
A Scalable Method for Multiagent Constraint Optimization

Adrian Petcu and Boi Faltings
{adrian.petcu, boi.faltings}@epfl.ch
http://liawww.epfl.ch/
Artificial Intelligence Laboratory

Ecole Polytechnique Fédérale de Lausanne (EPFL)
IN (Ecublens), CH-1015 Lausanne, Switzerland

Abstract

We present in this paper a new, complete method
for distributed constraint optimization, based on
dynamic programming. It is a utility propagation
method, inspired by the sum-product algorithm,
which is correct only for tree-shaped constraint net-
works. In this paper, we show how to extend that
algorithm to arbitrary topologies using a pseudotree
arrangement of the problem graph. Our algorithm
requires a linear number of messages, whose max-
imal size depends on the induced width along the
particular pseudotree chosen.
We compare our algorithm with backtracking algo-
rithms, and present experimental results. For some
problem types we report orders of magnitude fewer
messages, and the ability to deal with arbitrarily
large problems. Our algorithm is formulated for
optimization problems, but can be easily applied to
satisfaction problems as well.

1 Introduction
Distributed Constraint Satisfaction (DisCSP) was first stud-
ied by Yokoo [Yokoo et al., 1992] and has recently at-
tracted increasing interest. In distributed constraint satis-
faction each variable and constraint is owned by an agent.
Systematic search algorithms for solving DisCSP are gener-
ally derived from depth-first search algorithms based on some
form of backtracking [Silaghi et al., 2000; Yokoo et al., 1998;
Meisels and Zivan, 2003; Hamadi et al., 1998].

Recently, the paradigm of asynchronous distributed search
has been extended to constraint optimization by integrating
a bound propagation mechanism (ADOPT - [Modi et al.,
2003]).

In general, optimization problems are much harder to solve
than DisCSP ones, as the goal is not just to find any solution,
but the best one, thus requiring more exploration of the search
space. The common goal of all distributed algorithms is to
minimize the number of messages required to find a solution.

Backtracking algorithms are very popular in centralized
systems because they require very little memory. In a dis-
tributed implementation, however, they may not be the best
basis since in backtrack search, control shifts rapidly between

different variables. Every state change in a distributed back-
track algorithm requires at least one message; in the worst
case, even in a parallel algorithm there will be exponentially
many state changes [Kasif, 1986], thus resulting in exponen-
tially many messages. So far, this has been a serious draw-
back for the application of distributed algorithms in the real
world, especially for optimization problems (also noted in
[Maheswaran et al., 2004]).

This leads us to believe that other search paradigms, in par-
ticular those based on dynamic programming, may be more
appropriate for DisCSP. For example, an algorithm that incre-
mentally computes the set of all partial solutions for all pre-
vious variables according to a certain order would only use
a linear number of messages. However, the messages could
grow exponentially in size, and the algorithm would not have
any parallelism.

Recently, the sum-product algorithm [Kschischang et al.,
2001] has been proposed for certain constraint satisfaction
problems, for example decoding. It is an acceptable com-
promise as it combines a dynamic-programming style explo-
ration of a search space with a fixed message size, and can
easily be implemented in a distributed fashion. However, it is
correct only for tree-shaped constraint networks.

In this paper, we show how to extend the algorithm to arbi-
trary topologies using a pseudotree arrangement of the prob-
lem graph, and report our experimental results. The algorithm
is formulated for optimization problems, but can be easily ap-
plied to satisfaction problems by having relations with utility
either 0 (for allowed tuples) or negative values (for disallowed
tuples). Utility maximization produces a solution if there is
an assignment with utility 0.

The rest of this paper is structured as follows: Section 2
presents the definitions and the notation we use, Section 3
presents an optimization procedure for trees, Section 4 the
optimization for graphs, Section 5 proves the complexity to
be equal to the induced width, Section 6 compares theoreti-
cally our algorithm with other aproaches, Section 7 presents
experimental results, and we conclude in Section 8.

2 Definitions & notation
A discrete multiagent constraint optimization problem
(MCOP) is a tuple < X ,D,R > such that:

• X = {X1, ..., Xm} is the set of variables/agents;

• D = {d1, ..., dm} is a set of domains of the variables,
each given as a finite set of possible values.

• R = {r1, ..., rp} is a set of relations, where a relation ri

is a function di1 × .. × dik → <
+ which denotes how

much utility is assigned to each possible combination of
values of the involved variables.

In this paper we deal with unary and binary relations, being
well-known that higher arity relations can also be expressed
in these terms with little modifications. In a MCOP, any value
combination is allowed; the goal is to find an assignment X ∗

for the variables Xi that maximizes the sum of utilities.
For a node Xk, we define Rk(Xj) = the relation(s) between

Xk and its neighbor Xj .

3 Distributed constraint optimization for
tree-structured networks

For tree-structured networks, polynomial-time complete opti-
mization methods have been developed (e.g. the sum-product
algorithm [Kschischang et al., 2001] and the DTREE algo-
rithm from [Petcu and Faltings, 2004]).

In DTREE, the agents send UTIL messages (utility vectors)
to their parents. A child Xl of node Xk would send Xk a vec-
tor of the optimal utilities u∗

Xl
(vj

k) that can be achieved by the
subtree rooted at Xl plus Rl(Xk) , and are compatible with
each value v

j
k of Xk (such a vector has |dom(Xk)| values).

For the leaf nodes it is immediate to compute these valu-
ations by just inspecting the constraints they have with their
single neighbors, so they initiate the process. Then each node
Xi relays these messages according to the following process:

• Wait for UTIL messages from all children. Since all of
the respective subtrees are disjoint, by summing them
up, Xi computes how much utility each of its values
gives for the whole subtree rooted at itself. This, to-
gether with the relation(s) between Xi and its parent Xj ,
enables Xi to compute exactly how much utility can be
achieved by the entire subtree rooted at Xi, taking into
account compatibility with each of Xj’s values. Thus,
Xi can send to Xj its UTIL message. Xi also stores its
optimal values corresponding to each value of Xj .

• If root node, Xi can compute the optimal overall util-
ity corresponding to each one of its values (based on all
the incoming UTIL messages), pick the optimal one, and
send a VALUE message to its children, informing them
about its decision.

Upon receipt of the VALUE message from its parent,
each node is able to pick the optimal value for itself (as
the previously stored optimal value corresponding to the
value its parent has chosen), and pass it on to its children.
At this point, the algorithm is finished for Xi.

The correctness of this algorithm was shown in the original
paper, as well as the fact that it requires a linear number of
messages, and linear memory.

Figure 1: Example of a pseudotree arrangement.

4 Distributed constraint optimization for
general networks

To apply a DTREE-like algorithm to a cyclic graph, we first
need to arrange the graph as a pseudotree (it is known that
this arrangement is possible for any graph).

4.1 Pseudotrees
Definition 1 A pseudo-tree arrangement of a graph G is a
rooted tree with the same vertices as G and the property that
adjacent vertices from the original graph fall in the same
branch of the tree (e.g. X0 and X11 in Figure 1).

Pseudotrees have already been investigated as a means
to boost search ([Freuder, 1985; Freuder and Quinn, 1985;
Dechter, 2003; Schiex, 1999]). The main idea with their use
in search, is that due to the relative independence of nodes
lying in different branches of the pseudotree, it is possible to
perform search in parallel on these independent branches.

Figure 1 shows an example of a pseudotree that we shall
refer to in the rest of this paper. It consists of tree edges,
shown as solid lines, and back edges, shown as dashed lines,
that are not part of the spanning tree (e.g. 8−1, 12−2, 4−0).
We call a path in the graph that is entirely made of tree edges,
a tree-path. A tree-path associated with a back-edge is the
tree-path connecting the two nodes involved in the back-edge
(please note that since our arrangement is a pseudotree, such
a tree path is always included in a branch of the tree). For
each back-edge, the higher node involved in that back-edge is
called the back-edge handler (e.g. the dark nodes 0, 1 and 2).
We also define:

• P(X) - the parent of a node X: the single node higher in
the hierarchy of the pseudotree that is connected to the
node X directly through a tree edge (e.g. P (X4) = X1)

• C(X) - the children of a node X: the set of nodes lower
in the pseudotree that are connected to the node X di-
rectly through tree edges (e.g. C(X1) = {X3, X4})

• PP(X) - the pseudo-parents of a node X: the set of
nodes higher in the pseudotree that are connected to the
node X directly through back-edges (PP (X8) = {X1})

• PC(X) - the pseudo-children of a node X: the set of
nodes lower in the hierarchy of the pseudotree that are
connected to the node X directly through back-edges
(e.g. PC(X0) = {X4, X11})

As it is already known, a DFS (depth-first search) tree is
also a pseudotree (although the inverse does not always hold).
So, a DFS tree obtained from the DFS traversal of the graph
starting from one of the nodes (chosen through a distributed
leader election algorithm) will do just fine. Due to the lack of
space we do not present here a procedure for the creation of
a DFS tree, and refer the reader to techniques like [Barbosa,
1996; Hamadi et al., 1998].

4.2 The DPOP algorithm
Our algorithm has 3 phases. First, the agents establish the
pseudotree structure (see section 4.1) to be used in the fol-
lowing two phases. The next two phases are the UTIL and
VALUE propagations, which are similar to the ones from
DTREE - section 3. Please refer to Algorithm 1 for a formal
description of the algorithm, and to the rest of this section for
a detailed description of the UTIL and VALUE phases.

UTIL propagation
As in DTREE, the UTIL propagation starts from the leaves
of the pseudotree and propagates up the pseudotree, only
through the tree edges. It is easy for an agent to identify
whether it is a leaf in the pseudotree or not: it must have a
single tree edge (e.g. X7 to X13 in Figure 1).

In a tree network, a UTIL message sent by a node to its par-
ent is dependent only on the subtree rooted at the respective
node (no links to other parts of the tree), and the constraint
between the node and its parent. For example, consider the
message (X6 → X2). This message is clearly dependent only
on the target variable X2, since there are no links between X6

or X13 and any node above X2.
In a network with cycles (each back-edge in the pseudotree

produces a cycle), a message sent from a node to its parent
may also depend on variables above the parent. This hap-
pens when there is a back-edge connecting the sending node
with such a variable. For example, consider the message
(X8 → X3) in Figure 1. We see that the utilities that the
subtree rooted at X8 can achieve are not dependent only on
its parent X3 (as for X6 → X2). As X8 is connected with X1

through the backedge X8 → X1, X8 must take into account
this dependency when sending its message to X3.

This is where the dynamic programming approach comes
into play: X8 will compute the optimal utilities its subtree can
achieve for each value combination of the tuple 〈X3, X1〉. It
will then assemble a message as a hypercube with 2 dimen-
sions (one for the target variable X3 and one for the back-
edge handler X1), and send it to X3 (see Table 1).

This is the key difference between DTREE and DPOP:
messages travelling through the network in DTREE always
have a single dimension (they are linear in the domain size of
the target variable), whereas in DPOP, messages have multi-
ple dimensions (one for the target variable, and another one
for each context variable).

Combining messages - dimensionality increase
Let us consider this example: X5 receives 2 messages from
its children X11 and X12; the message from X11 has X0 as
context, and the one from X12 has X2 as context. Both have
one dimension for X5 (target variable) and one dimension
for their context variable (X0 and X2 respectively), therefore,

Algorithm 1: DPOP - Distributed pseudotree-
optimization procedure for general networks.

1: DPOP(X ,D,R)
Each agent Xi executes:

2:
3: Phase 1: pseudotree creation
4: elect leader from all Xj ∈ X
5: elected leader initiates pseudotree creation
6: afterwards, Xi knows P(Xi), PP(Xi), C(Xi) and PC(Xi)
7: Phase 2: UTIL message propagation
8: if |Children(Xi)| == 0 (i.e. Xi is a leaf node) then
9: UTILXi

(P(Xi))← Compute utils(P(Xi), PP(Xi))
10: Send message(P(Xi), UTILXi

(P(Xi)))
11: activate UTIL Message handler()
12: Phase 3: VALUE message propagation
13: activate VALUE Message handler()
14: END ALGORITHM
15:
16: UTIL Message handler(Xk,UTILXk

(Xi))
17: store UTILXk

(Xi)
18: if UTIL messages from all children arrived then
19: if Parent(Xi)==null (that means Xi is the root) then
20: v∗

i ← Choose optimal(null)
21: Send V ALUE(Xi, v

∗

i) to all C(Xi)
22: else
23: UTILXi

(P(Xi))← Compute utils(P(Xi), PP(Xi))
24: Send message(P(Xi), UTILXi

(P(Xi)))
25: return
26:
27: VALUE Message handler(V ALUEXi

P (Xi)
)

28: add all Xk ← v∗

k ∈ V ALUEXi

P (Xi)
to agent view

29: Xi ← v∗

i = Choose optimal(agent view)

30: Send V ALUEXl

Xi
to all Xl ∈ C(Xi)

31:
32: Choose optimal(agent view)
33:

v∗

i ← argmaxvi

∑

Xl∈C(Xi)

UTILXl
(vi, agent view)

34: return v∗

i

35:
36: Compute utils(P(Xi), PP(Xi))
37: for all combinations of values of Xk ∈ PP (Xi) do
38: let Xj be Parent(Xi)
39: similarly to DTREE, compute a vector UTILXi

(Xj)
of all {UtilXi

(v∗

i (vj), vj)|vj ∈ Dom(Xj)}
40: assemble a hypercube UTILXi

(Xj) out of all these
vectors (totaling |PP (Xi)|+ 1 dimensions).

41: return UTILXi
(Xj)

X8 → X3 X3 = v0
3 X3 = v1

3 ... X3 = vm−1
3

X1 = v0
1 u∗

X8
(v0

1) u∗

X8
(v0

1) ... u∗

X8
(v0

1)
...

X1 = vn−1
1 u∗

X8
(vn−1

1) u∗

X8
(vn−1

1) ... u∗

X8
(vn−1

1)

Table 1: UTIL message sent from X8 to X3, in Figure 1

their dimensionality is 2. X5 needs to send out its message
to its parent (X2). X5 considers all possible values of X2,
and for each one of them, all combinations of values of the
context variables (X0 and X2) and X5 are considered; the
values of X5 are always chosen such that the optimal utilities
for each tuple < X0 × X2 × X2 > are achieved. Note that
since X2 is both a context variable and the target variable, the
message collapses to 2 dimensions, not 3.

One can think of this process as the cross product of mes-
sages X11 → X5 and X12 → X5 resulting in a hypercube
with dimensions X0, X2 and X5, followed by a projection on
the X5 axis, which retains the optimal utilities for the tuples
< X0 ×X2 > (optimizing w.r.t. X5 given X0 and X2).

Collapsing messages - dimensionality decrease
Whenever a multi-dimensional UTIL message reaches a tar-
get variable that occupies one dimension in the message (a
back-edge handler), the target variable optimizes itself out of
the context, and the outgoing message looses the respective
dimension.

We can take the example of X1, which is initially present
in the context of the message X8 → X3: once the message
arrives at X1, since X1 does not have any more influence on
the upper parts of the tree, X1 can ”optimize itself away” by
simply choosing the best value for itself, for each value of its
parent X0 (the normal DTREE process). Thus, one can see
that a back edge handler (X1 in our case) appears as an extra
dimension in the messages travelling from the lower end of
the back edge (X8) to itself, through the tree path associated
with the back edge (X8 → X3 → X1).

VALUE propagation
The VALUE phase is similar to DTREE. Now, in addition to
its parent’s value, the V ALUE

Xj

P (Xj)
message a node Xj re-

ceives from its parent also contains the values of all the vari-
ables that were present in the context of Xj’s UTIL message
for its parent. E.g.: X0 sends X2 V ALUE2

0(X0 ← v∗

0), then
X2 sends X5 V ALUE5

2(X0 ← v∗

0 , X2 ← v∗

2), and X5 sends
X11 V ALUE11

5 (X0 ← v∗

0 , X5 ← v∗

5).

5 Complexity analysis
By construction, the number of messages our algorithm pro-
duces is linear: there are n− 1 UTIL messages - one through
each tree-edge (n is the number of nodes in the problem), and
m linear size VALUE messages - one through each edge (m
is the number of edges). The DFS construction also produces
a linear number of messages (good algorithms require 2×m
messages). Thus, the complexity of this algorithm lies in the
size of the UTIL messages.

Theorem 1 The largest UTIL message produced by Algo-
rithm 1 is space-exponential in the width of the pseudotree
induced by the DFS ordering used.

PROOF. Dechter ([Dechter, 2003], chapter 4, pages 86-88)
describes the fill-up method for obtaining the induced width.
First, we build the induced graph: we take the DFS traver-
sal of the pseudotree as an ordering of the graph and process
the nodes recursively (bottom up) along this order. When a
node is processed, all its parents are connected (if not already

connected). The induced width is the maximum number of
parents of any node in the induced graph.

It is shown in [Dechter, 2003] that the width of a tree (no
back-edges) is 1. Actually the back-edges are the ones that
influence the width: a single backedge produces an induced
width of 2. From the construction of the induced tree, it is
easy to see that several backedges produce increases in the
width only when their tree-paths overlap on at least one edge,
and their respective handlers are different; otherwise their ef-
fects on the width do not combine. Thus, the width is given
by the size of the maximal set of back-edges which have over-
lapping tree-paths and distinct handlers.

During the UTIL propagation, the message size varies; the
largest message is the one with the most dimensions. We have
seen that a dimension Xi is added to a message when a back-
edge with Xi as a handler is first encountered in the propa-
gation, and travels through the tree-path associated with the
back-edge. It is then eliminated by projection when the mes-
sage arrives at Xi. The maximal dimensionality is therefore
given by the maximal number of overlaps of tree-paths asso-
ciated with back-edges with distinct handlers.

We have thus shown that the maximal dimensionality is
equal to the induced width. 2

Exponential size messages are not necessarily a problem in
all setups (depending on the resources available and on the in-
duced width - low width problems generate small messages!)

However, when the maximum message size is limited, one
can serialize big messages by letting the back-edge handlers
ask explicitly for valuations for each one of their values se-
quentially, so each message can have customizable size.

A workaround against exponential memory is possible by
renouncing exactness, and propagating valuations for the
best/worst value combinations (upper/lower bounds) instead
of all combinations.

6 Comparison with other approaches
Schiex [Schiex, 1999] notes the fact that so far, pseudotree
arrangements have been mainly used for search procedures
(essentially backtrack-based search, or branch-and-bound
for optimization). As good examples, see the Distributed
Depth-first Branch and Bound (DDBB), Distributed Iterative
Deepening (DID), ADOPT, Synchronous Branch and Bound
(SBB) and Iterative Distributed Breakout (IDB). All these
procedures have a worst case complexity exponential in the
depth of the pseudotree arrangement (basically because all
the variables on the longest branch from root to a leaf have to
be instantiated sequentially, and all their value combinations
tried out). It was shown in [Bayardo and Miranker, 1995] that
there are ways to obtain shallow pseudotrees (within a loga-
rithmic factor of the induced width), but these require intri-
cate heuristics like the ones from [Freuder and Quinn, 1985;
Maheswaran et al., 2004], which have not yet been adapted
to a distributed setting, as also noted by the authors of the
second paper.

In contrast, our approach exhibits a worst case complexity
exponential in the width of the graph induced by the pseu-
dotree ordering. Arnborg shows in [Arnborg, 1985] that find-
ing a min-width ordering of a graph is NP-hard; however,

the DFS traversal of the graph has the advantage that it pro-
duces a good approximation, and is easy to implement in a
distributed context. This, coupled with the fact that the depth
of the pseudotree is irrelevant to the complexity, means that
our algorithm works well with a simple DFS ordering. To
see this fundamental difference between the two approaches,
consider a problem that is a ring with n nodes. A DFS order-
ing of such a graph would yield a pseudotree with height n,
and one back edge, thus the induced width is 2. A backtrack-
ing algorithm is time exponential in n, whereas our algorithm
is linear, with message size O(|d|2). Since the exponential
complexity translates directly in the explosion of the number
of messages exchanged, these backtracking-based algorithms
have not yet been applied to large systems.

Furthermore, it was shown by Dechter in [Dechter and Fat-
tah, 2001] that the induced width is always less than or at
most equal with the pseudotree height; thus we can conclude
theoretically that our algorithm will always do at least as
well as a pseudotree backtrack-based algorithm on the same
pseudotree ordering. However, it is only fair to say that our
aproach can generate very big messages in the worst case, so
one has to find a proper tradeoff between the number and the
size of the messages transmitted through the system.

7 Experimental evaluation
Usual performance metrics for distributed algorithms are the
number of messages and the number of synchronous cycles
required to find the optimal solution. Both are linear in our
case. For the number of messages, see section 5; the number
of synchronous cycles is two times the height of the pseu-
dotree (one UTIL propagation, and one VALUE propagation).
We also introduce the maximal message size as a metric.

7.1 Sensor networks
One of our experimental setups is the sensor grid testbed from
[Bejar et al., 2005]. Briefly, there is a set of targets in a sensor
field, and the problem is to allocate 3 different sensors to each
target. This is a NP-complete resource allocation problem.

In [Bejar et al., 2005], random instances are solved by
AWC (a complete algorithm for constraint satisfaction). The
problems are relatively small (100 sensors and maximum 18
targets, beyond which the problems become intractable). Our
initial experiments with this setup solve to optimality prob-
lems in a grid of 400 sensors, with up to 40 targets.

Another setup is the one from [Maheswaran et al., 2004],
where there are corridors composed of squares which indi-
cate areas to be observed. Sensors are located at each ver-
tex of a square; in order for a square to be ”observed”, all
4 sensors in its vertices need to be focused on the respective
square. Depending on the topology of the grid, some sensors
are shared between several squares, and they can observe only
one of them at a time. The authors test 4 improved versions
of ADOPT (current state of the art for MCOP) on 4 differ-
ent scenarios, where the corridors have the shapes of capital
letters L, Z, T and H. Their results and a comparison with
DPOP are in Table 2. One can see the dramatic reduction
of the number of messages required (in some cases orders of
magnitude), even for these very small problem instances (16

Algo/Scenario Test L Test Z Test T Test H
MCN , No Pass 626.4 1111.64 1841.28 1898.04
MLSP, No Pass 597.88 663.32 477.56 679.36

MCN , Pass 95.67 101.90 94.93 258.07
MLSP , Pass 81.77 91.5 107.77 255.2

DPOP 30 30 18 30

Table 2: DPOP vs 4 ADOPT versions: number of messages
in sensor allocation problems.

variables). The explanation is that our algorithm always pro-
duces a linear number of messages.

Regarding the size of the messages: these problems have
graphs with very low induced widths (2), basically given by
the intersections between corridors. Thus, our algorithm em-
ploys linear messages in most of the parts of the problems,
and only in the intersections are created 2 messages with 2
dimensions (in this case with 64 values each).

This fact gives our algorithm the ability to solve arbitrarily
large instances of this particular kind of real-world problems.

7.2 Meeting scheduling
We experimented with distributed meeting scheduling in an
organization with a hierarchical structure (a tree with depart-
ments as nodes, and a set of agents working in each de-
partment). The CSP model is the PEAV model from [Ma-
heswaran et al., 2004]. Each agent has multiple variables:
one for the start time of each meeting it participates in, with
8 timeslots as values. Mutual exclusion constraints are im-
posed on the variables of an agent, and equality constraints
are imposed on the corresponding variables of all agents in-
volved in the same meeting. Private, unary constraints placed
by an agent on its own variables show how much it values
each meeting/start time. Random meetings are generated,
each with a certain utility for each agent. The objective is
to find the schedule that maximizes the overall utility.

Table 3 shows how our algorithm scales up with the size
of the problems. Notice that the total number of messages
includes the VALUE messages (linear size), and that due to
the fact that intra-agent subproblems are denser than the rest
of the problem, high-dimensional messages are likely to be
virtual, intra-agent messages (not actually transmitted over
the network). To our knowledge, these are by far the largest
optimization problems solved with a complete, distributed al-
gorithm (200 agents, 101 meetings, 270 variables, 341 con-
straints). The largest reported previous experiment is [Mah-
eswaran et al., 2004], with 33 agents, 12 meetings, 47 vari-
ables, 123 constraints, solved using ADOPT.

8 Conclusions and future work
We presented in this paper a new complete method for dis-
tributed constraint optimization. This method is a utility-
propagation method that extends tree propagation algorithms
like the sum-product algorithm or DTREE to work on arbi-
trary topologies using a pseudotree structure. It requires a
linear number of messages, the largest one being exponen-
tial in the induced width along the particular pseudotree cho-

Agents 30 40 70 100 200
Meetings 14 15 34 50 101
Variables 44 50 112 160 270

Constraints 52 60 156 214 341
Messages 95 109 267 373 610

Max message size 512 4096 32k 256k 256k
Cycles 30 32 70 86 96

Table 3: DPOP tests on meeting scheduling.

sen. This method reduces the complexity from domn (stan-
dard backtracking) to domw, where n=number of nodes in
the problem, dom bounds the domain size and w=the induced
width along the particular pseudotree chosen. For loose prob-
lems, n � w holds and our method retains the advantage of
a linear number of messages (in practice even orders of mag-
nitude fewer messages than the other aproaches), while pre-
serving a small message size. In real world scenarios, sending
a few larger messages is preferable to sending a lot of small
messages because of the much lower overheads implied (dif-
ferences can go up to orders of magnitude speedups). Our
experiments show that our method is the first one to be able
to handle effectively arbitrarily large instances of a number of
practical problems while using a linear number of messages.

Finding the minimum width pseudotree is an NP-complete
problem, so in our future work we will investigate heuristics
for finding low width pseudotrees.

9 Acknowledgements
We would like to thank Rina Dechter and Radu Marinescu for
insightful discussions, Jonathan Pearce/TEAMCORE for ex-
perimental data from sensor networks and meeting schedul-
ing simulations, and Michael Schumacher for valuable com-
ments on an early version of this paper. This work has been
funded by the Swiss National Science Foundation under con-
tract No. 200020-103421/1.

References
[Arnborg, 1985] S. Arnborg. Efficient algorithms for combi-

natorial problems on graphs with bounded decomposabil-
ity - a survey. BIT, 25(1):2–23, 1985.

[Barbosa, 1996] Valmir Barbosa. An Introduction to Dis-
tributed Algorithms. The MIT Press, 1996.

[Bayardo and Miranker, 1995] Roberto Bayardo and Daniel
Miranker. On the space-time trade-off in solving constraint
satisfaction problems. In Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
95, Montreal, Canada, 1995.

[Bejar et al., 2005] Ramon Bejar, Cesar Fernandez, Magda
Valls, Carmel Domshlak, Carla Gomes, Bart Selman, and
Bhaskar Krishnamachari. Sensor networks and distributed
CSP: Communication, computation and complexity. Arti-
ficial Intelligence, 161(1-2):117–147, 2005.

[Dechter and Fattah, 2001] Rina Dechter and Yousri El Fat-
tah. Topological parameters for time-space tradeoff. Arti-
ficial Intelligence, 125(1-2):93–118, 2001.

[Dechter, 2003] Rina Dechter. Constraint Processing. Mor-
gan Kaufmann, 2003.

[Freuder and Quinn, 1985] Eugene C. Freuder and
Michael J. Quinn. Taking advantage of stable sets
of variables in constraint satisfaction problems. In
Proceedings of the 9th International Joint Conference on
Artificial Intelligence, IJCAI-85, pages 1076–1078, Los
Angeles, CA, 1985.

[Freuder, 1985] Eugene C. Freuder. A sufficient condi-
tion for backtrack-bounded search. Journal of the ACM,
32(14):755–761, 1985.

[Hamadi et al., 1998] Y. Hamadi, C. Bessière, and J. Quin-
queton. Backtracking in distributed constraint networks.
In ECAI-98, pages 219–223, 1998.

[Kasif, 1986] Simon Kasif. On the parallel complexity of
some constraint satisfaction problems. In Proceedings of
the National Conference on Artificial Intelligence, AAAI-
86, pages 349–353, Philadelphia, PA, 1986.

[Kschischang et al., 2001] Frank R. Kschischang, Brendan
Frey, and Hans Andrea Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions On Informa-
tion Theory, 47(2):498–519, FEBRUARY 2001.

[Maheswaran et al., 2004] Rajiv T. Maheswaran, Milind
Tambe, Emma Bowring, Jonathan P. Pearce, and Pradeep
Varakantham. Taking DCOP to the realworld: Efficient
complete solutions for distributed multi-event scheduling.
In AAMAS-04, 2004.

[Meisels and Zivan, 2003] Amnon Meisels and Roie Zivan.
Asynchronous forward-checking on DisCSPs. In Proceed-
ings of the Distributed Constraint Reasoning Workshop,
IJCAI 2003, Acapulco, Mexico, 2003.

[Modi et al., 2003] P. J. Modi, W. M. Shen, and M. Tambe.
An asynchronous complete method for distributed con-
straint optimization. In Proc. AAMAS, 2003.

[Petcu and Faltings, 2004] Adrian Petcu and Boi Faltings. A
distributed, complete method for multi-agent constraint
optimization. In CP 2004 - Fifth International Work-
shop on Distributed Constraint Reasoning (DCR2004) in
Toronto, Canada, September 2004.

[Schiex, 1999] Thomas Schiex. A note on CSP graph param-
eters. Technical Report 03, INRA, 07 1999.

[Silaghi et al., 2000] Marius-Calin Silaghi, Djamila Sam-
Haroud, and Boi Faltings. Asynchronous search with ag-
gregations. In AAAI/IAAI, pages 917–922, Austin, Texas,
2000.

[Yokoo et al., 1992] Makoto Yokoo, Edmund H. Durfee,
Toru Ishida, and Kazuhiro Kuwabara. Distributed con-
straint satisfaction for formalizing distributed problem
solving. In International Conference on Distributed Com-
puting Systems, pages 614–621, 1992.

[Yokoo et al., 1998] Makoto Yokoo, Edmund H. Durfee,
Toru Ishida, and Kazuhiro Kuwabara. The distributed con-
straint satisfaction problem - formalization and algorithms.
IEEE Transactions on Knowledge and Data Engineering,
10(5):673–685, 1998.

