm, thus effectively limiting the memory and cdoatian
requirements. In this case, A-DPQ@#p{inds the best solution it can by using or}(exp(k))
memory.

e conversely, the user can specify a paramé&terhich specifies the maximal admitted error bound
(in percent). A-DPORY) then uses the least amount of computation and memory which is nec-
essary to produce a solution which is guaranteed to be witBtrfrom the optimal solution.

When the optimal solution is required (i.e.= oo or § = 0), A-DPOP reduces to DPOP, and the
size of the largest message is in the worst case exponential in the width afribaint graph. As
DPOP, A-DPOP also requires only a linear number of messages in all cases

A-DPOP() operates in the framework of Section 6.2 for detecting high-width clusidrsre it
is not possible to perform full inference as in DPOP. Clusters of high wadéhexplored with ap-
proximate propagations using the ideanaihibucket§9,51]. Specifically, every message in a high-
width cluster (which would normally have more thalimensions) is replaced with two lower dimen-
sionality approximate messages, which contain upper-bounds and lowedson utility. Therefore,
in these areas of high width, A-DPOP offers a tradeoff between solutiatitg and required mem-
ory/communication. In areas of low width, A-DPOP uses the normal, exa®OfDftopagations.

The overall behavior of A-DPORY is as follows: ifw is the induced width of the problem given
by the chosen DFS ordering, depending on the value chosén foe have 3 cases:
1. If £ =1, only linear messages and memory are used.

2. If k < w, A-DPOP¢) performs exact inference in areas of width lower than k, and apprégima
inference in areas of width higher than k. Memory requirement®aeep(k)).

3. If £ > w, exact inference is done throughout the problem; A-DRQR(then equivalent with
DPORP (i.e. exact inference everywhere). Memory requirement @ep(w)).

A-DPOP operates in the same 3 phases as DPOP: DFS construction, tdpégation bottom-
up (see section 7.2.1), and VALUE propagation top-down (see sectic2).72-DPOPis formally
described in Algorithm 14.
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Figure 7.2: A problem graph and a rooted DFS tree.

Algorithm 14 A-DPOP - Approximate Distributed Pseudotree Optimization
A-DPOP(X, D, R, k, d): each agenk; does:

1 Construct DFS tree after completion X; knowsP;, PP;, C;, PC;

UTIL propagation protocol
2 wait for UTIL messagesXy, UTIL};) from all childrenX;, € C;
3 build JOIN!** as in Equatioh 7.1
4 if X; is rootthen startVALUE propagation
5 else

6 | if |[dims(JOIN*)| > kthen

7 selectS C dims (JOINZPZ' i) for elimination according to section 7.2.1.1
8 computelUTI LY * as projections of OIN]** on S U X;, cf. equation 7.2
9 if 5(UTILZB' jE) > ¢ thenretry with another se$; if not possible, decide for trade-off

according to section 7.2.4
10 | elseUTIL"* = JOIN/* Ly,
1 | SendUTIL!* to P,

VALUE propagation protocol
12 get and store imgent_view all VALUE messagesX, < vj)
13 computev’ according to formulas 7.5 or 7.4 from section 7.2.2
14 SendVALUE(X; < v}) to all C; and PC;

7.2.1 UTIL propagation phase

In this section we show the modifications needed in the UTIL phase from D&@Rw limiting the
size of the UTIL messages by imposing a lirhibn the maximum dimensionality. In high width areas
(separator size greater thaj the algorithm drops a s& of dimensions to stay below the limit, and
computes upper and lower bounds on utility, as detailed below.
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7.2.1.1 Limiting the size of UTIL messages with approximations

In Section 4.1.2, Definition 17 we have defined dpimal projectionoperatorL, which eliminates a
variable from a relation by selecting the best utility for each combination ofdhmining variables.
This projection has the semantics of a precomputation of the optimal utility thatecachieved with
the optimal values oK, for each instantiation of the other variables.

Definition 28 (minimal projection) The_L~ operator fninimal projection): if H is a hypercube and
X, € dim(H),thenH™ = H Ly, is a minimal projection off along theX;, axis: for each tuple
of variables in{dim(H) \ X}, all the corresponding values froii (one for each value ak},) are
tried, and the worst is chosen. The result is a hypercube with one lessisiom (X}.).

This projection has the semantics of a precomputation of lower bounds ortilibe tbhat can be

achieved for each instantiation of all variables Bgt, when X, takes its worst values. This is a
guarantee that no matter what vallig takes, the utility will not be lower than the corresponding value
from H.

To better distinguish between the optimal projection operatisom Section 4.1.2 and the minimal
projection operatort ~ from Definition 28, we will use in the following the notation™ to denote the
1 operator from Section 4.1.2. Notice that” and L+ are associative and commutative. Thus, a
projection along a set of dimensions is identical to a sequence of projeatmms each dimension.

The new UTIL propagation proceeds as follows:

e asin DPOP, leaves initiate the propagation of UTIL messages, and sebdggach node com-
putes its UTIL message and sends it to its parent.

e in areas of low width (nodes with separator sizes at nipsthe nodes compute their UTIL
messages normally, as in DPOP.

e in areas of high width (nodes with separator sizes at rhgstvery node drops from its UTIL
message as many dimensions as required to observe the maximal dimensigaalityomputes
approximate UTIL messages of at mdstlimensions: a message with lower bounds, and a
message with upper bounds (see Equations 7.1 and 7.2, and Example 17).

e upon completion, the root can determine the error bound by comparing tiee bmunds with

the upper bounds.

Formally, equations 7.1 and 7.2 define the approximate versions of the JQINTL hypercubes
each nodeX; from a high-width area would compute. The setepresents the set of dimensiokis

drops from itsUTILfi message. These dimensions can be selected according to a greedgproce

In[158] we have implemented this by dropping out the highest nodes in tBe THe goal is to drop as
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many dimensions as possible in order to observe the maximal dimensionality, bathalit exceeding
the maximal error bound. In case this is not possible, one needs to settieddeoff (see section 7.2.4
for more details).

JOINF'= = [ (P UTIL* | & b (7.1)
ceCi pe{P,UPP;}
UTILY = JOINI™" 1s 1y, ;UTIL™ = JOIN/™ 151y, (7.2)

Example 17 In Figure7.2,X, compute$/ T L}, withdims(UTIL}) = {X1, Xo}. If k = 1, we have

to dropS = {X,} fromUTIL}. This is done by computing upper and lower bounds on the utility that
could be achieved by and its subtree, in the best/worst case of a valu&gf Two corresponding
hypercubes/TIL;" = JOIN} Llx, 1% andUTILy” = JOIN} lx, 1y are produced, with
dims(UTILLT) = dims(UTILL™) = {X,}. We denote by/ TTL}* the pair UTIL T, UTIL.™).

Let us consider a pair of 2 hypercub&s and H* with the same set of dimensions, which are
lower and upper bounds on utility for each one of their tuples; to simplify notatie denote this pair
by H* = (H~,H™). For each tuplel of variablesX; € dims(H*), H~[T] has the semantics
of a lower bound on utility that can be achieved provided the variablésis(H * ) are instantiated
according to7 . Similarly, H*[7] is an upper bound. We also define:

HY[T H-[T
o(H*) = mazt 7[ ];5(Hi,7):1H+€T}

H-[T] 0(H*) =mazg6(HT,T)  (7.3)

« is the standar@pproximation ratioknown from approximation theoryi(H * ) is the maximal
distance from the optimum (in percent) of any solution that will be implementeidgltine VALUE
propagations(H *) close to 0 or(H *) close to 1 are equivalent, and guarantee solutions closer to
the optimum.

If H* contains equal lower and upper bounds (as it happens in exact cdiop)ti is easy to
see from equation 7.3 thatH * ) = 0, and A-DPOP reduces to DPOP.

So far we have described A-DPOP such that wherktheund is exceeded, then some dimensions
are forcibly removed by approximate projections. Notice that it is in principssible to compute and
sendseveralpairs of lower dimensionality upper/lower bound messages, each compugeditberent
subset of dimensions, in the spirit of the minibucket scheme[49].
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7.2.2 VALUE propagation

As in DPOP, the/ALUE phase proceeds top-down from the root afterlifiél phase. Upon receipt of
the VALUE message from its parent, each node is able to pick the optimal value for itseiflaty to
one of the strategies from Equations 7.4 or 7.5.

Equation 7.4 selects as the optimal value the one with the minim&Ve call this aj-strategy
Notice that this will not necessarily produce the best assignment, sineerttagrbe another value that
has a higher upper bound, but a wofsd¢lowever, it offers the begfuaranteedsolution quality.

Equation 7.5 selects as the optimal value the one with the highest upper lewandhough it may
not necessarily provide the best guarantees on solution quality (in cémgeétsbound is low). We call
this optimistic strategy

v = argminvj_- (5 (JOINiPii , < agent_view, X; = v{ >>> (7.4)

v = (JO INZPi+[agent,view]) 1x, (7.5)

The algorithm terminates when all nodes have receiiidUE messages and have assigned values
to their variables.

7.2.3 A-DPOP complexity

As DPOP, A-DPOP produces a linear number of messdagesn DFS messages (m is the number of
edges) ana. — 1 UTIL and VALUE messages (n is the number of nodes). A-DPOP’s coritplias
in the size of thaJTIL messages (théALUE messages have linear size):

Theorem 6 (A-DPOP complexity) The largest UTIL message in A-DPOP is space-exponential in
or in the width induced by the DFS ordering used, whichever is smaller.

PrRoOOF If the boundk is imposed and smaller than the width, no message largererp(k)) is
produced (see Section 7.2.1). Then, complexity is exponential in this bound

The worst case is when the exact solution is requiked (o, or§ = 0). In this case, no dimensions
can be dropped out of tHeTIL messages, am-DPOPreduces tdPOP, which is exponential in the
induced width of the DFS usedl
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7.2.4 Tradeoff solution quality vs computational effort an d memory

It is easy to see that in case the paramgtisrat least as big as the induced width of the problem, then
all computations are exact, and the algorithm finds the optimal solution.

If not, then we have no choice but to use approximations: whenelMdila message exceeds the
maximal dimensionality, approximate projections need to be applied. Optimality is thiusia we
obtain an approximately optimal solution, and upper bounds on the distanmoeHis solution to the
true optimum.

Notice that approximate projections are applied only in high-width areas girtitdem; for all
the rest of the problem, where the dimensionality does not exceeptimal partial solutions are still
found.

Another parameter that we can tune is the maximal error bound. This paranéieces at each
node an upper bound on the distance from the implemented solution to the tmmalaggolution for
this node and its subtree. In case the deviation of the outgoing messagedsthiggthis bound, then
we renounce a humber of approximate projections until the bound is @oserv

These two parameters are obviously conflicting. In case one canndy satils of them, one needs
to settle for the classical trade-off: accuracy vs. complexity. If optimality ésrtfain concern, then
one can specify e.gdé = 10%, and nok. This would have as an effect that as many dimensions as
needed would be used in order to guarantee that the obtained solution is Withiaf the optimum.
Notice that this does not necessarily mean that the maximal number of dimemsibastually be
used; depending on the valuation structure of the problem, one or two donsrt®uld very well be
enough.

Conversely, if computation/network usage is the main concern, then onepeaily e.g.k = 2
and nod. In this case, the largest message would have 2 dimensions, and we \Vitaild the best
solution available for this much computation, together with an upper bound orsigsde from the
true optimum. If this distance is good enough, then the algorithm returns thisosol@therwise, we
can re-run the algorithm with an increaged\otice that in this case, we can reuse a lot of the previous
work: one needs to re-run the propagatimmy in those areas of the problem where the maximal
dimension bound was exceeded.

7.2.5 AnyPOP - an anytime algorithm for large optimization pr oblems

In large, distributed constraint networks, it may take a long time until theggagedions complete.

In the following, we develop a way to decide quicklgcally, the value of each variable, based on a
limited number ofUTIL/VALUE messages from the neighbors. As time goes by, and the propagation
spreads out, and more and mdJ&IL/VALUE messages come from the neighbors, we refine these
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decisions. As opposed to a local search method, we obtaranteen the quality of the solution,
even before allowing the propagations to complete. There are obvioastades to this approach: one
can quickly start with a reasonably good solution, and refine it as time goes b

The intuition is simple: the value taken by any nalle can have an influence on the rest of the
problem only through the constraints betwe€nand its direct neighbord&JTIL messages received by
X, already sum up its influence on the sending subtree. Thus, based @t ti®JFIL message;
already received, and on the valuation structure of the constraintsdreiyend its neighbors that did
not already sentd TIL messagesX; can decide with a certain error bound what is the effect of each
one of its values on the rest of the problem.

In some cases, when these error bounds are sufficientlyXgwan decide on an assignment for
itself even before receiving all of itdTIL/VALUE messages. In such a case, one can simply start the
VALUE propagation phase immediately, without waiting for the rest ofufiéL/VALUE messages to
come.

Let us first define

Definition 29 (Pseudoneighbor sePNf) Thepseudoneighborse‘f’Nﬁ is the set of pseudo-neighbors
(pseudoparents or pseudochildren) of agantthat are reachable through its tree-neighb&r. e.g.:
PNZ = {X11}, PN} = {X15}, PN§ = 0.

It is possible for an agenX; to determine which is the tree-path associated with each one if its back-
edges by comparing the suffix/prefix of the root-paths of its neighborstidihid’s. Based on this, it
is easy forX; to determinePNij for each neighboX ;.

In the following subsections, we introduce the idealominant valugsand present th&AnyPOP
algorithm (see algorithm 15) which makes use of them.

7.2.5.1 Dominant values

We present three increasingly weak kinds of dominant values.

Definition 30 (Statical dominance) A valuev of a variableX; is astatically dominant valudor X;
if v is the optimal value forX;, no matter what values wilK;’s neighbors take. Formally,; must
always beargmazx, (@XjeNgh(Xi) R;) If such a value is found, it is clear tha¥; can already
start the VALUE propagation, without waiting for any other message.
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7.2.5.2 Propagation dynamics

At any particular time, we assume that a set &f;’s neighbors already sei¥; their UTIL messages.
Let Sent(X;) be this set. According to Definition 29, each neighBgrof X;, X; € Sent(X;) has an
associated sd{’Nij. Any nodeX} € PNZ.j (X% is a pseudoneighbor df;), can reachX; only through
X;. X}, does not directly send atyTIL message t;, but the reIatioer has already been taken into
account in the messagéZ“ILg.. This means thak’; can ignore the reIatioRf, and consideX}, like

it already sent aUTIL message.

Definition 31 (Extended sent set)We define for a variableX; the extended sent sais the set of
tree neighbors ofX; which have already sent their UTIL messages, plus the pseudonesgbibd;
which are reachable fronX; through these tree neighbors. FormallztSent(X;) = Sent(X;) U
{PN/|X; € Sent(X;)}

Definition 32 (Dynamic join) For a variable X; we define thelynamic join JOIN;(t) as the join of
the UTIL messages that have arrived, and of the relations with the naigtihat are not part of the
extended sent set.

JOIN;(t) = P Re P UTIL (7.6)
X;€{Ngh(X;)\ExtSent(X;)} XpeSent(X;)

This dynamic join is a means to factor at any time the influenc& obver the rest of the prob-
lem. JOIN,(t) takes into account utility information which is either explidd {IL messages from
Sent(X;)), implicit (the contribution of the relations with the pseudoneighbors ffamSent which
is encapsulated in the receiveld IL messages), or not decided (the relations with the neighbors which
have not sent anything yet).

This dynamic join evolves with time: as more and mbfelL messages arrived, they replace the
relationsR;ﬂ in Equation 7.6, and the join has less and less dimensions.

Definition 33 (Dynamic dominance) A valuev; of X; is adynamically dominant valudor X if v}
is the optimal value oK for any values ofX;’s neighbors except those Mzt Sent(X;).

Formally, if agent_view records the VALUE messages which were already received/@iav;(t)
is the current dynamic join, a valug is dynamically dominant if; is alwaysargmaz x, (JOIN;(t)[agent_view]).

Notes once such a value is determined for a variable, it cannot be changadybincoming
UTIL message. A statically dominant value is simply a dynamically dominant value conipeftze
receiving anyUTIL message.
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7.2.5.3 Dynamically é-dominant values

The two previous categories of dominance were exact: once foundnemalet value is certain to be
the optimal value. We now present an approximative dominance: dominkuesvinat allow for an
error margin. They are computed in a very similar way with Equation 7.4:

v*(t) = argmin, ;0 (JOINi(t) * (agent_view, X; = vf)) (7.7)
The valuev?*(t) computed like in Equation 7.7 has the smallest guaranteed distance to the optimal

solution, given the currently available information. It is obvious that as timgnesses and more and

moreUTIL/VALUE messages arrive, the bounds become tighter and tighter, thus offerimastibility

for increasingly accurate decisions.

If 5(t,v?*) is small enoughthen we say that’*(¢) is adynamicallys-dominant valugand we can
safely assign it toX; and start th&/ALUE propagation fromx;.

AnyPOPalso exhibits some built-in fault tolerance. If messages are lost, there isefigrdegra-
dation of performance: this will not be updated anymore, and in case that would have meant changing
a current assignment, solution quality degrades. However, the algotithpn@vides the best solution
it can infer based on the information thaassent/received successfully.

7.2.6 lterative A-DPOP for anytime behaviour

Another alternative for anytime solving is obtained by a straightforwardtiteraxecution of A-DPOP
with increasing bounds, as described in Algorithm 16. Iterative A-DPOP starts with low values for
k, which means that the UTIL messages sent are small, and can be quicklyteohgmd sent over
the network. This means that a (relatively) good solution can be obtaimgdast. As time goes by,
executions of A-DPORY) proceed, with increasing valuesigfwhich mean that the approximate UTIL
messages get larger andd more accurateoffering better bounds and better solutions. Like this we
simulate an anytime behaviour with A-DPOP.

Remark 9 (lterative A-DPOP can reuse computation between iterions.) Notice that once the thresh-
old k£ exceeds the size of a nodg’s separator, and of all descendants &f, the UTIL message
computed and sent hy; is exact(contains no approximations anymore). Afterwards, for subsequent
executions of A-DPOP with larger values forX;'s parent P; can simply reuse thET' 1 Lf ‘ message

it has previously received fronY;. Like this, X; and its whole subtree have no more computation or
message passing to do until the end of the algorithm. This effectively medritethative A-DPOP
explores easy (low width) parts of the problem very fast in the beginnimjtteen most of the work is
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Algorithm 15 AnyPOP - Anytime approximate Distributed Pseudotree Optimization
AnyPOP(X, D, R, k, d): each agenk; does:
UTIL propagation protocol

1 get all newUTIL messagesXy, UTIL})

2 build JOIN;(t) as in Equatioh 7/6

3 if X; is rootthen startVALUE propagation

4 else

5 compute&(t,vg(t)),wzj € dom(X;), and lew; (t) = argmin, (6(t,v§(t)))
if 6(¢,v}(t)) < ¢ then startVALUE propagation
if |[dims(JOIN')| > k then

8 selectS C dims(JOIN") to be eliminated
9 UTILY, = JOIN[* 15 ¢\

10 | elseUTILY = JOIN/" Ly,
11 | SendUTILY to P,

VALUE propagation protocol
12 get and store imgent_view all VALUE messagesX; < vj)

13 recomputei(t, v! (t)), Vo! € dom(X;), and letv? (t) = argmin. , (5@, vg(t)))
14 SendVALUE(X; < v}) to all C; and PC;

concentrated in the difficult parts of the problem.

Algorithm 16 Iterative A-DPOP: Anytime based on iterative A-DPOP
Iterative A-DPOP(X, D, R):

1 Construct DFS treeusing Algorithm 3

2 run Algorithm'9; eachX; € X knowsSep;

3 w = argmaxzxy,|Sep;| (the induced width)

sfork=1...wdo

5 run A-DPOPE) as follows:
if [Sep;| < kandUTIL! in A-DPOP§ — 1) was exacthen

7 ‘ X; reusedts UTIL message from A-DPOR(— 1) in A-DPOP).
set temporary solution according to A-DPQ@P(

(2]

(o]

7.2.7 Experimental evaluation

Our experiments were performed in the distributed meeting scheduling scelescribed in[127]
and in Section 2.3.1. In this context, the experiments were ran with an espefifadiylt problem
containing 70 agents, 140 variables and 204 binary constraints. Theeithavidth is 7, meaning that
the largest message holds over two million values. We executed A-DPOP wiagitg bounds on the
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k | Maxd /msg % | Avg 6 /Imsg % | & /overall % | Total UTIL payload| Max msg size| Utility
1 44.83 13.55 2.90 2104 16 2278
2 36.00 4.54 2.69 10032 128 2283
3 17.14 1.27 2.43 39600 1024 2289
4 13.11 0.57 0.81 130912 8192 2327
5 10.00 0.19 0.43 498200 65536 2336
6 1.36 0.04 0.30 1808904 524288 2339
7 0.00 0.00 0.00 3614064 2097152 2346

Table 7.3: Max. dimensions vs. solution accuracy: problem with 140 vars, 204 con-
straints,width=7

Snapshot # Max d /var % | Avg o /var % | Utility | 6 /overall % | Assig changes
1 94.44 80.77 1555 33.72 0
2 66.07 16.7 1625 30.73 99
3 42.42 3.92 2036 13.21 73
4 13.51 1 2254 3.92 19
5 13.51 0.94 2289 2.43 1

Table 7.4: AnyPOPdynamic evolution: problem with 140 vars, 204 constraints,width=7

maximal dimensionalityX). We present in Table 7.3 the results in this order: maximal dimensionality,
maximalé for all UTIL messages (as in equation|7.3), the averager message, the distance of the
approximate solution to the true optimum, the total amoutt DL information transmitted (computed

as the sum of the sizes of the individWdl'IL messages), the maximal message size, and the utility of
the solutions found. The accuracy of the solutions increases with thegewgk, culminating with

the optimal value fok = 7, in which case A-DPOP(7) is equivalent to DPOP. However, there is also
a dramatic increase in computation effort and network load. If we comparirgh and the last lines

of the table, we see that we can achieve a solution which is within 3% of the optithr8 orders of
magnitude less effort (2k values sent over the network v.s. 3M). Tdrexaf absolute optimality is not
required, it might actually pay off to settle for a suboptimal solution obtainedmitbh less effort.

We performed the second test with the same difficult instance from the pstést. This time, we
wanted to test simultaneously both the anytime performan@ngPOR and its ability to deal with
low resources. Therefore, we impogee: 3, and started AnyPOP. We took a number of 5 snapshots of
the assignments of the variables during the execution. The first snapshloén immediately after the
initial 0s are computedyefore sending/receiving any messagibsequent snapshots are taken after
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each node has received another message. The last snapshot aftaikalhmessages are sent/received.
The assignments discovered by each of the snapshots are used to ctirefowerall utility. We notice

a steady progress of the algorithm towards a solution, culminating with thedlesion found byA-
DPOP on the same test problem, with the same boking 3. At the same time, there is a steady
decrease of the error bounds, and of the assignment changesreosnapshot to the next.

7.2.8 Summary

We propose in this chapter an approximate algorithm for distributed optimizatfoah allows the de-
sired tradeoff between solution quality and computational complexity. Theitdges can be extended
with heuristics for selecting "intelligently” the dimensions to be dropped outrvexeeeding maximal
message size. In the second part of the chapter we present an anytios of the first algorithm,
which provides increasingly accurate solutions while the propagation is sfiloigress. This makes
it suitable for very large, distributed problems, where propagations mayaténg time to complete.
The anytime algorithm also exhibits some built-in fault-tolerance features,dmefyd degradation of
performance upon message loss. Experimental results show that ther#alg are a viable approach
to real world, loose, possibly unbounded optimization problems.
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Chapter 8

PC-DPOP: Tradeoffs between
Memory/Message Size and
Centralization

“Congrego et impera.”’
— Anonymous

In this chapter we discuss the idea of trading full deceletlon for computational and communi-
cation efficiency. We introduce PC-DPOP, a new hybrid algponithat is controlled by a parameter
k which upper bounds the size of the largest message, and therdrof available memory. PC-
DPOP(k) operates in the framework of Section 6.2 for detgctiigh-width clusters, where it is
not possible to perform full inference as in DPOP. Such elissare centralized in theoot of the
cluster, and solved by the root in a centralized fashiomasin algorithm of its choice. Communi-
cation requirements over any link in the network are limitieds toexp(k). The linear number of
messages is preserved.

In high width clusters, PC-DPOP offers a tradeoff betweenfthly decentralized solving process
of DPOP for polynomial memory and message size. The oveshiior of PC-DPOP(K) is as
follows: if w is the induced width of the problem given by the chosen DF&rimig, depending on
the value chosen fot, we have 3 cases:

Fully decentralized algorithms for DCOP like DPOP or ADOPT often requicessive amounts of
communication when applied to complex problems. Mailler and Lesser haveluogdd®PO (Asyn-
chronous Patrtial Overlay)[128], an algorithm which uses a strateggarifal centralization to mitigate
this problem. While such a tradeoff is probably unfeasible in competitive settitgre the agents

141
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are non-cooperative (see the discussion from Section 11.6), in seitirege the agents are perfectly
cooperative, this approach can offer communication and computatiorgsavin

In this chapter we introduce PC-DPOP, a new hybrid algorithm that is dddoy a parametek
which upper bounds the size of the largest message, and the amouailabl@memory. PC-DPOR)
operates in the framework of Section 6.2 for detecting high-width clustdrstenit is not possible to
perform full inference as in DPOP because the memory requirements exeded the bound imposed
by k. In low-width areas, PC-DPOP proceeds as normal DPOP, using afinedrer of messages and
memory at mos© (exp(k)). Clusters of high width are detected as in Section 6.2.1, and centralized in
theroot of the cluster. The cluster root then solves the subproblem in a centrédigeidn, using an
algorithm of its choice. Communication requirements over any link in the netwerkraited thus to
O(d*). The linear number of messages is preserved.

Therefore, in these high width clusters, PC-DPOP offers a tradebfides the fully decentralized
solving process of DPOP for polynomial memory and message size. Thalldvehavior of PC-
DPOP(k) is as follows: ifw is the induced width of the problem given by the chosen DFS ordering,
depending on the value chosen fgwe have 3 cases:

1. If K =1, only linear size messages and memory are used.

2. If k < w, PC—DPOP(k) performs full inference in areas of width lower than k, and centraliza-
tion in areas of width higher than k. Memory and communication requirement3(are(k)).

3. If £ > w, full inference is done throughout the problem; PC-DPOP(K) is theivalgmt with
DPORP (i.e. full inference everywhere). Memory requirements Hrerp(w)).

Partial results within each cluster are cached (8,42,132]) by thectgp cluster root and then
integrated as messages into the overall DPOP-type propagation. This #weideed for any recom-
putation during the final VALUE propagation phase.

Compared to OptAPO, PC-DPOP provides better control over what pfaite problem are cen-
tralized and allows this centralization to be optimal with respect to the chosen aupation structure.
PC-DPOP also allows for a priori, exact predictions about privacy, mm®munication, memory and
computational requirements on all nodes and links in the network. We alsa igpong efficiency
gains over OptAPO in experiments on three problem domains.

The rest of this section is structured as follows: Section 8.1 introduce<aHeROP hybrid algo-
rithm, which is evaluated empirically in Section 8.2. Section 8.3 relates PC-DPO##sting work.
Section 8.4 briefly discusses privacy, and Section 8.5 concludes.
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Original problem DFS from X/ DFS arrangement
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w=>k, thus
centralize in X,

(b) normal UTIL,, —

02 centralized in X9
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Figure 8.1: A problem graph (a) and a DFS tree (b). In low-width areas the normBalLU
propagation is performed. In high width areas (shaded clustgts”s andCs5 in (b)) bounded
UTIL propagation is used. All messages are of size at riftasClusters are centralized and
solved in the cluster roots (the bold nodEs, Xg, X14).

8.1 PC-DPOP(K) - partial centralization hybrid

To overcome the space problems of DPOP, we introduce the control garantieat bounds the mes-
sage dimensionality. This parameter should be chosen s.t. the available meémacih aode and the
capacity of its link with its parent is greater thdf, where d is the maximal domain size.

As with DPOP, PC-DPOP also has 3 phase®FS constructiorphase, arUTIL phase, and a
VALUE phase. The DFS construction is simply done using Algorithm 3. Subsequentiye es-
tablished DFS structure, we run the LABEL-DFS algorithm from Section @&dorithm 9). This
algorithm identifies clusters of high width and labels the nodes as eitiveral node cluster-nodeor
cluster-root node The subsequent UTIL phase assumes this labeling is in place.

8.1.1 PC-DPOP - UTIL Phase

This phase is an adaptation of the UTIL phase from DPOP. It proceeitisEPOP for normal nodes,
and reverts to partial centralization for cluster nodes (i.e. nodes wepseador size exceeds$:.

1. theUTIL propagation starts bottom-up and proceeds exactly like in DPOP for noodatn

2. cluster nodes perform centralization (see Section 8.1.1.1): a clusterdo@s not compute its
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UTIL message like in DPOP, but sends to its pareReationmessage that contains the set of
relations (arity at mosk) that the node would have used as an input for computindJffid
message.

3. Upon receiving such Belationmessage, a nodg; does:

e If X, is a cluster root, it reconstructs the subproblem from the incoRilgtionmessages
and then solves it (see Section 8.1.1.3). Then it continuedTihie propagation as in DPOP.
Later on, during the VALUE phase, wheYy, receives th&/ALUE message from its parent,
it retrieves the solution from its local cache and informs nodes in the cludteziooptimal
values via VALUE messages.

e If X; is a cluster node, it passes on to its parent all the relevant relations @gheeneived
from its children and its own), that it would otherwise use to comput&/fti. message.
For details, see Section 8.1.1.1.

8.1.1.1 PC-DPOP - Centralization

Centralization occurs in high-width clusters such(asC>, C5 in Figure[ 8.1. It is initiated by clus-
ter nodes, since they cannot compute and send WiEik messages because that would exceed the
dimensionality limit imposed by:.. Every cluster node packages together intRedationmessage
the union of the relations and UTIL messages received from childrehjtammwn relations with its
parent/pseudoparents. The resultitglationmessage is sent to the parent, as in normal DPOP.

On one hand, this ensures the dimensionality I observed, as no relation with arity larger than
k is produced or sent over the network. On the other hand, this allows tkteicioot to reconstruct the
subproblem that has to be centralized, and enable the use of struatsitdseaalgorithms like DPOP,
AOBB, etc.

Alternatively, to save bandwidth, avoid overload on cluster root nagles,also improve privacy
(see Section 84), a node can selectively join subsets of its outfalagionmessage, s.t. the dimen-
sionality of each of the resulting relations is less thkaiThe resulting set of relations is then packaged
as aRelationmessage, and sent to the parent. This happens as follows:

1. nodeX; receives alUTIL/Relationmessages from its children, if any

2. X, forms the uniorU; of all relations in thaJTIL/Relationmessages and the relations it has with
its parent and pseudoparents

3. X; matches pairs of relations }; s.t. by joining them the resulting relation will hakedimen-
sions or less (the dimensionality of the resulting relation is the union of the dinmensfahe
inputs). If the join was successful, remove both inputs fidmand add the result instead. Try
until no more joins are possible between relation&inThis process is linear in the size ©f.
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4. The resulting/; set is sent toX;’s parent in eRelationmessage

This process proceeds bottom-up until a cluster root nodes reached.X, then reconstructs the
subproblem from itRelationmessages, and solves it (see next Section).

The result is that in high-width clusters, the algorithm reverts to partial @édtion, by having
nodes send to their parents not high dimensidilIL messages, but lower arity (aggregateghjuts
that could be used to generate thoSHL messages.

8.1.1.2 Subproblem reconstruction

Let us assume a cluster root nalighas received a set of relatioRg:;, from its children. Each relation
ri € R¢, is defined over a set of variables:ope(r;). X; reconstructs the subproblem it has received
as follows:

1. X, creates an internal copy of all the nodes found in the scopes of the nslaticeived.

2. X, creates a hyper edge for each relatipg R, which connects all variables #rope(r;).

It is interesting to note that this makes it possible for a cluster root to recmhstre subprob-
lem while preserving structural informationThis is important because it enables the cluster root to
use high-performance optimization algorithms that take advantage of preblecture, like for exam-
ple[8,42,131,132].

8.1.1.3 Solving centralized subproblems

The centralized solving occurs in the cluster root nodes. In the examplgurie 8.1, such a cluster is
the shaded area containitg, X19, X11, X12, X13.

The root of the cluster (e.gXy) maintains acache tablehat has as many locations as there are
possible assignments for its separator (in this céise ¢ locations). As a normal node DPOP, the
root also creates a table for the outgold@IL message, with as many dimensions as the size of the
separator. Each location in the cache table directly corresponds to a ioceti@UTIL message that
is associated with a certain instantiation of the separator. The cache takke th®ibest assignments
of the variables in the centralized subproblem that correspond to edahtiation of the separator.

Then the process proceeds as follows:
¢ for each instantiation afep;, the cluster root solves the corresponding centralized subproblem.

The resulting utility and optimal solution are stored in the location ofufitl message (cache
table location, respectively) that correspond to this instantiation.
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Algorithm 17 PC-DPOP - partial centralization DPOP.
PC-DPOPX, D, R, k): each agenk; does:
run LABEL-DFS protocol as in Algorithm 9— X; knows its label
UTIL propagation protocol

1 wait for UT'I L/ Relation messages from all children

2 if label(X;) = normal nodethen computeUTILf.D" as in DPOP and send it 1B,
3 if label(X;) = cluster nodethen

4 Join subsets of incoming UTIL/Relation and relations with (p)parent with samergsion s.t.
for each joindim(join) < k

5 package joins aRelation; and send td>;

if label(X;) = cluster root nodehen

[«2)

reconstruct subproblem from received relations
solve subproblem for eache (Sep;) and store utility inUTILfZ’ and solution in local cache
o | sendUTIL! to P,

VALUE propagation(X; getsSep; «— Sep; from P;)
10 if X is cluster rootthen

11 | findin cacheSol* that corresponds t6ep;
12 assign self according t8ol*
13 sendSol* to nodes in my cluster via VALUE msgs

14 elsecontinue VALUE phase as in DPOP

e when allSep; instantiations have been tried, ti&IL message for the parent contains the optimal
utilities for each instantiation of the separator (exactly as in DPOP), and the table contains
the corresponding solutions of the centralized subproblem that yield diptiseal utilities.

e the cluster root sends its UTIL message to its parent, and the processiesrjtist like in normal
DPOP.

8.1.2 PC-DPOP - VALUE Phase

The labeling phase has determined the areas where bounded inferestd®rapplied due to excessive
width. We will describe in the following the processing to be done in thesesapeigside of these, the
original VALUE propagation from DPOP applies.

The VALUE message that the rodf; of a cluster receives from its parent contains the optimal
assignment of all the variables in the separaiep; of X; (and its cluster). TherX; can simply
retrieve from its cache table the optimal assignment corresponding to thisuparinstantiation of
the separator. This assignment contains its own value, and the valuedted albdes in the cluster.
X; can thus inform all the nodes in the cluster what their optimal values ar&/AidJE messages).
Subsequently, the ALUE propagation proceeds as in DPOP.
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8.1.3 PC-DPOP - Complexity

In low-width areas of the problem, PC-DPOP behaves exactly as DPO&hétrates a linear number
of messages that are at madétin size. In areas where the width exceégshe clusters are formed.

Theorem 7 PC — DPOP(k) requires communicatio®(exp(k)). Memory requirements vary from
O(exp(k)) to O(exp(w)) depending on the algorithm chosen for solving centralized subproblems (
is the width of the graph).

PROOF Section 8.1.1/1 shows that whenever the separator of a node is large, thwat node is
included in a cluster. It also shows that within a clustéFJL messages with more thandimensions
are never computed or stored; their input components are sent outlinktean be shown recursively
that these components have always less thdimensions, which proves the first part of the claim.

Assuming thatv > k, memory requirements are at le@texp(k)). This can easily be seen in
the roots of the clusters: they have to storetHdL messages and the cache tables, both of which are
O(exp(Sep = k)).

Within a cluster root, the least memory expensive algorithm would be a safgohthm (e.g.
AOBB(1)) that uses linear memory. The exponential size of the cachedatl®&TIL message domi-
nates this, so memory overall@exp(k)).

The most memory intensive option would be to use a centralized version oPDR& is proved to
be exponential in the induced width of the subtree induced by the clusteralDihis means memory
is exponential in the maximal width of any cluster, which is the overall induddthwO

8.2 Experimental evaluation

We performed experiments on 3 different problem domains: graph cgl¢8€&, see Sectian 8.2.1),
distributed sensor networks (DSN, see Section 8.2.2), and meeting §nhgtUS, see Sectian 8.2.3).
For DSN and GC experiments we used the instances available online atjttdh are used in several
other papers in the literature[127, 140].

Our versions of OptAPO and PC-DPOP used different centralizedrspb@in the interest of fair-
ness, we did not compare their runtimes. Instead, we compared theweffests of the centralization
protocols themselves, using 2 metrics: communication required , and amaesmtodilization. Over-
all, our results show that both OptAPO and PC-DPOP centralize more in genisiems; however,
PC-DPOP’s structure-based strategy performs much better.
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(a) maximal size of a centralized problem vs. total problem size (b) how many agents centralize subproblems vs. total problem size
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tAPO there is always an agent which centralizes all the OptAPO all agents centralize some subproblem.
problem.

Figure 8.2: PC-DPOP vs OptAPO: centralization in experiments on graph coloring.

8.2.1 Graph Coloring

The results from the GC experiments are shown in Figure 8.3 (communicatjoitements) and in
Figure 8.2 (amount of centralization).

The boundk has to be at least as large as the maximal arity of the constraints in the proivleen; s
these problems contain only binary constraints, we ran PC-DPOP (K}viigtween 2 and the width
of the problem. As expected, the larger the boknthe less centralization occurs. However, message
size and memory requirements increase.

8.2.2 Distributed Sensor Networks

The DSN instances are very sparse, and the induced width i2,'seD POP(k > 2) always runs as
DPOP: no centralization, message sizé%s= 25. In contrast, in OptAPO almost all agents centralize
some part of the problem. Additionally, in the larger instances some agerntalizEnup to half the
problem.

8.2.3 Meeting scheduling

We generated a set of relatively large distributed meeting scheduling prebléhe model is as in[127].
Briefly, an optimal schedule has to be found for a set of meetings betwssmmbagents. The problems
were large: 10 to 100 agents, and 5 to 60 meetings, yielding large problem$6atith196 variables.
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(b) how many agents centralize subproblems vs. total problem size (b) how many agents centralize subproblems vs. total problem size
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(a) All PC-DPOP variants use a linear # of messages. (b) Total information exchange (bytes) is much lower for
PC-DPOPs.

Figure 8.3: PC-DPOP vs OptAPO: message exchange in experiments on graph coloring

The larger problems were also denser, therefore even more diffictlto@a width from 2 to 5).

OptAPO managed to terminate successfully only on the smallest instancesiéitbes), and time-
out on all larger instances. We believe this is due to OptAPQ’s excessiteatization, which over-
loads its centralized solver. Indeed, OptAPO centralized almost all théepndh at least one node,
consistent with[44].

In contrast, PC-DPOP managed to keep the centralized subproblems to a mitivatefgre suc-
cessfully terminating on even the most difficult instanc&C-DPOP(2)(smallest memory usage)
centralized at most0% of the problem in a single node, aRC-DPOP(4)(maximalk) centralized at
most5% in a single nodePC-DPOP(5)is equivalent to DPOP on these problems (no centralization).

8.3 Related Work

The idea of partial centralization was first introduced by Mailler and Lreiss®ptAPO[129]. See
Section 3.3 for more details.

Tree clustering methods (e.g.[107]) have been proposed for time-$Eateoffs. PC-DPOP uses
the concept loosely and in many parts of the problem transparently. Spégifin areas where the
width is low, there is no clustering involved, the agents following the regul@®protocols. In high-
width areas, PC-DPOP creates clusters based on the context size afgbang UTIL messages and
bounds the sizes of the clusters to a minimum using the specified separator size
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8.4 A Note on Privacy

Maheswaran et al.[126] show that in some settings and according to samesni@mplete) central-
ization is not worse (privacy-wise) than some distributed algorithms.

Even though the nodes in a cluster send relations to the cluster root, ttegmeemay very well
be the result of aggregations, amok the original relations.

Example 18 For example, in Figure 8/1X ;5 sendsXy (via X1, and X1¢) 3 relations:r13, r19 andr{;.
Notice that-11 that is sent taXy like this is not the reatii, but the result of the aggregation resulting
from the partial join performed with the UTIL message th&t; has received fronX4. Therefore,
inferring true valuations may be impossible even in this scenario.

8.5 Summary

We have presented an optimal, hybrid algorithm that uses a customizablegmeimaand amount of
memory. PC-DPOP allows for a priory, exact predictions about pril@&sy, communication, memory
and computational requirements on all nodes and links in the network.

The algorithm explores loose parts of the problem without any centraliz@itterDPOP), and only
small, tightly connected clusters are centralized and solved by the regpelaster roots. This means
that the privacy concerns associated with a centralized approachecarolnled in most parts of the
problem. We will investigate more thoroughly the privacy loss of this appraaturther work.

Experimental results show that PC-DPOP is particularly efficient for lapjignization problems
of low width. The intuition that dense problems tend to require more centralizatioonfirmed by
experiments.
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Chapter 9

Dynamic Problem Solving with Self
Stabilizing Algorithms

In this chapter we extend the discussion of distributed optimization algorithmsigordgally changing
environments, like for example dynamic scheduling applications where tasks and are executed
continuously, or sensor networks where vehicles to be tracked moviewously.

These problems can be modeleddgmamic CSPsand there is a wide body of research on this
topic: [20,52,212,216], to name just a few. We refer the interestederda[211] for an excellent
survey of various techniques that can be applied in this setting. Howteeevast majority of these
techniques operate in a centralized fashion: the dynamic changes in tremement are communicated
to a central server, which then resolves the problem whenever agegess the following, we will
presentdistributed algorithms for dynamic constraint reasoning; we focus on a class ofitlgr
calledself-stabilizing

Self stabilization in distributed systems is a concept introduced by Dijkstra]ini5@ the ability
of a system to respond to transient failures by eventually reachstglde statevhere alegitimacy
predicateis satisfied, and maintaining it afterwards. In the context of DCOP, weeal#i#legitimacy
predicateas "all variables are assigned to their values from the optimal solution of @@MD.

Definition 34 (Self-stabilizing DCOP algorithm) A DCOP algorithm is calledelf-stabilizingif it is

able to always converge from any arbitrary initial configuration to a stabléestehere the legitimacy
predicate is satisfied. This stable state corresponds to the optimal solutilba optimization problem,
i.e. all variables in the problem are assigned their optimal values for theectiproblem configuration.

Algorithms with this property are very well-suited to cope with error-prone ibistied systems
like distributed sensor networks, or with dynamic environments like contrstesys or distributed
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scheduling, where convergence to stable states is ensured withoirtasezntion. However, ensuring
self-stabilization presents two major challenges. First, the algorithm mustdwateal with arbitrary
state changes, like for example arbitrary changes in the problem topdimggx@ample new agents
coming in, or the network experiences temporary problems), in the valuaifche agents, or even
in their internal data structures (for example as a result of temporaryrpmntages). There is an
obvious solution to this problem, namely simply restarting the optimization as soanyashange
has happened in the problem. Nevertheless, this approach is most likgyantical, as it would
raise another problem, namely the algorithm’s ability to deal with successamgel that occur in a
relatively fast sequence. The algorithm then must be fast enough ingdhe changed problem, such
that it is able to keep up with the changes.

These problems have so far mostly prevented self-stabilizing algorithmsaidnessing anything
but relatively “low-level” tasks: leader election, spanning tree mainteméag.[40]) and mutual ex-
clusion. We will present in the following two notable exceptions: the earligkwb Collin, Dechter
and Katz[39] for distributed self-stabilizing constraint satisfaction, asdlfistabilizing extension of
the DPOP algorithm. We also note an attempt at self-stabilizing constraint optimizediog a dis-
tributed, self-stabilizing version of branch and bound ([222]). Thigraach is not practical, however,
since it may create an exponential number of agents, because theserggreocesses corresponding
to subproblems.

9.1 Self-stabilizing AND/OR search

Collin, Dechter and Katz introduced in[39] the first self-stabilizing distridutenstraint satisfaction
algorithm. This algorithm also operates on a DFS tree.

In order to be able to guarantee self-stabilization, this algorithm uses afpbwenciple: each
agent executes continuously two parallel protocols: a DFS-contruatidoqwl, and a search protocol.

The DFS protocol they use (Collin and Dolev[40], also Dolev[59]) isrgnteed to eventually
produce a valid DFS tree, provided no more changes happen in therrstileture.

The search protocol executes in parallel with the DFS generation ptotboperates on the DFS
tree that the first protocol produces. While this tree is not yet correstbéished, the results are
undefined. However, since the DFS protocol is guaranteed to evenstetijize on a correct DFS, the
search process is thus guaranteed to start operating on a correevBiBally. As the search process
is also guaranteed to produce the correct solution in finite time given act®¥es tree, it follows that
the whole algorithm is self-stabilizing. For more details and a formal proef39é

Using thissatisfactioralgorithm as a basis, one could in principle extend d 50BB(Algorithm|2)
for self-stabilizingoptimization Specifically, we use the same self stabilizing DFS protocol[40], inter-
leaved with a self stabilizing version of the search protocol executé A@BB The latter protocol can
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be easily made self-stabilizing by having all agents cycle continuously thrthair values (forward
search phase) and propagate cost bounds to their ancestors gbdtiosnd propagation).

9.2 Self-stabilizing Dynamic Programming: S-DPOP

The self-stabilization principles from Collin, Dechter and Katz[39] candbereded straightforwardly to
DPOP as well[165]. We propose a method that is composed of 3 contsetéstabilizing protocols:

1. self-stabilizing protocol for DFS tree generation: as in[40], its go&b isreate and maintain
(even upon faults/topology changes) a DFS tree maintained in a distribstadria

2. self-stabilizing protocol for propagation of utility messages: bottom-up ufitilpagation along
the DFS tree, as in Section 4.1.2.

3. self-stabilizing protocol for propagation of value assignments: basdte utility information
obtained in protocol 2, each agent picks its optimal value and informs its ehildop-down
along the DFS tree, as in Section 4.1.3).

The three protocols are initialized and then run concurrently. The resutiiigod, called-DPOP
is described in Algorithm 18.

Proposition 11 Algorithm S-DPOP is self-stabilizing as specified in Definitioh 34.

ProoFr We follow the same line of reasoning as in[39]. Specifically, S-DPOP is osatpof the three
self-stabilizing sub-protocols described previously. First, the DFSrgéoe subprotocol is guaranteed
to self-stabilize, and eventually produce a correct DFS[40]. Se¢bad)TIL propagation subprotocol
is guaranteed to execute correctly after the DFS is correctly constractddelf-stabilize aften — 1
UTIL messages. Third, the VALUE propagation subprotocol is guaeahte execute correctly after
the UTIL subprotocol has provided all agents in the system with accuiEteibformation. Therefore,
the whole S-DPOP protocol is guaranteed to self-stabilize.

9.2.1 S-DPOP optimizations for fault-containment

In a dynamic setting, many different changes can occur in the optimizatidiepno valuations can
change, variables and constraints can be removed or added, etc. s&¥ibeen the following sev-
eral possible optimizations to S-DPOP which make it more responsive to ehéygincreasing the
reusability of previous computation, and by limiting the propagation of new rgesagon perturba-
tions. In doing so, we touch upon aspectgaflt containmer[B2], which means thahinor changes
can effectively be contained to confined areas in their vicinity.



156 Dynamic Problem Solving with Self Stabilizing Algorithms

Algorithm 18 S-DPOP - Self-stabilizing DCOP algorithm.
S-DPOP’, D, R): each agenk; runs 3 subprotocols simultaneously:

Self-stabilizing DFS protocol run continuously the protocol from[40]
1 at stabilization X; knowsP;, PP;, C;, PC;

UTIL propagation protocol: run continuously - wait for UTIL messages
2 if received new UTIL msgX(, UTIL};) ORP,;, PP, C;, PC; or Rf changedhen

3 | recomputd/TILY = ((@ceci UTIL:) ® (@ce{PiupPi}RZ?» Lx,
4 StoreUTILfg’i and send it ta?;

VALUE propagation protocol: run continuously - wait for VALUE messages
5 if received new VALUE msd(, v(X}%)) OR changes ilii]TILfgi then

6 | v argmazy, (UT]Lfg’i w(P), U(PPi)])
7 SendVALUE(X;,v}) to all C; and PC;

9.2.1.1 Fault-containment in the DFS construction

Changes in the DFS structure adversely affect the performance ¢fC3Dsince some of thdTIL
messages will have to be recomputed and retransmitted. Therefore, itregtketo maintain as much
as possible the current DFS tree upon a change, to be able to reusef ti@seffort that was spent
while solving the previous problem instance. After the new DFS is consttuittes easy to decide
which UTIL messages can be reused, by comparing the new DFS with theneld All messages
computed and sent in parts of the problem where the DFS was not afteatduk reused.

We will describe in the following a number of simple modifications to the problemtladorre-
sponding changes they induce to the DFS tree.

Additions to the problem Adding a new variabléX; to the problem (and a new relatimfi to link

it with an existing one X;): this is a trivial case. One has just to connéGtas a child ofX;. X;
simply starts a propagation by sendifg the projectiorr{ 1 X;. Inthe worst case, this propagates to
all the ancestors, up to the root. This implies in the worst case a number bfriddsages that equals
the number of ancestors &f;, and the same amount of effort that was spent in the original propagation
along this pat

Adding a new relation/constraint between 2 existing ageXifsind X ;. Depending on the relative
position of X; and X ;, we have 2 cases:

1. X; and X; are ancestor-descendan(they lie in the same branch of the DFS): this a simple

1For example, in Figure 9.1, if one adds a varialile;, connected with a single constraintX s, then it become&s’s
child, and the DFS does not suffer any other modifications.
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(b) Rebuilt DFS

(a) Original DFS, to which the edge X, X, is added

Figure 9.1: Additions to a problem: the most difficult case is case 2 from Section 9.2.1.1 of
adding an edge between siblings. Adding the red ekige- Xy disrupts the DFS from (a)

to (b). In (b), the blue lines denote the messages that have to be retahipuhe worst
case. Notice tha(;p — X, (the green edge) does not change[&BI L}, does not require
re-computation.

case, we just need to designate the new edge as a back-edge. Asswithiagt(loss of gener-
ality) that X; is the descendanfy; becomesX;’s pseudoparent. ThgTIL propagation needs
to be restarted only fronX;, and to incorporate the newly added backedigcan reuse all the
messages it has previously received from its chiIn.

2. X; and X are siblings(they lie in different branches of the DFS): adding such an edge violates
the required property that agents in different branches of the DF&bershected. This implies
that the DFS is no longer valid, and it has to be reconstructed. To maximizémHhariy to
the previous DFS arrangement (and therefore the reuse of UTIL gesgsave propose a simple
repair heuristic. Either one of; or X; becomes a parent for the other one. Without loss of
generality, let us assume th& becomesX;’s parent. LetX; be the lowest common ancestor
of X; and.X;. The required changes concern only the agents on the tree-pathXfydm X
they all switch their parent-child roles, except for the immediate child gfwhich becomes its
pseudochild. All other agents are unaﬁec@d.

Deletions from the problem Deleting a constraint: depending on the type of the edge, we have 2
cases:

1. deleting a back-edge we simply remove the back-edge, and the lower agent involved in that
back-edge restarts a UTIL propagation without including the dimension dbit:ér) pseudo-
parent?

2For example, in Figurle 9.1, if one adds an edge— X, then this edge simply becomes a back-edge, ¥ntecomes
a pseudochild of;. The DFS does not suffer any other modifications.

3For example, in Figurle 9.1, if one adds an edfie— X, then X becomesXy's parent, and agents on the path from
Xy to X; switch roles: X4 becomesXy's child. Additionally, X4 also become&(;’s pseudochild. The DFS does not suffer
any other modifications (e.g{1o remainsXy’s child).

4 For example, in Figurle 911, if one deletes the edge— X, thenXs simply restarts the UTIL propagation with just
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(a) Original DFS, from which the edge X _-X, is deleted (b) Rebuilt DFS

Figure 9.2: Deletions from a problem: the most difficult case is case &imfSection 9.2.1.1 of
deleting a tree edge that does not disconnect the problentetiDg the red edgeX; — X, disrupts
the DFS from (a) to (b). In (b), the blue lines denote the ngssdhat have to be recomputed in the
worst case. Notice thak;; — X5 (the green edge) does not change,l&07 L%, does not require
re-computation.

2. deleting a tree-edge let X; and X; be the two agents involved in if\j; is X;’s parent). We
have again two cases:

(a) If Sep; = {X;}, and alsov X, € Cj, Sepr, = {X;}, then by removing the edgt; — X
we have effectively disconnected the problem in two distinct parts: thieemubooted at
X, and the restX; becomes a root now, so it can initiate a VALUE propagation based on
the UTIL information it already has collected from the subtree. For theofdke problem,
X; starts a new UTIL propagation by recomputing its UTIL message while distizga
the message previously sent from the (now disconnected) subtreg of

(b) Otherwise, removing the edgé; — X; does not disconnect the problem, but disrupts the
tree, however. One needs to restart the DFS reconstruction from theshiagent irbep;.
Let X, be this agent. X, restarts the DFS reconstruction by sending DFS messages to
its children and pseudochildren. There is no point in sending these nesstags par-
ent/pseudoparents, since they cannot be affected by the removal edgkee This is so
becauseX;, is the highest agent connected with’s subtree.
The DFS reconstruction proceeds then as normal in the whole subttee &ic ., which
includes the area affected by the removal of the elige X ;. @

Note: All other complex changes can be decomposed into a sequence of simplgesHike the
ones described before. For example, deleting a variable and all its @iots@mounts to deleting its

X3 as a dimension.

® For example, in Figure 9.2, consider removing the efige- X.

5 For example, in Figure 9.2, consider removing the efige—- X». Seps = {Xo, X2}, so the highest agent ifieps
is Xo. The DFS reconstruction restarts thus frdfp, in its right-hand side subtree. The traversal proceeds as follows:
Xo— X5 — X512 — X5 — Xq1 — Xo. At this point, the DFS reconstruction is complete, and the result is depicteéid-in
ure[9.2(b). Notice the role changeX; - is now X5's child (not a pseudochild anymore) aidds and X;» have switched
parent/child roles. The blue edges represent UTIL messages tlatdhe recomputed, while the green od& { — X5)
shows that thé&/ TTL5; message can be reused.
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Algorithm 19 Fault containment in SS-DPOP - limiting the spread of UTIL/VALUE propiaga.
UTIL propagation protocol:
step 3.a: find v=mif(T'I L} ); subtract v from each cell i TTLY}
step 3.bif newUTILY =old UTILY thendiscard new/T 1LY

VALUE propagation protocol:
step 6.aif newv; = old v} then do not send VALUE message

constraints one by one, until it has a single one left (the last step is obviddsling a variable and
several constraints amounts to adding a variable and a single constrainhesnadding constraints
between existing variables.

9.2.1.2 Fault-containment in the UTIL/VALUE protocols

In S-DPOP, upon a perturbation &llTIL messages on the tree-path from the change to the root are re-
computed and retransmitted; subsequeMb,.UE messages circulate top-down throughout the prob-
lem. This is sometimes wasteful, since some of the faults have limited, localizetseffdtich need

not propagate through the whole problem. We cha®dgPOP(Algorithm[18) by adding three steps,
presented in Algorithm 19

Steps 3.a and 3.b are designed to identify and cut irrelevant UTIL patipag, and step 6.a to cut
irrelevant VALUE propagations.

Step 3.aescalesll UTIL matrices by subtracting from each element the lowest utility value present
in that matrix. This is a sound operation for computing the optimal solution, secauDPOP the
relative differences in utility are important, and not the absolute valuationgustevant to find the
optimal solution, we do not care about its utili&. Step 3.b compares the newly computed UTIL
message with the previous one; in case there are no differences, it is sisgdydgd. Thus, through
rescaling and projections, the influences of a change in terms of utility vausadiimninish from one
hop to the next, until the propagation stops altogether.

9.2.2 S-DPOP Protocol Extensions

Self stabilizing algorithms generally do not provide any guarantees ab®wah the system transits
from a valid state to the next, upon perturbations. The following two sectibow $hat in some
circumstances, we can provide transitional guarantees via superstapiliaad fast responses upon
low impact changes.

7 Intuitively, if an agentX; has 3 value§ a, b, c], then receivind 0, 1, 2] as valuations for its values is the same as
receiving[ 10, 11, 12] : it still means that value yields 2 units of utility more than valug, and 1 unit of utility more than
valueb, and will thus be chosen as optimal.
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9.2.2.1 Super-stabilization

Super-stabilization[59, 60] is a guarantee that a self-stabilizing prosatisfies gpassage predicatat
all times, transitional states included. Formally,

Definition 35 (Superstabilization) A protocolP is said to besuperstabilizingvith respect to gas-
sage predicatg for a class of changeA if and only if P is self-stabilizing, and for every trajectody
beginning at a legitimate state and containing a single change ofAyplee passage predicateholds
for everyo € .

Recall that for DCOPs, we defined the legitimacy predicate in Definition 34lasdriables are
assigned to their optimal values”. For our purposes, we define thegeagezdicatey ="the previous
optimal assignment is maintained while the new one is recomputed, anditble isunade atomically
We also define the clagsas any changes in the problem which do not invalidate the current solution,
i.e. they do not make it inconsistent: adding values to a variable, adding ~imgnbchanging a
relation, removing a constraint, and even adding a constraint, as longaesinhdt forbid (parts of) the
current assignment (that would clearly invalidate the current assignment)

A super stabilizing algorithm with respect to predicatend changes in class as defined above,
ensures that a consistent solution (i.e. the previous optimal solution, wagchdw possibly become
suboptimal) is maintained at all times, even in transitory states. Superstabilizatibthis passage
predicatep can be regarded as a safety property, weaker than the legitimacy pee@licanevertheless
useful: this guarantee of consistency can be important for example irotegstems, where incon-
sistent assignments cannot be tolerated in transitory states where the algggdtches the new best
solution after a fault.

SS-DPOP (Algorithm 20) relies on additional assumptions to guarantee stapdity: the agents
have synchronized clocks, the messages are transmitted synchrommasbach agent knows (a) its
level in the DFS tree and (b) the depth of the DFS tree (both can be madebi/ajathe DFS con-
struction protocol). The algorithm works as S-DPOP: upon a fault, thetageart to recompute and
resend the UTIL and VALUE messages. However, now all the agentsawitsh their values to their
new optimum synchronously, in atomic stepto avoid transitory inconsistent assignments. They
synchronize by delaying the switch to the new value: assuming the transmi$siofALUE message
takes a clock "tick”, each agent delays switching its value for a numberlef @qual to the difference
between the depth of the DFS and its own level in the DFS. This ensuresdhsatitich is made at the
moment when the last leaf agent has received the VALUE message froaréstpand can compute
its own optimal value.

Proposition 12 SS-DPOP is super stabilizing in the sense of Definition 35.
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Algorithm 20 SS-DPOP - Super-stabilizing DCOP algorithm.
SS-DPOP, D, R): changes from S-DPOP (Algorithm [18)

VALUE propagation protocol: run continuously - wait for VALUE messages
1 if received new VALUE msd(, v(X}%)) OR changes ilii]TILfgi then

2 Ufmp — argmaxx, (UTIL% [U(Pi),U(PPi)})
3 SendVALUE(X;,v}) to all C; and PC;

4 wait for depth — level clock ticks
5

assignv; = v/

i

PROOF When a failures € A occurs, the agents preserve their current assignments. By definition
of the classA, this ensurep = true. Agents then recompute and resend their UTIL messages. When
the root (level 0 in the DFS) has received all updated messages, ieddoidts new value, and sends
VALUE messages to its children. It will then wait fdept h clock ticks before it actually sets itself
to this new value. We assume messages are delivered synchronouskyaparrive in the following
clock tick at the nodes on level 1, which send VALUE messages and watiefot h- 1 ticks, and so
on. The VALUE propagation phase takes tliept h clock ticks, and at that time all nodes switch to
their new optimal values in a synchronized manmner.

9.2.2.2 Fast response time upon low-impact faults

In dynamic systems, optimal decisions have to be made as quickly as possitdemé cases, we
want to responimmediatelyto a perturbation by re-assigning the "touched” variable to its new optimal
value, and then gradually re-assigning the neighboring ones to theirptanabvalues, until the whole
system re-stabilizes.

Definition 36 (Low impact faults) A low impact fault on a variable; is the addition of a constraint
that further limits the available values foX;, or changes the local utilities associated with some of its
values.

To be able to immediately assdssally the global effect of such a fault, each agent needs global
utility information. To this end, we use the bidirectional utility propagation extengiom Sec-
tion/4.1.6. Then, each agent simply joins together all the UTIL messagesegdeom its parent
and children, and then projects out all other variables except itself.ghigs the agent a global view
of the whole problem, as it produces a utility vector that accurately desonhbat is the best utility
achievable by the whole problefor each one of the values of the agent in question
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Algorithm 21 LIF-S-DPOP - Dynamic DCOP algorithm (changes from S-DPOP)
LIF-S-DPOP(X, D, R): changes from S-DPOP (Algorithm (18)

UTIL propagation protocol: bidirectional version, as in Section 4.1.6
1 if received new UTIL msg¥X(y, UTIL}'C) ORP,;, PP, C;, PC; or Rf changedhen

2 | recompute’OINx, = ((@D.eqciumy UTILL) ® Ri)
3 | UTILE?™ = JOINy, Lx,.x,

VALUE propagation protocol: run continuously - wait for VALUE messages
4 if changes irUTILgéfb“l then

5 | or— argmaz, (UTILE)
6 SendVALUE(X;,vf) to all C; and PC;

Once this vector is available, dealing with a low-impact fault is ea§ysimply has to join the new
relation/constraint to the vector, and it finds out what is its best value inel\hresi'luatior%g . This later
step requires no communication, and only a linear amount of computation.

The resulting algorithm is presented in Algorithm 21.

Proposition 13 Algorithm[21 self-stabilizes in response to a low-impact fault in a time delay of
VALUE messages.

PrROOF When a low-impact fault occurs at an ageft X; immediately finds out its new optimal
value by joining the new relation/constraint describing the fault with the preputedU77L%™"
vector, and choosing the new best value. Afterwatkisannounces its neighbors of the change by
sending VALUE messages. When another ag€ntreceives a new VALUE message, it simply re-
trieves its best response from its intero@/ Nx, message, and announces its own neighbors about
the change, and so on. The whole propagation stops after anmvddtUE messages, i.e. in the worst
case after all the agents in the problem change value.

8This assumes that there are no other simultaneous changes in the problem



Chapter 10

Solution stability in dynamically
evolving optimization problems

In dynamic systems, changes occur all the time, and optimization is a contincaesg. In some
cases, it is required to decide on the values of at least a subset ofrihigles of the problem, and fix
them to some desirable values. A simple example is a dynamic scheduling proldiens, & some
point one has to fix some tasks and start working on them, otherwise desagtinid not be kept.

The traditional dynamic CSP model[18,20,52,212,216] deals with dynanviconments by as-
suming that the CSP solver has to deal with a sequence of static CSPs. IVdresstves each one
of these CSPs, and finds the optimal solution at each step. In some settingsygortant to try to
minimize the number of variable assignments that differ between succeekii@rss. For example,
when a new task is given to a scheduler, it may be wasteful to re-schadtithe other schedules that
were previously computed; it may be desirable to disrupt the existing slehasllittle as possible. For
this purpose, the objective gblution stabilitywas introduced (83, 216]), which states that solutions to
successive problems should differ in as few variable assignments siblpos

We next extend the traditional dynamic CSP formalism along two dimensions.idritroduce a
more flexible mechanism to deal with environment dynamics (Section 10.1%emotd, we introduce
an effective mechanism for evaluating and maintaining solution stability foollgm that evolves
with time (Section 10.2).

10.1 Commitment deadlines specified for individual variables

First, we introduce a new level of granularity as far as time is concernedddMmot treat the dynami-
cally evolving CSP as a sequence of CSPs that have to be solved indligiduarather introduce the
idea of per-variableommitment deadlindn this approach, upon defining the optimization problem,
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the designer has the opportunity to speafymmitment deadlinefer each variable: deadlines until
which a value must be assigned to the respective variable. This givedlmadbdity, as each variable
is treated individually, and the ones that do not have to be committed to anyd@ha interfere with
maintaining solution stability.

We identify two kinds of commitments:

1. Soft commitmentsodel contracts with penalties, and can be revised if the benefit extracted f
the change outweighs its cost. The penalties associated with changingkdevagsignment (a
decision that has been made) are modeled wiiébility constraintysee definition 37 in Sec-

tion|10.2).

2. Hard commitmentmodel irreversible processes, and are impossible to undo (exampleicprod
tion of good X already started, and resour¥ewas already consumed). When a variable is
hard-committed to a value, the variable can be removed from the problem.

10.2 Solution Stability as Minimal Cost of Change via Stability
Constraints

Current approaches define solution stability in dynamic CSP with respece toutinber of variable
assignments that need to be changed in order to reach again a cons&tenpsn a change in the
problem. There are two approaches to achieve this kind of stability. Theafigoach (e.q.[212])
is reactive once a change occurs in the problem, one seeks the new solution whioléstdo the
previous one, thus requiring a minimal number of changes. The secpnusap (e.g.[27,99,216]) is
proactive when generating a solution in the first place, one tries to find robust sautwehich are
likely to remain valid even upon changes in the problem, thus requiring little odjustment. [27]
uses a probabilistic model that tries to predict what possible changespparin the future, and tries
to generate solutions that are robust with respect to the predicted change

Our approach falls in the category efactiveapproaches. We do not try to predict future changes,
or to build robust solutions; rather, we simply optimize continuously and pea¥id optimal solution
at all times. However, we break away from the traditional definition of salusi@bility by looking
at the process from eostperspective. We argue that the number of assignments that changé- is irre
evant; what matters is the totabstthat is incurred by performing these changes, given the current
assignments.

Therefore, we introducstability constraintgo allow for such changing costs to be explicitly mod-
eled into the COP framework witstability constraints

Definition 37 (Stability Constraint) A stability constrainto; is a functions; : dom(X;) x dom(X;) — R,
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s.t. ai(vf — vf) = 0 (it does not cost anything iX; stays unchanged). The semantics of such a con-

straint is simple: ifX; is assigned ta}, theno; (v} — v?) denotes how much it costs to changgs
value tov?.

We define the distributed, continuous-time combinatorial optimization problem:

Definition 38 (DynDCOP) Formally, a discretelynamic distributed constraint optimization problem
(DynDCOP) is atuplec X, D, R,S,7 > that extends the DCOP definition with:

e S ={01,...,0n} is aset of stability constraints

o 7 ={t1,...,t,, } is a set of commitment deadlines: times until the corresponding varialsl&oha
commit to a value. Deadlines can be specified for hard or soft commitments.

Notice that this model of a DynDCOP is purely reactive: we do not assum&rsowledge or
model of future events. At each moment, we seek the current optimal sotattbe problem, taking
into account the costs incurred from revising previous commitments. Formadlygefine the new
optimal solution to a dynamic DCOP as follows:

X;ew = argmary Z TI(X) - Z O-i(XOld_) X) (101)
rER g, €S

where the first sum is the utility of the new solution, and the second sum is sheme has to pay for
changing the current assignments to the new ones.

For uncommitted variables, the cost is 0: they can simply choose their new opéilnas, without
any cost. Hard-committed variables cannot change their values anymrecdn think of it as an
infinite change cost).

Thus, what we need to optimize is the difference between the new utility and#t@ssociated
with changing the soft-committed variables. Section 10.3 introduces RS-DC#Hgorithm which
implements this idea.

10.3 Algorithm RS-DPOP

This section introduces RS-DPOP, an extension of the self stabilizing algo8tDPOP. RS-DPOP
implements the two extensions that we introduced to the DynDCOP framewotkiduna commit-
ment deadlines, and implementation of solution stability as cost of changing comastigshments.

There are two changes from the original S-DPOP. First, we add a time mdmiteach agent
that handles the deadlines imposed on the commitment of its variable. Secobd,|thandVVALUE
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propagations are changed as far as the committed variables are cohddraRS-DPOPalgorithm is
described in Algorithm 22.

10.3.1 UTIL propagation

The UTIL propagation is essentially the same asSHbPOR with the exception of the committed
variables.

Soft Commitments and Stability Constraints supposeX; has already soft-committed tg. If
there are some changes in the problem, &paheeds to resend itdTIL message to its parent, then it
can recompute it by adding the cost of change to the cudtértV, followed by an optimal projection
along its dimensionUTILi(i) = (JOINZ.P(") ® ai[vj]> Lx,.

i

For each tuple of variables i{dim(JOINij) \ X;}, all the corresponding values frodOINij
(one for each value ak;) are considered. The value correspondingfto= v; is not modified - no
change, no cost. From all the other values correspondidg te v¥, k # * we substract "the cost of
change”.o;(v; — vf). We then choose the best value. Computinguiiél. messages like this ensures
that the utility values sent by; are either computed by keeping the same valueXigror take into
account the cost of change.

Hard commitments: When computing itdJTIL messages, a hard-committed variable cannot
change its value anymore, so instead of an optimal projection, a slice isiisgdvas already assigned
tov;, thenUTILY"Y = JOIN/V[X; = v;4]

10.3.2 VALUE propagation

Now the optimization of the local value happens only if the variable is not bandmitted. If it is
soft-committed, the cost of change is taken into account. Otherwise, théleaigdfloating”, and it
can freely be changed to its new value.

Proposition 14 (RS-DPOP correctness)lgorithm 22 is correct in the sense that it correctly finds the
(instantaneous) optimal solution according to Definition 10.1.

ProoF Follows from the fact that the stability constraints are taken into accouite wdmputing the
UTIL messages (step 4 in Algorithm 22) and while determining the new optimarasents in the
VALUE phase (step 7 in Algorithm 22)J
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Algorithm 22 RS-DPOP - Dynamic DCOP algorithm (changes from S-DPOP)
(X, D,R,S,T): each agenk; does:
Time monitor: run continuously

1 if deadlinet; reachedthen commit to current best valueX; «— v}
2 if t; is hard commithen mark X; asdead apply policy on dead agents

UTIL propagation protocol: run continuously
3 if X; is hard-committed ta; * then UTILiEi) = JOINTV[X; = v;#]
4 if X, is soft-committed to;* then UTILQ” = (JOINI.P(” @ o; [vj]) 1x,
5 if X; is not committedhen UTIL?E” = JOINZP(” 1 X;
VALUE propagation protocol
6 if X; is not committedhen v} «— argmaxx, (JOINZP(i) [agent,m'ew])

7 if X; is soft-committedhen v} < argmazx, (JOIN,L-P(i) [agent_view] & o; [v;“])

10.4 Real time guarantees in dynamically evolving environments

In general, constraint optimization problems are NP-hard to solve, so ificudtito provide real time
guarantees. However, low impact faults as defined in Definition 36 aretiaydar case of changes
which are easier to deal with: in a first phase, the agent touched by thienleact fault can almost
instantly recompute its new optimal value (see Section 9.2.2.2). The agentfibvengiits neighbors of
its assignment change via VALUE messages. In the worst case, thidist pequires sending al 1
VALUE messages. However, the VALUE propagation is very fast, as trssages are of linear size,
and the processing required from each node when receiving a VAheSage is simply retrieving its
best value which corresponds to this new assignment.

In a second phase, the algorithm needs to prepare itself for the nextloset fault, by recom-
puting and retransmitting the new UTIL messages, and by computing the new wiityrs as in (see
Section 9.2.2,2). This second phase may take much longer than the firgisahejay require much
more computation, and it also may involve sending larger messages ovetwelgevhich is an ex-
pensive operation. In the worst case, a full UTIL propagation-of messages could be required to
prepare the system for the next fault. However, assuming that duringrttéshere appear no addi-
tional faults, the solution which is implemented in the first phase is already the omtiraabnd thus
the system is in the stable state.
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Chapter 11

Distributed VCG Mechanisms for
Systems with Self-Interested Users

In this chapter we consider systems with self-interestedsysvhich try to maximize their own
utility. We focus on thefficient social choice problem (SCRyhere the goal is to assign values,
subject to side constraints, to a set of variables to madrtiie total utility across a population of
agents, where each agent has private information aboutitigyfunction.

We show how to model SCP as a DCOP. Whereas existing DCOPithlgsrcan be easily ma-
nipulated by an agent, we introdu¢4-DPOP, the first DCOP algorithm that providesfaithful
distributed implementatiofor efficient social choice. Faithfulness ensures that neragan bene-
fit by unilaterally deviating from any aspect of the protqaid is achieved by carefully integrating
the Vickrey-Clarke-Groves (VCG) mechanism with DPOP. ieiteng agenti’s payment requires
solving the social choice problem without agéniere, we present a methodreuse computation
performed in solving the main problem in a way that is robugtiast manipulation by the excluded
agent. Experimental results show that as much as 87% of tm@atation required for solving the
marginal problems can be avoided by re-use, providing vergdgscalability in the number of
agents.

Distributed optimization problems can model environments where a set of agestsagree on
a set of decisions subject to side constraints. We consider settings in @dmibhagent has its own
preferences on subsets of these decisions. The agents are sefitettessnd each one would like to
obtain the decision that maximizes its own utility. However, the system as a whaesafpr some
social designer determines) that a solution should be selected to maximize thdilittaacross all
agents. Thus, this is a problem @fficient social choiceAs motivation, we have in mind massively
distributed problems such as meeting scheduling, where the decisionsoatendien and where to
hold each meeting, or allocating airport landing slots to airlines, where theialezare which airline
is allocated which slot, or scheduling contractors in construction projects.
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One approach to solve such problems is with a central authority that compatepttimal solu-
tion. In combination with arfncentive mechanissuch as the Vickrey-Clarke-Groves (VCG) mecha-
nism[103], one can also prevent manipulation by misreporting prefesetowever, in many practical
settings it is hard to bound the problem so that such a central authoritysiblEeaConsider meeting
scheduling: while each agent only participates in a few meetings, it is in @emsrpossible to find a
set of meetings that has no further constraints with any other meetings ancethibbe optimized sep-
arately. Similarly, contractors in a construction project simultaneously woriitioer projects, again
creating an web of dependencies that is hard to optimize in a centralizéoifaBhivacy concerns also
favor decentralized solutions[90].

Algorithms for distributed constraint reasoning, such as ABT and AWZ3[R AAS[197], DPOP[160]
and ADOPT[141], can deal with large problems as long as the influeresobfagent on the solution is
limited to a bounded number of variables. However, the current technipsesneooperative agenis
and do not provide robustness against misreports of preferenaEviations from the algorithm by
self-interested agents. This is a major limitation. In recent ydaithful distributed implementa-
tion[150] has been proposed as a framework within which to achieve a symthiethe methods of
(centralized) MD with distributed problem solving. Until now, distributed implemigmahas been
applied to lowest-cost routing[72,192], and policy-based routing[@3]the Internet, but not to effi-
cient social choice, a problem with broad applicability.

This chapter brings the following contributions:

e We show how to model the problem of efficient social choice as a DCQ@Padapt the DPOP
algorithm to exploit the local structure of the distributed model and achieveatine scalability
as would be possible in solving the problem in a centralized fashion.

¢ We provide an algorithm whose first stage iddithfully generate the DCOP representation from
the underlying social choice problem. Once the DCOP representation ésaget, the next
stages of ouM-DPOP algorithm are also faithful, and form a@x post Naskequilibrium of the
induced non-cooperative game.

¢ In establishing that DCOP models of social choice problems can be soltiefdifs, we observe
that thecommunication and information structune the problem are such that no agent can
prevent the rest of the system, in aggregate, from correctly determinenghéinginal impact
that allowing for the agent’s (reported) preferences has on the total attlitieved by the other
agents. This provides the generality of our techniques to other DCORthiger

e Part of achieving faithfulness requires solving the DCOP with each ageeported) preferences
ignored in turn, and doing so without this agent able to interfere with this ctatipnal process.
We provide an algorithm with this robustness property, that is neverthatdsdgo reuse, where
possible, intermediate results of computation from solving the main problemlthgeats.
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e In experimental analysis, on a meeting scheduling problem that is a commohrbark in the
literature, we demonstrate that as much as 87% of the computation requirediforg the
marginal problems can be avoided through reuse. In absolute numbemmihisits to saving
the computation associated with 1.96 million valuations out of a total of 2.25 million.

The M-DPOP algorithm definessdrategyfor each agent in the extensive-form game induced by
the DCOP for efficient social choice. In particular, the M-DPOP algorittafines the messages that
an agent should send, and the computation that an agent should perfamsponse to messages
received from other agents. In proving that M-DPOP forms a gamedtie@quilibrium, we show
that no agent can benefit by unilaterally deviating, whatever the utility fumetid other agents and
whatever the constraints. Although not as robust derainant strategy equilibriupbecause thisek
pos) equilibrium requires every other agent to follow the algorithm, ParkesShmetidman[150] have
earlier commented that this appears to be the necessary “cost of dézatitra”

It is worthwhile to note that while agents make payments to the bank as requirdee b/CG
mechanism, the total payment made by each agent to the bank is alwayegativen and M-DPOP
never runs at a deficit

The reuse of computation, in solving the marginal problems with each ageoteel in turn, is
especially important in settings dfstributedoptimization because motivating scenarios are those for
which the problem size is massive, perhaps spanning multiple organizatidrenaompassing thou-
sands of decisions. For example, consider project scheduling, intetefjistics, intra-firm meeting
scheduling, etc. With appropriate problem structure, DCOP algorithms ie hreblems can scale
linearly in the size of the problem. For instance, DPOP is able to solve subleprs through a single
back-and-forth traversal over the problem graph. Bitthout re-use the additional cost of solving each
marginal problem would make the computational cost quadratic ratham timear in the number of
agents, which could be untenable in such massive-scale applications.

The rest of this chapter is organized as follows: we start with a bachdreection on mechanism
design in general. In Section 11.2 we formally introduce the social choaggm, we show how to
model it as a DCOP, and present some examples. In Section 11.3 we destrittlaptation of the
DPOP algorithm to our DCOP model of social choice problems. Section 11otlintes our model of
self-interested agents and defines the (centralized) VCG mechanism.nS8ekcdod provides a simple
method,Simple M-DPORo make DPOP faithful and serves to illustrate the excellent fit between the
information and communication structure of DCOPs and faithful VCG mechanibnfSection 11.5
we describe our main algorithm, M-DPOP, in which computation is re-used in golkign marginal
problems with each agent removed in turn. We present experimental res@éection 11.5.3, and
summarize M-DPOP in Section 11.5.4. Additionally, we provide a discussiodayptiag other DCOP
algorithms to achieve faithfulness in Section 11.6
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11.1 Background on Mechanism Design and Distributed Imple-
mentation

This work draws on two research areas: distributed algorithms for eamissatisfaction and opti-
mization, and mechanism design for coordinated decision making in multi-agsets with self-
interested agents. We briefly overview the most relevant results in thege ar

There is a long tradition of usingentralizedincentive mechanisms within Distributed Al, going
back at least to Ephrati and Rosenschein[64] who considered tloé thesvVCG mechanism to compute
joint plans; see also Sandholm[187] and Parkes et al.[149] for reoemt discussions. Also noteworthy
is the work of Rosenschein and Zlotkin[181, 244] mutes of encounterwhich provided non-VCG
based approaches for task allocation in systems with two agents.

On the other hand, there are very few known methodslifgtributed problem solvin@ the pres-
ence of self-interested agents. For example, tReJONET[186] and the @NTRACTNET[46] sys-
tems are negotiation-based, distributed task reallocation allocation mechaNisvestheless, neither
TRACONET or CONTRACTNET were studied in the presence of game-theoretic agents, but only for
simple, myopically-rational agent behaviors. This lack of thorough aisahalds for more recent
works[63,152,153] as well. Similarly, Wellman’s work omarket-oriented programmirjg18, 219]
considers the role of virtual markets in the support of optimal resourceadibm, but is developed for
a model of “price-taking” agents (i.e. agents that treat current prisésaugh they are final), rather
than game-theoretic agents.

Izmalkov et al.[102] adopt cryptographic primitives suchbaiot boxesto show how to convert
anycentralized mechanisms into a DI orfudly connecteccommunication graph. There interest is in
demonstrating the theoretical possibility of “ideal mechanism design” withoutsted center. They
focus on the issue dfust can mechanism design be performed without a trusted center? Our work
has a very different focus: we seek computational tractability, do mptire fully connected commu-
nication graphs, and make no appeal to cryptographic primitives. On tkee loéimd, we are content
to retain desired behavior someequilibrium (remaining consistent with the MD literature) while 1z-
malkov et al. avoid the introduction of any additional equilibria beyond thaestestkist in a centralized
mechanism.

Ina similar line of work, Yokoo, Suzuki and Hirayama[204, 230-234préto cryptographic mech-
anisms to address incentive issues.[232] shows how to implement a comidirnatction mechanism
in a distributed fashion, such that the VCG outcome is selected. Their ajphhaa some drawbacks,
however: it requires the computation of prices for each possible bufwdla]l bidders, i.e.n x 2™
prices, wheren is the number of bidders, and is the number of items. This, coupled with the fact
that the computation of each price involves heavy cryptographic compgationit the practical ap-
plicability of their approach.
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The first step in providing a more satisfactory synthesis of distributed itigts with MD was
provided by the agenda dfstributed algorithmic mechanism desi(ipPAMD), due to Feigenbaum and
colleagues[72, 74]. They consider the problem of lowest-cost inteaiforouting on the Internet, and
provide an efficient algorithm that computes the VCG outcome. The agentisis icaseautonomous
systemsunning network domains —could therefore not benefit by misreportimgrirdtion about their
own transit costs. However, they do not consider the robustness algihiethm itselfto manipulation.
This problem is later fixed in[150], where the conceptDostributed implementatiofs introduced,
which specifies this additional requirement. Parkes and Shneidman[it®@]@ thepartition principle
for achieving faithfulnesg in anex postNash equilibrium. They do not provide however a concrete
instantiation of their mechanism for social choice problems.

Ours is the first work to achieve faithfulness for general DCOP algorithdersonstrated here via
application to efficient social choice.

11.2 Social Choice Problems

We assume that the social choice problem consists of a finite but possipyriamber of decisions
that all have to be made at the same time. Each decision is modeled as a variadde thlie values in
a discrete and finite domain. Each agent has private information aboudriables on which it places
relations Each relation associated with an agent defines the utility of that agenadbr gossible
assignment of values to the variables in the domain of the relation. There nodyedtgrd constraints
that restrict the space of feasible joint assignments to subsets of variables

Definition 39 (Social Choice Problem - SCP)An efficient social choice problem can be modeled as
atuple(A, X,D,C,R) such that:

o X ={Xy,..., Xn}isthe set opublic decision variableg¢e.g. when and where to hold meetings,
to whom should resources be allocated, etc);

e D ={dy,...,dy} is the set of finitgublic domainsof the variables’ (e.g. list of possible time
slots or venues, list of agents eligible to receive a resource, etc);

e C ={c1,...,cq} Is a set ofpublic constraintsthat specify the feasible combinations of values of
the variables involved. &onstraint c; is a functionc; : d;, x .. x d;, — {—o0, 0} that returns
0 for all allowed combinations of values of the involved variables, and for disallowed ones.
We denote bycope(c;) the set of variables associated with constraint

1An algorithm isfaithful if an agent cannot benefit by deviating from any of its required actionk)ding information-
revelation, computation and message passing.
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o A={A,.., A,}isasetoBelf-interested agentsivolved in the optimization problen¥ (A;) C
X is a (privately known) set of variables in which agent; is "interested” and on which it has
relations.

e R = {Ry,...,R,} is a set ofprivate relations where R; is the set of relations specified by
agentA; and relationr/ € R; is a functionr? : d;, x .. x d;, — R specified by agent;,
which denotes the utilityl; receives for all possible values on the involved varialgs. . . , jr }
(negative values mean costs). We denotecbye(rf) the domain of variables tha’{ is defined
on.

The private relations of each agent may, themselves, be induced byuhersto local optimization
problems on additional, private decision variables and with additional, tpra@nstraints. These are
kept local to an agent and are not part of the SCP definition.

The optimal solution to the SCP is a complete instantialidrof all variables inX, s.t.

X" € argmax > OR(X)+ Y g(X), (11.1)
i€{1,..,n} c;eC

whereR;(X) = Erlj_-eRi r(X) is agentd;’s total utility for assignmeni . This is the natural problem
of social choice: the goal is to find a solution that maximizes the total utility of ahtsy while
respecting hard constraints; notice that the second sumxisif X is infeasible and precludes this
outcmoe. We assume throughout that there is a feasible solution.

In introducing the VCG mechanism in Section 11.4.1 and onwards, we willneethe solution to
the SCP with the influence of each agent’s relations removed in turn. Folethi&;P(.4) denote the
main problem in Eq! (11.1), and we definenarginal problemas follows:

Definition 40 (SCP(—A;): the marginal problem without agentd;) We call "the marginal prob-
lem without agentl,*, and we denote by CP(—A4;), the problemmaxxep 32 ; 1 (X)+3 -, cc ¢ (X).
Note that all decision variables remain. The only difference betw#&&h(.A) and SCP(—A4;) is that
the preferences of agert; are ignored in solvingSCP(—A;).

For variableX;, we refer to the agentd; for which X; € X (A4;) as forming thecommunity for
X;.

Assumptions  We choose to emphasize the following assumptions:

e Each agent knows the variables in which it is interested, together with theim@hany such
variable and the hard constraints that involve the variable.
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e Each decision variable is supported bgammunity mechanisthat allows all interested agents
to report their interest and learn about each other. For example, suebtanism can be imple-
mented using a bulletin board.

e For each constraint; € C, every agentd;, in a communityX; € scope(c;), i.e. with X; €
X (Ay), can read the membership lists of all other communiligs € scope(c;) for X,,, # X;.
In other words, every agent involved in a hard constraint knowstaddbather agents involved
in that hard constraint.

e Each agent can communicate directly with all agents in all communities in which it isrdoare
and with all other agents involved in the same shared hard constraints. &tacothmunication
between agents is required.

In Section 11.4 we will establish that the step of identifying the SCP, via the coitynmiechanism,
is itself faithful so that self-interested agents will choose to volunteer the communities of thigigh
are a member (and only those communities.)

11.2.1 Modeling Social Choice as Constraint Optimization

We first introduce a centralized, constraint optimization problem (COP) huddke efficient social
choice problem. This model is represented asrtralized problem graphGiven this, we then model
this as a distributed constraint optimization problem (DCOP), along with arciassddistributed
problem graph The distributed problem graph makes explicit the control structure ofitebdited
algorithm that is ultimately used by the multi-agent system to solve the problem. Bctibrss are
illustrated by reference to a meeting scheduling problem, as describedtiorG28.1, and[127]. We
now introduce the idea of self-interest in this problem: although the org#onizas a whole desires
to minimize the cost of the whole process, each department and employeeiigeselfted in that it
wishes to maximize its own utility. An artificial currency is created for this puepasd a weekly
assignment is made to each employee. Employees express their prefdmermoeeting schedules in
units of this currency.

11.2.1.1 A Centralized COP Model as a MultiGraph

Viewed as a centralized problem, the SCP can be defined as a consttairizaton problem on a
multigraph i.e. a graph in which several distinct edges can connect the samerseted. We denote
this COP(A), and provide an illustration in Figure 11.1(a) in the meeting scheduling domaia. Th
decision variables are the nodes, and relations defined over sub#ie¢svariables form edges of the
multigraph;hypeedges that connect more than two vertices at once in the case of a relatituing
more than two variables. There can be multiple edges that involve the sanievagables, with each
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/(a) Centralized model (b) Distributed model with replicated vars (c) DFS traversal

* Variables = time slots « Each variable is a local copy: M31 =M,forA | - solid = tree-edge

* Inequalities = non-overlaps « Equality constraints synchronize local copies| * dashed = back-edge

 Preferences = relations « Private problems (preferences,constraints) * n-ary constraints treated
\\ ' as cliques (e.g. #(A,)) /

Figure 11.1: A meeting scheduling problem(a) A centralized model: each vertex is a meeting
variable, red edges correspond to hard constraints of merap for meetings that share a partici-
pant?, and blue edges correspond to relations and represent pigdatences(b) A decentralized
(DCOP) model with replicated variables: each agent has @ leplica of variables of interest and
green edges denote equality constraints that ensure agméerfhe hard constraint for non-overlap
between meetings/;, M, and M3 is now a local hyperedge to age#s. (c) A DFS arrangement of
the decentralized problem graph: used by the DPOP algotithoontrol the order of problem solving.

edge corresponding to the relations of a distinct agent on the same sefadil@s. The hard constraints
are also be represented as edges on the graph.

Example 19 (Centralized Model for Meeting Scheduling) The example in Figure 11.1(a) contains
3 agents and considers 3 meetings. The meefinds M2, M3} correspond to the decision variables
and the domain of each meeting is the availdir@e slotsfor that meeting. Each vertex is associated
with a meeting. Agent 1 must participate in meetingsand M3, agent 2 in every meeting, and agent
3 in meetings\/; and M3. These hard constraints are annotated as an edge for each of agematsd

Asz and a hyperedge for agemt;. Agent 1 expresses a relation on the of meefifig agent 2 on the
joint times assigned to meetingg; and M, and agent 3 on the joint times oW, and M3. These
relations are denoted with three edges on the graph, with the unary relatiagemt 1 associated with
a self-edge on vertek/;.

11.2.1.2 A Decentralized COP (DCOP) Model Using Replicated Variables

Itis useful to define an alternate graphical representation of the StbRhe centralized problem graph
replaced with aistributedproblem graph. This distributed problem graph has a direct corregspoe
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with the DPOP algorithm for solving DCOPs. We show in the following how to tedas SCP into a
DCOP model.

Remark 10 Both SCP(.A) (the problem with all agents included) as’P(—A;) (the problem with
agentA; removed) can thus be translated into DCOP problems, which we dend&yP(.4) and
DCOP(—A;), respectively.

In our distributed model, each agent haseal replicaof the variables in which it is interestgdl.:or
each public variableX, € X (A;), in which agent4; is interested, the agent hadaxal replica
denotedX!. AgentA; then models its local problef@OP (X (4;), R;), by specifying its relations
rf € R; on the locally replicated variables.

Theneighborhoocf each local copyX’ of a variable is composed of three kinds of variables:

Neighbors(X1) = Siblings(X!) U Local _neighbors(X:) U Hard_neighbors(X}). (11.2)

The siblings are local copies df, that belong to other agents; # A; also interested i,

Siblings(X.) = {XJ | Aj # A; and X, € X(A4;)} (11.3)

All siblings of X! are connected pairwise with aquality constraint This ensures that all agents
eventually have a consistent value for each variable. The seconthseiatles are the local neighbors
of X! from the local optimization problem of;. These are the local copies of the other variables that
agent4; is interested in, which are connectedX@ via relations inA;’s local problem:

Local_neighbors(X!) = {X! | X, € X(A;), and Hrzj € R;s.t. X! € scope(r;)} (11.4)

We must also consider the setlwdrd constraintghat contain in their scope the variablg, and
some other public variablegiard(X,) = {Vc, € C|X, € scope(cs)}. These constraints connext,
with all the other variableX',, that appear in their scope, which may be of interest to some other agents
as well. Consequentlyy’ should be connected with all local copiﬁ’ﬁ of the other variable(; that
appear in these hard constraints:

Hard_neighbors(X!) = {X]|3¢s € Hard(X,) s.t. X; € scope(cs), and X; € X(4;)} (@115)

3An alternate model designates an “owner” agent for each decisiabl@rEach owner agent would then centralize and
aggregate the preferences of other agents interested in its variableegbehtly, the owner agents would use a distributed
optimization algorithm to find the optimal solution. This model limits the reusabiligoofputation from the main problem in
solving the marginal problems in which each agent is removed in turrusesghen excluding the owner agent of a variable,
one needs to assign ownership to another agent and restart the ciomalitarocess in regards to this variable and other
connected variables. This reuse of computation is important in makindPkdfscalable. Our approach is disaggregated and
facilitates greater reuse.
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In general, each agent can also havivate variables and relations or constraints that involve
private variables, and link them to the public decision variables. For exarophsider a meeting
scheduling application for employees of a company. Apart from the waldted meetings they sched-
ule together, each one of the employees also has personal items onta,didge appointments to the
doctor, etc. Decisions about the values for private variables andnatton about these local relations
and constraints remain private. These provide no additional complicatimhe/il not be discussed
further.

Example 20 (DCOP Model for Meeting Scheduling)Refer to Figure 11/1 (b). In the example, each
agent has as local variables the time slots corresponding to the meetingditijpates in (e.g.M?
representsis’s local replica of the variable representing meetify ). Local edges correspond to local
all-different constraints between an agent’s variables and ensure thaes not participate in several
meetings at the same time. Equality constraints between local replicas @fitteevalue ensure global
agreement. Agents specify their relations via local edges on local repkoagxample, agenti; with

its relation on the time of meetiny; can now express a preference for a meeting later in the day with
relation ¢, which can assign low utilities to morning time slots and high utilities to afternoon time
slots. Similarly, ifAs prefers holding meeting/, aftermeeting)M;, then it can use the local relation

rJ to assign high utilities to all satisfactory combinations of timeslots and low utility otiserwFor
example{M; = 9AM, My = 11AM) gets utility 10, and M, = 9AM, My = 8AM) gets utility 2.

We can understand the potential for manipulation by self-interested agesuglihthis example:

Example 21 (Manipulation Example) Notice that although the globally optimal solution may require
holding meeting/; beforemeeting)My, this is less preferable td-, providing utility 2 instead of 10.
Therefore, in the absence of an incentive mechanisntould benefit from a simple manipulation: de-
clare utility +oo for (M; = 9AM, My = 11AM), thus changing the final assignment to a suboptimal
one that is nevertheless better for itself.

11.3 Cooperative Case: Efficient Social Choice via DPOP

In this section, we instantiate DPOP for efficient social choice problemscifgglly, we first show
in Section 11.3.1 how the optimization problem is constructed from the agent®stgen variables
and their preferences. Subsequently, we show the changes we mak&f® D adapt it to the SCP
domain. The most prominent such adaptation exploits the fact that seegia@bles represent local
replicas of the same variable, and can be treated as such both duringlthandithe VALUE phases.
This adaptation improves efficiency significantly, and all@mesplexity claims to be stated in terms
of the induced width of the centralized COP problem graph rather than theldised COP problem
graph (see Section 11.3.5)
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11.3.1 Building the DCOP

To initialize the algorithm, each agent first forms the communities around its iesialb interest,
X (A;), and defines a local optimization probleftOP;( X (A;), R;) with a replicated variable&’ for
eachX, € X(A;). ShorthandX? € COP; denotes that agent; has a local replica of variabl&,.
Each agent owns multiple variables and we can conceptualize each vasab#ing an associated
“virtual agent” operated by the owning agent. Each such virtual ageesponsible for the associated
variable.

All agents subscribe to the communities in which they are interested, and lbarim @ther agents
belong to these communities. Neighboring relations are established for eattiddable according to
Eq. 11.2, as follows: all agents in a communky connect their corresponding local copiesiaf with
equality constraints. By doing so, the local proble@f8P;(X (A;), R;) are connected with each other
according to the interests of the owning agents. Local relations in €&th; (X (4;), R;) connect
the corresponding local variables. Hard constraints connect lop&xof the variables they involve.
Thus, the overall problem graghCOP(A) is formed.

For example, consider again Figure 11.1(b). The decision variableseastart times of the three
meetings. Each agent models its local optimization problem by creating lodaksoaofpthe variables
in which it is interested and expressing preferences with local relatioasndHy, the initialization
process is described in Algorithm 23.

Algorithm 23 DPOP init: community formation and building COP(A).
DPOP.nit(.A, X, D,C, R):

1 Each agentl; models its interests aSOP;(X (4;), R;): a set of relationg?; imposed on a set
X (A;) of variablesX? that each replicate a public variabtg, € X (4;)

2 Each agent}; subscribes to the communities &f, € X (A;)

3 Each agent4; connects its local copieX? € X (A;) with the corresponding local copies of other
agents via equality constraints

11.3.2 Constructing the DFS traversal

The method for DFS traversal is described in Algorithm 24. The algorithrtsdtg choosing one
of the variables X, as the root. This can be done randomly, for example using a distributerttiahgo
for random number generation, with a leader election algorithm (e.g)ld7by simply picking the
variable with the lowest ID. The agents involved in the communityXgrthen randomly choose one
of them, A, as theleader. The local copyX of variableX, becomes the root of the DFS.

Once a root has been chosen, the agents participatedistrébuted depth-first traversal of the
problem graph For convenience, we describe the DFS process as a token-pasgsirithen in which
all members within a community can observe the release or pick up of the toklea bther agents. The
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Algorithm 24 DPOP Phase One: DFS construction.

Inputs: eachA; knows itsCOP;, and Neighbors(X:), VX! € COP;
Outputs: eachA; knowsP(X?), PP(X}!), C(X}), PC(X}),VX! € COP;.

Procedure Initialization

The agents choose one of the variabl€g, as the root.
Agents inXy's community elect a “leader’4,..

A, initiates the token passing frofi to construct the DFS

w N e

Procedure Token Passindperformed by each “virtual agenf! € COP;)

if X! is rootthen P(X!) = null; create empty tokeWFS := ()

else DFS:=Handle_incoming_tokens()

Let DFS := DFS U {X!}

Sort Neighbors(X:) by Siblings(X?), thenLocal _neighbors(X!), then Hard neighbors(X}:). Set
C(X?) := null.

g forall X; € Neighbors(X') s.t. X; not visited yetlo

~N o 0o b

©

‘ C(X?) := C(X!)U X;. SendDFS to X; wait for DF'S token to return.
10 SendDFS token back taP(X?).
Procedure Handleincoming_tokens() //run by each “virtual agent” Xj, € COP;

11 Wait for any incomingDFS message; leX; be the sender

12 Mark X; asvisited

13 if this is the firstDF'S message (i.eX; is my parentthen

14 ‘ P(X}):= X;; PP(X}) := { Xy # X;| Xy, € Neighbors(X.) N DFS}; PP(X!) =0
else

15 | if X; ¢ C(X?) (i.e. this is a DFS coming from a pseudochitti@n
‘ PC(X!) = PC(X!)U X,

neighbors of each node are sorted (in line 7) to prioritize for copiesridiblas held by other agents,
and then other local variables, and finally other variables linked throaghdonstraints. Making the
assumption that virtual agents act on behalf of each variable in the protilenfiunctioning of the
token passing mechanism is similar to that described in Section 3.4.1.1.

Example 22 Consider the meeting scheduling example in Figure [11.1. Assumé#hatas chosen
as the start community ands was chosen within the community as the leadkr.creates an empty
tokenDFS = () and addsM3’s ID to the token DFS = {M3}). As in Eql 11.2 Neighbors(M3) =
{M3, M}, M2, M2}. As sends the tokeWFS = {M3} to the first unvisited neighbor from this list,
i.e. M3, which belongs tol3. A3 receives the token and adds its copyhf (now DES = { M3, M3 }).
Ajz then sends the token fd3’s first unvisited neighbor)/3 (which belongs tod,).

AgentA; receives the token and adds its own copyMf to it (now DFS = {M2, M3, M1}).
M3's neighbor listisNeighbors(Mg3) = { Mz, M3, M{}. Since the token that; has received already
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containsMz and M3, this means that they were already visited. Thus, the next variable to vidit is
which happens to be a variable that also belongsifo The token is “passed” td/; internally (no
message exchange required), ang is added to the token (NoRFS = { M2, M3, M3, M}).

The process continues, exploring sibling variables from each communityninand then passing
on to another community, and so on. Eventually all replicas of a varial#eaaianged in a chain and
have equality constraints (back-edges) with all the predecessorsrhatlicas of the same variable.
When a dead end is reached, the last agent backtracks by sendindgémettack to its parent. In our
example, this happens when receives the token froms in the Ms community. Thends sends back
the token tad, and so on. Eventually, the token returns on the same path all the way todhand
the process completes.

11.3.3 Handling the Public Hard Constraints.

Social choice problems, as defined in Definition 39 can contain side cimstia the form of publicly
known hard constraints, which represent domain knowledge suchrasdarce can be allocated only
once”, “this hotel can accomodate 100 people”, “no person can be in thancone meeting at the
same time.” etc. These constraints are not owned by any agent, butdaedbbato all agents interested
in any variable involved in the domain of any such constraint. Handling theesstraints is essentially
unchanged from handling the non-binary constraints in standard D@escribed in Section 3.4.1.1

for the DFS construction phase, and in Section 7 for the UTIL phaseifitjadly:

DFS construction:  neighboring relationships as defined in Eq. 11.2 require for each lacable
that other local copies that share a hard constraint are considane@yabors. This ensures that during
the DFS construction phase, hard constraints are handled as anynaoydonstraint, i.e. as a clique
of the involved variables. Furthermore, in Algorithm 24, because of tiogifization in line 7, the DFS
traversal is mostly made according to the structure defined by the relatithms afents and most hard
constraints will appear as backedges in the DFS arrangement of tHerrgtaph.

UTIL propagation:  similarly to a non-binary constraint in DPOP, hard constraints are intraduce
in the UTIL propagation phase by the lowest agent in the community of theblaffiam the scope of
the hard constraint, i.e. the agent with the variable that is lowest in the DeSimyd For example, if
there was a constraint betweé#, and M3 in Figure 11.1 to specify that/, should occur aftef/3
then this becomes a backedge between the 2 communities and would be agsignéar handling.



184 Distributed VCG Mechanisms for Systems with Self-InterestetUsers

11.3.4 Handling replica variables

Our distributed model of SCP replicates each decision variable for evenggted agent and connects
all these copies with equality constraints. This in turn may increase the inaidddk of the DCOP
model with replicated variables when compared to the induced widihthe centralized model. This
is best avoided, because DPOP’s message size and computational é¢gniglexponential in the
induced width. Specifically, with no further adaptation, HElL messages in DPOP on the distributed
problem graph would be conditioned on as many variables as there atedpies of an original
variable. However, all the local copies represent the same varible astdomassigned the same value;
thus, sending many combinations where different local copies of the sanable take different values
is wasteful. Therefore, we handle multiple replicas of the same variahl&lin propagation as though
they are the single, original variable, and condition UTIL messages othjigsbne variable. This is
realized by updating the JOIN operator as follows:

Definition 41 (Updated JOIN operator for SCP) Defined in two steps:

Step 1: Consider all UTIL messages received as in input. For eachconsider each variablé(?
on which the message is conditioned, and that is also a local copy of ainarigriable X,,. Rename
X! from the input UTIL message &, i.e. the corresponding name from the original problem.

Step 2: Apply the normal JOIN operator for DPOP.

Applying the updated JOIN operator makes all local copies of the samélakbiacome indistin-
guishable from each other, and merges them into a single dimension iTthenessage and avoids
this exponential blow-up.

Example 23 Consider the meeting scheduling example in Figure|11.1. The centralizeel md=ig-
ure/11.1(a) has a DFS arrangement that yields induced width 2 bedtissa clique with 3 nodes.
Nevertheless, the corresponding DCOP model in Figure|11.1(b) has@ubwidth 3, as can be seen
in the DFS arrangement from Figure 11.1(c), in whi€bp ;2 = {M2, M3, M?}. Applying DPOP
to this DFS arrangemenf\/Z would condition its UTIL messageTlLy2 _, y2 on all variables in its
separator: { M3, M3, M?}. However, both\/3 and M3 represent the same variablg{;. Therefore,
M3 can apply the updated JOIN operator, which leverages the equality @nsbetween the two
local replicas and collapse them into a single dimension (call&g in its message foh/2. The result

it that the outgoing message only has 2 dimensidid;, M?}, and it takes much less space. This is
possible because all 3 agents involved, g, A» and A3 know that)M3, M2 and M; represent the
same variable.

With this change, the VALUE propagation phase is modified so that only the teplowal copy
of any variable solve an optimization problem and compute the best valusyreing this result to all
the other local copies which then assume the same value.



Distributed VCG Mechanisms for Systems with Self-Interested Uss 185

11.3.5 Complexity Analysis of DPOP Applied to Social Choice

The special handling of replica variables avoids the possible artificiat@serin complexity and al-
lows DPOP applied to SCP to scale with the induced width ofcietralizedproblem graph, and
independently of the number of agents involved and in the number of Iquadae/ariables.

Specifically, consider a DFS arrangement for the centralized model @@fethat is equivalent
to the DFS arrangement for the DCOP model, where “equivalent” meanshihatriginal variables
from SCP are visited in the same order in which their corresponding commuauigessited during
the distributed DFS construction. (Recall that the distributed DFS trawesatibed in Section 11.3.2
visits all local copies from a community from DCOP before moving on to the cextmunity). Let
w denote the induced width of this DFS arrangement of the centralized SCP. i8intdak denote
the induced width of the DFS arrangement of the distributed model DLet max,, |d,,| denote the
maximal domain of any variable. Then, we have the following:

Theorem 8 (DPOP Complexity for SCP) The number of messages passed in DPOP in solving a SCP
is2m, (n—1) and(n— 1) for phases one, two and three respectively, whea@dm are the number of
nodes and edges in the DCOP model with replicated variables. The maximdder of utility values
computed by any node in DPOP @ D*+!), and the largest UTIL message ha@D™*!) entries,
wherew is the induced width of theentralizedproblem graph.

PROOF The first part of the claim (number of messages) follows trivially fromp®sition 1. For the
second part (message size and computation): given a DFS arrangefnaeDCOP, applying Propo-
sition1 trivially gives that in the basic DPOP algorithm, the maximal amount of ctatipn on any
node isO(D**1), and the largestTIL message ha®(DF) entries, wheré is the induced width of
the DCOP problem graph. To improve this analysis we need to considerebilspandling of the
replica variables.

Consider thdJTIL messages which travel up along the DFS tree, and whose sets of dimensions
contain the separators of the sending nodes. Recall that the updatéaddi@ipses all local replicas
into the original variables. The union of the dimensions of tHEdL messages to join in the DPOP
on the DCOP model becomes identical to the set of dimensions of the nodes P®E on the
centralized model. Thus, each node in the DCOP model performs the sametashocomputation as
its counterpart on the centralized model. It follows that ¢benputatiorrequired in DPOP scales as
O(D™+1) rather tharO(D**1) by this special handling.

There remains an additional difference between DPOP on the DFS emangfor the centralized
SCP versus DPOP on the DFS arrangement for the DCOP. A varigbliat is replicated across
multiple agents can only be projected out from tHEIL propagation through local optimization by the
top-most agent handling a local replica®f. This is the first node at which all relevant information
is in place to support this optimization step. In particular, whenever a nodeheitmaximal separator
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set is not also associated with the top-most replica of its variable then it ntaist dependence on the
value assigned to its variable in thE'IL message that it sends to its parent. This increases the worst
casemessage sizef DPOP toO(D**1!), as opposed t® (D) for the normal DPOP. Computation
remainsO(D**!) because the utility has to be determined for each valug ofnyway, and before
projecting.X, out. O

To see the effect described in the proof, in which a local variable ¢donmediately removed
duringUTIL propagation, consider again the problem from Figure|11.1. Suppe@sénabagentds is
also involved in meeting/;. This introduces an additional back-edyg — M3 in the DFS arrange-
ment for the decentralized model shown in Figure 11.1(c).

The DFS arrangement of the COP model that corresponds to the ddizedtraodel is simply
a traversal of the COP in the order in which the communities are visited duringjstributed DFS
construction. This corresponds to a chald; — My — M. The introduction of the additional back-
edgeM; — M3 in the distributed DFS arrangement does not change the DFS of the COR, amutie
its width remainsw = 2. However, asV/3 is not the top most copy af/,, agent4; cannot project
M, out of its outgoingUTIL message. The result is that it sendgBIL message withv + 1 = 3
dimensions, as opposed to just= 2.

11.4 Handling Self-interest: A Faithful Algorithm for Social Choice

Having adapted DPOP to remain efficient for SCPs, we now turn to the i$s@f-interest. Without
further modification, an agent can manipulate DPOP by misreporting its pratiions and deviat-

ing from the algorithm in various ways. In the setting of meeting schedulinggXample, an agent
might benefit bymisrepresenting its local preferencé$ have massively more utility for the meet-
ing occurring at 2pm than at 9am’ipcorrectly propagating utility information of other (competing)
agents(“The other person on my team has very high utility for the meeting at 2pmty ancorrectly
propagating value decisior(8lt has already been decided that some other meeting involving the other
person on my team will be at 9am so this meeting must be at 2pm.”)

By introducing carefully crafted payments, by leveraging the informaticilcammunication struc-
ture inherent to DCOPs for social choice, and by careful partitionir@pofputation so that each agent
is only asked to reveal information, perform optimization, and send mess$hgeare in its own in-
terest, we are able to achieve faithfulness. This will mean that each agkmhaose even when
self-interested, to follow the modified algorithm.

We first define the VCG mechanism for social choice and illustrate its abilityezepit manipula-
tion in centralized problem solving in a simple example. With this in place, we neiewehe defini-
tions offaithful distributed implementatioand the results of a useful principle, tpartition principle
In closing this section, we then describe Himple M-DPOPalgorithm and prove its faithfulness.
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11.4.1 The VCG Mechanism Applied to Social Choice Problems

Mechanism design (MD) addresses the problem of optimizing some critexgguently social welfare,
in the presence of self-interested agents that each have private itiformelevant to the problem at
hand. In the standard story, agents report private information to a€igetiat solves an optimization
problem and enforces the outcome.

In our setting of efficient social choice, we will assume the existencecofi@ncyso that agents
can make payments, and make the standard assumptiurasilinearutility functions, so that agent
A;’s net utilityis,

ui(X,p) = Ri(X) — p, (11.6)
for an assignmenk’ € D to variablesY and paymenp € R to the center, i.e., its net utility is that due
to the decision?;(X) = >_ j_p. r{(X), minus the amount of its payment.

One of the most celebrated results of MD is provided by the Vickrey-Cl@imaes (VCG) mech-
anism. The VCG mechanism generalizes Vickrey’s second price auctior taroblem of efficient
social choice:

Definition 42 (VCG mechanism for Efficient Social Choice)Given knowledge of public constraints
C, and public decision variable&’, the mechanism works as follows:

e Each agentA;, makes a reporR; about its private relations.

e The center's decision *, is that which solve§CP(A) given the reports: = (Ry, ..., R,).

e Each agent4;, makes payment
Tas(4) = > (Ri(X2) = By(X)), (11.7)
J#i

to the center, whereX* ;, for each 4, is the solution toSCP(—A;) given reportsk_; =

—
A A

(Ri,...,Ri_1,Ris1,..., Ry).

Each agent makes a payment that equalsiigative marginal externality that its presence imposes
on the rest of the systernim terms of influencing the solution to the SCP.

The VCG mechanism has a number of useful properties:
e Strategyproofness:Each agent's weakly dominant strategy, i.e. its utility-maximizing strategy

whatever the strategies and whatever the private information of otheisageto truthfully report
its private relations to the center.
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(a) Simple example (b) Relations of (c) Messages to X, (d) final
of a DCOP with 4 X, and X3 with X, and join with relation result
agents with Xo

Figure 11.2: Numerical example of UTIL propagation. (a) A simple DCOP tgemn in which
there are three relations, 73 andr) between(X3, X;), (X2, X7) and (X1, X,) respectively. (b)
Projections ofX, and X3 out of their relations withX;. The results are sent t&; as UTIL%, and
U TIL§ respectively. (c)X; joins UTIL; and U TIL§ with its own relation withX,. (d) X; projects
itself out of the join and sends the resultXg.

e Efficiency: In equilibrium, the mechanism makes a decision that maximizes the total utility to
agents over all feasible solutions to the SCP.

e Participation: In equilibrium, each agent’s net utility?;( X*) — Taz(4;) = (Ri(X*) +
> Bi(X*) = 32, Rj(X™,), is non-negative, by the principle of optimality, and therefore
agents will choose to participate.

¢ No-Deficit: The payment made by each agent is non-negative in the SCP, b@;’;\giséj(Xii) >
Zj# Rj (X™), by the principle of optimality, and therefore the entire mechanism runs atgebu
surplus.

To understand why the VCG mechanism is strategyproof, notice that théefins in Taz(A;) is
independent ofl;’s report. Now, the second term when taken together with the agent'sraeatility
from the decision, provided; with net utility R;(X*) + ., Rj(X*). This is the total utility for all
agents, and to maximize this the agent should simply report its true relatiormsideethe center will
then explicitly solve this problem in picking *.

Example 24 (A numerical example of VCG computation) Consider the simple DCOP example in
Figure[11.2. We can make this into a SCP by associating agéntd, and A3 with relationsr{, ri
and r} on variables{ Xy, X1}, {X1, X2}, and {X1, X5} respectively. Breaking ties as before, the
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solution toSCP(A) is < Xy = a, X1 = ¢, X2 = b, X3 = a> with utility < 6,6,3 > to agentsA;, A
and A3 respectively. Removing agest, the solution would bec Xg =7, X1 = a, Xo = ¢, X35 =a>
with utility < 5,6 > to agentsds and As. The ‘?’ indicates that agentd, and A3 are indifferent to
the value onXy. Removing agentls, the solution would bec Xy = ¢, X7 = b, Xo =7, X3 = ¢ >,
with utility < 7,4 > to agents4; and A3. Removing agems, the solution would be&: Xy = a, X1 =

¢, Xo = b, X3 =7 >, with utility < 6,6 > to agentsd; and As. The VCG mechanism would assign
<Xo =a,X1 = ¢, X9 = b, X3 = a>, with paymentg5 +6) — (6 +3) =2,(7+4) — (6 +3) =
2,(6+6) — (6 +6) = 0 collected from agentd, A, and A3 respectivelyAs has no negative impact
on agents4d; and A; and does not incur a payment. The other agents make payments: sespecof
A; helpsA, but hurts A3 by more, while the presence db hurts bothA; and As. The only conflict
in this problem is about the value assigned to varialfle AgentsA;, A, and A3 each prefer that
X1 be assigned td, c anda respectively. In the chosen solution, only agdntgets its best outcome.
Considering the case ofs, it can force either or b to be selected by reporting a suitably high utility
for this choice, but forX; = a it must payt while for X1 = b it must payl, and in either case it weakly
prefers the current outcome in which it makes zero payment.

In fact, there is a real sense in which we ardy able to address self-interest in DCOPs by maxi-
mizing something like the total utility of participants. (More generally, it is straightéod to extend
our techniques to maximizelmear weighted sunof the utility of each agent for the solution, where
these weights are fixed and known, for instance by a social plani® Foberts[179] proves that the
Groves mechanisms are thely, non-trivial strategyproof mechanisms in the domain of social choice
unless one makes additional assumptions about the structure of the dongajreveryone prefers
earlier meetings, or more of a resource is always weakly preferre les

11.4.2 Faithful Distributed Implementation

Our goal here is to find a way to distribute the computation required to solvedReaBd to determine
the VCG payments, onto the agents while retaining an analog to strategygseoffihis is the prob-
lem of distributed implementation (DI), which seeks to distribute the computatidorpesd by the
center in the traditional model of MD to the agents. This is challenging bedamgens up additional
opportunities for manipulation beyond those in the centralized VCG.

Additional Assumptions we introduce the following additional assumptions over-and-above those
made so far in Section 11.2:

e Agents argational but helpfu] meaning that although self-interested, they will follow a protocol

“Together with another technical assumption, Robert's theorem hask&srded by Lavi, Mu’alem and Nisan[121] to
domains that allow this kind of structure, for instance to combinatorial angtio
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whenever there is no deviation that will make thstmictly better off (given the behavior of other
agents).

e Each agent is prevented from posing as several independent ageariexternal technique for
providing strong (but perhaps pseudonymous) identities.

e Catastrophic failurewill occur if all agents in the community of a variable do not eventually
choose the same value for the variable.

e A trusted bank, connected withteusted communication channal each agent and with the
authority to collect payments from each agent.

By a trusted communication channel, we mean that each agent can sendagenesthe bank
without interference by any other agent. These messages are onlypsentermination of M-DPOP,
to inform the bank about other agents’ payments. The bank is the onlydrestity that we need to
assume. We continue to assume that the SCP has a feasible solution (afuteltbet each marginal
problem also has a feasible solution.) Catastrophic failure ensures thigdiségon determined by the
protocol is actually executed. It prevents a “hold-out” problem, whereirrhappy agent refuses to
adopt the consensus decision.

Given a distributed algorithm (such asnple M-DPOR to be introduced shortly), we formalize
this, for the same of analysis as a distributed implementation l)=< g, 3, § >, which is defined
in terms of three components[150, 192]:

e A strategy spaceX, for each agentl;. This restricts the space of messages that an agent can
send in every possible state of the distributed algorithm. Given a DI, the whintoabout this is
that the other agents will only be programmed (in equilibrium) to be able to integratticular,
well-defined set of messages that agéntould send.

e A strategy o; € X, exactly defines the message(s) that agénwill send in every possible
state of the distributed algorithm. By defining the message(s) that are seentfumpasses
all computation performed internal to an agent, all information-revelatiorsides made by an
agent about its private information, and all decisions made by an ageut labw to propagate
information received as messages from other agents.

e A suggested protocpk = (s1,..., 5,), defines a strategy;(R;) € X, for every agent4; and
all possible private relationB;. That is, a suggested protogglfor A; defines the messages that
A; will send in all possible states of the distributed algorithm, and for all possiblatp inputs
of the agent.

e A two-partoutcome ruleg = (g1, g2), whereg; : X" — D defines the assignment of values,
g1(0) € D, to variablesX' given ajoint strategy o = (o1, ...,0,) € X", andgs : X" — R"
defines the payment ;(c) € R made by each ageurt; given joint strategyr € X".

®An alternative solution would be to have agents report the final decisiotrtsted party, responsible for enforcement.
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To provide an additional interpretation, one can think about proté@s corresponding to the
algorithm, such as simple M-DPOP, that one wishes to show is faithful. Couwptedhe distributed
input to the problemR = (Ry, ..., R,) and the known parts of the input such as hard constréints
then algorithms defines particular messages that will be sent in every possible state ddjonichan.

It is these messages that are defined by a strategyhich defines a particular execution trace of
the algorithm given the input, and in turn the outcogte), whereg; (o) is the assignment of values
determined on termination ard(o) is the vector of payments to collect from agegts.

The main question that we ask, given a distributed algorithm in the presérsmdf-interested
agents, is whether the algorithm is expostNash equilibrium.

Definition 43 (Ex post Nash equilibrium.) A protocols = (sq,. .., s,), that defines a strategy(R;) €
3} for each agentd;, for all possible private relationg?;, is an ex post Nash equilibrium (EPNE) in
this context of social choice, if

Ri(g1(si(Ri), s—i(R-:))) — g2(si(Ri), s—i(R-:)) > Ri(g1(07, 5-i(R-4))) — g2(07, 5-i(R—s)),
VU; €, VR;,VR_; (11.8)

This is defined so that no agesit can benefit by deviating from protocel, whatever the particular
instance of DCOP (i.e. for all private relatiods= (Ry,..., R,)), so long as the other agents also
choose to follow the protocolt is this latter clause that makes EPNE weaker than dominant-strategy
equilibrium, in whichs; would be the best protocol for ageneven ifthe other agents followed an
arbitrary protocol. Given this, we can definéaithful DI:

Definition 44 (Faithful Distributed Implementation) Distributed implementation
dy =< g,%, 8 > is ex post faithful, if suggested protocs),is an ex post Nash equilibrium.

That is, when a suggested protocol, or algorittsimis ex postfaithful (or just faithful) then it is
in the best interest of every agent to follow all aspects of the algorithm — information revelation,
computation and message-passing — whatever the private inputs of theag#mts, as long as every
other agent follows the algorithm.

11.4.3 The Partition Principle applied to Efficient Social Choi ce

One cannot achieve a faithful DI for efficient SCP by simply running PRPO+ 1 times on the same
problem graph, once for the main problem and then with each agents eéftified in turn by asking

5Note that the outcome rule must be well-defined for any unilateral deviftons, i.e. where aby one agent deviates and
does not follow the suggested protocol. Here we assume that eitheothegrstill reaches a terminal state so that decisions
and payments are defined, or that the protocol reaches some ‘théelingth suitably negative utility to all participants, such
as livelock or deadlock. We neglect this latter possibility for the rest ohoatysis, but it can be easily treated by introducing
special notation for this bad outcome.
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it to simply propagate messages. Agehtwould seek to do the following: (a) interfere with the
computational process f&fCP(—A;), to make the solution as close as possible to thetG@® (A),
so that its marginal impact appears small; and (b) otherwise decrease memayor example by
increasing the apparent utility of other agents for the solutio§@®(.A), and in turn increase the
value of the second term in its VCG payment (Eq. 11.7).

This opportunity for manipulation was recognized by Parkes and ShnejtiBGinwho proposed
the partition principleas a method for achieving faithfulness in distributed VCG mechanisms, instan-
tiated here in the context of efficient social choice problems:

Definition 45 (partition principle) A distributed algorithm, corresponding to suggested protagol
satisfies the partition principle in application to efficient social choice, if:

1. (Correctness)An optimal solution is obtained fo¥CP(.A) and SCP(—A;) when every agent
follows s, and the bank receives messages that instruct it to collect the cor@Gt payment
from every agent.

2. (RobustnessgentA; cannot influence the solution 80P (— A;), or the report(s) that the bank
receives about the negative externality tiigtimposes on the rest of the system conditioned on
solutions toSCP(A) and SCP(—A;).

3. (Enforcement) The decision that corresponds $&'P(.A) is enforced, and the bank collects the
payments as instructed.

Proposition 15 [150] A distributed algorithm that satisfies the partition principle is an ex poshfal
distributed implementation for efficient social choice.

By the partition principle, no agent; is able to prevent the other agents from correctly solving
SCP(—A;), and neither can the agent prevent the other agents correctly reptheimggative exter-
nality thatA; imposes on the other agents by its presence. On the other hand, no resiptaxed on
the agent’s ability to influence the decision§6'P(.A). For example, it is permissible for every agent
to use the standard DPOP algorithm to solve the main social choice problem.

For some intuition behind this result, note that the opportunity for manipulatiom lagantA; is
now restricted to: (a) influencing the solution computed€P(.A); and (b) influencing the payments
made by other agents. As long as the other agents follow the algorithm, it tlesefajthfulness then
follows from the strategyproofness of the VCG mechanism because ditead! opportunity here is
to change (either increase or reduce) the amount of sitheagent’s payment.

Remark 11 (Ex-post Nash equilibrium vs. dominant strategy) As has been suggested in previous
work, the weakening from dominant-strategy equilibrium in the centralize® MEchanism, tex post
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Nash equilibrium in a distributed implementation, can be viewed as the “cagaafntralization”. The
incentive properties necessarily rely on the computation performed, aisdhle strategy followed, by
the other agents.

11.4.4 Simple M-DPOP

Algorithm |25 describes simple-M-DPOP. In this variation the main probl&@¥’(.A) is solved, fol-
lowed by the social choice problerC'P(—A;) with each agent removed in td%rOnce these, + 1
problems are solved, every agetitknows the local part of the solution £6* and X *; for all A; # A;,
that is the part of the solution that affects its own utility. This is critical, beca@ysevides enough
information to allow the system of agents without some aggnfor any A;, to each send a message
to the bank about eomponenbf the payment that agent; should make.

Algorithm 25 Simple-M-DPOP.
1 Run DPOP forDCOP(.A) on DFS(A); find X*
2 forall A; € Ado

3 Build DFS(—A;); run DPOP forDCOP(—A;) on DFS(—A4;); find X*,
4 All agentsA; # A; computeTaz;(A;) = R;j(X*;) — R;(X™*) and report it to the bank.
5 Bank deductij# Taz j(A;) from A;’s account

6 EachA; assigns values iX* as the solution to its local' O P;

The computation of payments is disaggregated across the agents. Thgrteenpaollected from
agent4; as a result of the message sent to the bank by agjgns defined (in the truthful equilibrium)
as:

Taxj(A;) = Rj(XZ;) — Rj(X7), (11.9)

which is defined so thalaz(A;) = 3_;,; Taz;(A;). The value,Taz;(4;), represents the payment
made by agen#; in the VCG mechanism as a result of its negative effect on the utility of aggnt

The important observation, in being able to satisfy the partition principle, ighieae component
of A;'s payment satisfies mcality property, so thateach agentd; can compute this component of
A;'s payment with just its private information about its relations and its local inftiom about the
part of solutionsX™* and X*, that affects its own utilityall of which is available upon termination
of DPOP in the main problem and in the problem withelyt Correctly determining this payment,

"An exception is provided by Izmalkov et al.[102], who are able to avdiittitough the use of cryptographic primitives,
in their case best thought of as physical devices such as ballet boxes.

8Simple M-DPOP is presented for a setting in which the main problem and tipechiléms are connected but extends
immediately to disconnected problems. Indeed, it may be that the maiteprabconnected but one or more subproblems are
disconnected. To see that there are no additional incentive conasios that it is sufficient to recognize that the correctness
and robustness properties of the partition principle would be retained inetbés ¢
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DCOP(n) DCOP(-A))

¥

Figure 11.3: Simple M-DPOP: Each agenti; is excluded in turn from the optimization
DCOP(—A4;). This is illustrated on the meeting scheduling example.

condFoned onX* andX*,, does not rely on any aspect of any other agent’s algorithm, includirig tha
of A; 9

Figure (11.3) provides an illustration of simple M-DPOP on the earlier meetimgdsding exam-
ple, and shows how the marginal problems (and the DFS arrangementscfosech problem) are
related to the main problem.

Theorem 9 The simple-M-DPOP algorithm is a faithful distributed implementation of efficeatal
choice and terminates with the outcome of the VCG mechanism.

PROOF To prove this we establish that simple-M-DPOP satisfies the partition prinétpkt, DPOP
computes optimal solutions t8C'P(.A) and SCP(—A;) for all A; € A when every agent follows the
protocol. This is immediate because of the correctness of the DCOP modePodu&l the correctness
of DPOP. The correct VCG payments are collected when every agbmw/$othe algorithm by the
correctness of the disaggregation of VCG payments in Eq./ 11.9. Seagedt{A; cannot influence
the solution toSCP(—A;) because it is not involved in that computation in any way. The DFS ar-
rangement is constructed, and the problem solved, by the other agaotspmpletely ignored; and

any messages that agetit might send. (Any hard constraints th4af may have handled iSCP(.A)

are reassigned automatically to some other ageSUIR(— A;) as a consequence of the fact that the

°A similar disaggregation was identified by Feigenbaum et al.[72] for lowest interdomain routing on the Internet.
Shneidman and Parkes[192] subsequently modified the protocol saglats other tham; had enough information to
report the payments to be made by agént
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DFS arrangement is reconstructed. DPOP still sos€® (—A;) correctly in the case that the prob-
lem graph corresponding t9CP(— A;) becomes disconnected (in this case the DFS arrangement is a
forest). The robustness of the value of the reports from agénts about the negative externality im-
posed byA;, conditioned on solutions t8CP(.A) and SCP(—A;), follows from the locality property

of payment termslaz ;(A;) for all A; # A;. For enforcement, the bank is trusted and empowered to
collect payments, and all agents will finally set local copies of variablas &8 to prevent catastrophic
failure. AgentA; will not deviate as long as other agents do not deviate. Moreover, it abes the

only agent that is interested in a variable then its value is already optimaldéat Aganyway.O

The partition principle, and faithfulness, has sweeping implications. Not willyeach agent
follow the subtantive aspects of simple-M-DP®& each agent will also chose to faithfully participate
in the community discovery phase, in any algorithm for choosing a rootragrity, and in selecting a
leader agent in Phase one of DPOP.

Remark 12 (Antisocial behavior) Note that reporting exaggerated taxes hurts other agents but does
not increase one’s own utility so this is excluded by our assumption thagésaare self-interested
but helpful (see Section 11.4.2).

11.5 M-DPOP: Reusing Computation While Retaining Faithfulness

In this section, we introduce the M-DPOP algorithm. simple-M-DPOR the computation to solve
the main problem is completely isolated from the computation to solve each of thenalgngpblems.

In comparison, inM-DPOP we re-use computation already performed in solving the main problem
in solving the marginal problems. This enables the algorithm to scale well itiggao problems
where each agent’s influence is limited to a small part of the entire probleaugedittle additional
computation is required beyond that of DPOP.

The challenge that we face, in facilitating this re-use of computation, is to rétaimcentive
properties that are provided by the partition principlé. possible new manipulation is for agent
A; to deviate in the computation iDCOP(A), with the intended effect to change the solution to
DCOP(—A;) via the indirect impact of the computation performed 'O P(.A) when it is reused
in solvingDCOP(—A;). To prevent this, we have to determine which UTIL messaggi®P(A)
could not have been influenced by agdnt

Example 25 (Reusing computation safely based on problem structej Refer to Figure 11./4. Here

%0ne can also observe that is not useful for an agent to misreportddlaukility of another agentd ; while sendingU T1L
messages around the system. On one hand, such a deviation coulds# change the selection & or X, for some
k # {i,7} and thus the payments by other agents or the solution ultimately selectedyBlat/ibting in this way the agent
cannot change the utility information that is finally used in determining its owmpats. This is because it is agety itself
that computes the marginal effect of agehton its local solution, and componeffitz ; (A;) of agentA;’'s payment. Thus,
we are able to protect against this manipulation through leveraging theydésgdged definition of VCG payments.
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(a) Main DFS (b) DFS forest

Ai owns X, and X, to exclude it: ‘removing Ai disconnects DFS" in 3 parts

*the root, and children of Ai re-initiate DFS *they are solved as independent subproblems
construction -notice the re-arrangement of nodes X, X_, X,
*DFS" tokens from higher nodes override *UTILs sent by green nodes can be reused

the ones from lower nodes (X, wins over X,) *the other nodes have to recompute

Figure 11.4: ReconstructingdF'S(—A;) from DFS(A) in M-DPOP. The result is in general a DFS
forest. The bold nodes from main DFS initiaf# s~ propagation. The one initiated by is redun-
dant and eventually stopped B§y. The ones fromX, and X5 are useful, as their subtrees become
really disconnected after removing;. X4 does not initiate any propagation since it hds as a
pseudoparentX is not controlled byA;, and will eventually connect t&;,. Notice thatX, — X
andX; — Xy, are turned into tree edges.

agentA; controls onlyXs and X1o. Then it has no way of influencing the messages sent in the subtrees
rooted at{ X4, X15, X2, X7, X5, X11}. We want to be able to reuse as many of these UTIL messages
as possible. In solving the problem with ageiremoved we will strive to construct/ar's —* arrange-

ment for problemDCOP(—A4;) that is as similar as possible to the DFS for the main problem. This
is done with the goal of maximizing the re-use of computation across pnsbl&ee Figure 11.4(b).
Notice that this is now a DFS forest, with three distinct connected componEmsUTIL messages
that were sent by the green nodes can be re-used in soRHIQP(—A;). These are all the UTIL
messages sent by nodes in the subtrees that were not influenceehibyl agxcept fo X4, X15, X5}

and alsoXy, which now has a different local DFS arrangement.

M-DPOP uses the “safe reusability” idea suggested by this example. Sedtihg 26. In its
first stage, M-DPOP solves the main problem just as in Simple-M-DPOP. fiscis complete, each
marginal problemDCOP(—4;) is solved in parallel. To solv®COP(—A;), a DFS~ forest (it will
be a forest in the case th&tCOP(—A;) becomes disconnected) is constructed as a modification to
DFS(A), retaining as much of the structure bf'S(.A) as possible. A newDPOP(—A;) execution
is performed on théFS~ and UTIL messages are determined to be eiteasableor not reusable
by the sender of the message based on the differences befweserf and DFS(A). We will explain
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Algorithm 26 M-DPOP: faithfully reuses computation from the main prable
1 Run DPOP forDCOP(A) on DFS(A); find X*
2 forall 4; € Ado

in parallel

3 Create DFS—* with Algorithm[27 by adjustingDFS(.A)

Run DPOP for DCOP(—A;) on DFS %
4 if leaves inDFS~* observe no changes in thefir'S~ then
‘ they senchull UTIL™ messages

elsethey compute theit/ TIL~' messages anew, as in DPOP
subsequently, all nodes;,, ¢ DFS~ do:
5 if X, receives onlywull UTIL™ msgsh (P, = P, ' A PP, = PP_" A C), = C;. ") then
‘ X, sends awull UTIL™" message
else

6 nodeX, computes it/ TIL ™" messagereusing:
forall X; € Neighbors(Xy) s.t. X; sentUTIL™" = null do
X, reusesthe UTIL messageX; had sent inDCOP(A)

7 Compute and levy taxes as in simple-M-DPOP;
8 EachA,; assigns values iX* as the solution to its localO P;;

below howDFS~ is constructed.

11.5.1 Phase One of M-DPOP for a Marginal Problem: Constructing DFS~¢

Given a graphDCOP(.A) and a DFS arrangemetFS(A) of DCOP(A), if one removes a set of
nodesX (A;) € DCOP(A) (the ones that belong td;), then we need an algorithm that constructs a
DFS arrangemeni)FS—, for DCOP(A) \ X (A;). We want to achieve the following properties:

1. DFS~* must represent a correct DFS arrangement for the gla@B P (—A;) (a DFS forest in
the caseDCOP(—A;) becomes disconnected).

2. DFS~" must be constructed in a way that is non-manipulableihyi.e. without allowing agent
A; to interfere with its construction.

3. DFS~% should be as similar as possible BFS(.A). This allows for reusindJTIL messages
from DPOP(A), and saves on computation and communication.

The main difficulty stems from the fact that removing the nodes that represgables of interest
to agentA,; from DFS(.A) can create disconnected subtre®¥ge need to reconnect and possibly rear-
range the (now disconnected) subtree®étS(.4) whenever this is possible. Return to the example in
Figure 11.4. Removing agert; and nodesX3; and Xy disrupts the tree in two ways: some subtrees
become completely disconnected from the rest of the problemXeg- X135 — X19); Some other ones
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Algorithm 27 Reconstruction oDFS~" from DFS(A). All data structures for thédF'S~* are denoted with
superscript—?.

Procedure Tokenpassing for DFS —* (executed by all nodeX, ¢ X (4;)) :
forall X; € Neighbors(X}) s.t. X; belongs toA4; do

1 ‘ RemoveX; from Neighbors(Xy) and fromCy,, PCy, PPy, Ili.e. send nothing ta;

2 Sort Neighbors(Xy) in this order:Cy, PC, PPy, Py lImimic DFS(A)
if Xy isroot, or P, € X(A4;) (i.e. executed by the root and children4f) then

3 ‘ Initiate DF'S~* as in normal DFS (Algorithm 24)

4 else doProcessncomingtokens()
5 SendDFS™(X},) back toP, " // X},’s subtree completely explored

Procedure Processncoming_tokens()

6 Wait for any incomingDFS ~* token; LetX; be its sender
7 if X; € A; thenignore message

8 else
9 if this is first token receivethen
10 Pt = X;; PP = {X; # P_'|X; € Neighbors(X;) N DFS™"}
11 root;, '= first node in the tokedFS "
else
12 let X, be the first node iDFS~ ‘
13 if X, # root, " Ili.e. this is anotheD F'S™ traversalthen
14 if depth ofX,. in DFS(A) < depth ofroot; * in DFS(A) then
15 ResetP, ", PP,*,C;.*, PC; " lloverride redundant DFS from lower root
16 P = Xy, PP, = {X; # P,/"|X; € Neighbors(X;) N DFS™"}
17 root, ' = X,
18 | Continue as in Algorithm 24

remain connected only via back-edges, thus forming an invalid DFS a&maey (e.gX5 — Xs — Xo).
The basic principle we use is to reconnect disconnected parts via dgeks-&omDF'S(.A) whenever
possible. This is intended to preserve as much of the structure of aslpodsdy example, in Fig-
ure/ 11.4, the back edg&, — Xy is turned into a tree edge, addk becomesXy's child. Node Xy
remainsXs's child.

The DFS~* reconstruction algorithm is presented in Algorithm 27. The high-level dsaris as
follows (in bold we state the purpose of each step):

1. (Similarityto DFS(.A) :) All nodes retain the DFS data structures from constructi (A);
i.e., the lists of their children, pseudo parents/children, and their parems#'S(.A). They
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will use this data as a starting point for building the DFS arrangem&s,(— A;), for marginal
problems.

2. (Atleast one traversal of each connected component on a DFS &st)) The root of DF'S(A)
and the childref! of removed nodesach initiate a) 'S~ token passing as ibDFS(A), except
for these changes:

e Each nodeX; sends the token only to neighbors not owned4y

e The order in whichX}, sends the token to its neighbors is basedldt (A): First Xi's
children fromDFS(.A), then its pseudochildren, then its pseudoparents, and then its parent.
This order helps preserve structure fréh’S (A) into DFS(—A4;).

3. (Unique traversal of each connected component on a DFS foreytEach nodeX, retains its
“root path” in DFS(A) and knows its depth in the DFS arrangement. When a new tb#es1
arrives:

e Ifitis the first DFS~" token that arrives, then the sender (let thisXh is marked as the
parent of X}, in DFS ™" P,j = X;. Notice thatX; could be different from the parent of
X, from DFS(A). X, stores the first node from the received tokeRS ", asroot, ': the
(provisional) root of the connected component to whi¢hbelongs inDCOP(—A;).

e If this is not the firstDFS~* token that arrives, then there are two possibilities:

— the token received is part of the sa&S ¢ traversal processy;, recognizes this by
the fact that the first node in the newly received token is the same as thieyslg
storedroot,j. In this case X}, proceeds as normal, as in Algorithm/24: marks the
sender as pseudochild, etc.

— the token received is part @nother DFS~¢ traversal process, initiated by another
node thanroot,;i (see below in text for when this could happen). D&t be the first
node in the newly received tokenX; recognizes this situation by the fact th&t
is not the same as the previously stormbt,j. In this case, theDFS~* traversal
initiated by the higher node iWFS(.A) prevails, and the other one is dropped. To
determine which traversal to pursue and which one to dipcompares the depths
of root,j and X, in DFS(A). If X, is higher, then it becomes the newm,j. X
overrides all the previouBFS~ information with the one from the new token. It then
continues the token passing with the new token as in Algorithm 24.

To see why it is necessary to also start propagations from the childresnmfved nodes (step
2), consider again the example from Figure 11.4. Remowingand X3 completely disconnects the
subtree{ X4, X¢, X11, X7, X192, X13}. Had X, not started a propagation, this subtree would not have

1children which have pseudoparents above the excluded node, fardesta, in Figure 11.4, do not initiate DFS token
passing because it would be redundant: they would eventually recBi#&doken from their pseudoparent.
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been vﬁted at all since there are no connections between the rest obtierp and any nodes in the
subtree:

Lemma 1 (DFS correctness)Algorithm 27 constructs a correct DFS arrangement (or foreB)S —*
for DCOP(—A;) given a correct DFS arrangemet?'S (A) for DCOP(A).

PROOF. First, since aDFS~* is started from each child of a node that was controlledibyand also
from the root, it is ensured that each connected component is DFSsieahvat least once (follows from
Step 2). Second, each DFS process is similar to a normal DFS construettbat each node sends
the token to all its neighbors (except for the ones controlledipy; it is just that they do so in a pre-
specified order (the one given WYF'S(A)). It follows that all nodes in a connected component will
eventually be visited (follows from Step 3). Third, higher-priority DFS ¢n@als override the lower
priority ones (i.e. DFS traversals initiated by nodes higher in the tree haéty); again by Step 3.
Eventually one single DFS-traversal is performed in a single connectegatent.C

Lemma 2 (DFS robustness)The DFS arrangementDFS~¢, constructed by Algorithm 27 is non-
manipulable by agen#;, for any input DFS arrangement from the solution phasexGOP(A).

ProoF This follows directly from Step 3, sincd; does not participate in the process at all: its
neighbors do not send it any messages (see Algofithm 27, line 1), gnuessages it may send are
simply ignored (see Algorithm 27, line 7)

In fact, no additional links are created while constructiif”’S—¢. The only possible changes
are that some edges can reverse their direction (parents/childrenuoiopseents-pseudochildren can
switch places), and existing back-edges can turn into tree edges. Agancan see this in Fig-
ure/ 11.4%3

11.5.2 Phase Two of M-DPOP for a Marginal Problem: ~ UTIL™" propagations

OnceDFS~ is built, the marginal problem without; is then solved orDFS . Utility propagation
proceeds as in normal DPOP except that nodes determine whethéT ilhenessage that was sent in

1250me of the DFS traversals initiated in Step 2 are redundant and the seroktha problem graph can be visited more
than once. The simple overriding rule in Step 3 ensures that only a diifg#e * tree is eventually adopted in each connected
component, namely the one that is initiated by fifighest nodén the original DFS(A). For example, in Figure 11.4{5
starts an unnecessabf'S ~* propagation, which is eventually stopped Ky, which receives a higher priorith £.S ~¢ token
from X,. SinceXy knows thatXy is higher inDF'S(A) than X5, it drops the propagation initiated bys, and relays only
the one initiated byX,. It does so by sending’s the token forDFS~* received fromX, to which it adds itself. Upon
receiving the new token fronXy, node X realizes thatXy is its new parent inDFS~¢. Thus, the redundant propagation
initiated by X5 is eliminated and the result is a consistent DFS subtree for the single ¢tedrmemponent; .

13A simple alternative is to have children of all nod&$ that belong toA;, create a bypass link to the first ancestor of
X} that does not belong td;. For example, in Figure 11.4Y, and X5 could each create a link witl(; to bypassXs
completely inDFS(—A;). However, additional communication links may be required in this approac
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DPOP(A) can be reused. This is signaled to their parent by sending a spedidJTIL message.
More specifically, the process is as follows:

e The leaves inDFS~¢ initiate UTIL ™" propagations:

1. If the leaves inDFS™" observe no changes in their locBIF'S™ arrangement as com-
pared toDF'S(.A) then theUTIL message they sent DCOP(.A) remains valid and they
announce this to their parents by sending insteadla UTIL~* message.

2. Otherwise, a leaf node computesUtEIL message anew and sends it to their (new) parent
in DFS™".

e All other nodes wait for incomind/TIL~¢ messages and:

1. If everyincoming messages a nodg. receives from its children isull andthere are no
changes in the parent/pseudoparents then it can propagatk & TIL ' message to its
parent.

2. Otherwise X}, has to recompute it§ TIL~* message. It does so by reusing all thelL
messages that it received INCOP(.A) from children that have sentitull messages in
DCOP(—A4;) and joining these with any neWTIL messages received.

Example 26 (Reusing Computation)ConsiderDCOP(—A4;) in Figure 11.4, whereX;4 and X7 are
children of X14. X714 has to recompute a UTIL message and send it to its new pafenfo do this,

it can reuse the messages sent®y; and X7 in DCOP(A), because both sending subtrees do not
contain 4;. By doing so X1, reuses the effort spent iRCOP(A) to compute the messag&<'ILS,
UTILAS, UTIIAY and UTILL,

Theorem 10 The M-DPOP algorithm is a faithful distributed implementation of efficient satiaice
and terminates with the outcome of the VCG mechanism.

PROOF. From the partition principle. First, agedf cannot prevent the construction of a valids

for DCOP(—A4;) (Lemmas 1 and 2). Second, agehitcannot influence the execution of DPOP on
DCOP(—A;) because all messages tigtinfluenced in the main proble®COP(.A) are recomputed
by the system withouti;. The rest of the proof follows as for simple-M-DPOP, leveraging theliyca
of the tax payment messages and the enforcement provided by the lohvik #me catastrophic failure
assumptiond

11.5.3 Experimental Evaluation: Distributed Meeting Schedul ing

We present the results of our experimental evaluation of DPOP, Simple ®FDd#hd M-DPOP in a
distributed meeting scheduling problem. The problems consist of agentswydok a large organiza-
tion and representing individuals, or groups of individuals, for th@pse of scheduling meetings for
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some upcoming period of time. Although the agents themselves are self intetkstedyanization as
a whole requires an optimal overall schedule, that minimizes cost (alterlyativaximizes the utility
of the agents). This makes it necessary to use a faithful distributed impldinarsach as M-DPOP. In
enabling this, we can imagine that the organization distributes a virtual cyrteeach agent (perhaps
using this to prioritize particular participants.)

The problem is modeled as a DCOP as described in Section 2.3.1, with eatthaagigning a
utility to each possible time for each meeting by imposing a unary relation on edablea’(;?. Each
such relation is private td;, and denotes how much utilit}f; associates with starting meetidg; at
each time’ € d;, whered; is the domain for meeting/;. The social objective is to find a schedule in
which the total utility is maximized while satisfying the all-different constraints t&(m'eager@1

Following[127], we model the organization by providinghierarchical structure In a realistic
organization, the majority of interactions are within departments, and only a sorabber are across
departments and even then these interactions will typically take place betweatepartments ad-
jacent in the hierarchy. This hierarchical organization provides strid¢tuour test instances: with
high probability (around 70%) we generate meetings within departments,itime l@wer probability
(around 30%) we generate meetings between agents belonging to gatdmtepartments. We gen-
erated random problems having this strucﬁf’rw,ith an increasing number of agents: from 10 to 100
agents. Each agent participates in 1 to 5 meetings, and has a unifornmratitity between 0 and 10
for each possible schedule for each meeting in which it participates. Diveprs are generated such
that they have feasible solutions.

For each problem size, we averaged the results over 100 differeéahdes. We solved the main
problems using DPOP and the marginal ones using simple-M-DPOP, and®RD&spectively. All
experiments were performed in the FRODO multiagent simulation environméitfba 1.6Ghz/1GB
RAM laptop. FRODO is a simulated multiagent system, where each agent exasytehronously in
its own thread, and communicates with its peers only via message exchange.

These experiments were geared towards showing how much effort ®P0O#&able to reuse from
the main to the marginal problems. Figure 11.5 shows the absolute computaffortaineterms of
number of messages (Figure 11.5(a)), and in terms of the total size of tsages®xchanged, in bytes
(Figure 11.5(b)). The curves for DPOP represent just the numheeesages (total size of messages,
respectively) required for solving the main problems, and not also theimahanes. The curves for
simple-M-DPOP and M-DPOP represent the total number (size, resplgttof UTIL messages, for
both main and marginal problems.

We notice several interesting facts. First, the number of messages kgyif@POP increases

¥1n a simple variation one could also seek to maximize the weighted utility acresgjénts, wherein some agents receive
more priority within the organization than other agents. The VCG paymemtisalso M-DPOP, can be easily extended to
provide appropriate incentives in this setting.

5The test instances can be found at http://liawww.epfl.ch/People/apetarthéndpop/MSexperiments.tgz
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Figure 11.5: Meeting scheduling problem: measures of absolute computational effort (in
terms of the number of messages sent and the total size dJThe messages) in DPOP,
simple-M-DPOP and M-DPOP. The curves for DPOP represent effanmt just on the main
problem, while the ones for simple-M-DPOP and M-DPOP represent effdooth the main

and the marginal problems.

linearly with the number of agents because DPOP’s complexity in terms of nuohlmeessages is
always linear in the size of the problem. On the other hand, the number cégesssf simple-M-DPOP
increases roughly quadratically with the number of agents, since it soliresaa number of marginal
problems from scratch using DPOP, each requiring a linear number oagesssThe performance of
M-DPOP lies somewhere between the DPOP and simple-M-DPOP with moretageathieved over
simple-M-DPOP as the size of the problem increases, culminating with almostl@anal magnitude
improvement for the largest problem sizes (i.e. with 100 agents in the prab&mijlar observations
can be made about the total size of th€IL messages (a good measure of computation, traffic and
memory requirements) by inspecting Figure 11.5(b). For both metrics we findhih performance of
M-DPORP is only slightly super-linear in the size of the problem.

Figure 11.6 shows the percentage of the additional effort requiresbfeing the marginal problems
that can be reused from the main problem, i.e. the probability thitla message required in solving
a marginal problem can be taken directly from the message already usesl imath problem. We
clearly see that as the problem size increases we can actually reusendan®m@e computation from
the main problem. The intuition behind this is that in large problems, each indiadeat is localized
in a particular area of the problem. This translates into the agent being lataiaespecific branch of
the tree, thus rendering all computation performed in other branchesbtedsr the marginal problem
that corresponds to that respective agent. Looking also at the pegeasf reuse when defined in terms
of message size rather than the number of messages we see that this isidiag trpwards as the size
of the problem increases.
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Figure 11.6: Meeting scheduling problem: Percentage of effort requicedhe marginal problems
that is reused by M-DPOP from the main problem. Reuse is med$oth in terms of the percentage
of the UTIL messages that can be reused (dashed) and also in terms otahsize of theUTIL
messages that are reused as a fraction of theldtdl message size (solid).

11.5.4 Summary of M-DPOP

M-DPORP is a faithful, distributed algorithm with which one can solve efficiesta choice problems
in multi-agent systems with private information and agent self-interest. Notaga improve its

utility either by misreporting its local information or deviating from any aspedhefalgorithm (e.g.,
computation, message-passing, information revelation.) The only centralirdghl we assume is
that of a bank that is able to receive messages about payments and gajlewnts. In addition to
promoting efficient decisions we also minimize the amount of additional compuah&ffort required

for computing the VCG payments by reusing effort from the main problemetix@ntal results show
that a significant amount of the computation required in all the main problembeaaused from
the main problem, sometimes above 87%. This provides near-linear scalabilitggiveaistributed
social choice problems that have local structure so that the maximal intheeadidth is small.

An issue for future work relates to robustness agaaustersarialor faulty agents: the current
solution is fragile in this sense, with its equilibrium properties relying on othengfollowing the
protocol. Some papers[4,124,191] provide robustness to mixture m@dglssome rational, some
adversarial) but we are not aware of any work with these mixture models ootitext of efficient social
choice. Another interesting direction is to find ways to allow for approximatéekohoice (e.g. with
memory-limited DPOP variations[158]) while retaining incentive propertieghgpes in approximate
equilibria. Future research should also consider the design of distriputédcols that are robust
against false-name manipulations in which agents can participate under mustgapldgmyms[229],
and achieve better robustness through mitigating opportunities for collbsivavior and removing
weak equilibria in favor of strict equilibria[5, 108].



Distributed VCG Mechanisms for Systems with Self-Interested Uss 205

11.6 Achieving Faithfulness with other DCOP Algorithms

The partition principle, described in Section 11/4.3, is algorithm independEmé. question as to
whether another, optimal DCOP algorithm can be made faithful therefeodvess, critically, around
whether the algorithm will satisfy the robustness requirement of the partitioiple. We make the
following observations:

e Robustness in the first sense, i.e. that no aggntan influence the solution to the efficient
SCP without agendi;, is always achievable at the cost of restarting computation on the marginal
problem with each agent removed in turn, just as we proposed for simileGIP.

e Robustness in the second sense, i.e. that no agjeoan influence the report(s) that the bank
receives about the negative externality tHatimposes on the rest of the system, conditioning
on the solutions to the main problem and the problem withtis also immediate because of
the locality property of tax payments, and as long as the DCOP algorithm tershimittteevery
agent knowing the part of the solution that is relevant in defining its own utility.

Thus, if one is content to restart the DCOP algorithm multiple times, then the sadsedfiresults
that we provide for simple-M-DPOP are generally available. This is poskidause of the already
mentioned locality property of payments, which follows from the disaggregatithe VCG payment
across agents in Ed. (11.9) and because of the information and commumistatioture of DCOP.
The other useful property of DCOP in this context, worth reemphasizirigatst is possible to retain
faithfulness even when one agent playgieotal rolein connecting the problem graph. Suppose that
problem, DCOP(—A4;), becomes disconnected withadf. But, if this is the case then its optimal
solution is represented by the union of the optimal solution to each connediedrsponent of the
problem, and no information needs to flow between disconnected compeitbetsfor the purpose of
solving the problem or for the purpose of reporting the components oft agis tax.

We discuss in the following possible adaptations of the other two most pogdglatithms for
DCOP: ADOPT and OptAPO.

11.6.1 Adapting ADOPT for Faithful, Efficient Social Choice

ADOPT (reviewed in Chapter 3) is one of the most celebrated algorithms@®m® Considering its
main advantage of requiring only polinomial memory, it seems legitimate to ask tséauéCould
ADOPT be used for faithfully solving the SCRNe discuss this possibility in the next two sections.
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11.6.1.1 Adaptation of ADOPT to the DCOP model with replicated variables

ADOPT'’s complexity is given by the number of messages, which is expohéntize height of the
DFS tree. Similar to DPOP, using the DCOP model with replicated variables cdifiicialy increase
the complexity of the solving process. Specifically, the height of the DFSgilieereased when using
replicated variables compared to the centralized problem graph.

ADOPT can be modified to exploit the special structure of these replicatedl ladables in a
similar way as DPOP. Specifically, ADOPT should explore sequentially onlyahes of the original
variable, and ignore assignments where replicas of the same variableftafentivalues. This works
by allowing just the agent that owns the highest replica of each variabiedtyfchoose values for the
variable. This agent then announces the new value of the variable to elagknts owning replicas
of the variable. These other agents would then consider just the aretualcie for their replicas, add
their own corresponding utilities, and continue the search process. théngpecial handling of the
replica variables, the resulting complexity is no longer exponential in the hefighe distributed DFS
tree, but in the height of the DFS tree obtained by traversing the origioblemn graph.

For example, in Figure 11.1, it is sufficient to explore the values/gf and directly assign these
values toM3 and M+ via VALUE messages, without trying all the combinations of their values. This
reduces ADOPT's complexity from exponential in 6, to exponential in 3.

11.6.1.2 Reusability of computation in ADOPT

Turning to re-use of computation, we note that because ADOPT uses ardff§ement then it is easy
to identify which parts of the DFS arrangement for the main problem are infgp@d$er an agent to
manipulate, and therefore can be “reused” while computing the solution to tiygnalgproblem with
that agent removed. Just as with DPOP, the DFS reconstruction techfiigoneSection 11.5/1 apply.

However, a major difference between DPOP and ADOPT is that in DPQ@R, agent stores its
outgoingUTIL message, and thus has available all the utilities contingent to all assignmenés of th
variables in the agent'’s separator. This makes it possible for the ageémigly seuse that information
in all marginal problems where the structure of the DFS proves it is safedo.dm contrast, ADOPT
does not store all this information because of its linear memory policy. Thisnmtakes it impossible
to reuse computation as in DPOP from the main problem to the marginal probleihsadyinal
problems have to be solved from scratch, and thus the performance sealédpoorly as problem size
increases.

We see two alternatives for addressing this problem: (a) renounce fim&aory guarantees, and
use a caching scheme like in NCBB[32] or dAOBB(i)[170]: this would allowd similar reusability as
in M-DPOP, where previously computated utilities can be extracted from ttteedastead of having
to be recomputed. Alternatively, (b) one can devise a scheme whereatieysly computed best
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solution can be saved as a reference, and subsequently used ge@inagtion while solving the

marginal problems. This could possibly provide better bounds and thus faltdvetter pruning, such

that some computation could be saved. Both these alternatives are outsidekeof this thesis, and
considered for future work.

11.6.2 Adapting OptAPO for Faithful, Efficient Social Choice

OptAPO (reviewed in Chapter 3) is the other most popular algorithm for DG@®Iar to the adapta-
tions of DPOP and ADOPT to social choice, OptAPO can also be made to teketade of the special
features of the DCOP model with replicated variables. Its complexity then wmilde artificially in-
creased by the use of this DCOP model.

OptAPO has the particularity that it uses mediator agentgemdralize subproblemand solve them
in dynamic and asynchronous mediation sessions. The mediator agentsitfeemee their results
to the other agents, who have previously sent their subproblems to the mediBgs process alone
would introduce additional possibility for manipulation in a setting with self inteceatgents. How-
ever, using the VCG mechanism would fix this problem and incentivise thesgebehave correctly
according to the protocol.

As with ADOPT, the main issue with using OptAPO for faithful social choice isrthesability
of computation from the main to the marginal problems. Specifically, considewtiike solving the
main problem, a mediator agedt has centralized and aggregated the preferences of a number of other
agents, while solving subproblems as dictated by the OptAPO protocol. Gudrgty, when trying to
compute the solution to the marginal problem without agénall this computation has to go to waste,
as it could have been manipulated Aywhile solving the main problem.

Furthermore, since OptAPO does not explicitely use structure in the prollismnclear whether
any computation from the main problem could be safely reused in any of the mbapgotdems. To
make matters worse, experimentaly studies ([44,169]) show that in manyi®igjaOptAPO ends
up relying on a single agent in the system to centralize and solve the whdikeipro This implies
that while solving the marginal problem without that agent, one can reuseeffert from the main
problem.
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Chapter 12

Budget Balance

For social choice problems with self interested agents,\fl& mechanism achieves efficiency,
individual-rationality and incentive-compatibility. @nof the characteristics of the VCG mecha-
nism is that it requires wasting the taxes collected fromettpents, thus decreasing their net utility.

Burning money in this way can be a particular problem in netsed systems where payments are
made by “proof of work”[61] or other form and the primary goa social efficiency, not revenue.

This chapter introduces two extensions to M-DPOP ( Chapfgrthat address this problem of
burning money. Our extensions exploit structure in the l@mobto develop faithful methods to
redistribute payments back to agents, reducing this costhersystem. The first method (R-M-
DPOP) preserves the efficiency guarantees, but cannot giteedull budget balance (some taxes
may still have to be wasted). Nevertheless, our experirhesstalts show that we can redistribute a
significant percentage of the VCG taxes (up to 70% in our éxpaatts). The second redistribution
scheme (BB-M-DPOP) guarantees complete budget balanteahnot guarantee optimality. BB-
M-DPOP works by forcibly limiting each agent’s influence teeatricted area, which in turn allows
for an effective redistribution of all of the VCG paymentsifaithful way. Interestingly, BB-M-
DPOP yields better net utility for the system as a whole, ¢hengh it does not guarantee optimal
solutions. In our experiments, BB-M-DPOP, R-M-DPOP and V&l&3sic provided agents with a
net utility of 97%, 89%, and 71% from the cooperative optimrgapectively.

We have seen in the previous chapter that distributed optimization problemsockhsocial choice
problems with self interested agents. We have introduced the M-DPOP atgprvithich is the first
faithful distributed algorithm for general social choice problems thatsde#h self-interested users.
M-DPOP implements the Vickrey-Clarke-Groves mechanism (VCG)[32H], which aligns the
incentives of the participating agents with the goal of maximizing overall utility.GVitees agents
of the burden of reasoning strategically about their actions, and makesthioehaviour a dominant
strategy equilibrium.

In the VCG mechanism, each agent makes a payment that equals the negagusal externality
that its presence imposes on the rest of the system, in terms of influencingrieeichoice of values
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for variables. Sometimes these payments are large, and thus decreagmntsimatutility significantly
(recall from Chapter 11 that net utility means the utility derived from the optsuohltion, minus the
VCG payments). These payments cannot be simply returned to the agerasséehis would break
the incentive properties. Agents would falsely declare their prefesesueh that they get tax refunds.
For instance, an agent might try to increase the tax payments made by athés by overstating the
negative impact of those agents on its own local solution in order to incteaggyments made by
these agents and in turn its own share of these payments.

The simplest way to deal with this problem is to just waste all payments (“buerhibney, or give
it to some external third party). However, this approach creates a lose mvérall net utility of the
system, and possibly creates unwanted incentives for a third partyirecéhe payments. Burning
money in this way can be a particular problem in netwoked systems where p@yare made by
“proof of work”[61], and in which the primary goal is efficiency and tte¥enue accrues to no-one and
payments are (literally) wasted compute cycles.

Fundamental results in mechanism design provei ssibility of a generalmechanism that
satisfies at the same time optimalttyindividual rationali:ﬁ]incentive-compatibilit and budget-
balanc& in a dominant strategy equilibrium[loﬁ. Hence, at least one of these properties has to be
violated. In this chapter, we design new mechanisms that retain a dominatagyslnaaquilibriun{‘,5 and
sacrifice either efficiency or budget-balance. We seek to modify the VGshanésm, by redistributing
the payments proposed by the mechanism back to agents, but in a waydbatad@ompromise the
incentive properties. In one method, this is achieved by impasiramteconstraints on the optimization
problem, which has the effect of redistributing the payments of a modified W€Ehanism, that is in
effect applied to this additionally constrained problem. These constramtctuwallyunconstraining

in the sense that they are introduced to provide additional flexibility in redisitndp payments.

Our results are presented as extensions to M-DPOP, which was inttbiiu€eapter 11. The first
method (R-M-DPOP) guarantees efficiency, but does not guarautaedistribution and thus is not
exactly budget balanced. We note however thagiterruns at a deficit: the bank always receives a non-
negative amount of payments from the agents. Moreover, this method islty@oble to redistribute
a considerable amount of the payments proposed by the VCG mechanisrseddrme method (BB-
M-DPOP) offers the inverse tradeoff: it guarantegactbudget balance, but sometimes at the expense
of efficiency. Both these methods exploit problem structure, albeit in gifiezeht ways. R-M-DPOP

!Also called "economic efficiency”, it means that the optimal solution to tlee$choice problem must be chosen.

2Also called "participation constraint* and means that no agent shoulddrgeti more than the utility it derives from the
decision.

3Each agent’s utility is maximized when truthfully declaring its preferences

4Sum of payments from agents to any third party must equal zero.

SMyerson and Satterthwaite[144] also establish that it is impossible to saffisfemcy, budget-balance and individual-
rationality even in a Bayes-Nash equilibrium.

5The equilibrium concept will be ex post Nash when used as a distributddrimeptation, but our mechanisms provide
a dominant-strategy equilibrium when they are used as centralized nigtiseand computation and message-passing is not
passed to agents.
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identifies components of the problem that define payments that cannotusnicgd by some subset of
agents, so that these agents are then eligible to receive a share ofrienpayBB-M-DPOP placesx
anteconstraints on the problem, forcibly preventing each agent from hamypméuence on decisions
for some part of the domain. This also creates, for each agent, paymeteshypather agents that
cannot be influenced by the agent. (These are the payments of the tgantare only about the
problem domain that cannot be influenced by this agent.) BB-M-DPOP caralge problem structure
to decide how to constrain the problem, with constraints added where the liielgrine of an agent
is very weak.

In achieving our results we propose a “label propagation” algorithm jsheged in R-M-DPOP to
determine the subset of variables that an agent could notgassblyinfluenced, for all its possible
reports, given the reports of the others. Such an agent could theneet elected as a candidate
for this redistribution, the VCG payment made by another agent that is oghtiaely impacted in
its utility by decisions made in regard to these variables. In BB-M-DPOP, weqgse a configurable
method that allows each agent to express its preferences on its variiniiesast, and even indirectly
influence other variables via other agents’ relations. This method allovestheless the influence of
each agent to be decisevely cut beyond a configurable point, suchehadistribution of taxes origi-
nating beyond the given point is not influenceable by the agent in queStiisworks by propagating
dual UTIL messages, corresponding to both the main problem (the inéu@rtbe agent in question
included), and to the marginal problem (the influence removed). Beyandutoff point, only the
marginal message is propagated, which effectively eliminates any inflimeehe agent.

As a distributed implementation, both R-M-DPOP and BB-M-DPOP retain faite§snvhen cou-
pled with the centralization of the pre-processing step in which a depthdastls (DFS) arrangement
is constructed for the problem graph. This is performed by the agents ¢hassn M-DPOP, but
the DFS arrangement is used by R-M-DPOP and BB-M-DPOP in determiviiegherandto whom
to redistribute payments; therefore, the agents have vested interest irufatingpthe DFS creation
which in turn would influence the redistribution schemes (see Section 12 Phg)centralization of
this pre-processing step can be achieved without a third party needingwodbout the private infor-
mation of agents; e.g. their private variables or local utility information: all edeel is access to the
public information about each agent’s variables of possible interest. &uoeahparty to perform this
task in our new methods could be thank that is a trusted third party required by M-DPOP in order to
enforce the collection of payments. Indeed, it is natural to think the bamKdplay a more active role
in BB-M-DPOP and R-M-DPOP given that these are methods to allow for ttentive-compatible
redistribution of payments.

R-M-DPOP and BB-M-DPOP can also be used as centralized algorithmshigh whe agents
report their private information to a “center” as in traditional mechanisnigdesThe center would
then directly implement R-M-DPOP, or BB-M-DPOP, which correspondeadralized algorithms to
dynamic programming with generalized bucket elimination[51], coupled hé@recliecking for the
possible influence of an agent on parts of the problem domain. As a ligdranechanism, R-M-
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DPOP can be viewed as extending, and exemplifying, the principles ofl@f@@, in that we leverage
structure on agent valuations and deterngieen reports of other agentahich parts of the problem
domain can be influenced by an agent. BB-M-DPOP, on the other hamtecdewed as generalizing
the method of Faltings[68], who proposed to constrain social choicdgimshin that a single agent is
prevented from being able to have any influence onetitére problem, and can therefore receive the
payments made by all the other agents.

We present experimental results, in a simulated meeting scheduling domaishtwathat R-
M-DPOP can redistribute a significant percentage of the VCG paymentayels as around 70%).
R-M-DPOP does this while retaining perfect efficiency, i.e. while optimallyisglthe social choice
problem. Interestingly, BB-M-DPOP yields better net utility for the system ahale, even though
it does not guarantee optimal solutions. The net utility of BB-MDPOP aumhes 97% of the best
possible solution, which is achieved in a cooperative system when onangdement the optimal
decision without charging agents. In comparison, R-M-DPOP is able tewechround 89% of the
best possible solution. Both algorithms improve significantly on the net utility eetiiby the classic
VCG mechanism, which is at 71% from the optimum.

The rest of this chapter is organized as follows: after preliminaries ($etfd), in Section 12,2
we move on to the issue of redistributing VCG payments. Section 12.2.1 intthed&-M-DPOP
algorithm, and Section 12.2.2 introduces the BB-M-DPOP algorithm. We grezparimental results
in Section 12.3, and then conclude.

12.1 Related Work

There is a long tradition of leveraging the VCG mechanism (oiGlaeke tay within Distributed Al,
going back to Ephrati and Rosenschein[64—66], who introduced thefute VCG mechanism into
Al, and considered its role as a method to achieve consensus in multi-dagemning. For more recent
work in Distributed Al that relates to the VCG mechanism, and more broadly theethef mechanism
design, we refer the reader to these surveys[103,134], or td}4116, 149, 150, 188, 220, 229].

The problem of tax waste in the context of the VCG mechanism was recaogeesy on in
[64,92,209]. Well-known impossibility results[89, 101, 214] show thajémeral settings, for quasi-
linear utility functions there can b®o truthful mechanism that is efficient and exactly budget-balanced
for all input£ Therefore, it has been assumed that VCG payments are impossible talatidtack
to the agents[208]. Nevertheless, some authors have suggested pagtitfan population of agents
into independent groupsvhich could pay VCG taxes to each other, such that overall budgetdsala
is achieved[64, 88, 208]. Alternatively, in restricted settings, budgleintte and efficiency were shown

"The so-called’AGVA mechanisfi] offers exact budget balane@d optimality. However, incentive compatibility is just
a Bayes-Nash equilibrium, individual-rationality is obtained justxpectationand the mechanism designer and the agents
have to have common knowledge about a distribution on agent types.
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possible[93, 115].

In our setting, the VCG mechanism always runs at a surplus, with the baak/ing a net payment
from agents. A naive redistribution of these tax payments back to the agentd satisfy budget-
balance but fail incentive compatibility. For instance, an agent might try tease the tax payments
made by other agents by overstating the negative impact of those agentowam itscal solution in
order to increase the payments they make and, in turn, its own share opthgsents.

In some cases, together with the increase in problem size, it has beenhaitde VCG payments
tend towards zero[87,130, 178]. Interestingly, we find in our experim@nd see also Faltings[68])
that this seems not to be the case, especially in structured domains.

To our knowledge, the firdruthful redistribution schemef VCG payments back to interested
agents has been proposed by Bailey[9]. In Bailey’s scheme, each @geives paymerity _;/N
from the center, wher&y _; is the payment that the center would collect without agemtd there are
N agents altogether. This is truthful because the redistribution is agentindenpt. Bailey studies the
effect of this redistribution on the convergence of total payments tovzads as an economy gets large
through replication, demonstrating Q(V?) error compared to Q /N) error without redistribution.
The main limitations of Bailey’'s scheme are that it can sometimes run at a budgst, @ad also
that it is a “macro-approach” rather than “micro-approach.” WheBaikey considers only the use of
signalTy_; in determining the redistribution to agents, we determine redistributions baskztailed
microstructure of a particular instance.

The basic idea of Bailey's scheme was rediscovered, and extendedarenifways, by Porter
et al.[174], Cavallo[29], and Guo and Conitzer[94]. Cavallo overes the shortcoming of Bailey’s
scheme (i.e. its potential budget deficit) in general settings by deriving &ltigind on what can be
redistributed to an agent but again keeping a macro-view of the redistnbprtalem. Cavallo also
formalizes explicitly (c.f. Porter et al.[174] in more restricted setting) theodpnity for redistribu-
tion of payments without compromising truthfulness. For his general re€idisllo[29] imposes an
anonymity requirement, which one can think of as providing a form of fagni two agents have the
same potential for receiving a redistribu@ﬂhen they should receive the same redistribution payment.
We do not seek to achieve this fairness property in our scheme.

Porter et al.[174] study the related problemfaif imposition in which costly tasks are to be al-
located to a population of agents, costs are private information to agedtshearenter will make
transfers to the agents to provide incentive compatibility. They restrict attetdicsimple, non-
combinatorial problems. Because of this setting of “imposition”, the authanstake goal of fairness,
trying to minimize the maximium loss of utility across all participants. Although a diffepeoblem
to the one that we study, in order to achieve this they study what are, uot,afeistribution schemes
for VCG mechanisms. Indeed, they briefly consider an alternate intetipreta a single-item auction

8Cavallo refers to this as the “surplus guarantee,” it is a minimal boundtahgayments made by other agents across all
possible reports of aget
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setting, where they rediscover the scheme of Bailey[9].

Guo and Conitzer[94] extend Cavallo’s method[29], proposing a familpethanisms with sig-
nificantly better redistribution of payments. However, these mechanisms amykfor a restricted
setting: allocation problems with multiple, indistinguishable units, and agents witkdemiand.

The other possibility for achieving budget bala@d@ollowing from[88]) is toimpose constraints
on the problem and then leverage these constraints to enable crossapmawpcress different parts of
the system[64, 68]. By doing so, in principle one cannot guarantegesitly anymore, but by carefully
designing the constraints, budget-balance is possible. Ephrati anddRbsén[64], study the problem
of N agents trying to reach a consensus on a plan to transform the world fno igitial state, to
some final state for which they each have individual value. They peopm®artition the group of
agents in different sets, with each set forming a coordinated plan for parhef the larger problem
and with payments flowing between different sets of agents. While similar iit &pwur approach,
these authors do not provide details on how the partition can be formed hgéinds in the first place,
without providing an opportunity for manipulation. Moreover, whereasNBIBPOP imposes agent-
wise, heterogeneous constraints on the problem, these authors seekde gigdmal constraints.

Faltings[68] studies the approach of Green and Laffont[88] by simigkimg a random subset of
agents (typically one), and excluding these from the decision but allowarg th receive payments.
Reporting the first experimental results on structured problems, Faltirsgsv@bthat while the total
tax paymentsncreasewith the size of the problem, the cost of degradation due to removing oné agen
reduces, and finds a very significant net utility gain through this appro@bviously, a drawback of
this approach is that in a large optimization problem, some agent would nonhbileced at all in the
entire problem. BB-M-DPOP extends this idea and is less draconian andgmameful. Each agent
is able to receivsome portiorof the tax in return fosomereduction of its influence on the solution.
Rather than introduce a single, strong constraint for one agent we ucedddividualized, weaker
constraints for every agent.

12.1.1 The VCG Mechanism Applied to Social Choice Problems

Recall from Chapter 11 that the payment by agentthe VCG mechanism is:

Tax(Ai) =) | (Bj(X%;) — R;(X")) (12.1)
e
=Y Tarj(A) = ) Rj(X7;) — R;(X7). (12.2)
J# j#i

The disaggregation implied in this definition (wiffuz ;(A4;), to represent the payment made by agent
A; as aresult of its marginal (negative) effect on the utility of agéjtis the same as the one used in

®Instead of seeking exact efficiency and trying to redistribute paymerisest possible
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M-DPOP. Each agend; can be relied upon to report each component of the total payment made by
agent4; # A;. We recall from Section 11.4.1 that all instances of the social choicdgmosatisfy
the property oho positive externalities

D OR(X*) =Y Ri(X*), VA €A (12.3)
j#i J7#i

An agent can only have the effect of changing the values of variablag filom the best possible
settings in the problem without the agent. This ensureskaatA;) > 0 for all A;, by Equation/(12.1),
so that the VCG payments collected by the center are always non-nedatigecan conclude that the
VCG mechanism in this setting of social choice always runs at a sutplus.

12.2 Incentive Compatible VCG Payment Redistribution

In this section we turn to the main goal of this chapter, which is that of payredrtribution. Specif-
ically, our motivation is to reduce the loss of efficiency that is caused bingdtie bank receive net
payments from the agents. As discussed in the introduction, in the stan@&dméchanism these
payments must be wasted.

In the following, we consider two alternatives for dealing with the issue o5\&Tirplus. Both
methods use the structure of the problem in determining the redistribution aigrdy. The first
method (R-M-DPOP, Section 12.2.1) is in the spirit of Cavallo[29] and pvesehe optimality of the
solution, but is not guaranteed to achieve exact budget-balancedistitrite only the components of
the payments for which we can find a recipient that cannot possibly irtiéuttre particular component
of the payment under consideration. The structure of the specific irstditise social choice problem
is used to determine this possible influence.

The second method (Section 1212.2) is in the spirit of Faltings[68] and deasuérse: it trades
optimality for budget-balance. This method ensures that each paymenisisibediable to some agent
by deliberately breaking its influence on some part of the social choitdgmmo This in turn may affect
optimality. Problem structure is used to determine where to break the influémegivadual agents
such that it is known which payments they can receive and also to bedt@mpromising solution
optimality.

For comparison, notice that if the presence of some agent wiasreasethe range of values that can be assigned to
some variable then it can have a positive externality on the rest of thésagdre VCG mechanism can run at a budget deficit
in this kind of environment.
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12.2.1 R-M-DPOP: Retaining Optimality While Seeking to Return VC G Pay-
ments

This first method preserves the optimality of the solution, but sacrificesdbdmdance: we redistribute
only the payments made by ageuntsfor which we can find a recipiem; # A; that cannot influence

the marginal impact ofi; on the rest of the problem. Naturally, one necessary condition is that agen

Ay's local solution is not itself influenced by the presence of aggnt

Here is a quick overview of this method:

1. Asin M-DPOP, solve the main and marginal economies.

2. The optimal solution is implemented, just as in M-DPOP and VCG taxes are tednpy each
agent and reported to the bank.

3. In a new “redistribution phase” we seek to redistribute the tax paymecdkstbéhe agents. For
each agent4;, we check for the specific problem instance whether some candidatéerecip
A; # A; could have possibly influenced the computation of the tax payment. If notttisesafe
to give the payment tal; otherwise the payment accrues to the bank as in M-DPOP.

Let us consider a further disaggregation of the tax payments from EquEi@. Specifically, let
us consider ager; and a single relatiom;-C € R; that belongs to another ageA;. AgentA; will
have to pay the following VCG tax for interfering just with;’s relation:

taz, (A;) = rh(X*) = ri(X) (12.4)

We calltax,x (A;) amicropaymentSumming up all micropayments over all ageAts# A; gives
J
the VCG tax payment made by;:

Tax(A;) = Z Z taxrf(Ai) (12.5)

J#i T?GRJ'

We abuse notation in the following, and wr'vtjé € Tax;(A;) if the paymenttaxrf (A;) # 0and
adoptscope(Tax(A4;)) to denote the set of variables involved in relati@ﬁéor some agentl; # A;,
i.e. r;‘? € Tax;(A;). This is the set of variables whose values are influenced by the peestagent
A; in a way that changes the utility of some other agent, and thus impacts the pdynagy@ntA;.

Designate an agent; # A; as acandidateto receive as a refund the entire VCG paymBat:(A;)
made by agent;. This candidate agent needs to be chosen independently of the denkuateny
agent that capossiblyaffectTax(A;). Our algorithm does this as follows (see Algorithm 28):
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1. Restrict areas of direct influence for each agent\,, restrict toP(A, ) the variables on which
the agent can express interest and ignore its declarations when thiiotier variables.

2. Select a candidate to receive a refundfor eachA;, designate an agent; as a candidate to
receive the paymerifaz(A;) made byA;, by random selecti@ among agents that cannot
possibly have a direct influence on any variable involve®{®;) (i.e. P(4;) N P(A;) = 0).

3. Check possible indirect influence given candidated; for Taz(A;) checkA; has no possible
(indirect) influence on the values of any variablesdnpe(Tax(A4;)) in eitherDCOP(A) orin
DCOP(—A;). If there is no possible influencel; receives the paymefitax(A;) as a refund
and otherwise the payment accrues to the bank.

Step 1, which restricts the impact of an agent’'s messages, is without lessthatP(4;) is the
set of variables on which an age#if can possibly have interest. Step 2 is a specific example of a more
general idea: we must pick the candidateby some criterion that is not related to agent declarations.
The algorithm for performing the check on indirect influence is present8ection 12.2.1.

This mechanism cannot guarantee budget-balance since it can happdnd¢hn have a possible
influence on some of the variables dnope(Tax(A;)) and therefore the tax payment made by agent
A;. However this approach can significantly reduce the payments that nbedtade, as we see in
the experimental results in Section 12.3.

Theorem 11 The R-M-DPOP algorithm is a faithful distributed implementation of efficientasoc
choice, never runs a budget deficit, remains individual-rational fom#&gand can redistribute some of
the VCG payments collected by the bank back to the agents.

PrRoOOF Faithfulness follows from the faithfulness of M-DPOP and becausetatjecannot influence
whether or not it receives as a refund the tax payment made by someagiet: This is by con-
struction. To see that the mechanism never runs a budget deficit notatttatigent’s tentative tax
payment to the center remains non-negative by Eq. (12.3), but that soreétieneenter simply returns
this payment to some other agent. For individual-rationality (IR), recallttir@tvCG is IR because
the payment Eq| (12.1) is less than an agent’s utility for solukidn The difference here is that agents
sometimes receive an additional payment, when they are eligible to receitexthayment of some
other agentd

"For instance, this random selection can be done using a secure distgibotecbl for random number generation, like
Benaloh[17]: eacld; # A; proposes a random numberbetween 0 and¥'|. All numbers are added up and the result is
the sum modulgX|: rnd = ZAj r; mod |X]. rndis then the ID of the chosen agent.

12The mechanism only makes a single attempt to find an agent that is eligiblesiver¢he tax payment by agens. If
the candidate agent chosen does not qualify the tax is not redistribulegioas to the bank. To increase the chances for
redistribution one might think to selectggoup of candidate agents, with each agent then checked for eligibility. Sdatess
agents could then split the tax among themselves or get the entire tax wittpsolpadility. However, each candidate chosen
in Step 2 would have an interest to make tiieer candidate agents have a possible influence in order to increase its own
chance of receiving a refund. This would significantly complicate thequiore.
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Algorithm 28 R-M-DPOP with VCG refunds: towards budget-balance
Inputs: Bank knows community membership(4;)VA; € A
Outputs: Each VCG tax is refunded to an agent, or wasted

1 run M-DPOP algorithm to compute solution and VCG payments
Procedure TAX_refunds
forall 4; do

N

Bank selects an aged; randomly s.t.P(A;) N P(A4;) =0

Agents executdé ABEL'(DCOP(A)) on DCOP(A) (see Section 12.2.1.2)
if possible influence of; onVX}, € scope(Tax(A;)) then wasteT ax(A4;)
else

o o~ W

Agents executd ABEL'(DCOP(—4;)) on DCOP(—A4;) (see Section 12.2.1.2)
if possible influence of; onVX}, € scope(Tax(A;)) then wasteTax(A;)
elserefundT'ax(A;) to A;

0

12.2.1.1 An example of possible, indirect influence

Consider the example from Figure 12.2. The figure illustrates a DFS amserg of a DCOP problem
(the largest triangle in the figure) and fixes an agéntand the tax payment made by some agent
A;. Agent4; is restricted to placing relations only on the subset of variables;) for which it has
possible influence. Lel; denote the lowest node iR F'S(.A) such that its subtred(4;), contains

all the nodes on whicH, is allowed to place reIatioJri’g. It follows that A; can have ndlirectinfluence

on nodes outside df(4;), including any sibling or ancestor &f;.

The question addressed in checking passibleinfluence is the following:for which variables
outside of7'(H;) was it possible for agent; to have an indirect influence on the values assigned?
To make this example concrete we assume that variblean take three values, b, c. Letus
assume thatl; can completely contral; through its relations placed in the subtfBe4,) (this is the
worst case scenario). L&t be the ancestor dff; in the DFS ordering with possible valuds e, f,
and assume that some other agent has imposed a relation be#yvaedY’, as depicted in Table 12.1.

Assuming omnidirectional UTIL propagation as explained earlier in Sectiaf,4riaddition to a
UTIL message fronT;, nodeY” will also receiveUTIL messages from all its other subtrees and also
from its parent,Z. Let us assume that the sum of all th&SEL messages other than fraf arriving
atY isthe vector%, 5, 5), giving the utilities for values o €(d, e, f)inthe rest of the problem.
Notice that this vector cannot be influencedAy sinceA; could not place any relations outsi@i¢A;).

13 Notice that the subtreB(A;) does not necessarily include all siblings of the local variable$; o herefore, there could
be variables abovél; which are connected with equality constraints with variables béloyand thus under the influence
of A;. However, the scheme we propose in Section 12.2.1.2 would detdtirgluence.
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Y = d e f
H=a4|3 2 1
H=b|2 3 1
H=c|4 3 2

Table 12.1: Example of possible influence. Here, nddlds the node that defines the subtree isolating
the direct influence byl; andY is the ancestor off; in the DFS ordering.r(H;,Y) is the relation
betweenHd; andY’, and owned by an agent other thai.

Y= ‘ d e f

H =a|8+UMH=a) 7T+ Ui(H=a) 6+ U(H=a)
H =b| 7+ U(H=>b) 8+U(H=b) 6+ U(H=b)
H =c|9+UM;=c) 8+ U(H=c) 7+ U(H=c)

Table 12.2: JOIN!, _ ,: table with global utilities for combinations of assignntet#;, Y). 4, can
claim any utility on each value df/;, and in turn can influence wheth& = d or Y = ¢ is optimal.
The assignments that can be selected’tgre represented as the red cells.

However, it remains possible that agehtcan indirectly influence the value selected Yothrough the
utilities it assigns to the three different valuesif and through its impact on the choice on value of
H,. Letting these utilities b&;(H;), and factoring the utilities reported in the rest of the problem, the
propagation would choose the maximum in each row of Table 12.2, as indinatett.

The chosen column (the value i) depends on the utilitied; assigns td/;(H;). Notice thatA4,
can never forc&” = £, since this will never give the maximum utility. Howevet; can still influence
Y to take valueY = d by assigning a large utility to eithéil; = a or H; = ¢, and forceY = e by
assigning a large utility tdd; = b. Thus, there is possible influence and any tax collected because of
some other agent’s influence dhcannot be given tel; without breaking the incentive properties. It
is not possible to prove, in this case, that the agent has a lac of infludadethis been possible, then
any tax collected from other agents for their influence’ooould have been given t4;.

Agent 4;’s indirect influence on a variable outsid& 4;) depends on the preference of the other
agents. For instance, if the utilities from the rest of the problem for the sati®& would instead
aggregate to the vectds (5, 1000) then the influence afi; over H; is not enough to prevent from
taking valuef; therefore,A; would have no influence whatsoever Bn
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12.2.1.2 Detecting Areas of Indirect, Possible Influence

We present in this section an algorithm (Algorithm 29) to check whether antaty can possibly
influence the value taken by a variabfeoutside of its area of direct influence. This algorithm is used
as a subroutine in R-M-DPOP (lines 4, 5 and 7, 8) in checking whethendidzte agent is actually
eligible to receive a payment redistribution. By this we mean thatareprove given the reported
preferences of other agents, that the same valu€ wbuld be selected by M-DPOP for all messages
that could have been sent by ageipt and therefored; has no influence oX.

First we introduce the following ABEL data structure to keep track of the possible (indirect) influ-
ence an agem; can have on variables in the rest of the problem:

Definition 46 (Influence label) We can characterize the influence that an agénhas on a group of
variables by arinfluence labe] which is a multidimensional matrix with one dimension for each vari-
able in the group. Each element of the label corresponds to a combinaitieeiues for the variables
(atuple), and takes value 1.4f; can force the corresponding tuple to be chosen in the optimal solution,
and 0 otherwise.

Notice that in the optimal solution, any variabtg. will take some value, so all labels will contain
at least a “1” for that combination. Refer to Figure 12.1. From the mostenée to the least, a label
can have:

1. 1’s for all elements: this means thdt can fully influence all variables in the label, and can
impose any value combination - e.g. Figure 12.1(1).

2. 1's for at least 2 different values for each variable: this meansthean (partially) influence all
variables in the label - e.g. Figure 12.1(2).

3. 1’s for just a single value of a certain variableX: this means tha#i; has no influence oXj:
no matter what4; does,X;, always takes value (X, = f is in this situation in Figure 12.1(3)).

4. A single 1: then4,; cannot influence any of the variables at all; they will take the same values
regardless of what; does- e.g. Figure 12.1(4).

It is easy to see that whety can have a direct relation on a variable then it can claim any utilities it
desires for all values and make any value the best one for the systerefdrkedahe labels are initialized
to “1” on each of the values for such a variable.

We now describe th&abel propagationprocess that computes and propagat&BEL messages
to determine where the influence of an agent stops. LRREL propagation determines the possible
influence ofA; on all variables in the problem. It is run as a post-processing step orioP@®P has
completed to determine which candidate agents are eligible to receive taxrileddiisns. This was
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(1) Complete control | (2) partial control | (3) X_ is controlled, X is not|  (4) no control

Figure 12.1: Detecting Areas of Indirect Influence: Example labels foetiaf 2 variablesX, and
Xp. (1) A; can impose any combination of values 6, and X;,. (2) A; can impose just 2 value
combinations: eithetX, = a, X;, = d), or (X, = ¢, X}, = e). (3) A; can impose any value faX,,
but X, takes valuef regardless. (44, can do nothing{X, = ¢, X, = e) is chosen.

Algorithm 29 Computing and sendingABEL s: determining4;’s influence.
Procedure LABEL _passing for A;

1 Node X; getsLABELé-ét from neighborX;
2 forall X,,, e {PR,UC;\ X;}do

3 | JOINI.,, =1t & (Bx,erpionx,.x,) UTIL, 1 ) (detailed in text in 2.a)
4 | LABEIL! = JOIN; ~.,, L LABELL _, (this keepsinLABEL; _,, only the

t—m t—m

dimensions fron/ T'I L,, . and is detailed in text in 2)b
5 | sendLABEL!_, toX,,

t—m

used in Algorithm 28. In overview, theABEL propagation starts from the nodes on the border of
the P(A;) area: the nodé{;, which is the lowest node whose subtree incluésl;), and the nodes
L{ which are the highest nodes ¥ 4;) which do not contain any variables df; in their subtree.
The propagation proceeds outwards as far as the agestill has a possible influence. Payments
originating as the result of values on variables outsiigle area of possible influence can be safely
refunded toA4; without breaking the incentive properties.

Consider a nodeX; that has just received a LABEL message from one of its neighB3ors,The
LABEL message summarizes the possible influeAceould have onX;. This information, together
with the aggregation of the other agents’ utilities for valueXgfcan determine the possible influence
A; could have onXy, i.e. its LABEL, which will be sent further on to its neighbors, and so onthi®
end, we use themnidirectionalutility propagation introduced in Section 4.1.6.

Denoting asLABEL', the propagation that occurs fdy, it works as follows:

1. HyandallL}, ..., LF are determined to delineate the area of direct influencg oft is easy for
these nodes to identify themselves as a direct result of the DFS constrpbtsa. Notice that
they are chosen such that they are not owned py

2. H; and aIILll,...,LgC initialize the LABEL' propagation by constructingABEL messages
filled with 1's and sending them to their tree-neighbors outsidgthé;) area;
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P(A): A, can place
relations here

AI can have

possible indirect
influence

Tax( Ai) . .
. give Tax(Ai) to A

Figure 12.2: Checking possible influence: A structural method to deteemihether it is safe to
redistribute the VCG payment of an agehtto another agentl;. AgentA; must be unable to influence
any componerttuz, . (A;) of Tax(A;) for A; # A; andr¥ € R;. LetP(A;) denote the subset (orange
area in the figure) of variables on whicty, is allowed to place direct relations4; can also indirectly
influence other variables, via other agents’ relations @h&y areas in the figure). However, its indirect
influence is limited, and the green areas are completely but;'s influence. Since all components of
Taz(A;) (contained in the red area) are outsidg’s influence, it is safe to give; the VCG tax of4,.

3. Subsequently, all nodes wait for incomiigl BEL! messages, compute their own labels for
their tree-neighbors not in thB(4;) area, and propagate these to their neighbors.

For Step 3 a nod&(; performs Algorithm 29 to compute and propagate its own labels. In overview,
this algorithm works as follows:

1. NodeX; receives a messag,eélBELé- _, fromX;

2. NodeX; computesLABFEL! for each one of its tree neighbals,, # X;:

t—m

(a) It joins the following: (1) the relatiomj- it has with the sender of the LABEL message,
(2) all the UTIL messages it has received from its tree neighbors exvemne from the
sender of the LABEL message (this UTIL message is presumably manipulatéd Bnd
(3) the UTIL message sent by,,,. The resultisTOIN} ..

(b) For all tuples marked as 1 ihABEL perform the corresponding slice operation in

Jj—t
JOIN}_ .. The resulting hypercubes are then projected dfito These projections are
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the optimal results that will be selected in each of the possible deviatioAs. Byherefore,
they are marked with 1's in the corresponding outgaingB F L. message.

t—m

(c) NodeX, sendsLABFELL!

t—m

to its tree neighboX,,

Let us now refer again to the example from Figure 12.2. Since we assumied;than impose
any value onH;, A;’s label for H; is thus( 1, 1, 1) . By design,H; is not controlled byA; and is
expected to propagate this lal@lrrectlyto its parentY’, which receives it in Step 1 of Algorithm 29.
Y then performs Step 3 of Algorithm 29: it joins all the UTIL messages redeinam all its other
tree neighbors excef; (i.e. its parentZ, and its children other thaf/;). Assume as before that
this produces the vectdb, 5,5). Y also adds the relation it has witt; to this join. The result is
JOIN{,ﬁZ, depicted in Table 12.2Y" then computes it§ ABE L _, » message for its pareif as
in Steps 4 and 5 of Algorithm 29. Each tuple fromlBELlHﬁy that is associated with a “1” is
considered in turn (actually, this is all of ther; = a,H; = b,H; = ¢). For each one, we perform a
slice inJOIN.. _ ,: this results in the corresponding rows of Table 12.2. For each rowrejegb on
to Y, i.e. we find the best assignment f6r This assignment of” is enforceable by;, and thus is
assigned a “1” inLABELg/_)Z. Concretely,H; = a forcesY = d, H; = bforcesY = eandH; = ¢
forcesY = d, thusLABEL,,  , = (1,1,0).

Note: hadA;’s label for H; been( 1, 0, 1), its label forY would have beef 1, 0, 0) , meaning
that onlyY = d is possible and thud; would have had no possibility to influen&gs value.

Finally, Y sends this label to its pareri, and the process continues until the labels contain just a
single value of 1. Note that the number of “1"s in a label can never inergasng such a propagation,
since for every choice of input value there can be only one optimal oughué v This means that the
propagation will eventually converge to labels with a single “1”. By propiagdabels in the same way
as propagating messages in M-DPOP, we can determine the set of vatiabbsagent can potentially
influence.

Lemma 3 LABEL! propagation is non-manipulable by;, and conservatively determings’s influ-
ence on all variables in the SCP.

PROOF. 4; is not involved in any computation or message passing durind.thBE L' propagation.
The propagation is initiated by the nodEgsand L}, which areconservativelghosen, outside the area
of direct influence of4;. They are not unded;’s control, thus expected to initiate the propagation with
LABEL messages containing all 1's (i.e. assuming the worst case, whean impose any value on
them). The propagation then proceedssidethe area of influence of;, through nodes whicH; does
not control, and therefore, expected to propagZ&ABEL messages correctly]
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(a) A problem example (b) Computing LABEL messages
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JIn red: L!(2 11)=X [1,1,0] is the label sent from

X2 to X1. The (only) dimension is X2, and
[1,1,0] means that A can force X2=d or X2=e

«In green: U(3-2)=X [4,2,3] means the utility
from X3 for each value of X2

=) 1/(3-5)=X,[0,0,1]

1 veos=x[1,1,0]

Figure 12.3: A concrete numerical example of LABEL propagatiofy. is present in the subtree
rooted atX, and has direct influence okiy. Theforethe labdl1, 1, 1] is passed tdX,. X, computes
its label by joining the UTIL messages it gets from its neahklother thanX,, and considering the
relation 7§ X, shares withX, and LABEL, . ». X3's label is[ 0, 0, 1] , meaning that4; cannot
influence at or belowK'; and taxes originating at or below(3 can be redistributed ta;.

12.2.1.3 A concrete numerical example of LABEL propagation

We show in Figure 12/3 a concrete example on which to illustrate the Us&RL propagation. We
determine the possible influence fdy.

As seen in the figure4;’s presence in the problem is limited to the subtree rooted,afTherefore,
the worst-case scenario is assumdgd.can completely influenc&’, to take any value it desires. The
LABEL' message thaX, generates and sendsXg is thus[ 1, 1, 1] .

X5 computes the join of the UTIL messages it receives ftimand X3, and of the relation it
shares withX,. This computation is shown in Figure 12.3(b)-middle. The result is a matrix with 2
dimensions, X, and X4, which states what valuek, will take as a function of the value¥, takes.
This can be influenced byl; according to theLABEL,, _,, i.e. A; can force any column in that
matrix. However, for bothX, = j and Xy = [ then X,'s optimal value is the same{s = e¢. Notice
that 4; has no way of forcingX, = f via its influence onX,. Therefore, theLABEL' message
computed byX, is[ 1, 1, 0] . X5 sends this message to its neighbdfs,and X.
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Figurel 12.3(b)-bottom shows a similar computation performe&by X3 joins theUT L mes-
sage it received fronk; and the relation it shares witki,. The result is a matrix with 2 dimensions,
X5 and X3, which states what valuess will take, as a function of the values, takes. This can be
influenced byA; according to thdeABEL, __ , i.e. A; can force eitheX, = d, or X» = e, but not
X, = f. However, for bothX, = d, and X, = ¢, X3’s optimal value is the same, i.€X;3 = i. Notice
that A; has no way of forcing{s = ¢ or X3 = h via its influence onX, via X4. Thus, theLABE L
message computed b¥; is[ 0, 0, 1] , meaning that the value of3 cannot actually be influenced
at all by A;. ThereforeA;’s influence stops alltogether at and beldly. This means that whatever
(micro)payments some agedt # A; has to pay for its effect on variable§; or below, these taxes
can be safely redistributed 4, asA; has no way of influencing them.

12.2.2 BB-M-DPOP: Exact Budget-Balance Without Optimality Gua  rantees

The redistribution method described so far guarantees the optimality of thediotion to the social
choice problem. Because of this, it is unable to ensure complete budgetézdend the protocol may
run at a budget surplus to the bank and thus the population of agents ntapuedo lose utility through
these payments. In this section we propose a scheme that guaranteegseduniet balance, at the
expense of the optimality.

Similarly to Faltingg68], we add constraints to the problem to prevent art agérom influencing
a part of the taxes by preventing it to have even possible influence orathefpthe problem with
variables in the scope of the tax payment. However, recall that we aim to aljoie havesome
influence in a restricted part of the problem, unlike Faltings, wherés excluded altogether. We
achieve this by assignirgpriori to each agenti; another agen#i; from another part of the problem,
who will collect A;'s payment. During the optimization, we need to pytand A; in well separated
parts of the problem; specifically, we must ensure (via constraintsjthatnnot have any influence on
the marginal impact that ageAt has on some subset of the variables, and thus on the tax payments. We
do this by performing two versions of th&T IL propagation: one witl;’s relations taken into account,
and another one that does not takes relations into accouv@ Intuitively, the propagationwith A;'s
relations considered are used in a "surrounding” ared;tdo allow it to express its preferences on a
subset of the problem. Beyond this "surrounding” areatpthe propagationwithout A;’s influence
are used, thus effectively eliminating its influence.

Let us refer to the example from Figure 12.4. The example illustrates a praslanged as a DFS
tree, and two agentsl; and 4, in separate parts of the problem. The mechanism deeigei®ri (i.e.,
before any messages are received) that the VCG tak @fill be given to A;. Therefore, we need to
ensure that; has no way of affecting the impact df; on the rest of the problem and thus on the tax
payment made byi;. We achieve this by including constraints, in the following way:

¥The second propagation is similar to the marginal propagations execu#®ROP for the marginal economy without
Aj.
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Propagate only marginal
utility without A

Propagate also
marginal utility
without A: UTIL"

AI allowed to have
indirect influence

P(A): A allowed to
have direct influence

A A

' give Tax(A) to A

Figure 12.4: Exact budget-balance in return for possible loss of optitp@guarantees: a structure-
based method to forcibly limit an agedi’s influence in the problemd; is also allowed to indirectly
influence other variables as well, via other agents’ relatigthe gray areas). Beyond a certain area,
A; has its influence forcibly eliminated. This area is definedhgycutoff pointZ beyond which only
marginal UTIL messages that do not contain any influence fignare propagated. These are the
green areas and cannot be influencedAy Since all components @Gfax(A4;) (contained in the red
area) are outsided;’s possible influence it is safe to givk the VCG tax of4;.

1. We allowA4; to post its relations normally on variablesi{ 4;), and withinT'(A;) (the minimal
subtree which containB(4;)) the normalUTIL andVALUE propagations take place.

2. From H; (the root of T'(4;)) we propagate upwards two versions of tH€lL messages: the
normalUTIL (optimal utilities, including the influence of;) messages, antdT7L~' messages
(sent in solving the problem without;.)

3. A cutoff point, Z is chosen in any fashion that is independentigé declarations. Influence of
A, is permitted in the subtree rooted Zt(which is the gray area in Figure 12.4). On the path
from H; to Z, we propagate both versions of the UTIL messages (with and withcaitelations
included). During the downward VALUE propagation, we select optimalesfor the variables
on the path fron¥ to H; according to the UTIL messages that contain alge influence. This
ensures that we allow; to express its (indirect) preferences in the subtree root&d at

4. Outside theZ-rooted subtree4;’s influence is prevented by using just the margiddlL mes-
sageUTIL~". This constraint has the effect that the values chosen for all variabtsgle the
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Algorithm 30 BB-M-DPOP: budget-balanced distributed mechanism foiaahoice

Inputs: Bank knows community membershif{ 4;),VA; € A
Outputs: a (possibly suboptimal) solution; each VCG tax is refunded to an agent;

forall 4; do

Bank selects an aged; s.t. P(A;) N P(4;) =0

A; will receive A;’s VCG paymentT'ax(A;)

Select cutoff point for4;, let this be nod&Z

In subtree rooted aftl;, execute normdUTIL/VALUE

From H, up to Z, propagate main and marginal UTIUQIL, UTIL™")
From Z down to H;, propagate main VALUE (i.e. considdy;’s influence)
From Z onwards propagate just margifdl'/ L' /V ALU E~!(excludeA;)
Compute VCG (micro)payments normally

Any payments issued outside of the subtree rooted @dn be given to4;

© 00 N O O B~ W DN P

subtree rooted af are independent ofi;. This makes it safe to givd; the VCG tax ofA4; ,
sinceA; cannot influence its computatia'%.

12.3 Experimental evaluation

We present the results of an experimental evaluation of R-M-DPOP arel-BB’OP in a distributed
meeting scheduling problem. The problems consist of agents working foga ¢eganization and
representing individuals, or groups of individuals, for the purpdsscheduling meetings for some
upcoming period of time. Although the agents themselves are self interestentgtr@zation as a
whole requires an optimal overall schedule that minimizes cost (alternativalyimizes the utility
of the agents). This motivates the need for a faithful distributed implementaicn as M-DPOP,
rather than a cooperative approach such as vanilla DPOP. In enalibngvethcan imagine that the
organization distributes a virtual currency to each agent (perhapg ttgmto prioritize particular
participants.)

Each agentd; has a set of Ioca’eplicatevariablesX} for each meeting/;in which it is involved.
The domain of each variabl¥; (and thus local replicax’}) represents the feasible time slots for the
commonly known meeting. An equality constraint is included between replicables to ensure that
meeting times are aligned across agents. If a meeting pasticipants, it is sufficient to create— 1
equality constraints that connect the corresponding variables in a lihaar. ¢Since an agent cannot
participate in more than one meeting at once there ialadifferent constraint on all variableé(f
belonging to the same agent. This is modeled as a clique constraint betwesmieting variables.
Each agent assigns a utility to each possible time for each meeting by imposirgyarelation on

15A side effect is thatd;'s own VCG taxes outside the tree rootedZaeffectively become 0 asl; no longer has any
influence on these variables.
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each variabIeY;i. Each such relation is private t#;, and denotes how much utility; associates with
starting meetingl/; at each time’ € d;, whered; is the domain for meeting/;. The social objective
is to find a schedule in which the total utility is maximized while satisfying the all-diffecenstraints
for each agel%

Following Maheswaran et al.[127], we model the organization by progidihierarchical struc-
ture. In a realistic organization, the majority of interactions are within departmemtisoaly a small
number are across departments and even then these interactions will tysikallylace between two
departments adjacent in the hierarchy. This hierarchical organizatandps structure to our test
instances: with high probability (around 70%) we generate meetings witheregnts, and with a
lower probability (around 30%) we generate meetings between agentglmgdo parent-child de-
partments. We generated random problems having this structure,with aasimg@umber of agents:
from 5 to 50 agen@ Each agent participates in 1 to 5 meetings, and has a uniform random utility
between 0 and 10 for each possible schedule for each meeting in whidtidtgades. The problems
are generated such that they have feasible solutions.

For each problem size, we averaged the results over 10 differeméestaAll experiments were
performed in the FRODO multiagent simulation environment[154], on a 2.0Gi&ZRAM laptop.
FRODO is a simulated multiagent system, where each agent executes asyndty in its own thread,
and communicates with its peers only via message exchange.

We experiment with both classes of redistribution schemes: R-M-DPOP wghiatantees opti-
mality but not budget balance and BB-M-DPOP, which guarantees bbddgnce at the expense of
optimality.

12.3.1 R-M-DPOP: Partial redistribution while maintaining o ptimality

This set of experiments analyzes the redistribution potential of the R-MHD$@Beme. The results are
presented in Figure 12.5. As the problems grow in size, we observe aaggcin the percentage of
taxes that can be redistributed by R-M-DPOP. The intuition is simple: as théspme grow in size, it
is more likely that each agent’s influence spans only a limited area in its nelydmbr Therefore, it
is more likely to find a recipient from a different part of the problem foy ®CG tax, such that the
recipient has no influence on the tax. This is why the percentage of fbdigin increases with the
problem size.

Figure 12.6 compares tmetefficiency of the optimal solution, the R-M-DPOP algorithm, and the
VCG mechanism. In the VCG mechanism, each agent’s net utility is the diffebeataeen the utility
it derives from the solution which is being chosen (in this case the optimalamkits VCG tax. In

181n a simple variation one could also seek to maximize the weighted utility acresgjénts, wherein some agents receive
more priority within the organization than other agents. The VCG paymemtisalso M-DPOP, can be easily extended to
provide appropriate incentives in this setting.

Y pvailable at http://liawww.epfl.ch/People/apetcu/research/mdpop/MSiexpets.tgz
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Figure 12.5: The percentage of the amount of VCG taxes that can be réalitgd by R-M-DPOP
increases with the size of the problem.

R-M-DPOP, some agents receive tax refunds from the bank, whicadgktd to their net utility. We
can see that the loss in utility while using the VCG mechanism (with respect to tineabpolution in

a cooperative system) is quite significant, and increases with the size abthlem. This is because as
the problems increase, competition increases and more payments are coltectedrast, R-M-DPOP
manages to redistribute a significant percentage of these payments baekgettis, thus limiting the
net utility loss.

12.3.2 BB-M-DPOP: Complete redistribution in exchange for lo ss of optimality

This set of experiments analyzes the tradeoff introduced by BB-M-DitDIeen the loss of optimality
of the solution and the utility gain induced by the reimbursement of the VCG taXas.results are
presented in Figure 12.6. We notice that BB-M-DPOP fares much bettethbaviCG mechanism,
and the overall utility when using BB-M-DPOP is very close to the optimal utility withemy taxes.

This is in spite of the fact that BB-M-DPOP does not guarantee optimal sofutib compensates for
this by returningall VCG taxes back to the agents, thus avoiding the net utility loss incurred bjnigur
these taxes.

As the problems grow in size, it is more likely that each agent’s influencesspdn a limited area
in its neighborhood. Therefore, it is more likely to find a recipient from tedét part of the problem
for any VCG tax, such that the recipient has limited or no influence on themyaxay, and therefore
cutting off its influence does little to change the optimal solution.

Interestingly, BB-M-DPOP outperforms R-M-DPOP in terms of the net utility gerds. This
shows that in this environment it is more beneficial to accept a small loss in diptiarad be able to
redistribute all VCG taxes than insisting on optimality and thereby forfeiting tlaeaguiee of budget-
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Figure 12.6: The overall net utility of the agents in the system. The iak¥CG mechanism incurs
losses in overall net utility compared to the optimal santas the agents have to pay the taxes to
the bank. R-M-DPOP reduces the losses by redistributingesofrthe VCG payments back to the
agents. BB-M-DPOP offers even better overall utility, as litss of optimality is counterbalanced by
the complete redistribution of the VCG payments.

balance.

Figure 12.7 shows the amount of computational effort required by RIMDP and BB-M-DPOP
compared to M-DPOP. Here, computational effort means the total size offtheand LABEL mes-
sages sent by each algorithm. The curve for M-DPOP shows the totabfsthe UTIL messages
required for solving the main and the marginal economies. As explained ipt&hkl, M-DPOP can
reuse some computation from the main economy while computing the marginaneiesnthe curve
corresponding to M-DPOP from Figure 12.7 takes this fact into account.

R-M-DPOP spends the same amount of effort as M-DPOP for the main arginaseconomies.
However, R-M-DPOP also has to perform all the required LABEL pgapi@ans, which can increase
the complexity by a linear factor in the worst case: one full LABEL propagafor each candidate
agent, both in the main economy and in the corresponding marginal oneeB@drconfirms this fact,
and clearly shows that R-M-DPOP spends much more effort than M-Di2Gér the largest problem
size, we have a 100-fold increase, due to the LABEL propag@lon.

In contrast, BB-M-DPOP does not incur the computational overheaddintexr by the LABEL
propagations. Figure 12.7 clearly shows that BB-M-DPOP requireeffss than R-M-DPOP, and is
relatively close to M-DPOP. For the largest problem size, BB-M-DPQG#hdgp just 36% more effort

8Notice the log scale in Figure 12.7

91t would, in principle, be possible to extend the LABEL propagation with tiraesasafe-reusability* principle as M-
DPOP extends simple-MDPOP: we could reuse effort spent in the LABBpagation in the main economy while performing
LABEL propagation in a marginal economy. However, the current impletation and the results in Figure 12.7 do not take
advantage of this possibility.
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Figure 12.7: Computational effort required by M-DPOP, R-M-DPOP and BBEN?OP, measured
as the total size of the UTIL/LABEL messages sent.

than M-DPOP: 150K as opposed to 110K.

12.4 Discussions and Future Work

In this section we discuss several aspects of the redistribution schamdgsoiat out some directions
for future work.

12.4.1 Distributed implementations: incentive issues

The execution of the redistribution schemes is somewhat sensitive to the &FStysen as a commu-
nication structure. Specifically, in R-M-DPOP, the choice of the DFS traérfluence which agents

are eligible to be considered for receiving tax reimbursements from soraeagbnts. Therefore, the
agents may have an interest in influencing the creation of the DFS tree stichdi become eligible

for more reimbursements, or more “interesting” ones.

In BB-M-DPOP, the DFS tree plays a role in determining the areas wheleaggmt is allowed
to exercise its influence (e.g. in Figure 12.6, the subtree rooted at Zgriday on how the tree is
constructed, this subtree may or may not contain some variables on whigeimaay have a special
interest, and therefore, the DFS construction is susceptible to manipulation.

To prevent these possible manipulations, we can require a trusted thiyovgaich will provide the
agents with the DFS structure they should use. If the agents cannot o€ltheDFS, then the LABEL
propagation from R-M-DPOP and the marginal propagations from BBROP are faithful and give
the expected results. For future work, we will investigate more elaboratesibns of the LABEL and
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the marginal propagations that would not be sensitive to the DFS strucede and thus make it not
profitable for agents to manipulate the DFS construction.

12.4.2 Alternate Scheme: Retaining Optimality While Returni ng Micropayments

Notice that it could also be possible to do the redistribution mi@o levelso that a candidate agent
A ¢ {A;, A;} is selected for eachuz, .. (A;) for eachrf € Tax(A;) for eachA;, and agent4,

J
receives thisnicropaymenif it could have had no possible influence on the payment.

The reason to consider the redistribution of micropayments is that it offeksfine-grained control
over payment redistribution than when finding an agent that is eligible tivesites entire tax payment
made by some agert;, as in R-M-DPOP. Micropayment redistribution is less brittle, in that whether
or not we can redistribute payments is less sensitive to one bad choicedilage agenti; in R-M-
DPOP. Instead, for a given VCG payment, we seek to redistribute all its @moemp micropayments,
and thus stand a better chance of being able to redistribute as much adepivesibthe total VCG
payment.

However, care must be taken as some micropayments may be negativederstand why, con-
sider two agentsi; and A; with similar preferences. Together, they are able to impose their most
preferred value on a variabl¥, but not when taken individually. In this way, each agent can have
a positive influencen the other one, which in turn, makes the respective VCG micropaymerds neg
tive, i.e. agent4; receives a payment for the effect on the relation of aggnhvolving this variable.
Thus, we see an interesting phenomenon: while total tax payniEmig,4;), made by every; are
non-negative by the property of no positive externalities, an agerdsepce can nevertheless have a
positive externality on angneother agent considered in isolation, and in particular on any micropay-
ments.

Redistributing such negative micropayments must be avoided, as it amouatsng the recipient
paying taxes for some other agent and could break individual-rationalitthermore, by redistributing
positive micropayments but not negative micropayments we can stand thbatske redistribution
will leave the bank with a budget deficit.

12.4.3 Tuning the redistribution schemes

Both in R-M-DPOP and in BB-M-DPOP, the designer can tune the executitimreaalgorithms and
influence their performance in several ways.

R-M-DPOP: the choice of4; can influence both the computational effort required foriide3 £ !
propagation, and the likelihood of finding a good recipient for the taxas tlaus the final net overall
utility. In our implementation, we try to choose for each tax a recipient agenthich lies “as far
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as possible” from the origin of the tax, i.e. an agdntin a different branch of the DFS tree. This is
designed to maximize the chance thiathas no influence on the area where the tax originates.

BB-M-DPOP: here, the designer can consider different options for choosingAdtine recipient
agent) andZ (the cutoff point). The choice of may have an impact on the quality of the solution
chosen because the closéis to A;, the less of a chancé; has to influence its neighboring variables
according to its preferences, thus decreasing the overall solution qomlitye other hand, i¥ is
chosen arbitrarily far then no redistribution would be possible. Thezefior our implementation,
we have tried to select ad; as far away as possible from the area where the payments originate.
Subsequently, we choose cutoff poidtavhich are as far as possible fram.

It is interesting to note that in addition to their impact on efficiency, these debigices may also
have certain implications on the “fairness” of the process: which ageatsamsidered for receiving
which payments, etc. We acknowledge the importance of these issuesjlagidlvorate on them in
future work.

12.5 Summary

We presented two methods for dealing with the VCG surplus in social chabégpns when agents are
self interested and have private, arbitrary utilities for different outco®es algorithms are faithful, in
the sense that no agent can improve its utility either by misreporting its locaimafan or deviating
from any aspect of the algorithm. The first method (R-M-DPOP) praslopgimal solutions, but can
only achieve a limited redistribution of the VCG payments. Our experiments staiva thignificant
percentage of the VCG payments can be returned to the agents (close)ton fiblems that exhibit
local structure.

The second method (BB-M-DPOP) offers no optimality guarantees, hotees full budget bal-
ance. Experiments show that both R-M-DPOP and BB-M-DPOP dominatdassiaal VCG mech-
anism in terms of the net utility of the agents, with BB-M-DPOP slightly outperfognitiM-DPOP.
Experimental results show that BB-M-DPOP also requires less computagitord than R-M-DPOP.
This suggests that in settings with self-interested agents where the net utilitygsmpmrtant than the
optimality of the solution, BB-M-DPOP is the method of choice.

A very interesting avenue for future research is to investigate mechaniatrsettk to redistribute
micropaymentss opposed to aggregate VCG payments (see the discussion in Sectioh BudtPa
scheme would offer more fine-grained control over payment redistritatiol would be less brittle, in
that whether or not we can redistribute payments is less sensitive to omadiad of candidate agent
A

In both R-M-DPOP and BB-M-DPOP, we select candidate agents toveepayments originating
from parts of the problem they cannot influence. This selection has arcirapahe "quality of the
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redistribution scheme. Specifically, in R-M-DPOP we can seek to seleatasdidate agent, an agent
that is very likely to be proven non-influential by the LABEL propagationhesne, and thus increase
the chances of redistributi@ In BB-M-DPOP, the question is how to choose a candidate agent such
that it is likely it will have a weak influence on the tax (or not at all), and ahesagent chosen, how

to determine where to cut its influence such that the overall optimality is as littietedfas possible.

For future work, one could also investigate more elaborated versions bABEL and the marginal
propagations that would not be sensitive to the DFS structure used, @chtke it not profitable for
agents to manipulate the DFS construction.

2%0ne must take care of incentive issues, as all agents have the inteérdktence this selection.
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Conclusions

This dissertation tackles Distributed Constraint Optimization Problems, with aydartfocus on de-
veloping new efficient algorithms that make good use of the computational / pgnnetwork re-
sources available. In this context, previous work has concentrated mosdigapting techniques from
centralized CSP to the distributed case. In centralized CSP, search afgodtk preferred because
they are fast and require small amounts of memory. Additional techniquedylik@mic variable or-
dering, consistency maintenance, or the branch and bound principlemrsuccessful, and further
improve performance, sometimes quite impressively.

However, in a distributed setting, the conditions in which these algorithms tepara radically
different. An assignment of a value to a variable is no longer instantalyeknuswn to all agents in-
volved, and has to beommunicated“The best solution found so far”, or “the best cost so far” are no
longer available as in centralized branch and bound, and havetimaédcasto all agents. By its very
nature,searchworks by sequentially exploring the search space with rapid state chamgies im-
plies many changes of context, which translates into many messages. In ofisimittee search space
is exponential, and thus oftentimes an exponential number of message® levexchanged. Tech-
niques like dynamic reordering, or consistency maintenance from ceatt&i2P have been adapted to
the distributed case, and oftentimes show performance improvements[26393199, 200, 202, 242].
However, even with these improvements, the number of messages requineidadly still very large,
which implies the associated overhead is prohibitive for practical applicat®ection A.1).

On the other hand, dynamic programming works by exploring the searck gpa more parallel
fashion: each agent computes all the possible impacts of a set of otlms agdtself, and sends these
valuations at oncen a single messagéviessages are larger, but since they are fewer, the massive net-
working overhead associated with many small messages is avoided. Fotkeif problem structure
is taken into account (like for example by operating on a DFS tree), the marmessgage size can
be limited toexponential in the induced widts opposed to exponential in the size of the problem.
Together with the fact that practical distributed problems tend to have low widthrealization is at
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the core of the success of the DPOP algorithm.

In the following we present in Section 13.1 a list of the major contributions offissertation, and
we conclude with some final remarks in Section 13.2.

13.1 Contributions

We present in the following a condensed list of the contributions of this thesiswe continue after-
wards with a more detailed view on the most important ones.

1. DPOP algorithm: distributed dynamic programming, produces a linear nuofilreessages.
Largest message exponential in the induced width of the chosen DF&lddréhm of choice
for DCOPs with low induced width.

2. DPOP extensions for efficiency (Part IIl):
e a generic framework for identifying difficult areas (high-width clustdrs3ed on problem

structure (Section 6.2).

e H-DPOP: (Chapter 5): uses consistency techniques from searchuocerenessage size.
Can be applied in combination with most DPOP variants.

e MB-DPOP: tradeoff between number of messages and memory/messafersipéer 6)

e O-DPOP: hybrid of dynamic programming and best first search thatsraxigonential
message size for number of messages (Section 6.4)

e LS-DPOP: Configurable large neighborhood search combined witmaigrrogramming
(Section 7.1)

e A-DPOP: parametrized approximation scheme, which adapts the size ofghs taessage
to the desired approximation ratio (Section|7.2)

e PC-DPOP: configurable centralization of high width subproblems in clustds,rwhich
solve them in a centralized way and integrate results into DPOP (Section 8)

3. Dynamic problem solving (Part IV):

e SS-DPOP: self stabilizing dynamic programming (Section 9.2)
e RS-DPOP: continuous problem solving (Section 10.3)
e structural methods for reusing computation upon dynamic changes

e cost-based solution stability
4. DPOP extensions for self interested agents (Part V):

e M-DPOP: first faithful distributed mechanism for social choice (Chapigr



Conclusions 237

(a) implements the VCG mechanism distributedly (just a bank required)
(b) allows reuse from main to marginal economies

e Structural techniques for budget balance ((Chapter 12))

(a) R-M-DPOP: uses structure detectpossible influence— burns tax
(b) BB-M-DPOP: uses structure tutinfluence — redistributes tax

In distributed constraint reasoning, several search algorithms[96143, 197,223, 224, 228] have
been proposed. While most of these algorithms have the advantage thedtieyerate asynchronously
and with low memory requirements, they all suffer from the problems assdaciatie search in a dis-
tributed environment: large networking overheads caused by sending snall packets, and large
algorithmic overheads due to the obligation of attaching full context informati@ach message be-
cause of asynchrony.

One of the most important contributions of this thesis is the dynamic programmingthig DPOP
(Chapter 4). DPOP groups many individual valuations in a single messagd &, requires only a linear
number of messages, thus generating low communication overheads. D&sDRilexity is given by
the size of the largest UTIL message it produces, which is exponentia indlaced width of the DFS
ordering used. This makes DPOP very well suited for large but looddgms, which exhibit low
induced width.

For problems with high induced width, however, DPOP’s memory requiremeay$e prohibitive.
In some situations, hard constraints can be exploited by methods like H-DP€&ffedtvely reduce
message size by pruning incompatible tuples ( Chapter 5).

The whole Part Il of this thesis is dedicated to exploring various effigigntated tradeoffs one
can make for problems with high width, along four different dimensions:tismiwquality (complete
vs. incomplete algorithms), memory requirements (linear / polynomial / expi@jecommunication
requirements (few large messages vs. many small messages) and the afedisribution (fully
distributed algorithms vs. partial centralization algorithms). Several newitllgs are introduced.
Tablel 13.1 presents a comparative overview of the current DCOP kpels&xisting algorithms are
shown side by side with the new algorithms developed in this thesis (the latteraomeshiown in
bold). We classify all algorithms according to their memory requirements, &blimber of messages
they exchange, as these are the two most commonly used performance.nidteiddPOP algorithm
(lower left corner) was the first in a series of algorithms exploring dyngmagramming approaches
in a DCOP context. Subsequently, we have developed many differemisexts: typically hybrids of
dynamic programming and other techniques, seeking to mitigate the exponentiakyngroblem of
DPOP by offering different tradeoffs.

!PC-DPOP is optimal, but sacrifices the initial distribution of the problem biigiigrcentralizing subproblems
2A-DPOP is an approximation scheme, and thus sacrifices optimality

3LS-DPOP is a local search scheme, and thus sacrifices optimality

4OptAPO is optimal, but sacrifices the initial distribution of the problem by partizhtralizing subproblems
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Memory Number of Messages
linear polynomial |worst case exponentigl exponential
linear |PC-DPOP(1} |LS-DPOP(1) |ADOPT, NCBB, AFB, MB-DPOP(1)

A-DPOP(1Y SynchBB

polynomiall PC-DPOP(k)* |LS-DPOP(k)® | NCBB(k), OptAPG |MB-DPOP(K)
A-DPOP(k)?

w.c. expon|H-DPOP O-DPOP

exponential DPOP

Table 13.1: Comparative overview of DCOP algorithms: memory vs. number of messages

We summarize these results in the following: Section 6.3 introduces the MB-CR§Hthm,
which can operate with bounded memory using the idezyofe-cut§s1]. Section 6.4 introduces the
O-DPOP algorithm, which can be applieddpen optimization problerfi&0], i.e. problems that feature
unbounded domains. Section 5 introduces the H-DPOP algorithm, whichatdkasstage of Constraint
Decision Diagrams[34] (CDDs) to prune out from the UTIL messages gmtibns which are infeasi-
ble due to hard constraints. Section 8 introduces the PC-DPOP algorithni, attuievs for the partial
centralization of difficult subproblems. Section 7.1 introduces the LS-D&@érithm, a hybrid al-
gorithm which is a mixture of local search and dynamic programming. Section fdlirces the
A-DPOP algorithm, an approximation scheme which offers a tradeoff betfgeranteed) solution
quality, and computational effort.

For dynamic, distributed problems, we propose in Part IV two self stabilidggyighms that can
cope with dynamically changing problems. Different techniques for faatainment and super-
stabilization are presented. We also introduce a cost-based versiotutdrsatability, and an al-
gorithm that enforces it.

In an orthogonal area of research, we tackle the problem of dealingsiviategic behavior in
systems withself-interested agentsThe issue is that existing DCOP algorithms can be manipulated
by self-interested agents such that the chosen solution is no longer optirnbktter fits their inter-
ests. This is a major limitation shared by all previous DCOP algorithms. We inteddt@POP, the
first faithful DCOP algorithm that makes honest behavior an ex-post Nash equilibriuBP®IP care-
fully integrates the Vickrey-Clarke-Groves (VCG) mechanism with DPORROP introduces a novel
method that leverages structure in the problem to selectieelye computatioperformed in solving
the main problem while solving the marginal problems, in a way that is robustsigaanipulation
by the excluded agents. We have also introduced two extensions to M-e@Ehapter 12) that ad-
dress the inefficiency of the VCG mechanism that taxes must be burned;rérating a welfare loss to
the agents. Our extensions exploit structure in the problem to developufaitethods to redistribute
payments back to agents, reducing this cost on the system.
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All the algorithms described in this thesis operate in an essentially synchdofaigkion. While
this avoids the inconvenience of overhead (see Section A.2), asymalwdéechniques have potential
advantages in terms of ability to deal with message loss and/or slow links, antirmeséhey offer
the possibility ofanytime solvindi.e. offering some solution fast, and then improving it as time goes
by). Nevertheless, anytime behavior can also be obtained from dynaogicapnming algorithms, like
for example using the iterative versions of A-DPOP (Section 7.2.6), dDPSP (Section 7.1.3). One
could also envisage an online version of the O-DPOP algorithm, wherelpasiidts are sent upstream
before proving their optimality.

While in this thesis we have not dealt with message loss expl@ﬂhﬁ self-stabilizing algorithms
in Chapters 9 and 10 handle this problem by simply resending the lost messagalternative is
provided by the AnyPOP algorithm from Section 7.2.5, which deals with messhgt have not yet
arrived by consideringvhat could have been their influendmsed on the messages that did arrive, and
the local relations.

13.2 Concluding Remarks

In this thesis, we have investigated Distributed Constraint Optimization Problems approach to
effective coordination in multiagent systems. This is an important topic bed2@©Ps are applicable
to many real life problems that are distributed by nature.

Among the most challenging issues in DCORfficiency For problems of practical interest, cur-
rent search-based algorithms are too inefficient to be used in a realiglicadion. The main issue is
that typically they require exponential numbers of small messages, whichmiprtaduces enormous
networking overheads and delays. We have proposed in this thesisatkgorithms based on dy-
namic programming which address this issue by (a) discovering problects& iy using DFS trees,
and exploiting it when possible, and (b) by packaging together many vatsatiolarger messages
which can be transported over the network more efficiently, with less eadrhThe resulting algo-
rithms have been shown by experimental results to be up to 5 orders of ntegniture efficient than
search based algorithms. We therefore believe that whenever memaiyatots allow for algorithms
based on dynamic programming, such algorithms are preferable to seesath &lgorithms. In situa-
tions where this is not possible because of excessive memory requirediffatent hybrid algorithms
can be tried, as discussed in Part Il of this thesis.

An important feature of DCOPs is that often times agents operate in opernyaachit environ-
ments, with agentdynamicallyjoining or leaving the system, resources appearing or being consumed,
tasks being allocated and carried out, etc. Chapter 9 introduces twaadglzeng algorithms that can
operate in such dynamic, distributed environments. Chapter 10 dis@amg#en stabilityin dynamic

1The TCP underlying networking protocol deals with the problems of gdoke and out-of-order delivery, thus freeing
higher level algorithms of the task of reasoning about these problepfisidy
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environments, and introduces a self-stabilizing version of DPOP that mairitain

Another key challenge in DCOPs is dealing with dishonest behavior in systémself-interested
agents This poses effectively a big problem to DCOP algorithms, which can be miatég by such
self-interested agents such that the final solution discovered is bettad Buiteemselves, regardless
of the global optimum. This renders existing DCOP algorithms useless in stiitfgseas the results
they obtain are meaningless. Existing work to address this problem is limited &t YWesntroduce
MDPORP, the first DCOP algorithm that providesfaithful distributed implementatiofor efficient
social choice. Faithfulness ensures that no agent can benefit byewailadeviating from any aspect
of the protocol, and is achieved by carefully integrating the Vickrey-@HBkoves (VCG) mechanism
with DPOP. M-DPOP introduces a novel method that leverages structure prablem to selectively
reuse computatioperformed in solving the main problem while solving the marginal problems, in a
way that is robust against manipulation by the excluded agents. We havetatsluced two extensions
to M-DPOP (see Chapter 12) that address the inefficiency of the VCGanisth that taxes must be
burned, thus creating a welfare loss to the agents. Our extensions estploture in the problem to
develop faithful methods to redistribute payments back to agents, reduc@rap#t on the system.
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Appendix

A.1 Performance Evaluation for DCOP algorithms

Performance evaluation of distributed constraint reasoning algorithms ingyadkebated subject. Sev-
eral metrics have been proposed so far:

e number of messagesr “network load”[123] required by an algorithm to find the (optimal) solu-
tion. This metric is meaningful when all algorithms compared produce messagesparable
sizes. This is not the case when comparing DPOP with search algorithregaioiple.

e number ofconstraint checks (CQerformed while solving the problem. This is a metric heavily
used incentralizedCSP, which offers the advantage that it is independent of the algoritbch us
and of the hardware platform.

e number ofsimulator cyclef228]. This assumes a simulator is used, and in eactthronous
cycle each agent reads its incoming messages, performs computation, apdstitglmessages
for delivery in the next cycle. The metric counts the number of such cyme®rmed while
solving the problem.

e the longest sequence of messages (LS} is the DisCSP equivalent of Lamport’s logical
clock[117], and is a measure of tdarationof the execution of the algorithm.

e number ofconcurrent constraint checks (CC@grformed by the agents while solving the prob-
lem. This is an adaptation of thee metric from centralized CSP to the distributed case, and
measures theomputatiorperformed by the agents (in parallel).

e number ofmon concurrent constraint checks (NCQ@&rformed by the agents while solving the
problem. This is an adaptation of themetric from centralized CSP to the distributed case.
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Figure A.1: Encapsulation of a TCP packet.

Most of the metrics devised so far were designed for comparing very sialdarithms, all of
which were based on search. Therefore, all the algorithms were gingdmessages of comparable
size (linear in the number of variables), and thus the “number of messagetsit was adequate.
However, with the introduction of DPOP, it is clear that this metric by itself is ngéorsufficient, at
least not when comparing DPOP against a search-based algorithmificafigcconsider that some
UTIL messages in DPOP can contain millions of valuations! Such a “logical” agessbviously
cannot count as a single message while comparing DPOP with a seardthaigatl “logical” UTIL
messages are subject to possible fragmentation into multiple smaller messagebbetinetworking
layer, and DPOP must be penalized in such cases. To our knowleddg, the lower networking
layers have been ignored while devising performance metrics. We beli@vim thrder to ever deploy
a DisCSP/DCOP system in a real environment, we need to consider alsddiie dithe underlying
network, and understand its behavior, strengths and limitations.

Let us consider the following scenario: the “agents” in our DCOP arepesaple, each one with
their own computer connected to the internet, and a (complex) local problemal broblems are
connected with other agents’ local problems, and the neighboring agenéxgected to be able to
communicate with each other. Different connectivity scenarios are pessib

e users in a company, connected to the company LAN. These are fastatimms, 100Mbit or
even Gigabit. Latency is typically around 10ms[1].

e home users, or small companies, connected to internet via a broadbametton. These are
(relatively) fast connections, 256Kbit or mcﬁe Latency is above 100ms, typically between
150ms and 200ms[1].

e large industrial users, connected to backbones via fiber optic.

At the time of this writing, my broadband connection is 4Mbit



Appendix 243

In the following, we assume that the TCP/IP protocol stack is used by thsaigecommunicate.
A TCP packet is encapsulated by the physical layer in (ethefrat)es(as shown in Figure All)
composed of:

MAC header: 14 bytes + 4 bytes CRC final field (overhead). Minimal sizndcthernet frame
is 64 bytes, out of which the data is at least 46 bytes (if less, then padtle@'sy

IP header: size 20 bytes (overhead).

TCP header: size: 20 bytes (overhead)

TCP payload: typically 1000-1500 bytes.

The following parameters of the network are of interest (to simplify our a@glye assume they
hold throughout the network of agents, without variations):

e L. latency for one packet: this is the time it takes for one packet to travel to stindéon.
Typical latency for local LAN: 10ms[1]. Typical latency for Internetbave 100ms; typically
between 150ms and 200ms[1].

e B: communication bandwidth: the rate at which data can be sent over a timmetypical
for LAN is 10Mbit, 100Mbit, Gigabit (nowadays mostly 100Mbit, Gigabit is quitamanon).
Wireless (11,54,108Mbps). For Internet, slowest links are 56kbps.

e N,: Networking overhead per packet, in bytes (size of MAC headers/[PCfeaders)

e TCP_payload: size of payload in a TCP message, in bytes (typically 1000-1500 bytea). |
message contains more thAG' P_payload bytes, it will be split in several messages. Network-
ing overhead is incurred for each resulting message.

In addition to the characteristics of the network, each algorithm has its osaifies:

e algorithm-introduced communication overheddr each message;, A,(m;): size of algorithm
required context information (in ADOPT, the current view; in DPOP, the #Dd domain sizes
of variables in the message).

e payload per messagdor a messagen;, Payload(m;) is the size of the useful information
the message contains. In ADOPT, this is always 1 (one cost value répohteDPOP, this is
exponential in the number of dimensions of the message.

To capture the characteristics of the underlying transport protocol,regope an adaptation of
the LSM metric, which (a) takes into account message size, thus penaliz@® B® sending large
messages, and (b) takes into account the characteristics of the lovegrdrdiayers:
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Definition 47 (Network-based LSM (NLSM)) Considering the Longest Sequence of Messages met-
ric (LSM), we define the Network-based LSM (NLSM) metric as follows:

Payload i +Ao i
NLSM = 3 yn.crsum {( ayﬁég';ﬁyzoad(m ))W

Notice that in the sum, only the messageshat participated in the LSM are considered. Thus, NBR
effectively accounts for the longest message passing sequence, indsaie time considering large
messages as splitted across multiple, smaller, packets.

Furthermore, we argue that in any practical deployment of a DCOP appiican a real network,
an important performance measure is tbatime (in secondsdf the algorithm until the solution is
found, given the characteristics of the networKo capture this runtime, we propose to use NLSM
(which already takes into account the transport layer, i.e. TCP), arahjat &ILSM to account for the
physical network where the algorithm is deployed:

Definition 48 (Network Based Runtime (NBR)) Considering NLSM, we define the Network Based
Runtime (NBR) metric as follows:

NBR= NLSM x L

NBR thus gives a measure of the total time spent by an algorithm to solvdl@mioon a particular
network with the given latendy.

Note that NBR makes a number of simplifying assumptions: the latérmlds throuhout the network,
for the entire execution of the algorithm, and for all algorithms measured,d.significant variations
in latency related to geographical position, time, or algorithm. While we ackulgel¢éhat these as-
sumptions are debatable in a real deployment of a DCOP algorithm, we belegvaréh reasonable,
and that NBR is a more realistic metric than the ones previously proposedioPD

Additionally, to measure the degree to what a DCOP algorithm makes appeopsia of network
bandwidth, we define the

Definition 49 (Communication Overhead) The communication overhead is the total amount of infor-
mation (bytes) which is not essential to the algorithm, but sent over therensvertheless: Overhead
= Y vm, Overhead(m;) = 3y, No(mi) + Ao(m;);

Notice that this sum is defined over all messages sent over the netwbjisnLSM as in Defini-
tion|48.

Example 27 (Message Passing Exampleonsider the example problem from Figure 3.3. Consider
agentX;1, who sends messages to its par@nt For simplicity, assume all variables have 10 values
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in their domain. Assume that the range of possible valuations is betweed R5& for the largest
aggregated valuation. Thus, all valuations can be encoded as one byte.

ADOPT: X;; sends COST messages of this fo@OST(Xy = 1, X2 = 2, X5 = 4) = 4, i.e.
"in the context of Xy = 1, X5 = 2, X5 = 7, the cost forX; is 7. An economic encoding of such
a message requires at least 6 bytes: 3 bytes for the IDs of the variahleX,, X5, and 3 for their
current values. The useful payload of this message is just the cost ¥diwe. 1 byte). The algorithm
overhead isA, = 6 bytes.

The message has to be sent over the network. Assume the beste@®Sh message is sent using
a single TCP message, which uses a single Ethernet frame. The minienall siich a frame is 64 bytes:
MAC headers of 14 bytes, plus a minimum of 46 bytes of TCP/IP payldaditiass, padded with 0’s),
plus 4 bytes CRC. The overhead introduced by the networking layéy is 64 — A, — Payload =
64—6—1 = 57 bytes. Total overhead Querhead = A,+ N, = 63 bytes. Overhead to payload ratio:
63:1. To simplify the analysis, assume ADOPT does not manage to pefgripruning in this case,
and the whole set of 1000 combinations of assignmentX§otXs, X5 will be explored. Therefore,
X11 will receive at least 1000 VALUE messages of the féfgn= 1, Xo = 2, X5 = 7, and will reply
with 1000individual COST messages of the fo® ST (Xy = 1, Xy = 2, X5 = 4) = 4. This implies
that ADOPT requires 63,000 bytes of useless information sent for 1068 bfypayload.

DPOP: the UTIL messagé/7T L3, sent fromX;; to X5 contains10® = 1000 valuations, one
for each combination of values of variablgs;, X5, Xy. The message has a header containing the
list of the variables involved (i.eX5, X2, X(), and the size of their domains (i.e. 10,10,10). For the
example above, this requires 6 bytes, thiys= 6 bytes. The 1000 valuations are simply included in
the message as a sequence of 1000 bytes, which typiitaiyo a single messagerhe networking
overhead for this message is thaf3 = 58 bytes (MAC header, IP header, TCP header, MAC final
CRC field) Therefore, a UTIL message of 1000 valuations has total@8lytes, and total overhead
Owverhead = N, + A, = 58 + 6 = 64 bytes. Overhead to payload ratio: 64:1000.

DPOP splitting large messagesassume DPOP has to send a message with 4 dimensions (i.e.
10,000 values). Considering the typical payload of a TCP message00fiiydes, it follows that the
UTIL message will have to be split into 10 TCP messages. Now the messagis 4 dimensions,
therefore we count 8 bytes for the header describing the variables airddth@ains. Overhead =
A, + 10 x N, = 8 4+ 580 = 588 bytes for 10,000 valuations (the algorithmic overhefgis counted
only once)

In contrast, ADOPT sending the same amount of information would incGranhead = 10000 x (A,+
N,) = 10,000 x (8 + 55) = 630, 000 bytes of overhead when sending 10,000 valuations.

Assuming equal latencies of 100ms for a fast connection over the intamteaissuming all the
1000 valuations are sent sequentially by ADOPT, we have:

NBRADOPT = 10000 x L = 1000s.
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NBRppop =10 x L = 1s.

A.2 Performance Issues with Asynchronous Search

Asynchronous search algorithms with polynomial memory bounds have taatage that they allow
the agents to operate asynchronously, and have low memory requireewsver, they have a series
of drawbacks, that we outline in the following.

Issues with search algorithms in general:

e In general, in order to be able to guarantee polynomial memory requirenfatitsaching
[8,32,42,132,170] is not possible (see Section 3.1.1.3). In su@sces-exploration of parts
of the search space may be required[33,141,170,240]. This meaneveén after the whole
search space has been explored andct®tof the best solution has been found, the algorithm
has to re-explore parts of the search space again to actually derivautiersitself. This implies
even more work than necessary for the agents in terms of computation, aedetwork load
in terms of message passing.

e search algorithms introduce significant networking communication oveshadhe fact that
they use many small messages, which contain as payload just a singleluest.eatypically 1
byte (see Sectian A.1). If effective pruning is not possible, the owstfecomes prohibitive.

Additionally, asynchronousearch algorithms introduce the following performance issues:

e asynchronous algorithms produce significant algorithmic communicatiomeaeds by the fact
that due to their asynchrony, they have to attachtextinformation to each message (see Sec-

tion'A.1).

e random delays in message delivery (which are the norm in any realistiori@tgometimes
significantly degrade their performance, both in terms of computation andageegmssing
[240,241, 243].

A.3 FRODO simulation platform

We have developed and released a "FRamework for Open/Distributed Qatiioniz(FRODO), that
simulates in a single Java virtual machine a multiagent platform geared towardsglementation
and testing of (distributed) optimization algorithms. Each agent is simulated wittaahdzad, and
communicates with its peers via message exchange.
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In Figure/ A.2 we present an overview of the architecture of the platformieflig there is an
environment that is responsible for creating the agent threads andgaassiavery. Within the en-
vironment, each agent operates in an autonomous fashion: it loads isntetedoproblem, and then
participates in a message exchange protocol with (some of) its peerstaedlioy the optimization
algorithm.

The environment can monitor the message exchange, and can presghtoeti® user that shows
the current state of the solving process. For example, in the resourcatadioexample in the sen-
sor network environment, the GUI shows the current allocations of setsdargets, and the con-
flicts that are still to be resolved. For more details, and screenshots ofntldator, please visit
http://1iaww. epfl.ch/ Research/ sensornets/.

In the public version there are two implemented algorithms: Distributed Breakgotrithm -
DBA[228], and DPOP[160]. The framework is extensible, and allowseftsy implementation and
testing of new optimization algorithms, be they centralized or distributed.

There are also available two testbeds: one for resource allocation is@r sertwork, and one for
meeting scheduling problems. Both have random problem generatoiGHedo display the problem
instances.

More details, documentation, paper and source download can be fdabdJiand at

http://1iaww. epfl.ch/frodo/.

A.4 Other applications of DCOP techniques

A.4.1 Distributed Control

In a highway network, many problems like traffic jams or accidents can hdexdyavith more effective
and adaptive speed limitations. Such adaptive control can be providiedetligent agents, each one
responsible for a highway segment. Neighboring agents can communicatagitiother to exchange
information about traffic conditions, enforced speed limits, etc. The obgigito make the traffic a
fluid as possible, and increase safety.

We have developed a DCOP model of this problem[175], where the agaméspond to highway
segments and they control the speed limitation for their respective segmeoitstraints between
neighboring agents are designed to model safety restrictions (e.gciegfarspeed limit of 60 km/h
on a segment immediately after a segment with 120 km/h is dangerous), andetsimtinroughput.
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Structure of the multiagent optimization framework

Environment
*|oad problem
screate mailman
Mailman ecreate agents
A3 A edistribute subproblems to agents
OCOPAgent 4 —_— estart agents
«finish with the last agent

Contains:
Bits own OCOPNode with variables,

constraints, list of neighbors A2, A
@message handlers: H1... Hn

@message queues: Q1..Qn OCOPAgent

@main execution thread: T3

Contains:

OCOPProblem

Jits own OCOPNode with variables,
constraints, list of neighbors
@message handlers: H1... Hn oli

@message queues: Q1..Qn “St Of nOdeS
‘@main execution thread: T2

o|ist of variables
elist of constraints

Figure A.2: FRODO platform: agents simulated as threads that exchange messagéseaith
peers. New optimization algorithms can be easily implemented and testeenditement
provides monitoring and visualization support.

A.4.2 Distributed Coordination of Robot Teams

Cooperative robotics is an area where multiple autonomous agents oftetolscomplish a common
goal, such as finding an object, moving an object, patrolling, etc. Often tinegptl is too complex

for each one of the individual robots to achieve by itself: the area tolpatay be too large for a single
robot, the object to move may be too heavy, etc. In such settings, the rawetschcooperate in order
to achieve the goal, and effective coordination is essential.

In[97] we investigate a scenario where a team of robots must find arsodoee as fast as possible.
They have sensors for odor and for the wind direction on board, andrack the odor source by
reasoning about the direction of the wind, and about the possible locétioa source. Team work can
lead to finding the source much faster than a single robot could do, uitesaffective coordination
among the robots. Modeling the coordination problem as a DCOP and exgautariant of DPOP to
solve it dynamically as the robot teams evolve in the environment can lead tficsighimprovements
in terms of the time required to find the source, and of the total effort spetitebrobots to find the
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source.

A.5 Relationships with author’s own previous work

Parts of this thesis have appeared as preliminary versions in the followitiggtions:

e Optimization algorithms:

the DPOP algorithm (Chapter 4) appears in[160]

the H-DPOP algorithm (Chapter 5) appears in[114]

the MB-DPOP algorithm (Section 6.3) appears in[167]. An early veraapears in[156]
the O-DPOP algorithm (Section 6.4) appears in[168]

the LS-DPOP algorithm (Section 7.1) appears in[163]

the A-DPOP algorithm (Section 7.2) appears in[158], and an exterasibn in[159]
the PC-DPOP algorithm (Chapter 8) appears in[169]

© N o o b~ 0w NP

an improvement to the DBA algorithm[226] using interchangeabilities[@@gars in[155].
Another improvement of DBA consisting in a value-ordering heuristic afgiefl57]

Dynamic Systems:

1. the S-DPOP algorithm (Chapter 9) appears in[165]
2. the RS-DPOP algorithm and solution stability (Chapter 10) appear in[164]

Self-interested agents:

1. the M-DPOP algorithm (Chapter11) appears in[171]. An early versapears in[162]
2. the BB-M-DPOP algorithm (Chapter 12) appears in[171,172]

Privacy:

1. a secure version of the DPOP algorithm using multiparty computation apipEb96]

2. an efficient, secure version of the DPOP algorithm appears in[69]

Applications:
1. an application to distributed scheduling of preventative maintenancenefaéng units in
a power plant appears in[166]
2. applications to distributed meeting scheduling problems are discusse@, ibfll6167-169, 171]
3. applications to graph coloring problems are discussed in[160, 16,1168]
4. applications to sensor networks are discussed in[155, 157, 150,88 169]
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5. applications to combinatorial auctions are discussed in[69, 114]
6. distributed coordination of robot teams (Section A.4)[97]
7. distributed control (Section A.4)[175]
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